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Abstract

Fixed-wing aerial vehicles are equipped with functional-
ities such as ILS (instrument landing system), PAR (preci-
sion approach radar) and, DGPS (differential global posi-
tioning system), enabling fully automated landings. How-
ever, these systems impose significant costs on airport op-
erations due to high installation and maintenance require-
ments. Moreover, since these navigation parameters come
from ground or satellite signals, they are vulnerable to in-
terference. A more cost-effective and independent alterna-
tive for guiding landing is a vision-based system that de-
tects the runway and aligns the aircraft, reducing the pi-
lot’s cognitive load. This paper proposes a novel frame-
work that addresses three key challenges in developing au-
tonomous vision-based landing systems. Firstly, to over-
come the lack of aerial front-view video data, we created
high-quality videos simulating landing approaches through
the generator code available in the LARD (landing ap-
proach runway detection dataset) repository. Secondly, in
contrast to former studies focusing on object detection for
finding the runway, we chose the state-of-the-art model Lo-
RAT to track runways within bounding boxes in each video
frame. Thirdly, to align the aircraft with the designated
landing runway, we extract runway keypoints from the re-
sulting LoORAT frames and estimate the camera relative pose
via the Perspective-n-Point algorithm. Our experimental re-
sults over a dataset of generated videos and original im-
ages from the LARD dataset consistently demonstrate the
proposed framework’s highly accurate tracking and align-
ment capabilities. Our approach source code and the Lo-
RAT model pre-trained with LARD videos are available
at https://github.com/ jpklock2/vision-—
based-landing—-guidance

1. Introduction

An autonomous landing system (ALS) is a technology
designed to enable aircraft or unmanned aerial vehicles
(UAV5s) to land safely and accurately without human inter-
vention [20]. This system typically integrates sensors, navi-

gation systems, and control algorithms to detect the landing
site, approach it with the correct trajectory, and manage the
descent and touchdown phases. ALS is particularly essen-
tial in situations where manual control is challenging or im-
possible, such as in limited visibility during adverse weather
or when operating drones and other unmanned systems. Its
applications span various fields, including photography, re-
search, surveillance, defence, and space exploration [17].
Enhancing aircraft autonomy reduces pilots’ cognitive load,
thereby improving safety in civil aviation [19].

Nowadays, fixed-wing aircraft have functionalities that
allow for complete automatic landings. Instrument land-
ing system (ILS) and precision approach radar (PAR) pro-
vide radio signals for horizontal and vertical guidance in
the final landing approach. DGPS provides the differen-
tial global position to guide aircraft through a virtual path.
However, these systems come with substantial costs for air-
port operations due to their high installation and mainte-
nance demands. Moreover, since these navigation param-
eters come from ground or satellite signals, they are vul-
nerable to intentional or unintentional interferences such as
radiofrequency emitters, solar flares, and spoofing. As a re-
sult, they have been primarily used under poor weather con-
ditions, which can affect the landing rate. In good visibility,
pilots are still required to visually confirm the runway from
a certain distance during the final approach.

A more cost-effective alternative for landing guidance of
fixed-wing aerial vehicles is a computer vision-based sys-
tem equipped with a front-looking camera for detecting the
runway and aligning the aircraft. Visual aspects of the land-
ing phase can provide information about the aircraft’s rel-
ative pose to the designated runway [4]. In contrast to
conventional landing functionalities, a Vision-based Au-
tonomous Landing System has two advantages. Firstly, it
helps alleviate the cognitive burden on pilots by automating
the complex task of landing. This reduces the need for con-
tinuous manual control and decision-making. By minimiz-
ing the pilot’s workload, the system allows them to focus
on monitoring and managing other vital aspects of flight,
thereby reducing fatigue and the potential for human error.
Secondly, it relies primarily on the aircraft’s onboard sen-
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sors. This reduces the need for costly ground-based instal-
lations and maintenance, allowing airports to operate more
efficiently. Moreover, the system’s ability to function inde-
pendently of satellite or ground-based equipment means it
can be used further in airports that may not have advanced
landing systems.

The problem of relative localization for autonomous
landing aims at obtaining the airplane camera orientation
(yaw, pitch, and roll angles) and the position concerning the
designated runway. Solving this problem involves estimat-
ing a function that receives as input a sequence of frames
representing the landing approach and outputs the camera
pose parameters for each frame. A common approach in lit-
erature to solve the problem is to divide it into two sequen-
tial stages, in which the first is responsible for detecting the
runway and the second for solving a well-known problem in
photogrammetry called perspective-n-point (PnP) [9], given
the 3D reference coordinate system established on the de-
tected runway. If we can precisely detect the runway, we
might get enough point correspondences (3D to 2D) to find
the camera pose parameters mathematically.

The task of runway detection is particularly challenging
since the detection model must be invariant to significant
scale differences, aspect ratio changes, weather conditions,
and the complexity of distinct airport landscapes. Several
studies have addressed the runway detection problem as
an object detection task, trying to find the runway corner
points/lines or instance semantic segmentation (e.g., aim-
ing and threshold markings) at each frame [4,8, 15,21,22].
In contrast to these former studies, this paper proposes to
track the runway through the sequence of frames and then
extract the runway corner points for each cropped image re-
sulting from the tracking model. We chose tracking as our
framework’s main component because of the nature of the
detection problem. In a landing video, the runway is the
only object of interest and, ideally, remains in the image
continuously once it enters the airplane’s field of vision. It
means that once the model detects the runway for the first
time, it no longer needs to search the entire image for the
object. Instead, it only needs to focus on the area around
the runway, reducing the search cost and improving detec-
tion accuracy.

One of the requirements for runway tracking is to have
a cohesive and timely sequence of frames representing the
approach and landing phases. A recent introduction of the
landing approach runway detection dataset (LARD) aims
to provide a collection of high-quality aerial images specif-
ically designed for the task of runway detection [7]. Al-
though the original images available in LARD do not form
sequences of frames that can be synthesized into a video,
a major benefit of LARD is the availability of the genera-
tor code that enables the creation of high-quality synthetic
front-looking images with automatic annotation (runway

border keypoints). So, we have used the LARD generator
to create the training set of simulated landing videos for our
tracking deep model.

As for the contribution of our study, we propose a
framework for autonomous landing with the following fea-
tures: (i) an efficient state-of-the-art tracking algorithm Lo-
RAT [16] to track the runway over the LARD generated
videos; the resulting frames from LoRAT are then auto-
matically cropped in a region surrounding the detected run-
way to facilitate the subsequent task of runway keypoint
from Yolov8n-pose. [11]; (ii) a collection of videos simulat-
ing landing approaches for nearly all airports in the LARD
dataset that we will make available in our git repository.

2. Related Works
2.1. Vision-based Runway Detection

Detecting a runway from a front-looking camera during
the landing phase of a fixed-wing aircraft presents chal-
lenges that need to be addressed to achieve robustness and
precision for autonomous landing [1, 13, 14]. In particu-
lar, the detection algorithm must handle scale variations,
being able to discriminate features from distant to nearby
scenes and accommodate potential directional variations.
To address these challenges, some recent studies in the lit-
erature [4, 5, 15,21] have approached this problem through
modified versions of deep learning models for semantic seg-
mentation of runway instances: runway area, runway aim-
ing point, threshold marks, contour lines. The main point of
these studies is that precise delineation of the runway area
can be achieved by performing pixel-level classification of
runway markings.

In [4], the authors proposed a real-time runway detection
model based on an adapted version of MobilnetV3 Con-
vNet to generate feature lines probability maps in paral-
lel with the semantic output (runway area). The method
achieved accurate results for the proposed FS2020 runway
dataset. However, some problems were observed in low
visibility and near-ground conditions. In [21], the authors
chose Yolov8-seg as the essential VALNet component, en-
riched with additional modules to deal with scale and aspect
ratio variations. The proposed deep model presented better
results than standard deep models (Mark R-CNN, Yolov8-
seg) on their proposed runway landing dataset (RLD). Nev-
ertheless, despite promising results, these studies focused
only on runway instance segmentation and, thus, did not
infer relative position and orientation from the segmented
images.

In contrast to instance segmentation, other studies have
approached the problem by modelling bounding boxes and
feature point extraction [3, 8, 22] of runways. [8] divided
the problem into two stages: runway detection based on
ROI (region of interest) plus a sparse coding spatial pyramid



—>

s |

r:\

+

= A = |

A

1 - Smooth Landing Sequences

2 - Object Tracking (LoRAT)

3 - Keypoint Extraction 4 - Camera Orientation
(YOLOv8n-pose) (PnP Estimation)

Figure 1. Proposed vision-based landing guidance framework.

matching feature extractor; then, the key points are selected
on the detected runway surface, and an orthogonal iteration
algorithm is applied to estimate aircraft relative pose. The
downside is that the handcrafted feature extractor is sensi-
tive to the pre-set parameters and might suffer under more
complex scenes. Moreover, the test bed in [8] considered
only a few random frames, which is insufficient for robust-
ness evaluation.

Finally, it is worth noting that private aviation compa-
nies such as Airbus [2] and Daedalean [6] are actively re-
searching deep-learning solutions for runway detection us-
ing front-view optical sensors. Airbus revealed that it has a
deep network that can calculate runway distances and vir-
tual axes for airplane lateral and vertical guidance, simulat-
ing the information provided by ILS. Deadelan presented a
landing system that can track the runway (showing bound-
ing boxes), and when the aircraft gets closer, the model es-
timates the parallel lines comprising the runway. Due to
confidentiality, the reports provided by these companies do
not include detailed technical information.

2.2. Object Tracking

As a deep learning-based computer vision task, ob-
ject tracking involves leveraging algorithms to automati-
cally detect, monitor, and follow objects within video se-
quences, enabling real-time analysis and decision-making.
Recently, low-rank adaptation (LoRA) [10] freezes the pre-
trained model weights while integrating trainable low-rank
decomposition matrices into each layer of the Transformer
model, significantly cutting down the number of trainable
parameters needed for downstream tasks. Inspired by the
parameter-efficient fine-tuning (PEFT) in large language
models, Lin et al. proposed LoRAT to apply larger vi-
sion transformers (ViT) for tracking using laboratory-level
resources. In transformer-based trackers, position embed-
dings are separated into shared spatial embeddings and
independent type embeddings. The shared embeddings,
which convey the absolute coordinates of multi-resolution
images (such as the template and search images), are de-
rived from the pre-trained backbones. Meanwhile, the in-
dependent embeddings, which identify the source of each

token, are learned from scratch. Furthermore, an anchor-
free head is introduced on a multilayer perceptron (MLP)
to optimize PEFT, resulting in improved performance with
reduced computational cost.

3. Proposed Framework

Our proposed solution is built on a progression of novel
contributions that combine the landing guidance frame-
work, depicted in Fig. 1. The framework receives the
smooth landing sequence of frames created from the LARD
dataset generator (detailed in Section 3.1) as input. Next, a
LoRAT model is proposed to track landing runways within
bounding boxes in each frame (Section 3.2). As an initial
condition, the LoORAT model requires the detected runway
bounding box for the first frame to go through the remain-
ing sequence, predicting the following bounding boxes. The
first bounding box is detected via Yolov8, and this detection
does not need to be highly accurate for LoORAT to work well,
as will be later shown in Section 5.1. Afterwards, the key
points are extracted via Yolov8n-pose, which is facilitated
by cropping every resulting frame from the LoRAT model,
as detailed in Section 3.3. Finally, camera orientation is es-
timated using the runway extracted keypoints and the PnP
algorithm (Section 3.4).

3.1. Data Generation

The recently released landing approach runway detection
dataset (LARD) [7] aims to provide high-quality aerial im-
ages during the approach and landing phases. The dataset
primarily comprises images generated using conventional
landing trajectories, where the possible positions and ori-
entation of the aircraft during landing are defined within a
geometric landing approach cone. The training set consists
of 14,433 synthetic images with a resolution of 2448x2648
(or 12,212 images when the domain adaptation sequences
are excluded). They are produced from 32 runways in 15
different airports using Google Earth Studio. The Test set is
composed of 2,212 synthetic images taken from 79 runways
in 40 different airports and 103 hand-labeled pictures from
real landing footage on 38 runways in 36 different airports.



Although this dataset allows for the training of an object
detection system, the images were augmented (e.g., through
horizontal flips) and randomly sampled within the geomet-
ric landing cone. As a result, it is not possible to properly
organize them into a sequence of frames that simulate a real
plane landing, which is necessary to train the object track-
ing component of the framework.

Following the LARD dataset protocol to divide the air-
ports’ runways into training and test subsets, we gener-
ated smooth landing sequences for each runway: training
sequences of around 500 frames and testing sequences of
around 35 frames. For the training dataset, we discarded
the domain adaptation runways and two training runways
with missing information, leading to a dataset of 25 run-
ways in 11 airports, with 11,519 images. For the test se-
quences, we discarded the real landing footage and used the
whole dataset of synthetic images, leading to 79 runways in
40 different airports, with a total of 2,484 images. We used
the configuration parameters of the LARD image generator
to generate the sequences, as will be shown later in Section
4.1. Our sequences simulate a straight line from the middle
of the cone (defined by the LARD authors) up to the runway.
As we propose a proof-of-concept for the methodology, we
do not include shakiness or lateral plane movement in the
sequences.

3.2. Landing Runway Tracking

Although object detection can accurately locate objects
in images, the nature of our problem allows for a more cost-
effective and straightforward solution. As mentioned ear-
lier, we opt for single-object (runway) tracking instead of
object detection. By doing so, we reduce the search area
once we only need to focus on the region around the run-
way. This can also lead to better detection accuracy, which
is necessary for the pipeline’s later steps that depend upon
the whole runway present in the detected bounding box.

Among several tracking models, we use LoRAT [16],
which is a single object tracking model that combines a
transformer architecture with LoRA [10] training, leading
to a fast training model that is accurate and capable of run-
ning in a single commercial GPU. The tracking algorithm
receives a pair of images along with the bounding box of
the target object in the first image and then identifies the
same object in the second image. Envisioning a portable
application that could run in an embedded system, we use
the smallest model, LoRAT-B-224, with 99M parameters
and 30 GMAC:s (roughly 60 GFLOPs).

The model training process can be described as follows:
given several image sequences, a random sequence and a
random anchor frame are selected. A pair of preceding and
following frames are randomly chosen, up to 100 frames
away from the anchor. Both frames are cropped around the
object’s bounding box in the prior frame, sized 2 and 4 times

bigger than the bounding box size for the prior and poste-
rior frames, respectively. The crops are feedforwarded in
the network, generating a final bounding box, whose error
is backpropagated to the network. We use the original train-
ing pipeline, with the primary modification of reducing the
maximum distance between the frame pairs and the anchor
frame to 30 frames instead of 100. We did this reduction to
accommodate scale variation. In the final frames of a land-
ing sequence, the runway gradually enlarges in the images.
Using a large distance between frames (e.g., 100) can re-
sult in the bounding box from the earlier image being much
smaller than in the later image, causing the crop to miss part
of the object and ultimately reducing the algorithm’s perfor-
mance.

3.3. Keypoint Extraction

When estimating the pose of an aircraft through images,
accurate landmarks are essential for achieving robust re-
sults that reflect the plane’s position and orientation. Since
we use object tracking rather than semantic segmentation to
achieve real-time results, we lack precise information about
the runway’s exact position in the images, aside from the
bounding box, which may not necessarily encompass all the
runway corners. To address this issue, we propose using a
keypoint extraction network to identify the actual corners
of the runway within a detected bounding box. Keypoint
extraction is relatively fast, making it a suitable addition to
our real-time solution.

Since landing images simulate the cockpit view, where
the pilot must adjust the airplane’s direction from a signif-
icant distance, the runway often appears small, surrounded
by elements that can complicate keypoint detection. Be-
cause highly accurate keypoints are critical for the next
pipeline stage, we address this challenge by cropping the
images around the bounding box identified during runway
tracking, adding a margin of 0.2 times the bounding box
size. This approach improves accuracy and allows for faster
inference. Fig. 2 shows an example of a cropped image.

Original Image

Cropped Image

Figure 2. Original image (left) and cropped image (right) based on
the runway bounding box predicted from the tracking model.



Deep learning models for keypoint detection are com-
monly trained for human pose estimation tasks, so they need
to be retrained with our dataset to identify the designated
keypoints accurately. This study uses the YOLOv8n-pose
model, described by Ultralytics [1 1], designed for pose es-
timation tasks. This model generates heatmaps to predict
the locations of potential keypoints, with the keypoint hav-
ing the highest probability being selected as the final pre-
diction. Notably, YOLOvS8n-pose employs a unified ar-
chitecture with a single "head’ that simultaneously handles
both bounding box and keypoint detection, contrasting with
models that utilize separate heads for these distinct tasks.

3.4. Orientation

In the orientation estimation stage of our framework, the
detected keypoints are processed by a perspective-n-point
(PnP) algorithm [9], which maps a set of 3-dimensional
coordinates in a reference object coordinate system to 2-
dimensional coordinates projected on the normalized image
plane. The reference coordinate system, with axes denoted
by XW, YW, and Z", is shown in Fig. 3.
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Figure 3. Reference and camera coordinate systems definitions.

Runway

To increase the number of correspondence points (3D to
2D) used in the algorithm’s calculations, we performed a
simple interpolation on the detected keypoints to determine
the runway’s midpoint across its width. This results in 6 im-
age points and their corresponding 3D object coordinates,
which are used as input to the algorithm. These points are
based on the runway’s width and length, as illustrated in
Fig. 4 and listed in Table 1. The runway measurements
were obtained using the Google Earth measuring tool.
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Figure 4. Reference runway points given to the PnP algorithm.

Table 1. Point coordinates from Fig. 4 given to the PnP algorithm.

A B C D E F
X"V 0 0 0  Length Length Length
YW 0 Widthi2 Width 0 Width/2 ~ Width
AL 0 0 0 0 0

Camera calibration is performed using the ground truth
runway corner points and their object coordinates (X",
YW, ZW) from the training set to obtain the camera’s in-
trinsic parameters, represented by matrix K:

fe 0 wo 3407.6 0 1291.1
K=10 f, wl|= 0 3506.6 1321.8
0 0 1 0 0 1

where f, and f, are the focal lengths in the x- and y-
axis, and ug and vq are the camera’s principal points. With
matrix K, the PnP algorithm uses each detected keypoint
pixel coordinates P¢ = [u,v]T, along with its corre-
sponding 3D reference coordinates PV = [z,y,2]T €
{A,B,C,D, E, F}, to compute the camera’s extrinsic pa-
rameters 3y 3 and t3x; through non-linear optimization,
to minimize the error of Eq. 2 for all specified points in
the image. Matrix R provides estimated values for the cam-
era’s yaw, pitch, and roll angles, while the norm of ¢ gives

its slant distance to the runway.

u €T
vl =K[R|t]|Y 2)
! |

4. Experimental Setup

This section further details our proposed tracking dataset
and the specific parameters of the models used in this work.

4.1. Dataset

The geometry of a landing example in the LARD dataset
is depicted in Fig. 5.

Aiming Point
Lateral Path Angle

Center Line| Vertical Path Angle

Figure 5. Geometry of a landing.



Three parameters define the aircraft’s relative pose to
the runway. First, the along-track (slant) distance refers to
the distance, measured in nautical miles (NM), between the
projection of the aircraft’s nose onto the runway’s center-
line and the Aiming Point. Second, the lateral path angle is
the angle formed between the runway’s centerline, the line
from the Aiming Point, and the projection of the aircraft’s
nose on the ground. Similarly, the vertical path angle rep-
resents the angle formed between the runway’s centerline
and a plane orthogonal to the ground that intersects the cen-
terline. On the other hand, the aircraft’s attitude is defined
by its rotation angles: pitch, roll, and yaw. The yaw angle
is relative to the runway heading, while pitch and roll are
relative to the horizontal plane.

The LARD dataset uses a set of all pairs (positions, at-
titude) within the ranges of the six ground truths in Table
2. Our tracking dataset consists of generated smooth video
sequences, with most parameters set to fixed values equal to
the center of the LARD ranges, as shown in Table 2.

Table 2. Ground truths of the generic landing approach cone.

Ground truths LARD Range Tracking Range
Along track distance  [0.08, 3] NM [0.08, 3] NM
Lateral path angle [—4,4]° 0.0°
Vertical path angle  [-2.2,—3.8]° -3.0°
Yaw [—10,10]° 0.0°
Pitch [—8,0]° —4.0°
Roll [—10, 10]° 0.0°

4.2. Model Configuration

We reproduce or fine-tune different models on a single
Nvidia RTX-4090 GPU for different parts of our pipeline:

» LoRAT for tracking: We train a LORAT-B-224 ! model
using the same parameters as the original authors [16],
except for modifying the distance from the anchor
frame for random sampling pairs to 30.

* YOLOv8 for keypoint extraction: we train a
YOLOv8n-pose > with an image size of 640 pixels and
a batch size of 4. We trained each network until con-
vergence for a varying number of epochs, as explained
in Sections 5.1 and 5.2.

S. Results
5.1. Landing Runway Tracking

Using our proposed LARD-based video dataset for train-
ing and testing the tracking model, we trained for 21 epochs

https://github.com/LitingLin/LoRAT
’https : / /github . com/ultralytics /ultralytics /
issues/1915

using all images in the training dataset. We used 11,519
pairs of images for each epoch, which is the total number of
images in the dataset.

Since the tracking algorithm receives an initial input cor-
responding to the runway detected in the first frame, we
perform additional experiments to evaluate the sensitivity
of our tracking solution to this first bounding box detec-
tion. By varying the position of the bounding box of the
first frame, we dislocate it diagonally by O (ground truth),
75, 100, 125, and 150 pixels. The mean diagonal size of the
first frame bounding boxes for the test dataset is 75411 pix-
els, so pixels are a slight overlap with the ground truth is ex-
pected at 75, while larger displacements should not overlap.
We dislocate all bounding boxes to the upper right corner to
keep consistency. Finally, we evaluate our model using the
standard One-Pass Evaluation (OPE) metrics [18]: Success
Score (SUC), Precision (P), Normalized Precision (Pnorm),
Success Rate at IoU >= 0.5 (SRgs) and Success Rate at
IoU >= 0.75 (SRq.75). The mean results for every runway
of each experiment in the test dataset can be seen in Table
3, where PD indicates the diagonal Pixel Displacement of
the bounding box towards the upper left corner.

Table 3. Landing tracking accuracy (in %) for different overlaps
of the first frame with the ground truth.

PD SUC P Pnorm  SRos  SRy7s
0 80.12 88.11 93.64 92.84 85.77
75 7979 8811 9341 92777 85.73
100 78.50 87.10 91.25 90.67 82.85
125 67.56 7395 79.25 7752 71.65
150 31.07 34.17 4047 3444 30.82

The results of the ground truth case indicate that the net-
work can track runways effectively, achieving an SUC score
of 80.1% and a Precision of 88.1%. When the bounding
box was displaced by 75 pixels diagonally, the results re-
mained very close to the ground truth, meaning the network
could track the runway despite the displacement. Similar
behaviour was observed for smaller displacements, so we
did not report results below 75. Performance began to de-
cline at around 100 pixels, with significant drops occurring
at 125 and 150 pixels. This highlights the approach’s limita-
tions: the object detector must be accurate enough to locate
the runway within 100 pixels (diagonally) of its actual po-
sition. More significant deviations may result in decreased
algorithm performance.

To validate our network choice, we performed an ad-
ditional experiment where we trained YOLOvS for object
detection (without keypoints) for 338 epochs, until conver-
gence, using the default parameters specified in Section 4.2
and our proposed tracking dataset. We then used the model
as a substitute for our tracking network. We then extracted
the same tracking metrics for the YOLO detections over
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time and listed them in Table 4.

Table 4. Comparison of different tracking algorithms.

Network SUC P Pnorm SRos  SRygs
LoRAT 80.12 88.11 93.64 92.84 85.77
YOLOv8 74.51 87.82 91.62 9191 62.88

The results show that LoRAT obtained a better result in
every metric. Since we need an accurate tracker for im-
proved keypoint detection results, this demonstrates that a
model proper for the tracking task suits our pipeline better
than an object detection model.

5.2. Keypoint Extraction

To assess the impact of the image cropping in our so-
lution, we trained the Yolov8n-pose model on the LARD
train dataset twice, with images cropped around the bound-
ing box for 160 epochs, and with the same dataset with full-
sized images for 229 epochs. This experimental setup in-
volved the evaluation of the model performance using pre-
cision (P), recall (R), and mean Average Precision metrics
(mAP*/mAP**%), following the validation procedure out-
lined in [12]. The are presented in Table 5.

Table 5. Comparison of yolov8n-pose results in cropped and non-
cropped images

Crop P R mAP?  mAP%
X 95.45% 92.95%  95.62% 88.15%
v 98.92% 98.96% 98.49%  94.59%

Model Comparison

—— cropped images
3 —— non cropped images

Pose Loss

0 50 100 150

Epoch

Figure 6. Validation losses for keypoint detection model trained
with cropped and full-size images.

The results obtained from training on the cropped dataset
demonstrated superior performance across all evaluated
metrics, and, as shown in Figure 6, both models converged
within the number of epochs we allowed them to execute.
This suggests that cropping the image around the bound-
ing box identified during the tracking phase is critical for
ensuring precise outcomes. An illustrative example of these
results is presented in Fig. 7, where the keypoints have been
scaled to the original image dimensions for enhanced visu-
alization.

Figure 7. Keypoints detection results with red bullets.

5.3. Orientation

We obtained results for estimating the camera orienta-
tion and the slant distance to the runway across four distinct
scenarios, using the keypoints detected by the YOLO net-
work and the ground truth points of runway corners. The
evaluation was conducted on 29 images corresponding to
runway 35 of the MDSD airport from the original LARD
test dataset, on 31 frames of a smooth landing video se-
quence generated for the same runway, on 31 images of run-
way 34R from the RJAA airport from the original LARD
test dataset; and on 30 frames of a smooth landing video
sequence generated for the same runway. Evaluation met-
rics include the error between the aircraft’s estimated and
ground truth parameters.

Figs. 8 to 11 present the orientation and slant distance
estimation errors for each image across different scenarios,
comparing ground-truth-as-input estimations with detected-
keypoints-as-input estimations. The corresponding numeri-
cal results, expressed as mean and standard deviation errors
across all images and scenarios, are detailed in Table 6.

Orientation Estimation Error Slant Distance Estimation

5 ° A3'5 —— detected-keypoint-based estimation
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Figure 8. Results of Runway 35 - MDSD Airport (LARD test set).

The results show that, in all cases, the average errors are
close to zero degrees and tend to align with estimates us-
ing the ground truth corners of the runways, which are the
highest standard baselines for this method. In all scenar-
ios, the roll angle exhibited the highest standard deviation,
highlighting the sensitivity of this parameter to minor fluc-
tuations in the detected keypoint positions. The estimated



Table 6. Orientation and slant distance estimation errors across different scenarios, using the ground truth (gt) and detected keypoints (dkp)
as input; symbols I and V refer to images from the LARD test set and our smooth video generated sequence, respectively.

Scenery Yaw Error (°) Pitch Error (°) Roll Error (°) Slant Dist. Error (NM)
gt dkp gt gt dkp gt dkp
Impsp -0.07 £0.09 025+1.40 | -025+0.10 -0.12+0.51 | -0.03 £ 0.36 -1.03 £4.04 | 0.03 +0.02 0.254+0.29
Vympsp | -0.06 £ 0.01 -0.07 £0.21 | -0.27 £0.02 -0.04 + 0.20 | 0.03 £0.08 -0.83+2.76 | 0.03 +0.01 0.32+0.29
Irian -0.04 £ 0.06 -038+1.48 | -0.15+0.11 0.21 £0.68 | 0.22+043 027 £2.17 | 0.05+0.04 0.52+0.84
VRiaa -0.02 £ 0.01 -0.14+0.23 | -0.18£0.02 0.09+0.31 | 0.07+0.07 2.02+1.61 | 0.07+0.04 0.404+0.29
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Figure 9. Results of Runway 35 - MDSD Airport (generated video
sequence).
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Figure 10. Results of Runway 34R - RJAA Airport (LARD test
set).
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Figure 11. Results of Runway 34R - RJAA Airport (generated
video sequence).

slant distances per frame are relatively close to the ground
truth despite a few outliers, and the estimates generally im-
prove as the aircraft approaches the runway. This improve-

ment is attributed to better runway visibility and more ac-
curate keypoint detection as proximity increases.

6. Conclusion

This paper proposes a vision-based landing guidance
framework that mainly relies on the LoRAT transformer
model to track runways within bounding boxes in each
frame. We created smooth video sequences simulating land-
ing approaches through the image generator code available
in the repository of the LARD dataset. This was a require-
ment for LORAT deep model training. We have also pro-
posed cropping the area surrounding the resulting runway
bounding boxes predicted by LoRAT, which leads to per-
formance gains of the Yolov8n-pose keypoint extractor. As
for the pose estimation via the PnP algorithm, the proposed
framework achieved accurate results despite some outliers.

Although we have obtained very high metrics (all above
90%) with the keypoint extraction model (Yolov8n-pose),
we have observed that the PnP algorithm for relative pose
estimation is susceptible to minimal deviations in the posi-
tion of the extracted keypoints, which leads us to consider
future alternatives. A possible solution is to increase the
number of uncorrelated keypoints given to PnP. Moreover,
we could enrich the keypoint estimates by either modify-
ing the LoRAT tracking model to predict keypoint displace-
ments frame by frame or by performing sensor fusion (our
proposed visual estimator + onboard INS) through a filter-
ing technique, like the extended Kalman filter.

Finally, we intend to extend the experiments to test the
robustness of our pipeline over more challenging landing
sequences involving airplane manoeuvres, shakiness, and
real footage. We also plan to test our approach on other
publicly available datasets, such as FS2020 [4] and RLD
(runway landing dataset) [21], to compare it with recent
state-of-the-art methods from the literature.
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