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Abstract: Dynamical theories of speech use computational mod-7

els of articulatory control to generate quantitative predictions and ad-8

vance understanding of speech dynamics. The addition of a nonlinear9

restoring force to task dynamic models is a significant improvement10

over linear models, but nonlinearity introduces challenges with param-11

eterization and interpretability. We illustrate these problems through12

numerical simulations and introduce solutions in the form of scaling13

laws. We apply the scaling laws to a cubic model and show how they14

facilitate interpretable simulations of articulatory dynamics, and can be15

theoretically interpreted as imposing physical and cognitive constraints16

on models of speech movement dynamics.17
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1. Introduction18

The task dynamic model of speech production is a theoretical and mathematical model of19

how movement goals are controlled in speech (Browman and Goldstein, 1992; Fowler, 1980;20

Iskarous, 2017; Saltzman and Munhall, 1989). The standard model of task dynamics uses the21

critically damped harmonic oscillator in (1) as a model of the articulatory gesture, where x is22

the position of the system, ẋ is velocity, ẍ is acceleration,m is mass, b is a damping coefficient,23

k is a stiffness coefficient, and T is the target or equilibrium position (see Iskarous 2017 for24

a tutorial introduction). The initial conditions are defined as x(0) = x0 and ẋ(0) = ẋ0. The25

damping coefficient b in a critically damped harmonic oscillator is defined as b = 2
√
mk,26

where m = 1 in most formulations, but see Šimko and Cummins (2010) for an embodied27

task dynamics where dynamics are defined over physical masses.28

mẍ+ bẋ+ k(x− T ) = 0 (1)

The linear dynamical model fails to predict characteristics of empirical velocity tra-29

jectories, because it significantly underestimates time-to-peak velocity with unrealistically30

early and narrow velocity peaks compared with those seen in empirical data (Byrd and Saltz-31

man, 1998). One solution, which forms the subject of the current study, is the addition of a32

nonlinear restoring force (Sorensen and Gafos, 2016), such as the term dx3 in Equation (2).33

mẍ+ bẋ+ k(x− T )− d(x− T )3 = 0 (2)

The left panel in Figure 1 visualizes the linear −kx and cubic dx3 restoring forces,34

in addition to the sum of linear and cubic forces −kx + dx3.1 The right panel in Figure 135
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Fig. 1. TOP LEFT: Stiffness functions of the linear, cubic and summed restoring forces, where

k = 1 and F refers to the forces specified in the legend as a function of x. TOP RIGHT: A

comparison of position and velocity trajectories generated by the linear (d = 0) and nonlinear

(d = 0.95) models, where x0 = 1, ẋ0 = 1, T = 0, k = 2000. BOTTOM LEFT: Power function of k

against time-to-peak velocity (top) and peak velocity (bottom). BOTTOM RIGHT: Power function

of the natural logarithms of k against time-to-peak velocity (top) and peak velocity (bottom).

shows a comparison between time-varying position and velocity trajectories generated by the36

linear and nonlinear models, with identical parameters except d (k = 2000, x0 = 1, ẋ0 = 0,37

T = 0). A value of d = 0 is equivalent to a linear model that cancels out the dx3 term, thus38
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representing the linear model, while d = 0.95k produces a quasi-symmetrical velocity shape39

under these specific conditions.240

A symmetrical velocity trajectory is outside the scope of the standard linear model in41

Equation (1), but the use of a nonlinear model is not the only solution. The first approach is42

the use of a different activation function. In Saltzman and Munhall (1989) gestural activation43

is governed by an on/off step function, with instantaneous changes in the target value.44

Byrd and Saltzman (1998) instead propose ramped activation, where the parameters of the45

dynamical system explicitly depend on time, allowing for empirically-realistic time-to-peak46

velocity. A further development is the use of arbitrary gestural activation functions, which47

can be learned from data (Tilsen, 2020). It must be stressed that the idea of continuous48

gestural activation is fundamentally different from the Sorensen and Gafos (2016) model,49

which retains step function gestural activation and instead achieves appropriate velocity50

characteristics via intrinsic nonlinear gestural dynamics. The distinction here is between51

autonomous dynamics during the period in which gestural activation is constant (as in52

Saltzman and Munhall 1989; Sorensen and Gafos 2016) versus non-autonomous dynamics53

during activation with time-varying parameter values (as in Byrd and Saltzman 1998; Tilsen54

2020). A second approach is to relax the critical damping constraint entirely and recast the55

gesture as an under-damped half-cycle linear oscillator (Kirkham, 2024). This improves on56

the standard linear model in generating symmetrical velocity trajectories and appropriate57

time-to-peak velocities, but introduces the need for an extrinsic mechanism to avoid target58

overshoot and unintended oscillation.59
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The aim of the present study is to explore the numerical parameterization of the60

nonlinear term in the Sorensen and Gafos (2016) model specifically, as well as in nonlinear61

task dynamic models more generally. One issue that we address below is that the effect of any62

nonlinear term, such as dx3, inherently depends on the distance between the initial position63

and the target. While an inherent feature of such models, this presents some practical64

considerations when (i) simulating similar velocity trajectories across articulators or tract65

variables with varying movement distances; (ii) achieving numerical stability when fitting the66

model to empirical data; (iii) interpreting parameter values when estimated from empirical67

data. We first illustrate the problem and then introduce simple numerical methods for68

examining the relation between nonlinearity and movement distance. We offer two simple69

solutions based on the same idea: local normalization around an equilibrium point relative to70

initial position, and global normalization relative to the potential movement range for a given71

articulator or tract variable. Python code is provided for reproducing all simulations in this72

article at: https://osf.io/nrxz5/?view_only=e514f671740e43248c230ac6ab35a347 (to73

be replaced with public link upon acceptance).74

2. Parameters in nonlinear dynamical models75

2.1 Stiffness and temporal variation76

Before outlining the mechanics of the nonlinear term in the Sorensen and Gafos (2016)77

model, we first illustrate the behaviour of the other parameters, which is important for78

understanding the nonlinear forces. To re-cap, the model is:79

mẍ+ bẋ+ k(x− T )− d(x− T )3 = 0 (3)

5

https://osf.io/nrxz5/?view_only=e514f671740e43248c230ac6ab35a347


Scaling laws for nonlinear dynamical models

where m = 1 and b = 2
√
k in critically damped versions of the model. As a result,80

we focus on the effects of k on movement characteristics and how it interacts with d. The81

stiffness coefficient k governs the strength of the restoring force; in other words, how quickly82

the system reaches its equilibrium position. Higher stiffness values result in faster time-to-83

peak velocity, where the relationship between k and time-to-peak velocity follows a power law84

αk− 1
2 , with α being larger for larger values of d. For example, when d = 0k, α = 1 and when85

d = 0.95k, α = 5.4. The qualitative relationship between stiffness and time-to-peak velocity86

is the same across different values of d, such that the effects of k on time-to-peak velocity87

follow the same law irrespective of the value of d, but the specific quantitative values do88

vary for the same value of k across different values of d. The same is true of the relationship89

between k and the amplitude of peak velocity, which follows the power law αk
1
2 , where α90

scales inversely with the value of d. For example, when d = 0k, α = 0.37 and for d = 0.95k,91

α = 0.19. These relations are visualized in the bottom left of Figure 1, which shows the92

effect of variation in k on peak velocity and time-to-peak velocity at five selected values of93

d, where x0 = 1, T = 0. The bottom right panel shows the natural logarithms of the same94

variables, with a linear relationship in the log-log plot indicating a power law.95

2.2 Nonlinear cubic term96

Sorensen and Gafos (2016) introduced the nonlinear cubic term dx3 in order to make the97

strength of the restoring force nonlinearly dependent on movement distance. This is what98

allows for quasi-symmetrical velocity trajectories when d ≈ 0.95k. In this model, the linear99

kx and nonlinear dx3 terms are proportionally scaled as in (4). When the absolute movement100
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distance between the initial position and target |x0 − T | = 1, d = 0.95 will produce a quasi-101

symmetrical velocity trajectory.102

d′ = dk (4)

Figure 2 (left) shows that for |x0 − T | = 1 then d = 0.95k produces a symmetrical103

velocity profile, while lower values of d result in earlier time-to-peak velocities and higher104

peak velocity. This is exactly the scenario described by Sorensen and Gafos (2016). When105

|x0 − T | ≠ 1 the same value of d will produce differently shaped velocity trajectories for106

different movement distances, which increasingly diverge as |x0 − T | gets further from 1.107

Figure 2 (right) shows this via simulations (x0 = 1, ẋ0 = 0, k = 2000, d = 0.95k) where the108

target varies across T = {0.0, 0.2, ..., 0.8}. As movement distance decreases, time-to-peak109

velocity decreases and velocity amplitude decreases nonlinearly. The model can, therefore,110

capture observed nonlinear relations between movement distance and time-to-peak velocity111

(Munhall et al., 1985; Ostry et al., 1987), as described by Sorensen and Gafos (2016).112

A numerical problem with the parameterization of the nonlinear term arises when113

the movement distance is greater than |1|. For example, d = 0.95k when |x0 − T | > 1114

quickly becomes numerically unstable, as the cubic term produces increasingly large values115

when dkx3 > k. For this reason, the same value of d does not produce the same effects116

across different movement scales. The differential effects of the same d value across different117

movement ranges is illustrated in the restoring forces in Figure 2 (bottom right) over a range118

of [−10, 10]. Once the cubic term acts on values above |1| the resulting solution quickly goes119

to extreme values that are not physically possible for gestural systems. In this case, the dx3
120
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Fig. 2. TOP LEFT: Simulated position and velocity trajectories, with x0 = 1, ẋ0 = 0, k = 2000,

T = 0.0 with varying values of d; and TOP RIGHT: The same simulations but across varying

values of T , where d = 0.95k, k = 2000. BOTTOM LEFT: Nonlinear restoring force −kx + dx3

(k = 1) for values of d corresponding to top left plot, where F refers to the forces specified in the

legend as a function of x. BOTTOM RIGHT: The restoring forces for d = 0.95k over the range

[−10, 10] without scaling.

and −kx + dx3 functions are near-identical due to the large nonlinear term relative to the121

linear term.122
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In practical terms, this is a problem if we want to use a numerical scale that extends123

beyond |x0 − T | > 1, but also maintain the same scaling of d in the case of |x0 − T | ≤ 1.124

For instance, tract variables in the Task Dynamic Application are typically defined over a125

range of TBCD ∈ [−2, 10] mm and TBCL ∈ [−90◦, 180◦] (Nam et al., 2004). We may wish126

to use physical measures for simulations, such as tongue tip location in mm, especially when127

fitting the model to empirical data. One solution is to project the desired scale onto [0, 1],128

run the simulation, and then project back to the original scale. However, it may also be the129

case that the relation between movement amplitude and time-to-peak velocity is nonlinear130

in some regimes but not others, so how are we to capture this fact in order to reproduce the131

observed characteristics in empirical data? We outline two related solutions below.132

3. Scaling nonlinear terms133

3.1 Local scaling for intrinsic movement range134

We begin by normalizing the effects of movement distance on the shape of the velocity135

trajectory using the inverse square law in (5). An inverse square law holds that a force136

is inversely proportional to the square of the distance between two masses, as defined by137

Newton’s law of gravitation. In the present case, this has the effect of attenuating the138

nonlinear term’s effect at larger movement amplitudes, such that the effects of nonlinearity139

are normalized relative to movement distance. Specifically, Equation (5) scales dk by the140

inverse of the square of the absolute difference between initial position (x0) and the target141

(T ). d is bounded in the range {d ∈ R | 0 ≥ d < 1}, where d can be arbitrarily close to 1142

given sufficient values of k relative to duration.143
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d′ =
dk

|x0 − T |2
(5)

Figure 3 (top left) shows the required value of d to produce the same time-to-peak144

velocity across different movement distances between {0.1 ≥ |x0−T | ≤ 1.0}, where d = 0.95145

and k = 1.3 The top right panel applies to this a larger movement range, where x0 = 10 and146

T = 0 across different values of d. In this case, the movement range spans {0 ≥ |x0−T | ≤ 10}.147

Scaling each trajectory by its intrinsic |x0 − T | reproduces the exact same pattern as the148

left panel of Figure 2, preserving the nonlinear relationship between d and time-to-peak149

velocity, but over a wider parameter range. For this local scaling, we scale by |x0 − T | for150

each trajectory, not the possible movement range across all trajectories. The bottom row in151

Figure 3 shows the effects of unscaled and scaled versions of d in terms of the restoring forces.152

In the left panel, the cubic term dominates and quickly goes to extreme values. In the right153

panel, the forces are equivalent to those in Figure 1, but scaled for a range of x ∈ [−10, 10].154

This relation can be generalized for any polynomial term αxn, where α is a scaling155

coefficient and n ≥ 1 is the exponent of xn; for example, αx1, αx2, αx3, etc. Note that in156

the case of αx1 the denominator will be raised to the power 1− 1 = 0, where x0 = 1, which157

means that for linear terms the equation simplifies to α′ = αk.158

α′ =
αk

|x0 − T |n−1
(6)

3.2 Global scaling for potential movement range159

While the above formulation provides a principled method for normalizing the nonlinear160

cubic term, it fails to reproduce nonlinear relations between movement amplitude and time-161
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Fig. 3. TOP LEFT: The relationship between distance-to-target |x0 − T | and d follows an inverse

square law. TOP RIGHT: The inverse square law allows for appropriate scaling of larger movement

distances, with x0 = 10, T = 0, k = 2000 across varying values of d. BOTTOM LEFT: The

restoring forces for d = 0.95k over the range [−10, 10] without scaling. BOTTOM RIGHT: The

restoring forces for d = 0.95k over the range [−10, 10] scaled by an inverse square law.

to-peak velocity, thus losing a key feature of the Sorensen and Gafos (2016) model. For162

example, Figure 4 (top left) shows the effect of d = 0.95k across different movement dis-163

tances with power law scaling. The corresponding restoring functions dx3 for each movement164

distance are shown in Figure 4 (top right). As a consequence, movement duration is con-165
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stant and time-to-peak velocity is identical. The only variation is in the amplitude of peak166

velocity, showing that larger movements involve greater velocities and smaller movements167

involve smaller velocities. Essentially, this reproduces the dynamics of a linear model across168

movement distances, but the scaled nonlinear term allows for variation in the shape of the169

velocity trajectories. To re-state, in this instance, the nonlinear restoring force has been170

scaled proportionally for each trajectory separately, based on the distance between its initial171

position and target, but this has eliminated any relationship between movement distance172

and time-to-peak velocity.173

We now introduce a small modification to the scaling law, which reintroduces nonlin-174

earity across different movement distances. We first define D as the total possible range for a175

given articulator or tract variable x′. Note that D represents the lower and upper bounds of176

x′ across all possible movement trajectories for a given articulatory or tract variable, whereas177

|x0 − T | is the intrinsic movement distance for a particular trajectory.178

D = |x′
max − x′

min| (7)

We then introduce a scaling factor λ, which is defined as the ratio between a trajec-179

tory’s movement range |x0−T | and the total possible movement range D. This ratio has an180

upper bound of 1, as defined in equation (8).181

λ = min

(
1,

|x0 − T |
D

)
(8)

We can therefore add λ to the previous generalized Equation (6) to arrive at Equation182

(9), which allows for scaling the normalized nonlinear coefficient within a global movement183

range. Figure 4 (bottom left) shows the use of the scaling law in Equation (9) when x0 ∈184
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Fig. 4. TOP LEFT: Cubic model with scaling across different targets in the range [0, 0.8] using

an inverse square law. TOP RIGHT: Forces corresponding to the scaled cubic model in top left.

BOTTOM LEFT: Cubic model with parameter-range scaling across different targets in the range

[0, 8]. BOTTOM RIGHT: Cubic model with restricted parameter-range scaling to allow nonlinear-

ity to only operate when |x0 − T | < 8.

[0, 10] and T = 1. In this case, α = d = 0.95, k = 2000 and D = 10 to reflect a possible185

movement range of 10 units. This restores the nonlinear relation between movement distance186

and time-to-peak velocity.187
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α′ =
λαk

|x0 − T |n−1
(9)

The conventional parameterization outlined above defines D as the limits of the po-188

tential movement range. In practice, however, it can also be defined as the limit in which189

nonlinear relations between movement amplitude and time-to-peak velocity are active. For190

example, imagine our possible movement range is x ∈ [0, 10] and we define D = 8, which is191

80% of the possible movement range. In such a case, when |x0 − T | ≥ 8 then λ = 1 and all192

trajectories that meet this condition will have the same time-to-peak velocity, but vary in193

the amplitude of peak velocity. In contrast, when |x0 − T | < 8 then λ < 1 and time-to-peak194

velocity will vary nonlinearly across trajectories with different movement distances. Figure 4195

(bottom right) illustrates this example, where x0 = 10; when T ∈ [0, 2] time-to-peak velocity196

is constant and the trajectories only differ in the amplitude of the velocity peak, whereas197

when T > 2 there is a nonlinear relation between distance and time-to-peak velocity. This198

represents one way of defining the nonlinear relation as operating within a particular part199

of the movement range. An alternative implementation is to define λ nonlinearity across200

the movement range using a trigonometric function, but we leave the exploration of such201

possibilities for future research.202

4. Conclusion203

The scaling laws outlined in this article provide simple numerical methods for understanding204

how nonlinear parameters relate to the intrinsic movement range of a given trajectory, as well205

as in terms of a potential movement range for a tract variable or articulatory variable. The206

scaling laws act as principled physical constraints on the nonlinear restoring force across207
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different movement ranges and retain the intrinsic dynamics of the Sorensen and Gafos208

(2016) model, without any explicit time-dependence during constant gestural activation.209

However, the scaled model does introduce some new theoretical questions. First, the local210

trajectory-intrinsic scaling eliminates the dependency of nonlinearity on initial conditions211

and linearizes the effect of the cubic term across varying movement distances, which is212

incompatible with empirical observations of nonlinear relations between movement amplitude213

and velocity (Sorensen and Gafos, 2016). This motivated a global scaling method that214

expresses the scope of nonlinearity relative to the potential movement range for an articulator215

or tract variable, which retains dependence on initial conditions within a restricted scope.216

Global scaling effectively bounds nonlinearity at a given movement amplitude thresh-217

old, which lends itself to two independent but compatible interpretations: (1) anatomic-218

motoric constraints; (2) cognitive constraints. The anatomic-motoric interpretation holds219

that potential movement ranges are inherently bounded by the limits of the vocal tract (e.g.220

different ranges for lip aperture versus tongue body constriction location), such that this221

parameter reflects a speaker’s proprioceptive knowledge of their vocal tract. The cognitive222

interpretation holds that the potential movement range represents a window of gestural tar-223

gets that correspond to a given phonological category. The potential movement range will,224

therefore, vary between phonological categories, including when categories share the same225

tract variable. This variability implied by the cognitive view is problematic for a model226

of invariant phonological targets, but is compatible with dynamical models of speech plan-227

ning where distributions of targets are defined over neural activation fields (Kirkham and228

Strycharczuk, 2024; Roon and Gafos, 2016; Stern and Shaw, 2023; Tilsen, 2019). These two229
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proposals are clearly compatible, because anatomical and cognitive factors both constrain230

movement dynamics, but it remains possible to commit to an anatomic-motoric interpreta-231

tion without the cognitive interpretation.232

In practical terms, the scaling laws have benefits for simulation, because they allow the233

simulation of comparable (or identical) velocity profiles across different movement distances.234

This is particularly useful when simulating dynamics across different articulatory variables235

that may be on different scales, such as lip aperture vs. tongue dorsum constriction degree236

vs. tongue dorsum constriction location. If we assume that trajectories across all of these237

variables tend towards symmetrical velocity profiles then the scaling laws provide a simple238

and principled way of selecting parameters, without having to hand-tune parameters for each239

trajectory. The scaling laws also assist with model fitting. When fitting a model to data,240

we usually aim to minimize an objective function, which typically involves having to define241

initial estimates for parameters. Given the nonlinear dependence of the cubic coefficient on242

movement distance, it is challenging to provide initial estimates that are robust to the wide243

range of movement variation in a data set. This increases the likelihood that the model244

fails to converge or find an optimal solution. The use of scaled nonlinear coefficients in the245

target model allows for a much narrower range of estimates, given that d in the cubic model246

outlined here can only take values between 0 and 1.247

The introduction of nonlinear task dynamic models of the speech gesture was a major248

advance in the development of dynamical theories of articulatory control. Despite this, it249

is still common for simulation research to use linear models, partly because their param-250

eterization is much simpler, despite the fact that they are often a poor fit with empirical251
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data. The present study demonstrates that the parameterization of nonlinear models can252

be simplified via scaling laws. The scaling laws also advance the development of dynam-253

ical phonological theory by providing physical and cognitive constraints on computational254

models of articulatory control.255
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