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ABSTRACT
Shapelets are short, interpretable patterns in temporal data which can be character-
istic of a class. In this paper, we identify shapelets from the trajectories of discrete-
event simulation to indicate the characteristic dynamic behaviours of competing
system alternatives. This deviates from traditional simulation output analysis, in
which estimations of time-averaged performance measures overlook the more fine-
grained time-dynamic features that shape the evolution of a system. We propose a
shapelet methodology tailored towards simulation trajectories, and provide math-
ematical observations to support its implementation. To illustrate the potential of
this methodology, we demonstrate its application to three examples. In particular,
we reveal disruption recovery behaviour in a manufacturing simulation, provide a
means for dynamic model validation, and expose the typical joint behaviour of a
multivariate system state. By offering a visual characterisation of trajectories, we
find that simulation shapelets can promote a deeper understanding of the dynamic
behaviour and performance of simulated models.

KEYWORDS
Discrete-event simulation; trajectories; time-dynamic; shapelets; simulation
analytics; deeper comparisons

1. Introduction

A stochastic simulation is a representation of a time-dynamic process. In spite of
this, long-run average performance remains the prevailing mode of output analysis
(Nelson & Pei, 2021). Chasing precise estimations of long-run behaviour leads to dy-
namic simulation outputs being averaged over both time and replications. Although
an important view of simulation performance, this neglects insights into the dynamic
behaviours that characterise a working system.

In this paper, we present a methodology for investigating the dynamic behaviour of
stochastic simulation. We borrow the concept of shapelets (Ye & Keogh, 2011) from
the literature on time series classification. Shapelets are local segments of a series
that represent the characteristic patterns of behaviour by which we can discriminate
among classes. Applied to trajectories of simulation variables, we find that shapelets
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can identify the typical dynamic features which characterise and distinguish competing
system alternatives.

We use the term trajectory to refer to a measurable quantity in a simulation
model recorded as a continuous-time function. For example, the number-in-system
in a discrete-event queueing model constitutes an integer variable that changes value
only at the time of an arrival or departure event, and thus follows a piecewise con-
stant trajectory. We specifically consider piecewise constant trajectories generated by
discrete-event simulation over a finite time horizon. This affords us an enviable position
with regards to data generation. We possess a ready source of clean, measurement-
error-free data, with control over the form and quantity of output trajectories. Con-
sequently, our controlled simulation environment provides advantages to a shapelet
analysis which most time series applications do not. While our primary interest is in
the benefits of shapelets to simulation, we are thus encouraged by reciprocal benefits
of simulation to shapelets.

Our contributions in this paper are threefold. Firstly, we adapt a shapelet method-
ology from the setting of discretely sampled time series to the setting of piecewise
constant simulation trajectories. In doing so, we offer a general-purpose methodol-
ogy for output analysis. However, the computational demands of a shapelet search
can be significant. Therefore, our second contribution exploits the piecewise constant
structure to provide mathematical results which ease this computational aspect and
simplify an implementation. Thirdly, we provide proof-of-concept illustrations of some
possible applications for simulation shapelets. Specifically, we demonstrate the use of
shapelets in identifying the differing dynamic response to disruption experienced by a
manufacturing simulation under two design alternatives. We also show their potential
for assisting operational model validation, as well as for exploring a multivariate state
process. These examples demonstrate the value in moving an analysis beyond average
performance, and the various benefits that shapelets can bring to an understanding of
simulation behaviour.

The paper is structured as follows. Section 2 establishes our motivation and back-
ground, including an overview of time series shapelets. Section 3 describes the proposed
extension to simulation shapelets, and establishes mathematical results to facilitate its
implementation. We illustrate some potential applications in Section 4, showing the
versatility of the approach in providing insight for various purposes. The paper con-
cludes with a summary in Section 5.

2. Background

This section provides context for our work. (Reviewer 1, 1-3.) This may be the easiest
place to mention Industry 4.0 without derailing the paper too much. Can mention
specific simulation technologies, ie. digital twins, and refer to example in Section 4.2
which may be relevant to this. Section 2.1 contains a brief discussion of simulation
trajectories, while Section 2.2 introduces the concept of time series shapelets, and
reviews existing literature.

2.1. Simulation Trajectories

Discrete-event simulation describes a modelling paradigm in which the operation of
a real system is represented by a random sequence of events occurring at discrete
points in time. The state of the system can be described by a collection of variables

2



Figure 1. Examples of piecewise constant, continuous-time trajectories from a simulation of an M/M/1 queue.

which undergo instantaneous changes at event times, and otherwise remain constant.
Consequently, the trajectories of simulation state variables take the form of piece-
wise constant functions of simulation time. We can also consider output variables
such as waiting times or number of completions. Figure 1 provides some examples
of trajectories from the simulation of an M/M/1 queue. From left to right, we show
the number-in-system, the throughput, and the latest sojourn time as functions of
simulation time.

Over the years, time series methods have been routinely applied to dynamic simu-
lation output. However, the overarching purpose for such work has been for the study
of steady-state behaviour. Fishman & Kiviat (1967) introduced a spectral analysis
toolbox for simulation generated time series, with several other authors developing
similar analyses to serve specific models (Heidelberger & Welch, 1983; Lada, Wilson,
Steiger, & Joines, 2007). Autoregressive models have been applied to dynamic simula-
tion outputs to assist steady-state mean and variance estimation (Schriber & Andrews,
1984; Yuan & Nelson, 1993). In fitting such models, we can imagine interest in the
interpretations of the autoregressive coefficients and residual variance. However, these
models rely on a weak stationarity assumption, and an autocovariance depending only
on the time lag. We consider these restrictions limiting for the admission of general
non-stationary trajectories.

Recently, Nelson (2016) highlighted the need and opportunity for output analysis
to move towards time-dependent characterisations. This prompted the emerging field
of simulation analytics, which has since produced dynamic metamodelling for perfor-
mance predictions conditional on time or state information (Laidler et al., 2020; Lin,
Nelson, & Pei, 2019). In a direct effort to characterise dynamic simulation behaviour,
Fourier analysis has been successfully applied to the time series of queue length and
number-in-system trajectories, with coefficient magnitudes providing interpretation
with regards to system congestion (Morgan & Barton, 2022). This approach provides
a statistical characterisation of dynamic behaviour. Our own approach provides a visual
characterisation, while retaining the continuous-time form of simulation trajectories.
We base our approach on a methodology appearing in time series classification, which
we discuss subsequently.

2.2. Time Series Shapelets

Time series shapelets were introduced by Ye & Keogh (2011) as a fast (once trained)
and interpretable means of time series classification. A shapelet refers to a short sub-
sequence whose appearance or absence in a time series can be informative of its class.
This exploits the idea that the characteristic behaviour of a class of series tends to re-
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veal itself over short patterns and local variations rather than on the global structure.
Furthermore, the natural visualisation of shapelets can offer valuable interpretation.
Shapelets have been shown to provide useful insights and classification accuracy across
a range of applications, including motion capture (Shajina & Sivakumar, 2012), health
monitoring data (Zorko, Frühwirth, Goswami, Moser, & Levnajić, 2020), and detection
of wind, wave, and seismic events (Arul & Kareem, 2021).

To formalise the key concepts used in time series shapelets, we introduce a time
series Z = z1:m as a sequence of m real-valued variables, and similarly a shapelet
S = s1:ℓ of length ℓ ≤ m. The methodology relies on a notion of distance between a
shapelet and a series. Initially, we define a symmetric, real-valued distance function,
d, between S = s1:ℓ and S′ = s′1:ℓ, two length ℓ sequences. The squared Euclidean
distance,

d(S, S′) =

ℓ∑
i=1

(si − s′i)
2, (1)

represents a common choice, although alternatives including correlation functions
(Cetin, Mueen, & Calhoun, 2015) and Dynamic Time Warping (Shah, Grabocka,
Schilling, Wistuba, & Schmidt-Thieme, 2016) have also been used. The distance be-
tween the shapelet, S, and the series, Z, is then defined by the closest appearance of
S along the length of Z, as measured by d:

dist(S,Z) = min
t∈{1,2,...,m−ℓ+1}

d(S, zt:t+ℓ−1).

With this distance function, we can assess the quality of a shapelet in providing
class discrimination. We are given a dataset, D, containing the classified time se-
ries, Z1, Z2, . . . , Zn. Over this dataset, a shapelet, S, generates the set of distances
{dist(S,Z1),dist(S,Z2), . . . ,dist(S,Zn)}. Therefore, together with a distance thresh-
old, γ, S divides D into two subsets: Dnear = {Zi ∈ D : dist(S,Zi) ≤ γ} and
Dfar = {Zi ∈ D : dist(S,Zi) > γ}. The ability of S to discriminate classes is based on
how well, for some γ, the classifications in D can be separated between Dnear and Dfar.
This is measured by information gain, which begins with a definition of the entropy
of a set of classified objects. For the time series dataset D containing nc series of class
c ∈ C and n =

∑
c∈C nc total series, the entropy of D is defined as

H(D) = −
∑
c∈C

nc

n
log

(nc

n

)
.

After splitting D with the shapelet, S, and distance threshold, γ, this entropy becomes

Ĥ(D,S, γ) =
|Dnear|

n
H(Dnear) +

|Dfar|
n

H(Dfar),

and the information gain of this splitting strategy can be written as

I(D,S, γ) = H(D)− Ĥ(D,S, γ).

An optimal distance threshold for S on D is defined as a value, γ⋆S,D, such that

I(D,S, γ⋆S,D) ≥ I(D,S, γ) for all other γ ∈ R. The goal of a shapelet search on D is to
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find a shapelet, S, that maximises I(D,S, γ⋆S,D). While in theory there are no restric-
tions on the values of S, typical practice is to extract a finite pool of candidates by con-
sidering all subsequences of permissible length occurring in D. Assuming Zi has length
mi, the permissible shapelet lengths might be considered as I = {2, 3, . . . ,minmi},
although typically domain knowledge can be used to reduce the size of I and expedite
the search without sacrificing meaningful shapelets.

Alternative quality measures to the information gain, such as the F-statistic (Hills,
Lines, Baranauskas, Mapp, & Bagnall, 2014) and Kruskal-Wallis and Mood’s Median
tests (Lines & Bagnall, 2012), have also been explored, with claims of faster compu-
tation and similar discrimination. However, the information theory framework natu-
rally lends itself to the original decision tree classifier implemented by Ye & Keogh
(2011). Framing the shapelet classifier as a decision tree retains the advantages of
interpretability, while readily extending the binary architecture of shapelet splitting
to multi-class problems. Beyond decision trees, however, Hills et al. (2014) proposed a
shapelet transformation by taking the distances from a series to each of a collection of
shapelets as classification features to be used in conjunction with a range of standard
classifiers.

The computational demands of an exhaustive shapelet search are unfortunately
prohibitive for many problems, and much of the subsequent literature has focused on
speed-up techniques. Logical computation-saving steps such as an early abandon of
unfruitful distance and entropy calculations were introduced (Ye & Keogh, 2011), and
although unable to improve on the worst-case complexity, bring significant speed-up
in practice. Mueen, Keogh, & Young (2011) introduced a further admissible prun-
ing technique on the candidate pool based on an application of the triangle inequality
with previously cached distance computations. However, the most significant speed-ups
have been achieved by pruning via heuristic approaches (for example, see He, Zhuang,
Shang, & Shi (2012)), claiming the sacrifice of exactness for speed to have little im-
pact on classification accuracy. Alternatively, Karlsson, Papapetrou, & Boström (2016)
consider using randomised subsets of the training set and candidate pool in building
a random forest ensemble, while Rakthanmanon & Keogh (2013) reduce computation
by using piecewise aggregate approximations of the time series.

Whilst the computational challenges surrounding shapelet methodology continue to
be addressed by other researchers, our interest lies in the application and benefits of
shapelets for an analysis of simulation trajectories. Could mention here that our main
contribution/difference from this existing shapelet literature is to consider continuous-
time. (Reviewer 1, 3.)

3. Simulation Shapelets

The interpretability offered by shapelets is a valuable feature among methods for time
series classification. Common alternatives such as nearest neighbour methods provide
no insight into why an object is assigned to a particular class, whereas shapelets
can reveal the characteristic patterns by which classes are distinguished. It is this
aspect of interpretability that attracts us as we look to characterise and understand
dynamic simulation behaviour, rather than a need for classification. Our ambition
is for shapelets to identify the characteristic dynamics which vary across competing
system designs.

Our scope is to consider simulation over a finite time horizon. Independent repli-
cations of the same system provide us with multiple trajectories of constant length,
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Figure 2. Top: from a capacitated M/M/1 queueing simulation, we show two continuous-time queue length
trajectories, y1 and y2, and an example shapelet, s. We convert these into regularly sampled series, Z1, Z2,

and S, respectively, and calculate dist(S,Z) as described in Section 2.2. Bottom: the ordering of the distance
of the shapelet to each series is heavily dependent on the sampling frequency.

representing, in the context of shapelet methodology, a collection of series of one par-
ticular class. The nature of simulation can lead to replications of the same system
with vastly different overall trajectories. However, we expect the underlying dynamics
to consistently produce its short-term characteristic patterns, encouraging the idea
that shapelets can be well-suited to an analysis of simulation trajectories. This section
describes the proposed methodology and its implementation.

3.1. Continuous-time Series

The classical shapelet method accommodates time series sampled at discrete, regularly
spaced time points, whereas simulation generates discrete-valued series measured in
continuous time. This is the main point of difference to which we adapt.

In comparable work, continuous-time simulation trajectories have been converted
into regularly sampled series to proceed with standard time series methods (Morgan
& Barton, 2022). This approach introduces the decision of sampling frequency and
inevitably incurs a loss of information. In a shapelet search, we also realise that results
can be sensitive to this decision. For example, Figure 2 (bottom) shows the distance
of a shapelet to two continuous-time trajectories from an M/M/1 queue over a range
of sampling frequencies. The ordering of the series with regards to their distance
to the shapelet is seen to depend heavily on the sampling frequency. Since shapelet
selection relies on such distance orderings, we cannot guarantee robust results with
this approach. Instead, we choose to preserve simulation trajectories in their original
continuous-time format, and adapt a distance function to this context.

We denote a continuous-time simulation trajectory by y : [0, T ] → R. As a piecewise
constant function, we can write t0 = 0, tm = T , and use ti for i = 1, 2, . . . ,m − 1 to
represent the time of the ith change of y. We have y(t) = y(ti) for ti ≤ t < ti+1. We
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represent the similarly piecewise constant shapelet of length ℓ ≤ T by s : [0, ℓ] → R.
To calculate a distance between two equal-length segments, we use the L1 distance.

That is, for s, s′ : [0, ℓ] → R, we write

∥s− s′∥1 =
∫ ℓ

0
|s(u)− s′(u)|du. (2)

For piecewise constant functions, this is easily calculable as a sum of rectangular areas.
(Reviewer 2, 1.) Mention here that L1 was used for visual intuition (?) and mathe-
matical convenience, but that L2 could also be used. Note the theorems and proofs
appearing later and in Appendix can be generalised to Lp norms (result and logic of
Theorem 3.3 will change, but a result should still exist). The chosen distance may
depend on the intended use (eg?). We didn’t try anything else, but L1 yields simplest
computation and was found to give meaningful results for simulation shapelets. Fig-
ure 3 illustrates the alteration made to the distance function as compared with the
standard time series setting. Now, we define the distance between s and y as

dist(s, y) = min
t∈[0,T−ℓ]

∥s− y([t, t+ ℓ])∥1, (3)

where we allow shifts of the time axis to align segment domains. In particular, for
t ∈ [0, T − ℓ], we define

∥s− y([t, t+ ℓ])∥1 =
∫ t+ℓ

t
|s(u− t)− y(u)|du.

Using the shapelet-series distance function (3), the remaining methodology surround-
ing the evaluation of shapelet candidates via splitting thresholds and information gain
can proceed in the same way as described in Section 2.2.

In selecting candidates for the shapelet search, we recognise that the continuous-
time format allows an infinite collection of shapelet candidates to be extracted from
a dataset. To restrict this, we might extract candidates beginning every τ time units
along our training trajectories, with the choice of τ being a consideration of compu-
tational budget as well as the granularity of the trajectories. Alternatively, to remove
the need for a decision, we might extract candidates from a trajectory beginning at
times at which the trajectory changes value. However, this approach may in general
lead to needlessly large candidate sets. Therefore, we prefer the former approach of
selecting τ , which allows us easy control over the size of the candidate set.

We also prescribe a finite selection, I, of shapelet lengths, relying on intuition for
the potential shapelet interpretations in the problem context. Our choices for τ and
I directly control the size of the search, establishing a compromise between speed
and quality. We note also that our adaptations to the continuous-time context remain
compatible with existing approaches to candidate pruning (for example, see Mueen et
al. (2011)).

Having outlined our methodology for continuous-time shapelets, we turn attention
to its practical implementation. Calculation of the distance between a shapelet and
a series (3) forms the workhorse of the method, so we continue with an observation
towards its efficient computation.
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Figure 3. Illustrating the proposed alteration to the distance function in moving from the discrete-time to
the continuous-time context.

3.2. Efficient Distance Computation

In calculating dist(s, y), we look for the segment of y with minimum L1 distance to
s. Intuitively, we are sliding the shapelet along the series to find its best matching
location, with ∥s−y([t, t+ ℓ])∥1 providing a continuous function of t ∈ [0, T − ℓ] which
we seek to minimise. However, rather than requiring numerical optimisation, we notice
a unique structure to this function arising from the fact that s and y represent piecewise
constant trajectories. This decomposes ∥s−y([t, t+ℓ])∥1 into piecewise linear segments
in t, such that its minimum must exist at a finite collection of points. Specifically, we
make use of the following result:

Theorem 3.1. Let y : [0, T ] → R be a piecewise constant function with change times
in the set T = {0 = t0, t1, . . . , tm = T} and s : [0, ℓ] → R with ℓ ≤ T a piecewise
constant function with change times in the set U = {0 = u0, u1, . . . , um′ = ℓ}. Let

Uj = {ti − uj : i = 0, 1, . . . ,m} ∩ [0, T − ℓ] for j = 0, 1, . . . ,m′, and let V =
⋃m′

j=0 Uj.

Then ∥s−y([t, t+ℓ])∥1 is linear in t for t ∈ [v, v′], where v, v′ ∈ V and (v, v′)∩V = ∅.

Proof. See Appendix A.

Theorem 3.1 states that ∥s− y([t, t+ ℓ])∥1 is a piecewise linear function of t which
can only change its slope at the times contained in the finite set, V. The consequence of
this for the calculation of dist(s, y) is that we only need to evaluate ∥s− y([t, t+ ℓ])∥1
at points t ∈ V to find its minimum. Furthermore, calculating these distances as
the sum of individual area components, as implied in Appendix A, allows for early
abandon pruning as soon as the current minimum is exceeded. These observations
allow substantial speed-up of the computation of dist(s, y).
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3.3. Location Invariance

We notice that ∥s − s′∥1 is heavily dependent on the vertical displacements of the
segments, s and s′. In particular, two segments with identical shape but separated
by a vertical shift will yield a positive distance value, while a smaller distance may
be obtained between two segments which show vastly different shapes yet have sim-
ilar vertical locations. In other words, similarities in shape can become swamped by
the location factor. Depending on the purpose for examining simulation trajectories,
however, it may be the shape rather than the location which is of greater interest in
characterising the short-term system dynamics. Traditional output analysis can sum-
marise information about the level of a series, so our primary aim with a shapelet
analysis is to reveal dynamic characteristics of the shape. For this reason, we look to
amend the distance function (3) such that it only reflects differences in shape.

In standard time series shapelets, z-normalisation on the individual segments is
often performed prior to the distance calculation to achieve scale and offset invariance
(Cetin et al., 2015). However, in our context, scale contains relevant information of
the dynamics. We are comparing trajectories which all measure the same simulation
quantity, such that differences in scale represent relevant dynamical differences that we
need to preserve. To remove only the location factor while retaining the original shape
and scale, we optimise a vertical displacement in conjunction with the horizontally
sliding window. In other words, we allow a shapelet free movement vertically as well as
horizontally to find its best matching location on a series. We consider the transformed
shapelet sc : [0, ℓ] → R with c ∈ R such that sc(t) = s(t) + c, and define the location-
invariant distance between the shapelet, s, and the series, y, to be

dĩst(s, y) = min
t∈[0,T−ℓ],c∈R

∥sc − y([t, t+ ℓ])∥1. (4)

This modification ensures that the distance between a shapelet and a series de-
pends only on resemblances to the shapelet’s shape within the series. Conveniently,
this contributes only a minor computational extension to the calculations implied in
Section 3.2. Firstly, we retain the result of Theorem 3.1 which states that the starting
position of the best matching location on the time axis can only belong to a finite set
of possibilities. This arises from the following corollary:

Corollary 3.2. Let y : [0, T ] → R and s : [0, ℓ] → R be as in Theorem 3.1. Let c ∈ R
and define sc : [0, ℓ] → R such that sc(t) = s(t)+c. Let f(t) = minc∈R∥sc−y([t, t+ℓ])∥1.

Then mint∈[0,T−ℓ] f(t) is attained by an element of the finite set V described in
Theorem 3.1.

Proof. Assume t⋆ /∈ V minimises f(t). Let c⋆ = argminc∈R∥sc−y([t⋆, t⋆+ ℓ])∥1. Then
∥sc⋆ −y([t⋆, t⋆+ ℓ])∥1 ≤ ∥sc−y([t, t+ ℓ])∥1 for all other t ∈ [0, T − ℓ] and c ∈ R. But by
Theorem 3.1, mint∈[0,T−ℓ]∥sc

⋆−y([t, t+ℓ])∥1 is attained by an element of V. This either
provides a contradiction, or we have that ∥sc⋆ − y([t, t+ ℓ])∥1 = ∥sc⋆ − y([t⋆, t⋆ + ℓ])∥1
for some t ∈ V.

Corollary 3.2 implies that to find dĩst(s, y), we only need to calculate ∥sc − y([t, t+
ℓ])∥1 for t ∈ V. Therefore, for a given point t ∈ V, we now address the task of finding
minc∈R∥sc − y([t, t + ℓ])∥1. We observe that the piecewise constant behaviour of s
and y allows ∥sc − y([t, t + ℓ])∥1 to be expressed as a sum of rectangular areas with
known dimensions. This regular structure allows us to write down its minimiser via
the following theorem.
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Theorem 3.3. Let y : [0, T ] → R, s : [0, ℓ] → R, and sc : [0, ℓ] → R be as in Corol-
lary 3.2. Let Wt = {T ∩ (t, t+ ℓ)}∪{U + t}, with ordered elements denoted by wt

i such
that y(wt

i)− s(wt
i − t) ≤ y(wt

i+1)− s(wt
i+1 − t) for i = 1, 2, . . . ,mt. Let

λi =

{
min{wt

j − wt
i : w

t
j ∈ Wt, wt

j > wt
i} if wt

i ∈ Wt\{t+ ℓ},
0 if wt

i = t+ ℓ,

and let k⋆ = min
{
k ∈ {1, . . . ,mt} :

∑k
i=1 λi ≥ ℓ

2

}
.

Then minc∈R∥sc − y([t, t+ ℓ])∥1 is attained by ct = y(wt
k⋆)− s(wt

k⋆ − t).

Proof. See Appendix B.

In Theorem 3.3, {U + t} denotes the set {uj + t : uj ∈ U}. Corollary 3.2 and Theo-

rem 3.3 combine to provide an efficient computation procedure for dĩst(s, y): we eval-
uate ∥sc − y([t, t+ ℓ])∥1 at the points (t, ct) for t ∈ V and ct as given by Theorem 3.3,
with early abandoning again providing further practical speed-up.

3.4. Multivariate Shapelets

We also consider extending the application of shapelets to multivariate simulation tra-
jectories. This would accommodate multivariate output trajectories, as well as mul-
tivariate trajectories of the system state. Changes in state variables often represent
the physical movements of entities in a system, and the multivariate state can thus be
highly correlated. Multivariate shapelets extracted over each dimension simultaneously
may provide an insight into typical system-wide behaviours.

Bostrom & Bagnall (2017) consider options for the formulation of multivariate time
series shapelets, after extracting candidates over the same indices of each dimension. To
find the best matching location of a multivariate shapelet on a multivariate series, two
paradigms were considered: dependent shapelets, in which the shapelet components
remain in parallel, and independent shapelets, in which the components are free to
move in each dimension independently. The latter approach will not necessarily reveal
the common joint behaviour, and so we choose to explore the former paradigm.

We calculate a multivariate shapelet-series distance value by summing the distance
contributions from each dimension. Specifically, in our continuous-time context, we
calculate the location-invariant distance between a D-dimensional, length ℓ shapelet
s = (s1, s2, . . . , sD) and a D-dimensional, length T series y = (y1, y2, . . . , yD) as

dĩst(s,y) = min
t∈[0,T−ℓ],c∈RD

D∑
d=1

∥scdd − yd([t, t+ ℓ])∥1. (5)

The vector, c = (c1, c2, . . . , cD), contains the independent vertical displacements in
each dimension. Interpreting this distance function, the best matching location of s
on y is found by the shapelet components sd moving dependently with one another
across time, but independently of one another in their vertical shifts.

Calculation of dĩst(s,y) follows straightforwardly from the univariate case, by ap-
plication of the following corollary:
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Corollary 3.4 (to Theorem 3.1). Let y : [0, T ] → RD and s : [0, ℓ] → RD be D-
dimensional piecewise constant functions, with ℓ ≤ T . For d = 1, 2, . . . , D, we have
the univariate piecewise constant functions yd : [0, T ] → R and sd : [0, ℓ] → R. Let Vd be

the set described in Theorem 3.1 for the dth dimension. Let f(t) = minc∈RD

∑D
d=1∥s

cd
d −

yd([t, t+ ℓ])∥1.
Then mint∈[0,T−ℓ] f(t) is attained by an element of the finite set V =

⋃D
d=1 Vd.

Proof. For each d = 1, 2, . . . , D, Theorem 3.1 states that ∥sd − yd([t, t + ℓ])∥1 is
linear in t for t between successive elements of Vd. Now consider successive elements
v, v′ ∈ V with (v, v′)∩V = ∅. Since Vd ⊆ V for all d, we must also have (v, v′)∩Vd = ∅,
implying that ∥sd − yd([t, t + ℓ])∥1 is linear in t for t ∈ [v, v′] for all d. Therefore,∑D

d=1∥sd − yd([t, t + ℓ])∥1 must also be linear in t for t ∈ [v, v′]. We conclude that∑D
d=1∥sd − yd([t, t+ ℓ])∥1 is minimised by an element of V.
Now assume t⋆ /∈ V minimises f(t). Let c⋆ = argminc∈RD

∑D
d=1∥s

cd
d − yd([t

⋆, t⋆ +

ℓ])∥1. Then
∑D

d=1∥s
c⋆d
d − yd([t

⋆, t⋆ + ℓ])∥1 ≤
∑D

d=1∥s
cd
d − yd([t, t + ℓ])∥1 for all other

t ∈ [0, T−ℓ] and c = (c1, c2, . . . , cD) ∈ RD. But we know that
∑D

d=1∥s
c⋆d
d −yd([t, t+ℓ])∥1

is minimised by an element of V. This either provides a contradiction, or we have that∑D
d=1∥s

c⋆d
d − yd([t, t+ ℓ])∥1 =

∑D
d=1∥s

c⋆d
d − yd([t

⋆, t⋆ + ℓ])∥1 for some t ∈ V.

By Corollary 3.4 and Theorem 3.3, we see that the calculation of dĩst(s,y) only

requires us to evaluate
∑D

d=1∥s
cd
d − yd([t, t + ℓ])∥1 at points (t, ct) where t ∈ V and

ct = (ct1, c
t
2, . . . , c

t
D). Establishing a calculation of dĩst(s,y) allows the shapelet search

to proceed as in the univariate case, by calculating for each shapelet candidate the
information gain achieved by the optimal splitting threshold.

In general, for variables measuring different quantities and with different scales, we
might consider applying the summation (5) with unequal weightings. We note that
this adjustment would not affect the result of Corollary 3.4. In the example presented
in Section 4.3, however, we calculate the multivariate distance using equally weighted
dimensions.

4. Applications of Simulation Shapelets

The proposed methodology offers insight into short-term simulation behaviour, which
can be helpful and informative for various objectives. Some exemplar applications of
simulation shapelets are illustrated in this section.

In each example, our aim is to reveal the characteristic dynamics of two alternative
systems. For this purpose, we identify shapelets as follows. We use s1 to denote a
shapelet extracted from the trajectories of system 1 that maximises the information
gain, with the added condition that the proportion of system 1 trajectories in the near
subset, defined by s1’s optimal distance threshold, γ⋆s1,D, must exceed the proportion in
the far subset. In particular, letting D denote the complete set of training trajectories,
we write Dnear = {yi ∈ D : dĩst(s1, yi) ≤ γ⋆s1,D} and Dfar = {yi ∈ D : dĩst(s1, yi) >

γ⋆s1,D}. Then, letting D1 ⊂ D denote the set of system 1 trajectories, we require

that |D1 ∩Dnear|/|Dnear| > |D1 ∩Dfar|/|Dfar|. Without this extra condition, s1 may
instead identify characteristic behaviour of system 2 which on occasion appears in a
trajectory of system 1. In the same way, we denote by s2 an optimal shapelet which
is characteristic of system 2. In the event that multiple characteristic shapelets are
found that maximise the information gain, we choose the one that maximises the
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margin between the two systems, which is defined as the difference between the mean
distance to system 1 trajectories and the mean distance to system 2 trajectories. This
is a tie-breaking strategy suggested by Ye & Keogh (2011).

In searching for the optimal shapelets, we generate candidates using the strategy
of appointing τ and I as described in Section 3.1. However, we realise that multiple
shapelets of similar lengths extracted from similar places in a trajectory will often
have large overlaps, and therefore show similar ability to discriminate classes. On this
basis, we see an opportunity to avoid spending computation on shapelet candidates
which are unlikely to be successful. By applying the triangle inequality, Mueen et al.
(2011) introduce a mathematical strategy for candidate pruning which is based on this
same idea. However, in the examples here, we take a heuristic approach to candidate
selection. We extract candidates of an initial length ℓ ∈ I at spacings of τ time units
along each trajectory in the training set, calculating for each candidate the optimal
information gain, and using admissible entropy pruning as described by Ye & Keogh
(2011). Whenever a new candidate, s⋆, improves the current best information gain, we
conduct a local search by extracting additional candidates from the trajectory around
the starting position of s⋆, over the full set of shapelet lengths in I. This focuses
a search to a selection of promising candidates. This approach has proved useful in
our experiments, although we leave scope for further work in the problem of effective
candidate selection.

Each example demonstrates the value in looking beyond a simulation’s long-run
average performance to its dynamic behaviour. Section 4.1 shows the effectiveness of
shapelets in targeting a comparison of a manufacturing system’s dynamic response to
disruption under two design alternatives. In this example, while the long-run average
behaviour of the target performance indicator is similar across the two alternatives,
shapelets reveal that the observed behaviour while operating is significantly different.
Section 4.2 uses a simple tandem queueing simulation to demonstrate the potential
for shapelets to assist operational model validation. Assuming the availability of tra-
jectories from a real-world system, we look for shapelets to assess the capability of
two simulation models in mimicking the real system’s dynamic behaviour. Using the
same simulation, Section 4.3 explores the possibility for multivariate shapelets to pro-
vide insights into the joint behaviour of system state trajectories. Again, we find a
deeper comparison and understanding of system behaviour provided by the dynamic
characteristics.

The simulation models behind these examples were implemented using Simul8 soft-
ware (ref). In running replications of competing systems, we use the established prac-
tice of common random numbers (Nelson & Pei, 2021), or coupling (ref), which ensures
that replications of each system experience similar random input behaviour. This high-
lights an aspect of simulation control which can be helpful towards a shapelet analysis.
By minimising the differences of input randomness affecting the trajectories of each
system, we expect the characteristic differences that shapelets identify to more reliably
reflect the underlying dynamics of system behaviours.

(Reviewer 1, 5.) The computational complexity of the shapelet search depends on
several factors, including the number of training trajectories, their length, T , the
shapelet length, ℓ, and the parameters, τ and |I|. In the multivariate case, the di-
mension, d, also becomes relevant. These values are chosen to allow a manageable
search time, while still discovering meaningful shapelets. We report the values used in
each example, and provide an indication of the search times when performed using a
1.6 GHz Intel Core i5 processor.

The simulation data and code used for the analyses and presentation of figures in
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this section is made available through a GitHub repository (Laidler, 2023).

4.1. Dynamic Response to System Disruption

Systems in the supply chain and manufacturing sectors often experience disruption as
a result of unexpected shortages or breakdowns of unreliable components. A system’s
resilience and recovery from such events is an important consideration, and reactive
decisions and schedules are often sought to mitigate their impact (Mehta & Uzsoy,
1999). While traditional summary measures may capture long-term impacts, we ex-
pect the practical repercussions of a disruption to appear in a system’s temporary
dynamic behaviour. In this example, we look at the dynamic throughput sequence
of a manufacturing system, and exploit shapelets to reveal the short-term impacts of
machine failures.

Kayton, Teyner, Schwartz, & Uzsoy (1996) introduced a simplified model of a wafer
fabrication facility (fab), in which semiconductor wafers undergo various processing
steps at a number of stations. Their simulation experiment explored the effects of ma-
chine breakdowns and dispatching rules on time-averaged performance measures such
as the average work-in-process and the bottleneck utilisation. Dispatching rules refer
to the rules for priority ordering by which queueing jobs are sequenced to work centers.
Borrowing the wafer fab model of Kayton et al. (1996), our intention is for shapelets
to compare the impact of machine failures on the system’s dynamic throughput under
different dispatching rules.

We consider the rules Least Remaining Work (LRW) and Most Remaining Work
(MRW), which prioritise wafers at each station according to the number of their re-
maining processing steps. LRW is commonly used to accelerate throughput and system
de-congestion, while MRW can target specific performance goals such as minimising
the maximum lateness (Kaban, Othman, & Rohmah, 2012). We simulated week-long
replications featuring machine breakdowns, with the LRW and MRW dispatching rules
yielding 95% confidence intervals for the weekly average throughput of [84.1, 84.4] and
[82.1, 82.9], respectively. The similarity of these long-run statistics suggests we may
find value in a more detailed dynamic comparison.

In the original work of Kayton et al. (1996), a machine which is visited once and
early in the processing sequence of each wafer is suggested to have low reliability. To
specifically uncover the breakdown and recovery behaviour, we consider imposing a
fixed structure to the breakdowns of this machine. Specifically, we inject a breakdown
lasting for a fixed duration of 16 hours at a set time in each replication. This promotes
consistency among the trajectories; it ensures that each trajectory displays a break-
down and recovery period of similar proportions and at a similar time. In this way,
we can isolate the breakdown effect and focus the shapelet search accordingly. This
demonstrates an advantage that the simulation context provides. To uncover specific
behaviour surrounding a known system event, our control over the simulation trans-
lates to control over the trajectories and allows us to manipulate a simulation and
shapelet search to target the desired insights.

We take 100 training replications of the system under each dispatching rule. To
generate the candidate pool for a shapelet search, the consistent structure surrounding
breakdown times allows us to shrink the window for the start times of candidate
shapelets. We extract candidates every τ = 2 hours from within a suitable range over
which the breakdown effects begin to show in each replication. To allow the shapelets
to display breakdown and recovery behaviour considering a breakdown length of 16
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Figure 4. Comparing the impact of machine breakdowns on throughput behaviour for systems operating

under the LRW and MRW dispatching rules. The characteristic shapelets are shown on the left. The scatter

plots show the distribution of the 200 training trajectories (middle) and 2000 testing trajectories (right) with
regards to their distances from the two shapelets.

hours, we search for shapelets with lengths of I = {40, 45, 50} (hours). Each shapelet
search lasts approximately 30 minutes.

The optimal shapelets discovered are shown in Figure 4 (left). Since the shapelets
are location-invariant (see Section 3.3), we in fact plot s(t)−minu s(u), which ensures
that s1 and s2 can easily display on the same axes. The shapelets suggest distinctly
different dynamic behaviour resulting from machine breakdowns. The shapelet, s1,
which is characteristic of systems operating the LRW rule, shows relatively brief dis-
ruptions to the throughput sequence. In contrast, s2 represents the system under the
MRW rule and shows a lengthy period without any throughput. However, once s2
resumes throughput, its rate is very quickly recovered. We realise that the MRW rule
restrains throughput, with the volume of jobs nearing completion accumulating until
the completion process can resume. This results in a longer period of throughput star-
vation following system disruption, whereas the LRW rule prioritises re-establishing
the throughput at the expense of a more gradual recovery of its rate.

The scatter plots show the distance of each trajectory to each shapelet, and reveal
strong separation. A set of 1000 unseen test replications of each system were used for
the right hand scatter plot. These follow the same behaviour as the training repli-
cations, giving us confidence that the discovered shapelets are reliably characteristic
of the two dispatching rules and not merely a result of overfitting to the training
trajectories.

As stated, targeting specific behaviour allows us to impose structure to the sim-
ulation and focus our shapelet search accordingly. To test the power of shapelets
without such structure, perhaps to uncover insights in the absence of prior knowledge
or expectations, we repeat the experiment with random breakdown behaviour. We use
distributions for the mean time to failure and mean time to repair as implied by Kay-
ton et al. (1996), such that that replications contain breakdowns at random times and
of random durations. The average breakdown duration is now 30 hours as opposed to
a fixed 16 hours. Some replications contain no breakdown. However, we retain some
consistency across the corresponding replications of each dispatching rule by simulat-
ing with common random numbers. As such, the differences across the dispatching
rules remain in the impact and recovery of breakdowns rather than in the breakdowns
themselves.

Figure 5 shows the results from the unstructured simulation. Without the computa-
tional benefits of a targeted shapelet search, we use τ = 10 and I = {70, 75, 80, 85, 90}
(hours), each search lasting approximately 60 minutes. Despite the inconsistent break-
down behaviour across replications, the shapelets still manage to separate the systems
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Figure 5. Repeating the results shown in Figure 4 using trajectories in which breakdowns occur randomly

and with random recovery durations.

by their dispatching rule. Breakdowns under the MRW rule are again seen to produce
the most disruption to throughput. The scatter plots show a number of replications
with large distances to each shapelet, mainly identifying the replications in which a
complete breakdown and recovery period was not observed. Revealing the character-
istic behaviour surrounding breakdown impact from replications without any targeted
structure gives us confidence in the ability of shapelet methodology to discover hidden
and unexpected insights into dynamic simulation behaviour.

4.2. Dynamic Model Validation

Operational validation is an important aspect of simulation modelling. For effective
decisions to be taken in a real system based on the output of a simulation model,
it is important for these outputs to bear sufficient resemblance to those of the real
system. Operational model validation often amounts to a statistical or graphical com-
parison between the distributional properties of output variables, such as comparing
histograms of waiting times, or conducting hypothesis tests around their means (Sar-
gent, Goldsman, & Yaacoub, 2016). Thus, model validation is often restricted to the
level of output summaries and grouped behaviours.

Shapelets may provide an additional aspect to model validation by discerning dif-
ferences in the dynamic behaviour of simulation trajectories. In a related context, the
emergence of digital twins has increased interest in bringing model validation into
an online setting. Digital twins are models which aim to synchronise with a live sys-
tem, thus providing support for real-time monitoring and control. As such, validating
digital twins requires an online validation of the model behaviour in comparison to
dynamic data received from the real system. Hua, Lazarova-Molnar, & Francis (2022)
provide an overview of opportunities and challenges in the validation of digital twins.
Crucially, interest is growing in performing model validation via dynamic behaviour,
and this is an area to which shapelets may be applicable.

To construct an example, we consider the three-station tandem queue depicted in
Figure 6. Station I contains sI identical servers, and we set sI = 1 for I ∈ {A,B,C}.
Each station admits infinite queueing space and generates exponential service times
with rate µ = 0.6. We simulate customer arrivals following a Poisson process, and let
the true system have the smooth arrival rate function, λ(t) = (sin(2πt/10) + 1)/2.
In a real system, λ(t) would be unknown, and therefore might be modelled using a
piecewise constant rate function estimated from data. Two options for modelling λ(t)
with piecewise constant segments are chosen, and shown in Figure 6. Model 1 uses
only two constant levels, rounding λ(t) to the nearest integer, while model 2 uses
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Figure 6. Left: a diagram of a tandem queue. Right: the arrival rates, λ(t), of the true system and the two
models. These repeat with period t = 10.

three levels, rounding to the nearest 0.5.
We consider model validation for the dynamic number-in-system behaviour, using

replications of length T = 60 minutes after discarding a warm-up period of length
20 minutes. From 10,000 replications, the mean number-in-system for the true system
is found to be 8.28. Model 1 gives a 95% confidence interval for the mean number-
in-system to be [8.38, 8.52], while for model 2 this confidence interval is [8.24, 8.39].
Based on this long-run behaviour, both models would be deemed operationally valid
to within 0.25 customers. We look for a shapelet analysis to go beyond this and discern
if there exist differences in the dynamic behaviour. Intuitively, we should struggle to
find characteristic dynamics that distinguish a good model from the true system.

Figure 7 compares model 1 with the true system. We took 200 training replications
of both the model and the true system, and searched for shapelets from the number-
in-system trajectories using τ = 2 and I = Z ∩ [8, 12] (minutes), each search lasting
around 2.5 hours. The optimal shapelets are shown in the top left of Figure 7. The
shapelet, s1, is characteristic of the true system, and depicts a stable behaviour with
arrivals and exits both occurring intermittently. On the other hand, s2 is characteristic
of model 1, and shows a long period of no arrivals followed by a sudden burst. The
scatter plot in the bottom left of Figure 7 shows the distances of the trajectories from
5000 test replications of both the true system and the model to each of the shapelets.
We see significant overlap, yet definite inclinations of the true system and the model
to display behaviours closer to s1 and s2, respectively.

Fitting Gaussian distributions to the clouds of points in the test scatter plot results
in the contours shown in the bottom right of Figure 7. To quantify the results of the
shapelet analysis for model validation, we might consider the classification accuracy.
An ideal model may generate indistinguishable behaviour from the true system and
yield a classification accuracy of 0.5. Classifying the test trajectories based on their
distances to s1 and s2 and the probability densities of the fitted distributions yielded
a classification accuracy of 0.61.

Figure 8 shows the equivalent plots comparing model 2 with the true system.
The discovered shapelets are less distinct from one another, while the scatter plot
of test replications does not clearly show a disposition of either system towards either
shapelet. The greater separation in the training scatter plot as compared to the testing
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Figure 7. Comparing the dynamic number-in-system behaviour of the true system with model 1. The char-

acteristic shapelets are shown in the top left. Gaussian distributions (bottom right) are fitted to the collection

of testing trajectories (bottom left).

scatter plot suggests that the discovered shapelets may result from overfitting to the
training trajectories rather than being more broadly characteristic of the two systems.
The classification accuracy was found to be 0.51.

In summary, our shapelet analysis identified different characteristic behaviour of the
number-in-system trajectories between the true system and model 1, but not between
the true system and model 2. We conclude that model 2 is a more valid model of the
true system. Referring to the model approximations shown in Figure 6, this is the
conclusion we should expect. Shapelets appear able to present a comparison between
systems’ dynamic behaviours, and may represent a viable avenue for online model
validation.

4.3. Multivariate Shapelets of the System State

To test the potential for multivariate shapelets in simulation, we remain with the
tandem queueing model used in Section 4.2. We simulate Poisson arrivals with the
true arrival rate function, λ(t), seen in Figure 6, and exponential service times with
rate µ = 0.6 at each station. Suppose that we now have a total capacity for four
servers, and consider two system alternatives:

(1) system 1: sA = 1, sB = 2, sC = 1,
(2) system 2: sA = 1, sB = 1, sC = 2.

We again use replications of length T = 60 minutes after discarding a warm-up
period of length 20 minutes. Both systems yield an overall mean number-in-system
of 2.29. The number-in-system trajectories themselves also show similar behaviour,
and so we go further by breaking this down into the separate stations. We consider a
three-dimensional system state y(t) = (yA(t), yB(t), yC(t)), where yI(t) represents the
number of customers in station I at time t (queueing and in service).

Initially, we perform a univariate shapelet search in the three dimensions of y(t)
individually. We use 100 training replications of each system, and search for shapelets
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Figure 8. Shapelets are not able to discriminate between the dynamic number-in-system behaviours of the

true system and model 2.

using τ = 2 and I = {10, 11, 12} (minutes). Each search lasts around 30 minutes.
The resulting shapelets are displayed in Figure 9, where sIj denotes the shapelet in
the dimension yI that is characteristic of system j. Common random numbers ensured
identical trajectories of yA(t) across the replications of both systems, causing a shapelet
search in this dimension to be futile. The differences emerge in the trajectories of yB(t)
and yC(t), and as we might expect, system 1 is characterised by greater stability of yB
and volatility of yC , while the reverse is true of system 2. The bottleneck at station
C in system 1 appears more significant than the bottleneck at station B in system 2.
The scatter plots show the distributions of 1000 test trajectories of each system with
respect to their distances from sI1 and sI2. The ability to discriminate the systems
increases the further downstream we move.

We also perform a multivariate shapelet search, using the summation distance func-
tion (5). For this, we use τ = 10, with each search lasting around 60 minutes. The
results are shown in Figure 10, where s1 is characteristic of system 1 behaviour, and
s2 of system 2. Retaining the multidimensional shapelet shows the dimensions mov-
ing concurrently. For example, we see that as yA decreases, yB increases, and as yB
decreases, yC increases, reflecting the movement of customers through the system. We
receive similar interpretations regarding the shifting of the bottleneck station between
the two systems. Further, the multivariate shapelets support the conclusion of a more
severe bottleneck at station C in system 1 than at station B in system 2. This may be
understood from the differing server capacities at their preceding stations. At times
when λ(t) exceeds the service rate of µ = 0.6, the departure rate from these preceding
stations will be governed by their number of servers. As such, we expect a greater
workload on station C in system 1 than on station B in system 2. The scatter plot of
test trajectories shows good separation of the two systems.

In the simple example presented here, the known server allocations represent the
obvious difference between systems 1 and 2, and the multivariate shapelets identify
the behaviours that match our expectations for the dynamic effect of this difference on
the station populations. However, the differences among systems may not always be so
clear, and the results in this simple case give us confidence that a multivariate shapelet
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Figure 9. Independently finding univariate shapelets in the three dimensions of y(t).

Figure 10. Finding multivariate shapelets reveals the typical joint behaviour of the station capacities for
each system.
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search can extract meaningful and unanticipated behaviour when competing systems
feature more nuanced differences. In summary, we see promise in the application of
multivariate shapelets to a simulation state process, and potential for developing a
more tailored methodology for this purpose.

5. Discussion and Conclusion

Reviewer 1, 8. suggests a new section prior to the conclusion, but maybe we can just
expand this section. I’m not really sure what to expand it with though. Just reiterate
our place within simulation analytics? Could address Reviewer 2, 3. comment when
mentioning example 4.1: “Could also be used to visualise the behaviour of existing
systems, when sufficient trace data are available.” Maybe borrow something from
thesis conclusions, although this is mainly about further work:

“An alternative application which we have not shown is to provide a comparison
between ‘good’ and ‘bad’ trajectories of the same system, as defined by some overall
performance value. Replications of a system can often exhibit vastly different per-
formance, and shapelets may be able to reveal the characteristic behaviours which
distinguish this phenomenon. This might assist an understanding of the inherent vari-
ability of a system, and the conditions and short-term patterns of behaviour that
define its performance.

Continuing on the side of application, the use of shapelets for dynamic model vali-
dation, as illustrated in Section 5.4.2, would benefit from a more rigorous framework.
Quantifying the validity of a model based on classification accuracy suggests that we
should make an effort to construct the most accurate classifier possible. With this aim,
the idea of performing a shapelet transform and applying alternative classifiers on a
collection of distance features, as proposed by Hills et al. (2014), seems sensible.

To understand the contribution of shapelets in the context of existing methodology,
we might also explore a comparison with previous work. Simulation shapelets target
a visual interpretation of dynamic behaviour for which we have not found directly
comparable alternatives. However, simulation trajectories are analysed by Morgan
and Barton (2022) from a statistical perspective of their Fourier transformations, and
a comparison of interpretations with this approach may be possible and useful.

In terms of methodology, extensions to time series shapelets have progressed in a
number of directions, which were outlined in Section 2.2. We can imagine the progres-
sion of simulation shapelets in similar directions. Importantly, we note that our main
motivation for simulation shapelets is towards interpretation rather than classification.
For this reason, we do not require a decision tree classifier, which makes the use of
the information gain quality measure non-essential. Computing the optimal informa-
tion gain requires its evaluation over n-1 possible splitting thresholds. Speed-up in the
shapelet search could therefore be attained by using an alternative measure which is
independent of a splitting threshold, such as the F-statistic suggested by Hills et al.
(2014).”

We present a methodology for simulation output analysis which places focus on
local characteristics of the underlying system dynamics. This methodology is based
on the use of shapelets, which describe locally interpretable patterns capable of dis-
criminating among time series classes. Applied to simulation trajectories, shapelets
provide a means of characterising dynamic behaviour and performing deeper com-
parisons across competing system alternatives. Comparison across systems represents
a common objective in the use of simulation, and when alternatives exhibit similar
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long-run performance, we conceive value in making deeper comparisons on the basis
of dynamic behaviour.

To propose a shapelet methodology adapted to the structure of simulation trajec-
tories, we present a reframing of the original discrete-time setting to the context of
continuous-time functions. We also propose a natural approach to achieving location
invariance, such that we solely represent the local shape dynamics appearing in the
trajectories. These adaptations introduce theory through which the piecewise constant
construction of simulation trajectories lends convenient structure to the shapelet-series
distance function and relieves the computational aspect of its minimisation. Through
this, we establish an efficient and practical methodology for piecewise constant shapelet
discovery, and demonstrate its promise in application to simulation problems. For ex-
ample, we see effective results in uncovering dynamic behaviour of interest, alongside
potential applications to dynamic model validation and furthering an understanding
of the dynamic behaviour of a multivariate system state.

Although the computational complexity of a shapelet search poses a challenge for
many real-scale problems, the progress and focus of ongoing research in addressing
this aspect gives practical encouragement to the proof-of-concept provided here. Ad-
ditionally, the control over data generation afforded to us by simulation should not
be ignored. Targeting specific behaviour and employing control procedures such as
common random numbers allow us to focus a search and improve our training set to
the task of meaningful shapelet extractions.

Simulation trajectories provide a rich environment for analysis, and a shapelet-based
methodology shows potential to provide valuable insight into the often overlooked
dynamics of system behaviour. An increasing demand for machine learning solutions
and data-driven insights across system operations gives us confidence in the scope and
impact of this approach.
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Appendix A. Proof of Theorem 3.1

Theorem 3.1. Let y : [0, T ] → R be a piecewise constant function with change times
in the set T = {0 = t0, t1, . . . , tm = T} and s : [0, ℓ] → R with ℓ ≤ T a piecewise
constant function with change times in the set U = {0 = u0, u1, . . . , um′ = ℓ}. Let

Uj = {ti − uj : i = 0, 1, . . . ,m} ∩ [0, T − ℓ] for j = 0, 1, . . . ,m′, and let V =
⋃m′

j=0 Uj.

Then ∥s−y([t, t+ℓ])∥1 is linear in t for t ∈ [v, v′], where v, v′ ∈ V and (v, v′)∩V = ∅.

Proof. We consider the piecewise constant segments of s.
For j = 0, 1, . . . ,m′−1, we have s(t) = s(uj) for uj ≤ t < uj+1. Let Vj = Uj∪Uj+1∪

{0, T − ℓ}, and consider two points x, x′ ∈ [0, T − ℓ] such that (x, x′)∩Vj = ∅. We can
write x+ δ = x′, with δ > 0. For a graphical understanding, Vj contains the shapelet
shifts such that an endpoint of the j + 1th segment of s coincides with a change time
of y.

Consider ∥s(uj)−y([x+uj , x+uj+1])∥1 =
∫ x+uj+1

x+uj
|s(uj)−y(t)|dt. This is the distance

between the j + 1th component of s when shifted by x and the corresponding portion
of y. Since y is piecewise constant, this can be expressed as a sum of rectangular areas.
The endpoints along the time axis of these rectangles are represented in the set

{x+ uj} ∪ {T ∩ (x+ uj , x+ uj+1)} ∪ {x+ uj+1}. (A1)
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Figure A1. A labelled example illustrating the notation used throughput this proof.

Figure A1 provides a graphical illustration.
Similarly, consider ∥s(uj)− y([x+ h+ uj , x+ h+ uj+1])∥1 for 0 < h ≤ δ, with the

corresponding set of endpoints

{x+ h+ uj} ∪ {T ∩ (x+ h+ uj , x+ h+ uj+1)} ∪ {x+ h+ uj+1}. (A2)

We can show that (x+uj , x+h+uj)∩T = ∅. This follows from a simple contradiction:

Assume that ti ∈ (x + uj , x + h + uj) ∩ T . Then we can write ti = x + uj + ϵ, with
0 < ϵ < h. Therefore ti − uj = x + ϵ ∈ (x, x′). This ensures that ti − uj ∈ [0, T − ℓ],
and since ti ∈ T , we must have ti − uj ∈ Uj. Therefore, we have ti − uj ∈ Vj and also
ti − uj ∈ (x, x′), but this is a contradiction since (x, x′) ∩ Vj = ∅.

Similarly, we have that (x+uj+1, x+h+uj+1)∩T = ∅. This follow the same logic:

Assume that ti ∈ (x+uj+1, x+h+uj+1)∩T . Then we can write ti = x+uj+1 + ϵ, with
0 < ϵ < h. Therefore ti − uj+1 = x+ ϵ ∈ (x, x′). This ensures that ti − uj+1 ∈ [0, T − ℓ],
and since ti ∈ T , we must have ti − uj+1 ∈ Uj+1. Therefore, we have ti − uj+1 ∈ Vj and
also ti − uj+1 ∈ (x, x′), but this is a contradiction since (x, x′) ∩ Vj = ∅.

Therefore, we see that {T ∩ (x+ uj , x+ uj+1)} = {T ∩ (x+ h+ uj , x+ h+ uj+1)}.
Comparing (A1) and (A2), this means that, in the graphical representation as a sum
of rectangular areas, ∥s(uj) − y([x + uj , x + uj+1])∥1 and ∥s(uj) − y([x + h + uj , x +
h+ uj+1])∥1 can only differ in the widths of the first and last rectangles. Specifically,
we have

∥s(uj)− y([x+ h+ uj , x+ h+ uj+1])∥1 =∥s(uj)− y([x+ uj , x+ uj+1])∥1
− (x+ h+ uj − (x+ uj))|s(uj)− y(x+ uj)|
+ (x+ h+ uj+1 − (x+ uj+1))|s(uj)− y(x+ uj+1)|

=∥s(uj)− y([x+ uj , x+ uj+1])∥1
+ h(|s(uj)− y(x+ uj+1)| − |s(uj)− y(x+ uj)|)

Therefore, since x < x+ h ≤ x′, we see that ∥s(uj)− y([t+ uj , t+ uj+1])∥1 is linear
in t for t ∈ [x, x′].
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Figure B1. A labelled example illustrating the notation used throughput this proof.

Now, we can write

∥s− y([t, t+ ℓ])∥1 =
m′−1∑
j=0

∥s(uj)− y([t+ uj , t+ uj+1])∥1.

Now, note that V =
⋃m′−1

j=0 Vj , and so Vj ⊆ V for each j = 0, 1, . . . ,m′−1. This means

that for any pair of successive elements v, v′ ∈ V with (v, v′) ∩ V = ∅, we must also
have (v, v′)∩Vj = ∅ for each j. Therefore, the component ∥s(uj)−y([t+uj , t+uj+1])∥1
is linear in t for t ∈ [v, v′] for each j, and we see that ∥s − y([t, t + ℓ])∥1, as a sum of
these linear components, is also linear in t for t ∈ [v, v′].

Appendix B. Proof of Theorem 3.3

Theorem 3.3. Let y : [0, T ] → R, s : [0, ℓ] → R, and sc : [0, ℓ] → R be as in Corol-
lary 3.2. Let Wt = {T ∩ (t, t+ ℓ)}∪{U + t}, with ordered elements denoted by wt

i such
that y(wt

i)− s(wt
i − t) ≤ y(wt

i+1)− s(wt
i+1 − t) for i = 1, 2, . . . ,mt. Let

λi =

{
min{wt

j − wt
i : w

t
j ∈ Wt, wt

j > wt
i} if wt

i ∈ Wt\{t+ ℓ},
0 if wt

i = t+ ℓ,

and let k⋆ = min
{
k ∈ {1, . . . ,mt} :

∑k
i=1 λi ≥ ℓ

2

}
.

Then minc∈R∥sc − y([t, t+ ℓ])∥1 is attained by ct = y(wt
k⋆)− s(wt

k⋆ − t).

Proof. Wt contains the relevant time points required to express ∥sc−y([t, t+ ℓ])∥1 as
a sum of rectangular area components. The set {λi}mt

i=1 contains the widths of these
components. Note that the index i orders the time points in Wt by their series value
minus their shapelet value, and the widths λi are ordered equivalently. Figure B1
provides an example for illustration.
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We can express

∥sc − y([t, t+ ℓ])∥1 =
mt∑
i=1

λi|s(wt
i − t) + c− y(wt

i)|.

We have

∂∥sc − y([t, t+ ℓ])∥1
∂c

=

mt∑
i=1

λisign(c− (y(wt
i)− s(wt

i − t)))

for c ̸= y(wt
i)− s(wt

i − t), i = 1, 2, . . . ,mt.

Therefore, for c ∈ (y(wt
k)− s(wt

k − t), y(wt
k+1)− s(wt

k+1 − t)), we can write

∂∥sc − y([t, t+ ℓ])∥1
∂c

=

k∑
i=1

λi −
mt∑

i=k+1

λi,

which implies

∂∥sc − y([t, t+ ℓ])∥1
∂c

{
< 0 if

∑k
i=1 λi <

∑mt

i=k+1 λi

≥ 0 if
∑k

i=1 λi ≥
∑mt

i=k+1 λi.

We note that since {λi}mt

i=1 represent the widths of a partition of [t, t+ ℓ], we have∑mt

i=1 λi = ℓ. Therefore, for k⋆ = min
{
k ∈ {1, 2, . . . ,mt} :

∑k
i=1 λi ≥ ℓ

2

}
, we have

∂∥sc − y([t, t+ ℓ])∥1
∂c

< 0 for c ∈ (y(wt
k⋆−1)− s(wt

k⋆−1 − t), y(wt
k⋆)− s(wt

k⋆ − t)),

∂∥sc − y([t, t+ ℓ])∥1
∂c

≥ 0 for c ∈ (y(wt
k⋆)− s(wt

k⋆ − t), y(wt
k⋆+1)− s(wt

k⋆+1 − t)).

More generally, we will have

∂∥sc − y([t, t+ ℓ])∥1
∂c

< 0 for c < y(wt
k⋆)− s(wt

k⋆ − t),

∂∥sc − y([t, t+ ℓ])∥1
∂c

≥ 0 for c > y(wt
k⋆)− s(wt

k⋆ − t).

This implies that ∥sc − y([t, t+ ℓ])∥1 is minimised at ct = y(wt
k⋆)− s(wt

k⋆ − t).
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