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Abstract

The 2030 Sustainable Development Goals (SDGs) aim at improving the lives of
people. To monitor the progress towards achieving the SDGs and effectively
improve people’s lives, there is a need to efficiently use publicly available data to
inform decisions. However, developing countries struggle to track the SDGs due to
limited financial resources and technical skills. This thesis explores how health
SDG outcomes can be tracked and modelled using publicly available datasets in
low- and middle-income countries (LMICs).

In Chapter 3, this thesis investigates how passive surveillance data arising from a
typhoid point pattern process in Blantyre, Malawi, can be analysed using
environmental and individual-level covariates such as age and gender. Chapter 4
applies multilevel and mixed effects models to publicly available geostatistical
demographic and health survey data from Malawi to model and map the double
and triple malnutrition burden among mother-child pairs without spatial
correlation.

Chapter 5 extends the work carried out in Chapter 4 by applying model-based
geostatistics to publicly available geostatistical soil-transmitted helminth survey
data from 35 African countries. Chapter 5 also discusses some challenges
encountered when using sparse data from LMICs and provides recommendations
on ideal data for geospatial predictions. Lastly, Chapter 6 characterises the dengue

i

https://www.lancaster.ac.uk/lms/


outbreak in 77 Nepalese districts between 2006 and 2022. Using district-level areal
data and a modified Negative Binomial model, the thesis estimates the timing and
duration of 3 outbreak intensity functions within each district.

This thesis demonstrates the use of statistical modelling in tracking health outcomes
in developing countries. The thesis additionally discusses the challenges associated
with publicly available data in LMICs, such as sparse data, and proposes solutions
to these challenges. Finally, the thesis suggests ways in which each aspect of the
research can be extended in future studies.
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Chapter 1

Introduction

1.1 Background

Spatial statistics are a potentially useful complement to routinely used data
sources in developing countries. These statistics play a pivotal role in research by
providing insights into the geographic distribution of health outcomes, identifying
health outcome clusters, and investigating the association between environmental
factors and health outcomes [1]. Developing countries experience a high burden of
health outcomes such as malnutrition and diseases compared to developed
countries. Countries in low and middle income countries often experience a high
incidence and prevalence of both infectious diseases, non-infectious diseases and
maternal and child health issues. Within these countries, the burden of disease
also varies widely by geographic region and in time. Ensuring effective control and
monitoring of health outcomes is crucial for reducing the high disease and health
outcome burdens in developing countries. Nevertheless, many developing countries
still face substantial hurdles in collecting the requisite data to measure progress
accurately [2]. The quest for improved healthcare delivery in developing countries
necessitates an in-depth understanding of the spatial dimensions that underlie
disparities in the incidence and prevalence of health outcomes, but the data along
these dimensions is acutely lacking in developing countries [3].

In resource-constrained settings, representative household surveys and routine
health surveillance management information systems serve as primary data sources
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for monitoring health indicators [2]. However, developing countries still face
challenges in implementing these surveys and using publicly available data for
several reasons, including limited technical skills and financial resources [2, 4, 5].
Efforts are thus needed to optimize the utilization of publicly available data within
low and middle-income countries to effectively facilitate the monitoring of the
health-related outcomes, as informed by the United Nations’ (UN) Sustainable
Development Goals (SDGs).

Another phenomenon that underscores the need for close attention to spatial
distribution of health outcomes is urbanization. Urbanization in developing
countries is advancing rapidly, thereby exerting significant effects on population
health [3, 6, 7]. Given this trend, addressing sub-national disparities across
sub-national units such as districts becomes increasingly crucial for effective health
planning and resource allocation. For instance, 15 of the 17 health-oriented SDGs
include a spatial component to facilitate monitoring of these indicators at a
sub-national level. These sub-national geographic units serve as focal points for
monitoring progress and as proxies for populations that share similar attributes,
such as access to health services or increased exposure to environmental risk
factors [3]. Consequently, investigating health disparities across sub-national areas
can provide valuable evidence and rationale for directing health initiatives and
policies, particularly when inequalities are pronounced.

There are, generally, three types of spatial data: geostatistical data, point process
data, and lattice data. In geostatistical data, the study area (A) is a continuous
fixed set where observations can be observed anywhere within the study area [8].
However, the observed locations in A are non-stochastic [9]. On the other hand, a
spatial point pattern dataset comprises random observed locations of an event [8,
10]. Examples of geostatistical data include the prevalence of malaria among
children in villages, while an example of point process data is the geographical
coordinates of the households of tuberculosis patients in an area A. In lattice data,
also referred to as areal data, the study area A is fixed, and it is partitioned into a
finite number of regular or irregular areal units at which the outcomes of interest
are aggregated [8, 9, 11, 12]. An example of lattice data is the number of
malnourished children within each district in a country A. In contrast,
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spatio-temporal data have a time observation in addition to the location data.

The goals of analyzing spatial data can be grouped as follows: explaining the
relationships between a health outcome of interest and risk factors; carrying out
predictions, given an identical spatial process as observed in the data being
analyzed; and improving sampling for spatial surveys [13]. This doctoral thesis
focuses on the first two goals and applies them to health outcome data from all
three types of spatial data collected in resource-constrained settings. We also
discuss some challenges that may arise when using secondary data collected in
developing countries and provide recommendations on addressing the challenges in
future work. Furthermore, our work discusses the importance of fitting national
and sub-national level models due to varying health outcome trends and shared
risk factors within the sub-national areas.

In the next chapter, we introduce the 3 main types of spatial data and provide the
primary statistical methods used to model them. The current chapter concludes
with an outline of the thesis and the main projects to which the methods were
applied.

1.2 Thesis structure and objectives

Thesis objectives

The primary goal of this thesis was to contribute to the use of publicly available
datasets in low and middle income countries by developing and applying spatial
statistical methods to contribute to the third SDG of good health and well-being.
In this thesis, two distinct approaches were used: the first and fourth studies
develop methods for point pattern data and areal-level disease outbreak data,
respectively. Both the first and fourth studies use routinely collected health facility
data. The second and third studies involve the application of already existent
geospatial methods to model and map publicly available health survey data. The
main objectives of each study are as follows:

1. To develop spatial and spatio-temporal inhomogeneous Poisson process models
for typhoid data that explicitly account for multiple marks (Chapter 3).
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2. To investigate the prevalence and determinants of malnutrition of mother-
child pairs in Malawi and to assess the geographic distribution of mother-child
malnutrition (Chapter 4).

3. To establish the prevalence of soil-transmitted helminths (STH) at the fine-
scale and subnational levels; and to classify subnational units to the World
Health Organization STH prevalence classes using publicly available STH data
from the Expanded Special Project for Elimination of Neglected (ESPEN)
tropical diseases database (Chapter 5).

4. To determine the timing and duration of multiple outbreak intensity functions
in each Nepalese district using annual health facility data (Chapter 6).

Structure of the thesis

This chapter provides a background to the PhD work. Chapter 2 reviews
statistical methods for modelling and mapping three types of spatial data.

Chapter 3 (Paper 1), models data arising from a typhoid spatio-temporal point
pattern process from routinely collected health facility data from a peri-urban area
in a developing country. We also discuss the challenges arising from such data and
propose how the model can be further extended. Chapter 4 (Paper 2) analyzes
publicly available demographic and health survey data collected in Malawi. Using
geospatial malnutrition data from mother-child pairs in Malawi, we demonstrate
how meaningful spatial mapping can be conducted even in the absence of spatial
correlation within the dataset.

Similar to Chapter 4, Chapter 5 (Paper 3) focuses on the use of publicly available
data to inform the monitoring and control of neglected tropical diseases in low-
and middle-income countries. To achieve this goal, we apply model-based
geostatistical methods to soil-transmitted helminths prevalence data collected in
35 African countries. The results of the work are presented in the paper, and
Shiny applications are developed to showcase the results of the study. In Chapter
6 (Paper 4), we analyze areal-level dengue data collected in Nepal between 2006
and 2022. The dengue analysis aimed to characterize multiple dengue outbreak
intensity functions within each Nepalese district by assessing their timing,
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duration, and potential associations with environmental climatic covariates.

Chapter 7 presents the conclusions of this doctoral thesis. The chapter also discusses
the main contributions of each paper and possible areas for future research.
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Chapter 2

Review of statistical methods for

modelling and mapping spatial

data

In this Chapter, we provide a literature review of the types of spatial data, namely
point pattern, geostatistical, and areal data. The Chapter also provides an overview
of current modelling approaches for these types of spatial data.

2.1 Point pattern data

A spatial point process is a stochastic process comprising random variables
Xi = X1, . . . , Xn that have been observed at some locations in a study region A. A
spatial point pattern is a realisation of the stochastic point process in R2 (i.e
A ⊂ R2) [1, 2]. Although spatial point pattern data are uncommon in developing
countries, they may arise from routinely collected data at health facilities, for
instance, in a passive surveillance study. In these studies, the participants are
asked to pinpoint the exact locations of their households. We assume that the
households are the sources of exposure for the health outcomes of the study
participants.

A spatial point pattern may contain several types of variables. For example, a
point pattern dataset may contain the gender and HIV status of a tuberculosis
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patient in addition to the geographical coordinates of their residence. Supplementary
information of the points that provide further detail with respect to the individual
or the location where a health outcome of interest or event occurred is called a mark
[1]. Spatial point patterns with such variables are called marked point patterns. In
addition to marks, spatial data may also contain variables referred to as covariates.
Covariates are explanatory variables that are observed at all the spatial locations in
the study area [1]. The surface amount of rainfall in an area and the elevation of
the area are examples of spatial covariates.

2.1.1 First and second order properties

First and second order properties are used to characterise a spatial point process.
A spatial point process which does not vary depending on the location or
orientation is called a stationary and isotropic process.

Denoting |dx| as the area for a location x and N(dx) as the number of observed
events in the area dx, the first order moment can be defined as follows:

λ(x) = lim
|dx|→0

{
E[N(dx)]

|dx|

}
(2.1)

where λ(x), also called the intensity of the point process, is defined as the total
number of events per unit area.

Second-order properties define the relationships between events in various
sub-regions of the space domain. Letting |dy| denote the area for a location y, the
second order intensity function can be mathematically defined as follows.

λ2(x, y) = lim
|dx|,|dy|→0

{
E[N(dx, dy)]

|dx||dy|

}
(2.2)

The first and second-order properties of a point process form the basis for statistical
analyses of point process data.
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2.1.2 Checking for residual spatial correlation

The first step in analysing spatial point pattern data is to investigate the presence or
absence of spatial correlation in the data. This is carried out using an inhomogeneous
K-function, which is mathematically defined as [1]

K̂(r) = 1
D|W |

∑
i

∑
h̸=k

I {||xk − xh|| ≤ r}
λ̂ (xk) λ̂ (xh)

. (2.3)

where: D = 1
|W |

∑
i 1/λ̂ (xi); r is the distance at which the function is evaluated;

λ̂(x) is the estimated intensity of the model at location x; and I {||xk − xh||} is an
indicator function that takes the value 1 if the absolute distance between two
locations xk and xh is less than or equal to r, and 0 otherwise.

The inhomogeneous K-function is fitted under the assumption of complete spatial
randomness (or spatial independence) in the data. An envelope is used to assess the
assumption that the observed point process is an inhomogeneous Poisson process by
following the steps below [2]:

(i) Generate spatial point patterns with the same intensity (λ) as the observed
point pattern X in the study region A under the assumption of complete spatial
randomness.

(ii) Estimate the K-function for each of the point patterns simulated in step (i).

(iii) Compute a 95% envelope for each K-function computed in step (ii).

The null hypothesis of complete spatial randomness is rejected if any part of the
K-function falls outside the envelope simulated in the steps outlined above.

2.1.3 Model formulation

Given n set of events observed in an area A, we can assume that the set of events
follows a Poisson distribution with a mean of λ. The point pattern data can,
therefore, be modelled using the inhomogeneous Poisson process model, which has
the following likelihood function [1]:

L(λ) =
n∑

i=1
log λ (xi) −

∫
A

λ(x)dx (2.4)
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In the likelihood function in equation 2.5, the mean of the Poisson process is defined
as:

λi (x) = exp
(
d (x)′ β + log (mi(x))

)
(2.5)

In the above equation, β denotes the vector of coefficients associated with a linear
combination of spatial covariates, d (x). Finally, mi(x) is an offset that corresponds
to the population of an individual. This model can be fitted using the Spatstat
package in R [3].

Some of the limitations of modelling point pattern data include the lack of a
statistical model and software to model spatial and spatio-temporal point process
pattern data with multiple marks [1]. The inhomogeneous Poisson process model
in equation 2.5 with marks provides additional information about the underlying
point process of the event being studied. Marks are only observed at the locations
of events and are not defined throughout the entire study region, unlike covariates
that are typically defined over the entire study domain [1]. Including marks as in
the model as a linear covariate would, therefore, require extrapolating their values
to non-event locations, which is generally not appropriate or feasible. The first
paper of this thesis focuses on the extension of the model 2.5 to include marks as
multiple intercepts associated with the health outcome of interest.

2.2 Geostatistical data

Geostatistical data are one of the most common types of spatial data available in
developing countries. This is due to several donor-funded studies conducted
routinely in these regions at household and health facility levels every 4 to 5 years.
Examples of such studies include Population-based HIV Impact Assessments
(PHIAs), Service Provision Assessments (SPAs), Multiple Indicator Cluster
Surveys (MICS), and Demographic and Health Surveys (DHS), the latter of which
are conducted in more than 50 developing countries across sub-Saharan Africa,
South and Southeast Asia and other continents. To protect the anonymity of the
study participants, household-level surveys only provide geolocations (longitude
and latitude) of the study participants at fixed locations, such as clusters or
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enumeration areas (usually a collection of households in an urban or rural area) in
which the households are based.

Geostatistical data can be categorized into various forms, including count data,
prevalence data, and continuous outcome data. Count data, which comprise the
number of events (Yi) that occur at a spatial location x, are modelled using the
Poisson distribution. Also, continuous outcomes, such as lead pollution, are analysed
using a Gaussian distribution. Prevalence geospatial data, pi, which represents the
number of individuals Yi with a health outcome out of mi number of people tested
are commonly modelled using the Binomial distribution. The rest of this subsection
focuses on models used to model and map Binomial prevalence data since these are
the methods that were applied in Paper 4 and Paper 5.

2.2.1 Generalised linear binomial mixed effects model

In Binomial geostatistical data, given that Yi individuals have a health outcome of
interest out of mi sampled individuals at a location xi, the first step in modelling
the geostatistical data is fitting a Binomial generalised linear mixed model. In the
Binomial generalised linear mixed model, where the observations are conditional on
mutually independent distributed Gaussian variables, Zi, the logit linear predictor
for prevalence (p(xi)) at a given location is defined as

log
{

p (xi)
1 − p (xi)

}
= d (xi) β + Zi (2.6)

where d (xi) is the vector of spatial explanatory variables and β is a vector of
regression coefficients associated with the spatial covariates. In the Binomial
generalised linear model in equation 2.6, Zi has a mean of 0 and variance of τ 2.
Then, the residuals from a generalised linear mixed model are investigated for the
presence of spatial correlation.

2.2.2 Checking for residual spatial correlation

Residual spatial correlation in geostatistical data can be tested using the empirical
variogram based on the random effects Zi after removing the effect of covariates [4,
5]. A variogram for a spatial process is defined as:
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V̂ (u) = 1
2|N(u)|

∑
(h,k)∈N(u)

(
Ẑh − Ẑk

)2
(2.7)

where n(u) represents the collection comprising all neighbouring pairs separated by
the distance u, and |n(u)| indicates the count of unique pairs within n(u)
(N(u) = {(h, k) : ∥xh − xk∥ = u}).

Figure 2.1 illustrates the theoretical variogram (V (u)). In the diagram, an upward
trend in the black solid line, as the distance u = ∥xh − xk∥ increases, typically
implies the lack of spatial independence in the data. The nugget variance (denoted
as τ 2) in the figure denotes the value of the variogram (V̂ (u)) when the distance u

equals zero [4]. The sill in the variogram captures the total variance (τ 2 plus the
signal variance, σ2) [4]. The practical range is the distance u at which the variogram
plateaus (i.e. where the correlation function decays to 0.05) [4].

Figure 2.1: A diagrammatic illustration of a variogram (Source: Diggle and Giorgi,
2019 [4])

The following Monte Carlo procedure is used to assess the assumption of spatial
independence in the data as follows:

(i) Randomly shuffle the labels of the variable Zi while keeping the locations xi

constant.

(ii) Calculate the empirical variogram given in equation 2.7 using the Zi permuted
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in the above step.

(iii) Repeat steps (i) and (ii) B times.

(iv) Assuming spatial independence, utilize the B resulting empirical variograms
from steps 1 and 2 to compute 95% intervals using a pre-defined distance.

The presence of unexplained residual spatial correlation in the data is established
if the observed variogram does not lie within the 95% envelope computed in step 4
above.

2.2.3 Binomial geostatistical model

If the residual spatial correlation is present in the data, a geostatistical model, which
is obtained by introducing a spatial Gaussian process, S (xi) is fitted. Equation (2.6)
can, therefore, be modified as follows:

log
{

p (xi)
1 − (xi)

}
= d (xi) β + S (xi) + Zi (2.8)

In the above equation, S (xi) is a zero-mean stationary and isotropic Gaussian
process with an exponential function with a mean of 0 and a variance σ2. The
covariance function of the process is therefore defined as:

Cov {S (xh) , S (xk)} = σ2 exp {−uhk/ϕ}

where uhk denotes any distance between any two areas xh and xk and ϕ is a scale
parameter that determines the rate at which the spatial correlation decays to 0
as the distance uhk increases. The model given in equation 2.8 is fitted using the
Laplace approximation in the PrevMap package in R [6].

2.3 Lattice and areal data

As briefly discussed in Chapter 1, areal or lattice data are spatial data that are
aggregated at some unit. In lattice data, we observe the realizations Y (A), where
A is a geographical unit (village, district, region or country) that forms part of the
study region (A ∈ R2). Lattice data, consequently, refer to the set of spatial units
that are organized in a regular grid, whilst areal data refer to the set of spatial
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units that are irregularly shaped [7]. Areal data, which are often defined by
natural or man-made boundaries such as administrative boundaries, are common
in health research compared to lattice data. Data are aggregated at areal units
such as villages, counties or districts to protect the study participants’ privacy [7].

In Chapter 6 (Paper 4), we depart from typical spatial analyses of areal count data
by focusing on each areal unit over time, treating the data as temporal rather than
spatial. This approach is prompted by our finding that there was no strong evidence
of residual spatial correlation in the dengue data used in Paper 4. Therefore, we
model the temporal count data of reported dengue cases collected over 17 years in
77 Nepalese districts.

2.3.1 Model formulation

Assuming that the observed outcomes in a geographical unit such as a district (Yt,
t=1,2,...,T) are distributed as a Poisson random variable (Yt ∼ Pois(λt)) where λt

is the mean number of dengue cases at time t, and is expressed as:

λt = exp (dtβ) (2.9)

where β are the coefficients associated with the spatial covariates in the matrix
(dt).

One of the limitations of using the Poisson model, especially on data collected from
health facilities or data for low-incidence diseases such as dengue, is overdispersion
[8]. Equidispersion, one of the assumptions of the Poisson model, is a concept
where we assume that the mean and variance of the data are equal. We use a
Negative Binomial model in this study to overcome the equidispersion challenge.
The Negative Binomial model extends the Poisson model by explicitly including a
dispersion parameter, denoted by α. The Negative Binomial likelihood function is
specified as follows [9]:

L =
T∏

t=1
p (yt) =

T∏
t=1

Γ (yt + 1/α)
Γ (yt + 1) Γ (1/α)

( 1
1 + αλt

)1/α
(

αλt

1 + αλt

)yt

(2.10)
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Although the most common analysis method for spatial and spatio-temporal areal
level data is the Besag-York-Mollié (BYM) model [10], this thesis focuses on the
identification of outbreaks in areal-level data. This thesis, therefore, provides a
brief overview of the current modelling approaches for outbreak data for
estimating various parameters for disease outbreak data.

A common model for areal-level spatio-temporal data are HHH4 models that
decompose the data into endemic and epidemic components [11]. The challenge,
however, is that the model requires more granular data at weekly or monthly
intervals. Similarly, a HHH4ZI model extends the HHH4 model by explicitly
including a zero inflation parameter to account for excess zeroes [12]. However,
both the HHH4 and HHH4ZI models require weekly or monthly data to estimate
seasonality trends. Both models, also, do not estimate the duration and intensity
of the outbreak intensity functions.

Another model for characterizing outbreaks is the two-stage cluster hierarchical
model [13]. This model is advantageous over the above models because it helps
identify multiple disease clusters. The clusters are, however, only estimated in
space and not time. Similarly, Ramadona et. al developed a Bayesian
spatio-temporal model to estimate the timing of dengue outbreaks in Indonesia
[14]. Their spatio-temporal model employed two adjacency matrices: one based on
geographical proximity and the other on human mobility patterns [14]. The study
found that the matrix incorporating human mobility patterns outperformed the
geographical proximity-based one [14]. The human mobility patterns
recommended from their study were, however, not available for our dengue data.
Furthermore, both the two-stage cluster hierarchical model and Bayesian
spatio-temporal model estimate the outbreaks within a year, and hence require
granular data which was not available in our study [13, 14].

In addition to the models employed by Anderson et. al (2014) and Ramadona et.
al (2023), previous approaches, such as the one used by Guzman et al., require
data to be aggregated into spatio-temporal blocks (e.g., at 1 week, 3 weeks, and 5
weeks) to investigate outbreaks within those blocks [13–15]. In contrast, our model
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sought to contribute to the outbreak data modelling knowledge base by providing
insights into the duration and size of each outbreak. Importantly, our model does
not require aggregation of data into blocks, and it also offers a further
understanding of dengue outbreak dynamics by estimating both the scale
parameter of each outbreak intensity function (OIF) and approximating the
contribution of each outbreak to the overall dengue epidemic.

This thesis extends the Negative Binomial model in equation 2.10 to include the
estimation of multiple dengue outbreaks in Nepal. Specifically, our model allows
for estimating the timing and duration of multiple dengue outbreaks in each
Nepalese district. We also propose how the model can be extended in future
research, especially in cases where more than three outbreaks are suspected to
have occurred in an area. Our proposed model is particularly useful in cases where
granular data at daily, weekly, or monthly intervals is unavailable, as existing
modelling approaches typically require such high-resolution temporal data.
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Summary

Salmonella Typhi is a human-restricted pathogen that is transmitted by the
fecal-oral route and causative organism of typhoid fever. Using health facility data
from 2016 to 2020, this study focuses on modelling the spatial variation in typhoid
risk in the Ndirande township in Blantyre. To pursue this objective, we developed
a marked inhomogeneous Poisson process model that allows us to incorporate both
individual-level and environmental risk factors.

The results from our analysis indicate that typhoid cases are spatially clustered,
with the incidence decreasing by 54% for a unit increase in the water, sanitation,
and hygiene (WASH) score. Typhoid intensity was also higher in children aged
below 18 years than in adults. However, our results did not show evidence of a
strong temporal variation in typhoid incidence. We also discuss the inferential
benefits of using point pattern models to characterise the spatial variation in
typhoid risk and outline possible extensions of the proposed modelling framework.

Keywords: spatial point patterns; inhomogeneous Poisson model; typhoid;
mapping; incidence.
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3.1 Introduction

Salmonella enterica serovars Typhi (S. Typhi) is a human-restricted pathogen
transmitted by faeco-oral route and the causative organism of typhoid fever. S.
Typhi is estimated to cause more than 10.9 million cases each year, with about
116,000 of the cases resulting in death [1, 2]. Whilst the global incidence of
typhoid is estimated at 293 cases per 100,000 person-years, the highest burden of
typhoid is reported to be in resource-constrained settings, particularly in
sub-Saharan Africa and South Asia [2, 3]. A meta-analysis in 2017 estimated a
typhoid incidence of 149 cases per 100,000 person-years in southern sub-Saharan
Africa, whilst South Asia was estimated to have a typhoid incidence of 204 cases
per 100,000 person-years [2].

Typhoid is primarily transmitted when a healthy person comes into contact with
stool-contaminated food or water [3–5]. Inadequate access to clean water and
sanitation are thus two of the main risk factors associated with typhoid [6]. One
study has indeed shown that, in Malawi, typhoid risk is highly affected by the type
of water that a household uses for cooking and cleaning [5]. Elevation also plays an
important role in the risk of typhoid infection. A study in Kenya showed that
individuals, particularly children, living in low-elevation areas were twice more
likely to contract typhoid than people living at higher elevations [4]. This can be
explained by the accumulation of faecal waste in low-elevation areas due to the
downstream flow of contaminated water [4]. Recent studies [3, 7] have also
reported that rainy seasons are associated with an increased risk of typhoid,
suggesting that the occurrence of typhoid follows a seasonal pattern with
variations dependent on the climatic and environmental conditions of the region.
On the other hand, heavy-intensity rainfall is shown to have a negative association
with typhoid incidence as the high-intensity rainfall may wash away faecal
substances [7].

The risk of typhoid also varies across different groups of age and gender. Several
studies have shown that the burden of typhoid is highest among children between
5 and 19 years, an age group typically identified as school-going children [1]. A
study in Blantyre, Malawi, showed that the highest typhoid-attributable risk
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percentage among the children in the study arose from spending a day in a daycare
or school [5]. This result is in agreement with the results from another study where
the incidence of typhoid was highest among children aged 5 to 9 years, followed by
those aged between 2 and 4 years [8]. Evidence of the effect of gender on typhoid
is, on the other hand, contradictory. While other studies have shown that both
occurrences of typhoid and mortality due to typhoid are higher among males [1],
others have reported a higher occurrence of typhoid among females [9].

Typhoid is monitored using passive or enhanced surveillance methods depending
on a country’s level of endemicity and public health objectives. The World Health
Organisation (WHO) recommends that endemic countries such as Malawi should
have, as a minimum, laboratory and facility-based surveillance [10]. The
surveillance can be carried out through passive reporting of results from the
laboratory, the establishment of a surveillance system, or active review of
laboratory records to find patients whose results meet the criteria for a confirmed
typhoid case [10]. The WHO, additionally, recommends surveillance through
population-based studies to estimate the population-based incidence of a country
and generate information for programmatic interventions [10]. In this study, we
used data collected from a passive surveillance study in Malawi [6, 11, 12].

In Malawi since 1998, blood cultures have been routinely collected from febrile
patients at Queen Elizabeth Central Hospital (QECH) in Blantyre [13]. A study
showed that an average of 14 cases per year were recorded between 1998 and 2010
at QECH [14]. The same study also reported a rapid increase in typhoid cases
starting from 2011, with a peak observed in 2014 at 782 cases [14]. The outbreak
of typhoid in both Malawi and other African countries is due to a
multidrug-resistant (MDR) typhoid strain to ampicillin, chloramphenicol, and
cotrimoxazole that originated in Asia [14, 15]. The escalating issue of antimicrobial
resistance (AMR) is a threat to global health as current drug AMR trends may
hinder efforts to control typhoid through antibiotic treatment and lead to an
increase in the risk of typhoid worldwide [16].

Understanding the spatial variation in the risk of typhoid can help to identify
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disease hotspots and develop more targeted control interventions. Spatial and
spatio-temporal statistics can thus play a critical role by utilising information
across time and space and making the best use of data from constrained resource
settings. Among previous typhoid research, some studies have used a quasi-Poisson
generalised linear model and an over-dispersed Poisson generalised linear model to
assess the relationships between typhoid and climatic variables, such as
temperature and rainfall [7, 17]. Another previous study in Blantyre, Malawi, used
geostatistical methods to model and map the inhomogeneous distribution of
typhoid genomic data [18]. Similarly, a study from Ghana has shown that typhoid
incidence at the district level exhibits spatial and temporal patterns and modelled
that using negative binomial autoregressive moving average model [19]. Another
study in Uganda used a spatial scan statistic for incidence to identify hotposts and
a standard Poisson model with no overdispersion to investigate spatio-temporal
trends of typhoid [20]. One of the main drawbacks of spatial scan statistics is the
inability to correctly identify non-circular or irregularly shaped clusters [21]. Our
work builds on the current literature by developing a spatially explicit statistical
model for point pattern process typhoid data.

The focus of this paper is to develop a spatial point pattern model to assess the
effect of environmental and individual risk factors on typhoid fever, using health
facility data. To the best of our knowledge, this is the first study that uses spatial
point pattern models for the analysis of geo-located typhoid cases. This work,
therefore, extends prior research on geostatistical modelling of typhoid data in
Blantyre, Malawi, by modelling geo-located households using both individual-level
and spatial covariates in the modelling [18]. The specific objectives of the study
were as follows:

• to investigate the association between spatial and temporal covariates with the
occurrence of typhoid in Ndirande township after adjusting for individual-level
markers, namely age and gender; and

• to investigate spatial and temporal trends of typhoid in Ndirande township.
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3.2 Methods

3.2.1 Study site

The study was conducted in Ndirande township in Blantyre city in Malawi
between October 2016 and February 2020. Ndirande, which had a population of
about 100,000 people in 2018, spans an area of approximately 6.7 km2 and is
serviced by one government health clinic [6]. Blantyre city, which is in the southern
part of Malawi, lies 35° east of Greenwich Meridian and 15° 42” south of the
Equator. Blantyre city was selected for the study because of the well-known high
burden of typhoid fever and the research capacity to carry out complex studies [6].

Malawi has two main climate seasons: the rainy and dry seasons. The rainy season
can be further distinguished between the early rain (November to February) and
the late rain (March to April) seasons [7]. Similarly, the dry season can also be
distinguished into the cool dry (May to August) and the hot dry (September to
October) seasons [7]. A recent study protocol reported that the number of typhoid
cases per month in Ndirande township in Blantyre district in Malawi increased in
the months of December through February, which corresponds to the rainy season
in Malawi [6]. Ndirande exhibits a variation in elevation, ranging from 970 to 1,200
meters, with a median elevation of 1,118 meters. Total precipitation also varied
from 819 millimeters (mm) to 1,602 mm from 2016 to 2019. The variation in total
precipitation across Ndirande was, however, minimal with the maximum difference
being 209 mm each year. In this study, we included season as a temporal covariate
in our modelling.

3.2.2 Data

3.2.2.1 Passive surveillance study of the STRAATA project

The Strategic Typhoid Alliance across Africa and Asia (STRATAA) study was
carried out in Bangladesh, Nepal and Malawi with the aim of measuring the
burden of typhoid in these three sites [6]. In Malawi, the STRATAA study was
carried out by the Malawi-Wellcome-Liverpool Clinical Research Programme at
the government-run Ndirande health clinic, which is the largest clinic in Ndirande
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township. In this paper, our focus is on the passive surveillance sub-study of the
STRAATA project.

In the passive surveillance study, patients presenting with a history of fever for at
least 2 days or a patient presenting with a temperature of at least 38.0◦C at the
Ndirande health clinic were approached with the intention of enrolling them into
the study [6, 12]. Passive surveillance was, additionally, performed at Queen
Elizabeth Central Hospital (QECH) for patients from Ndirande who presented to
the Accident and Emergency Treatment Centre (AETC) or were admitted to the
wards [12]. A blood culture was collected from the patients who consented to be
enrolled in the study. A total of 161 typhoid cases were recorded at Ndirande
health clinic in a passive surveillance study between October 2016 and February
2020. The gender and age of the study participants were collected as part of the
routine data collected in the study. However, 1 case did not have a date of
collection and was therefore excluded from the analysis. Handheld Global
Positioning Systems (GPS) devices were used to collect the locations (latitude and
longitude) of the households of the typhoid cases.

Two marks, namely the gender (male or female) and age in years of a typhoid case
were included in our model. Age was categorised into 3 levels (0 to 5, 6 to 17 and
18+ years) given previous studies on the association between typhoid and several
age groups [5, 8].

3.2.2.2 Population data

The STRATAA study also carried out household and individual-level population
censuses in 2018. The population census, which enumerated 102,242 individuals,
was used as an offset in the model.

3.2.3 Spatial covariates

Covariates selection was informed by previous research on the associations between
typhoid and environmental covariates [4, 5, 17, 22, 23]. For this study, we
restricted our attention to those covariates that are available at a spatial resolution
of 100 m2 for Ndirande. Hence, our spatial covariates are: distance to Ndirande
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health clinic in meters, elevation (in meters) and a Water, Sanitation and Hygiene
(WASH) score.

The distance to the health clinic raster was derived by calculating the Euclidean
distances from each location within Ndirande township to the health clinic. The
elevation raster file was downloaded from the WorldPop website [24]. The raster
was cropped to a 100 m2 Ndirande grid.

A water, sanitation, and hygiene (WASH) survey was carried out in 14,136
households in Ndirande township in 2018 as part of the STRATAA study. The
WASH variables were self-reported in the questionnaire. A WASH score was
derived using principal components analysis (PCA), and a linear geostatistical
model was used to interpolate the WASH score over the grid. Further details on
the spatial covariates, including how the WASH score was derived, are supplied in
the supplementary material A.

3.2.4 Modelling of reported typhoid fever cases using point-pattern

models

We develop an inhomogeneous spatial marked point process that allows us to
incorporate both spatial covariates and individual-level covariates as marks [25].
Let i denote the subscript for gender, with i = 1 corresponding to “male” and
i = 2 to “female”. We then use j to denote the subscript that identifies a specific
age group, j = 1 representing individuals between 0 and 5 years, j = 2 between 6
and 17 years, and j = 3 for those above 17 years. Our outcome variable
corresponds to the locations of the reported diagnosed cases x that fall in A,
representing the area encompassed by the boundaries of Ndirande township. It,
therefore, follows that nij corresponds to the number of typhoid cases in a specific
age-gender combination. By setting age and gender as marks, we model the cases
reported within each age-gender subgroup as independent inhomogeneous Poisson
processes. More specifically, we model the intensity of the subgroup for gender i

and age j as λij (x) = exp
(
αi + γj + d (x)′ β + log mij(x)

)
. In the above equation,

we use αi to account for gender effect and γj to account for differences across age
groups. The vector d (x) denotes a linear combination of spatial covariates:
distance, measured in meters, to Ndirande health clinic (β1); elevation, in meters
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(β2); and the WASH score (β3). Finally, mij(x) is an offset corresponding to the
population for an individual with gender i and age j at location x.

We denote the vector of unknown parameters with θ, which consists of intercepts
quantifying the gender effects (αi, for i = 1, 2) and age effects (γj, for j = 1, 2, 3)
and the regression coefficients β. The likelihood function for θ is then given by

L(θ) =
2∑

i=1

3∑
j=1

Lij(θ) (3.1)

where
Lij(θ) =

nij∑
k=1

log λij (xk) −
∫

A
λij (x) dx (3.2)

We use a quadrature procedure to approximate the integral in equation 3.2 based
on a 100 m by 100 m regular grid of the study area denoted as A [26]. To obtain
confidence intervals for the parameters θ, we use parametric bootstrap [27] based
on the following iterative steps.

1. Simulate N= 10,000 samples from the fitted point process model with mean:

λij (x) = exp
(
αi + γj + d (x)′ β + log mij(x)

)
(3.3)

2. Fit the model to the N bootstrap realisations simulated in step (1).

3. Store parameter estimates from each of the fitted models.

4. Use the percentile method to get a 95% confidence interval from the estimates
stored in step (3).

We fitted both a spatial model (3.2) and spatio-temporal model (equation A.3 in
Appendix A) to our data. We tested for temporal trends in the data by comparing
the purely spatial model and model with temporal covariates using a likelihood ratio
test under the null hypothesis that the spatial model should be used to fit the data.

We computed predicted incidence rates for each combination of marks (age and
gender) while adjusting for the spatial covariates and population as defined in the
intensity equation above

(
λij (x) = exp

(
αi + γj + d (x)′ β + log mij(x)

))
. In

addition to plotting the age and gender predicted incidence rates on the 100m by
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100m regular grid, we also estimated the area-wide incidence for Ndirande, defined
as ∫

A λij(x)dx∫
A mij(x)dx

. (3.4)

The integrals in equation 3.4 were approximated using a regular grid with a spatial
resolution of 100m by 100m.

3.2.4.1 Model validation

To validate the compatibility of the spatial point pattern model presented in the
previous section with the data, we develop a simulation procedure based on the
K-function, which is expressed as [28]

K̂(r) = 1
D|W |

∑
h

∑
h̸=k

I {||xk − xh|| ≤ r}
λ̂ (xk) λ̂ (xh)

. (3.5)

where: D = 1
|W |

∑
h 1/λ̂ (xh); r is the distance at which the function is evaluated;

λ̂(x) is the estimated intensity from the model at location x; and I {||xk − xh||} is
an indicator function that takes the value 1 if the absolute distance between any
two locations xk and xh is less or equal to r, and 0 otherwise.

We then validate our model using the following bootstrap procedure.

1. By plugging in the maximum likelihood estimate for θ, simulate a data set
based on the inhomogenous marked point process defined in the previous
section.

2. Compute the inhomogeneous K-function defined in equation 3.5 for the
simulated data set in the previous step.

3. Repeat steps (i) and (ii) 10,000 times.

4. For a set of predefined distances r compute the 95% confidence intervals using
the 10,000 functions obtained from the previous steps.

On completion of the last step, we then conclude that the data do not show evidence
against the fitted model if the K-function computed on the original data falls within
the 95% envelope for each of the age-gender combinations.
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3.2.5 Ethics consideration

The Oxford Tropical Research Ethics Committee (reference number 39-15) and the
Malawian National Health Sciences Research Committee (reference number
15/5/1599) gave the approval to conduct the STRATAA study (trial number
ISRCTN 12131979) in Malawi [6]. At the household level, the head of the
household provided written informed consent for household surveys on behalf of
the entire household. In the other components of the STRATAA study, an
informed consent form was signed by study participants aged at least 18 years. On
the other hand, informed consent forms were signed by parents or guardians of
children less than 18 years old. Assent was, additionally, sought from children aged
between 11 and 17 years. We confirm that the methods performed in this study
were conducted in accordance with appropriate regulations and guidelines.
Furthermore, we confirm that the study complies with the Declaration of Helsinki.

3.3 Results

A total of 161 typhoid cases were recorded at Ndirande Health clinic between
October 2016 and February 2020. Out of these, only 1 case did not have complete
information on age, gender and the date of sample collection. The analysis
presented is thus based on the 160 typhoid cases with no missing data. A total of
43% (n=69) of the study participants were aged between 6 and 17 years. The
median age of the study participants was 11 years (interquartile range: 6 to 21
years). Further, 52% (n=83) of the sample were females. Figure 3.1 shows the
distribution of typhoid cases by gender in Ndirande. Table 3.1 further summarises
the characteristics of the sample.
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Figure 3.1: Locations of 160 typhoid cases and Ndirande health clinic from October
2016 to January 2020. The shaded area represents the study region.

Table 3.1: Distribution of the study participants.

Variable Total (n) Percentage (%)

Age (median, IQR) 11 years (6 to 21 years)

Age (years)
0-5 32 20%
6-17 69 43%
18+ 49 37%

Gender
Male 77 48%
Female 83 52%

Figure 3.2 illustrates the typhoid cases recorded per season from October 2016 to
February 2020. This plot does not show any discernible temporal pattern.
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Figure 3.2: Observed typhoid cases per season from October 2016 to February 2020.

Our study results show that a 50 meters increase in the distance away from the
health clinic decreased the estimated incidence rate of typhoid by 1% (100 * {1 -
exponent of coefficient (coef): -0.01}, 95% confidence interval (CI): -0.03, 0.01).
Further, a 50 meters increase in the elevation decreased the estimated incidence
rate of typhoid by 9% (coef: -0.10, 95% CI: -0.42, 0.12). With further regard to
the spatial covariates, a one-unit increase in the WASH score was associated with a
decrease in the incidence rate of typhoid of 54% (coef: -0.78, 95% CI: -1.34, -0.45).
We find that only the WASH score shows a significant effect at the 5%
conventional confidence level. However, all the point estimates of the regression
component align with the expected direction, as informed by our understanding of
typhoid fever epidemiology.

Predicted relative intensities were computed and plotted for each combination of
marks (age and gender) while adjusting for the spatial covariates and population.
Figure 3.3 shows the average predicted reported incidence for males and females of
any age at any point in time in the study per 100,000 population. As can be seen
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Table 3.2: Maximum likelihood estimates and 95% confidence intervals (CI) for the
parameters of the model specified in (3.3).

Variable Estimate 95% CI

Age (years)
0-5 -3.119 (-5.147, -0.193)
6-17 -3.162 (-5.189, -0.230)
18+ -3.906 (-5.929, - 0.973)

Gender
Male -5.140 (-8.177, -0.746)
Female -5.047 (-8.087, -0.652)

Spatial covariates
Distance to health facility × 50 meters -0.010 (-0.027, 0.008)
Elevation × 50 meters -0.098 (-0.420, 0.123)
WASH score -0.782 (-1.338, -0.449)

in Figure 3.3, the areas with the highest typhoid risk were the central and
southeast areas of Ndirande. The highest predicted reported incidence overall was
in females (400 typhoid cases per 100,000 population) and males (365 typhoid
cases per 100,000 population) aged between 0 and 5 years. This finding concurs
with the model coefficients reported in Table 3.2. When comparing the adjusted
predicted reported incidences within each gender, the 0-5 age group had the
highest predicted relative intensity for both males and females per 100,000
population per month, as shown in Table 3.3.
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Figure 3.3: Predicted incidence of typhoid by gender and age per 100,000 population.
The rows represent the gender of a typhoid case, whilst the columns represent the
age group of the case.

We fitted an inhomogeneous K-function to validate our spatial point pattern model.
The model validation plots for the final model are attached in the supplementary
material A. Overall, the figures show that the K-functions from the observed data
mostly fell within the simulated envelope for most of the distances. This suggests
that our model was a good fit for the data.
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Table 3.3: Predicted incidence and 95% confidence intervals (CI) per 100,000
population for Ndirande; for the definition of the predictive target in equation 3.4.

Group Number Incidence rate 95% CI

Male 0-5 14 222 (219, 224)
Male 6-17 36 216 (215, 216)
Male 18+ 27 104 (103, 105)

Female 0-5 18 240 (238, 242)
Female 6-17 33 237 (236, 237)
Female 18+ 32 114 (113, 115)

3.4 Discussion

In this study, we have shown how spatial point pattern methods can be used to
analyze reported cases of typhoid fever in health facilities. Our approach based on
a multiple-marked inhomogeneous Poisson process model allowed us to estimate
typhoid incidence at the household level while adjusting for both spatial and
individual-level risk factors.

Several modelling challenges were encountered in the analysis. First, the small
number of reported cases across time and space makes it more challenging to
model the relationships between risk factors and overall incidence patterns. In this
context, the interpretation of the regression relationships should not only be
guided by statistical summaries, such as p-values, but prior knowledge about the
disease context should also be used to inform the selection of covariates. For this
reason, we decided to retain variables that were not statistically significant,
namely distance to a health facility, and elevation, to generate the spatial
predictions for typhoid fever incidence. Our general guiding principle is that a
variable should be retained in the final model, regardless of its statistical
significance, 1) if there is an established body of evidence on the importance of the
variable to model the health outcome of interest, and 2) if the point estimate is in
accordance with the expected direction of the relationship based on that prior
knowledge. In the case of the three variables considered, it has been established in
previous research that these three variables are important risk factors for typhoid
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[4, 5, 22, 23] and both of the aforementioned criteria are met.

Based on the effects of these risk factors, the southeast zone of Ndirande was found
to show the highest typhoid incidence rate. This area of Ndirande is characterized
by a high population density which could contribute to poor sanitary facilities as
indicated by the WASH poor facilities. Our incidence map provides a more
granular distribution of typhoid compared to previous work [18]. The finding on
typhoid incidence decreasing with good WASH facilities is in line with the findings
from another study carried out in the Blantyre district in Malawi [5]. The result of
an increase in the elevation being associated with a decrease in the incidence of
typhoid is also consistent with results from previous studies [4, 23]. The maximum
distance observed between the health center and the study area was recorded as
3.1 km. Our results further showed that an increase in the distance to the
Ndirande health clinic was associated with a decrease in the reported incidence of
typhoid. This suggests that people living far away may be more reluctant to go to
the clinic unless they are seriously ill [22]. It is important to note, however, a
potential limitation of these findings. The GPS coordinates used in this study were
collected at the household level, and thus may not reflect the true locations of the
exposure to typhoid.

In addition to the spatial (environmental) risk factors, the age of an individual is
found to play an important role in the variation of typhoid risk. Our study
findings indicate a higher occurrence of typhoid among children after adjusting for
the spatial covariates. This result is consistent with previous studies that also
reported a higher typhoid incidence among children compared to adults [2, 14, 18,
29]. The estimated typhoid intensities for the 3 age groups in this study are,
however, lower than the adjusted typhoid incidences recently reported in Blantyre
in Malawi because we did not adjust the incidence in our study by a number of
factors such as blood culture sensitivity and healthcare-seeking probability [12, 30].
In contrast to previous studies, we did not find any statistically significant
difference in the estimated incidence between females and males [31, 32].

Another important limitation of this study is the under-reporting arising from
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passive surveillance data collected from individuals who visit a health facility [1,
33, 34]. To account for the under-reporting, our model can be extended in future
work using a thinned inhomogeneous Poisson process model, whereby the intensity
of the Poisson process is scaled by the probability of visiting the health centre [28].
However, one of the challenges of this approach is that some covariates may affect
both typhoid fever risk and the probability of visiting a clinic, making the
estimation of regression relationships more problematic. This issue has also been
reported in ecology, where similar methods have been used in citizen science data
[35]. Future research should focus on a better understanding of the factors and
mechanisms that drive the likelihood of attending health facilities, to better
parameterise the probability of going to the hospital and overcome the
identifiability issues in the estimation.

The proposed modelling approach in this study may be applied to the analysis of
reported cases from passive surveillance data for other diseases. One of the
strengths of the illustrated modelling approach is its flexibility in being adapted to
any other environmentally driven diseases through the selection of suitable
covariates. Through the application of this approach, we have further
demonstrated that, for example, typhoid occurrence is higher among children and
in areas with households with poor WASH facilities. Optimal typhoid control
initiatives could focus on this age group and on improving WASH facilities in
households.

Data availability

The data that support the findings of this study are available from the chief
investigator, Professor Andrew Pollard, but restrictions apply to the availability of
these data, which were used under license for the current study, and so are not
publicly available. Data are, however, available from the corresponding author
upon reasonable request and with permission of the chief investigator
(andrew.pollard@paediatrics.ox.ac.uk). The code used to run the models in this
study can be accessed on Github.
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Summary

This study aimed to establish the prevalence of double burden of malnutrition
(DBM) and triple burden of malnutrition (TBM) among mother-child pairs in
Malawi and explore their geographical distribution and associated multilevel
factors.

This was a cross-sectional study that used secondary data from the 2015-16
Malawi Demographic and Health Survey. We used a mixed effects binomial model
to identify multilevel factors associated with DBM and TBM. Georeferenced
covariates were used to map the predicted prevalence of DBM and TBM. The
study was carried out in all of the 28 districts in Malawi and the sample comprised
mother-child pairs with mothers aged 15 to 49 years and children aged below 59
months (n=4,618 pairs) for DBM and between 6 and 59 months (n=4,209 pairs)
for TBM.

Approximately 5.5% [95% confidence interval (CI): 4.7%, 6.4%] of mother-child
pairs had DBM and 3.1% [95% CI: 2.5%, 4.0%] had TBM. The subnational-level
prevalence of DBM and TBM was highest in cities. The adjusted odds of DBM
were threefold higher [Adjusted Odds Ratio, AOR: 2.8, 95% CI: 1.1, 7.3] with a
higher proportion of wealthy households in a community. The adjusted odds of
TBM were 60% lower [AOR: 0.4; 95% CI: 0.2, 0.8] among pairs where the women
had some education compared to women with no education.

Although the prevalence of DBM and TBM is currently low in Malawi, it is more
prevalent in pairs with women with no education and in relatively wealthier
communities. Targeted interventions should address both maternal overnutrition
and child undernutrition in cities and these demographics.

Keywords: double burden; triple burden; malnutrition; mapping; multilevel
models; mother-child pairs, DHS.
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4.1 Introduction

Malnutrition, including micronutrient deficiencies, excesses, or imbalances, causes
serious and long-lasting adverse outcomes at both individual and community
levels. Nearly half (45%) of all deaths among under-five children globally are due
to nutrition-related factors, and the burden is higher in low- and middle-income
countries (LMICs) [1]. Since 2000, there has been substantial progress in reducing
the burden of undernutrition among under-five children [2]. The global prevalence
of stunting, which is the most common type of child malnutrition, has reduced
from 32.6% in 2000 to 22.2% in 2017 [2]. However, a recent World Health
Organization (WHO) report cited that populations in 88% of 141 countries
experienced multiple types of malnutrition, including child stunting and overweight
in women [2]. The report further highlighted that 41 (29%) of the countries, 30 of
which are in Africa, experience a high burden of child stunting (≥ 20%) and
overweight and obesity in adult women (≥ 35%).

The coexistence of undernutrition (such as stunting, wasting, or micronutrient
deficiency) and overnutrition (obesity or overweight) is defined as double burden of
malnutrition (DBM) [3]. The WHO states that DBM can occur at the individual
level (e.g., coexistence of overnutrition with mineral or vitamin deficiencies in one
individual), household level (e.g., nutritional anaemia in a child and overnutrition
in another member of the household), and population level (e.g., the existence of a
burden of undernutrition and overnutrition in the same community such as a
village, district or country) [3]. DBM among mother-child pairs is defined as the
coexistence of undernutrition (wasting, stunting or underweight) in the child and
overnutrition (overweight or obesity) in the mother [4]. Furthermore, a
mother-child pair can also have a child with overnutrition and undernutrition in
the mother. Triple burden of malnutrition (TBM) refers to the coexistence of
micronutrient deficiencies and undernutrition in children and maternal
overnutrition [4]. Similarly, TBM among mother-child pairs can include
overnutrition in the child and the coexistence of undernutrition and micronutrient
deficiencies in the mother. Childhood malnutrition is associated with multiple
adverse outcomes such as delayed cognitive development and mortality [5].
Likewise, overnutrition in adults is associated with an increased risk of acquiring
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non-communicable diseases such as high blood pressure and diabetes; and poor
pregnancy outcomes among women [6]. DBM and TBM are, therefore, increasingly
being recognized as public health threats because of the risks they pose to both
the mother and child and the underlying complexity resulting in the co-existence
of different types of malnutrition.

The burden of DBM and TBM varies between countries. Although the global
mother-child pair prevalence of DBM and TBM is unknown, the prevalence of
household-level DBM ranges between 3% and 35% across 126 LMICs, with the
highest prevalence reported in Southern Africa, South America, and Asia [7, 8].
For Southern Africa, a study carried out in 2021 in 23 countries of the region
estimated the prevalence of household-level DBM and TBM to be 8% and 5%,
respectively [9].

Malawi has been experiencing DBM. The most recent 2015-16 Malawi
Demographic and Health Survey (MDHS) reported that the prevalence of stunting
(37%), underweight (12%), overweight (5%) and wasting (3%) among under-five
children declined compared to the 2010 MDHS (stunting = 47%, underweight =
13%, overweight = 8%, and wasting = 4%) [10, 11]. However, the prevalence of
overweight among women of reproductive age increased from 17% in 2010 to 21%
in 2015-16. Further, the prevalence of anaemia among under-five children
decreased from 73% in 2004 to 63% in 2010, and remained at that level in 2015-16,
suggesting a stall in the reduction. Although there has been extensive research in
Malawi on factors associated with various forms of malnutrition among children
and overnutrition among women of reproductive age, research looking at the
co-occurrence of undernutrition, micro-nutrient deficiencies among children and
overnutrition among their mothers in Malawi is scarce [12–14].

There is limited research on geographical disparities in DBM and TBM among
mother-child pairs in LMICs. Tarekegn et al (2022) used the Anselin Local
Moran’s I test to identify hotspots for DBM and TBM among mother-child pairs
in Ethiopia [15]. In Kenya, Kasomo et al (2021) used a Bayesian geoadditive
regression model to identify factors associated with DBM among women and to
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identify areas with a high burden of DBM [16]. Both studies showed that the
distribution of DBM and TBM varies across space. In addition to the spatial
studies, other previous research used multilevel analyses to determine factors
associated with TBM [17].

The objectives of the current study were to (1) estimate the prevalence of DBM and
TBM among mother-child pairs; (2) examine the variability in prevalence of DBM
and TBM geographically; and (3) identify individual, household, and community
level factors associated with DBM and TBM among mother-child pairs, in Malawi.

4.2 Methods

4.2.1 Data

The most recent 2015-16 MDHS data were used for this study [10]. DHSs are
nationally representative cross-sectional household surveys that are carried out in
LMICs for tracking health and demographic indicators [18]. Respondents for the
2015-16 MDHS were sampled using a two-stage process which was guided by a
sampling frame generated from the 2008 Malawi Population and Housing Census
[10]. Details on the MDHS sampling methodology can be found in other reports
[10]. In summary, the 2015-16 MDHS sampled 850 Enumeration Areas (EAs) in all
the 28 districts of Malawi in the first sampling stage. In the second stage, 33
households in each rural cluster and 30 households in each urban cluster were
selected. Enumerators used a global positioning system (GPS) to identify the
central point of each EA and to collect coordinates (longitude and latitude). The
DHS programme displaces the coordinates by up to 2 km in urban areas and up to
5 km in 99% of the rural areas, and by 10 km in the remaining 1% of EAs in rural
areas for anonymization purposes [19]. Coordinate displacements ensure that
points remain within the same administrative boundaries of the EA [19].

4.2.2 Study population

The population of interest in the study were living together in a household
mother-child pairs where the child was less than 60 months (5 years) old at the
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time of survey. We used the women’s and children’s recode datasets which contain
information on women of reproductive age (15-49 years), their most recent birth,
and their children. Anthropometry and biomarker data were collected from
members of a sub-sample of the interviewed households. Height and weight
measurements were taken from women aged between 15 and 49 years and children
aged between 0 and 59 months in the eligible households [10]. To measure
hemoglobin levels for determining anemia status, blood specimens were collected
from a sub-sample of households eligible for anthropometry data collection.

The analysis sample for DBM included women of reproductive age (15-49 years)
with all their under-five children residing in the same household. The analysis of
TBM was restricted to a subset of women of reproductive age and their children
aged between 6 and 59 months, because the DHS collected hemoglobin levels for
this child age group only [10]. Pregnant women at the time of the survey and
women who gave birth in the two months before the survey were excluded from the
sample to avoid their pregnancy weight biasing their body mass index (BMI) [10,
20]. We also excluded women and children whose anthropometric measurements
were not recorded [20]. Furthermore, we excluded children whose dates of birth
were missing or unknown and also excluded children with anthropometric
measurements outside of plausible ranges as defined by the Guide to DHS statistics
[20]. The sample inclusion flow chart is provided in supplementary information B.

4.2.3 Outcome and independent variables definition

This study had two outcome variables: double burden of malnutrition (DBM) and
triple burden malnutrition (TBM) among mother-child pairs. The operational
definitions for DBM and TBM were adapted from previous studies and are
presented in Table 4.1, along with definitions of malnutrition indicators such as
stunting and wasting available in the MDHS [4, 15].
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Table 4.1: Outcome variable definition as adapted from previous DBM and TBM studies [4, 15, 21].

Indicator Unit of analysis Definition

Wasting (Weight for Height Z-score - WHZ) Children 0-59 months 1 = wasted (WHZ < -2 standard deviations -SD),
0 = not wasted

Stunting (Height/Length for Age Z-score-HAZ) Children 0-59 months 1 = stunted (HAZ < -2 SD), 0 = not stunted

Underweight (Weight for Age Z-score - WAZ) Children 0-59 months 1 = underweight (WAZ < -2SD), 0 = not underweight
Child undernutrition Children 0-59 months 1 = Wasted, stunted or underweight, 0 = no undernutrition

Child overnutrition Children 0-59 months 1 = overweight (WAZ > 2SD), 0 = not overweight

Child anemia Children 6-59 months 1 = anemic (hemoglobin (HB) level <11.0 g/dl),
0 = not anemic

Maternal overnutrition (overweight or obesity) Women 15-49 years 1 = Overweight (BMI 25.0–29.9 weight (kg)/height(m2)) or
based on body mass index (BMI) obese (BMI 30/kg/m2), 0 = normal/underweight BMI

Maternal underweight Women 15-49 years 1 = Mildly thin (BMI 17.0-18.4 kg/m2) or moderately or
severely thin (BMI <17.0 kg/m2),

Continued on next page
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Table 4.1 – continued from previous page

Indicator Unit of analysis Definition

0 = normal/overweight or obese BMI

Maternal short height Women 15-49 years 1 = Height <145cm, 0 = normal height

Maternal undernutrition Women 15-49 years 1 = Maternal underweight or short height, 0 = normal

Maternal anemia Women 15-49 years 1 = anemic (HB level <12.0 g/dl), 0 = not anemic
Double burden of malnutrition (DBM) Women 15-49 years and their 1 = Mother’s (maternal) overweight or obesity AND

children 0-59 months child undernutrition (wasting = 1 or stunting =1
from their most recent birth, or underweight = 1) OR Maternal undernutrition
including multiple births AND child overnutrition,

0 = no DBM
Triple burden of malnutrition (TBM) Women 15-49 years and their 1 = Maternal overweight or obesity, and undernourished

children 6-59 months and anemic child (child anemia =1) OR child
from their most recent birth, overweight AND maternal undernutrition and maternal
including multiple births anemia (maternal anemia = 1),

0 = no TBM

484848



Chapter 4. Mapping malnutrition among mother-child pairs in Malawi

The study explored associations between the outcomes and independent variables
at the individual, household, and community levels. An initial selection of
variables was based on the WHO conceptual framework for the double burden of
malnutrition (see Supplementary information B) and previous research looking at
the prevalence and burden of DBM and TBM [4, 15, 21, 22]. These variables are
listed in Table B.1 in Supplementary information B, along with the variable label.
The community-level variables were aggregated from individual/household level to
EA (i.e. cluster) level. For instance, we generated a new variable and assigned a 1
to the households in the middle, rich or richest wealth quintiles and a zero to the
households in the poor/poorest quintiles. The variable capturing the percentage of
households in at least the middle wealth quintile in a cluster was, therefore,
computed by taking the sum of the new variable divided by the total number of
households sampled in that cluster.

The following gridded raster covariates were used in the mapping analysis:
precipitation, nightlights, elevation, temperature, aridity, antenatal visits during
pregnancy, female literacy and percentage of children who had received all basic
vaccinations. These variables have been shown to be associated with
nutrition-related indicators and have been included in previous modelling and
mapping studies [17, 23–28]. The variables were also selected based on the WHO
conceptual framework (see Supplementary information B) of DBM and conceptual
frameworks for mother-child pair DBMs from previous research [29, 30]. Details on
the sources of the variables and their spatial and temporal resolution are given in
Supplementary information B.

4.2.4 Statistical analyses

Outcome and independent variables were explored by tabulating frequencies for
the categorical variables and computing the mean and standard deviations for the
continuous variables. Bivariate analyses were carried out using a Chi-square test
for categorical variables and t-test for continuous variables. To avoid including
multiple independent variables that were highly correlated, we fitted a logistic
regression model to the outcome variables and computed the variance inflation
factors (VIF) of the independent variables. All the variables had a VIF of less than
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3 and were included in the multilevel models [31, 32].

The multivariable analysis first considered a binomial mixed model (three-level
multilevel model where mother-child pairs reside within a household that is in a
community/EA) to investigate multilevel risk factors of TBM and DBM. Mixed
models are valuable for analysing data with hierarchical or nested structures,
allowing for the incorporation of both fixed and random effects [33]. The clustering
variables that were used in the study were the household number and the EA
which is coded as a cluster number in the DHS data. A three-level multivariable
binomial mixed model was fitted to investigate the determinants of DBM and
TBM at the individual, household and cluster levels where mother-child pairs
(individual, Level 1) are in households (Level 2) which are clustered within an EA
(community level, Level 3).

Spatial modelling
To map DBM and TBM, we adapted a methodology utilized in estimating and
mapping of other health-related outcomes that are derived from multiple
indicators [34, 35]. Each of the indicators contributing to DBM and TBM (child
stunting, child wasting, child underweight, child overnutrition, child anaemia,
maternal undernutrition, maternal short height, maternal anaemia, and maternal
overnutrition) was individually considered in our approach [34]. We examined
multicollinearity and selected between closely associated spatial covariates as
described above [32, 36]. We then fitted binomial generalized mixed models to each
of the nine indicators. Random effects extracted from the binomial mixed models
were used to fit variograms, which confirmed the absence of spatial correlation in
all nine indicators, as depicted in Figure B.5 and Figure B.6 in the Supplementary
information. We, therefore, mapped DBM and TBM using the non-spatial
binomial mixed models as done in other non-spatial mapping studies since spatial
dependence is required when using geospatial methods [36–38]. We computed the
predicted prevalence of each of the nine indicators and combined them to produce
the predicted prevalence of DBM and TBM at pixel level (3km x 3km grid) and
district level [34]. We utilized the multivariate Gaussian approximation of the
maximum likelihood estimator to compute confidence intervals for the estimates as
employed in previous non-spatial mapping studies [38].
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We generated new level-weights according to the recent guidance by the DHS Survey
methodology team [39]. All analyses adjusted for the weights and were carried out
at a 5% significance level using Stata version 15 and R. We further adjusted for the
stratification. Statistical details for the multilevel model and mapping analyses are
available in the supplementary information.

4.3 Results

We analysed data for a total of 4,618 for DBM and 4,209 for TBM (Level 1 data)
mother-child pairs. The DBM mother-child sample were from 3,661 households
(Level 2) within 848 communities (Level 3). The TBM mother-child sample was
from 3,442 unique households (Level 2) within 844 communities (Level 3). Among
the 4,618 mother-child pairs in the DBM sample, there were 4,473 (97%) unique
women, and in the TBM sample, 4,089 (97%) were unique women, meaning than less
than 3% of children in the analysis pairs shared the same mother. The distribution
of the DBM and TBM samples is displayed in Table 4.2. Briefly, about a fifth of the
children in both samples (DBM 21%, TBM 23%) were aged between 12 months and
23 months and a slight majority were female (DBM 52%, TBM 52%). Furthermore,
three-quarters of the mothers were aged between 20 and 34 years (DBM 74%, TBM
74%) and two thirds had attended up to primary school education at the time of
the survey (DBM 66%, TBM 66%).
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Table 4.2: Socio-demographic characteristics among mother-child pair analysis samples for DBM (n=4,618) and TBM (n=4,209) from
the Malawi 2015-2016 DHS.

Variable Sample for DBM estimation Sample for TBM estimation

Total (N) % 95% CI Total (N) % 95% CI

Age of child
<12 months 901 19.51 (18.16,20.93) 532 12.65 (11.46,13.93)
12-23 months 989 21.41 (19.99,22.90) 979 23.27 (21.75.24.87)
24 - 35 months 907 19.65 (18.29,21.08) 900 21.38 (19.90,22.95)
36 to 47 months 945 20.47 (19.08,21.93) 936 22.24 (20.72,23.83)
48 to 59 months 876 18.97 (17.68,20.33) 861 20.46 (19.09,21.90)
Sex of child
Male 2,234 48.38 (46.66,50.10) 2,031 48.25 (46.52,49.98)
Female 2,384 51.62 (49.90,53.34) 2,178 51.75 (50.02,53.48)
Parity
1 or 2 1,902 41.19 (39.05,43.36) 1,695 40.28 (38.05,42.55)
3+ 2,716 58.81 (56.64,60.95) 2,514 59.72 (57.45,61.95)
Age of mother in years
15-19 318 6.88 (5.98,7.00) 247 5.88 (5.06,6.82)
20-34 3,427 74.20 (72.42,75.92) 3,134 74.45 (72.60,76.23)

Continued on next page
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Table 4.2 – continued from previous page

Variable Sample for DBM estimation Sample for TBM estimation

Total (N) % 95% CI Total (N) % 95% CI

35+ 874 18.92 (17.39,20.55) 828 19.67 (18.04,21.41)
Mother’s marital status
Not in a union 722 15.63 (14.12, 17.27) 667 15.85 (14.29, 17.54)
In a union 3,896 84.37 (82.73, 85.88) 3,542 84.15 (82.46, 85.71)
Highest level of completed education of mother
None 596 12.91 (11.53,14.43) 545 12.94 (11.53,14.50)
Primary 3,039 65.80 (63.77,67.77) 2,770 65.80 (63.75,67.78)
Secondary and higher 983 21.29 (19.56,23.12) 895 21.26 (19.50,23.14)
Mother’s employment status
Not working 1,508 32.66 (30.46, 34.93) 1,311 31.14 (29.87, 34.50)
Working 3,110 67.34 (65.07, 69.54) 2,856 67.86 (65.50, 70.13)
Mother attended < 4 ANC visits
No 2,739 59.31 (57.48,61.11) 2,526 60.01 (58.06,61.93)
Yes 1,879 40.69 (38.89,42.52) 1,683 39.99 (38.07,41.94)
Household wealth index
Low 1,573 34.06 (32.17,36.01) 1,422 33.79 (31.83,35.80)
Middle 1,527 33.07 (31.23,34.97) 1,388 32.98 (31.06,34.97)

Continued on next page
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Table 4.2 – continued from previous page

Variable Sample for DBM estimation Sample for TBM estimation

Total (N) % 95% CI Total (N) % 95% CI

High 1,518 32.87 (30.83,34.97) 1,399 33.23 (31.11,35.42)
Area of residence
Urban 626 13.55 (12.36,14.84) 563 13.38 (12.09,14.79)
Rural 3,992 86.45 (85.16,87.64) 3,646 86.62 (85.21,87.91)
Community-level variables* (mean & std dev)
Proportion of households belonging 0.577 (0.31) (0.557,0.575) 0.565 (0.31) (0.556,0.574)
to the middle, rich or richest wealth quintiles
Proportion of women with fewer than 4 ANC visits 0.592 (0.23) (0.586,0.600) 0.591 (0.23) (0.584,0.598)

Note: DBM = Double burden of malnutrition; TBM =Triple burden of malnutrition;
N = Total sample size across outcome variable; n: Column sample size across independent variable;
Std. dev = Standard deviation; ANC = Antenatal care; % = Percentage; CI = Confidence interval.
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The prevalence of DBM among mother-child pairs in Malawi was 5.5% (95%
Confidence interval, CI: 4.7, 6.4) and the prevalence of TBM was 3.1% (95% CI:
2.5%, 4.0%). Figure 4.1 shows the prevalence of the components of DBM and
TBM. Anaemia prevalence was 63.4% among children 6-59 months, and among
child undernutrition indicators (child stunted, child underweight, and child
wasted), stunting was highest at 36.8%.

Figure 4.1: Prevalence of measures of malnutrition among mother-child pairs
included in the analysis in Malawi (DBM: n=4,618, TBM: n=4,209).

4.3.1 Factors associated with DBM and TBM

The distribution of characteristics of mother-child pairs according to whether they
had DBM or TBM is displayed in Table 4.3. In the bi-variate analysis, DBM was
associated with older ages of the child and mother, parity, and highest level of
education of the mother. On the community level, the percentage of households
in at least middle wealth quintile were associated with higher DBM, whilst the
proportion of women who attended fewer than 4 antenatal care (ANC) visits during

55



Chapter 4. Mapping malnutrition among mother-child pairs in Malawi

pregnancy were also associated with lower DBM. In the bi-variate analysis of TBM,
only parity and maternal education were significantly associated with TBM. Mothers
with some education had lower odds of mother-child TBM.
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Table 4.3: Bivariate and multivariable analyses (from the multilevel logistic regression model) of the individual, household and community-
level variables associated with mother-child pair DBM (n=4,618) and TBM (n=4,209), 2015-16 MDHS.

Variable DBM Sample DBM Model TBM Sample TBM Model

n (%) p-val AOR (95% CI) n (%) p-val AOR (95% CI)

Individual-level variables

Age of child <0.001 0.354
<12 months 30 (11.2) Ref 15 (10.5) Ref
12-23 months 32 (11.7) 1.1 (0.4, 2.9) 24 (17.0) 0.8 (0.3, 2.2)
24 - 35 months 69 (25.9) 4.3 (1.6, 11.8) 40 (28.4) 1.7 (0.6, 4.9)
36 to 47 months 60 (22.4) 2.1 (0.8, 5.2) 28 (19.6) 0.8 (0.3, 2.4)
48 to 59 months 77 (28.8) 4.1 (1.4, 11.7) 35 (24.5) 1.1 (0.3, 3.8)
Sex of child 0.691 0.670
Male 125 (46.8) Ref 64 (45.5) Ref
Female 143 (53.2) 0.9 (0.5, 1.8) 77 (54.5) 1.2 (0.7, 2.1)
Parity <0.001 0.010

1 or 2 72 (26.8) Ref 36 (25.5) Ref
3+ 196 (73.2) 1.9 (0.9, 4.1) 105 (74.5) 2.0 (1.0, 4.2)
Age of mother in years <0.001 0.101
35+ 8 (3.0) Ref 6 (4.2) Ref

Continued on next page

575757



Table 4.3 – continued from previous page

Variable DBM Sample DBM Model TBM Sample TBM Model

n (%) p-val AOR (95% CI) n (%) p-val AOR (95% CI)

15-19 174 (65.1) 0.4 (0.1, 2.2) 94 (66.3) 1.1 (0.3, 5.1)
20-34 86 (31.9) 0.4 (0.2, 0.8) 42 (29.5) 0.8 (0.3, 2.0)
Mother’s marital status 0.165 0.570
Not in a union 32 (11.8) Ref 19 (13.6) Ref
In a union 236 (88.0) 0.5 (0.2, 1.2) 122 (86.4) 0.7 (0.3, 1.6)
Highest completed level of education of mother <0.001 <0.001

None 47 (17.4) Ref 34 (24.4) Ref
Primary 159 (59.4) 0.6 (0.2, 1.3) 91 (64.8) 0.4 (0.2, 0.8)

Secondary and higher 62 (23.2) 0.9 (0.3, 2.8) 15 (10.8) 0.2 (0.1, 0.6)

Mother’s employment status 0.988 0.967
Not working 87 (32.6) Ref 46 (32.4) Ref
Working 181 (67.4) 0.8 (0.4, 1.9) 95 (67.6) 0.8 (0.4, 1.6)
Mother attended at least 4 ANC visits 0.876 0.393
Yes 160 (59.9) Ref 79 (55.9) Ref
No 108 (40.1) 1.1 (0.6, 2.0) 62 (44.1) 0.8 (0.4, 1.4)
Household-level variables

Household wealth index 0.594 0.388
Continued on next page
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Table 4.3 – continued from previous page

Variable DBM Sample DBM Model TBM Sample TBM Model

n (%) p-val AOR (95% CI) n (%) p-val AOR (95% CI)

Low 81 (30.1) Ref 56 (39.8) Ref
Middle 91 (34.1) 0.9 (0.4, 2.0) 48 (34.0) 0.7 (0.3, 1.5)
High 96 (35.8) 0.7 (0.2, 1.9) 37 (26.2) 0.6 (0.2, 1.7)
Area of residence 0.414 0.147
Urban 43 (15.9) Ref 12 (8.3) Ref
Rural 225 (84.1) 1.2 (0.6, 2.6) 129 (91.7) 1.5 (0.5, 4.4)
Community-level variables

Proportion of households belonging to 0.63 (0.30) <0.001 2.8 (1.1, 7.3) 0.58 (0.29) 0.499 1.5 (0.4, 4.8)
the middle, rich or richest wealth quintiles
Proportion of women with fewer than 4 0.56 (0.24) 0.032 0.5 (0.2, 1.6) 0.58 (0.24) 0.570 0.4 (0.1, 2.1)
ANC visits
Random effects

Cluster variance 33.9 (22.7, 50.5) 1.4 (0.5, 4.3)
Household variance 2.1 (0.8, 5.6) 4.1 (1.2, 13.5)

Note: DBM = Double burden of malnutrition; TBM =Triple burden of malnutrition; n: Column sample size across independent variable
(DBM = yes, TBM = yes); p-val = Chi-square P-value for categorical variables and t-test P-value for continuous (cluster-level) variables;
AOR = Adjusted Odds Ratio; CI = Confidence Interval; Ref = Reference category, AOR = 1; Std dev = Standard deviation; ANC =
Antenatal care; % = Percentage; Bold = statistical significance in the multilevel modelling (P-value < 0.05).
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In the adjusted multilevel logistic regression, an increase in the child’s age was
associated with an increase in adjusted odds of DBM. Being a child between age
24 and 35 months is associated with 4-times higher odds of DBM [adjusted odds
ratio, AOR: 4.3; 95% CI: 1.6, 11.8] compared to children aged below 11 months.
Similarly, being a child between age 48 and 59 months is associated with 4 times
higher odds of DBM [AOR: 4.1, 95% CI: 1.4, 11.7] compared to children aged
below 11 months. Conversely, the odds of having a mother-child pair with DBM
was 60% lower [AOR: 0.4; 95% CI: 0.2, 0.8] among mother-child pairs with women
aged between 20 and 34 years compared to women aged 35 years and above. In the
multilevel logistic regression for TBM among mother-child pairs, mother’s level of
educational attainment was the only factor statistically significantly associated
with the outcome (p-value <0.01). The odds of TBM were 60% lower [AOR: 0.4;
95% CI: 0.2, 0.8] among mother-child pairs where the women had primary
education and 80% lower [AOR: 0.2; 95% CI: 0.1, 0.6] among mother-child pairs
where the women had secondary or tertiary education, compared to mother-child
pairs where the mother had no education.

Sex of the child, birth order, mother’s marital status, mother’s employment status,
number of attended ANC visits, household wealth quintile and community level of
ANC attendance were not associated with DBM or TBM (p>0.05). DBM among
mother-child pairs was significantly associated with the household wealth in the
community. A one-unit increase in the percentage of households in the middle
wealth quintile or wealthier in the community was associated with a three-fold
increase in the adjusted odds of DBM [AOR: 2.8 95% CI: 1.1, 7.3]. No statistically
significant community-level effects were seen in the TBM model.

In the spatial analysis, an increase in the nightlights value in an area, which is
a proxy for the wealth index, was associated with decreased odds of child-level
outcomes such as child stunting, anaemia and underweight. On the other hand, an
increase in nightlight value in an area was associated with increased odds of maternal
overnutrition (overweight and obese). Likewise, an increase in the proportion of
literate women was associated with reduced odds of childhood stunting, wasting,
underweight and anaemia. With respect to maternal-level outcomes, an increase in
the proportion of literate women was associated with increased odds of maternal
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overnutrition. Climatic variables such as precipitation, temperature and aridity
index were not significantly associated with any of the child-level and maternal-level
outcomes.

4.3.2 Geographic distribution of DBM and TBM

The predicted prevalence of DBM was heterogeneous, ranging from 1.2% to 8.2%
across the pixels in Malawi (Figure 4.2). The predicted prevalence of TBM ranged
from 0.9% to 3.5% at the pixel level. The highest prevalence of mother-child pairs
with DBM and TBM was estimated in cities (Figure 4.3). All the four cities in
Malawi (Blantyre, Lilongwe, Mzuzu and Zomba) had a DBM prevalence of greater
than 5.1% and a TBM predicted prevalence greater than 2.4%. Maps illustrating
the uncertainties in the predicted prevalence of DBM and TBM are included in
Supplementary information B.

Figure 4.2: Predicted prevalence of the double burden of malnutrition (DBM) and
triple burden of malnutrition (TBM) among mother-child pairs in Malawi.
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Figure 4.3: District-level predicted prevalence of the double burden of malnutrition
(DBM) and triple burden of malnutrition (TBM) among mother-child pairs in
Malawi.

4.4 Discussion and Conclusion

4.4.1 Discussion

This study examined the prevalence of and spatial variation in DBM and TBM, as
well as individual, household and community-level correlates of DBM and TBM
among mother-child pairs in Malawi. Our study contributes to the current
literature by investigating the multilevel factors associated with DBM and TBM
and generating high spatial resolution maps of DBM and TBM in Malawi. The
prevalence of DBM and TBM among mother-child pairs were 5.5% and 3.1%,
respectively. These prevalence values are higher than the reported DBM and TBM
prevalence in Ethiopia (3.1% and 1.6%, respectively), and similar to the prevalence
reported in Nepal (6.6% and 7.0%) and India (TBM 5%), respectively [4, 15, 21].
Although the overlap between child undernutrition and maternal overweight was
small, two-fifths of children were malnourished (39%) and 19% of women were
overweight or obese. While there was absence of spatial correlation in our data,
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our findings suggest that despite the relatively low prevalence, the geographic
distribution of mother-child DBM and TBM varied greatly within Malawi, thereby
suggesting that environmental conditions conducive for DBM and TBM exist
throughout Malawi, particularly in cities. We found a strong positive association
between the increased age of a child and the odds of having mother-child pair
DBM and TBM. This result is consistent with results from other studies where
children older than 24 months had higher odds of being in a mother-child pair with
DBM and TBM compared to younger ones [4, 9, 15, 21, 23, 40]. Regarding age,
our results also revealed that mother-child pairs where the mother was aged
between 20-34 had reduced odds of DBM compared to women aged at least 35
years. This finding is consistent with previous studies where the odds of
household-level DBM and TBM was higher among older women than younger
women due to the older women being overweight and obese [9, 41]. Some studies
have postulated that sedentary lifestyles and the increased likelihood of
overnutrition (overweight and obesity) among older women might be some of the
leading drivers of DBM and TBM [4, 9, 15].

Educational attainment was another predictor of TBM in our study. Mothers with
at least primary and secondary education had reduced odds of TBM. This result
further corresponds with the spatial modelling where an increase in the proportion
of literate women was associated with reduced burden of childhood malnutrition
(underweight, stunting, and wasting). These results align with previous evidence
that women with higher education have reduced odds of household-level DBM and
TBM as higher education attainment is associated with reduced risk of childhood
malnutrition [9, 23].

Our results show that an increase in the proportion of wealthy households at
community level increased the odds of DBM, thereby suggesting a higher burden
in relatively wealthier areas [8, 21]. The spatial analysis further decomposes this
finding by showing that an increase in the nightlights value (a proxy for level of
wealth) is associated with reduced odds of child-level outcomes and increased odds
of maternal overnutrition. No significant community-level effects were seen in the
TBM model. Previous work has postulated that higher income levels may enhance
the ability to buy food, thereby shaping dietary habits and preferences [41].
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Furthermore, previous studies have hypothesized that inadequate physical activity,
sedentary lifestyles and westernized dietary behaviors adopted by wealthier
households and communities drive adult overnutrition [8, 21, 41, 42]. Previous
reports have shown that these behaviors tend to be more common in urban
settings, which could be reflected in our results [43]. Further research is needed in
Malawi to identify more community-level determinants of DBM and TBM.

The absence of spatial correlation in our data suggests that the spatial correlation
in our DBM and TBM samples can be explained by the environmental covariates
that were used in the models. This notwithstanding, the maps generated in this
study suggest that DBM and TBM are not homogeneously distributed in Malawi.
These results underscore the potential existence of spatial drivers influencing the
observed patterns of DBM and TBM, which should be further investigated. In
studies where the data exhibits spatial correlation, the mixed effects models used in
this study could be further extended to explicitly incorporate the spatial correlation
using geostatistical methods [36, 37].

4.4.2 Limitations and strengths of the study

The main limitation of this study is that the DHS was a cross-sectional study,
therefore, no causal associations could be inferred from the study. Secondly, our
analysis included categorizing continuous variables such as wasting and stunting
which have been shown to lead to some loss of information on the variable [44]. An
additional constraint pertains to the use of outdated DHS data. Nevertheless, this
research remains valuable as it demonstrates the application of mixed effects
models for estimating factors at multiple levels and mapping health outcomes like
DBM and TBM. Another limitation with DHS data is the unavailability of most of
the variables in the WHO DBM conceptual framework. Furthermore, the DHS
data lack information on dietary behaviors which are immediately related to
nutritional outcomes. This shortcoming creates the need to have more
nutrition-related datasets in Malawi to better understand the determinants of
nutrition-related issues such DBM and TBM in the country. Another important
limitation is the lack of micronutrient data. Thus, we used anaemia status as a
proxy for estimating TBM prevalence. We, therefore, recommend collecting
nationally representative data on micronutrient deficiencies, and not necessarily
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through DHS.

Given that common household-level risk factors for child undernutrition are often
protective for maternal overweight and vice-versa, most of the risk factors
identified for DBM and TBM in this study were driven either by strong positive
associations with child undernutrition (and weaker or null negative associations
with maternal overnutrition) or by strong positive associations with maternal
overnutrition (and weaker or null negative associations with child undernutrition).
These limitations might explain why the prevalence of DBM and TBM appears
possibly lower than what would be observed by chance. These methodological
challenges are, nevertheless, common when studying DBM and TBM.

Despite these limitations, to our knowledge, this study is the first to establish the
prevalence of mother-child pair DBM and TBM in Malawi. Our study also
presents an important finding that the co-existence of undernutrition in children
and overnutrition in mothers is associated with both individual and
community-level factors. Furthermore, our study is the first to illustrate the
geographical disparities in the distribution of mother-child DBM and TBM in
Malawi. It shows that the burden of DBM and TBM is higher in cities than other
areas. Future studies could further extend this work by building a spatio-temporal
model to assess whether the burden of DBM and TBM has also been higher in
cities than in other areas over time. This is because a recent study has shown a
shifting spatio-temporal trend in DBM from metropolitan areas to other regions in
Guatemala [45]. The findings from the spatio-temporal modelling could help the
government and implementing partners anticipate which districts/areas in Malawi
might get an increasing burden of DBM and TBM in the future. The study results
could also inform interventions about specific areas where attention is needed to
target DBM and TBM and control the burden of these conditions. The findings
from this study could also be used to inform a new hypothesis of shifting spatial
DBM and TBM trends in other countries.

4.4.3 Conclusion

This study highlighted that the mother-child pair prevalence of DBM and TBM in
Malawi was relatively low, with the highest burden in large cities. It further
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showed that the increased age of the child and mother also increased the odds of a
mother-child pair having DBM. Additionally, individual-level maternal educational
attainment was shown to have a protective effect against TBM. Our study also
highlighted that there are community-level determinants of DBM such as
household wealth that are associated with increased odds of DBM. These results
emphasize the need to not neglect wealthier communities in disseminating and
implementing adult-related nutrition-related interventions in Malawi. These results
could be explicitly adopted and translated in national documents such as the
“Malawi National Multi-Sector Nutrition Policy 2018-2022” which acknowledges
the existence of both undernutrition and overnutrition, but does not provide any
recommendations on addressing their co-existence such as DBM and TBM [46].

Through the revised Malawi National Multi-Sector Nutrition Policy, the
government of Malawi can tackle DBM and TBM among mother-child pairs in
Malawi by implementing comprehensive, integrated nutrition programs that
simultaneously address undernutrition in children and overnutrition in mothers.
The government can also promote a multisectoral response to dealing with
mother-child DBM and TBM in Malawi. A multisectoral approach can ensure that
policies across multiple sectors, such as health and agriculture, work together to
ensure access to supplements and nutritious foods, address food insecurity, and
promote healthy habits among women. These interventions could, as a priority,
begin to focus on the Malawian cities where double and triple burden of
malnutrition among mother-child pairs is the highest.
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Summary

The Expanded Special Project for the Elimination of Neglected Tropical Diseases
(ESPEN) was launched in 2019 by the World Health Organization and African
nations to combat Neglected Tropical Diseases (NTDs), including Soil-transmitted
helminths (STH), which affect over 1.5 billion people globally. In this study, we
present a comprehensive geostatistical analysis of publicly available STH survey
data from ESPEN to delineate inter-country disparities in STH prevalence and its
environmental drivers while highlighting the strengths and limitations that arise
from the use of the ESPEN data. To achieve this, we also propose the use of
calibration validation methods to assess the suitability of geostatistical models for
disease mapping at the national scale.

We analysed the most recent survey data with at least 50 geo-referenced
observations, and modelled each STH species data (hookworm, roundworm,
whipworm) separately. Binomial geostatistical models were developed for each
country, exploring associations between STH and environmental covariates, and
were validated using the non-randomized probability integral transform. We
produced pixel-, subnational-, and country-level prevalence maps for successfully
calibrated countries. All the results were made publicly available through an R
Shiny application.

Among 35 countries with STH data that met our inclusion criteria, the reported
data years ranged from 2004 to 2018. Models from 25 countries were found to be
well-calibrated. Spatial patterns exhibited significant variation in STH species
distribution and heterogeneity in spatial correlation scale (1.14 km to 3,027.44 km)
and residual spatial variation variance across countries. This study highlights the
utility of ESPEN data in assessing spatial variations in STH prevalence across
countries using model-based geostatistics. Despite the challenges posed by data
sparsity which limit the application of geostatistical models, the insights gained
remain crucial for directing focused interventions and shaping future STH
assessment strategies within national control programs.

Keywords: ESPEN; model-based geostatostics, neglected tropical diseases; STH.
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5.1 Introduction

Soil-transmitted Helminthiases (STH) are the most common type of Neglected
Tropical Diseases (NTDs) and are caused by parasitic worms, including whipworms
(Trichuris trichiura), hookworms (Necator americanus and Ancylostoma
duodenale), and roundworms (Ascaris lumbricoides) [1, 2]. Approximately 24%
(1.5 billion) of the global population experiences annual infections of STH, with
high prevalences among children and women of reproductive age, who are at the
highest risk for morbidity associated with STH [1–3]. Populations that mostly
suffer from STH infections are found in China, sub-Saharan Africa, East Asia, and
the Americas [2, 4]. In sub-Saharan Africa, STH affect more than 11% of the
population [3]. However, the STH burden greatly varies both between and within
each country of the African continent [3, 4]. Although the STH mortality rate is
low, STH are associated with both lower health outcomes (such as anemia and
malnutrition) and poor cognitive performance [5–7].

One of the interventions for controlling the transmission of STH is mass drug
administration (MDA), otherwise known as preventive chemotherapy (PC). The
PC drugs are primarily given to preschool and school-age children and pregnant
women to contribute to reducing STH-related morbidities. The frequency of the
MDA programs is usually determined according to prevalence classes defined by
the WHO, namely <2%, 2%-10%, 10%-20%, 20%-50% and >50% [1, 8, 9].
Understanding the level of burden of STH is thus crucial to assist the efficient
allocation of drugs.

The Expanded Special Project for the Elimination of Neglected Tropical Diseases
(ESPEN) was established in 2016 as a collaborative effort between the World
Health Organization (WHO) African region office, African NTD endemic countries
and other NTDs partners [10]. The ESPEN was instituted to help mobilize
financial, political, and technical resources. ESPEN aims to contribute to
mitigating the effects of the 5 most prevalent NTDs in Africa which, in addition to
STH, are trachoma, lymphatic filariasis, schistosomiasis, and onchocerciasis. The
ESPEN electronic data portal contains publicly available geo-located sub-national
prevalence data on the aforementioned high-burden NTDs, as well as Loiasis. The
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ESPEN portal also provides both spatial and time-referenced information for some
countries. Historical applications of ESPEN data have involved the application of
geostatistical mapping of diseases such as schistosomiasis, onchocerciasis, and STH
at both country and continent (Africa) levels to inform survey designs and
strategies for preventive therapy [3, 11–14].

Model-based geostatistics (MBG) has become an established methodology for
prevalence mapping and for better understanding the spatial distribution of
disease risk [15–17], thus providing valuable insights for guiding interventions,
survey designs, and resource allocations [18–21]. MBG methods for global disease
mapping has been instrumental in studying disease distribution across Africa; see,
for example, the extensive application of MBG from the Institute of Health
Metrics (IHME) in the mapping of HIV/AIDS, onchocerciasis, lymphatic filariasis,
maternal and child health, and other health-related indicators [12, 22–27]. Several
studies have utilized geostatistical methods to map STH and inform interventions
by fitting either a single continent-wide model or have limited their analysis to a
single country model [3, 28–30].

The view adopted in this study is that developing a single model for the entire
African continent might prove unsuitable, given the diverse climatic and
geopolitical landscapes across countries which could be excessively complex to fully
capture in a single model using spatially sparse survey data. To address the
disparities across countries in relation to STH risk, the adoption of a single
Africa-wide model needs to carefully consider two fundamental aspects: the
extensive use of spatial risk factors that can best capture the environmental and
socioeconomic variation across the continent; and the use of complex covariance
structure that accounts for non-stationary residual effects. Prior analyses of STH
data incorporated a diverse set of covariates, including socio-economic indicators,
(e.g. nightlights and gross domestic product), climatic variables (e.g. precipitation
and temperature), and environmental variables (e.g. soil components and
elevation) [3, 14, 28, 30]. Of the studies that provided details on the type of
covariance function used, most have adopted stationary Matérn and exponential
correlation functions [14, 28, 29, 31, 32]. Similarly, in the studies carried out by
IHME on mapping other health outcomes at the continent level, a stationary
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Matérn function was adopted and approximated using stochastic partial
differential equations [12, 23, 26, 27]. The adoption of a stationary Matérn
becomes more justifiable if the study area is relatively small and/or the covariates
have allowed us to account for most of the non-stationary effects from the
variation of the outcome. In this study, we pursue a simpler modelling approach to
global mapping that aims at formulating context-specific geostatistical models
tailored to individual countries, thereby enhancing our understanding of
soil-transmitted helminths (STH) dynamics and their differences across countries.
In contrast to the use of a single African-wide model, we show that this approach
allows us to account for the spatially heterogeneous effects of spatial covariates as
well as to better understand the differences in the predictive performance of MBG
methods across the continent.

Most of the MBG mapping for STH have adopted cross-validation methods to
assess the performance of the fitted geostatistical models [3, 14, 29–33]. In these
studies, the focus was primarily on quantifying the accuracy and precision of point
predictions through receiver operating curves, root mean square error summaries
and mean absolute error [3, 14, 29–34]. One of the issues inherent to these
cross-validation approaches is that they treat the observed fraction of positive
cases as the true disease prevalence against which the model predictions are
assessed [35, 36]. This assumption is especially problematic in low-prevalence
settings, where the observed fraction is often zero, making it a poor proxy for the
true prevalence [35, 37]. Furthermore, commonly used metrics such as mean square
error (MSE) focus solely on the accuracy of point estimates, failing to account for
the uncertainty in predictions. In geostatistical modeling, uncertainty
quantification is crucial, as it reflects the variability and reliability of predictions
across the study area, which point-based metrics like the MSE cannot capture. In
this study, we use an alternative approach that uses the non-random probability
integral transform (nrPIT) method originally proposed to calibrate count data
models [36]. We show that one of the main advantages of the nrPIT is that it
enables us to evaluate the overall consistency between the data and the predictive
distribution of prevalence which is essential to establish the reliability of the
predictive inferences derived from geostatistical models [35].
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The majority of prior studies on the mapping of STH prevalence did not attempt
to classify sub-national units according to the WHO STH prevalence classes [28,
31–34], except for Sartorius et al. [3] where a single threshold of 20% prevalence
was used for the classification. In this study, we show how geostatistical models
can be used to classify sub-national units based on the WHO STH prevalence
classes (<2%, 2%-10%, 10%-20%, 20%-50%, and >50%) that are used to inform
the frequency of MDA and other interventions.

In summary, the specific objectives of this paper are as follows:

• to demonstrate how to make the best use of publicly available STH survey
data from the ESPEN portal;

• to highlight between countries differences in terms of the importance of
environmental risk factors and spatial correlation structure in STH
prevalence;

• to highlight the limitations of global mapping when using spatially sparse data,
through the non-randomized integral probability transform (nrPIT).

5.2 Materials and methods

5.2.1 Analysis Outline

The workflow of the geostatistical analysis is summarised in Figure 5.1 and consists
of the following steps:

1. We extracted the latest STH prevalence data for each country and only
considered data-sets that provided information on the year of data collection
and geo-referenced coordinates for the sample locations.

2. We extracted climatic and environmental covariates and merged these with
the STH prevalence data.

3. We assessed the relationships between covariates and STH prevalence,
separately for each species. For countries where prevalence data were not
available for each species, we instead used the prevalence of infection with
any STH.
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4. We tested for residual spatial correlation using the variogram computed on
the random effects of a non-spatial Binomial mixed model.

5. The prevalence data were fitted to a Binomial geostatistical model via the
Monte Carlo maximum likelihood method.

6. The calibration of the models was validated using the non-randomized
probability integral transform.

7. If the model successfully passed the previous validation step, we then used this
to generate predictive inferences at country-, sub-national- and pixel-level.

In the following paragraphs, we provide more details for each of the steps outlined
above.

5.2.2 The ESPEN data on STH prevalence

The geographical area of interest in this study is the sub-Saharan region. Publicly
available geo-referenced prevalence soil-transmitted Helminthiases (STH) survey
data were extracted from the Expanded Special Project for Elimination of
Neglected (ESPEN) tropical diseases database (https://espen.afro.who.int/).
The ESPEN database is a publicly available database that stores data for several
neglected tropical diseases. The most recent survey data were retrieved from the
website for each country. Full details of data reporting to ESPEN can be found at
https://espen.afro.who.int/. Our requirement for inclusion of a country was a
sample size of at least 50 observations with complete information on the STH
species (hookworm, roundworm, whipworm) or overall STH (any STH), the year of
data collection, and geo-coordinates (longitude and latitude). The 50-sample size
criterion was based on previous studies showing that small sample sizes of fewer
than 50 data points in geostatistical data lead to issues such as overly noisy
variograms. Furthermore, in geostatistical studies, small sample sizes (fewer than
50) result in variograms displaying little or no spatial correlation [38–41]. In total,
35 countries complied with this requirement. Figure 5.2 is a point map illustrating
the locations of the observations that were used in the study. For the countries in
grey, either the STH data were unavailable, or the sample size was less than 50.
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Figure 5.1: Schematic overview of the modelling and mapping procedures and
techniques.
The blue boxes denote the input data or materials. The green boxes indicate
processes, procedures, and models. The orange boxes describe the output data.
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Figure 5.2: Map illustrating the locations of STH cases. The shaded areas represent
countries with no data.

5.2.3 Climatic and environmental data

Our analysis uses spatially referenced climatic and environmental covariates that
have been previously used to map STH prevalence [3]. More precisely, we
considered maximum temperature, mean precipitation, and evapotranspiration,
which were obtained from TerraClimate database [42]. An aridity index variable
was derived by computing the proportion of the precipitation to the
evapotranspiration of a country. An increase in the levels of climatic variables such
as precipitation and aridity index have been shown in other studies to also increase
the prevalence of STH [3]. Previous studies have also shown that the prevalence of
STH decreases with an increase in the amount of soil PH and soil texture (clay,
sand, silt). We, therefore, extracted covariates on soil acidity and soil texture (clay,
sand, and silt) from the International and Soil Reference and Information Centre
(ISRIC) [43]. Lastly, we downloaded elevation, nightlight and poverty index data
from the Worldpop website [44]. Empirically, it has been found that higher
altitudes are generally associated with lower STH risk, especially for Trichiura [28].
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As expected, it has also been reported that an increase in wealth-related indicators
is associated with a decrease in the prevalence of STH [3]. In this study, we used
nightlights and poverty indices as proxies for estimating the level of wealth.

The spatial resolution and data sources for the covariates considered in this study
are given in Table 5.1. The geographical locations (longitude and latitude) and year
of data collection of the implementation units in the survey data were used to link
the survey data to the spatial covariates.

Table 5.1: List of explanatory covariates used in the study and their spatial
resolutions.

Name Spatial Source
resolution

Soil type and content
Soil PH in water 250 m World Soil Information [43]
Soil type/texture fraction (sand, silt, clay) 250 m World Soil Information [43]

Climatic variables
Mean precipitation 4 km TerraClimate [42]
Maximum temperature 4 km TerraClimate [42]
Potential Evapotranspiration (PET) 4 km TerraClimate [42]

Aridity index 4 km Ratio of mean
precipitation to PET

Other variables
Elevation 100 m Worldpop [44]
Nightlights 100 m Worldpop [44]
Poverty index 1 km Worldpop [44]

5.2.4 Data analysis

We first carry out an exploratory analysis to assess the relationship between STH
prevalence (species-specific or overall STH) and the spatial covariates. We
investigated multicollinearity and chose among highly correlated covariates (those
with a correlation surpassing 0.6, following the recommendations and
methodologies observed in prior research [45]. To select covariates, we fitted a
Binomial generalized linear mixed model where, conditional on
mutually-independent distributed Gaussian variables, Zi, the logit linear predictor
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for prevalence, for a given STH species, is defined as:

log
{

pj (xi)
1 − pj (xi)

}
= d (xi) β + Zi (5.1)

where d (xi) is the vector of explanatory variables to be selected and β is a vector
of regression coefficients.

The selection of covariates was carried out using a backward stepwise approach,
in which the models were compared using the likelihood ratio test. After carrying
out the selection of covariates, we tested for residual spatial correlation using the
empirical variogram based on the random effects Zi using a permutation test [35,
46]. If the residual spatial correlation was detected, we then fitted a geostatistical
model, which is obtained by introducing a spatial Gaussian process, S (xi) and,
hence, we modify equation 5.1 as:

log
{

pj (xi)
1 − pj (xi)

}
= d (xi) β + S (xi) + Zi (5.2)

In the above equation, S (xi) is a zero-mean stationary and isotropic Gaussian
process with an exponential function with variance σ2, hence

Cov {S (xi) , S (xj)} = σ2 exp {−uij/ϕ}

where uij denotes any distance between any two areas xi and xj and ϕ is a scale
parameter that determines the rate at which the spatial correlation decays to 0 as
the distance uij increases. The exponential covariance function used in this study
is a specific case of the Matérn covariance function, where the parameter kappa (κ)
is set to 0.5 [46].

In countries where species-specific data were available, we fitted model 5.2 to each
of the three species. For Mozambique, Togo, and Zimbabwe only the overall STH
prevalence was available, hence, we fitted a single geostatistical model to this
outcome. When fitting the model to species separately, we obtained the prevalence
of infection with any STH species as:
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1 − {(1 − pHK(x)) × (1 − pASC(x)) × (1 − pTT(x))}

where pHK(x), pASC(x), and pTT(x) are the prevalence for hookworm, Ascaris and
Trichiura, respectively. In the above equation, the expression for the prevalence of
any STH species is obtained by assuming that the underlying spatial processes
that modulate the three prevalences in the equation are independent conditionally
on the spatial covariates used in the models. We point out that this assumption is
less strong than the assumption of mutual independence between the three STH
species that has been previously made in other studies [28, 47, 48].

The model parameters for equation 5.2 were estimated using a Monte Carlo
maximum-likelihood (MCML) approach in the PrevMap package in R [49].

5.2.5 Model validation

To assess the model fit, we used the non-randomized probability integral transform
(nrPIT) method that was first proposed for count data models and later adapted to
validate binomial geostatistical models [35, 36]. If we let Y = {Yi; 1 =, . . . , n} denote
the vector of random variables of the number of STH (any STH or species-specific)
positive cases; Y ∗

i denote the random variable of the positive tested STH (any STH
or species-specific) cases at a set of hold-out locations say x∗

j for j =, . . . , q; and
Q(Z) denote the cumulative density function of a random variable Z; the nrPIT is
defined as:

nrPIT(u | y∗
j , y) =



0 if u ≤ Q(y∗
j − 1 | y)

[u−Q(y∗
j −1 | y)]

[Q(y∗
j | y)−Q(y∗

j −1 | y)] if Q(y∗
j − 1 | y) ≤ u ≤ Q(y∗

j | y)

1 if u ≥ Q(y∗
j | y)

. (5.3)

A detailed explanation of the nrPIT can be found in Appendix C for this paper and
other work [35, 36]. Briefly, the nrPIT method uses the following steps:
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1. Divide the dataset into a training set and a test set using a random approach.

2. Use the binomial geostatistical models that have been fitted to generate the
predictive distribution of prevalence for the locations within the test set.

3. Employ the nrPIT to the positive cases observed in the test set.

4. Evaluate whether the transformed data from the nrPIT method conform to a
uniform distribution by analyzing the cumulative density function.

The steps above were implemented for 30%, 40%, and 50% hold-out samples for
each model.

For countries and species that validation indicated that the geostatistical models
were well calibrated, we then proceeded to carry out predictions as explained in the
next section.

5.2.6 Spatial prediction and policy-relevant criteria for STH

interventions

For country and species data-sets analysed, we use the fitted geostatistical models
to carry out inferences on the following predictive targets.

1. The spatially continuous surface of prevalence defined as:

p(A) = {p(x) : x ∈ A} (5.4)

where A denotes the area encompassed by the boundaries of a given country.

2. The district-level prevalence, which we define as follows. Let Dk be the
set of spatial regions that partition the study country A into k = 1, 2, .., K

subunits. Then the predictive target for subunits was defined as:

p(Dk) = 1
|Dk|

∫
Dk

p(x)dx (5.5)

where |Dk| is the area for subunit k. The above integral is approximated using
a regular grid covering |Dk| with a spatial resolution of 95%. In this study, we
used second-level administrative units from the Global Administrative Areas
(GADM) website for each country as sub-national boundaries [50].
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3. The country-level prevalence, which we define as:

p(A) = 1
|A|

∫
A

p(x)dx (5.6)

where A represents the area encompassed by the boundaries of a given country,
as defined above.

We sample from the joint distribution of prevalence at all pixels and then
aggregate according to equation 5.5 and equation 5.6 for the administrative-level
and country-level predictions.

We obtained 10,000 predictive samples using the Laplace sampling approach
implemented in the PrevMap package [49]. For the spatial continuous surface of
prevalence, we use a regular grid covering a given country, whose spatial
correlation (ϕ) is chosen so that the correlation between adjacent pixels is 95% [35,
51].

To classify the districts of a country into predefined classes of prevalence, we compute
the predictive probability of falling in any given class based on the fitted models. For
this, we use the WHO classification for STH prevalence, namely less than 2%, 2% to
10%, 10% to 20%, 20% to 50%, and greater than 50%. Hence, we allocate a district
to one of those classes’ prevalence based on the highest predictive probability.

5.3 Results

A total of 35 countries had STH data with at least 50 observations on the ESPEN
database. The year of the last reported data-set on ESPEN varied from 2004 to
2018. About 67% of the data-sets are from 2014 onwards. The number of data
points per country ranged from 50 to 1,054, with a median of 129 and an
interquartile range of 86 to 265. The list of countries with their sample size and
year of data collection can be found in the Shiny applications associated with this
paper (Pixel-level results application and Subnational-level and other results
application).
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In the remainder of this section, we provide a summary of the results at the
national level and provide a comprehensive summary of model validation for each
country.

Taking Rwanda as a representative case, we further explain how to interpret the
findings for each of the 35 countries, which can be accessed using the Shiny
application at the links Pixel-level results application and Subnational-level and
other results application.

5.3.1 Country-level results

5.3.1.1 Country-level predictions

Figure 5.3 shows the spatial distribution of the species-specific observed prevalence
and overall STH prevalence at the country level in the countries where the models
were calibrated. The binomial regression models indicate 11 of the 26 countries
with a high prevalence (>20%) of any STH species and overall STH in countries
such as Sierra Leone, Mozambique, Rwanda, and Zambia. The figure shows that
the highest Hookworm prevalence was observed in the eastern and western parts of
Africa. Conversely, the highest Ascaris prevalence was observed in southern and
eastern Africa. The central and eastern parts of Africa had the highest predicted
Trichiura prevalence. Overall, the highest prevalence of any STH was in western
and eastern Africa, and it was predicted in Sierra Leone, Mozambique, Rwanda,
and Zambia. The level of uncertainty, however, varied widely per species and
within each country, as seen in the 95% confidence intervals of the estimates
(Table 5.2) and associated uncertainty maps (Figure 5.4).

The uncertainty maps also illustrate the countries where predictions were produced
with low confidence (indicated by high standard deviation, s.d.) and high confidence
(indicated by low standard deviation). The levels of uncertainty were generally low
(s.d. < 33) for all the species and countries.

Table 5.2 shows the overall prevalence and confidence intervals for the well-calibrated
country models.
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Figure 5.3: Map showing the country-level predicted geographic distribution of
Hookworm (A), Ascaris (B), Trichiura (C), and overall STH (D).

5.3.1.2 Geostatistical model parameter estimates at country-level

Variable selection was performed for each country and species. The final selected
covariates were utilized to construct predictive geostatistical models specific to each
of the three STH species or any STH. In general, there was a negative association
between nightlights and all of the species (Table C.3 in Appendix C). Similarly, the
amount of soil PH and soil content (silt, sand, or clay) had a negative association
with all three species. On the other hand, an increase in the aridity index and
precipitation was associated with an increased risk of STH. Furthermore, an increase
in the poverty index was associated with an increase in the odds of Hookworm (Table
C.3 in Appendix C). The variance and scale of spatial correlation varied extensively
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Figure 5.4: Maps showing the uncertainty (standard deviations) of the country-level
predicted prevalence for Hookworm (A), Ascaris (B), Trichiura (C), and overall STH
(D).

by country and species (exponents of coefficients in Figure C.1, Figure C.2, Figure
C.3 and Figure C.4 in Appendix C).

5.3.1.3 Summaries of model validation at country-level

Table 5.3 shows the summary information on model validation for each country. A
country was classified as having an uncalibrated model(s) if the validation for at
least one of the hold-out samples in each model did not meet the criteria for being
well-calibrated. Overall, 29% (10) of the 35 fitted country-models were uncalibrated
in at least one of the holdout samples.
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Table 5.2: Country-level predicted prevalence estimates and associated 95%
confidence intervals.

Country Year Hookworm Ascaris Trichiura Any STH
Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Southern Africa
Botswana 2015 5.2% (0.1%,35.4%) 5.6% (0.1%, 34.8%) 1.1% (0.0%,9.9%) 11.4% (0.5%,53.3%)
South Africa 2017 3.2% (0.7%, 8.4%) 27.8% (14.2%,45.2%) 0.1% (0.1%,0.2%) 30.2% (16.6%, 47.3%)

Central Africa
Cameroon 2012 13.0% (0.6%,44.3%) 5.6% (0.0%,66.9%) 8.3% (0.0%,69.9%) 22.9% (0.7%,90.1%)
DRC 2015 1.1% (0.4%, 2.5%) 20.9% (1.3%, 68.6%) 6.3% (0.0%, 58.8%) 26.3% (2.7%,80.6%)
Chad 2015 0.2% (0.0%,1.5%) 0.8% (0.0%,5.2% 0.1% (0.0%,0.4%) 1.1% (0.0%,6.1%)

Eastern Africa
Burundi 2014 4.6% (0.8%,14.2%) 12.5% (1.2%,38.2%) 2.9% (0.2%,12.1%) 18.9% (4.7%,43.8%)
Ethiopia 2009 23.2% (0.0%,97.0%) 10.3% (0.2%,54.1%) 3.0% (0.0%,22.8%) 32.7% (1.1%,97.6%)
Kenya 2015 24.6% (0.0%, 95.4%) 2.6% (0.0%,18.0%) 10.3% (0.0%,87.5%) 33.9% (0.6%,97.9%)
Madagascar 2015 5.3% (0.0%,43.6%) 15.4% (0.1%, 80.6%) 14.2% (0.0%,90.6%) 27.6% (0.6%,97.6%)
Malawi 2018 0.9% (0.1%,3.6%) 1.7% (0.1%,7.3%) 0.1% (0.0%, 0.2%) 2.7% (0.5%, 9.0%)
Mozambique 2007 NA NA NA 46.1% (23.0%,70.3%)
Rwanda 2014 4.7% (0.3%, 20.3%) 33.7% (1.1%, 98.8%) 1.8% (0.0%, 18.7%) 38.2% (4.1%, 97.1%)
Uganda 2016 3.5% (0.1%,18.1%) 0.9% (0.0%,6.3%) 2.3% (0.0%,18.3%) 6.5% (0.2%,29.6%)
Zambia 2005 36.0% (1.2%,93.6%) 0.9% (0.0%,4.9%) 0.2% (0.0%,1.0%) 36.7% (1.9%,93.7%)
Zimbabwe 2010 NA NA NA 2.5% (0.0%,26.5%)

Western Africa
Benin 2017 9.4% (1.3%,27.5%) 0.9% (0.0%,7.8%) 0.4% (0.3%,0.4%) 10.5% (1.8%,31.2%)
Burkina Faso 2004 3.0% (0.0%,20.3%) 0.0% (0.0%,0.0%) 0.4% (0.2%,0.6%) 3.4% (0.4%,20.7%)
Ghana 2008 2.9% (0.2%,11.8%) 3.3% (0.0%,25.1%) 0.3% (0.0%,1.4%) 6.4% (0.6%, 28.2%)
Guinea-Bissau 2018 26.6% (1.2%,81.5%) 0.1% (0.0%,0.2%) 0.2% (0.1%, 0.4%) 26.8% (1.5%,81.6%)
Mali 2004 2.2% (0.0%,25.9%) 0.0% (0.0%,0.1%) 0.2% (0.0%,0.6%) 2.4% (0.1%, 26.1%)
Mauritania 2015 7.2% (0.1%,49.2%) 1.8% (0.8%,3.4%) 0.7% (0.0%,4.7%) 9.5% (1.5%,50.9%)
Niger 2006 3.3% (0.0%,25.7%) 1.0% (0.0%,8.2%) 0.1% (0.0%,0.4%) 4.3% (0.1%,32.4%)
Sierra Leone 2008 40.9% (9.1%,82.5%) 7.7% (0.8%, 26.0%) 3.3% (0.1%, 18.2%) 47.2% (14.5%, 84.7%)
The Gambia 2015 0.3% (0.1%,1.2%) 0.4% (0.0%,2.3%) 0.1% ( 0.0%, 0.1%) 0.8% (0.2%, 2.8%)
Togo 2015 NA NA NA 12.1% (1.0%,42.2%)

CI = Confidence interval.
DRC = Democratic Republic of the Congo (Congo Kinshasa).
NA = Not available.
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Table 5.3: Summary of model validation analyses per country.

Country Year Prevalence (%) ϕ (km) Calibrated

HK ASC TT Any STH HK ASC TT Any STH Model (s)

Southern Africa

Botswana 2015 55.0 41.0 54.0 391.9 34.2 445.7 Yes
South Africa 2017 24.0 70.0 3.0 384.9 67.7 12.3 Yes
Swaziland 2015 20.0 90.0 70.0 154.4 56.7 263.3 No

Central Africa

Angola 2014 80.0 100.0 43.0 173.1 181.4 69.0 No
Cameroon 2012 60.0 73.0 72.0 94.1 642.2 213.9 Yes
Chad 2015 20.0 36.0 26.0 58.4 134.4 28.7 Yes
DRC 2015 60.0 88.0 94.0 3,027.4 100.4 1,102.2 Yes
Gabon 2015 91.0 100.0 100.0 65.2 8.3 28.4 No

Eastern Africa

Burundi 2014 38.0 70.0 36.0 43.1 49.2 21.3 Yes
Eritrea 2015 4.0 2.0 8.0 61.5 26.9 475.3 No
Ethiopia 2009 75.0 57.0 54.0 32.3 114.5 128.9 Yes

Continued on next page
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Table 5.3 – continued from previous page

Country Year Prevalence (%) ϕ (km) Calibrated

HK ASC TT Any STH HK ASC TT Any STH Model (s)

Kenya 2015 50.0 32.0 50.0 52.5 241.7 174.5 Yes
Madagascar 2015 52.0 96.0 98.0 25.9 144.0 169.1 Yes
Malawi 2018 20.0 37.0 7.0 12.3 13.1 11.8 Yes
Mozambique 2007 82 158.2 Yes
Rwanda 2014 44.0 100.0 100.0 21.7 19.8 72.9 Yes
South Sudan 2018 67.0 36.0 29.0 279.9 81.9 268.1 No
Tanzania (Mainland) 2018 50.0 27.0 43.0 78.5 366.2 153.9 No
Uganda 2016 23.0 9.0 12.0 91.8 643.1 202.8 Yes
Zambia 2005 87.0 33.0 12.0 50.7 97.5 157.3 Yes
Zimbabwe 2010 78 50.8 Yes

Western Africa

Benin 2017 45.0 34.0 4.0 90.8 123.0 29.6 Yes
Burkina Faso 2004 75.0 2.0 5.0 107.1 19.6 716.2 Yes
Cote d’Ivoire 2014 78.0 56.0 74.0 98.0 626.2 88.0 No
The Gambia 2015 12.0 60.0 8.0 44.8 11.0 4.9 Yes
Ghana 2008 27.0 20.0 5.0 141.8 32.9 120.5 Yes

Continued on next page
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Table 5.3 – continued from previous page

Country Year Prevalence (%) ϕ (km) Calibrated

HK ASC TT Any STH HK ASC TT Any STH Model (s)

Guinea-Bissau 2018 100.0 4.0 12.0 21.6 26.6 1.1 Yes
Liberia 2015 42.0 100.0 16.0 94.6 19.8 91.6 No
Mali 2004 100.0 6.0 7.0 104.1 370.9 229.1 Yes
Mauritania 2015 100.0 8.0 10.0 68.9 92.1 915.6 Yes
Niger 2006 5.0 27.0 8.0 193.5 67.5 1,316.5 Yes
Nigeria 2014 86.0 94.0 77.0 112.8 58.5 228.3 No
Senegal 2013 61.0 64.0 78.0 43.3 34.9 43.1 No
Sierra Leone 2008 95.0 25.0 30.0 43.9 22.3 24.0 Yes
Togo 2015 100 25.8 Yes

HK = Hookworm, ASC = Ascaris, TT = Trichiura.
ϕ = Estimated scale of spatial correlation.
DRC = Democratic Republic of the Congo (Congo Kinshasa).
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5.3.2 Country example: Rwanda

5.3.2.1 Predicted prevalence of STH in Rwanda

The predicted point prevalence of both STH species and overall STH in Rwanda are
presented in Figure 5.5. Overall, the predicted prevalence of any STH species and
overall STH is heterogeneously distributed across Rwanda. A notably heightened
burden of STH infections was documented in the western regions of Rwanda, with
Ascaris demonstrating the highest prevalence, closely followed by Trichiura (Figure
5.5). These findings are also evident in the sub-national predicted prevalence maps
(Figure 5.6). The confidence intervals for both the point and sub-national prevalence
maps are given in the Shiny application.

Figure 5.5: Map showing the pixel-level predicted geographic distribution of the
prevalence of STH in Rwanda (HK = Hookworm, ASC = Ascaris, TT = Trichiura
and Any STH = Overall STH)

5.3.2.2 Point and exceedance probability maps of soil-transmitted

helminths in Rwanda

The binomial regression models indicate a lot of areas with a high prevalence (>
20%) of any STH species and overall STH in Rwanda. Figures 5.7 and 5.8 show the
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Figure 5.6: Map showing the subnational-level predicted geographic distribution
of the prevalence of STH in Rwanda (HK = Hookworm, ASC = Ascaris, TT =
Trichiura and Any STH = Overall STH)

WHO predicted endemicity class STH treatment at pixel and sub-national levels.
The maps depict high exceedance probabilities in the central and the western sides
of Rwanda. These are, therefore, the treatment priority areas for STH.

5.3.2.3 Geostatistical model parameter estimates for Rwanda

The modeling suggests a strong relationship between rainfall and Ascaris and
Trichiura in Rwanda (Table 5.4). An increase in the amount of rainfall was seen to
increase the prevalence of the two species. Conversely, soil content (sand, silt, clay)
was associated with a reduction in the prevalence of all STH species. Likewise, an
increase in nightlights was associated with a reduction in the prevalence of Ascaris
and Trichiura.

Table 5.4 also shows the differences in the covariance parameters for the three
species. The point estimates for the scale parameter were 21.73 km (Hookworm),
19.77 km (Ascaris), and 72.91 km (Trichiura).
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Figure 5.7: Map showing the predicted STH (HK = Hookworm, ASC = Ascaris,
TT = Trichiura, STH = any STH) endemicity class in Rwanda at the pixel level
from the Binomial regression model in 5.2.

5.3.2.4 Model validation for Rwanda

Figure 5.9 illustrates the model validation plots for the Rwanda models. The figure
shows that the observed nrPIT curves (represented by the solid black line) from the
three hold-out samples for all three species fall within the 95% envelope (denoted
by the dashed lines). We, therefore, conclude that we do not have enough evidence
to reject the null hypothesis of well-calibrated models.

5.4 Discussion

In this study, we have carried out a comprehensive geostatistical analysis of
soil-transmitted infections data from the ESPEN database. We developed
geostatistical models separately for each country, so as to tailor the selection of
spatial covariates and estimation of covariance parameters to the heterogeneous
spatial patterns across countries. In countries where the geostatistical models were
validated successfully, we proceeded to generate predictions of STH prevalence at
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Figure 5.8: Map showing the predicted STH (HK = Hookworm, ASC = Ascaris,
TT = Trichiura, STH = any STH) endemicity class in Rwanda at the subnational
level from the Binomial regression model in 5.2.

both national and sub-national levels.

The selection of covariates used to assist in the geostatistical prediction of
prevalence showed different results across countries. However, notably, due to the
weak empirical strength of association with disease prevalence, only a few
covariates were selected for most countries. The low predictive power of the spatial
covariates may be attributed to the relatively low prevalence levels that are
observed in most countries, which make the estimation of regression relationships
more cumbersome. Despite these challenges, where predictors were included, they
provided some comparable estimates with findings from previous studies. For
instance, areas with increased precipitation were associated with a higher
likelihood of all STH species, consistent with existing research indicating higher
prevalence in wetter regions [3, 30, 31, 52]. Similarly, the observation that an
increased amount of nightlights, serving as a proxy for wealth status, decreased the
likelihood of all STH species aligns with the established notion of higher
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Table 5.4: Monte Carlo maximum likelihood estimates and associated 95%
confidence intervals for the model in Equation 5.2 for Rwanda.

Parameter Hookworm Ascaris Trichiura
Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Intercept -1.555 (-2.739, -0.372) -6.153 (-6.883, -5.422) -5.307 (-7.481, -3.133)

Soil -0.007 (-0.012, -0.001) -0.008 (-0.010, -0.006) -0.005 (-0.007, -0.002)

Precipitation NA 0.096 (0.092, 0.101) 0.064 (0.039, 0.090)

Nightlights NA -0.168 (-0.227, -0.108) -0.259 (-0.420, -0.100)

σ2 1.131 (0.529,2.420) 1.441 (0.858,2.418) 1.750 (0.459, 6.670)

ϕ 21.727 (8.313, 56.785) 19.774 (8.972,43.584) 72.933 (14.913,356.672)

CI = Confidence interval.
Soil = sand, clay, or silt content.
NA corresponds to the situation where the covariate was not included in the model.
σ2 = Estimated variance; ϕ = Estimated scale of spatial correlation.

prevalence in economically disadvantaged areas [3, 29]. Additionally, the finding
that soil pH and content (sand, silt, clay) reduced the likelihood of STH is also
consistent with previous research findings [3, 28, 52, 53].

The analysis reveals significant heterogeneity in the estimates of the scale of
spatial correlation and the variance of residual spatial variation across countries.
The scale of spatial correlation ranged from 1.14 km to 3,027.44 km, while the
variance ranged from 0.02 to 95.01 across the countries. Therefore, the wide
variations in the estimates of spatial correlation across countries, coupled with
observed non-stationarity, further justify the use of species-specific, single-country
models for this STH data. The non-stationarity is likely driven by differing control
intervention histories across countries, which are challenging to capture adequately
using the available spatial covariates. These intervention histories can significantly
influence the spatial distribution and prevalence of STH, leading to localized
variations that a global model might fail to account for.

Moreover, it was observed that the geostatistical models exhibited inadequate
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Figure 5.9: Plots of the non-randomized probability integral transform (nrPIT)
calculated for three (30%, 40%, 50%) hold-out samples for Hookworm (HK), Ascaris
(ASC), and Trichiura (TT).

calibration in certain countries, prohibiting spatial predictions at unsampled
locations. This issue may be attributed to a combined effect of very sparse data
and small estimated spatial correlations relative to the study area. For some
countries where the estimated variance of the residual spatial process is relatively
small, an additional explanation for the poor calibration of the geostatistical
models might be the presence of strong noise components that diminish the spatial
signal within the data. These findings consequently urge caution in developing an
Africa-wide model based solely on ESPEN data, given the observed heterogeneity
in the model parameter estimates and the challenges encountered in model
calibration across different regions and species.

In our study, we used data for a single time point for all the countries, namely the
most recent survey. Hence, one of the main limitations is the absence of a
spatio-temporal geostatistical model that could make full use of all the historical
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data. However, the availability of data over time varies from country to country,
with some countries providing only a single survey. The average number of surveys
per country was 6, with the minimum being 1 survey and the maximum being 15
surveys per country. An additional challenge in building credible spatio-temporal
models for STH is the effect on prevalence trends due to mass drug administration
(MDA). Information on the frequency and coverage of MDA is an essential element
that should be incorporated in such models; however, not all countries provide this
information at suitable spatial and temporal resolutions for geostatistical models.
Future research should aim to bridge geostatistical models with mathematical
models capable of integrating MDA data, offering a valuable approach for
combining information from baseline to impact surveys.

5.5 Conclusion

This study demonstrates the use of model-based geostatistics to harness ESPEN
data, offering valuable insights into the spatial distribution of STH prevalence
across countries. While ESPEN data serve as a crucial resource for understanding
spatial patterns in STH prevalence through geostatistical models, inherent
limitations arise from the sparsity of data, both temporally and spatially in certain
countries, constraining the applicability of such models. Nevertheless, the
predictive inferences derived from these models, where possible, provide useful
information for national control programs, facilitating targeted interventions and
informing survey designs for future STH assessments.
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Summary

Dengue is the fastest-growing mosquito-borne disease globally and one of the top
ten threats to global health, as declared by the World Health Organization. In
Nepal, dengue cases have surged since the first recorded case in 2004, with seasonal
outbreaks occurring every two to three years. This study aimed to identify the
three major outbreaks within each Nepalese district and analyze their duration.

We applied modified Negative Binomial models to district-level data collected from
Nepalese health facilities between 2006 and 2022, validating the models using the
Chi-square goodness of fit test. Our results showed significant variation in
outbreak occurrence across districts.

Notably, 65% of districts experienced their second outbreak in 2019, and 95%
faced their third outbreak in 2022. In 79% of districts, the third outbreak
contributed the most to the overall dengue burden. Outbreak durations also varied
across districts.

Tailored strategies are essential for preventing and controlling dengue transmission
at the district level. The proposed modelling framework is flexible and can be
applied to other diseases, and can also be extended to include more than three
outbreaks.

Keywords: dengue, multiple Outbreaks, Nepal, Negative Binomial model, peak,
duration
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6.1 Introduction

Dengue is the most rapidly growing mosquito-borne disease in the world and can
be caused by four viruses (DENV): DENV-1, DENV-2, DENV-3, and DENV-4 [1,
2]. The number of dengue infections has been steadily increasing in the past 30
years [3]. It is estimated that there are more than 100 million dengue cases yearly,
about 20,000 of which result in death [1, 4]. Recent reports show that the death
rate due to dengue has increased by almost 70%, from 0.31 per 100,000 population
in 1990 to 0.53 per 100,000 population in 2017 [3]. The disability-adjusted life
years (DALYs) due to dengue have also increased more than a hundred-fold [3, 5].
Furthermore, recent studies estimate that the potential number of people at risk of
dengue could rise by an additional 4.7 billion individuals by 2070 due to climate
change [2, 6]. Due to its high burden level, the World Health Organization (WHO)
has declared dengue one of the top ten threats to global health and upgraded to
highest threat level 3 [7]. Dengue is endemic in more than 100 countries, with the
highest cases occurring in tropical and subtropical regions such as Caribbeans,
South Asia, Southeast Asia, and Latin America [1, 5]. Approximately 70% of the
burden of dengue is estimated to be in Asia [8].

Urbanization, climate change, and co-circulation of multiple DENV serotypes are
hypothesized to be part of the variables driving the dengue epidemic in Nepal and
elsewhere [5, 9]. Previous studies have shown that the density of Aedes aegypti
mosquitoes, which transmit dengue viruses (DENV 1-4), is highly influenced by
environmental and climatic variables such as rainfall, temperature, and
precipitation [9–11]. An increase in climatic variables such as temperature and
precipitation is associated with an increase in the incidence of dengue [11–14].
However, other studies in Asian countries such as Thailand found that the
relationship between dengue and climatic variables such as precipitation and
rainfall is complex [15]. For instance, although precipitation can create a breeding
ground for mosquitoes, excessive rainfall can wash away their breeding sites and
thus reduce dengue incidence [11, 16, 17]. In addition to varying over time, the
incidence of dengue has been shown to vary geographically [10, 12, 18].
Furthermore, studies in other countries such as China have shown notable
variations in the peaks and intensity of dengue outbreaks [19].

108



Chapter 6. Disentangling Outbreak Patterns of Dengue Fever in Nepal

In Nepal, the first case of dengue was recorded in 2004 [20, 21]. Since then, the
number of dengue cases in Nepal has increased rapidly from around 32 cases in 9
districts in 2006 to over 50,000 cases in 2022, with all four DENV serotypes
co-circulating in the country [9, 22–26]. Although dengue has become endemic in
Nepal, cyclic outbreaks of dengue cases are observed every two to three years [22,
26, 27]. Nepal’s first national dengue prevention, control, and management
guidelines were developed in 2008 and revised in 2011 and 2019 [28]. Despite the
successful implementation of dengue control measures in Nepal, dengue remains a
public health concern.

Describing the dynamics of disease outbreaks is essential for investigating the
underlying factors that drive them, enhancing the precision of outbreak
predictions, and devising effective strategies to manage and mitigate the outbreaks
[29]. Two key characteristics of disease outbreaks are the peak in the number of
infected cases and the duration of the outbreak. In this paper, we define the
”duration of an outbreak” as the length of time from the onset of the outbreak to
the point when the number of new cases returns to baseline or significantly
decreases. In other words, the duration of the outbreak is the period that includes
the rise, peak, and decline of the outbreak, encompassing all phases of the
epidemic curve. Understanding these characteristics is especially important for
formulating timely response measures, allocating resources efficiently, and
implementing appropriate control strategies.

Existing modelling methods used to describe these aspects of disease outbreaks
have focused mainly on the use of compartmental models such as the Susceptible-
Exposed- Infectious- Removed (SEIR) and Susceptible- Infectious- Quarantined-
Recovered (SIQR) [19, 30, 31]. However, these models have inherent limitations, as
they do not enable the inclusion of spatial risk factors unless the fitting is done by
stratifying for the covariates of interest [32], and cannot easily accommodate the
occurrence of multiple outbreaks. Other studies have employed epidemic-endemic
models such as the modified Poisson and Negative Binomial to describe outbreaks
of diseases such as COVID-19 and measles [33, 34]. Prior research on the
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characterization dengue outbreaks has focused on the rate at which individuals
susceptible to dengue become infected, a parameter also referred to as the force of
infection [35, 36]. Whilst this parameter affects the peak and duration of an
outbreak, these two characteristics are not explicitly modelled and explained in
epidemic-endemic models. Moreover, existing epidemic models do not allow for
multiple outbreaks to be estimated in a single model.

In this study, we use a data-driven approach to extend the standard class of
Negative Binomial regression models to estimate the peaks and duration of dengue
fever outbreaks at the district level in Nepal using yearly reported cases. Our
proposed modelling framework allows for the estimation of multiple outbreaks
through the specification of an outbreak function, for which we consider three
different specifications. In our modelling framework, we interpret the outbreak
function as the unexpected rise in the reported cases that cannot be explained by
the covariates used in the regression. The Negative Binomial models are validated
using the Chi-square goodness of fit test [37].

The structure of the paper is as follows. In Section 6.2, we describe the data and
outline the modelling framework for characterising the dengue outbreak in Nepal. In
Section 6.3, we illustrate the results from the descriptive analysis. We also illustrate
the timing and duration of 3 outbreaks within each district. The discussion and
conclusions of the study are presented in Section 6.4.

6.2 Methods and materials

6.2.1 Study site and Data collection

Nepal, a country of approximately 147,200 km2 [38], borders India and China and
is located at a longitude of 84.12° and a latitude of 28.39°. The elevation in Nepal
ranges from 60 meters (m) to 8,848 m above sea level [38].

Topographically, Nepal is divided into 11 main ecological zones, with the most
prominent being the Terai region (67 m to 300 m above sea level), the Siwalik Hills
(700 m to 1,500 m), the Mahabharat region (1,500 m to 2,700 m), and the
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Himalayan zone (above 4,000 m) [39]. The Nepal climate, therefore, varies
significantly due to the wide variations in altitude [38–40]. Approximately 80% of
Nepal’s precipitation occurs from June to September in the summer monsoon
season. The average annual rainfall in Nepal also varies widely and ranges from
295 millimetres (mm) to 3,345 mm, depending on the ecological zone [39].
Furthermore, the average temperature decreases by 6 ºC for every 1,000 meters
increase in the altitude [39].

Nepal is administratively divided into 7 provinces and 77 districts. We retrieved
district-level annual dengue fever case data reported between 2006 and 2022 from
the Epidemiology and Diseases Control Division (EDCD), Department of Health
services, Ministry of Health and Population, Nepal responsible for outbreak
preparedness and response in Nepal
(https://www.edcd.gov.np/section/dengue-control-program). The EDCD is also
responsible for the prevention, surveillance, and control of communicable and
non-communicable diseases diseases in Nepal. Details on how the data is collated
from the facility level (such as district hospitals and health centers) to a central
location at the EDCD have been published elsewhere [22, 41]. Briefly, the official
EDCD reports publish the district and year of every dengue case confirmed
through laboratory tests. The annual number of dengue cases per district was
defined as the sum of confirmed cases within a particular district. Figure 6.1 shows
the study location.
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Figure 6.1: Map of Nepal showing the location of Nepal and the boundaries (black
lines) of the 77 districts.

6.2.2 Spatio-temporal covariates, covariate processing and population

data

We extracted a list of spatio-temporal environmental variables for which a significant
association with dengue fever risk has been previously reported [9–12]. Table 6.1
outlines the list of environmental variables, their sources, and temporal resolutions.

Table 6.1: List of environmental covariates and their sources

Covariate Temporal Source of Data
Resolution

Minimum, mean & maximum 2006-2022 TerraClimate [42]
Precipitation

Minimum & maximum temperature 2006-2022 TerraClimate [42]

Potential evapotranspiration (PET) 2006-2022 TerraClimate [42]

Aridity index 2006-2022 Mean precipitation ÷ PET
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Following previous modelling studies, we explored the relationships between the
covariates and dengue fever incidence using scatter plots to assess the strength of
association [43–45]. We combined the covariates using principal components
analysis (PCA) to develop an index of environmental exposure. The PCA was
carried out to reduce the number of covariates in our final model to avoid
overfitting due to the small sample size per district. Appendix D presents the
exploratory analysis and the PCA results. The variables were standardized prior
to carrying out the PCA. Standardizing variables before PCA ensures that all
variables are on the same scale, preventing those with larger variances from
disproportionately influencing the principal components [46, 47]. The first
component, accounting for 48% of the variation in the PCA, was selected as our
environmental exposure index (Figure 6.4).

We also obtained the yearly population counts per district from 2006 to 2020 from
the Worldpop website [48]. The 2021 and 2022 population counts were derived by
scaling the 2020 population using the Nepal population growth rate (0.92 per cent)
reported in the 2021 Nepal National Population and Housing Census [49].

6.2.3 Statistical modelling

Let Yt denote the yearly dengue case count at the district level in year t (t = 1
(2006), 2,3, . . . ,17 (2022)). To account for the overdispersion, we then assume that
Yt follows a Negative Binomial (NB) distribution, i.e. Yt ∼ NB(λt, α), where λt

denotes the annual dengue incidence, and α is the dispersion parameter. Let θ

denote the vector of unknown model parameters; the likelihood function is then
defined as [50]:

L(θ) =
17∏

t=1
p (yt) =

17∏
t=1

Γ (yt + 1/α)
Γ (yt + 1) Γ (1/α)

( 1
1 + αλt

)1/α
(

αλt

1 + αλt

)yt

(6.1)

where λt is the mean number of dengue cases at time t and was defined as follows
in Table 6.2. To characterize the outbreaks in Nepal and by assuming that there
were 3 outbreaks within each district, we extend the Negative Binomial regression
model (equation 6.1) as follows. The assumption of 3 main outbreaks within each
district was based on expert recommendations and preliminary evaluation of annual
incidence trends per district.
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Table 6.2: Specification of parameters used in characterizing the dengue outbreak
in Nepal

Model Outbreak parameter specification

1 λt = mt. exp (d′β) +
3∑

i=1
γif(i,t) (6.2)

2 λt = mt. exp
(

d′β +
3∑

i=1
γif(i,t)

)
(6.3)

3 λt = mt. exp (d′β) ×
(

1 +
3∑

i=1
γif(i,t)

)
(6.4)

In equations 6.2, 6.3, and 6.4, the population count (mt) is used as an offset in the
model, dt = (1, dt1) is the vector of the intercept and the environmental exposure
index, and β = (β0, β1)

′ is the coefficient vector associated with the intercept and
environmental exposure index covariate. Additionally, γ = (γ1, γ2, γ3)

′ is a
coefficient vector for the three outbreaks, and ft is a function used to quantify the
intensity of the outbreak in the district being considered for the analysis.
Henceforth, we refer to ft as the outbreak intensity function (OIF). In this setting,
we used the squared exponential function to define each OIF for each district at
time t as follows.

ft = exp
(

−(t − µ)2

2ω2

)
, (6.5)

where µ and ω denote the peak and the scale parameter of the OIF.

In the three models considered in Table 6.2, the γ parameters reflect the
contribution of the corresponding OIF to the mean dengue incidence, λt. In Model
1 (equation 6.2), the effect of γi f(i,t) is additive, meaning the OIF quantifies the
excess number of cases that are not due to covariates effects.

In Models 2 (equation 6.3) and 3 (equation 6.4), the effect is multiplicative. In
Model 2, γif(i,t) is incorporated into the linear predictor and its effect can be
interpreted in the same way as the other covariates, i.e. by using exp{γi} to
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quantify the multiplicative increase in the number of cases due to the OIF. In
Model 3 (equation 6.4), the term 1 + ∑3

i=1 γif(i,t) scales the overall mean dengue
incidence. Here, γif(i,t) acts as a proportion of the baseline incidence mt. exp(d′β),
adjusting the number of cases relative to the baseline level, where larger values of
γif(i,t) represent proportionally larger outbreaks.

We fitted the Negative Binomial outbreak model to each of the districts separately
due to varying dengue fever incidence within each district.

Confidence intervals for parameters {θ = (β1, β2, γ, µ, ω)} estimated from the
Negative Binomial models were constructed using a bootstrap procedure by
following the steps below [51]:

• Construct the first bootstrap sample by selecting a random sample of 17 (N)
observations with replacement from our original sample.

• Fit the model to the first bootstrap sample and store the model coefficients.

• Repeat steps 1 and 2 10,000 (K) times, drawing new random samples of size
N with replacement each time to create subsequent bootstrap samples.

• Compute the confidence intervals using the Bias-Corrected and Accelerated
(BCa) method, which utilizes the distribution of estimates obtained from the
K bootstrap samples as the sampling distribution.

We assessed our models’ goodness of fit (gof) using the Chi-square gof test [37]. The
test, which has the null hypothesis that there is no significant difference between
the observed and the expected dengue counts, is given as:

T∑
t=1

(Ot − Et)2

Et

(6.6)

where Ot are the observed dengue fever cases at time t and Et are the predicted
counts of dengue from the model.
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6.3 Results

6.3.1 Descriptive analysis

A total of 78,819 dengue cases were reported over the 17 years in all 77 districts.
Figure 6.2 shows the total number of dengue cases in each district over 17 years
(2006 to 2022). As can be seen, the highest total number of cases was observed
in the central areas of Nepal. In particular, the districts with the observed dengue
cases of at least 2,000 over the study period were Kathmandu (15,940), Lalitpur
(10,220), Chitawan (8,845), Makawanpur (8,237), Bhaktapur (6,515), Rupandehi
(3,695), Kaski (3,654), Dang (2,585), and Jhapa (2,008).

Figure 6.2: A map illustrating the total number of cases observed in each district
over the study period.

In general, there was a rise in dengue fever incidence per 100,000 population in
each district over time, as illustrated in Figure 6.3. A discernible pattern emerged,
with notable peaks in 2010, 2013, 2016, 2019, and 2022. Notably, the year 2022
exhibited the highest incidence across most districts. Nevertheless, Figure 6.3 also
highlights that the districts did not experience peaks in the same years. Our
modelling framework accounts for the variations in peak occurrences by explicitly
incorporating outbreak parameters such as peak and duration, in each district.
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Figure 6.3: Heat maps illustrating the observed log-transformed cases of dengue
fever per 100,000 population (log((count of dengue cases + 1) / population)) for
each district from 2006 to 2022. The transformation adds 1 to the case counts
before taking the logarithm to handle zero values.

6.3.2 Principal Components Analysis (PCA) results

An index of environmental exposure was derived from the above covariates using
Principal Components Analysis (PCA). Figure 6.4 shows the variation percentage
explained by the PCA components. Our environmental exposure score was based
on the first principal component, which explained 48% of the variation in our data,
due to previous epidemiological studies using the first component to derive an index
or score [52, 53].
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Figure 6.4: Eigen values illustrating the variance percentage explained by each
component

Figure D.2 in Appendix D illustrates the loadings for Principal Component 1
(PC1). The most significant contributions come from mean precipitation (-0.48),
the aridity index (-0.43), and maximum precipitation (-0.40). The weights in
Figure D.2, therefore, indicate that the first principal component primarily
captures variations related to aridity index and precipitation, suggesting that these
factors are dominant in the environmental exposure index used in our modelling.
Consequently, due to the negative loadings, an increase in the environmental
exposure index (PC1) is associated with a reduction in covariates, such as
precipitation, indicating that areas with high precipitation correspond to those
with a lower exposure index (see Figure D.3 in Appendix D).

6.3.3 Model selection

We fitted the models in equations 6.2, 6.3 and 6.4 with and without an environmental
exposure index covariate, and compared the models using the Akaike Information
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Criteria (AIC). Among all the three models, those with the covariate provided the
lowest AIC. Furthermore, equation 6.3 with the environmental exposure index as a
covariate had the lowest AIC across all the 6 models. Therefore, the results in this
paper are based on model 6.3.

Table D.2 in the supplementary information provides the estimates and confidence
intervals of the environmental exposure index. Overall, an increase in the
environmental exposure index was associated with an increase in the incidence of
dengue in 36 districts and a decrease in 41 districts. However, the results for 82%
(n=63) districts were not statistically significant as the confidence intervals for the
coefficients span the null hypothesis value of zero.

6.3.4 Characterizing the dengue outbreaks in Nepal

Figure 6.5 shows the outbreak years in each district after adjusting for the effect of
the environmental exposure index. The majority of the districts experienced their
first outbreak (µ1) in 2017 (16%), the second outbreak (µ2) in 2019 (65%) and the
third outbreak (µ3) in 2022 (95%).

Figure 6.5: Maps showing the years that the districts had outbreak 1 (A = µ1),
outbreak 2 (B = µ2) and outbreak 3 (C = µ3)
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The estimate of the scale parameter (the duration) of the 3 outbreak intensity
functions also varied within each district. Figure 6.6 illustrates the duration of
three distinct outbreaks across the 77 Nepalese districts. For the first outbreak,
82% of the districts experienced it for less than a year, while 18% had it for a year
or more. The second outbreak affected 71% of the districts for less than a year and
29% for more than a year. For the third outbreak, 73% of the districts experienced
it for less than a year, with 8% affected for more than 2 years.

Figure 6.6: Heat maps showing the duration (ω’s) of each outbreak in each district

The largest outbreak coefficient for 93% (n=72) of the districts was associated with
the third outbreak (γ3), followed by the second (γ2), and then the first (γ1). Figure
6.7 illustrates the approximated contribution of each outbreak to the overall dengue
epidemic in Nepal. Overall, the two highest contributions to the dengue epidemic in
the 72 districts were from the second (14%, n = 11) and third outbreaks (79%, n =
61). This result should, however, be cautiously interpreted as we did not constrain
the outbreak coefficients (γ’s in equation 6.3) in our study.

120



Chapter 6. Disentangling Outbreak Patterns of Dengue Fever in Nepal

Figure 6.7: Heat maps showing the estimated coefficients (γ’s) for each outbreak

The outbreak parameters (µ, ω and γ) in our models reveal distinct patterns of
dengue incidence across Nepal’s districts. Districts such as Okhaldunga, Sindhuli
and Syangja experienced more recent outbreaks as characterized by higher values
of µ1 and µ2 associated with later time functions f(i,t). Furthermore, higher values
of the outbreak coefficients (γ) in these districts indicate that the dengue epidemic
has intensified in recent years. Conversely, districts such as Chitawan and Kailali
experienced more longstanding outbreaks, as evidenced by the high values of the
scale parameter of the outbreak intensity function (ω) across multiple outbreaks,
suggesting a prolonged epidemic with sustained cases over time. These results imply
a heterogeneity of dengue dynamics across Nepal, with some districts facing newer
outbreaks while others have endured more extensive and persistent epidemics over
the study period.

6.3.5 Model validation

The model validation results are presented in Table D.3 in Appendix D. In this
analysis, 87% (n=67) of the district models showed a satisfactory fit to the
observed data. However, the model did not perform well for ten districts, all of
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which had experienced more than three outbreaks. To address this, we extended
model 6.3 to incorporate four outbreaks, leading to satisfactory fits for Banke,
Kailali, and Rautahat. For Jhapa, Kapilbastu, Makawanpur, Nawalparasi West,
and Parsa, incorporating five outbreaks produced good fits. The remaining two
districts, Chitawan and Rupandehi, showed an improved fit based on the Akaike
Information Criterion (AIC) as more outbreaks were included. Despite these AIC
improvements, we chose not to extend the models further to avoid
over-parameterization.

6.4 Discussion and Conclusion

In this study, we analyzed dengue outbreaks in Nepal, and extended the Negative
Binomial regression model to allow for the inclusion of an outbreak intensity
function (OIF) with parameters that directly express the timing and scale
parameter of the OIF. To our knowledge, this is the first study to characterise
dengue in Nepal using a model-based approach. Additionally, the proposed
modelling framework effectively accommodates the occurrence of multiple
outbreaks within a district. While models such as HHH4 and HHH4ZI are valuable
for decomposing outbreak data into endemic and epidemic components [54, 55],
they do not focus on estimating the scale of multiple outbreaks. Similarly, the
approach by Anderson et al. identifies clusters in space but does not estimate their
timing [56]. Additionally, previous approaches, such as the one used by Guzman et
al., require data to be aggregated into spatio-temporal blocks (e.g., at 1 week, 3
weeks, and 5 weeks) to investigate outbreaks within those blocks [57]. In contrast,
our model sought to contribute to the disease outbreak modelling body of
knowledge by providing insights into the duration and size of each outbreak.
Importantly, our model does not require aggregation of data into blocks, and it
also offers a further understanding of dengue outbreak dynamics by estimating
both the scale parameter of each OIF and approximating the contribution of each
outbreak to the overall dengue epidemic.

Our results reveal that the association between dengue incidence and the
environmental exposure index varies across districts. This is consistent with
previous studies that have shown both positive and negative associations between
environmental factors like precipitation and dengue incidence across different
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regions [11, 13, 15–17]. This variability highlights the importance of
district-specific models.

Another key finding is the occurrence of multiple outbreaks over time within a single
district. Similar to the environmental exposure index, the peak and scale parameters
of each outbreak intensity function varied across districts. An important extension of
this work would be to introduce covariates that could account for the heterogeneity
in the peak and scale parameters of each outbreak across districts. Incorporating
district-level variables, such as nighttime light data as a proxy for urbanization,
could help explain the observed differences in outbreak dynamics. These covariates
would enable us to model how factors such as urbanization, human mobility, and
climate conditions influence the timing and size of outbreaks. However, we did
not pursue this approach here due to the limited amount of data available, which
constrains our ability to estimate the effects of these variables. With information
at higher temporal resolution, future research could expand on the work carried out
in this study by incorporating additional data to better understand the drivers of
outbreak variation across regions.

A further extension of the model proposed in this work would be to consider curves
for the intensity of the outbreak that are not symmetric, such as the skew-Normal
distribution. However, fitting such a model to the current data would be difficult
because we only had yearly data and there were too few cases. This study did not
find strong evidence of residual spatial correlation. However, in scenarios where
spatial correlation is present, an extension of our proposed model could incorporate
a Besag-York-Mollié (BYM) component.

The fact that some districts experienced outbreaks for which we estimated a scale
parameter of the outbreak intensity function (OIF) of about five years suggests
the presence of persistent dengue transmission in those areas. This persistence
highlights the need for enhanced surveillance and targeted intervention strategies to
reduce ongoing transmission and prevent future outbreaks.

This study has several limitations. First, the reliance on passive surveillance data
from the Ministry of Health means that underreporting and misreporting of
symptomatic cases is likely [9, 58, 59]. Another key limitation was the absence of
certain risk variables, particularly urbanization levels, which are strongly
associated with the density of Aedes aegypti mosquitoes and dengue transmission
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[3, 60]. Additionally, we could not investigate the effects of lagged climate
variables, such as delayed impacts of precipitation, due to the lack of monthly
data. Future studies should explore the relationship between lagged environmental
factors and dengue incidence, as suggested by other research [61, 62]. Moreover,
future models could be extended to include outbreak-weighting parameters,
allowing for the classification of outbreaks based on intensity relative to others.

We developed a modelling framework that identifies three main outbreaks in each
district in Nepal. Applied to dengue data, this model improves upon previous
outbreak modelling techniques by accounting for multiple outbreaks within the
study period and describing the duration of each of the outbreaks. The results of
this study could assist the Nepalese government in identifying districts with
synchronized outbreaks and inform targeted intervention strategies. Additionally,
our model may be applicable to other diseases, offering insight into their historical
outbreak patterns. The proposed framework could thus be used to disentangle
outbreaks of various infectious diseases and contribute to better public health
responses.

Data availability

All the sources for the data used in this study have been cited in the main
manuscript. The R code used to run the models in this study can be accessed on
Github.
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models to understand epidemic outbreaks with application to COVID-19
data”. In: Plos one 15.10 (2020), e0240578.

[31] G. F. Cooper, R. Villamarin, F.-C. R. Tsui, N. Millett, et al. “A method
for detecting and characterizing outbreaks of infectious disease from clinical
reports”. In: Journal of biomedical informatics 53 (2015), pp. 15–26.

[32] C. Franco, L. S. Ferreira, V. Sudbrack, M. E. Borges, et al. “Percolation
across households in mechanistic models of non-pharmaceutical interventions
in SARS-CoV-2 disease dynamics”. In: Epidemics 39 (2022), p. 100551.

127

https://www.edcd.gov.np/resource-detail/national-guidelines-of-prevention-control-and-management-of-dengue-in-nepal-2019-updated
https://www.edcd.gov.np/resource-detail/national-guidelines-of-prevention-control-and-management-of-dengue-in-nepal-2019-updated
https://www.edcd.gov.np/resource-detail/national-guidelines-of-prevention-control-and-management-of-dengue-in-nepal-2019-updated


Chapter 6. Disentangling Outbreak Patterns of Dengue Fever in Nepal

[33] M. Semakula, F. Niragire, S. Nsanzimana, E. Remera, et al.
“Spatio-temporal dynamic of the COVID-19 epidemic and the impact of
imported cases in Rwanda”. In: BMC Public Health 23.1 (2023), pp. 1–13.

[34] A. S. Parpia, L. A. Skrip, E. O. Nsoesie, M. C. Ngwa, et al. “Spatio-temporal
dynamics of measles outbreaks in Cameroon”. In: Annals of epidemiology 42
(2020), pp. 64–72.

[35] O. Man, A. Kraay, R. Thomas, J. Trostle, et al. “Characterizing dengue
transmission in rural areas: A systematic review”. In: PLOS Neglected
Tropical Diseases 17.6 (2023), e0011333.

[36] N. Imai, I. Dorigatti, S. Cauchemez, and N. M. Ferguson. “Estimating dengue
transmission intensity from sero-prevalence surveys in multiple countries”. In:
PLoS neglected tropical diseases 9.4 (2015), e0003719.

[37] P. Roback and J. Legler. “Beyond multiple linear regression”. In: Applied
Generalized Linear Models and Multilevel Models in R (2021), p. 436.

[38] B. K. Acharya, C. Cao, M. Xu, L. Khanal, et al. “Present and future of dengue
fever in Nepal: mapping climatic suitability by ecological niche model”. In:
International journal of environmental research and public health 15.2 (2018),
p. 187.

[39] U. R. Bhuju, P. R. Shakya, T. B. Basnet, and S. Shrestha. Nepal biodiversity
resource book: protected areas, Ramsar sites, and World Heritage sites. 2007.

[40] J. L. Nayava. “Rainfall in Nepal”. In: Himalayan Review 12 (1980), pp. 1–18.
[41] W. H. Organization, S. P. for Research, T. in Tropical Diseases, W. H. O. D. of

Control of Neglected Tropical Diseases, et al. Dengue: guidelines for diagnosis,
treatment, prevention and control. World Health Organization, 2019.

[42] J. T. Abatzoglou, S. Z. Dobrowski, S. A. Parks, and K. C. Hegewisch.
“TerraClimate, a high-resolution global dataset of monthly climate and
climatic water balance from 1958–2015”. In: Nature Scientific Data 5.1
(2018), pp. 1–12.
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Chapter 7

Discussion, conclusions and future

research

This thesis has developed novel and applied existing statistical methods for
modelling and mapping health outcomes from publicly available data in
resource-constrained settings. Although the methodologies discussed in this thesis
were applied to specific diseases and health outcomes, the methods are broadly
applicable to other health outcomes and thus have relevance beyond the scope of
the specific health outcomes highlighted in this thesis. The methods developed and
applied in this thesis can, therefore, be used to track other publicly available
health-related SDGs data.

This chapter sums up the main contributions of each of the papers presented in the
thesis and further discusses how each of the works presented in this thesis can be
improved upon in future research. Further discussion and conclusions for each of
the four papers can be found in the respective chapters of the thesis.
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7.1 Extended discussion and future work on

spatial and spatio-temporal modelling of

multitype typhoid point pattern data

One of the main contributions of Paper 1 is developing a multiple marked
inhomogeneous Poisson process model for typhoid that allows for the inclusion of
both environmental variables, such as elevation, and individual-level variables,
such as age. The modelling framework developed in this paper and applied to the
data showed a lower typhoid incidence rate in areas with a high Water, Sanitation
and Hygiene (WASH) score. The incidence rate of typhoid was also lower in adults
compared to children under 18 years. Our study did not indicate any differences in
typhoid incidence between males and females. The age-specific high-resolution
maps generated in this study are useful to guide interventions aimed at reducing
the incidence of typhoid in Blantyre, Malawi.

One of the main challenges with passive surveillance data, such as the data used in
Paper 1 in this thesis, is the underreporting of individuals with typhoid who visit the
health facility [1–3]. To account for under-reporting, the model proposed in Paper
1 can be extended using a so-called thinned inhomogeneous Poisson process model,
whereby the intensity of the Poisson process in equation 3.3 would be modelled as
follows for spatial and spatio-temporal data:

Spatial model:

λij(x) = pij(x) exp
(
αi + γj + d(x)T β + log mij(x)

)
(7.1)

Spatio-temporal model:

λij(x, t) = pij(x, t) exp
(
αi + γj + d(x, t)T β + log mij(x, t)

)
(7.2)

where pij(x) and pij(x, t) are the probabilities of attending the health facility in
spatial and spatio-temporal processes, respectively, mij(x) and mij(x, t) are the
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population of an individual with gender i and age j at location x and time t; and
d(x)T and d(x, t)T β are covariates measured at location x and time t. This
probability could then be modelled using a logit-linear regression where the
distance from the hospital could also be included. However, one of the challenges
of this approach is that some covariates can affect both typhoid fever risk and the
probability of visiting a clinic, making the estimation of regression relationships
more problematic. This issue has also been reported in ecology, where similar
methods have been used in citizen science data [4]. Future research should,
therefore, focus on better understanding the factors and mechanisms that drive the
likelihood of attending health facilities to parameterize pij(x) and pij(x, t) better
and overcome the aforementioned identifiability issues in the estimation.

7.2 Extended discussion and future work on

modelling and mapping spatio-temporal

malnutrition geostatistical data

In Paper 2, we utilized publicly available demographic and health survey data to
investigate the multilevel factors of the double burden and triple burden of
malnutrition among mother-child pairs in Malawi. The results from this work
showed that the odds of DBM were three times higher with a higher proportion of
wealthy households in a community. Furthermore, the odds of TBM were 60%
lower among mother-child pairs where women had some education compared to
pairs with women without education. Furthermore, it highlighted that DBM and
TBM are higher in cities than in other areas. This finding is consistent with recent
results on DBM in Guatemala [5]. The main contribution in this work was
mapping DBM and TBM among mother-child pairs using model-based methods,
as this had not been done before our work. Furthermore, this paper built on
previous work that maps health outcome geospatial data in the absence of spatial
correlation [6].

Future work could build a spatio-temporal model to assess whether the burden of
DBM and TBM has also been higher in cities than in other areas over time. This
is because some recent descriptive studies have shown a shifting trend in the
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burden of DBM from metropolitan areas to other regions [5]. The findings from
the spatio-temporal modelling could help the government and implementing
partners anticipate which districts/areas in Malawi might get an increasing burden
of DBM and TBM in the future.

Similar to the spatial setting, the first step in modelling spatio-temporal data is
assessing the presence of residual variation that is not explained by covariates.
This can be done by assessing spatio-temporal random effects using a
spatio-temporal variogram at the set of points (xi, ti). Let n(u, v) denote the pairs
(i, j) such that ∥xi − xj∥ = u and |ti − tj| = v; the empirical spatio-temporal
variogram is mathematically defined as

γ̃(u, v) = 1
2|n(u, v)|

∑
(i,j)∈n(u,v)

{
Z̃ (xi, ti) − Z̃ (xj, tj)

}2
, (7.3)

where |n(u, v)| is the number of pairs in the set.

A Monte Carlo procedure similar to the one presented in the introductory section of
this thesis can be used to test for the presence of residual spatio-temporal correlation
in the data for random effects arising from model 7.4. Briefly, the following steps
are taken to assess the presence of spatio-temporal variation in the prevalence of the
health outcome of interest.

(i) Fix the (xi, ti) and permute the data and Z((xi, ti)).

(ii) Calculate the variogram given in equation 7.3.

(iii) Repeat steps (i) and (ii) B times.

(iv) Generate 95% tolerance intervals using the variograms computed in steps (i)
to (iii) above.

The data exhibit spatio-temporal correlation if some parts of the empirical
variogram fall outside of the 95% tolerance intervals. In the absence of
spatio-temporal correlation, the spatio-temporal mixed-effects model would be
given as follows. Conditional on some unstructured random effects Z (xi, ti), the
observed data are mutually independent binomial distributions with a probability
of being a case (p(x; t)) modelled as:
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log
{

p (xi, ti)
1 − p (xi, ti)

}
= d (xi, ti)⊤ β + Z (xi, ti) (7.4)

where p (xi, ti) is the probability of having a health outcome of interest for an
individual at location xi and at time ti, and β is a vector of coefficients associated
with the matrix of spatio-temporal covariates d (xi, ti)⊤.

7.3 Extended discussion and future work on

mapping soil-transmitted helminths in

developing countries

In Paper 3, we carried out geospatial modeling and mapping of soil-transmitted
helminths (STH) in 35 sub-Saharan countries. Furthermore, the paper
demonstrates how, beyond predicting normal World Health Organization (WHO)
exceedance probabilities for neglected tropical diseases, one can also classify areas
to the WHO endemic classes. The work also developed two R Shiny applications
that showcase the results of our modeling. The third paper’s main contribution is
developing high-resolution maps for STH at the country, pixel, and subnational
levels. The paper also proposes a new way of classifying a predictive target into
the WHO STH endemicity classes.

One of the notable extensions proposed in the third paper is fitting
spatio-temporal geostatistical models in countries with survey data at more than
one point in time. Given that the spatio-temporal variogram given in equation 7.3
detects spatio-temporal correlation in the data after accounting for covariates, a
spatio-temporal geostatistical model for mutually independent outcomes Y ,
conditional on unstructured random effects (Z (xi, ti)) and a spatio-temporal
process (S (xi, ti)) can be defined as:

log
{

p (xi, ti)
1 − p (xi, ti)

}
= d (xi, ti)⊤ β + S (xi, ti) + Z (xi, ti) (7.5)

where p (xi, ti) and d (xi, ti)⊤ are as defined in the non-spatial binomial mixed effects
model (equation 7.4). In the above equation, the spatio-temporal process is assumed
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to be a stationary and isotropic process with a variance of σ2 and correlation of [7]:

corr {S(x, t), S (x′, t′)} = ρ (x, x′, t, t′; θ) (7.6)

The third paper also briefly discussed the challenges of calibrating models when
dealing with small sample sizes and low-prevalence geostatistical data. Future
studies could further explore this hypothesis further to identify optimal
geostatistical data conditions for predicting a health outcome in unsampled areas.

7.4 Extended discussion and future work on

characterizing dengue outbreaks

One of the main contributions of Paper 4 is that it develops a modelling
framework that allows for the characterisation of multiple disease outbreak
patterns. In this paper, we proposed an extension of the Negative Binomial model
to allow for estimating multiple outbreaks within a study region. Additionally, the
model estimates the peak and duration of each outbreak intensity function (OIF).
The main contribution of this work is the modelling framework that pinpoints
multiple outbreaks for annual-level data because previous modelling approaches
focussed on characterising more granular data, such as the one collected on a daily,
weekly, or monthly basis.

Future studies on disentangling disease outbreaks using annual-level data can extend
the modelling in the fourth paper by replacing the outbreak coefficients in equation
6.3 with parameters that determine the intensity of each OIF. Specifically, equation
6.3 can be rewritten as:

λt = exp
(

dtβ +
3∑

i=1
πif(i,t)

)
(7.7)

where the πi’s (π1 + π2 + π3 = 1) are weights that determine the intensity of each
outbreak relative to the other two outbreaks.
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This extension would help to identify the most intense outbreak in each district or
sub-areal unit. By closely examining the most intense outbreak, we can determine
the factors contributing to its severity. Understanding these factors is crucial for
developing strategies to mitigate them and prevent future intense outbreaks.

Given that fewer than or more than three outbreaks have been detected in an area,
our modelling framework can also be easily extended to include as many outbreak
parameters as necessary. For instance, a model with n outbreaks can be specified
as follows:

λt = exp
(

dtβ +
n∑

i=1
γif(i,t)

)
(7.8)

where n is the number of (suspected) outbreaks in the area under consideration.

This study used the squared exponential function to estimate the OIFs. A potential
extension of the proposed model would, therefore, explore OIF curves that are not
symmetric, such as those derived from the skew-normal distribution, particularly in
studies that are not constrained by small sample sizes.

7.5 Conclusion

The work presented in this thesis shows how statistical methods can be used to
contribute to achieving the 2030 Sustainable Development Goals (SDGs). Paper 1
contributes to the good health and well being of individuals in an urban setting in
Blantye, Malawi, by showing the areas with the highest incidence of typhoid.
Identifying areas with high typhoid incidence will also assist policymakers in
determining if there is a statistical association between the sources of drinking
water and the type of latrines used by people and the occurrence of fever.
Consequently, these findings contribute to interventions and policy decisions
related to clean water and sanitation (SDG 6, Ensure access to water and
sanitation for all).

The malnutrition work among mother-child pairs in Malawi contributes to the
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second goal in SDG 2 by contributing to ending all forms of malnutrition by 2030.
By identifying the areas with the highest burdens of the double and triple burden
of malnutrition among mother-child pairs, this work can assist policy makers to
know which areas to target to reduce the prevalence of malnutrition. Similarly, the
work on soil-transmitted helminths which produced fine-scale maps and
subnational maps for the prevalence of STH are useful in contributing to the
fourth target of SDG 3 of fighting communicable diseases.

A key finding in the fourth paper is the identification of multiple outbreaks
occurring within the same district over time. The variation in each outbreak’s
peak and scale parameters across the 77 Nepalese districts underscores the
importance of district-specific models rather compared to region-wide models that
might fail to account for sub-unit differences. This district-level analysis provides
more precise insights into dengue outbreak dynamics, which can be critical for
contributing to the reduction of communicable diseases (SDG 3). By addressing
local disparities, our proposed model contributes to more targeted and effective
public health interventions, ultimately supporting the broader goal of improving
health outcomes at the community level.

In conclusion, the work presented in this thesis represents a significant
contribution to spatial epidemiology and public health, particularly in
resource-constrained settings. The findings from this thesis contribute to the
understanding of disease patterns and health outcomes in developing countries and
also provide actionable insights for public health practitioners and policy makers.
The overarching theme of this thesis is that the development and application of
spatial and spatio-temporal methods can help to identify risk factors for health
outcomes and the geographic distributions of the health outcomes. Although the
methods used in this thesis focused on specific health outcomes, the methodologies
discussed are broadly applicable and can be adapted to other health-related
Sustainable Development Goals (SDGs). Therefore, this thesis argues and
recommends developing and applying spatial and spatio-temporal statistical
methods to existing datasets to guide the implementation of interventions.
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A Paper 1 Supplementary Material

A.1 Spatial covariates

A.1.1 Elevation

The elevation raster was downloaded from the Worldpop website [1]. Figure A.1
illustrates the elevation in meters in Ndirande township.

Figure A.1: Elevation (meters)

A.2 Distance to the health facility

We calculated the Euclidean distance from each location in Ndirande township to
Ndirande health facility. Ndirande health facility is the largest government owned
health facility in Ndirande township. The health facility is illustrated as a white
star in Figure A.2
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Figure A.2: Distance in meters from every location on the grid to Ndirande Health
facility.

A.3 Water, sanitation and hygiene (WASH) score

A water, sanitation, and hygiene (WASH) study was carried out in Ndirande
township in 2018 as part of the STRATAA study. A total of 14,136 households
were sampled in the study. Households were asked several questions related to
their WASH and economic levels. Some of the questions asked to these households
included:

• The number of rooms a house has (continuous variable).

• The type of toilet used by the house (no toilet facility, toilet shared with other
households (public), toilet shared with neighbours and household use only).

• Material of the toilet used by the household (open defecation, pit latrine with
a wooden or soil floor, pit latrine with slab, flush or pour toilet).

• The main source of drinking water for a household (borehole and other
unprotected sources, public standpipe, piped to the house, protected well or
borehole, private tap located outside of the house, public standpipe and
public tap outside the house).

A WASH score was derived from the above questions using Principal Components
Analysis (PCA). Figure A.3 shows the percentage of variation that was explained by
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the components. It is common practice in epidemiological studies that measure the
socioeconomic status of a household to use the first component to derive a desired
socioeconomic index or score [2, 3]. Our WASH score was, therefore, based on the
first principal component.

Figure A.3: Eigen values illustrating the variance percentage explained by each
component

Figure A.4 illustrates that the main contributions to the first component of the PCA
was from the type of toilet facility and the number of rooms in a house.

The PCA score was then fitted to a linear geostatistical model [4] given below using
the PrevMap package [5].

Y (xi) = µ + Zi + S(xi) (A.1)

where Y (xi) is the observed WASH score at location i, µ is the constant mean effect
(intercept), Zi (∼ N(0, τ 2)) are independently distributed Gaussian variables, and
S(xi) (∼ N(0, σ2) is a zero-mean stationary and isotropic Gaussian process.

After assessing the goodness of fit of the model using a semi-variogram, a linear
prediction over the whole study area was carried out. This prediction was converted
to a raster and used as a covariate in the model.
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Figure A.4: Contribution of variables to the WASH score

Figure A.5: Interpolated Water Sanitation and Hygiene (WASH) score

Figure A.6 below illustrates the model validation for the linear geostatistical model
used to predict a WASH score throughout Ndirande. The empirical variogram
(which shows the residual spatial correlation) is shown in red, whilst the black
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dotted lines show the simulated envelope for the variogram. Since some parts of
the empirical variogram fell outside the simulated envelope, we rejected the null
hypothesis of no spatial correlation for the WASH data. We, therefore, concluded
that there was some spatial correlation in the WASH survey.

Figure A.6: Simulated envelope (black lines) and empirical variogram (red)

A.4 Ndirande population distribution plots

Figure A.7 illustrates the estimated total number of people per grid cell (population
count) at 100 m resolution and the estimated population density per grid cell at 1km
resolution in Ndirande in 2018. The age-gender specific population distribution plots
are presented in Figure A.8.
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Figure A.7: Map of population distribution in Ndirande in 2018.
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Figure A.8: Map of age and gender-specific population distribution in Ndirande in
2018.

A.5 Model validation plots

We fitted an inhomogeneous K-function to validate our spatial point pattern model.
The list of figures below (Figures A.9, A.10, A.11, A.12, A.13 and A.14) show that
the K-functions from the observed data mostly fell within the simulated envelope
for most of the distances. This suggests that our model was a good fit for the data.
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Figure A.9: Spatial inhomogeneous K-function for males aged between 0 and 5
years. The black line represents the inhomogeneous K-functions from the observed
data, whilst the grey areas represent the inhomogeneous K-functions from the 10,000
realised bootstrap samples

Figure A.10: Spatial inhomogeneous K-function for females aged between 0 and 5
years. The black line represents the inhomogeneous K-functions from the observed
data, whilst the grey areas represent the inhomogeneous K-functions from the 10,000
realised bootstrap samples
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Figure A.11: Spatial inhomogeneous K-function for males aged between 6 and 17
years. The black line represents the inhomogeneous K-functions from the observed
data, whilst the grey areas represent the inhomogeneous K-functions from the 10,000
realised bootstrap samples

Figure A.12: Spatial inhomogeneous K-function for females aged between 6 and 17
years. The black line represents the inhomogeneous K-functions from the observed
data, whilst the grey areas represent the inhomogeneous K-functions from the 10,000
realised bootstrap samples
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Figure A.13: Spatial inhomogeneous K-function for males aged 18 years and above.
The black line represents the inhomogeneous K-functions from the observed data,
whilst the grey areas represent the inhomogeneous K-functions from the 10,000
realised bootstrap samples

Figure A.14: Spatial inhomogeneous K-function for females aged 18 years and above.
The black line represents the inhomogeneous K-functions from the observed data,
whilst the grey areas represent the inhomogeneous K-functions from the 10,000
realised bootstrap samples

A.6 Spatio-temporal model

A.6.1 Model formulation

A spatio-temporal point pattern process can be defined as a realization of a
stochastic process whose events are countable [6]. The set of events can be written
as (xk, tk) where xk ∈ ℜ2 is the location of an event and tk ∈ ℜ+ is the time at
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which event k occurred [7]. The log-likelihood of this process for a marked scenario
is given as:

Lij(θ) =
2∑

i=1

3∑
j=1

Lij(θ) (A.2)

Lij(θ) =
nij∑
k=1

log λij (xk, tk) −
∫

A

∫
T

λij (x, t) dxdt (A.3)

and λij (x, t) = exp
(
αi + γj + d (x, t)′ β + log mij(x, t)

)
are intensities of the spatial

and spatio-temporal point processes. In equation A.3:

• xk for k = 1, ..., n are locations for the observed typhoid cases at time t for a
typhoid case with gender i (male or female) and age j (0-5 years, 6-17 years
or 18+ years)

• A is the study region and T the temporal region

• λ (x, t) is the intensity of the process

• αi are the intercepts for typhoid case with gender i and γj the intercepts for a
typhoid case with age j

• d (x, t) is the matrix of spatial and temporal covariates (such as distance to
Ndirande health clinic in meters, elevation in meters, WASH score, and season)
with their associated coefficients β.

• mij(x, t) is an offset corresponding to the population for an individual with
gender i and age j at location x and time t.

Model A.3 uses the same bootstrap procedure for confidence intervals that was
defined in the main paper for the purely spatial model.

A.6.2 Model validation

Similar to the purely spatial model defined in the main paper, the spatio-temporal
model can be validated using a spatio-temporal inhomogeneous K-function. The
inhomogeneous spatio-temporal K-function is given as:

The space-time inhomogeneous function is defined as [8] :
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KAT (u, v) = 2π
∫ v

0

∫ u

0
g (u′, v′) u′du′dv′ (A.4)

where

• u is the change in space (∥x − x′∥) and v the change in time (|t − t′|)

• (u, v) is a vector representing differences in the spatio-temporal domain

• g(u, v) = λ2(u,v)
λ(x,t)λ(x′,t′)

A non-parametric version of equation A.4 can be implemented in the stpp software.
The non-parametric spatio-temporal inhomogeneous K-function for an infectious
disease such as typhoid is mathematically defined as follows [7]:

K̂AT (u, v) = 1
|A × T |

n

nv

nv∑
k=1

nv∑
h=1;h>k

1
wkh

1
λ (xk, tk) λ (xh, th)1{∥xk−xh∥≤u;th−tk≤v}

(A.5)

The parameter wkh in equation A.5 denotes the spatial edge correction factor
whilst nv denotes the number of (typhoid) occurrences for which
tk ≤ T1 − v, T = [T0, T1] [7].
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B Paper 2 Supplementary Material

B.1 DBM and TBM samples flow chart

Figure B.1 below shows illustrates how the DBM and TBM samples were derived
from the 2015-16 Malawi Demographic and Health Survey data.
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Figure B.1: Flowchart of the sample included in the analysis from the 2015-16
Malawi Demographic and Health Survey (MDHS) (numbers are not weighted).
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B.2 Sources of spatial covariates

A gridded continuous map of the 2015 nightlight data for Malawi was downloaded
from the Worldpop website [1]. The Worldpop is a research centre that models and
develops gridded continuous maps, otherwise known as raster datasets, to aid in
mapping and geospatial modelling. The elevation raster for Malawi was also
downloaded from Worldpop [1]. Both the nightlight and elevation rasters had
spatial resolutions of 100m2. Climate data, including temperature, precipitation
and evapotranspiration were extracted from the TerraClimate website for 2015 [9].
We computed an aridity index by taking the proportion of the precipitation to the
evapotranspiration. The climate data are characterized by a monthly time interval
and a spatial resolution of approximately 4 km (equivalent to 1/24th of a degree).

We also used spatial covariates generated by the Demographic and Health Survey
(DHS) Program. We, specifically, obtained data on the percentage of women aged
15-49 who are literate, percentage of children 12-23 months who had received all 8
basic vaccinations and percentage of women who had a live birth in the five years
preceding the survey who had 4 or more antenatal care visits [10–12]. All the DHS
rasters were modelled using the 2015-16 Malawi DHS and had a resolution of 5km
× 5km.
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Figure B.2: Maps of spatial covariates used to model and map the prevalence
of DBM and TBM. A = Precipitation (mm); B = Maximum temperature (◦C);
C = Evapotranspiration (mm); D= Aridity index (ratio of Precipitation to
Evapotranspiration); E = Elevation (m); F = Nightlight (nanoWatts/cm2/sr).
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Figure B.3: Maps of spatial covariates used to model and map the prevalence of
DBM and TBM. G = Percentage of women who had a live birth in the five years
preceding the survey who had 4+ antenatal care visits; H = Percentage of women
aged 15-49 who are literate; I = Percentage of children 12-23 months who had
received all 8 basic vaccinations.
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B.3 WHO Conceptual Framework for the Double Burden of

Malnutrition

Figure B.4: The World Health Organization Conceptual Framework for DBM.

B.4 Definitions of variables used in the multilevel analyses
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Table B.1: Definitions of variables used in the analysis for DBM and TBM.

Variable name Definition Variable code(s)
Mother-child pair variables
Age group of child in months <12, 12-23, 24-35, 36-47, 48-59 months B8
Sex of child Male, Female B4
Age group of mother at the time of the survey 15-19, 20-34, 35+ years V013
Mother’s employment status Not working, working V714
Parity <2, 2+ V201
Fewer than 4 ANC visits during pregnancy with Yes (<4 ANC visits), No (≥ 4 visits) M14
most recently born child

Mother’s highest completed education level None, Primary (incomplete and complete), secondary V149
(incomplete and complete), and higher

Mother’s marital status at the time of the survey In a union (married or cohabiting) and not in a union V502
(never been in a union, single, divorced, or widowed)

Household-level variables
Household wealth index Low, middle, high V191

Community-level variables
Area of residence Urban, Rural V025

Proportion of households in middle or rich Total number of households with middle or higher wealth quintile V190, V001
wealth quintiles in a cluster in a cluster, divided by total number of households in a cluster

Proportion of women with fewer than 4 ANC visits Total number of mothers who attended less than 4 ANC visits V190, V001
during pregnancy of child in mother-child pair in a cluster in a cluster, divided by the total number of mothers in that cluster
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B.5 Multilevel binomial mixed effects model

Let Yjk be the random variable denoting the number of mother-child pairs with
DBM or TBM out of the total number of mother-child pairs in a household j that
is nested within a cluster k. We then modelled the outcome variable Yjk using a
three-level binomial mixed effects model with probability (p(xjk)) of having DBM
or TBM such that:

log
(

p(xjk)
1 − p(xjk)

)
= d(x)T β + φk + δjk (B.1)

where d(x) is a vector of variables associated with the regression coefficients β, and
φk is the effect of cluster/community k (k=1,2,. . . ,K) and δjk is the effect of
household j (j=1,2,. . . ,J) within cluster k. The random effects (φk + δjk) are
assumed to be independent of one another and are normally distributed with zero
means and constant variances (φk ∼ N(0, σk), δjk ∼ N(0, σjk) [13, 14]. The
individual, household, and cluster-level independent variables that were included
in the analysis of DBM and TBM are described in the main manuscript.

B.6 Exploratory analysis for spatial correlation using the theoretical

variogram

To assess whether there was any spatial correlation in DBM and TBM in Malawi,
we fitted the binomial mixed model defined above and we included the georeferenced
covariates described in section 2.1 above. We fitted this model to all the 9 outcomes
(child wasting, child stunting, child underweight, child overweight, child anaemia,
maternal short height, maternal underweight, maternal overnutrition, and maternal
anaemia) in R using the lme4 package. To test for spatial correlation in the data,
we extracted the random effects (φk + δjk) from the mixed effects model for each
of the 9 models and fitted them to a variogram [15–17]. We then generated 95%
confidence intervals of the random effects variograms under the assumption of spatial
independence. We concluded that there was no evidence of spatial correlation in the
data since the variograms for all the 9 models fell within the 95% confidence bounds
(Figure B.5 and Figure B.6). We, therefore, fitted non-spatial mixed effects models
for all the 9 outcomes and not geostatistical models since the data did not show any
evidence of residual spatial correlation [17, 18]. These models were used to compute
continuous predictions of the 9 outcomes at 3 Km2 grids and at district level.

160



Appendix B

Figure B.5: Plot of the empirical variogram (represented by the black solid line)
based on the random effects from Binomial mixed models for the child-level
outcomes. The dotted lines correspond to 95% confidence intervals generated under
the assumption of spatial independence [4].
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Figure B.6: Plot of the empirical variogram (represented by the black solid line)
based on the random effects from Binomial mixed models for the maternal-level
outcomes The dotted lines correspond to 95% confidence intervals generated under
assumption of spatial independence [4].

B.7 Model estimates
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Table B.2: Model parameter estimates and associated 95% confidence intervals (CI) for for child-level outcomes.

Variable Child Child Child Child Child
underweight wasting stunting anaemia overnutrition

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)
Intercept -1.26 -6.87 -0.01 2.17 -6.48

(-2.03, -0.49) (-11.52, -2.22) (-0.54, 0.53) (1.50, 2.93) (-9.64, -3.31)

Nightlight -0.06 NA -0.05 -0.02 NA
(-0.12, 0.001) (-0.09, -0.01) (-0.06, 0.04)

Maximum NA 0.08 NA NA NA
temperature (-0.03, 0.18)

Percentage of -1.14 -0.39 -0.79 -0.21 -0.61
literate women (-1.14, -0.08) (-2.92, 2.14) (-1.53, -0.05) (-3.03, -1.06) (-2.56, 1.33)

Proportion of children NA NA NA NA 3.90
fully vaccinated (0.06, 7.74)

Note: NA corresponds to a situation where the spatial covariate is not included in the model.
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Table B.3: Model parameter estimates and associated 95% confidence intervals (CI) for maternal-level outcomes.

Variable Maternal Maternal Maternal Maternal
underweight short height anaemia overnutrition

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)
Intercept -6.88 -4.08 -4.68 -4.55

(-10.43, -3.32) (-5.60, -2.57) (-5.90, -3.46) (-5.45, -3.65)

Nightlight 0.01 -0.05 NA 0.08
(-0.13, 0.17) (-0.16, 0.05) (0.04, 0.12)

Percentage of -0.33 0.26 0.11 3.74
literate women (-3.90, -3.25) (-1.80, 2.32) (0.07, 0.15) (2.54, 4.94)

Note: NA corresponds to a situation where the spatial covariate is not included in the model.
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B.8 Additional results

Figure B.7: Predicted mother-child pair DBM prevalence maps of Malawi; mean
predicted prevalence (A) and, lower (B) and upper 95% CI bounds (C).
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Figure B.8: Predicted mother-child pair TBM prevalence maps of Malawi; mean
predicted prevalence (A) and, lower (B) and upper 95% CI bounds (C).

B.9 Model predictions

We predicted the prevalence of DBM and TBM across Malawi at point-level. We
defined our predictive target as T ∗. We divided the continuous surface of Malawi
into a regular grid of 3km2. The following equation was used to generate
prevalence surfaces for DBM and TBM: T ∗ = p(x) : x ∈ A where
T = d(x)T β + φk + δjk for each of the 9 outcomes and A denotes the regular grid
for Malawi for the point estimates [4].

To generate maps for DBM and TBM from the non-spatial mixed effects models,
we used statistical probability rules that are also employed in other health research
that use outcomes that are derived from multiple indicators [19] as follows. Let:

• P (A) be the probability that a child is stunted

• P (B) probability that a child is wasted

• P (C) probability that a child is underweight

• P (D) be the probability that a child is overweight or obese
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• P (E) be the probability that a child is anaemic

• P (F ) be the probability that a mother has a short height

• P (G) be the probability that a mother is underweight

• P (H) be the probability that a mother is overweight or obese

• P (I) be the probability that a mother is anaemic.

Then the probability that a child has undernutrition (is stunted or wasted or
underweight) is defined as:

P (child undernutrition) = 1 − {(1 − P (A)) × (1 − P (B)) × (1 − P (C))} (B.2)

And the probability that a mother has undernutrition (short height or underweight)
is defined as:

P (maternal undernutrition) = 1 − {(1 − P (F )) × (1 − P (G))} (B.3)

Consequently, the probability that a mother-child pair has the double burden of
malnutrition (DBM1 = child undernutrition and maternal overnutrition OR DBM2
= child overnutrition and maternal undernutrition) is defined as:

P (DBM1) = P (child undernutrition) × P (maternal overnutrition) (B.4)

P (DBM2) = P (child overnutrition) × P (maternal undernutrition) (B.5)

Then the overall double burden of malnutrition (child undernutrition and maternal
overnutrition OR child overnutrition and maternal undernutrition) is given as:

P (Any DBM) = 1 − {(1 − P (DBM1)) × (1 − P (DBM2))} (B.6)

The probability that a mother-child pair has the triple burden of malnutrition
(TBM1 = child undernutrition, maternal overnutrition and child anaemia OR
TBM2 = child overnutrition, maternal undernutrition and maternal anaemia) is
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calculated as follows:

P (TBM1) = P (child undernutrition) × P (maternal overnutrition) × P (child anaemia)
(B.7)

P (TBM2) = P (child overnutrition) × P (maternal undernutrition) × P (maternal anaemia)
(B.8)

Similar to the overall double burden of malnutrition, the overall triple burden of
malnutrition (child undernutrition, child anaemia and maternal overnutrition OR
child overnutrition, maternal undernutrition, and maternal anaemia) is given as:

P (Any TBM) = 1 − {(1 − P (TBM1)) × (1 − P (TBM2))} (B.9)

168



Appendix C

C Paper 3 Supplementary Material

C.1 Summary of Data Characteristics: Countries, Dates, and Sample

Sizes

Table C.1 outlines the countries included in the study, the sample sizes, and the
years the data were collected. The sample sizes are the raw data obtained from
the ESPEN website, prior to merging the geolocated STH data with the spatial
covariates.

169



Appendix C

Table C.1: Countries included in the analysis, data collection dates, and sample
sizes per country.

Country Year Sample size Mean (Std. dev) Median (IQR)
Southern Africa
Botswana 2015 128 46 (7) 48 (43, 50)
South Africa 2017 152 41 (11) 47 (35, 49)
Swaziland 2015 262 50 (3) 50 (50, 50)

Central Africa
Angola 2014 121 29 (3) 30 (30, 30)
Cameroon 2012 184 50 (0) 50 (50, 50)
Chad 2015 281 49 (4) 50 (50, 50)
DRC 2015 112 57 (22) 50 (50, 50)
Gabon 2015 182 49 (25) 48 (34, 53)

Eastern Africa
Burundi 2014 209 50 (0) 50 (50, 50)
Eritrea 2015 162 51 (8) 52 (50, 56)
Ethiopia 2009 102 105 (32) 105 (97, 107)
Kenya 2015 63 58 (4) 58 (56, 60)
Madagascar 2015 305 51 (10) 50 (50, 50)
Malawi 2018 277 29 (2) 30 (29, 30)
Mozambique 2007 134 50 (0) 50 (50, 50)
Rwanda 2014 183 50 (1) 50 (50, 50)
South Sudan 2018 103 48 (4) 50 (49, 50)
Tanzania (Mainland) 2018 301 34 (10) 30 (30, 30)
Uganda 2013 83 58 (14) 60 (60, 63)
Zambia 2005 57 60 (4) 60 (60, 61)
Zimbabwe 2010 126 42 (10) 45 (37, 49)

Western Africa
Benin 2017 66 70 (31) 50 (49, 80)
Burkina Faso 2004 87 59 (6) 60 (59, 61)
Cote d’Ivoire 2014 529 31 (2) 30 (30, 32)
The Gambia 2015 206 50 (5) 50 (49, 50)
Ghana 2008 76 59 (4) 60 (60, 60)
Guinea-Bissau 2018 55 49 (2) 50 (50, 50)
Liberia 2015 320 49 (4) 50 (50, 50)
Mali 2004 187 71 (18) 69 (66, 70)
Mauritania 2015 72 57 (39) 50 (47, 62)
Niger 2006 73 65 (31) 60 (60, 60)
Nigeria 2014 705 50 (5) 50 (50, 52)
Senegal 2013 117 50 (5) 50 (50, 50)
Sierra Leone 2008 114 83 (32) 99 (55, 110)
Togo 2015 1077 15 (0) 15 (15, 15)

Std. dev = Standard deviation.
IQR = Interquartile range (25th quartile, 75th quartile).
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Table C.2 outlines the countries excluded from the study, the sample sizes, and the
years the data were collected.

Table C.2: Countries excluded from the analysis, data collection dates, and sample
sizes per country.

Country Year Sample size Comment
Algeria NA NA No data (zero data points) for STH
Cape Verde 2012 9 All data points do not have location data
Central African Republic 1983 1 None
Comoros NA NA No data (zero data points) for STH
Equatorial Guinea NA NA No data (zero data points) for STH
Guinea 2013 40 None
Mauritius 2015 47 None
Republic of Congo 1985 1 None
Seychelles 2014 6 None
Tanzania (Zanzibar) 2011 40 None

NA = Not available.
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C.2 Non-randomized probability integral transform for binomial

geostatistical models

This supplementary material gives detailed information on the non-randomized
probability integral transform (nrPIT) as outlined by Czado et al. and modified by
Giorgi et al. for binomial geostatistical models [17, 20].

Let Y = {Yi; 1 =, . . . , n} denote the vector of random variables of the number of
STH (any STH or species-specific) positive cases, Yi out of ni tested individuals at
location xi, for i = 1, . . . , n. We assume that Yi follows a Binomial distribution with
probability p(xi) and linear predictor

log
{

p(xi)
1 − p(xi)

}
= d(xi)⊤β + S(xi) + Zi,

where β is the vector of regression coefficients associated with the matrix of
covariates d(xi). S(xi) and Zi are the Gaussian process and Gaussian noise,
respectively, that have a mean of zero and variance of σ2 and τ 2.

To outline the nrPIT we let Q(Z) denote the cumulative density function of a random
variable Z and Y ∗

i denote the random variable of the positive tested STH (any
STH or species-specific) cases at a set of hold-out locations, say x∗

j for j =, . . . , q.
Conditional on Y = y, the conditional cumulative probability distribution (CPD)
of Y ∗

i is given as:

Q(y∗
j |y) = P (Y ∗

j ≤ y∗
j |y1, . . . , yn). (C.1)

To compute Equation C.1, we first define W = {S(xi) + Zi : i = 1, . . . , n} and
W ∗

j = S(x∗
j ) + Zj for j = 1, . . . , q. Since it follows from the model assumptions that

Q(y∗
j |wj, y) = Q(y∗

j |wj), Equation C.1 is expressed as:

Q(y∗
j | y) =

∫ +∞

−∞
f(wj | y)Q(y∗

j |wj, y) dwj

=
∫ +∞

−∞
f(wj | y)Q(y∗

j | wj) dwj (C.2)
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where Q(y∗
j |wj) is the CPD of a Binomial distribution with number of trials nj and

probability p(x∗
j) and f(wj|y) is the density function of the predictive distribution

of Wj. To compute the integral in Equation C.2, we then simulated 10, 000
samples from f(wj|y) as follows: 1) simulate 10, 000 samples from W conditionally
on y; 2) use the resulting samples from the previous step to simulate from Wj

given W , which corresponds to a multivariate Gaussian distribution. More details
on this can be found in other texts [5].

Consequently, the nrPIT is defined as

nrPIT(u | y∗
j , y) =



0 if u ≤ Q(y∗
j − 1 | y)

[u−Q(y∗
j −1 | y)]

[Q(y∗
j | y)−Q(y∗

j −1 | y)] if Q(y∗
j − 1 | y) ≤ u ≤ Q(y∗

j | y)

1 if u ≥ Q(y∗
j | y)

. (C.3)

We evaluate the calibration of the model by computing the average nrPIT across all
counts. This is expressed as:

nrPIT(u) = 1
q

q∑
j=1

nrPIT(u | y∗
j , y). (C.4)

Czado et al demonstrated, assuming a well-calibrated model, that the expected
value of nrPIT (u) is u under the assumption of a well-calibrated model [20].

To perform the diagnostic assessment for our models, we randomly choose three
subsets of locations, representing 30%, 40%, and 50% of the data-sets under
consideration. The count of positive cases in these hold-out sets is denoted as yj in
the aforementioned equations.

We generated a plot of nrPIT(j/10) against j/10 for j = 1, . . . , 10 to evaluate the
calibration of the models. We also generated a 95% confidence envelope using the
following steps: 1) simulating 10,000 Binomial observations from the distribution
of y∗

j , given Wj = wj, where wj is determined as outlined in our approximation
of Equation C.4; 2) for each simulated Binomial dataset, calculate the nrPIT as
defined in Equation C.4; 3) utilizing the resulting 10,000 nrPITs to compute 95%
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confidence intervals for nrPIT(j/10) at j = 1, . . . , 10. This process ensures that
the 95% confidence intervals are generated under the ”null hypothesis” of a well-
calibrated model.

C.3 Spatial covariate parameter estimates for country-level models
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C.4 Estimates of log scale of spatial correlation from geostatistical

models

Figure C.1: Graph showing the estimated log of the scale of the spatial correlation
per country for Hookworm (HK) and Ascaris (ASC).
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Figure C.2: Graph showing the estimated log of the scale of the spatial correlation
per country for Trichiura (TT) and any STH (STH).
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Table C.3: Summary of Monte Carlo maximum likelihood estimates of geostatistical
models for all country models.

Country Variable parameter estimate direction
Hookworm Ascaris Trichiura Any STH
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Southern Africa
Botswana - N + N N N + N - N + N
South Africa N N N N N N N N N N N N
Swaziland N N + N N N + N N N N N
Central Africa
Angola - N + N N N N - N N N N
Cameroon - N + - N N N N N N N -
Chad N N + - N N N - N N N N
DRC N N N N N N + - N N + -
Gabon - N + - - N + N - N + -
Eastern Africa
Burundi N N N N N N - N N N -
Eritrea N N + N N N N N N N N N
Ethiopia - N - N N N N N N N N -
Kenya N + N N N N + N N N N N
Madagascar - N + N N N + N N N + N
Malawi N N N - N N N N N N N N
Mozambique N N + N
Rwanda N N N - - N + - - N + -
South Sudan N N + - N N + - N N N N
Tanzania Mainland N N + N N N + N N N + N
Uganda N N N N N N N N N N N N
Zambia N N + N N N N N N N N N
Zimbabwe N N + N
Western Africa
Benin - N N N N N N N N N N N
Burkina Faso N N + N N N N N N N N N
Cote d’Ivoire - N N - N N N N - N + -
Ghana N N N N N N N N N N N N
Guinea-Bissau - N + N N N N N N N N N
Liberia N N N N N N N N - N N N
Mali - N + N N N N N N N N N
Mauritania N N + N N N N N N N N N
Niger N N + N N N N N N N N N
Nigeria N + + - N N + N N N + -
Senegal N N + N - N N N N N N
Sierra Leone N N + N N N + N N N + -
Togo - N N N

Covariate 1 = Precipitation; 2 = Poverty index; 3 = Precipitation or Aridity
index; 4 = Soil type (clay, sand, or silt) or soil PH.
+ = Positive association; - = Negative association; N = Not included in the model.
DRC = Democratic Republic of the Congo (Congo Kinshasa).
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C.5 Estimates of variance of spatial correlation from geostatistical

models

Figure C.3: Graph showing the estimated log of variance of spatial correlation per
country for Hookworm (HK) and Ascaris (ASC).
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Figure C.4: Graph showing the estimated log of variance of spatial correlation per
country for Trichiura (TT) and any STH (STH).
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D Paper 4 Supplementary Material

D.1 Exploratory analysis and variable processing

Figure D.1 shows scatter plots of the log of dengue incidence against several spatial
covariates. The plot shows that most of the covariates had a linear relationship with
the incidence of dengue.

Figure D.1: Scatter plots of the log incidence against maximum temperature,
minimum temperature, maximum precipitation, minimum precipitation, mean
precipitation, mean evapotranspiration, and aridity index. The dashed green lines
are regression lines from a linear model, whilst the blue solid lines are natural splines
from a generalized additive model.

180



Appendix D

D.2 Principal components analysis further results

Figure D.2: Loadings of the environmental exposure index (PC1)
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Figure D.3: Maps of the environmental exposure index (PC1) and the mean
precipitation
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D.3 Model coefficients

Table D.1: Maximum likelihood estimates and 95% confidence intervals (CI) for the
model intercept

District Coefficient 95% CI

Achham -26.392 ( -71.047, -22.371)
Arghakhanchi -24.923 ( -31.303, -16.090)
Baglung -36.457 ( -71.001, -27.781)
Baitadi -27.962 ( -71.892, -20.275)
Bajhang -26.285 (-167.286, -13.336)
Bajura -56.729 (-102.784, -19.323)
Banke -22.959 ( -32.592, -16.340)
Bara -12.697 ( -26.281, 1.688)
Bardiya -12.664 ( -22.008, -11.539)
Bhaktapur -14.554 ( -15.469, -13.556)
Bhojpur -22.840 ( -29.013, -14.345)
Chitawan -22.018 ( -34.056, -20.396)
Dadeldhura -21.429 ( -33.035, -17.199)
Dailekh -14.926 ( -19.450, -13.927)
Dang -12.518 ( -16.152, -11.123)
Darchula -28.625 ( -47.768, -17.642)
Dhading -13.247 ( -13.599, -13.084)
Dhankuta -19.164 ( -26.134, -12.863)
Dhanusha -19.007 ( -29.295, -5.354)
Dolakha -13.081 ( -17.572, 19.743)
Dolpa -1.855 ( -3.005, -0.394)
Doti -34.106 ( -87.332, -28.268)
Gorkha -13.010 ( -18.319, 15.282)
Gulmi -14.492 ( -20.189, -14.051)
Humla -3.011 ( -9.244, -0.561)
Ilam -19.930 ( -37.304, -3.101)
Jajarkot -21.528 ( -25.277, 32.679)
Jhapa -14.343 ( -84.094, 18.870)
Jumla -1.352 ( -2.082, 30.528)

Continued on next page
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Table D.1 – continued from previous page

District Coefficient 95% CI

Kabhrepalanchok -27.492 ( -45.998, -16.414)
Kailali -22.412 ( -41.168, -13.322)
Kalikot -5.655 ( -9.571, 80.214)
Kanchanpur -21.452 ( -70.935, -12.999)
Kapilbastu -13.745 ( -16.502, -10.140)
Kaski -32.152 (-103.581, -17.967)
Kathmandu -14.744 ( -14.767, -14.299)
Khotang -32.853 (-149.562, -25.717)
Lalitpur -43.326 ( -61.470, -27.795)
Lamjung -20.175 ( -20.684, -19.176)
Mahottari -15.759 ( -26.577, 0.702)
Makawanpur -13.441 ( -53.896, -11.295)
Manang -0.817 ( -1.431, -0.418)
Morang -12.633 ( -23.798, -11.503)
Mugu -4.440 ( -9.940, -2.010)
Mustang -1.214 ( -1.833, 0.530)
Myagdi -5.338 ( -30.846, 91.048)
Nawalparasi east -12.756 ( -13.194, -12.170)
Nawalparasi west -27.594 (-101.242, -12.256)
Nuwakot -18.278 ( -19.277, -17.625)
Okhaldhunga -21.315 ( -26.206, -19.128)
Palpa -47.780 ( -48.779, -41.718)
Panchthar -27.078 ( -32.684, -17.951)
Parbat -21.951 ( -25.983, -19.871)
Parsa -10.758 ( -12.892, -2.452)
Pyuthan -15.376 ( -17.312, -13.409)
Ramechhap -29.053 ( -46.061, -17.717)
Rasuwa -8.343 (-193.609, 14.709)
Rautahat -94.858 ( -95.857, -88.943)
Rolpa -20.056 ( -20.350, -19.715)
Rukum east -5.874 ( -45.025, -1.945)

Continued on next page
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Table D.1 – continued from previous page

District Coefficient 95% CI

Rukum west -19.459 ( -22.246, -7.492)
Rupandehi -13.012 ( -27.539, -10.175)
Salyan -41.266 (-100.122, -25.066)
Sankhuwasabha -22.294 ( -23.293, -21.881)
Saptari -20.884 ( -23.439, -16.816)
Sarlahi -17.917 ( -33.761, 11.605)
Sindhuli -36.405 ( -98.222, -27.759)
Sindhupalchok -22.565 ( -26.402, -20.855)
Siraha -29.085 ( -38.468, -20.677)
Solukhumbu -6.841 ( -11.462, 17.704)
Sunsari -13.855 ( -19.845, -6.911)
Surkhet -30.796 ( -57.925, -17.654)
Syangja -19.976 ( -25.855, -8.631)
Tanahu -22.164 ( -31.211, -8.496)
Taplejung -43.563 (-147.470, -10.099)
Terhathum -21.978 ( -24.589, -13.708)
Udayapur -29.071 ( -47.358, -18.067)

Table D.2: Maximum likelihood estimates and 95% confidence intervals (CI) for the
environmental exposure index

District Coefficient 95% CI

Achham 6.090 ( -3.092, 23.019)
Arghakhanchi 4.005 ( -0.537, 25.220)
Baglung 3.165 ( -4.419, 31.380)
Baitadi 4.173 ( -3.500, 15.464)
Bajhang -6.502 (-18.452, 46.743)
Bajura 11.351 (8.692, 12.349)
Banke -5.605 (-10.122, -1.467)
Bara 0.630 (-15.060, 15.913)

Continued on next page
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Table D.2 – continued from previous page

District Coefficient 95% CI

Bardiya 0.067 ( -6.033, 0.910)
Bhaktapur 0.031 (-46.820, 9.798)
Bhojpur -2.791 (-11.547, 2.644)
Chitawan -0.256 ( -0.654, 0.218)
Dadeldhura 5.180 ( 1.908, 13.620)
Dailekh -1.722 (-17.886, 7.058)
Dang -0.495 ( -1.862, 1.038)
Darchula -0.630 (-10.311, 23.257)
Dhading 0.157 ( -9.625, 1.769)
Dhankuta 1.262 (-33.149, 18.600)
Dhanusha -2.811 ( -9.699, 2.919)
Dolakha -7.921 (-32.482, 28.303)
Dolpa -7.904 (-10.420, -6.046)
Doti 11.897 ( 7.387, 14.283)
Gorkha -0.739 (-17.191, 19.846)
Gulmi -0.171 ( -8.858, 7.310)
Humla -9.404 (-16.300, -5.989)
Ilam -0.198 ( -8.792, 6.945)
Jajarkot -2.822 ( -9.709, 27.599)
Jhapa 0.412 ( -2.648, 19.271)
Jumla -6.252 (-13.175, 51.717)
Kabhrepalanchok -3.612 (-15.205, 4.498)
Kailali 0.688 ( -2.244, 5.430)
Kalikot -10.319 (-13.276, -7.989)
Kanchanpur 0.681 ( -3.655, 1.832)
Kapilbastu 0.870 ( -0.933, 10.756)
Kaski -0.972 ( -9.832, 6.812)
Kathmandu 0.556 ( -9.881, 13.769)
Khotang 1.135 ( -6.306, 4.734)
Lalitpur -10.496 (-25.884, 4.987)
Lamjung -6.684 (-39.037, 4.073)

Continued on next page
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Table D.2 – continued from previous page

District Coefficient 95% CI

Mahottari -0.026 (-10.434, 2.170)
Makawanpur -0.092 ( -6.853, 0.092)
Manang -5.296 (-10.281, 26.249)
Morang 2.759 ( -9.434, 11.937)
Mugu -12.214 (-15.065, -7.575)
Mustang -4.237 ( -5.062, -3.985)
Myagdi -10.290 (-68.550, 2.108)
Nawalparasi east 0.799 (-14.606, 2.930)
Nawalparasi west -0.124 ( -3.189, 2.412)
Nuwakot 2.057 (-19.362, 4.625)
Okhaldhunga 0.508 ( -5.440, 12.609)
Palpa 2.536 ( 0.520, 5.069)
Panchthar 0.047 (-21.495, 25.083)
Parbat -0.577 ( -5.815, 2.529)
Parsa 1.301 ( -1.358, 8.354)
Pyuthan -0.588 ( -9.580, 6.195)
Ramechhap -13.087 (-45.541, 4.442)
Rasuwa -9.834 (-15.485, 70.465)
Rautahat 3.486 ( -2.233, 34.317)
Rolpa -0.805 ( -7.724, 4.560)
Rukum east -8.539 ( -8.952, -7.915)
Rukum west -0.986 ( -8.012, 3.504)
Rupandehi 0.485 ( -0.090, 7.376)
Salyan -10.822 (-31.339, -0.862)
Sankhuwasabha -3.671 (-26.161, 5.387)
Saptari -0.867 (-24.084, 41.372)
Sarlahi -1.368 (-20.824, 39.783)
Sindhuli -2.897 ( -9.315, 8.738)
Sindhupalchok -9.178 (-35.067, 10.357)
Siraha -8.216 (-14.846, 1.140)
Solukhumbu -11.888 (-20.356, 31.769)

Continued on next page
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Table D.2 – continued from previous page

District Coefficient 95% CI

Sunsari 0.389 ( -6.024, 25.843)
Surkhet -10.952 (-23.017, 4.812)
Syangja 0.121 ( 0.095, 0.176)
Tanahu -1.007 ( -5.255, -0.377)
Taplejung 6.255 (-10.130, 36.060)
Terhathum 2.071 (-11.263, 48.722)
Udayapur -13.073 (-31.939, 1.972)
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Figures D.4, D.5, and D.6 illustrate the predicted timing (µ) of the three outbreaks
and their confidence intervals (CIs).

Figure D.4: Maps showing the timing of the first outbreak (µ1, A), and the lower
(B) and upper (C) bounds of the 95% CIs.
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Figure D.5: Maps showing the timing of the second outbreak (µ2, A), and the lower
(B) and upper (C) bounds of the 95% CIs.
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Figure D.6: Maps showing the timing of the third outbreak (µ3, A), and the lower
(B) and upper (C) bounds of the 95% CIs.
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Figures D.7, D.8, and D.9 illustrate the predicted scale parameters (ω) of the three
outbreak intensity functions (OIFs) and their confidence intervals (CIs).

Figure D.7: Heat maps showing the scale parameter of the first OIF (ω1), and the
lower and upper CIs.
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Figure D.8: Heat maps showing the scale parameter of the second OIF (ω2), and
the lower and upper CIs.
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Figure D.9: Heat maps showing the scale parameter of the third OIF (ω3), and the
lower and upper CIs.
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Figures D.10, D.11, and D.12 illustrate the estimated coefficients (γ) of the three
outbreak intensity functions (OIFs) and their confidence intervals (CIs).

Figure D.10: Heat maps showing the estimated coefficient of the first OIF (γ1), and
the lower and upper CIs.
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Figure D.11: Heat maps showing the estimated coefficient of the second OIF (γ2),
and the lower and upper CIs.
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Figure D.12: Heat maps showing the estimated coefficient of the third OIF (γ3),
and the lower and upper CIs.
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D.4 Model validation

We carried out a Chi-square (χ2) goodness of fit test for each of the models fitted to
each district. The goodness of fit test was carried out under the null hypothesis that
there was no statistically significant difference between the expected and predicted
dengue counts. Each of the tests had 16 degrees of freedom (df = n-1 = 17-1) Table
D.3 shows the Chi-square statistic and p-values for each district.

Table D.3: Summary of Chi-square (χ2) goodness of fit test results for the 77
Nepalese districts

District χ2 Statistic P value

Achham < 0.001 1.000
Arghakhanchi 0.0303 1.000
Baglung 0.0429 1.000
Baitadi < 0.001 1.000
Bajhang < 0.001 1.000
Bajura < 0.001 1.000
Banke 48.0402 < 0.001
Bara 2.8748 0.942
Bardiya 2.7853 0.986
Bhaktapur 1.1521 0.8859
Bhojpur < 0.001 1.000
Chitawan 1569.247 < 0.001
Dadeldhura 0.0031 1.000
Dailekh 0.7167 0.8693
Dang 10.2822 0.6707
Darchula < 0.001 1.000
Dhading 3.3669 0.948
Dhankuta < 0.001 1.000
Dhanusha 0.5548 0.968
Dolakha < 0.001 1.000
Dolpa < 0.001 1.000
Doti < 0.001 1.000
Gorkha 1.7128 0.974

Continued on next page
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Table D.3 – continued from previous page

District χ2 Statistic P value

Gulmi 1.2785 0.989
Humla < 0.001 1.000
Ilam < 0.001 1.000
Jajarkot < 0.001 1.000
Jhapa 1605.370 < 0.001
Jumla < 0.001 1.000
Kabhrepalanchok 0.3878 0.9989
Kailali 241.808 < 0.001
Kalikot < 0.001 1.000
Kanchanpur 2.6436 0.9886
Kapilbastu 57.0414 < 0.001
Kaski 1.7006 0.9889
Kathmandu 2.9773 0.9652
Khotang < 0.001 1.000
Lalitpur 0.0888 0.9999
Lamjung < 0.001 1.000
Mahottari 0.7551 0.9932
Makawanpur 72.3325 < 0.001
Manang < 0.001 1.000
Morang 6.3734 0.4969
Mugu < 0.001 0.9995
Mustang < 0.001 1.000
Myagdi < 0.001 1.000
Nawalparasi east 3.3502 0.8508
Nawalparasi west 166.9342 < 0.001
Nuwakot < 0.001 1.000
Okhaldhunga < 0.001 1.000
Palpa 10.3832 0.1679
Panchthar < 0.001 1.000
Parbat < 0.001 1.000
Parsa 115.3268 < 0.001

Continued on next page
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Table D.3 – continued from previous page

District χ2 Statistic P value

Pyuthan 5.5307 0.6996
Ramechhap 0.0019 1.000
Rasuwa < 0.001 1.000
Rautahat 69.1356 < 0.001
Rolpa < 0.001 1.000
Rukum east < 0.001 1.000
Rukum west < 0.001 1.000
Rupandehi 1986.736 < 0.001
Salyan < 0.001 1.000
Sankhuwasabha < 0.001 1.000
Saptari 0.1445 0.9996
Sarlahi 10.536 0.1602
Sindhuli < 0.001 1.000
Sindhupalchok < 0.001 1.000
Siraha < 0.001 1.000
Solukhumbu < 0.001 1.000
Sunsari 1.9479 0.9244
Surkhet 1.9622 0.8544
Syangja 1.1601 0.9918
Tanahu 0.3106 0.9974
Taplejung < 0.001 1.000
Terhathum < 0.001 1.000
Udayapur < 0.001 1.000

The figures below show the plots of the observed vs predicted counts of dengue cases
in each district.
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Figure D.13: Plots of the observed vs predicted counts of dengue in districts 1 to 9
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Figure D.14: Plots of the observed vs predicted counts of dengue in districts 10 to
18
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Figure D.15: Plots of the observed vs predicted counts of dengue in districts 19 to
27
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Figure D.16: Plots of the observed vs predicted counts of dengue in districts 28 to
36
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Figure D.17: Plots of the observed vs predicted counts of dengue in districts 37 to
45
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Figure D.18: Plots of the observed vs predicted counts of dengue in districts 46 to
54
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Figure D.19: Plots of the observed vs predicted counts of dengue in districts 55 to
63
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Figure D.20: Plots of the observed vs predicted counts of dengue in districts 64 to
72
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Figure D.21: Plots of the observed vs predicted counts of dengue in districts 73 to
77

The figures below show that, in districts where model validation was unsatisfactory,
the differences between the observed and predicted dengue counts decreased as the
number of outbreaks in the models increased.

209



Appendix D

Figure D.22: Plot of observed versus predicted dengue counts for district number
7 (Banke), illustrating models with three outbreaks (Figure A) and four outbreaks
(Figure B).
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Figure D.23: Plot of observed versus predicted dengue counts for district number 34
(Kapilbatsu), illustrating models with three outbreaks (Figure A), four outbreaks
(Figure B), and five outbreaks (Figure C).
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Figure D.24: Plot of observed versus predicted dengue counts for district number
41 (Makawanpur), illustrating models with three outbreaks (Figure A), and four
outbreaks (Figure B).
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Figure D.25: Plot of observed versus predicted dengue counts for district number
48 (Nawalparasi West), illustrating models with three outbreaks (Figure A), four
outbreaks (Figure B), and five outbreaks (Figure C).
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Figure D.26: Plot of observed versus predicted dengue counts for district number 54
(Parsa), illustrating models with three outbreaks (Figure A), four outbreaks (Figure
B), and five outbreaks (Figure C).
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Figure D.27: Plot of observed versus predicted dengue counts for district number 58
(Rautahat), illustrating models with three outbreaks (Figure A), and four outbreaks
(Figure B).
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Figure D.28: Plot of observed versus predicted dengue counts for district number 62
(Rupandehi), illustrating models with three outbreaks (Figure A), four outbreaks
(Figure B), and five outbreaks (Figure C).
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Figure D.29: Plot of observed versus predicted dengue counts for district number
12 (Chitawan), illustrating models with three outbreaks (Figure A), four outbreaks
(Figure B), and five outbreaks (Figure C).

217



References for appendices

Supplementary Material References

[1] A. J. Tatem. “WorldPop, open data for spatial demography”. In: Scientific
data 4.1 (2017), pp. 1–4.

[2] L. D. Howe, B. Galobardes, A. Matijasevich, D. Gordon, et al. “Measuring
socio-economic position for epidemiological studies in low-and middle-income
countries: a methods of measurement in epidemiology paper”. In: International
journal of epidemiology 41.3 (2012), pp. 871–886.

[3] L. Hjelm, A. Mathiassen, D. Miller, and A. Wadhwa. “Creation of a wealth
index”. In: United Nations World Food Programme (2017).

[4] P. J. Diggle and E. Giorgi. Model-based geostatistics for global public health:
methods and applications. Chapman and Hall/CRC, 2019.

[5] E. Giorgi and P. J. Diggle. “PrevMap: an R package for prevalence mapping”.
In: Journal of Statistical Software 78 (2017), pp. 1–29.

[6] P. J. Diggle, I. Kaimi, and R. Abellana. “Partial-likelihood analysis of spatio-
temporal point-process data”. In: Biometrics 66.2 (2010), pp. 347–354.

[7] E. Gabriel, B. S. Rowlingson, and P. J. Diggle. “stpp: an R package for
plotting, simulating and analyzing Spatio-Temporal Point Patterns”. In:
Journal of Statistical Software 53 (2013), pp. 1–29.

[8] E. Gabriel and P. J. Diggle. “Second-order analysis of inhomogeneous spatio-
temporal point process data”. In: Statistica Neerlandica 63.1 (2009), pp. 43–51.

[9] J. T. Abatzoglou, S. Z. Dobrowski, S. A. Parks, and K. C. Hegewisch.
“TerraClimate, a high-resolution global dataset of monthly climate and
climatic water balance from 1958–2015”. In: Nature Scientific Data 5.1
(2018), pp. 1–12.

[10] ICF International. Spatial Data Repository, The Demographic and Health
Surveys Program. Modeled Surfaces. 2015. url:
https : / / spatialdata . dhsprogram . com / modeled -

surfaces/#survey=MW%7C2015%7CDHS.
[11] ICF International. Spatial Data Repository, The Demographic and Health

Surveys Program. Modeled Surfaces. Funded by the United States Agency for
International Development (USAID). 2015. url:
https : / / spatialdata . dhsprogram . com / modeled -

surfaces/#survey=MW%7C2015%7CDHS.

218

https://spatialdata.dhsprogram.com/modeled-surfaces/#survey=MW%7C2015%7CDHS
https://spatialdata.dhsprogram.com/modeled-surfaces/#survey=MW%7C2015%7CDHS
https://spatialdata.dhsprogram.com/modeled-surfaces/#survey=MW%7C2015%7CDHS
https://spatialdata.dhsprogram.com/modeled-surfaces/#survey=MW%7C2015%7CDHS


Supplementary Material References

[12] ICF International. Spatial Data Repository, The Demographic and Health
Surveys Program. Modeled Surfaces. 2015. url:
https : / / spatialdata . dhsprogram . com / modeled -

surfaces/#survey=MW%7C2015%7CDHS.
[13] N. Sommet and D. Morselli. “Keep calm and learn multilevel logistic

modeling: A simplified three-step procedure using Stata, R, Mplus, and
SPSS.” In: International Review of Social Psychology 30 (2017), pp. 203–218.

[14] G. Leckie. Three-level multilevel models–concepts. LEMMA VLE Module 11,
1–47. 2013.
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