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Momentum Contrastive Teacher for
Semi-Supervised Skeleton Action Recognition

Mingqi Lu, Xiaobo Lu and Jun Liu

Abstract—In the field of semi-supervised skeleton action recog-
nition, existing work primarily follows the paradigm of self-
supervised training followed by supervised fine-tuning. However, 
self-supervised learning focuses on exploring data representation 
rather than label classification. I n spired b y  M e an T e acher, we 
explore a novel pseudo-label-based model called SkeleMoCLR. 
Specifically, w e  u s e M o Co v 2  a s  t h e f o undation a n d e x tend it 
into a teacher-student network through a momentum encoder. 
The generation of high-confidence p seudo-labels r equires a  well-
pretrained model as a prerequisite. In cases where large-scale 
skeleton data is lacking, we propose leveraging contrastive 
learning to transfer discriminative action features from large 
vision-text models to the skeleton encoder. Following the con-
trastive pre-training, the key encoder branch from MoCo v2 
serves as the teacher to generate pseudo-labels for training 
the query encoder branch. Furthermore, we introduce pseudo-
labels into the memory queues, sampling negative samples from 
different pseudo-label classes to maximize the representation 
differentiation between different categories. We jointly optimize 
the classification l o ss f o r b o th l a beled a n d p s eudo-labeled data 
and the contrastive loss for unlabeled data to update model 
parameters, fully harnessing the potential of pseudo-label semi-
supervised learning and self-supervised learning. Extensive ex-
periments conducted on the NTU-60, NTU-120, PKU-MMD, 
and NW-UCLA datasets demonstrate that our SkeleMoCLR 
outperforms existing competitive methods in the semi-supervised 
skeleton action recognition task.

Index Terms—Action recognition, Skeleton, Semi-supervised, 
Contrastive learning.

I. INTRODUCTION

Skeletal data has witnessed a surge in popularity for the
analysis of human activities in recent years. Unlike RGB
frames and depth maps, skeletal data stands out for its
lightweight nature and remarkable robustness to changes in
lighting, texture, and background conditions. Supervised skele-
ton action recognition approaches heavily rely on a large
amount of labeled data, which is costly and labor-intensive
to collect.
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Semi-supervised learning aims to leverage a small amount
of labeled data and a large volume of unlabeled data. It
holds significant value in practical domains where acquiring
labeled data is costly. Recent developments in semi-supervised
learning can be primarily categorized into two main types. The
first type is pseudo-labeling, also known as self-training. In
pseudo-labeling, the model generates class predictions for each
unlabeled sample, and these predictions are used as artificial
labels for training, such as FixMatch [1]. The second type
involves utilizing self-supervised learning on the unlabeled
data, followed by supervised fine-tuning on the labeled data,
such as SimCLR [2] and MoCo [3]. However, self-supervised
learning aims to explore the inherent representations of data
itself instead of label prediction. In the field of semi-supervised
skeletal action recognition, representative methods use MoCo
v2 [4] framework to extract discriminative features from
pre-augmented skeleton actions, such as CrossCLR [5] and
AimCLR [6]. However, they heavily rely on strong skeletal
data augmentation, which may compromise the inherent struc-
tural information of skeletal actions, leading to information
bias. Differing from previous methods, we attempt to address
the semi-supervised skeleton action recognition task from
the perspective of pseudo-labeling. However, without well-
established pre-trained models providing implicit constraints,
semi-supervised learning based on pseudo-labeling can easily
be misled by inaccurate pseudo-labels, especially in cases with
a large label space. Compared to the network-scale visual-
text data, widely used skeleton datasets are relatively much
smaller. Acquiring a well-pretrained skeletal encoder presents
a challenging task.

Skeleton sequences are typically present alongside RGB
videos, whether they originate from pose estimation algorithms
or depth cameras like Kinect. Skeletal information is concise
and robust; however, the lack of detailed body information
(such as appearance and objects) can lead to difficulties in
handling similar and complex actions. Classic multimodal
methods model the skeletal data and RGB images separately
using two networks to compensate for the shortcomings of
a single modality, but they require substantial computational
resources during both training and inference stages. How-
ever, due to modality differences, it is not directly possible
to establish consistency constraints between skeletons and
videos. Large vision-text pre-training models like CLIP [7]
achieve significant success in the visual domain. ActionCLIP
[8] is a classic derivative model of CLIP in the field of
video action recognition. In our pre-training method, we
employ contrastive learning to facilitate the feature transfer
from large-scale pre-trained vision models to the skeleton
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encoder, thereby enabling the learning of more comprehensive
and extensive representations. Specifically, we treat one-to-
one corresponding skeletons and videos as positive samples,
and the frozen encoder in ActionCLIP extracts video features.
We utilize a contrastive loss in a low-dimensional space to
align skeleton embeddings and video embeddings, thereby
training the skeleton encoder. In our semi-supervised model,
we load the weights from the contrastive pre-training as the
initialization for the skeleton encoder. Unlike methods that
use multimodal data during both the training and inference
stages, we introduce video-text data only during the contrastive
pre-training phase. In the subsequent stages, only skeleton
data is required as input for action recognition, without the
involvement of visual and language modalities, thus incurring
no additional computational costs.

Mean Teacher [9] generates target samples through ex-
ponential moving averages. Inspired by this, we propose
SkeleMoCLR for semi-supervised skeleton action recognition,
based on MoCo V2, as illustrated in Figure 1. For each set
of skeleton inputs, the key encoder, along with an additional
classifier, serves as the teacher network, generating pseudo-
labels required for training the query encoder. Simultane-
ously, the projectors map positive and negative representations
onto a low-dimensional embedding, facilitating discriminative
learning.Since the selection of negative samples is crucial in
contrastive learning, we incorporate class information from
pseudo-labels into the memory queue of MoCo V2. For a
query sample, samples with different pseudo-labels constitute
negative examples. This is to maximize the distinctiveness in
the representations between query samples and negative sam-
ples from different classes, thus achieving category contrast
based on pseudo-labels. Furthermore, we introduce a regu-
larization term between labeled and unlabeled representations
to enhance their consistency and the model’s generalization
ability. We jointly optimize the cross-entropy loss for labeled
data and pseudo-labeled data, as well as the contrastive loss
for unlabeled data, updating model parameters using gradients
from both labeled and unlabeled data.

Our main contributions can be summarized as follows:

• This paper neatly extends MoCo v2 into a teacher-
student network using momentum updates, and pro-
poses a novel semi-supervised skeleton action recognition
model, SkeleMoCLR.

• This paper uses large-scale vision-text models as a bridge
and introduces a contrastive pretraining strategy to ini-
tialize the weights of the skeleton encoder used for
generating pseudo-labels.

• This paper incorporates class information from pseudo-
labels into contrastive learning, and facilities the learning
of more discriminative class-level representations through
negative sample sampling.

• SkeleMoCLR achieves performance comparable to state-
of-the-art methods on the semi-supervised skeletal action
recognition task on NTU-60, NTU-120, PKU-MMD and
NW-UCLA datasets.

II. RELATED WORK

A. Human Action Recognition

Human action recognition is vital for video understanding.
Both skeletal sequences and RGB videos are widely used
input modalities for human action recognition. While skele-
ton information is concise and robust, attracting significant
attention to skeleton action recognition, the lack of detailed
body information limits performance. Various modalities have
been explored to address these limitations, including RGB
images [10], textual descriptions [11], and depth images [12].
Classic multimodal approaches integrate the prediction results
of skeleton data and other modalities (e.g., RGB images and
depth images), requiring substantial computational resources
and exhibiting inefficiency in both training and inference
stages. PoseConv3D [13] uses both RGB heatmaps and skele-
tal modalities for robust human action recognition. VPN [14]
projects 3D poses and their corresponding RGB videos into a
common embedding space, learning spatiotemporal relation-
ships through an attention network. In the absence of large-
scale skeletal data, we propose leveraging large vision-text
models for pre-training the skeleton encoder to enable efficient
inference with a single skeleton modality, generating informa-
tive features based on the strong generalization capabilities of
the vision-text model.

B. Supervised Skeleton Action Recognition

RNN-based models [15], [16] treat skeleton data as exten-
sive sequential data. CNN-based techniques [17], [18] trans-
mute skeleton sequences into image-like representations. The
introduction of GCN has paved the way for innovations like
ST-GCN [19], which mold skeletal data into predefined spatial
graphs and employ GCNs to amalgamate joint information. A
multitude of GCN-based approaches [20]–[22] have sprung
up, further building upon the foundation laid by ST-GCN.
ShiftGCN++ [23] introduces lightweight spatial and temporal
shift graph convolutions. FGCN [24] incorporates a feedback
mechanism into GCN for action recognition. 2s-AGCN [22]
adopts a dual-stream approach for joint and bone and intro-
duces adaptive dynamic learning module. Due to its strong
and robust spatiotemporal feature extraction capabilities, we
employ 2s-AGCN as the skeleton encoder in SkeleMoCLR.

C. Self-Supervised Skeleton Action Recognition

Self-supervised learning aims to learn discriminative repre-
sentations from a large amount of unlabeled data. LongT GAN
[25] utilizes a cyclic encoder-decoder GAN for reconstructing
input sequences. In a similar vein, Predict&Cluster [26] intro-
duces a decoder to enhance representation capabilities. MS2L
[27] presents a multi-task self-supervised learning framework
that incorporates motion prediction. ISC [28] introduces an ap-
proach that combines sequence-based and graph-based skele-
ton contrastive methods. CRRL [29] utilizes contrastive recon-
struction to capture both pose and motion features. CrosSCLR
[5] employs a cross-view knowledge mining strategy to cap-
ture more comprehensive representations. AimCLR [6] focuses
on extensive action augmentation to compel the encoder to
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learn more general representations. However, skeletal data is
very concise, and tasks such as reconstruction and strong
transformations can harm the topological information of the
skeleton, resulting in biases.

D. Semi-Supervised Skeleton Action Recognition

Currently, there is relatively limited research in the field
of semi-supervised skeleton action recognition. ASSL [30]
employs adversarial regularization to align the features of both
labeled and unlabeled data. CD-JBF-GCN [31] integrates both
joint and bone information by facilitating the transmission of
motion details. Xu et.al [32] uses contrastive learning to extract
and aggregate action representations at the body, part, and
joint levels. MAC-Learning [33] uses anchor graphs to create
soft positive/negative pairs and proposes multi-granularity con-
trastive losses. To capture more semantic information, X-CAR
[34] explores consistent action representations between joint
data and learnable augmented data through contrastive learn-
ing. Current methods primarily rely on skeletal transformations
to generate positive and negative pairs separately for exploring
action representations through contrastive learning. However,
it is surprising that mainstream pseudo-labeling methods in
semi-supervised learning have not yet been reported in the
literature. Our work aims to fill this gap.

III. METHODOLOGY

Figure 1 depicts the network architecture of SkeleMoCLR,
designed for semi-supervised skeleton action recognition.
SkeleMoCLR uses MoCo v2 as a foundation and extends it
into a teacher-student network through a momentum encoder.
We utilize a large vision-text model for contrastive pre-training
of the skeletal encoder. After pre-training, the key encoder
branch of MoCo v2 serves as the teacher to generate pseudo-
labels for training the query encoder branch. Additionally,
we introduce pseudo-labels into the memory queue and sam-
ple negative examples from different pseudo-label classes
to maximize representation differences among various cate-
gories. Subsequent sections provide separate explanations of
the contrastive pre-training, semi-supervised framework, and
representation regularization components within our approach.

A. Contrastive Pre-training

As shown in Figure 2, our contrastive pretraining framework
is based on MoCo v2. It creates positive pairs (xs, xv) from
a skeleton sequence xs and its corresponding RGB video xv ,
and then generates embeddings (ζs, ζv) separately through an
encoder and a projector. The encoders in ActionCLIP remain
frozen, with only the parameters of the skeleton encoder being
trainable. We maintain a memory queue Z̃ to store negative
samples, and the cross-modal contrastive loss is

L(s, v) = − log
exp (ζs · ζv/τ)

exp (ζs · ζv/τ) +
∑N

i=1 exp
(
ζs · ζ̃iv/τ

)
(1)

Where ζs · ζv represents the normalized dot product. ζ̃iv repre-
sents the embedding in Z̃ corresponding to the i-th negative
sample. N represents the quantity of negative features, and τ is

a temperature hyperparameter. The parameters of the skeleton
projector and video projector are denoted as θs and θv ,
updated using the following equation: θv ← αθv + (1−α)θs,
where α ∈ [0, 1) represents the momentum coefficient. MLP
projectors are completely discarded after pre-training. In the
subsequent tasks, the skeletal encoder initializes its weights
by loading the weights from the contrastive pretraining.

B. Semi-Supervised Framework

Our semi-supervised skeleton action recognition model is
illustrated in Figure 1. We consider the encoders with mo-
mentum updates from MoCo v2 as a teacher-student network
for generating pseudo-labels. Given a skeletal sequence s,
we apply data augmentation to construct positive pairs (s,
s’). Following MoCo v2, we train two skeletal encoders:
a query encoder fq and a key encoder fk. For each pair
(s, s’), skeletal embeddings (ζq, ζk) are generated through
the skeletal encoder and projector. As the parameters of the
key encoder are a momentum-updated version of the query
encoder, fk ← αfk + (1 − α)fq , the key encoder produces
more stable representations throughout the entire training,
improving the optimization process. Therefore, we employ
the key network as the teacher and the query network as
the student in our semi-supervised framework. During each
iteration, the teacher network generates pseudo-labels p̂u for
normally augmented data. The student network calculates
prediction probabilities pu for extremely augmented versions
of the same skeletal sequence, and use the high-confidence
pseudo-labels p̂u as the targets in the cross-entropy loss for
unlabeled data.

In standard contrastive learning, negative samples are sam-
ples other than the positive samples. We consider samples from
other pseudo-label classes as negative samples, thus leveraging
valuable discriminative information from the pseudo-labels.

LCL = − log
exp

(
ζq · ζp̂

u

k /τ
)

exp
(
ζq · ζp̂

u

k /τ
)
+

∑{1,2,··· ,C}\p̂u
c=1

∑D
j=1 exp

(
ζq · ζckj/τ

)
(2)

Where C represents the number of classes, and ζq · ζk denotes
the dot product used to calculate the similarity between
two normalized embeddings. ζckj represents negative samples
stored in C queues, where the size of each queue is D. During
each iteration, for unlabeled samples, the earliest samples in
the corresponding queues are gradually replaced based on their
pseudolabels.

As shown in Figure 1, a mini-batch is sampled consisting
of labeled skeletal data and unlabeled skeletal data. Forward
propagation is computed for both labeled and unlabeled skele-
tal sequences, and the relevant predictions and pseudo-label
targets are concatenated. For the labeled skeletal data:

Ll
CE = −

C∑
i=1

yli log
(
pli
)

(3)

For the unlabeled skeletal data:

Lu
CE = −

C∑
i=1

p̂ui log (p
u
i ) (4)
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Fig. 1. The framework of SkeleMoCLR. Skeletal sequences are fed into the skeleton encoders, generating feature vectors for classification and feature
embeddings for self-supervised learning, respectively. A teacher-student network is established using a momentum encoding mechanism to create pseudo-
labels, and model parameters are updated through a combination of semi-supervised and contrastive losses.
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Fig. 2. An overview of the proposed framework for contrastive pre-training.

This gradual transfer of category information from the
labeled dataset to the unlabeled dataset enhances the model’s
representation learning.
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Fig. 3. Illustration of the representation regularization. This regularization
term is introduced between representations of labeled and unlabeled data to
enhance generalization.

Inspired by [35], we introduce a regularization term to
bring the representation distribution of unlabeled and labeled

samples as close as possible, as shown in Figure 3. With
limited labeled data, as unlabeled samples inherently contain
latent data information, we leverage these unlabeled samples to
guide the training of labeled samples and learn representations
with stronger generalization ability. We adopt an adaptive
strategy utilizing an entropy-gating function. Only samples
with high confidence (both labelled and unlabeled) are subject
to the Maximum Mean Discrepancy (MMD) constraint LR.
During each iteration, high-confidence labeled and unlabeled
samples within the mini-batch are added to their respective
buffers. Subsequently, the latest k samples are drawn from
these buffers to form the feature representation sets (H l, Hu).

LR = MMD(H l, Hu) (5)

In the total loss function,

L = Ll
CE + λCEL

u
CE + λCLL

u
CL + λRLR (6)

IV. EXPERIMENTS

A. Datasets

To assess the effectiveness of the proposed method, exten-
sive experiments are conducted on four widely used skeleton
action recognition datasets: NTU-RGB+D 60 [36], NTU-
RGB+D 120 [37], PKU-MMD [38], and Northwestern-UCLA
[39].

NTU RGB+D. The NTU RGB+D (NTU-60) dataset [36]
is a comprehensive dataset consisting of 56,578 skeletal se-
quences across 60 distinct action categories. These sequences
are captured from 40 volunteers, each contributing data from
25 joints. The data is collected using three Microsoft Kinect v2
cameras. The evaluation is conducted following two standard
evaluation protocols: cross-subject (CS) and cross-view (CV)
protocols. Under the CS protocol, the training set comprises
40,091 skeleton sequences from 20 volunteers, while the
test set includes 16,487 sequences from another group of
20 volunteers. In the CV protocol, the training set consists
of 37,646 skeleton sequences captured by cameras 2 and 3,
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and the test data encompasses 18,932 sequences recorded by
camera 1. In the semi-supervised training setup, we utilize
only 1%, 5%, 10%, and 20% of labeled data along with the
corresponding remaining unlabeled data.

NTU RGB+D 120. The NTU RGB+D 120 (NTU-120)
[37] dataset is an extension of the NTU RGB+D dataset. It
comprises 113,945 samples from 120 action categories per-
formed by 106 subjects. This dataset is well-defined through
two protocols, namely Cross-Subject (CS) and Cross-Setup
(CE). Under the CS protocol, data from 53 distinct subjects
were utilized to assemble 63,026 training samples and 50,919
testing samples. Within the CE protocol, there are 32 different
setup IDs, with 54,468/59,477 action sequences possessing
even/odd setup IDs used for training/testing purposes.

PKU-MMD. PKU-MMD [38] is a multi-modal dataset
designed for 3D human behavior understanding, comprising
51 different actions and a total of 21,544 video segments.
The dataset is divided into two subsets: the first part includes
21,539 instances, representing a relatively simplified version,
while the second part consists of 6,904 instances with more
challenging variations in viewpoint. Each sample is composed
of 25 body joints. We conduct experiments on these two
subsets using a cross-subject protocol. In the semi-supervised
setting of PKU-MMD, the training data for each category
typically includes around 1% to 10% labeled data.

Northwestern-UCLA. The Northwestern-UCLA (NW-
UCLA) dataset [39] comprises 1494 samples from 10 distinct
action categories, captured using 3 Kinect cameras. The data
collection involves 10 volunteers, each with 20 skeletal joints.
The training set includes 1018 samples from the first two
views, while the testing set encompasses 476 samples from
the third view. For the semi-supervised scenarios, we employ
only 5%, 15%, 30%, and 40% of labeled data, along with the
corresponding remaining unlabeled data.

B. Experimental Settings

We employ the same data preprocessing as SkeletonCLR
[5] and AimCLR [6]. Through linear interpolation, we adjust
the temporal length of all skeleton sequences to a fixed length
of 50 frames. In contrastive pre-training, the vision encoder is
ViT-B/16, and we use the text encoder from CLIP, inputting
action category names as text prompts. We use YOLOv8 as
a human detector in video frames while scaling the extracted
human frames to save computational and storage resources.
The vision encoder samples 8 frames from the human frames
to construct visual mappings. Training is conducted following
the ActionCLIP methodology. In the semi-supervised setting,
we adopt a category balancing strategy consistent with the
majority of methods to sample labeled data. The training set
also include the corresponding remaining unlabeled skeleton
sequences. We adopt 2S-AGCN as the skeletal encoder. The
projectors within the model are all 2-layer perceptron (MLP)
with ReLU activation function, ultimately projecting features
into a 128-dimensional space. The size of the memory queue
and hyperparameter τ are set to 8192 and 0.07, respectively.
Output vectors are normalized using L2-norm. In the semi-
supervised training, the hyperparameter D is set to 64 and the

threshold is 0.5. We employ two sets of augmentations: nor-
mal augmentations and extreme augmentations. The specific
augmentation methods used are consistent with those outlined
in [6]. We use SGD as the optimizer with a momentum of
0.9 and weight decay of 0.0004. The entire training consists
of 200 epochs, with the first 10 steps following a warm-up
strategy. The learning rate is scheduled to decay with cosine
annealing, ranging from a maximum learning rate of 0.1 to
a minimum learning rate of 0.0001. For both pretraining and
downstream tasks, the batch size for NTU-60 and NTU-120 is
set to 128, while for PKU-MMD and NW-UCLA, it is set to
64. All experiments are conducted on a single GeForce GTX
3090 GPU using the PyTorch framework [40].All the results
reported in our experiments are from the teacher model, which
employs the EMA strategy, rather than the backpropagation
strategy, to update parameters. This approach significantly
reduces computational requirements and training time.

C. Semi-Supervised Evaluation

In the NTU-60, PKU-MMMD, and NW-UCLA datasets,
we conduct comparisons between the proposed model and
current state-of-the-art methods, as shown in Tables 1, 2,
and 3, respectively. The compared methods include semi-
supervised based methods [41], [42], [43], [44], [30], [33],
[34], and self-supervised based methods [25], [27], [28], [31],
[45], [46], [47], [48], [49], [50], [5], [6], [51], [52], [53],
[54], [55]. SkeleMoCLR demonstrate competitive performance
across all evaluation protocols on these four datasets. During
the experimental inferencing phase, we use single skeletal
modality data as input for all methods. The prefixes ’2s-’
and ’3s-’ indicate models based on dual-stream (Joint+Bone)
and triple-stream (Joint+Bone+Velocity) architectures, respec-
tively. Models without a prefix use only the joint stream. ”w/o
PT” indicates models that are not loaded with contrastive
pretraining weights, i.e., they are initialized randomly. Ta-
ble 1 presents a performance comparison between relevant
methods and 2s-SkeleMoCLR on the NTU-60 dataset. At 1%
labeled data, 2s-SkeleMoCLR performs comparably to the
state-of-the-art method 3s-SkeAttnCLR and outperforms other
approaches. When using 10% labeled data, 2s-SkeleMoCLR
exhibits a 0.2% performance gain over 3s-AimCLR on both
the CS and CV protocols. With 20% and 40% labeled data,
2s-SkeleMoCLR’s performance on the CS and CV protocols
reaches state-of-the-art levels. Experimental results demon-
strate that 2s-SkeleMoCLR effectively learns rich skeletal
motion representations and a higher-quality feature space.
Compared to random initialization, loading contrastive pre-
training weights into 2s-SkeleMoCLR significantly improves
semi-supervised performance, highlighting the effectiveness of
this strategy.

As shown in Table 2, on the PKU-MMD dataset with only
1% labeled data, 2s-SkeleMoCLR’s performance is on par
with the state-of-the-art method. With 10% labeled data, 2s-
SkeleMoCLR outperforms the current state-of-the-art method
(3s-SkeleMixCLR) by 0.6% on PKU-MMD Part-I and by
0.3% on PKU-MMD Part-II. The second part of the PKU-
MMD dataset is more challenging due to viewpoint variations,
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TABLE I
RECOGNITION ACCURACY (%) ACHIEVED BY DIFFERENT METHODS ON
NTU-60 WITH 1%, 5%, 10%, 20% AND 40% OF LABELED TRAINING

DATA.

Method 1% 5% 10% 20% 40%
CS CV CS CV CS CV CS CV CS CV

S4L [41] - - 48.4 55.1 58.1 63.6 63.1 71.1 68.2 76.9
Pseudolabels [42] - - 50.9 56.3 58.4 65.8 63.9 71.2 69.5 77.7

VAT [43] - - 51.3 57.9 60.3 66.3 65.6 72.6 70.4 78.6
VAT+EntMin [44] - - 51.7 58.3 61.4 67.5 65.9 73.3 70.8 78.9

ASSL [30] - - 57.3 63.6 64.3 69.8 68.0 74.7 72.3 80.0
ISC [28] 35.7 38.1 59.6 65.7 65.9 72.5 70.8 78.2 - -

EnGAN-PoseRNN [56] - - - - - - - - 78.7 86.5
2s-CD-JBF-GCN [31] - - 61.8 65.3 71.7 78.0 78.4 85.9 83.2 90.9
2s-MAC-Learning [33] - - 63.3 70.4 74.2 78.5 78.4 84.6 81.1 89.6

X-CAR [34] - - 67.3 70.0 76.1 78.2 79.4 85.7 84.1 90.4
CMD [45] 50.6 53.0 71.0 75.3 75.4 80.2 78.7 84.3 - -
HaLP [46] 46.6 48.7 66.9 71.5 72.6 77.1 76.1 82.4 - -

HaLP+CMD [46] 52.6 53.0 71.4 75.3 76.0 80.4 79.2 84.6 - -
SDS-CL [47] - - 71.3 75.3 77.2 83.0 82.2 86.4 86.4 91.1
HiCLR [48] 58.5 58.3 - - 79.6 84.0 - - - -

3s-Hi-TRS [49] 49.3 51.5 71.5 74.8 77.7 81.1 - - - -
3s-Colorization [50] 48.3 52.5 65.7 70.3 71.7 78.9 76.4 82.7 79.8 86.8

3s-CrosSCLR [5] 51.1 50.0 - - 74.4 77.8 - - - -
3s-AimCLR [6] 54.8 54.3 - - 78.2 81.6 - - - -
3s-CMD [45] 55.6 55.5 74.3 77.2 79.0 82.4 81.8 86.6 - -

3s-SkeleMixCLR [51] 55.3 55.7 - - 79.9 83.6 - - - -
3s-SkeAttnCLR [52] 59.6 59.2 - - 81.5 83.8 - - - -

2s-DMMG [53] 56.1 56.6 - - 81.8 85.1 - - - -
2s-SkeleMoCLR w/o PT 51.6 53.1 66.7 69.9 72.6 76.1 76.9 81.3 80.6 88.2

2s-SkeleMoCLR 58.5 59.5 72.9 75.9 78.4 81.8 82.2 86.8 86.5 94.8

and our method performs well, demonstrating strong robust-
ness. As shown in Table 3, on NW-UCLA, 2s-SkeleMoCLR
outperforms other competing methods with only 5% labeled
data. Compared to the state-of-the-art method X-CAR, 2s-
SkeleMoCLR shows improvements of 0.2% and 0.4% at 30%
and 40% labeled data, respectively.

Our performance gains are largely attributed to the con-
trastive pre-training with large-scale vision-text models. How-
ever, on the smaller PKU-MMD and NW-UCLA datasets, the
advantage of contrastive pre-training for the skeleton encoder
is not as evident with 1% and 5% labeled data. Nonetheless,
as shown in Table 1, the 2s-SkeleMoCLR without pre-trained
weights still performs comparably to 3s-Colorization and 3s-
CrosSCLR on the NTU-60 dataset, demonstrating the effec-
tiveness of our semi-supervised framework design.

TABLE II
RECOGNITION ACCURACY (%) ACHIEVED BY DIFFERENT METHODS ON

PKU-MMD WITH 1% AND 10% OF LABELED TRAINING DATA.

Method 1% 10%
Part-I Part-II Part-I Part-II

LongT GAN [25] 35.8 12.4 69.5 25.7
MS2L [27] 36.4 13.0 70.3 26.1

ISC [28] 37.7 - 72.1 -
ACL [54] 58.7 17.7 86.7 37.2

3s-CrosSCLR [5] 49.7 10.2 82.9 28.6
3s-AimCLR [6] 57.5 15.1 86.1 33.4

3s-SkeleMixCLR [51] 62.2 15.7 87.7 41.0
3s-PSTL [55] 62.5 16.9 86.9 42.0

2s-SkeleMoCLR 61.6 17.1 88.3 42.3

D. Wide-Ranging Experiments

To further validate the performance of the proposed method
in self-supervised learning, a model that uses only unlabeled
skeletal data as input, denoted as 2s-SkeleMoCLR-, is em-
ployed. The feature quality learned by the skeletal encoder is
evaluated under four evaluation protocols and compared with
state-of-the-art techniques.

TABLE III
RECOGNITION ACCURACY (%) BY DIFFERENT METHODS ON NW-UCLA

WITH LABELED TRAINING DATA AT 5%, 15%, 30%, AND 40%.

Method 5% 15% 30% 40%

S4L [41] 35.3 46.6 54.5 60.6
Pseudolabels [42] 35.6 48.9 60.6 65.7

VAT [43] 44.8 63.8 73.7 73.9
VAT+EntMin [44] 46.8 66.2 75.4 75.6

ASSL [30] 52.6 74.8 78.0 78.4
MAC-Learning [33] 63.0 78.8 79.9 81.6

X-CAR [34] 68.7 77.5 80.9 83.1
SDS-CL [47] 67.0 78.2 79.3 82.8

2s-SkeleMoCLR 68.3 78.2 81.1 83.5

KNN Evaluation. A k-nearest neighbors (KNN) classifier
with no trainable parameters is used. Using only joint stream,
SkeleMoCLR- is compared to other relevant methods on NTU-
60, NTU-120, and PKU-MMD, as shown in Table 4 and Table
5. Our SkeleMixCLR- significantly outperforms competing
methods, especially on the larger NTU-120. The substantial
gains when using a parameterless classifier indicate that our
method learns features with stronger discriminative power.

TABLE IV
KNN EVALUATION RESULTS FOR DIFFERENT METHODS ON NTU-60 AND

NTU-120.

Method NTU-60 NTU-120
CS CV CS CE

LongT GAN [25] 39.1 48.1 31.5 35.5
P&C [26] 50.7 76.3 39.5 41.8
ISC [28] 62.5 82.6 50.6 52.3

CMAL [54] 64.2 72.3 50.0 52.1
SkeletonCLR [5] 64.8 60.7 41.9 42.9
CrosSCLR-B [5] 66.1 81.3 52.5 54.9

AimCLR [6] 71.0 63.7 48.9 47.3
SkeleMixCLR [51] 72.3 65.5 49.3 48.3
SkeAttnCLR [52] 69.4 76.8 46.7 58.0

HiCo [57] 68.3 84.8 56.6 59.1
CMD [45] 70.6 85.4 58.3 60.9
HaLP [46] 65.8 83.6 55.8 59.0

HaLP+CMD [46] 71.0 86.4 59.4 61.9
DMMG [53] 72.8 69.9 51.5 52.3

SkeleMoCLR- 69.0 75.8 60.6 63.3

TABLE V
KNN EVALUATION RESULTS FOR DIFFERENT METHODS ON PKU-MMD.

Method Part-I Part-II
SkeletonCLR [5] 64.9 19.9

AimCLR [6] 73.2 19.4
SkeleMixCLR [51] 75.7 33.8

CMAL [54] 77.1 36.6
SkeleMoCLR- 77.2 37.4

Linear Evaluation. The skeletal encoder is frozen, and
a fully connected layer with a Softmax activation function
is added as a linear classifier for training. Compared to
other methods in Tables 6 and Table 7, 2s-SkeleMoCLR-
demonstrates superiority on the three datasets. On NTU-60,
2s-SkeleMoCLR- outperforms 3s-SkeAttnCLR by 1.0% and
2.0% on CS and CV protocols, respectively. On NTU-120,
2s-SkeleMoCLR- achieves accuracy levels of 77.6%/78.1% on
CS and CE protocols, reaching the state-of-the-art level. On
PKU-MMD, 2s-SkeleMoCLR- surpasses 3s-AimCLR by 1.3%
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and 16.3% in Part-I and Part-II, respectively, with accuracies
of 89.1%/54.8%.

TABLE VI
LINEAR EVALUATION RESULTS FOR DIFFERENT METHODS ON NTU-60

AND NTU-120.

Method NTU-60 NTU-120
CS CV CS CE

LongT GAN [25] 39.1 48.1 35.6 39.7
P&C [26] 50.7 76.3 42.7 41.7
ISC [28] 76.3 85.2 67.1 67.9

SkeletonCLR [5] 68.3 76.4 56.8 55.9
CrosSCLR-B [5] 77.3 85.1 67.1 68.6

AimCLR [6] 74.3 79.7 63.4 63.4
SkeleMixCLR [51] 79.6 84.4 67.4 69.6
SkeAttnCLR [52] 80.3 86.1 66.3 74.5

PSTL [55] 77.3 81.8 66.2 67.7
HYSP [58] 78.2 82.6 61.8 64.6
ACL [54] 78.6 84.5 68.5 71.1
CMD [45] 79.8 86.9 70.3 71.5
HiCo [57] 81.1 88.6 72.8 74.1
HaLP [46] 79.7 86.8 71.1 72.2

HaLP+CMD [46] 82.1 88.6 72.6 73.1
DMMG [53] 82.1 87.1 69.6 70.1

2s-DMMG [53] 84.2 89.3 72.7 72.4
3s-Colorization [50] 75.2 83.1 - -
3s-SkeletonCLR [5] 77.8 83.4 67.9 66.7
3s-CrosSCLR-B [5] 82.1 89.2 71.6 73.4

3s-AimCLR [6] 78.9 83.8 68.2 68.8
3s-SkeleMixCLR [51] 81.0 85.6 69.1 69.9
3s-SkeAttnCLR [52] 82.0 86.5 77.1 80.0

3s-PSTL [55] 79.1 83.8 69.2 70.3
3s-HYSP [58] 79.1 85.2 64.5 67.3
3s-HiCLR [48] 80.4 85.5 70.0 70.4
3s-CMD [45] 84.1 90.9 74.7 76.1
SkeleMoCLR- 81.7 86.8 74.8 75.7

2s-SkeleMoCLR- 83.0 88.5 77.6 78.1

TABLE VII
LINEAR EVALUATION RESULTS FOR DIFFERENT METHODS ON

PKU-MMD.

Method Part-I Part-II

MS2L [27] 64.9 27.6
LongT GAN [25] 67.7 26.0

ISC [28] 80.9 36.0
SkeletonCLR [5] 80.9 35.2

AimCLR [6] 83.4 36.8
SkeleMixCLR [51] 89.2 51.6

ACL [54] 88.1 53.4
PSTL [55] 88.4 49.3
HiCo [57] 89.3 49.4

3s-CrosSCLR [5] 84.9 21.2
3s-AimCLR [6] 87.8 38.5

3s-SkeleMixCLR [51] 90.6 52.9
3s-PSTL [55] 89.2 52.3
SkeleMoCLR- 88.0 52.1

2s-SkeleMoCLR- 89.1 54.8

Fine-Tuning Evaluation. The skeletal encoder and linear
classifier are fine-tuned using the entire dataset. The perfor-
mance of 2s-SkeleMoCLR- compared to other methods on
NTU-60 and NTU-120 is shown in Table 8. Experimental
results demonstrate that 2s-SkeleMoCLR- is competitive with
the current best methods on NTU-60. Under CS protocol,
2s-SkeleMoCLR- outperforms the state-of-the-art method (3s-
Hi-TRS) by 0.6%. On NTU-120, 2s-SkeleMoCLR- achieves
performance gains of 1.8% and 2.8% on CS and CE protocols,
respectively, compared to 2s-DMMG. 2s-SkeleMoCLR- out-

performs SkeleMoCLR-, indicating that dual-stream learning
captures more action semantic information than single-stream
learning.

TABLE VIII
FINE-TUNING EVALUATION RESULTS FOR DIFFERENT METHODS ON

NTU-60 AND NTU-120.

Method NTU-60 NTU-120
CS CV CS CE

CrosSCLR [5] 86.2 92.5 80.5 80.4
AimCLR [6] 83.3 89.2 77.2 76.0

SkeleMixCLR [51] 84.5 91.1 75.1 76.0
SkeAttnCLR [52] 87.3 92.8 77.3 87.8

PSTL [55] 84.5 92.0 78.6 78.9
HYSP [58] 86.5 93.5 81.4 82.0
ACL [54] 86.9 92.8 81.7 82.7

3s-CrosSCLR [5] 86.2 92.5 80.5 80.4
3s-AimCLR [6] 86.9 92.8 80.1 80.9

3s-SkeleMixCLR [51] 87.8 93.9 81.6 81.2
3s-Colorization [50] 88.0 94.9 - -
3s-SkeAttnCLR [52] 89.4 94.5 83.4 92.7

3s-PSTL [55] 87.1 93.8 81.3 82.6
2s-DMMG [53] 87.9 94.2 82.4 83.0
3s-HiCLR [48] 88.3 93.2 82.1 83.7
3s-HYSP [58] 89.1 95.2 84.5 86.3

3s-Hi-TRS [49] 90.0 95.7 85.3 87.4
SkeleMoCLR- 88.8 92.7 81.8 83.0

2s-SkeleMoCLR- 90.6 94.9 84.2 85.8

Transfer Learning. The transfer learning performance of
the method is evaluated by training the skeletal encoder on
NTU-60, NTU-120, and PKU-MMD Part-I, followed by fine-
tuning with a linear layer on the PKU-MMD Part-II dataset.
As shown in Table 9, our method enhances the encoder’s gen-
eralization, achieving significant performance improvements.
Compared to ACL, SkeleMoCLR- demonstrates accuracy im-
provements of 0.6%, 1.2%, and 0.7% on the three datasets,
respectively. Pretraining on the NTU-120 dataset leads to
substantial accuracy improvements on PKU-MMD Part-II,
highlighting the benefits of the transferability of the learned
representations.

TABLE IX
FINE-TUNING EVALUATION RESULTS FOR DIFFERENT METHODS ON

NTU-60, NTU-120 AND PKU-MMD PART-I.

Method NTU-60 NTU-120 PKU-MMD Part-I
LongT GAN [25] 44.8 - 43.6

MS2L [27] 45.8 - 44.1
ISC [28] 45.9 52.3 45.1

MCC [59] 52.7 54.5 49.6
CrosSCLR-B [5] 54.0 52.8 -

CMD [45] 56.0 57.0 -
HiCo [57] 56.3 - 53.4
HaLP [46] 54.8 55.4 -

HaLP+CMD [46] 56.6 57.3 -
ACL [54] 61.2 62.4 58.5

SkeleMoCLR- 61.8 63.6 59.2

E. Qualitative Analysis

As shown in Figure 4, we employ t-SNE [60] to visualize
the feature embeddings learned by SkeleMoCLR-, CrosSCLR,
and AimCLR on NTU-120. To ensure a fair comparison, we
randomly select 20 skeletal action categories. In comparison to
competing contrastive learning methods, SkeleMoCLR- leads
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to more compact feature representations for the same category
and more distinguishable feature representations for different
categories. This further underscores the enhanced capability
of SkeleMoCLR- in learning skeletal action representations.

(a) CrosSCLR (b) AimCLR (c) SkeleMoCLR-

Fig. 4. T-SNE visualization of action features learned by (a) CrosSCLR, (b)
AimCLR, and (c) SkeleMoCLR-. (Best viewed in color).

As shown in Figure 5, we visualize the output feature maps
of the final layer in the 2s-SkeleMoCLR backbone on NTU-
120, where circles centered around the joints represent the
magnitude of the feature responses for those joints. With
5% labeled data, we compare the skeletal responses of the
classic AimCLR (first row), 2s-SkeleMoCLR w/o PT pre-
training (second row), and 2s-SkeleMoCLR w/ PT (third row).
Compared to other rows, 2s-SkeleMoCLR w/PT can focus on
the most relevant parts of the actions. For the ”drinking water”
action, the arm region is deeply involved, and the circles with
larger radii and darker colors indicate that these joints are
crucial for the skeletal action. In the ”take off headphone”
action, there is a more significant distribution of responses in
the limb joints, with almost no response in other parts. It is
evident that contrastive pre-training can enhance the model’s
robustness and reduce interference from noisy joints.

(a) Drink water (b) Take off headphone

Fig. 5. Feature responses of all joints in the final layer of the 2s-SkeleMoCLR
backbone. The larger the response, the larger the radius of the circle centered
around the joint, and the darker the color.

F. Ablation Study
With 10% labeled data, we conduct semi-supervised abla-

tion studies using the linear evaluation protocol on NTU-60
to validate the effectiveness of different components.

Different Vision-Text models. In addition to ActionCLIP,
we conduct experiments with various vision-text models dur-
ing contrastive pre-training to explore their effects. X-CLIP

[61] directly adapts the pre-trained image-language model for
video recognition. Florence [62] further extends the CLIP
approach by utilizing a unified contrastive objective. As shown
in Table 10, while using more powerful vision-text models
could improve our method’s performance, the enhancement
may not be substantial.

TABLE X
COMPARISON OF SEMI-SUPERVISED RESULTS WITH DIFFERENT

VISION-TEXT MODELS WITH 10% LABELED DATA ON NTU-60 AND
PKU-MMD DATASETS.

Model NTU-60 PKU-MMD
CS CV Part-I Part-II

X-CLIP [61] 78.1 81.6 88.1 42.1
ActionCLIP 78.4 81.8 88.3 42.1

X-Florence [61] 78.8 89.3 88.5 42.2

Different Hyperparameters. We follow the semi-
supervised setting in [35] and set λR to 50. We further
investigate the values of other hyperparameters in the loss
function through ablation experiments. As shown in Table
11, the optimal values are λCE = 1 and λCL = 1, which are
consistent with the default reference values for loss weights
in existing semi-supervised works.

TABLE XI
COMPARISON OF SEMI-SUPERVISED RESULTS UNDER DIFFERENT

HYPERPARAMETER SETTINGS WITH 10% LABELED DATA ON NTU-60
AND PKU-MMD DATASETS.

Methods λCE λCL NTU-60 cs PKU-MMD Part-I
Mean Teacher - - 69.1 77.6

2s-SkeleMoCLR

1 0 76.5 85.6
1 0.1 77.0 86.3
1 1 78.4 88.3
1 5 77.5 87.2
1 10 76.8 86.3
5 1 77.2 86.7
10 1 76.6 85.5

Different Semi-supervised Frameworks. As shown in
Figure 7, we employ classical semi-supervised frameworks
such as FixMatch [1], Mean Teacher [9], Noisy Student [63],
and DST [64] to conduct semi-supervised experiments. As
demonstrated in Table 10, contrastive pretraining result in
significant improvements in various semi-supervised frame-
works compared to random initialization, confirming its strong
representation capabilities. Additionally, we discover that ex-
isting semi-supervised methods in the image domain are not
directly suitable for the task of skeleton action recognition.
Our semi-supervised framework exhibits a clear advantage in
this context.

Different Components of 2s-SkeleMoCLR. In Table 11,
”PT” represents contrastive pre-training, ”CI” signifies cate-
gory information in the queues, ”RR” denotes representation
regularization, and ”EA” refers to extreme augmentation. The
results in Table 11 indicate that, on CS and CV protocols,
contrastive pre-training improves accuracy by 5.8% and 5.7%,
representation regularization enhances performance by 1.2%
and 0.8%. The introduction of category information in the
queue increases accuracy by 3.3% and 3.8% on CS and CV
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Fig. 6. Illustration of model structure based on (a) FixMatch, (b) Mean
Teacher, (c) Noisy Student and (d) DST framework.

TABLE XII
COMPARISON OF SEMI-SUPERVISED RESULTS WITH DIFFERENT

SEMI-SUPERVISED FRAMEWORKS ON THE NTU-60 CS PROTOCOL WITH
10% LABELED DATA.

Framework w/o PT w/ PT
Noisy Student 59.6 66.0

FixMatch 60.9 66.8
DST 61.4 67.7

Mean Teacher 63.0 69.1
Ours 72.6 78.4

protocols, and with the help of extreme augmentation, top-1
accuracy is improved by 2.4% and 2.7%, respectively. These
results indicate that the proposed design enables the skeleton
encoder to learn stronger and more robust features, making
them better suited for semi-supervised tasks.

TABLE XIII
SEMI-SUPERVISED ABLATION EXPERIMENTS OF DIFFERENT COMPONENTS

OF 2S-SKELEMOCLR ON NTU-60 WITH 10% LABELED DATA.

w/ PT w/ CI w/ RR w/ EA CS CV
✓ ✓ ✓ 72.6 76.1

✓ ✓ ✓ ✓ 78.4 81.8
✓ ✓ ✓ 75.1 78.0
✓ ✓ ✓ 77.2 81.0
✓ ✓ ✓ 76.0 79.1

G. Complexity Analysis

To analyze the model complexity, we compared different
models in terms of parameters (M) and FLOPs (G). 2s-
SkeleMoCLR is cleverly designed and only require skeleton
data during the inference phase, which gives it a complexity
advantage over other models.

V. CONCLUSION

In this paper, we propose a novel pseudo-label-based model,
SkeleMoCLR, for semi-supervised skeleton action recognition.
Inspired by MoCo V2 and Mean Teacher, we incorporate self-
supervised models into a semi-supervised framework to gen-
erate pseudo-labels. Furthermore, we introduce category infor-
mation of pseudo-labels into the memory queue of contrastive
learning, making full use of the advantages of self-supervised
and semi-supervised learning. Experimental results on the

TABLE XIV
COMPARISON OF THE COMPLEXITY OF DIFFERENT MODELS

Models Params(M) FLOPs(G)
ST-GCN [19] 3.1 16.7
MS-G3D [20] 6.4 48.8
AS-GCN [21] 7.2 35.5

2s-AAGCN [65] 7.6 39.1
2s-AGCN [22] 6.9 37.3

DGNN [66] 8.1 71.1
DSTA [67] 4.1 64.7

PoseConv3D [13] 2.0 20.6
2s-MAC-Learning [33] 8.1 40.7

2s-SkeleMoCL 7.4 37.8

NTU-60, NTU-120, PKU-MMD, and NW-UCLA datasets
validate the outstanding performance of SkeleMoCLR, which
provides more discriminative action representations.
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