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Abstract 

Digital twin is an integrated multi-physics representation of a complex physical entity. This 

article proposes a framework for the construction of a tower crane digital twin, and develops 

the physical-to-virtual connection of the digital twin. The main contributions of this paper 

include development of tower crane monitoring dataset, tower crane detection and tower crane 

operation mode recognition. By annotating more than 20,000 tower crane images in 583 tower 

crane videos, a tower crane image recognition dataset and a tower crane operating mode 

dataset are established. Yolov5x algorithm is used in the tower crane detection, and the test set 

detection accuracy is 93.85%. After comparing the LSTM and CNN algorithms, 3DResNet 

algorithm is selected for tower crane operational mode recognition. The dataset is augmented 

by rotating the image and the final recognition accuracy reaches 87%. These models can be 

installed on CCTV to monitor operational status of tower crane in real time and transfer 

relevant information to the virtual model. The tower crane in the virtual space completes the 

action of the physical tower crane, thereby realizing the physical-to-virtual mapping in the 

digital twin. 
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1. Introduction 

The concept of digital twin originated from the military and aerospace industries[1], and has 

been increasingly used in many other applications, such as in manufacturing. In general, 

Engineering is the field with the slowest progress in digitalization[2], and only recently digital 

twin technology has started attracting attention of engineering researchers and practitioners. 

For instance, there are currently insufficient digital twin applications for construction sites and 

equipment, e.g., tower cranes, which should have benefit enormously from the digital 

technology. 

Tower crane is one of the widely used construction machinery in construction projects[3]. 

Operational safety of a tower crane is primarily important for any construction company to 

reduce losses and even casualties[4]. Thus, it is of vital importance to monitor the working 

status of a tower crane, feedback and analyses the abnormal situation both physically and 

digitally to ensure the safe operation of the tower crane equipment. At present, the modeling 

part of digital twin in an engineering application is often by point cloud, laser scanning, BIM, 

3D modelling software like Pro/e and Solidworks, and other methods. These models have high 

fidelity and restoration degree, but normally take a large amount of time for manual processing 

and cannot offer real-time responses to changes in physical entities. Construction site is a 

physical entity where experience changes all the time, hence, it is necessary to reflect the 

changes in real time in a virtual model. On the other hand, traditional tower crane inspection 

relies more on sensors and daily manual inspections, which may result in a waste of data or 

needs to deal with a large amount of multi-source heterogeneous data. To address these issues, 

this study adopts the method of pre-modeling, by which a tower crane model is developed in 

the virtual space. Our work addresses this gap by introducing a computer vision-based solution 

that leverages YOLOv5 for crane detection and 3DResNet for operational mode recognition.  

This enables real-time monitoring and recognition of crane movements within a digital twin 

environment, where the physical status of cranes is continuously mapped to a virtual model. 

Unlike standard object detection studies, which typically focus on static images, our research 

emphasizes the recognition of dynamic crane operations, such as rotation and movement states, 

within a construction site.  The digital twin environment further differentiates our approach by 

ensuring that real-time data from CCTV systems is immediately transferred to a virtual crane 
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model.  This allows for immediate analysis, risk assessment, and operational optimization, 

making it an essential tool for enhancing construction site safety and efficiency. 

The structure of this paper is as follows. The second chapter of this paper review the 

development of digital twin and its application in engineering. Chapter 3 presents the 

framework of the digital twin for a tower crane. Chapter 4 explains the development of the 

tower crane dataset and data augmentation methods. Chapters 5 and 6 introduce the method 

of tower crane image recognition and tower crane operation mode recognition to connect the 

physical and the virtual crane. The final chapter discusses the findings, limitations, and future 

work of this study.   
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2. State of the Art 

2.1 Origin of Digital twin 

With the development of IT technology in the 1990s, it was increasingly possible to develop 

virtual models to generate complex physical artificial products and to integrate simulation 

systems[5]. At the beginning of the 21st century, virtual models of products began to include 

the definition of product personality[6]. Modelling has gradually become a common tool to 

solve some problems that are related to manufacturing and engineering. It can be used to check 

aspects of functionality or the entire production system. The concept of digital twins has also 

become more and more specific. The concept of digital twins was first proposed by Grieves 

as digital representation of actual physical products[7]. A digital twin mainly includes physical 

entities, virtual models, and the connection of the physical and the virtual parts. It is updated 

by modelling, simulating, and self-optimising the physical entities[8].  

 

2.2 Application of digital twin in construction engineering 

The application of digital twin in the civil engineering industry is still relatively vague. At 

present, most digital twins related to construction are concentrated in a single life cycle 

stage[9], for instance, design and engineering phase, construction stage, operation and 

maintenance stage, respectively.  

 

In the design phase, in order to describe the digital twin of a single building, full element 

building modeling and simulation technology are required, which is different to the traditional 

method that is based on the building information modeling[10]. BIM does not pay attention to 

the relationship between the model and the physical entities, but digital twins require the 

existence of physical entities. The current digital twins are overly pursuing high fidelity and 

neglect the requirements of modeling. In this case, Zhang proposed the evolutionary 

concurrent modeling method[11], which is based on traditional modeling and simulation, and 

can systematically guide the modeling process of the digital twin. For a completed building, 

Shanbari[12] proposed lidar modeling, and Zhang[13] proposed point cloud modeling to 

describe the digital twin of the building. Kaewunruen[14] used Revit and Navisworks software 

to build the BIM model of a railway transportation system. Combined with the digital twin 

technology, they can manage the entire lifecycle of the railway capacity system, reduce costs 
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and increase sustainability. Lu[15] used point clouds and labelled point clusters to model 

concrete bridges as part of the rapid modeling of digital twins. Angjeliu[16] used the point 

cloud to model the vault of the Milan Cathedral as the first step of connecting the physical 

model to the virtual model in the digital twin to prepare for the subsequent structural 

monitoring, operation and maintenance of the building. However, though these methods, 

which use point clouds, lidars, or commercial software to build BIM models, are able to 

provide physical-to-virtual connection of digital twins to a certain extent, these connections 

are not real-time, and cannot instantaneously reflect the physical entities in the digital twin 

over a period of time. 

 

2.3 State of art of algorithm research 

Object detection, an integral part of computer vision, has been widely used in intelligent video 

surveillance[17, 18], autonomous vehicle[19], manufacturing inspection[19, 20], as well as 

other fields. With the increases in GPU power, the iteration of convolutional neural algorithms, 

artificial intelligence technologies, and mature image training datasets, target detection models 

based on deep learning have made significant progress in the last few years. 

 

Target detection algorithms are divided mainly into categories, i.e., two-stage detection (the 

process from coarse to fine) and one-stage detection (completed in one step)[21]. Two stage 

detection convert the target detection into a classification problem, while one stage detection 

algorithm converts it into a regression problem. The unified network can be used to directly 

predict bounding boxes and classification categories. In general, the detection accuracy of one 

stage detection is lower than that of two-stage detection, but one stage detection has a faster 

training speed. The you-only-look-once series (YOLO) was first proposed by Redmond for 

one-stage detection and it is widely used because of its speed[22]. Although YOLOv1 has a 

fast detection speed, it is not as good as the two-stage detection method in terms of detection 

accuracy. Liu[23] applied the archor mechanism of Faster RCNN to the Yolo algorithm and 

proposed the Single Shot Detection (SSD) algorithm to achieve good detection speed along 

with improved accuracy. However, the detection accuracy for small objects is not ideal. 

Yolov2[24] added batch normalization after the convolutional layer, anchor boxes and multi-

scale training, thus improved further both the training speed and accuracy. Yolov3[25] 

designed Darknet-53 as the backbone model, which is deeper and more complex, and replaced 
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the softmax loss with logistic loss. As a result, the accuracy of the model was greatly improved, 

especially for small target detection, without reducing the processing speed. However, the 

improved model can only predict two bounding boxes in each image grid, thus the model is 

not as accurate as the two-stage one. Yolov4 is a real-time and high-precision detection model 

which meets more field needs. It uses mosaic data argument to expand the dataset and decrease 

CPU, replaces darknet-53 with CSPDarknet 53, and in the neck layer, uses FPN+FAN to make 

full use of feature fusion[26]. Yolov5 adopts a more lightweight model, the accuracy of which 

is close to that of Yolov4, while, theoretically, the detection speed is more than twice as fast 

as that of Yolov4. 

 

It has been recognized that yolov5 has shown poor detection ability for occluded targets when 

the weighted non-maximum suppression (NMS) is used to filter out the target frame in the 

post-processing process of target detection. Under these circumstances, Distance-Intersection 

of Union_non maximum suppression (DIoU_nms) will be used to detect the occluded objects 

in this experiment. Traditional nms only considers IoU. When two different objects are very 

close, the IoU value is relatively large and only one detection frame remains after nms 

processing. However, DIoU_nms considers the distance between the center points of the two 

prediction frames. This situation will be considered that this is the frame of two objects and 

another one will not be filter out. In addition, the mosaic data argumentation method mainly 

focuses on raw images, i.e, four images are randomly cropped and then spliced into one new 

image to argument the training dataset. To reduce the influences of noises, edge extraction, 

which can eliminate image noise, emphasizes the edges and outlines of the detected objects 

on the image, will be used to simplify image information and use edge lines to represent the 

information carried by the image. 
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3. Framework of digital twin of tower crane 

To develop a digital twin, the first step is to define the physical entity and the physical 

environment in the virtual model through modelling and other methods. At the same time, the 

impact of the physical environment on the physical entity to be reflected in the virtual model. 

Then, by simulating and analyzing the changes of the virtual model in the virtual environment 

to predict the future condition of the former. The information will be transmitted to the physical 

entity so that decision-makers can be presented with different options. It is expected that digital 

twins should facilitate real-time data transmission and autonomous analysis and decision-

making. Given the above framework and the requirements,  

digital twin should have following seven important features i.e., the physical entity and the 

physical environment; virtual entities and the virtual environment; the physical to virtual 

connection; the virtual to physical connection; the digital twin process; the real-time nature of 

the digital twin; and autonomy of the digital twins. This article trained a tower crane detection 

algorithm and use this algorithm to detect and segment tower cranes in the videos, thus 

facilitate the recognition of the operation mode. This information will be transmitted to virtual 

model through the physical to virtual connection. Therefore, the detection of true tower crane 

is an important step to realize the digital twin system of tower crane. 

 

Figure 1 is a simple illustration of digital twin of a construction crane, by which the relevant 

data of the physical entity and environment are transferred to the virtual environment through 

the real-time and autonomous physical to virtual connections, while the virtual entity analyses 

the data and then transfer execution commands to the physical entity through the virtual to 

physical connections.  

 

Figure 1. Core concepts of Digital twin 
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3.1 Physical entity and physical environment 

In this research, the physical entity refers to the tower crane. The QTZ80 tower crane, shown 

in Fig.2, was selected in the case. Other types of tower crane will be modeled separately.  The 

physical environment of the digital twin is the space where the tower crane is located, which 

includes the external environment and physical processes. When the crane is operating, the 

physical process is the way the crane behaves, including, e.g., direction and speed of rotation, 

and operation status. In a model, it is required to quantitatively measure the physical process 

of the crane. Simultaneously, various external environment factors that may affect the 

operation of the tower crane are needed to be measured, and as inputs of the virtual twin 

environment as they change. 

 

Figure 2. Physical entity of the QTZ80 tower crane 

 

3.2 Virtual entities and virtual environment 

The virtual entity is the twin representation of the tower crane in the virtual space. According 

to the CAD drawings of the QTZ80 tower crane, Creo (Pro/E) software is used to draw the 

components of the tower crane and then assemble them in the 3D unity software. As is shown 

in Figure 2, the boom and the main body of the tower crane are defined, respectively, as a 

virtual environment existing in the digital domain as the mirror image of the physical 

environment, which contains the digital representation of some external sensor data 

(temperature, humidity, wind speed etc.,)  
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Figure 2:  

Figure 3. Tower crane boom and main body 

 
 

 

3.3 Physical to virtual connection 

Digital twins instantaneously reflect changes in the state of physical entities themselves and 

external physical environment to the virtual entity through the physical to the virtual 

connection. At the level of technical application, the parameters of the changes in the physical 

crane can be updated through sensors[7] [27, 28], 5G[29], IOT[10, 30, 31], CPS[32]. In this 

research, tower crane detection, operational mode recognition and modelling are used to 

capture the changes of tower crane and update the virtual crane accordingly. 

3.4 Virtual to physical connection 

A digital twin does not work with only physical-to-virtual connection. Information, such as  

abnormal operation, etc -should be fed back to the physical entity (management personnel) 

through the virtual-to-physical connection for optimization[33-35]or to provide decision-

making opinions[36-38].  

3.5 The digital twin process 

The digital twin process is to reflect the detailed information of physical tower crane and its 

environment to the virtual world using digitalization method, and then simulate the virtual 
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tower crane to transfer useful information to improve the physical entity. Digital twin of tower 

crane with physical-to-virtual connections and virtual-to-physical connections can realize the 

closed-loop “simulation-execution-adjustment” function of the tower crane digital twin and 

enable the digital twin to continuously update through self-learning. 

3.6 The real-time nature of the digital twin 

The close-loop connection of the physical and virtual crane will generate a large amount of 

multi-source heterogeneous data (temperature and humidity sensor data, tower crane operation 

video and image data and etc.,), these data have many types and fast generation speed. It is 

necessary to establish a big data storage management platform and ensure the security of data 

through blockchain technology to support real-time interaction of tower crane digital twin. 

Digital twin and big-data driven application platform are needed, through the latest 

technologies to scientifically manage the operation safety of tower cranes, improve the 

efficiency of tower crane hoisting and distribution, and establish a safety management 

platform, which can online/offline detect operation conditions, work time. 

3.7 The autonomous nature of digital twin 

The tower crane digital twin takes the experience of tower crane construction personnel, 

construction knowledge, historical operation and maintenance data, and real-time data as input 

to output prediction data, enriches and updates the feature database for different safety 

problems, and finally forms autonomous intelligent diagnosis and determination and feedback 

to site managers. At the same time, use big data technology to collect information from sensors, 

such as tower crane operation status, real-time data on the health status of tower crane 

components, and digital-related historical data (maintenance records, energy consumption 

record data), etc. Through the Bayesian cycle, the predicted data and the actual data are 

compared and analyzed, and the optimization model is continuously learned to realize the 

autonomous digital twin of the tower crane.  



 

11 

 

 4. Creation of image dataset 

This research mainly focuses on realizing the physical-to-virtual connection in the digital twin 

concept. In order to achieve this step, the pre-modeling method is used, by identifying the state 

changes of the physical entity of the tower crane, and then reflecting these changes in the 

model. As shown in Figure 4, this research first uses the object detection algorithm to train the 

tower crane image recognition model, then uses the best model to process new tower crane 

videos to detect tower cranes, and the tower crane segmentation algorithm to segment the 

tower cranes, and finally performs tower crane operational mode recognition. This requires 

tower crane object detection dataset and tower crane operation mode recognition dataset. 

 

Data is the most critical part of machine learning that is incorporated in the software used for 

the research. Using high-quality, large-scale image datasets can maximize the efficiency of 

deep learning, thereby training models with higher quality and accuracy. However, currently, 

there is no publicly available general-purpose tower crane image dataset with category labels 

for tower cranes on construction sites. Collecting relevant video and image data and 

performing a series of optimization processes is a primary task of this research.  

 

 

Figure 4. Framework of recognition of tower crane operation process 

 

In this research, the creation and optimization of tower crane image datasets are conducted in 

the following 5 steps, i.e.,  (a) video data acquisition to create datasets with a small number 

and medium quality; (b) data pre-processing through grayscale processing, binarization 

processing or edge processing to reduce the number of data with high-quality datasets, (c) 
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image annotation, using Labellmg for tower crane 2D bounding box annotation to create a 

labelled dataset; (d) tower crane segmentation to connect image recognition deep learning and 

motion state recognition deep learning; and (e) data augmentation by rotating images, mosaic 

enhancement and other methods to form larger, high-quality datasets that can be used for deep 

learning. As a result, the initial data set with a small number and medium quality is turned into 

a training data set with a larger number and high quality. 

4.1 Data collection and pre-procession 

The tower crane object detection dataset includes a video set, an image set and an annotation 

set. The video mainly comes from the combination of Google videos and the tower crane 

operation video shot on-site. After filtering out some blurred and poor-quality videos, a total 

of 583 videos with a length of approximately 7-15 seconds have been collected. The videos 

only contain images of the tower crane in static, clockwise or anti-clockwise rotation. The 

number of the annotated tower cranes exceeds 20,000. 

 

In the dataset of tower crane operation mode recognition, this research separates the tower 

cranes in the image through the tower crane segmentation algorithm. For each group of tower 

crane images, 20 images at a certain interval of frames are saved in different folders. It is 

required to indicate the motion state of the tower crane captured by the images in each fold, 

i.e., 0 for static, 1 for clockwise rotation and 2 for anti-clockwise rotation. For example, tower 

2 in test 3 rotates clockwise, and this is marked as test 3/tower 2_1. After these processes, 

1,373 sets of data were obtained, including 27,460 tower crane pictures, which is divided into 

1,167 sets of training set data, 119 sets of dev dataset and 87 sets of test dataset. 

 

Finally, this research obtained a detailed tower crane dataset. Including a video set of 583 

tower crane operation videos, an image set of 27460 tower crane pictures, a pre-processed 

tower crane operation mode recognition dataset with 1373 sets of image data. 

 

4.2 Image annotation 

After completing image acquisition and pre-processing, this study uses Labellmg to annotate 

tower crane images for subsequent deep learning of image recognition. The images of the 

annotated tower cranes ate shown in Figure 5, where each of the tower cranes is closely 
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enclosed by a rectangular frame, which covers all parts of the tower crane. Normally, 

disturbing noises, e.g., tree branches in Figure 5, may also be included. 

 

 

Figure 5：Sample of tower crane annotation 

 

4.3 Data argument 

After completing the process of image data collection, pre-processing and labelling, this 

research adopts several methods of data enhancement and augmentation to expand the tower 

crane image dataset. Among them, mosaic enhancement is used in the object detection 

algorithm. Data augmentation is performed on the tower crane image dataset through mosaic 

data augmentation and traditional single-sample data augmentation methods (flip, rotate, crop, 

scale, color transform, etc.) After completing data enhancement, the original data and the 

enhanced data are scrambled and mixed into a new dataset, the volume of the dataset can be 

increased and the new dataset provides more data to support the parameter optimization in the 

model, thereby improving the generalization ability of deep learning models. 

 

In the recognition of the tower crane operation model, the data augmentation method of 

rotating images is used. In the model training of the tower crane operation mode recognition, 

to increase the training dataset, it is vital to make the dataset as diverse as possible so that the 

trained model has a stronger generalization ability. Improving the relevant data in the dataset 

through data augmentation can prevent the network from learning irrelevant features, learn 

more data-related performance and significantly improve the overall performance. In this 

research, the tower crane was rotated 10º and 20º clockwise and anti-clockwise. As shown in 



 

14 

 

the figure below, the tower crane is rotated by 10º, -10º, and the original image of the tower 

crane is 20º and -20º. Through the above operations, the number of datasets increased. from 

1,373 to 6,865, which is five times larger, and improves the overall performance of the 

subsequent model. 

  

Figure 6. Augmented dataset  
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5. Tower crane detection based on yolov5 

After completing the creation and optimization of the tower crane image dataset, it is necessary 

to select an appropriate deep neural network model to train and test the dataset images, and 

continuously adjust the model parameters to obtain a model with low loss and high recognition 

accuracy. Different types of neural networks and deep learning algorithms have significant 

differences in recognition accuracy and detection speed, and should be selected according to 

the requirements of an application. In order to realize the real-time and autonomous nature of 

the digital twin of tower crane, tower crane object detection algorithm should have the ability 

to detect the tower crane in a quick response, yolov5 algorithm is a good choice for its 

lightweight model, high precision and it can be built in a cctv monitor. High-quality and large-

scale datasets can effectively improve the accuracy of training models, and large volume 

datasets also play a positive role in the development of algorithms. Based on the tower crane 

construction video images collected in this study, Yolov5 passes each batch of training data 

through the data loader and simultaneously enhances the training data through scaling, color-

space adjustment, and mosaic enhancement. In the development of the digital twin of the tower 

crane, image recognition of the tower crane is the first step from the physical to the virtual 

end.  

 

5.1 Yolov5 structure of tower crane detection 

Yolov5 is the latest version of yolo series algorithms after yolov4, and it has the advantage of 

fast calculation speed, and smaller model volume. Yolov5s network structure consists of four 

parts: input, backbone, neck, and prediction. Figure 7 shows the structure of Yolo series 

algorithm.  
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Figure 7: Network structure of Yolo series algorithm 

 

The input component uses mosaic data enhancement, adaptive anchor box calculation and 

adaptive image scaling. Mosaic data enhancement uses traditional data enhancement methods 

to process the selected four initial images and combine these four images to form a new image. 

Adaptive anchor box enhancement uses initial anchor box function to adaptively calculate the 

best anchor box values for different training datasets. Adaptive image scaling method unify 
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different input sizes to standard, thereby improving the training and inference speed. 

 

Backbone structure is combined by CPS component and focus component. The CSP structure 

divides the feature map of the base layer into two parts, and then merges them to achieve rich 

gradient combinations and solve the problem of heavy computation in previous work. Yolov5 

algorithm adds a slice operation in the focus structure, which can double the sampling feature 

map without losing any information.  

 

In order to better extract the fusion features of the target, Yolov5 inserts the neck layer 

containing the Feature Pyramid Network(FPN)+Path Aggregation Network(PAN) structure in 

the backbone layer and the output layer. Figure 8 demonstrates the FPN+PAN structure. 

Among them, the FPN layer conveys strong semantic features from top to bottom through up-

sampling, and the PAN layer conveys strong localization features from bottom to top through 

subsampling. 

 

Figure 8：FPN+PAN component 

 

5.2 Experimental environment 

5.2.1 Evaluation indicators 

Numerous evaluation indicators have been devised by scholars for quantitative analysis of 

target detection algorithm performance. They all indicate the performance of the detection 

algorithm to its level to a certain extent. General precision indicators are precision, recall, 

accuracy and mean average precision (mAP). In the target detection based on the YOLOv5 
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algorithm series, evaluation indicators such as precision, map, recall and F1 score are 

introduced to evaluate the training results algorithm accuracy.     

 

Equations (1-3) below are the definition of precision (P), recall (R) and accuracy (A) using TP, 

FP, TN, FN. 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                              (1) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                             (2) 

𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                                                 (3) 

 

where, TP is true positive, FP is false positive, FN is false negative, TN is true negative. Take 

the tower crane detection as an example, the part detected as the tower crane is TP. Other parts 

of the picture detected as tower cranes are termed FP. When the tower crane goes undetected 

FN is indicated. The number of tower cranes images detected is represented by TP+FP, and 

the actual number of tower cranes is shown as TP+FN. 

 

The F1 score, which is the harmonic-mean of precision(P) and recall(R) used in machine 

learning, is calculated by Eq.(4) . It is useful for evaluating models, especially when dealing 

with imbalanced dataset. 

 

𝐹1 = (
2

𝑅−1+𝑃−1
) = 2 ∙

𝑃×𝑅

𝑃+𝑅
                                                                 (4) 

 

5.2.2 Experiment results 

In this study, two groups of experiments are used to compare and test the superiority of the 

improved yolov5 target detection algorithm. 8,746 annotated tower crane image data are used, 

with a total of more than 20,000 annotated tower crane data, for algorithm training. In the first 

set of experiments, 3,265 new tower crane images are used as samples, four yolov5 algorithms 

with different depths, yolov5l, yolov5m, yolov5s, and yolov5x, were compared, and the 

advanced and superiority of the improved model in tower crane target detection was analyzed. 

The second group of experiments selected the best yolov5 algorithm, compared it with the 

improved yolov5 algorithm with different improvement strategies, and analyzed the impact of 

the improved strategy on the model performance through ablation experiments.   The 
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Optimizer weight decay is set to 0.0005, and the initial learning rate is 0.01. Among them, for 

yolov5s and yolov5m, the number of iterations is 300, and the batch size is 32.   The number 

of iterations for Yolov5l is 400, and the batch size is set to 16. Yolov5 has the deepest number 

of layers and is limited to 24g of video memory of the computer graphics card, so the batch 

size is set to 8 and the number of iterations is 500 to improve the detection accuracy. 

 

The experimental hardware of this research is introduced as follows: The CPU is Intel(R) Core 

(TM) i9-11900F@2.50GHz. Memory is 64.0GB; NVIDIA GeForce GTX 3090 24G graphics 

card. Python 3.7 is used as the programming language, TensorFlow-gpu is used as the deep 

learning framework, Cuda 10.2 is used for GPU acceleration, and OpenCV4.0 is used for 

image preprocessing. 

 

This study adopts the idea of transfer learning and uses the pre-trained yolov5.  yaml model 

to improve the convergence speed of the yolov5 target recognition algorithm. The training 

process adopts the approximate joint method for training. According to the depth of the model, 

different learning rates and iterations are selected.   Since the model depth of yolov5s is the 

lowest, the number of iterations selected in this study is also relatively small.   Considering 

the large size of the image dataset, the learning rate is also selected to increase the speed of 

model training. 

 

Method 

Yolov5s 

Yolov5m 

Yolov5l 

Yolov5x 

Precision 

89.64% 

91.68% 

93.01% 

93.85% 

Recall 

98.97% 

99.27% 

97% 

99.12% 

F1 score 

0.941 

0.953 

0.959 

0.964 

Table 1. Comparison of Resnet algorithm with different depth 

 

From the above table, we can see that the recall values of the four Yolov5 algorithms with 

different depths are also high, all around 99%. All of them achieved an F-score above 94% 

(94.1%, 95.3%, 95.9%, 96.4% respectively).  

 

Yolov5x is the deepest in the Yolov5 series algorithms. Due to the large number of convolution 

kernels, the detection speed of Yolov5x is only 1/3 of that of Yolov5s. Therefore, this part 
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selects the Yolov5x deep learning target detection model with the highest accuracy as an 

example. Finally, the training and validation set accuracy of Yolov5x is 93.85%, and the recall 

is 0.9912. Figure 9 shows the precision, recall, and map curves of the model trained by the 

Yolov5x algorithm. After 400 epochs, the precision curve tends to be fitting which demonstrate 

that the training epoch is enough. Figure 10 demonstrates the PR Curve of the Yolov5x 

algorithm, the PR fitting curve is approaching the upper right corner which shows that the 

model has an excellent ability to detect tower cranes.  

 

The current research requires a strategy that combines real-time and offline tower crane 

detection. Therefore, Yolov5s can better meet real-time requirements, consume less 

computation and be of greater convenience in its ability to deploy on mobile terminals and 

edge terminals, which is conducive to the landing deployment of products. On the CCTV 

detection side, we use the built-in Yolov5s algorithm for work deployment. In offline 

detection, as the requirements for detection speed are less restrictive, we can use the Yolov5x 

target detection model to detect tower cranes with a higher accuracy. 

 

   

Figure 9: Common evaluation index curve    Figure 10: PR curve（yolov5x） 

 

5.3 Optimization of algorithm 

5.3.1 Distance-intersection-over-union (DIoU)_non-maximum suppression (nms) loss 

function 
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In the prediction stage of object detection, many candidate anchor boxes will appear near the 

real box. Some of these anchor boxes overlap and often surround the same target. According 

to the definition of non-maximum suppression (nms), the nms algorithm is generally used in 

the post-processing step of target detection to eliminate redundant detection frames. By using 

nms, similar bounding boxes near the recognized object are merged, and the best bounding 

box is reserved according to pre-set conditions. 

 

Only the IoU factor needs to be considered in the traditional non-maximum suppression 

algorithm. Determining the highest-scoring detection frame together with other frames will 

allow the elimination of all those prediction frames above the nms threshold. In actual 

situation, following nms processing, there is the possibility of detection failure when two 

objects are close to one another and only one detection frame remains. Thus, the Distance-

Intersection over Union (DIoU_nms) method, which using DIoU as the standard for nms, 

considers both the overlapping area and the distance between the center point. DIoU_nms is 

used to decide whether or not to delete a frame by measuring the distance ratio of the two 

prediction frames. 

 

 

5.3.2 Edge extraction 

Where the local area brightness is considerably different, this part is termed the edge of the 

image. Where the grayscale changes noticeably to another grayscale value with a major level 

difference from a buffer area with a small gray value, this can be considered a step change in 

the gray level profile of this area. Segmentation of the image can be carried out using this 

feature. 

 

In this research, sobel filter (sobel operator) is used to conduct edge detection. It is a discrete 

differentiation operator that creates images emphasizing edges. This operator combines 

Gaussian smoothing, 2-D convolution operator, and differential derivation to calculate the 

approximate values of the brightness and the darkness of an image. It provides greater 

accuracy on edge direction information and has a noise smoothing effect. Generally, the Sobel 

operator tends to be used as an edge detection method when not very high accuracy is the 

requirement. Figure 11 below shows the tower crane image processed by sobel operator. 
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Figure 11: Tower crane images using Sobel operator 

 

 

 

5.4 Ablation experiment 

In order to better analyze and verify the effectiveness of the Yolov5 improvement strategy used 

in this chapter, this study designed a series of ablation experiments to compare the impact of 

different improvement strategies on the final tower crane detection results. The target detection 

results under different improvement strategies are as follows: 

 Model 1 Model 2 Model 3 Model 4 

DIoU_nms × √ × √ 

Edge extraction × × √ √ 

Precision 93.85% 94.23% 95.12% 95.45% 

Recall 99.12% 99.25% 99.36% 99.41% 

F-score 0.964 0.967 0.972 0.974 

Table 2: Detection results of Yolov5 under different improvement strategies 

 

Model 1 represents the original yolov5x model, model 2 represents an improved model that 

only modifies the weighted nms loss function to DIoU_nms, model 3 represents a model that 

only performs edge extraction on images, and model 4 represents the improved yolov5 model 

proposed in this section. 

 

From the detection results of Model 1, it can be seen that the original yolov5 has an accuracy 

of 93.85% for object detection of tower crane images, the recall is 99.12%, and F1 score is 

0.964. In Model 4, the above three indicators are 95.45%, 99.41% and 0.974 respectively, the 
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improved model proposed in this study can effectively improve the tower crane detection 

ability of Yolov5 on the tower crane image dataset. Comparing model 1 and model 2, it can be 

found that after modifying the weighted nms loss function to DIoU_nms, the precision and 

recall of the model are improved respectively, which shows that the target detection effect can 

be improved by using DIoU_nms when the training samples and training methods are the same. 

Comparing model 1 and model 3, the precision has been greatly improved by 1.35%. This 

shows that edge extraction can obviously reduce the noise of the image, thus allows the 

algorithm to better identify the tower crane. 

 

Through comparative analysis, it can be found that the yolov5 improvement strategies used in 

this study can effectively improve the detection accuracy of the model, and at the same time, 

the comprehensive improvement strategy can also improve the single improvement strategy. 

 

5.5 Tower crane segmentation 

Tower crane image recognition is the first and one of the most important steps in tower crane 

operation mode recognition using real-time video footage. Once a tower crane image 

recognition process is completed, the best model will have been obtained (the model with the 

highest accuracy) and trained by the algorithm. The best model (best.pt) trained by the yolov5x 

algorithm was selected and used in this study and a set of segmentation tower crane algorithms 

was designed to segment tower cranes in the videos. First, the algorithm splits the video into 

a series of image frames. Next, tower cranes are identified in the image frames, and these 

identified tower cranes segmented individually, as shown in Figure 12 below. In this video, 

each image frame contains three tower cranes, and each tower crane is divided and stored 

separately as tower1, tower2, and tower3. The resulting hundreds of independent tower crane 

pictures are prepared consecutively for motion state recognition. 
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Figure 12: Tower crane segment 

 

However, there are some cases where two tower cranes are in the same image frame, as shown 

in Figure 13. Often, in such situations, one tower crane is rotating and the other is stationary. 

If we perform pattern recognition on these image frames, the algorithm often cannot accurately 

determine the operation mode of the tower crane, resulting in ambiguous responses. 

 

Figure 13: Example of two tower cranes overlapped in one image 

 

Normally, for each group of tower crane datasets, overlaps or duplications will have to be 

manually filtered out. In this study, however, some samples with two or more tower cranes are 

retained, as this will increase the robustness of the model. In the video dataset, these videos 

are usually 5 to 20 seconds and contain hundreds of image frame. In order to create a tower 

crane operation mode recognition dataset, 20 frames are selected from one video. Tower crane 

operation mode recognition algorithm trained the model using these 20 frames of images. 
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6. Recognition of motion mode of tower crane based on 3DResNet 

6.1 Selected algorithms 

The commonly used motion recognition algorithms include optical flow method, motion 

recognition classifier, convolutional neural network (CNN) and long-short term memory 

(LSTM), etc., These algorithms face many issues in dealing with changes in the actual 

environment, including, failure in obtaining high-quality background model locks during 

background initialization training, dynamic background shaking (e.g., motion of tree leaves), 

camera shake, etc. In this study, some of the commonly used operation mode recognition 

algorithms are tested, we used the combination of LSTM and CNN, 2DResNet and 3DResNet 

to find the best algorithm with the highest accuracy. 

 

6.1.1 LSTM and CNN 

There is a greater information transmission band of cell state in LSTM, relative to the accepted 

recursion neural network, as this algorithm has increased information memory. The LSTM has 

four fundamental stages. First, the forget gate discards some earlier information; second, some 

present information is retained by the input gate; third, past and present memory is melded, 

and finally, information is outputted by the output gate. The continuous or fixed frame interval 

images of the tower crane operation mode are recognized in this paper. It is likely that LSTM, 

where memorizing the past and selecting information, is applicable for deep learning problems 

with time series.   

 

Convolutional neural network is a commonly used algorithm which uses convolution to 

simulate the way that human visual system works. Many studies use the method of combining 

LSTM and CNN to perform classification tasks, time series prediction tasks, etc. Under this 

circumstance, it is possible to use this method to recognize the operation mode of tower crane, 

and two different combination method is shown below. 

 

(1) Use CNN as the input of LSTM: First use CNN to extract the local feature of the tower 

crane operation images, then using LSTM to extract the long-distance feature of these 

local features, finally, transform these features and input into the fully connected layer 

to classify the summarized feature. 

(2) Use LSTM as the input of CNN: First use LSTM to extract the long-distance features 
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of tower crane operation images to obtain time series information before and after the 

fusion, then using CNN to extract the local features, finally input into the fully 

connected layer after transformation.  

 

6.1.2 Residual network 

The Residual Network (ResNet) method was proposed for vanishing gradient problems when 

using a deepened network[39]. This network is also the first network with a depth of 100-

layers. The structure of 2DResNet network used in this section can be seen in Figure 14 (34 

layers). One normal convolutional and a max-pooling layer form the first construction layer. 

The six residual modules make up the second construction layer. The subsequent construction 

layers of seven, eleven and five residual modules comprise the third, fourth and fifth 

construction layers, each starting with a down-sampling residual module. 

 

 

Figure 14: Network structure of ResNet34 

6.1.3 3DResNet 

The training results using 2DResNet may be overfitting as there are limited number and types 

of tower cranes. There can be an exponential increase in the 3D convolution kernel network 
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parameters in comparison to the 2D convolution kernel. Spatiotemporal features can be 

extracted directly from videos for action recognition using 3D convolution. Each 3DConv 

module can be connected by using the residual structure of 3DResNet (= ResNet + 

3DResConv). The convolution kernel of 3DResNet increases one dimension from 2DResNet 

by adding an additional parameters T (in channels, out channels, T), which effectively extracts 

temporal information of the input and features of the diagram by considering timing. From 

2DConv to 3DConv, the major difference is that inputs and features have become temporal, 

adding one dimension. Thus, the time-series information in the feature map can be successfully 

extracted, following the time-series convolution, thereby allowing the network to extrapolate 

improved video inputs. 

 

6.2 Training process 

The training process involved using a dataset of annotated tower crane images.  The dataset 

was augmented to increase its size and variability, as crane motion can appear in different 

directions and under different environmental conditions.  The following steps were taken 

during training: 

6.2.1 Data Preparation: 

• Annotation: Each frame of the video was labeled with one of the three operational modes 

(static, clockwise, or anticlockwise). 

• Data Augmentation: Images were rotated by 10º and 20º to simulate additional motion 

states.  This increased the size of the dataset and made the model more robust to variations in 

crane operation. 

6.2.2 Model Training: 

The model was trained using stochastic gradient descent (SGD) as the optimizer, with a 

learning rate of 0.002.  Training was conducted over 200-500 epochs, with the model evaluated 

on a validation set at each epoch.  The cross-entropy loss function was used to optimize the 

model’s classification accuracy. 

6.2.3 Evaluation Metrics: 

Performance was measured using the Accuracy, Precision and Recall defined in Equation (5).   
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6.3 Comparison of different algorithms 

From the conclusion of section 6.1, we chose the combination of LSTM and CNN, 2DResNet 

and 3DResNet to find the best algorithm with the highest accuracy. The original dataset with 

1373 sets of tower crane operation images was chosen, 70%, 20% and 10% of them are divided 

into training dataset, test dataset and dev dataset respectively. 

 

Table 3 shows that when using the 2DResnet or CNN+LSTM algorithms to train the tower 

crane operational image dataset, the accuracy was 40% and 48% respectively (i.e., less than 

50%). These algorithms did not, therefore, learn the operational characteristics of the tower 

crane. The 2DResNet focuses on spatial features, which limited its ability to capture temporal 

information that is critical in recognizing the crane’s operational modes over time. 

 

The training detection accuracy of Model 2 with LSTM+CNN was 57%, indicating that this 

algorithm learned some of the characteristics of the tower crane’s operations, but the error 

detection and missed detection were quite serious. LSTM (Long Short-Term Memory) is 

effective for learning time-series data, while CNN (Convolutional Neural Network) excels at 

recognizing spatial features. When combined, this model provided a moderate accuracy of 

57% in our tests. The sequential nature of LSTM was helpful in capturing time-dependent 

changes in crane operations. However, it struggled with accurately learning complex motion 

patterns due to the limited dataset size and variability. 

 

Finally, the accuracy rate (75%) of Model 4 (which used 3DResNet) was the highest. The 

precision of 3DResnet was 1.32 times higher than LSTM+CNN and was therefore selected for 

further training. The 3DResNet model incorporated an additional temporal dimension in its 

convolutional layers, allowing it to capture spatiotemporal features directly from video data. 

This capability made it the most suitable model for tower crane operational mode recognition. 

After dataset augmentation, the 3DResNet achieved an accuracy of 87%, outperforming both 

the LSTM+CNN and 2DResNet models. The residual structure of the 3DResNet allowed it to 

effectively process the time-series data required for recognizing motion patterns such as static, 

clockwise rotation, and anticlockwise rotation, ensuring that both short-term and long-term 

operational modes are recognized accurately. 
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Model Method Precision Recall Accuracy 

Model 1 ResNet34 0.35 0.50 0.40 

Model 2 LSTM+CNN 0.54 0.65 0.57 

Model 3 CNN+LSTM 0.45 0.55 0.48 

Model 4 3DResNet 34 0.72 0.80 0.75 

Table 3. Comparison of the candidate algorithm 

 

6.4 Comparison of Resnet algorithm with different depth 

In the previous section, we tried different algorithms and compared their accuracy. We decided 

that among others, 3DRseNet is the best for tower crane mode operation detection. The 

accuracy of 3DResNet increases as the depth increases, considering that the dataset in this 

study is relatively small, using a model with more than 152 layers may cause overfitting. In 

addition to the experiments outlined above, we compared the accuracy of 3DResnet algorithms 

with different depths, i.e., 3DResNet18, 3DResNet34, 3DResNet50, 3DResNet101. 

3DResNet 152 is not chosen as it is too deep, such that the existing datasets may lead to 

overfitting. Section 4.3 explained how the present study augmented the dataset through edge 

extraction with the Sobel operator and image rotation, which increased the 1,373 sets of tower 

crane operational datasets to 6,865 sets. The datasets were used separately in training the 

model to select the most appropriate depth for optimization. In this section, 3DResNet 50 and 

3DResNet 101 are used to train the augmented datasets. Table 4 shows the accuracy and 

training time (second) of the 3DResNet algorithms with different depths. In these training 

process, the learning rate is 0.002, the batch size of 3DResNet18 is 64 and the batch size of 

others is 16. From the table we can see that when the network become deeper, the training 

time is increasing. What’s more, when training with the augmented dataset, it also takes longer 

training time. 

 

Method Precisio

n 

Recal

l 

Accurac

y 

Trainin

g time 

3DResNet18 0.62 0.66 0.64 192 

3DResNet34 0.72 0.80 0.75 158 

3DResNet50 0.80 0.83 0.82 280 
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3DResNet50(augmented

） 

0.84 0.88 0.87 1024 

3DResNet101 0.84 0.88 0.86 293 

3DResNet101(augmented

) 

0.86 0.91 0.87 1117 

Table 4. Comparison of ResNet algorithm with different depth 

 

 

Figure 15. Accuracy curve of different depth of ResNet 

 

Figure 15 shows the fit curve of the accuracy of the above algorithms of different depths. In 

general, the accuracy of training is fluctuating as the network goes deeper. Here we choose the 

highest accuracy of a single training as the final accuracy of the model. There are two reasons 

for the fluctuations: First, the Batch size is limited by the video memory of the computer 

graphics card. Secondly, the learning rate is chosen to be relatively high in order to reduce 

model training time. Table 4 shows the achieved accuracy of the ResNet algorithms and their 

respective depth. From the above accuracy analysis, it can be seen that a deeper 3DResNet 

structure always results in a higher accuracy, i.e., the recognition accuracy of 3DResnet18 is 

only 0.64, while the accuracy of 3DResNet 101 reaches 0.86. Table 4 also shows that the 

recognition accuracy of 3DResNet50 and of 3DResNet101 are increased from 82% to 87% 

and from 86% to 87%, respectively after using the augmented datasets. 
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7. Conclusion 

This paper proposed a framework for the construction of tower crane digital twin and realized 

the physical to virtual connection part by creating tower crane datasets, tower crane object 

detection and tower crane operation mode recognition. It was proposed that tower crane 

datasets should be generated and optimized using image preprocessing, image annotation, and 

image dataset augmentation. In addition, an algorithm for tower crane segmentation, combined 

with a previous object detection model of the highest precision, was developed to separate the 

tower crane from the image. An improved yolov5 algorithm was proposed for tower crane 

object detection. DIoU_nms was used to improve the prediction accuracy of the yolov5 

algorithm in situations where tower cranes overlap. The concept of edge extraction, which was 

used to reduce the noise in the tower crane image in the present study, was introduced. Lastly, 

an ablation experiment was designed to judge the superiority of the two improved methods. 

The final accuracy rate was improved from 93.85% to 95.45%. In the tower crane operation 

mode recognition part, it was found that 3DResNet was best placed in identifying the motion 

state of tower cranes on sorted operating images. After data augmentation process, the 

accuracy is up to 87%.  

 

This study was confined to the application of digital twin physical-to-virtual connections. 

Future research is required to add virtual-to-physical connections to the current model and 

convey the simulation results to management to form a closed digital twin loop. The scope of 

the modelling should also be extended to include modelling of any experiments involving 

other tower cranes, thus building a lifecycle digital twin of the construction site as a whole. To 

improve the accuracy of the current model further, Additional data, such as altitude 

recognitions and more tower cranes, and modified algorithms are needed. The data collected 

by the computer vision method was limited. From the perspective of tower crane safety, 

sensors can be used to capture some abnormal operational status in real-time. Therefore, in 

future studies, sensors could be added to monitor quantitatively safe operation of tower cranes. 
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