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Abstract—Random access channel (RACH) procedure is
critical to support a multitude of devices transmitting small
data payloads while ensuring low-latency access. In 3GPP
Release 16, a two-step RACH is proposed to alleviate signal-
ing overhead and access latency. While benefits are notice-
able, collisions still persist. In this paper, we propose a novel
non-orthogonal multiple access (NOMA)-enhanced 2-step
RACH scheme (NOMA-RACH) that jointly leverages the
benefits of access class barring (ACB), 2-step RACH, and
NOMA random access (NOMA-RA) to further enhance the
performance. We conduct a holistic study that accounts for
entire access latency. The scheme optimizes NOMA access
probabilities, utilizes an adjustable barring mechanism for
delay-sensitive devices, and identifies the optimal barring
rate for low latency. We develop a Markov chain model
to analyze NOMA access and derive the optimal access
probabilities and throughput of NOMA blocks. To cope
with the practical scenarios with constantly changing user
equipment (UE) traffic, we propose a deep contextual multi-
armed bandit (DCMAB) model that optimizes the NOMA
throughput and dynamically adjusts the barring rate based
on the observable channel feedback. Our simulation results
demonstrate that the DCMAB model performs better than
benchmark schemes and remains close to the optimal
latency confirming the effectiveness of our proposed scheme
under changing UE traffic.

Index Terms—Two-step random access, NOMA, user
barring, Markov chain, multi-armed bandit.

I. INTRODUCTION

In recent years, there has been an unprecedented surge
in data traffic, with predictions indicating a continual
exponential rise in both the number of devices and the
demand for wireless connections [1]], [2]]. The advent
of massive machine-type communication (mMTC) is
considered indispensable, presenting a formidable chal-
lenge for forthcoming communication networks. This
scenario envisions the deployment of millions of Internet
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of Things (IoT) devices per square kilometer to estab-
lish extensive connectivity [3]]. While extensive research
has explored wireless environments shaped by growing
traffic, the efficient support for a massive volume of
devices requiring low-latency access remains a complex
and critical issue in cellular systems []1].

Within cellular networks, such as LTE-A, the initiation
of an access request by user equipment (UE) triggers a
contention-based procedure known as contention-based
random access channel (or RACH in short) between
the UE and the base station (BS) [4]. In response to
the anticipated growing traffic and massive volume of
devices in 5G communications, 3GPP Release 16 not
only brought technical enhancements but also introduced
novel features [5]]. One such feature is the incorporation
of the 2-step RACH which offers advantages in two
scenarios [6f]. Firstly, for burst transmissions of small
packets, the simplicity of RACH proves appealing by
mitigating the substantial overhead associated with Ra-
dio Resource Control (RRC) connection setup and re-
sume procedures [7]]. Secondly, for new radio unlicensed
spectrum, streamlining random access (RA) contributes
to a latency reduction in connecting UEs to the BS. As
an enhanced version of the RA procedure for 5G, the
2-step RACH is expected to offer notable advantages,
including reduced signaling overhead, diminished power
consumption, and decreased latency.

The literature has studied various application scenarios
and technologies for the 2-step RACH procedure [8[]—
[11]. In a pioneering work by Jones et al. in 2019 [9], a
novel random access procedure named RAPID was intro-
duced specifically tailored for delay-sensitive devices. A
scheme for estimating the traffic characteristics of MTC
devices was presented. By using a Markov chain model,
the authors analyzed random access load and latency to
determine the optimal number of preambles for RAPID.
Building upon this, a subsequent contribution [[10] ex-
pounded on the intricacies of the 2-step RACH defined
in 3GPP Release 16. The work outlined challenges asso-
ciated with various random access schemes and proposed
a framework designed to assist UEs in estimating the



timing advance (TA) command. Another research work
[11] focused on the channel structure design for the
2-step RACH procedure, specifically addressing both
the preamble and data segments of MsgA, along with
the associated receiver processing framework. The study
found that employing smaller payload sizes or adopting
distinct demodulation reference signal (DMRS) ports for
UEs sharing the same physical resources can further
enhance the performance of random access. However,
concerns persist due to the purely random selection and
limited availability of orthogonal preambles per cell,
leading to increased collisions among MTC devices.

Furthermore, traffic bursts prevalent in the mMTC
scenario exacerbate the volume of devices initiating
RACH, leading to congestion and prolonged access
latency [12]]. To address these issues, effective solutions
typically involve managing access traffic or enhancing
the performance of RACH. For example, LTE-A specifi-
cations have incorporated access class barring (ACB),
a mechanism that distributes UE accesses over time
[13]. ACB categorizes users into distinct access classes.
Periodically, the BS broadcasts the barring rate b for
each access class, and each UE follows this setting to
participate in the next RACH procedure. In scenarios
with massive connectivity, ACB is crucial for stabilizing
the RACH procedure. The barring rate can be set low
to prevent excessive UEs from participating, avoiding
preamble saturation, while a high barring rate allows
more UEs but may cause collisions and increase latency.
Therefore, finding the optimal barring rate is critical for
balancing performance in massive connectivity systems.

Since 3GPP does not specify how to dynamically
adjust ACB parameters, many studies have proposed
their approaches. In a study by Li et al. [|[14], a quality of
service (QoS)-based dynamic and adaptive mechanism
was introduced, which prioritized preamble allocations
for delay-sensitive devices while adaptively adjusting
ACB parameters for both delay-sensitive and delay-
tolerant devices. ACB mechanism can also integrate
machine learning (ML) algorithms. For instance, studies
such as [15] and [[16]] applied reinforcement learning
(RL) algorithms, including Q-learning, to intelligently
determine ACB parameters, effectively mitigating con-
gestion and reducing access latency. In another study by
Chen et al. [17], a two-sided learning approach based on
multi-armed bandit (MAB) was proposed. This approach
enabled devices to dynamically select resource blocks
(RBs) for packet transmissions, optimizing throughput.
Additionally, a contextual MAB scheme was proposed
in [18] to jointly address user admission and channel
access for the RACH procedure.

As mentioned earlier, there are mainly two approaches
to mitigating collisions and reducing access latency. We
have introduced the management of access traffic via
ACB. Here we focus on addressing these issues by
enhancing 2-step RACH performance [[19]], [20]. One
effective method is the use of non-orthogonal multiple
access (NOMA) [21]], [22]. NOMA permits the simul-
taneous transmission of multiple non-orthogonal signals
within the same time and frequency resources. Receivers
can decode the superimposed signals in either the power
or code domain [23]], [24]. NOMA offers versatility
in enhancing connectivity, security, and efficiency for
future IoT networks. For example, Cao et al. propose
a NOMA-assisted semi-grant-free transmission scheme
that boosts massive connectivity and reduces access
delays in IoT environments. Their security-optimized
scheduling, including maximal user scheduling, miti-
gates eavesdropping risks while maintaining QoS for
grant-based users [25]. Additionally, they address re-
liable and secure communications in wireless-powered
NOMA systems, introducing a joint artificial noise and
power allocation scheme that improves secrecy and
throughput, particularly under energy constraints [26].
Specifically, power-domain NOMA-enabled RA, known
as NOMA-RA, allows users to randomly select both a
channel and a power level for transmission, utilizing a
set of pre-determined power levels [3|]. The BS with suc-
cessive interference cancellation (SIC) then decodes all
the received information. In contrast to the conventional
RA schemes like pure ALOHA and slotted ALOHA,
NOMA-RA is more spectrum-efficient, as it can leverage
an additional dimension to accommodate more devices.
Several research papers, including [27]-[30], have fo-
cused on evaluating the throughput performance of this
novel NOMA-RA scheme. In our previous study [3]],
we analyzed the theoretical throughput performance of
power-domain NOMA-RA and showed that NOMA-RA
with four power levels has a potential to achieve a
maximum throughput three times higher than that of an
equivalent multi-channel slotted ALOHA.

Despite the current research efforts to improve the
performance of RACH procedure, lengthy RA delays
and intensive collisions persist. We notice that existing
literature often focuses on a single aspect of improve-
ment. Besides, most studies focused on the conventional
4-step RACH, their solutions cannot be directly applied
to 2-step RACH due to incompatibility. This paper aims
to address the research gap by enhancing the newly
introduced 2-step RACH in the 5G standard to meet
the growing demands of future networks. To achieve
better performance over any single approach, we jointly



leverage the benefits of ACB and NOMA within the 2-
step RACH for the first time. The NOMA-enhanced 2-
step RACH, named 2-step NOMA-RACH, is proposed
and analyzed for the first time in this work. The scheme
optimizes the access probabilities of the NOMA blocks
inside RACH, employs an adjustable barring mechanism
for massive delay-sensitive devices, and determines the
optimal barring rate to minimize latency. Furthermore,
when concurrently applying the external adjustment of
the ACB barring rate and the internal optimization of the
2-step NOMA RACH procedure, neither of them can be
considered in isolation due to their inherent interdepen-
dence, emphasizing the need for our holistic approach.
The following describes the main contributions of this
paper:

« Based on the newly introduced 2-step RACH in the
3GPP 5G standard, a novel 2-step NOMA-RACH
scheme is proposed to address the increasingly
stringent latency and mMTC requirements of future
networks. This scheme integrates intelligent ACB
and NOMA into the 2-step RACH process. Its
latency performance is analyzed using a Markov
chain model for the first time, as well as the optimal
barring rate. Simulation results validate our analysis
and demonstrate a significant reduction in latency
compared to other benchmark models.

« To fully leverage the potential of applying NOMA
within the 2-step RACH for the first time, our
proposed scheme allows collided UEs to access
remaining NOMA blocks after prioritizing primary
UE{] in the top levels of NOMA blocks. We derive
analytical expressions for optimal access probabil-
ities and NOMA throughput and validate them in
simulation.

« Finally, focusing on a more practical scenario with
dynamic UE traffic, a newly proposed deep con-
textual multi-armed bandit (DCMAB) agent is de-
signed to jointly optimize NOMA access proba-
bilities and barring rate under practice scenarios.
Simulations show that the designed DCMAB model
outperforms the benchmark schemes and maintains
latency close to the theoretical minimum.

The remainder of this paper is organized as follows.
We first present the system model in Section [II] and
introduce the proposed 2-step NOMA-RACH scheme.
Then, we develop a Markov chain model and conduct
the theoretical analysis on latency and NOMA access
probabilities in Section [[TI] In Section [IV} the DCMAB
agent is designed Simulation results are given in Section

A primary UE refers to a UE with a fallback RAR whose preamble
has been successfully detected, as will be introduced later.

[V] followed by conclusions in Section

II. SYSTEM MODEL

Collision is a critical issue in the RACH procedure,
leading to an increase in access latency. As previously
discussed, managing UEs traffic with ACB can allevi-
ate collisions. Additionally, integrating NOMA within
the RACH procedure can further enhance UEs access
success rates, effectively resolving collisions. As men-
tioned earlier, our system model incorporates the ACB
mechanism and the 2-step RACH assisted with NOMA
to mitigate collisions. In this section, we first revisit
the ACB mechanism and the 2-step RACH procedure,
followed by presenting our proposed NOMA-RACH.

A. ACB Mechanism

ACB is a UE traffic control mechanism. It uses the
following steps to regulate UE traffic. The BS first
disseminates a barring rate, denoted as b, as part of the
system information before preamble transmission. Each
UE then generates a random number between 0 and 1,
and only participates in RACH if the generated number
is smaller than b, otherwise, it is barred until the next
round. With the permission to participate, the UE shall
transmit a preamble to the BS requesting for access.

The selection of the barring rate b is thus pivotal
in managing the challenge of RACH overload. How-
ever, this choice involves a delicate trade-off between
resource utilization and collision management. A smaller
b restricts the number of participating UEs, reducing
collisions but risking underutilization of resources. Con-
versely, a larger b increases the number of participating
UEs, potentially leading to excessive preamble colli-
sions. For delay-sensitive devices, the impact of b is
significant. A smaller barring rate may extend the time
spent waiting to pass barring, while a larger b may result
in transmission failures and backoff, potentially leading
to increased latency. Hence, finding the optimal value for
b becomes a critical consideration in system design. By
regulating traffic loads, the ACB can control the load
such that RACH will operate in its optimal point for
latency and throughput performance. In addition to traffic
regulation, there is an opportunity to enhance the RACH
process by incorporating NOMA. This integration will
be introduced in subsection [I=Cl

B. 2-step RACH Procedure

Let us proceed by providing an overview of the 2-step
RACH protocol. This protocol is initiated when a UE
requests for an access to the network. The 2-step RACH
can be conceptualized as a condensed version of the 4-
step RACH, as illustrated in Fig. |I} Despite the reduced
steps, it involves more complex logic. In the initial
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Fig. 1: Procedures for 4-step and 2-step RACH.

step, MsgA of UE encompasses the Msgl preamble
and Msg3 payload, akin to the 4-step RACH procedure.
UEs transmit their preamble and payload over physical
random access channel (PRACH) and physical uplink
shared channel (PUSCH) respectively. In 2-step RACH,
the PUSCH resource used for payload transmission is
determined by a mapping sequence set by the BS, based
on the selected preamble ID.

Upon receiving MsgA, the BS proceeds with detecting
the preamble from PRACH and decoding the payload
from PUSCH. Meanwhile, the UE awaits a response
from the network within a configured window Wgag.
This response, known as MsgB, varies depending on the
detection of the preamble and the decoding outcomes of
the payload at the BS. Different cases may arise, guiding
the actions to be taken in the next step, as detailed below.

o Case 1: With successful detection and decoding
of the PRACH preamble and PUSCH payload, the
BS replies MsgB containing a successful random
access response (RAR) and a Timing Advance (TA)
command. Upon receiving MsgB by the UE, the 2-
step RACH handshake is completed successfully.

o Case 2: It is possible that a PRACH preamble is
successfully detected, allowing the BS to determine
the preamble’s reception time, but the decoding of
the associated PUSCH payload fails. This case is
typically caused by channel errors in the PUSCH or
by multiple UEs transmitting their payloads on the
same PUSCH resourceﬂ In this case, the preamble
is successfully detected, and the BS will utilize
the preamble reception time to transmit a fallback
indication (fallback RAR) in MsgB. The handshake
then proceeds by falling back to the third and fourth
steps of the 4-step RACH.

o Case 3: It is also possible that a PRACH preamble

2In many-to-one mapping, different preamble IDs can be mapped to
the same PUSCH resource for payload transmission, which can cause
PUSCH payload collisions [10].

is detected, but the decoding of the corresponding
PUSCH payload fails, and the BS is unable to
determine the preamble reception time. This case
is typically caused by multiple identical preambles
being received at the BSEI In this case, the preamble
is said to be collided, and the BS will transmit a
backoff indication to the collided UEs, instructing
them to back off and attempt random access again.
o Case 4: If the UE does not receive a response by the
end of the RAR window Wyag, it assumes that the
BS has failed to detect MsgA. Consequently, there
will be no RAR transmission between the BS and
the UE. The UE will perform a backoff procedure.

The flowchart delineating the standard 2-step RACH
procedure is presented in Fig. [2] Different cases arise
based on the outcomes of preamble detection (PBD),
preamble reception time configuration (RTC), and pay-
load decoding (PLD). The UE that successfully receives
the contention resolution (CR) completes the random
access procedure. In cases where the random access
procedure is deemed unsuccessful, UEs will enter the
backoff (BO) state and initiate the re-transmissions of
MsgA. The number of times of MsgA re-transmission is
monitored, and when the count reaches a predetermined
threshold m, the 2-step RACH procedure is considered
unsuccessful, prompting the UE to revert to the 4-step
RACH procedure.

C. The Proposed 2-step NOMA-RACH

Having introduced the 2-step RACH and ACB mecha-
nisms, we now provide a detailed description of our pro-
posed 2-step NOMA-RACH procedure. Unlike the stan-
dard 2-step RACH, our proposed scheme incorporates
NOMA into the RACH procedure, thereby enhancing
its effectiveness by mitigating collisions. This is made
possible because power-domain NOMA permits multiple
UEs to transmit on the same NOMA resource. To
manage the massive UE traffic in the proposed scheme,
when a UE initiates the access, it first participates in the
ACB mechanism, as described in Section If the
UE successfully passes the ACB, it will then participate
in the 2-step NOMA-RACH procedure by transmitting
MsgA. Upon receiving MsgA, the BS attempts to detect
the preamble and decode the payload, resulting in the
outcome cases discussed in Section [[-Bl If the BS
cannot determine the RTC of the preambles (Case 3),
the preamble is considered collided. Conversely, the
preamble is deemed successful if the RTC is successful,
regardless of whether the PUSCH payload in MsgA is
decoded successfully (Cases 1 and 2). Different from

3Collisions on PRACH preambles can result in payload decoding
failures. For further details, please refer to [[10], [31].
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the original 2-step RACH illustrated in Section. [[I-B| in
our proposed 2-step NOMA-RACH procedure, NOMA
is selectively applied in Cases 2 and 3.

In Case 2, the BS can identify the UEs and send
fallback RARs. A unique NOMA resource can be as-
signed to each identified UE. The UEs that are assigned
unique NOMA blocks are designated as primary UEs,
while collided UEs refer to UEs whose preamble has
collided. In our design, the BS first schedules primary
UEs onto sufficient NOMA blocks in a sequential man-
ner by sending advanced fallback RARE], following a
highest-power-level-first principle. Subsequently, the BS
broadcasts a NOMA block availability map, inviting
collided UEs to opportunistically access the unoccupied
NOMA blocks. Following the assignment, and similar
to the approach in [18], all remaining NOMA resource
blocks are made available for access by the collided
UEs in Case 3. These collided UEs wait for the NOMA
block availability map and receive the advanced fallback
RAR from the BS. Thus, instead of enforcing BO, we
allow these collided UEs to re-transmit the payload and
opportunistically utilize the remaining NOMA resource
blocks to resolve preamble collisions, thereby enhancing
overall performance. UEs that successfully pass the
SIC decoding of NOMA will receive the contention
resolution message from the BS and complete the RA
procedure. Similar to the original 2-step RACH, if the
random access procedure is unsuccessful, UEs will enter
the BO state and initiate the re-transmission of MsgA.
The flowchart of the proposed 2-step NOMA-RACH
procedure is depicted in Fig. [3] with the adoption of
NOMA highlighted in the grey area.

III. THEORETICAL ANALYSIS

In the proposed 2-step NOMA-RACH scheme, the
introduction of NOMA further complicates the setting of

4In proposed scheme, fallback RARs include NOMA allocation
information, referred to as ‘advanced fallback RARs’ in this paper.

ACB parameter values, as various parameters influence
each other within the transmission and BO loops outlined
in the flowchart. The choice of the ACB barring rate
not only impacts the optimal access probabilities of
NOMA blocks but also influences overall system latency.
Finding the optimal access probabilities and analyzing
access latency involves complex calculations. Here, we
model our proposed 2-step NOMA-RACH scheme using
a Markov chain to analyze its performance.

A. The Markov Chain Model

We begin by making several assumptions. Firstly, we
assume no process error within the RACH procedure and
no transmission failures due to channel errors. With these
assumptions, Case 4 will not occur. The UE operation
can be modeled by the Markov chain depicted in Fig.
[Z_f], where 5; ; is the state of each status. Here, i € M
represents the re-attempt count after BO where M =
{0,1,...,m}, and j € {1,2,3,B,T,CR} is the current
UE status. Let N = {1, 2, 3}. Since UEs revert to the 4-
step RACH procedure after m+-1 failures, and the impact
of the 4-step components in the proposed scheme can be
disregarded if m is appropriately set, we focus solely on
the 2-step RACH components to effectively model the
proposed scheme. The following defines state elements
and state transition probabilities of the model.

« Barring State (S ): In this state, the UE has a
probability P, of passing the barring state, meaning
that the random number generated by the UE in
ACB is less than the barring rate b.

o MsgA Transmission States (S; t): The UE trans-
mits MsgA to the BS, which includes a randomly
selected preamble. Upon receiving MsgA, the BS
begins to detect the preamble and decode the pay-
load, resulting in three possible cases: Cases 1, 2,
and 3.

o Successful UE States (S; 1): The BS has a proba-
bility P, of successfully detecting a preamble with
RTC and decoding the payload.

« Primary UE States (.5; 2): The BS has a probability
P of successfully detecting a preamble with RTC
but failing to decode the payload. Each primary
UE will be allocated a unique NOMA block for
transmitting Msg3, and its SIC is assumed to be
successful.

« Collided UE States (S; 3): The BS has a probabil-
ity P5 of receiving multiple identical preambles and
being unable to specify the RTC. In such states, the
collided UEs will opportunistically access the re-
maining NOMA blocks according to pre-calculated
access probabilities. Then, there is a probability
P, that these collided UEs successfully access the
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NOMA blocks.
« Content Resolution States (S; cr): BS sends a
contention resolution message to the UE.

B. Stationary Distribution Derivation

We denote m; ; as the stationary probability of state
S; ;. These probabilities, derived from the stationary
distribution, are expressed in (T).

ﬂ-O,B, ’L:O,] :B
Pb’lTO,B H(Pg(l—P4))l, Z'E./\/Lj:T
=0

PiPymog [1(Ps(1—Py)', ieM,jeN
=0

Tij =
i
Pymos(Pr+ Py + P3Py) T[] (P3(1 — Py)),
1=0

i€ M,j5 =CR.
(1
For states S; ;, j depends on the current status, while ¢
denotes the re-attempt count for that state. The stationary
distribution of a particular state can be represented by
the summation of all possible ¢ values, denoted as 7; =

L
>~ m;,j. The expression for 7; is provided in ().
=0

7o, J=B -
PJTI' (glljg(i;Pli))(1—(P (’1—1Z )E)LJX) .
bT0,B 1 2 173})3?17134) 3 4 7] — CR

2

The value of each particular state can be determined
by summing the stationary probabilities. We can solve
the stationary probability by leveraging the fact that the
sum of all stationary probabilities equals one.

C. State Sojourn Time and Latency Analysis

To determine the stationary distribution and calculate
the transition probabilities, it is essential to express the
average number of UEs performing preamble transmis-
sion within the Markov chain framework. From the
perspective of a single UE, the average time spent on
preamble transmission can be derived through stationary
distribution analysis. This requires determining the time
proportion that a UE spends on preamble transmission,
denoted by 7. With this time proportion, we can statis-
tically estimate the average number of UEs performing



preamble transmission in the system’s steady state. To
calculate the time proportion 7, we must first determine
the sojourn time, which is the time a UE spends in
each state before moving to the next. Let T; ; represent
the sojourn time for state .S; ;. If the processing time
remains consistent across all reattempts, then T} = T; ;
is independent of ¢. The average sojourn time for each
state is detailed in (3) below.

tw, Jj=B
tT7 J:T
Wrar, Jj=1

tnoma + Werar +13, j=2
tnoma + Wrar + t3 + (1 — Py)tgo+,7 =3
Wer, j=CR.

(3)

In the above, t,, tr and tpo denote the barring
waiting time, preamble transmission time and the av-
erage BO time window respectively. Moreover Wrag,
tnoma, ts and Wegr represent the RAR time window,
the overall NOMA allocation time at the BS, the UE
processing delay plus RRC message transmission time
and the contention resolution time window respectively.
We define the overall average sojourn time for all states
as the average step latency of the proposed scheme which
is denoted as T,y.. The overall average sojourn time can
be calculated using (@) shown below.

L
Tave = Z Zﬂ'i,jTi,j = mo,Blw + TrlT
’L:O J ( 4)
+ Z?TjTj + mcrWrRES.

j=1
Note that the time proportion 7 can be expressed as
the ratio of the preamble transmission time to the overall
average sojourn time 7T,y., which includes UEs that have
successfully passed the barring stage and completed the
BO process. Specifically, at the steady state, 7 is given

by 7 = WT—T. Consequently, the average number of UEs

performinévepreamble transmission at the steady state,
denoted by N, is
T TtT

N:TUTQ‘J UT s

where Ur represents the total inco%cing UE traffic and
[-] represents the ceiling operation. The transition prob-
abilities of the states as well as the access probabilities
for the NOMA blocks, can be derived using N.

D. Derivation of Optimal NOMA Access Probabilities
1) Sequential NOMA Access Analysis
To obtain the state transition probabilities related to

NOMA, we need to derive P;, P>, P; and P, through
the 2-step NOMA-RACH procedure. Since NOMA ac-
commodates both collided UEs and primary UEs, it is

essential to analyze the outcomes of preamble selec-
tion and transmission. As described earlier, the average
number of UEs performing preamble transmission at
steady state is denoted by N. After preamble selection
and transmission, some preambles will be successfully
detected, while others will collide. Let N, denote the
number of UEs with successfully detected preambles
(successful UEs), and N, the total number of UEs
with collided preambles (collided UEs). Thus, we have
N =N, +N.,.

Since each UE initiating access randomly selects one
preamble from M available preambles, the probability
that only one UE selects a specific preamble can be given
as (N) (1 — )N =1 Hence, the expected number of

1
the successful UEs is given by

1 N-1

Among the UEs with successful preambles, some will
also have successful payload decoding, while others will
not. Let Ny represent the expected number of UEs with
successful preamble detection but failed payload decod-
ing, i.e., primary UEs, and let N,; denote those with
successful payload decoding. Thus, Ny = Ny + N, . To
calculate Ny, assuming py is the probability that the BS
fails to decode the payload, we have Ny = [Ngpy].

By utilizing the aforementioned parameters, the suc-
cess rate of NOMA access can be determined. Consider
a C' - L power-domain NOMA with C' subchannelsﬂ
and L power levels. We allocate Ny primary UEs to
the upper levels of NOMA, while allowing N, collided
UEs to opportunistically access the remaining resources.
We assume that there are sufficient radio resources to
accommodate all primary UEs, ie., Ny < C - L. We
illustrate this process with an example shown in Fig.
[l Primary UEs are sequentially assigned to the upper
levels of the NOMA resources. After this assignment,
the power levels may be fully or partially occupied. In
scenarios where a power level is only partially occu-
pied, we denote the two different numbers of occupied
power levels as Lq and Lo, where L1 — Lo = 1. The
corresponding numbers of subchannels for L; and Lo
are represented by Cy and Co, respectively. Let L, be
the number of power levels where all NOMA blocks are

occupied. For any given Ny, L is calculated as
L. — Nf - Nf mod C'
s C )
where mod is the modulus operator. Subsequently, the
quantities L1, Lo, C7 and C5 can be expressed by:

STn this paper, a subchannel of NOMA refers to a time-frequency
resource block, while a NOMA block refers to a specific power level
within a subchannel.
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Fig. 5: An example of sequential NOMA block alloca-
tion.

Ly =L-Ls,
Ci =C-N; modC, ©)
Ly, =L—-L;—-1,

02 =N f mod C.

After completing the sequential allocation of NOMA
blocks, the remaining available subchannels and lev-
els can be treated as two distinct regions, denoted as
Ry = Cy - Ly and Ry = C5 - Lo. The total number of
remaining NOMA blocks is given by K = C-L — Ny =
C1-L1+C5-Ly. This scenario can be viewed as collided
users accessing the two remaining regions, 21 and R».
If the collided users access the remaining NOMA blocks
randomly, and the probability of selecting any power
level within a subchannel is %, where K = C'- L — Ny,
then the corresponding success probabilities for each
region, P, and P,,, as well as the overall success
probability P, can be expressed as:

L1 1 L1—a N.—1 Li—
Po =G % g 2 [
X(%)b(l _ Ll—a+1)Nc—b—1] ,
Ly L2201 N1\ (La—a (7
Py, =0y 2_:1% Z:o [( % )( 2b )b!
X(%)b(l 2K+1) 7b71],
P, =P, + P,

Additional detalled explanations of the derivation
steps are included in Appendix A. Consequently, the
throughput of the collided UEs accessing the NOMA
blocks can be expressed as PsN,.

2) Optimal NOMA Access Probabilities Analysis

In Subsection [II-DI} we assume that collided UEs
randomly access the remaining NOMA blocks. However,
that is not the optimal approach. The reason is that the
decoding process in power-domain NOMA will fail if
multiple UEs select the same NOMA block. Moreover,
due to the higher-power dominance issue [3]], this failure
affects all lower power levels within the same block.
Therefore, an optimal approach is to use different ac-
cess probabilities for different levels instead of using a
common access probability across all levels. Let a; and
ag represent the levels that can be chosen by UEs when
selecting subchannels in C; and Cs, respectively. The
probability of a UE selecting a level within a subchannel

L, Lo
is denoted by l,, and l,,, where > l,, = > l,, = 1.
a1:1 a2:1

The probability of a UE selecting a subchannel from

Cy or Oy is % or ﬁg, respectively. Consequently, the

success probabilities P, Ps,, and the overall success
probability P are given by

Li—a; NI L
Py =G Z loy [( o (Fry )b
ay=1 b=0 i
a]— 1 L b
SO SV a1 o
=1 i=1
P52 =y Z la2 7 Z |:(Nab—1) (Lg;ag)b!

CL21

, -
layL2\N,—b— I, L.
x(1- 2+ Z )N I
j=1 =1 |
P, =P, +P,.

®)
When level a; or as in a subchannel is chosen, b
represents the maximum number of UEs that can be
successfully transmitted above the chosen level, where [;,
is the probability of the UE choosing its corresponding
level above the chosen level. The optimal access proba-
bilities across power levels for each subchannel, [,, and
la,, can be found using an exhaustive search. Additional
detailed explanations of the derivation steps for (8) are
included in Appendix A.

E. Markov Chain Solution
After determining the optimal NOMA access proba-
bilities, we can obtain Py, P>, Ps, Py by
P1 _ Nsl P2 1;/\7 , (9)
Py =3¢, Py =P
where Pj represents the success probability of collided
UEs accessing NOMA blocks, as determined by either
or (8), depending on whether uniform or optimal
access probabilities are used.

Upon substituting the above probabilities into (2), the
expressions in then solely dependent on the steady-
state distributions 7. By leveraging the fact that the sum
of all stationary probabilities equals one, all stationary
distributions can be solved. Subsequently, the theoretical
values for average step latency, NOMA access proba-
bilities and success rate can be obtained. Furthermore,
with all variables within the Markov Chain solved, the
expected access time for a UE from barring to CR can
be calculated through random walk. This access time is
referred to as access latency.

IV. ALGORITHM DESIGN

To address dynamic traffic load in real-world sce-
narios, an intelligent agent is designed to dynamically
adjust the barring rate in response to fluctuating load



conditions. Additionally, it optimizes NOMA access
probabilities to enhance RACH performance with aim
to reduce collisions and user access latency. This agent,
known as the DCMAB agent, fine-tunes the ACB rate
and optimizes NOMA access probabilities, based on
environment inputs and insights from our theoretical
analysis. The entire process is illustrated in Fig. [6]

A. DCMAB Configuration

Before introducing our proposed DCMAB agent, we
first describe contextual and non-contextual bandits.
Both types involve making decisions from an action
space denoted as A, with a subsequent stochastic reward
r revealed only for the chosen action. The actions in
A are called arms, and the objective is to maximize
the received rewards by identifying the optimal arm.
This framework aligns with the need to adjust the
barring and NOMA access rates in practical scenarios,
where each barring rate in ACB represents an arm for
exploring the optimal rate. Extensions of MAB, such
as Contextual MAB, incorporate additional context to
improve decision-making in complex scenarios. Gener-
ating contexts can be challenging in certain scenarios. To
address this, we draw inspiration from neural networks
(NN) used in Multi-Armed Bandit (MAB) schemes, as
demonstrated in [32]. Specifically, we integrate an NN
prediction model within the agent to forecast the context
and broadcast NOMA access probabilities, which are
then applied in the RA procedures.

To capture relevant information about the current
environment, the main part of the context C includes
the current load Ur and barring rate b as contextual
information, with the flexibility to incorporate additional
information as needed. The primary goal of NN pre-
diction model is to estimate Ur using observable data.
By leveraging the Markov chain model, we can derive
the correlation between observable contents and Ur,
facilitating the generation of targeted training data set 1.
Since the BS does not know the exact number of collided
UEs, the estimation of Ur is key to determining the
optimal NOMA access probabilities. Using the estimated
Ur, we can obtain N, and Ny values to calculate the
optimal NOMA access probabilities.

Finding the optimal NOMA access probabilities « LE]
is complex, especially with an exhaustive search as
outlined in (B). To utilize the NN model to broadcast
the optimal NOMA access probabilities without real-
time search, the training data set 2 needs to be pre-

6To simplify matters, let o7, denote the set comprising the prob-
ability of a collided user selecting a NOMA region, determined
according to the region’s weight, alongside the normalized optimal
access probabilities lq; and lq,, which are determined based on the
specific NOMA region being selected.
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Fig. 6: The design of DCMAB agent.
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searched for different Ur values. As a result, two sets of
training data are employed to refine the NN prediction
model. To mitigate the burden of excessive training
data, we postulate a ceiling on the maximum number
of serviceable incoming UEs, denoted as U7'*". In the
steady state, N, and Ny are typically not excessively
large, which permits us to impose a maximum limit on
the number of serviceable collided UEs, thereby further
reducing the scope of the training data. The range of
Ny is set between 0 and the number of NOMA blocks,
C x L, while the range of collided UEs is determined
based on the estimated Ur. This NN prediction model
considers factors such as the size of NOMA (C x L), the
number of preambles (M), the current barring rate (b),
the number of UEs completing the 2-step NOMA-RACH
procedure (U;), and the corresponding average step
latency (T = T'e). It predicts Ur as part of the context
and indicates the optimal NOMA access probabilities,
represented by P(Urp, ap|b,T,Us, M,C, L). In the rare
event that incoming UEs exceed these limitations, the
model can be retrained to ensure optimal performance.

B. Agent Design

We now elucidate the design of the DCMAB agent.
The action space of the agent, denoted as B, comprises a
list of barring rates, represented by B = {b1, b, ..., b, }.
The number of users admitted to the RACH procedure
and NOMA, specifically Ur, N., and Ny, is unknown to
the agent and thus estimated using the aforementioned
NN prediction model. Building upon the NN prediction
model, Algorithm 1 is formulated to dynamically adjust
the barring rate. It outlines the process for each barring
round ¢ of the DCMAB agent changing barring rate.
In each round, the agent selects a barring rate b and
executes a two-step handshake over a specific number
of time slots. Since changes in the barring rate b do not
immediately affect the reward, there is a delay of at least
0t before the impact of the new b setting is reflected in
the reward. Consequently, the agent’s decision to change
the barring rate is made over a period of 6t or longer,
with ¢ determined by simulation.

Once the reward for the previously selected barring



rate b is obtained, the agent estimates the current number
of incoming UEs Ul as part of the context associ-
ated with that barring rate b* in this round. Then, the
agent broadcasts the optimal NOMA access probabil-
ities «ay, for the next round. The broadcast and esti-
mation are achieved using the NN prediction model
P(Up,arlb, T,Us, M,C,L). The data is stored in the
agent’s context matrix C, with the context led by the
estimated UZ. If the barring rates of an estimated Ur
in context have not been fully explored, there is a
probability € of randomly selecting an unexplored arm.
Otherwise, the agent selects the arm with the lowest
average step latencyﬂ] among the explored arms. If all
barring rates of an estimated Ur in context are fully
explored, the agent chooses the arm with the lowest
average step latency. When all arms within a context
are explored and the system estimates this context again,
it is considered seen. For a seen context, the DCMAB
employs the learned optimal arm for the specific number
of UEs. Conversely, if an unseen context is estimated,
the system initiates exploration. Hence, after sufficient
exploration, when new traffic corresponds to a seen
context, the agent can make the optimal choice directly.
The computational complexity remains low, as there are
no internal loops and the neural network model is pre-
trained.

V. SIMULATION RESULTS
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Fig. 7: Access latency of the proposed scheme.
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In this section, we present simulation results to show
the proposed 2-step NOMA-RACH performance and
its performance advantages against other benchmark

7Minimizing the average step latency, T'ave, and minimizing access
latency, T3, yield the same result, as demonstrated in Section There-
fore, in this algorithm, we focus solely on T,y to avoid duplication.
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Algorithm 1 Barring Algorithm with DCMAB Agent
Input: M, C, L, B={by,ba,....;0,}, 6t, C = .
1: i = 0,t; = 0, b* + Random element from the set,

ot < Random access probabilities.
2: while RACH is on do

3:  Barring round i begins, set barring rate < b’

4. Set NOMA access probabilities < o

5. Obtain U, and T, at time t; + dt.

6: Uk « P(Ur|b?, Toye, Us, M,C, L)

7:  Set reward R; = —Tyye

8 if [UL,b'] € {[Ur,b, R, seen]|C} then

9: Set 7 <— 1 + 1, Set ¢; < Current time

10: Set b* + arg max R

[Ur,b,R]€C,YUr=U,

11: ab « P(ap|b?, Tye,Us, M, C, L)

12: continue

13:  else

14: Set C + C | {[U%, b, R]},

15: Set B’ = {b|[Ur,b,R] € C,YUr = Ut} to

represent current explored arms of UZ..

16:  end if

17:  if B C B’ then

18: Set U = U, Mark the context of Ul as seen:

19: {[Ur,b,R] <« [Ur,b,R,seen]|[Ur,b,R] €

C,VUr =U}
20: Set b arg max R
[Ur,b,R]€C,YUr=U},

21:  else if B ¢ B’ then

22: if rand(0,1) < € then

23: Set b < a random arm € B and ¢ B’

24: else

25: Set b arg max R
[Ur,b,R]€C YU =U,

26: end if

27:  end if

28:  set i< i+ 1, set t; «+ Current time, set b* < b

29: b+ P(ap|b?, Toye,Us, M,C, L)

30: end while

schemes. The simulation results are also used to validate
our theoretical analysis. Furthermore, we evaluate the
performance of the designed DCMAB algorithm, dis-
cussing its convergence and correctness. For the latency
simulations, the following assumptions are made: pream-
ble transmission time {7 = 1 ms, barring waiting time
tw = 4 ms. Moreover, the average BO time window is
tBo = 25 ms, the BO time threshold is set to be 15, RAR
window size Wrar = 4 ms, and contention resolution
time Wgrgs = 5 ms, unless otherwise indicated. The size
of the NOMA blocks is C'- . = 50-4 with overall process
time txoma = 1 ms. Additionally, we adopt a one-to-one



mapping strategy with low p; for MsgA transmissions,
tailored for NOMA and ACB configurations catering to
a substantial number of UEs.

Recall that access latency is defined as the expected
time for a UE to successfully complete the RA proce-
dure, including the barring process and the handshake.
Fig.[7]illustrates the access latency of the proposed 2-step
NOMA-RACH scheme under varying barring rates and
different values of U7 and NOMA sizes. It is observed
that access latency increases as the number of incoming
UEs grows or as the reduction of NOMA size occurs for
a given barring rate. It can be confirmed from the figure
that there exists an optimal barring rate that minimizes
access latency. Additionally, the plot shows that the
access latency in the proposed scheme decreases with
the barring rate at first, reaches a minimum, and then
increases within a certain range. The rationale behind
this behavior is that a low barring rate increases the like-
lihood of UEs repeating the barring procedure, leading
to longer waiting times. Conversely, a high barring rate
results in collisions on most preambles, increasing the
probability of transmission failure or backoff, ultimately
increasing access latency. In comparison, Fig. [§] presents
the access latency and the number of successful UEs of
all cases (i.e., access throughput) for the traditional 2-
step RACH without NOMA and the proposed scheme,
with Ur set to 1000. The figure demonstrates that
the proposed scheme consistently achieves lower access
latency and higher successful UEs across all barring
rates compared to the traditional approach. Notably,
the maximum access throughput and minimum latency
are achieved at the same optimal point. This improved
performance is attributed to the incorporation of NOMA,
which enhances the access success probability of UEs.

To validate the analysis presented in Section Fig.
[ depicts the average step latency for the proposed
scheme, comparing numerical results obtained from (@)
with random walk simulations for Ur = 1500. The plot
demonstrates a close match between the theoretical and
the simulation results. Furthermore, when compared to
the access latency for Ur = 1500 in Fig.[/] it is evident
that the average step latency across all states follows a
similar trend, initially decreasing with the barring rate
and then increasing after reaching its minimum value at
the same optimal barring rate of b = 0.45.

To validate the analysis of NOMA access probabilities
presented in Section [[II-DI} we compare the analytical
results derived from expression (7)) and Monte Carlo sim-
ulations. Fig. [I0] illustrates the success rate for NOMA
access in relation to the number of collided UEs. We
present the results for a scenario involving a 4 x 10
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Fig. 8: Comparison of access latency between traditional
2-step RACH and the proposed scheme.
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Fig. 9: Comparison of average step latency between
analytical results and random walk simulations

NOMA block with 14 primary users occupying 2.5
levels, leaving 1.5 levels for the collided UEs to compete
for access. The analytical results align perfectly with the
Monte Carlo simulations in Fig. [I0] thereby validating
the accuracy of the derived expression (7). The plot also
reveals that the success rate diminishes significantly as
the number of collided UEs (V.) increases, highlighting
the adverse impact of a large number of collided UEs on
the success rate, i.e., an excessive number of UEs will
significantly reduce the success rate of NOMA access.
In Fig. [I1] we study the throughput of collided
UEs versus the load N, when accessing the remaining
NOMA blocks under different conditions with different
values of primary users, Ny. The throughput quantifies
the number of collided UEs that successfully complete
NOMA-RA, and it is calculated using , with random
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NOMA access probabilities applied, except for the case
of optimal access rate. The figure shows that throughput
initially increases with load but gradually decreases after
reaching a peak value. This observation confirms the
existence of a unique maximum throughput and optimal
load. Furthermore, the plot highlights a reduction in
throughput with an increase in the number of primary
UEs Ny as throughput for Ny = 14,L = 4 is lower
than that of Ny = 7,L = 4. This is because more
NOMA blocks will be occupied by primary UEs, leaving
fewer blocks available for collided UEs to access. More
remaining NOMA blocks lead to higher throughput
for collided UEs. This relationship between throughput,
the number of primary UEs, and remaining NOMA
blocks underscores the optimization potential to enhance
NOMA performance. Furthermore, for the case where
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Ny = 1,L = 3, we see that the optimal throughput
obtained by () significantly outperforms that without
optimization. This observation signifies the importance
of optimal access probabilities, which outperform ran-
dom access probabilities and contribute to improved
NOMA performance.

To assess the effectiveness of the DCMAB algorithm,
Fig. [[2(a)] presents the access latency over a series of
barring rounds, accounting for continuously changing
numbers of UEs. In this evaluation, the number of UEs
Ur decreases from 1500 to 1000 at point B and then
recovers to 1500 at point D. The plot shows that when
the agent encounters a new context, signifying a different
number of UEs, the agent achieves optimal latency for
that context after exploration. The exploration process,
depicted in the region before point A and between points
B and C in Fig. [I2(a)] demonstrates that the designed
DCMAB algorithm converges within 10 to 20 barring
rounds. After the exploration, as shown in the regions
after point C and between points A and B, the agent
successfully converges to a near-optimal access latency
in a limited number of barring rounds. In the region
after point D, we observe that since the context of
Ur 1500 has been fully explored at point A and
recognized by the algorithm, no further exploration is
required. Instead, the algorithm employs the optimal
arm learned during previous barring rounds. It can be
observed that the minimum access latency achieved by
the algorithm at Upr = 1000 and Ur = 1500 matches
the theoretical optimal values presented in Fig. [/} which
is approximately 40 ms and 60 ms, respectively. The
key advantage of the DCMAB agent lies in its ability to
dynamically adjust the barring rate based on the current
traffic conditions. In our simulations, the execution step
mentioned in Section [[V-B]is set to ¢ = 0.5s. Reducing
the barring round step sizes would increase precision but
slow down the convergence speed.

To further evaluate the performance of the 2-step
NOMA RACH with the DCMAB agent, Fig. [12(b)]
plots its access latency over 100 barring rounds and
compares it with two benchmark schemes for 2-step
NOMA RACH: 1) a simple MAB agent without load
estimation, i.e., Algorithm 1 without the NN prediction
model and context, relying solely on the MAB scheme to
explore optimal barring rate, and 2) a fixed barring rate
scheme without any agent where collided UEs randomly
access NOMA. For the MAB agent scheme, it is assumed
that the agent does not possess a load estimation function
and only has a memory for Ur = 1500 once converged.
For the fixed barring rate scheme, collided UEs access
NOMA at a random rate, with b set to be the optimal
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Fig. 12: Comparison between DCMAB agent and bench-
mark schemes.

barring rate for Ur 1500. The primary difference
between these schemes becomes apparent when Urp
changes. Comparing the results between points B and D
in Figs. and it is evident that the DCMAB
agent achieves lower latency than the MAB scheme after
exploration when the UE traffic changes. This is because,
unlike the DCMAB approach, the MAB scheme does not
dynamically adjust barring rate. Since the MAB scheme
also implements optimal NOMA access probabilities,
it performs similarly to DCMAB before the change
in traffic conditions. However, the fixed barring rate
scheme did not have the ability to adjust NOMA access
probabilities, and therefore its performance drifted below
that of the MAB scheme. In conclusion, as DCMAB
is able to detect changes in traffic and adjust both the
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barring rate and NOMA access probabilities, it is able
to maintain optimal performance once converged.

VI. CONCLUSIONS

This research focused on exploring the potential and
advantages of integrating the innovative 2-step NOMA-
RACH scheme into future communication networks,
particularly in the scenario of mMTC. The proposed
scheme introduced a power dimension, enabling multiple
UE:s to utilize the resource, resulting in improved NOMA
access success rates and reduced latency. ACB mecha-
nism was also proposed to address the inherent challenge
of traffic burstiness in mMTC. The investigation involved
theoretical probability derivation, Markov chain analysis,
and extensive comparative studies, revealing substantial
improvements in RACH performance. To cope with the
practical scenarios with dynamically changing traffic
load, a DCMAB agent with load estimation is designed
to jointly optimize NOMA access probabilities and
barring rates. When the DCMAB agent was used, not
only the superiority of the agent over other benchmark
schemes was demonstrated, its dynamic ability to tune
the barring rate and facilitate optimal user participation
in the RACH procedure amidst ever-changing environ-
mental conditions was also confirmed. The proposed
scheme, emerges as a promising solution for mMTC
scenarios in future communication networks.

APPENDIX A

To derive the optimal power level access probabilities
for each subchannel, we first consider NOMA blocks
of size C' x L with C subchannels and L power levels.
Let N, users randomly access this block. The goal is to
derive the success rate for NOMA access. Assuming that
for any subchannel in NOMA blocks, the probability of a
UE choosing a certain block is % For sequential NOMA
with random access, the success rate depends on two
conditions: only the current UE chooses this block, or
the users in the upper levels of the block are successfully
decoded.

If level a is selected, the remaining upper level L —
a should be successfully decoded, where L. = L; or
Ly. Assuming that there are b UEs in the upper levels
that have been successfully decoded, the probability of
condition 2) can be expressed as:

L—a
Loy L
b Kb

)3
In the sequential I\ll)(_)(l)\/[A system depicted in Fig. [5] the
available remaining blocks are given by K = C' x L —
Nt = C1 x L1+Cs x L. If a UE selects level a, and the
b UEs choose upper levels intending to be successfully

(10)



transmitted, the remaining N, — 1 — b UEs must select
other subchannels or levels below level a in the current
subchannel. The corresponding probability for this sce-
nario can be expressed as -4 (1 — %)Nﬁbil.

In this expression, b needs to be selected from the pool
of N. — 1 users and arranged in the L — a remaining
levels. Since a denotes the specific level to choose,
ranging from 1 to L, the comprehensive success rate
is expressed as:

L L—a b

1 N.—1\ /L —a 1

oy ()5 ) ()

a:le:O b b K
L—a+1

N.—b—1
1_
<(1-5%7)

Considering the fact that there are different parts of one
NOMA block with sizes of C; x Ly and Cy X Lo, the
final success rate is represented in (7).

For (8], the probability of a UE choosing level a = a4
or as in a subchannel and b UEs choosing L — a levels
is not % because the access probabilities of each level
is not random, where L. = L; or Lo. The probability
of b UEs choosing the remaining levels L — a and the
remaining N, — b — 1 UEs choosing other levels or
subchannels becomes:

(11)

" N.—b—1
L I,L I, L
1— = it - 12
K+j§::1 R 1% (12)

where [, represents the probability of the current UE
choosing level a = a; or as in this subchannel, and [,
represents the access probability when b users choose
the corresponding remaining level in this subchannel.
Finally, the overall success rate is

L L—a
L N,—1\/L—a
CZ[@KZK b )( b )b’
a=1 b=0
L 2L L (1
a —b— b
U DI Dl 17
j=1 i=1

and the success rate of different parts of one NOMA
block with sizes of C; x Ly and Cy x Lo is represented
by (8). The optimal access probabilities can then be
determined by performing numerical search over /.
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