
Searching and Patrolling

Dispersed Locations

Edward Mellor, MMath, MRes

Submitted for the degree of Doctor of

Philosophy at Lancaster University.

September 2024



Abstract

There are many real-world scenarios in which hidden objects or targets must be found.

In searching for these targets, it may be necessary to traverse great distances, and

practical search strategies should take into account the costs of moving between different

locations. In this thesis, we present a discrete-time search model and a continuous-time

patrol model that both explicitly take costs of movement into account.

The search problem involves looking for a target which has been hidden in one

of finitely many geographically distinct locations according to a known probability

distribution. A searcher moves between these locations in order to find the target. For

each location, a search takes some known amount of time to complete and independently

finds the target with a known probability if the target is there. The searcher aims to

minimise the expected total amount of time needed to find the target. The version

of our problem without travel times can be solved to optimality using Gittins indices,

which direct the searcher to always search the location that yields the maximal rate

of target discovery. When travel times are included, the problem becomes much more

challenging because the searcher becomes less willing to move to another location due

to the potential future travel time back to the current location. In addition, when

choosing the next destination, the searcher needs to take into account not only the

distance to each destination, but also each destination’s distance to all other locations.

We draw upon restless bandit theory to derive an index heuristic that takes travel

times into account, and show that this heuristic has a tendency to leave a location

prematurely. Subsequently, we use a range of methods to improve the index heuristic

and demonstrate its strong performance via computational experiments.

The patrol problem also involves searching for a target (now perhaps best thought

I



II

of as an attacker) among finitely many geographically distinct locations. Rather than

being present at the start of the search, these attackers arrive over time. It is therefore

necessary for the patroller to patrol continuously, visiting all locations infinitely often,

to catch these attackers. Once the patroller arrives at a location, they can spend

any amount of time searching for targets with some detection rate at that location,

before moving to a different location. The objective of the patroller is to minimize

the expected time an attacker stays undetected at a location regardless of where the

attack occurs. In the special case where all travel times are set to zero, we elucidate an

optimal cyclic policy in which the patroller allocates a fixed fraction of their effort to

each location continuously. As in the case of the search problem, this patrol problem

becomes significantly more challenging when travel times are introduced. We define two

cycle types based on common patrol practice for perimeter patrol and border patrol,

respectively, and derive formulae for the expected time to detecting an attack in each

case. We also provide an algorithm for finding the best parameters for each cycle type

subject to some unimodality conditions. We give several examples where these cycle

types perform well and numerically demonstrate that the optimal patrol policy depends

highly on the structure and parameters of each patrol problem.



Acknowledgements

I would like to begin by expressing my gratitude to my supervisors Kevin Glazebrook,

Rob Shone and Kyle Lin for their invaluable guidance and unwavering support through-

out my PhD journey. It has been a privilege to work alongside each of you, and I am

deeply thankful for the time, effort, and expertise you have invested in helping me grow

as a researcher. Kevin, I wish you a long and fulfilling retirement. Rob and Kyle, I

look forward to continuing our collaborations in the future.

I would also like to extend my thanks to my colleagues at the EPSRC-funded STOR-i

Centre for Doctoral Training. I am especially grateful to the leadership and adminis-

trative teams for their dedication and hard work in ensuring the smooth running of the

centre. To all the STOR-i students, past and present, thank you for creating such a

welcoming and supportive environment. The camaraderie in the office has made this

journey all the more enjoyable. A special mention goes to my ‘support bubble’ dur-

ing the challenging first year of the PhD, marked by the COVID-19 pandemic: Dr.

Matthew Darlington, Dr. Peter Greenstreet, and international athlete Dr. Hamish

Thorburn. Your friendship and encouragement made all the difference.

To my friends outside the office, thank you for providing balance, joy, and perspec-

tive. Whether it was sharing moments of laughter, offering a listening ear, or helping

me unwind after long days, your presence has been a cherished escape from the rigors

of research life.

I would also like to take this opportunity to thank my family for their constant

support and encouragement. Your belief in me and your unwavering confidence that

I would succeed has kept me going through the most challenging moments. I am so

grateful for your love, patience, and the countless ways you’ve helped me along the way.

III



IV

Finally, to my partner Matthew, I cannot thank you enough for your love, patience

and constant support. You have been my rock throughout this journey, always under-

standing and encouraging me even when things got tough. Your humour and silliness

never fails to brighten my mood, and I am incredibly grateful for everything you’ve

done to help me reach this point.



Declaration

I declare that the work in this thesis has been done by myself and has not been submitted

elsewhere for the award of any other degree.

A version of Chapter 3 has been submitted for publication by Mellor, E., Glazebrook,

K. D., Lin, K., and Shone, R. in 2024.

The word count for this thesis is approximately 44, 300 words.

Edward Mellor

V



Contents

Abstract I

Acknowledgements III

Declaration V

Contents VIII

List of Figures IX

List of Tables X

1 Introduction 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Search Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Patrol Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Search Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Patrol Contributions . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 8

2.1 Search Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 A Classical Discrete Search Problem . . . . . . . . . . . . . . . 9

2.1.2 Search Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 11

VI



CONTENTS VII

2.1.3 Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Target Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.5 Detection Process . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Patrol Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Robotic Patrolling . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Patrolling Games . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Searching Dispersed Locations 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Model Formulation and Preliminaries . . . . . . . . . . . . . . . . . . . 33

3.2.1 Formulation as a Semi-Markov Decision Process . . . . . . . . . 33

3.2.2 On the Optimal Policy . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Value Approximation via Finite-stage Dynamic Programming . 38

3.3 A Heuristic Method Based on Indices . . . . . . . . . . . . . . . . . . . 40

3.3.1 Development of an Index Heuristic . . . . . . . . . . . . . . . . 40

3.3.2 Properties of the Index Heuristic . . . . . . . . . . . . . . . . . 44

3.4 Search Sequence Generation and Improvement . . . . . . . . . . . . . . 46

3.4.1 Other Index-based Search Heuristics . . . . . . . . . . . . . . . 48

3.4.2 Methods for Improving a Search Sequence . . . . . . . . . . . . 51

3.5 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Scenario Generation . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Results for 4 Locations . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.3 Results for 8 Locations . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.2 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Patrolling Dispersed Locations 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



CONTENTS VIII

4.2 The Case of No Travel Times . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 A Simple Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Motivation for a Simple Cycle . . . . . . . . . . . . . . . . . . . 75

4.3.2 Optimising a Simple Cycle . . . . . . . . . . . . . . . . . . . . . 79

4.3.3 The Case of Homogeneous Locations . . . . . . . . . . . . . . . 84

4.3.4 The Case of Heterogeneous Locations . . . . . . . . . . . . . . . 88

4.4 A Sweep Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.1 Motivation of a Sweep Cycle . . . . . . . . . . . . . . . . . . . . 89

4.4.2 Optimising a Sweep Cycle . . . . . . . . . . . . . . . . . . . . . 91

4.4.3 The Case of Homogeneous Locations . . . . . . . . . . . . . . . 92

4.4.4 The Case of Heterogeneous Locations . . . . . . . . . . . . . . . 93

4.5 Numerical Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.1 Ternary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.2 Nested Ternary Search . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7.1 Supporting Evidence of Conjecture 4.5 . . . . . . . . . . . . . . 111

4.7.2 Proof of Proposition 4.10 . . . . . . . . . . . . . . . . . . . . . . 116

5 Conclusions and Further Work 119

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.1 Extensions of the Search Model . . . . . . . . . . . . . . . . . . 121

5.2.2 Extensions of the Patrol Model . . . . . . . . . . . . . . . . . . 122

5.2.3 Extensions of Other Models . . . . . . . . . . . . . . . . . . . . 123

Bibliography 124



List of Figures

4.1 Number of customers over time in steady state . . . . . . . . . . . . . . 77

4.2 Search time vs expected time to discovery . . . . . . . . . . . . . . . . 87

4.3 Search time vs absolute sub-optimality of the expected time to detection 87

4.4 Surface showing convexity for a simple cycle . . . . . . . . . . . . . . . 98

4.5 Contour plot showing convexity for a simple cycle . . . . . . . . . . . . 98

4.6 Surface showing convexity for a sweep cycle . . . . . . . . . . . . . . . 99

4.7 Contour showing convexity for a sweep cycle . . . . . . . . . . . . . . . 99

4.8 Three location examples with unit travel times . . . . . . . . . . . . . . 100

4.9 Three location examples with points equally spaced along a line . . . . 102

4.10 A three location example with points unevenly spaced along a line . . . 104

4.11 A three location example in a stretched triangle . . . . . . . . . . . . . 105

4.12 Four location examples in a ring . . . . . . . . . . . . . . . . . . . . . . 106

4.13 Six location examples in a line . . . . . . . . . . . . . . . . . . . . . . . 108

4.14 Six location example in a ring . . . . . . . . . . . . . . . . . . . . . . . 109

IX



List of Tables

3.1 Comparisons between heuristics with respect to percentage suboptimal-

ities and runtimes with n = 4. . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Comparisons between heuristics with respect to percentage deficits and

runtimes with n = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Best search duration for a 2 location patrol problem . . . . . . . . . . . 86

4.2 Three location results for simple cycles and sweep cycles . . . . . . . . 102

X



Chapter 1

Introduction

1.1 Motivation and Background

1.1.1 Search Problems

Searching has been an important human activity for tens of thousands of years. Early

hunter-gatherers spent much of their time searching for food and shelter. In times

of war, intelligence teams use drones and satellite imaging to search for hostile assets

such as incoming missiles and hidden military installations. Today, there are many

other scenarios where one or more hidden targets—which could be people, objects or

even something intangible like solutions to a problem or a new job—need to be found.

Examples of such targets include survivors of a natural disaster in a collapsed building,

a concealed explosive planted by terrorists and a lost child in an unfamiliar city. In all

of these scenarios, it is necessary to send one or more agents, usually called searchers, to

investigate in the hope of discovering the target as soon as possible. A searcher could

be a person or team of people, possibly with specialised equipment such as a metal

detector or trained sniffer dogs. Alternatively an unmanned drone or directed satellite

imagery could be used to explore a location. Failing to find the target quickly can have

costly and potentially life-threatening repercussions.

Search problems are a broad class of problems which involve searching for one or

more targets that are hidden, either intentionally or via some natural process, within

1



CHAPTER 1. INTRODUCTION 2

a region known as a search space. Searchers are able to traverse the search space and

may expend some time or effort, which could be physical or fiscal, to search a section

of the space. The search procedure continues until either the target is found or the

searcher gives up, possibly due to reaching the limits of a predetermined budget. The

quality of a search policy is quantified by a search objective. Developing optimal or

heuristic strategies for these problems falls within the purview of an area of operations

research called search theory.

The properties of the search space can have a huge impact on what sort of search

policies perform well. Some search problems, such as a marine salvage project or a

country-wide manhunt for a dangerous criminal, take place over very large areas. This

can be compounded by the requirement for specialist search equipment that can be

difficult to transport. If the effort required for the searcher to traverse the search space

is not taken into account, then a policy cannot be expected to perform well. Despite

this, travel times are often not taken into account in the existing search literature.

This is largely because of the additional complexity added by including travel times in

mathematical formulations of search problems.

Motivated by this gap in the literature, a major part of this thesis is concerned

with the following discrete search problem. A searcher wishes to find a static target

hidden in one of several locations according to a known probability distribution. The

searcher’s goal is to minimise the expected time to find the object. She is able to travel

between locations, which takes some time and depends on the locations being travelled

between. She can also carry out searches at each individual location. Each search of

a location takes a known amount of time and, if the target is there, the search will be

successful with a known probability. The search times and detection probabilities are

fixed throughout the search but may vary between locations.

An optimal solution to the version of this problem without travel times was first

derived in 1962 by David Blackwell in some unpublished notes (see Blackwell (1962))

and reported by Matula (1964). This policy mandates always searching a location with

the highest probability of detection (taking into account any previous unsuccessful

searches) per unit of time.



CHAPTER 1. INTRODUCTION 3

A little over a decade later Frank Kelly commented on Gittins (1979) that the version

of our problem without travel times is equivalent to a particular type of multi-armed

bandit (MAB) problem. The MAB problem is a mathematical model first proposed by

Thompson (1933) that takes its name from slot machines. When activated, a one-armed

bandit yields a reward which is drawn randomly from an unknown distribution. This

reward may also depend on the state of the bandit, which evolves each time the bandit is

activated. In a MAB problem a decision maker is faced with multiple one-armed bandits

which they must activate sequentially to maximise the long-term reward. The more

times the decision maker activates a particular bandit, the better their understanding

of that bandit’s reward distribution. Kelly observed that our classical search problem

is equivalent to a MAB problem where searching a location is equivalent to activating

a corresponding bandit and that the index solution of Gittins (1974) for the MAB

problem is identical to the policy derived by Blackwell. This index policy is commonly

referred to as the Gittins’ index policy.

1.1.2 Patrol Problems

In Section 1.1.1 we introduced a class of search problems where one or more targets,

which are hidden prior to the search, need to be found. An intrinsically related class

of problems involves searching for targets that appear over time. Throughout such a

process, there could be times where multiple targets are present and other times where

none are present. Examples of targets in this type of problem include mechanical faults

in a complex system of machines, smugglers attempting to cross a border and customers

in a department store that are in need of assistance.

In some contexts, we would expect that after a target arrives somewhere they remain

there until they are discovered. This may be the case for a mechanical fault that remains

broken until it is detected and repaired, or for a spy who continues to leak information

until they are discovered. In other contexts, a target may have a specific task they wish

to accomplish such as stealing a painting or crossing a border. In these cases, a suitable

model will cause the target to disappear after some amount of time. Detecting the

target before they have completed their designated task will usually negate all negative



CHAPTER 1. INTRODUCTION 4

effects associated with their appearance. In either case it is necessary to patrol the

search space continuously. Thus, we describe such problems as patrol problems and

rename the agent who searches for the targets as the patroller.

In this thesis we consider a patrol problem where a patroller wishes to protect a

set of dispersed locations from attacks. She can travel between locations and spend

any amount of time searching any individual location. The times required for the

patroller to travel between pairs of locations are known and the detection rates, which

may vary from location to location, are also known. The patroller wishes to minimise

the maximum expected amount of time to discover an attacker after they arrive at a

particular location, where the maximum is considered over all locations.

1.2 Contributions

The main aim of this thesis is to explore search and patrol problems that explicitly

take into account the additional time and cost of moving between locations. To this

end, we focus on two problems. The first is the search problem described in Section

1.1.1 that generalises an extensively studied classical discrete search problem to include

travel times. The second is the patrol problem described in Section 1.1.2 that involves

continuously patrolling a set of dispersed locations to protect them from attacks. The

contributions in each of these areas are summarised in Sections 1.2.1 and 1.2.2 respec-

tively.

1.2.1 Search Contributions

To give context to our contribution to the search literature we provide a thorough

review of existing work, with a particular focus on the search problems similar to the

classical search problem that our problem generalises.

After formulating our search problem we show that, despite not taking travel times

into account, the index policy for the version of the problem with no travel times still has

some useful properties when applied to a problem with travel times. In particular, we

show that a searcher following this policy only remains at her current location when it is



CHAPTER 1. INTRODUCTION 5

optimal to do so. Motivated by this insight, we draw upon the theory of restless bandit

problems to derive an index-based heuristic policy that explicitly takes into account the

travel times between different locations. To gain further insights into the performance

of this policy, we analytically derive the form of the optimal policy in the special case

of two locations with identical parameters. We show that our index heuristic has a

similar structure to the optimal policy in this case but a searcher following the index

heuristic tends to leave her current location prematurely. Additionally, we are able to

show that for this simple two-location problem, our index heuristic only instructs the

searcher to remain at her current location when it is optimal to do so. We are also able

to show this property holds in more general n-location problems with heterogeneous

parameters provided that all travel times are the same.

In order to address the shortcomings of the new index heuristic we introduce two

additional heuristics that make use of these indices, and show how the performance

of any search sequence can be further improved by performing extra steps based on

insertion heuristics and policy improvement. We provide extensive numerical results to

evaluate the performances of our heuristics with respect to the approximated optimal

values. By examining these results, we highlight the benefits of the improved methods

using insightful comparisons.

1.2.2 Patrol Contributions

Our contribution to the patrol literature begins with a brief review of existing work.

Unlike the search problem discussed previously, the version of our patrol problem with-

out travel times has not been extensively studied. Thus, we initially study this special

case. When all travel times are set to zero, locations can be moved between instantly,

allowing the patroller to effectively divide her search effort between multiple locations

simultaneously. We show that in this case it is optimal whenever operating according

to a patrol pattern which repeats (which we call a cycle) to continuously allocate a

constant fraction of effort to each location. We show that at each location the fraction

of effort that should be allocated is inversely proportional to the detection rate.

For the more general case we introduce two cycle types, referred to as simple cycles



CHAPTER 1. INTRODUCTION 6

and sweep cycles. A simple cycle is a patrol pattern that visits each location exactly

once in a set order and then repeats. Thus, each search of a given location lasts for

the same amount of time and then every other location is searched before the patroller

returns to that location. To support the intuition of simple cycles being effective, we

show that if a cycle visits a location twice then both of these visits should be of the same

duration. We show that the order in which locations are visited in the best simple cycle

must correspond to a minimum Hamiltonian cycle. We also show that in the special

case where all detection rates are the same, all locations should be visited for the same

amount of time. A sweep cycle is motivated by scenarios where locations are spread

out along a line. The patroller moves back and forth along the line in searching each

location when passing in each direction. We show that when the locations are arranged

in a line, the best sweep cycle will always perform better than the best simple cycle.

For both cycle types we derive a formula for the maximum expected time to discovery

across all locations. We present a nested ternary search algorithm to find the vector

of search durations that minimises this expression. We then use this algorithm to find

the best simple cycle and the best sweep cycle in a variety of numerical examples. For

some specifically chosen scenarios we compute the best instances of other cycle types

in order to demonstrate that an optimal patrol pattern does not necessarily need to be

either a simple cycle or a sweep cycle.

1.3 Outline of Thesis

The remaining chapters of the thesis are as follows:

Chapter 2 provides an in-depth review of the relevant literature. The first section

of this chapter focuses on search theory and starts with a more detailed account of the

version of the search problem described in Section 1.1.1 without travel times. Particular

emphasis is given to the index solution and its connection to the multi-armed bandit

problem. The section also explores a variety of related search problems to give context

for our contribution. The second section of this chapter focuses on the patrol literature.

This part is separated into three subsections on resource allocation, patrolling games



CHAPTER 1. INTRODUCTION 7

and robotic patrol.

In Chapter 3 we study the search problem described in Section 1.1.1. We initially

establish some theoretical results about the performance of the Gittins’ index policy

which is known to be optimal for the version of the problem without travel times, when

applied to a problem with dispersed locations. Motivated by these results we develop an

index heuristic and compare it to an optimal policy in some special cases. To address

the shortcomings of this heuristic we develop two other heuristics that make use of

these indices. We also present two further algorithms that can be used separately or

together to augment the performances of these base heuristics. The chapter concludes

with a numerical study evaluating the effectiveness of these heuristics.

In Chapter 4 we study the patrol problem described in Section 1.1.2. We initially

establish the form of the optimal cyclic policy for the case with no travel times. We

then introduce two cycle types: simple cycles and sweep cycles. For each cycle type we

provide some theoretical results and then derive a formula for the maximum expected

time to discovery across all locations. We present an algorithm based on ternary search

to find the best instance of each of these cycle types. We then examine their perfor-

mances in a series of specially chosen examples and discuss how the ternary search

algorithm can be used to find the best patrol pattern of any given cycle type.

Chapter 5 concludes the thesis and provides some ideas for further work.



Chapter 2

Literature Review

This chapter is divided into two sections. Section 2.1 reviews the relevant literature

on search problems. Since this body of work is so extensive, with contributions made

across nine decades, providing a full account is beyond the scope of this chapter. We

therefore focus on studies that are particularly relevant to the discrete search problem

discussed in Chapter 3. In Section 2.2 we turn our attention to patrol. While the

literature on patrol problems is substantial, it is not as extensive as the work on search.

This allows us to present this section as a more general study of patrol rather than

focusing on a specific type of problem as was required for the literature on search.

2.1 Search Literature

The Anti-Submarine Warfare Operations Research Group was founded during World

War II by the US Navy. The group were tasked with developing novel methods for

the rapid detection of hostile marine vessels. During this time, they established many

of the underlying principals of search theory. After the war, Bernard Koopman, one

of the group’s lead contributors, compiled this work into a book called ‘Searching and

Screening’ (Koopman, 1946) which was classified as confidential by the US Navy until

1958. In the decades since, search theory has been applied to countless other problems

which has led to the development of an expansive body of literature. See Enslow Jr

(1966), Dobbie (1968), Stone (2004), Washburn (2014) and Stone et al. (2016) for

8



CHAPTER 2. LITERATURE REVIEW 9

surveys of this work.

While the many diverse contexts for search problems make it necessary to use a

wide variety of different models, there are often the following common elements. A

decision-maker, who is usually referred to as the searcher, wishes to find a target which

has been hidden in a region known as the search space. A probability distribution over

the search space, known as the target distribution, indicates how likely the target is

to be in different parts of the search space. The target distribution may be known to

the searcher or determined by another decision maker who may wish to positively or

negatively affect the outcome of the search. The searcher’s actions are determined by a

search policy. As she traverses the state space, the searcher can expend some resource,

usually time or money, to search her immediate vicinity for the target. If the target is

present, the success of the search is determined by a detection function. This process

continues until either the target is found or the searcher gives up, possibly after reaching

some limit on the resource being used to search. A search objective is used to quantify

the effectiveness of a particular search policy.

In this section, we review elements of the search theory literature. Section 2.1.1

presents a classical discrete search problem that was first studied in the 1960s. This

search problem and its solutions are of particular significance to us as it is a special

case of the search problem considered in Chapter 3 where all travel times are set to

zero. The remaining subsections consider extensions and variations of this problem.

Section 2.1.2 considers a variety of different search objectives. Section 2.1.3 considers

a variation of this problem with a continuous search space. Section 2.1.4 discusses

several extensions that make different assumptions about the target. Finally, Section

2.1.5 considers alternative detection processes.

2.1.1 A Classical Discrete Search Problem

In this section we consider a classical discrete search problem. Extending this problem

to include travel times is the focus of Chapter 3.

In this problem, a target is hidden randomly in one of n distinct sub-regions, for

some n ∈ N, which are labelled 1 to n arbitrarily. In the literature these sub-regions are



CHAPTER 2. LITERATURE REVIEW 10

usually called either ‘boxes’, ‘cells’ or ‘locations’. For consistency, the word ‘locations’

will be used throughout the rest of this thesis. For ease of notation, we use [n] to

denote the set {1, · · · , n}. We assume that the target is hidden at random according

to a known probability distribution P = (p1, · · · , pn) where, for each i ∈ [n], pi ∈ (0, 1)

denotes the probability that the target is hidden in location i and
∑n

i=1 pi = 1. The

target remains hidden and does not move until it is found. It is assumed (in the

classical problem) that these locations are sufficiently close together that the searchers

do not need to expend any time or effort to move between them. For each i ∈ [n] the

searcher can choose to spend ti units of time to carry out a single search of location

i. If the target is in location i, then this search is successful with a probability qi

regardless of the number of times that location i has previously been searched. The

exact position within the location that the target is hidden has no effect on the search

time or detection probability. Also, if the target is discovered part way through a search

we assume that the searcher must complete her current search, which is included in the

time to detection. The searcher’s objective is to determine a sequence of locations to

be searched to minimise the expected time to discovery.

As discussed in Chapter 1, the expected search time for this problem can be min-

imised using an index policy. This result was first derived by David Blackwell using

dynamic programming techniques. This result was published by Matula (1964). Black

(1965) independently derived a graphical proof of this result. Frank Kelly also com-

mented on Gittins (1979) that this problem is equivalent to a particular multi-armed

bandit problem and so the results of Gittins (1974) could be used to obtain the same

index policy. Since then this index policy has become commonly known as a Gittins’

index policy. Almost two decades after this result was first proved, Ross (1983) found

another proof using a simple interchange argument.

Formally, the Gittins’ index policy works as follows. At the start of the search

procedure and following each unsuccessful search, the searcher is directed to search a

location with the highest value of the index Gi(si), where for each i ∈ [n],

Gi(si) =
piqi(1− qi)

si

ti
(2.1)



CHAPTER 2. LITERATURE REVIEW 11

and si denotes the number of times that location i has previously been searched. If

multiple locations have the maximal value of Gi(si) then searching either will result in

an optimal policy.

At the start of the search the target distribution P represents the searcher’s beliefs

about the location of the target. Using this as a prior, the searcher can use Bayes’

theorem to update this belief distribution following each unsuccessful search. Write

P ′ = (p′1, · · · , p′n) for the posterior belief distribution. If, for each j ∈ [n], location j

has previously been searched sj times then for each i ∈ [n],

p′i =
pi(1− qi)

si∑n
j=1(1− qj)sj

.

Since the denominator is the same across all locations it follows that p′i ∝ pi(1 − qi)
si

and so an index policy with indices given by

p′iqi
ti

is equivalent to the index policy using (2.1). This latter index has a simple interpretation

as the probability of detection of the target at i per unit of time.

Search problems can also be formulated as a game between the searcher and an

adversary who chooses where the target is hidden. These games are commonly referred

to as search games or as two-sided search problems. Hohzaki (2016) and Alpern and

Gal (2002) provide extensive literature reviews on search games. Clarkson et al. (2023)

formulate the classical discrete search problem described above as a search game be-

tween the searcher and an adversary who chooses the initial hiding distribution P with

the objective of maximising the expected time to discovery. Neither decision maker

has any knowledge of the other’s chosen policy, making this a simultaneous two-person

zero-sum game.

2.1.2 Search Objectives

A search objective is used to assess the quality of a search policy. The search objec-

tive of the classical discrete search problem discussed in Section 2.1.1 is to minimise

the expected time to discovery. In this section we introduce some alternative search

objectives.



CHAPTER 2. LITERATURE REVIEW 12

Maximising Probability of Discovery by a Deadline Maximising the probabil-

ity of discovery subject to a resource constraint is another common search objective.

Having a time limit for a search makes sense in scenarios where finding an object is only

useful if done within a given time-frame. For example, when searching for a bomb, the

searcher needs to find it before it detonates and with enough time for a bomb disposal

unit to safely defuse it. Alternatively, there may be practical reasons why the searcher

would only have access to the search space for a certain period of time. This is likely

to be the case if the search space has some other public or commercial use and must

be closed while the search is active. This objective is also useful for search procedures

with a financial constraint. Where the target has some fiscal value, this may be used to

inform how much an organisation is willing to spend on the search procedure. In other

cases, particularly where human life is at stake, governments are often forced to face

difficult decisions about how much they are willing to spend to find a missing person.

While having a lower expected time to discovery is beneficial in this case, this would

be a secondary objective and is not addressed within the objective function.

Chew et al. (1967) introduces a variation of the classic discrete search model which

uses this objective. He shows that using the index policy defined by (2.1) until the next

proposed search exceeds the constraint is optimal under certain conditions. The index

policy is not optimal in general because the final search may not use up the full budget.

If the finite resource is not used in its entirety, it is possible that the time expended on

the last few searches could be more effectively utilised by a sequence of searches that

are able to use it more completely. If, by coincidence or by design, the budget is fully

expended during the final search of the index policy then this truncated search sequence

is optimal. Additionally, if all searches have the same duration then the truncated index

policy will also be optimal. Some other papers that use this objective function are

Kadane (1968), which considers a more general problem with time-dependent detection

functions, and Wegener (1982), which constructs an algorithm for a search model with

time-dependent search times.

Lau et al. (2008) also also consider a search problem where the searcher wishes to

maximise the probability of discovery by a known deadline. In this model, the target



CHAPTER 2. LITERATURE REVIEW 13

is hidden in a discrete search space according to a known probability distribution. The

distance between these locations is represented by an adjacency matrix, where only

adjacent locations can be moved between. The search takes place over discrete, evenly

spaced time steps. At the start of each time step the target moves to a new location

according to a known Markov model. At the same time, the searcher chooses to either

remain at their current location or to move to an adjacent location. The searcher then

spends the time step searching the chosen location. In the first part of the paper, the

searcher can move instantly between locations. In the second part of the paper, travel

times are included for the searcher. For each pair (i, j) of adjacent locations it takes

a number of time steps dij ∈ N to move between these locations. While moving the

searcher is unable to take any further actions. For both versions of the problem, a

branch and bound approach is used to find search strategies.

Subelman (1981) introduces a search game with unit search times where the searcher

wishes to maximise the probability of finding the target by a known deadline. Lin and

Singham (2016) also consider a search game with this objective but where the searcher

does not know the deadline.

Maximising a Reward Ross (1969) considers a version of the classical discrete

search problem presented in Section 2.1.1 with search costs in place of search times.

The searcher also receives a reward Ri if the target is discovered in location i. The

searcher wishes to maximise their expected reward minus total cost of the search. It

is clear that if the reward is not sufficiently high then the expected cost of the search

will exceed the expected reward. Thus the searcher is also allowed to stop the search

at any point. Ross (1969) shows that an optimal policy will either search the location

with the largest index as defined by (2.1) or remove that location from consideration.

A location may be removed from consideration if the reward for finding the target there

is low. Moreover, if the reward is the same for all locations then the optimal policy

either searches the location with the highest index or the search is abandoned.

Sweat (1970) considers an alternative objective where the searcher wishes to max-

imise the expected reward which is received upon finding the target. For each i ∈ [n]



CHAPTER 2. LITERATURE REVIEW 14

a search of location i discounts the reward by a factor of β for some known β ∈ (0, 1).

Thus, if si is the number of times that location i has been searched when the target

is discovered then the final reward is discounted by
∏n

i=1 β
si . Sweat (1970) shows that

the searcher can maximise the expected reward by using a variation of the index policy

given by (2.1) where ti is replaced by 1− β.

Information-Based Objectives In some cases, it is not necessary for the searcher

to find the target. Mela (1961) introduces the notion of instead maximising the infor-

mation gain by a deadline, and demonstrates with a few simple examples that a policy

that maximises the probability of detection by a certain deadline may not maximise

the information gain. In one particular example the searcher has some amount of time

to search for the target and when her time is up she must guess the target’s location.

Her objective is to maximise the probability that this guess will be correct. Since the

target is stationary, finding the target before the deadline means that she is certain

that her guess is correct. However, if she is unable to find the target she can take the

initial target distribution and perform a Bayes’ update using the unsuccessful searches

she was able to complete. She then guesses that the target is in the location with the

largest posterior probability. An example of where this might be used is in a hostage

rescue, where an initial search is done using remote sensing equipment and then an

evacuation team is sent to the location where the hostages are most likely to be. Such

problems have since been called whereabouts searches.

Mela (1961) considers examples of whereabouts searches with at most three locations

and unit search times. Tognetti (1968) generalises this work to a problem with n

locations, still with unit search times. He observes that an optimal strategy for this

problem should not include any searches of the location that has the highest posterior

probability when the guess is made. This is because if the target is hidden there then

the whereabouts search will definitely succeed even if the target is not found. On the

other hand, if the target is not there then there is no benefit to searching it and by

spending time searching some other locations the searcher still has a chance to find it.

Kadane (1971) generalises this to the classical discrete search problem. He demonstrates



CHAPTER 2. LITERATURE REVIEW 15

that the optimal policy is as follows. First, identify the location with the highest prior

probability and temporarily remove it from consideration. Secondly, construct a policy

that maximises the probability of discovery by the decision deadline using the results

of Kadane (1968). If the target is found, then guess the location where it was detected.

Otherwise, guess the location which was removed at the start of the search.

2.1.3 Search Space

When modelling a search procedure, it is necessary to limit the scope of the search to

a clearly defined region called a search space. A search space is a set representing all

feasible places a target could be hidden and can be categorised as either discrete or

continuous.

The classical discrete search problem introduced in Section 2.1.1 uses a discrete

search space. A discrete search space is a countable set of distinct points and is typically

used when there are clearly distinct locations in which the target can be hidden. Some

applications that a discrete search space would be suitable for are a search for a hidden

stash of contraband in the rooms of a hotel and an intelligence service searching for a

possible mole among their staff.

Where a discrete search space is not applicable we can instead use a continuous

search space. A continuous search space is a subset of Rm for some m ∈ N and can be

used to represent a projection of the ocean floor when searching for the wreckage of a

ship or an airport when searching for hidden explosives following a tip-off.

Much of the early work in search theory focused on continuous search spaces. Koop-

man (1957) considers the problem of distributing a fixed amount of effort across a con-

tinuous search space to maximise the probability of detecting the target. This model

relies on the assumption that the detection functions, which give the probability of

discovery at a given point depending on the amount of effort allocated to it, are ex-

ponential. De Guenin (1961) extends this model to include more general detection

functions.

Often when faced with a problem that would be best represented by a continuous

search space it is sufficient to partition the space and thereby approximate it by a



CHAPTER 2. LITERATURE REVIEW 16

discrete search space. Richardson et al. (1971) describes how this approach was used

during the underwater search for the remains of the submarine Scorpion.

2.1.4 Target Properties

For some problems, it is reasonable to assume that the target is equally likely to be in

any location whereas in other problems we may have some knowledge about the hiding

process that we wish to include in the model. The mechanism we use to incorporate

this information is a target distribution. A target distribution is a probability distri-

bution over the search space that indicates how likely a target is to be in a particular

region. Defining the target distribution will often require specialist knowledge from a

subject matter expert. Another property that needs to be considered about the target

is whether it is static or mobile. A moving target may move at random or strategically.

If the targets are moving with purpose it is important to consider what that purpose

is, as well as what information the target has about the searcher.

Missing Target In the classic discrete search problem we assert that
∑n

i=1 pi = 1

where for each i ∈ [n], pi is the probability that the target is hidden in location i. In

other words, the target must be in one of the n locations. Now we present a model

where there is a possibility that
∑n

i=1 pi < 1 and so there is some non-zero probability

that the target does not exist in the search space. The possibility that the target is not

in any of the established locations can be incorporated into the model as an additional

location which cannot be searched. The searcher’s objective remains to minimise the

expected search time. However, since there is a possibility that the target is in a location

that cannot be searched, the expected time to discovery under any policy is infinite. It

is therefore necessary to include the option to terminate the search by incurring some

time penalty c which is known. The objective is therefore updated to minimise the

expected time to conclude the search with the understanding that the search will only

end when either the target is found or after the searcher has given up and paid the

additional cost c. Chew (1973) shows that a truncation of the sequence generated by

following the index policy defined by (2.1) is optimal for this problem. Rather than



CHAPTER 2. LITERATURE REVIEW 17

determine the optimal point of truncation directly, Chew (1973) instead considers a

stopping region SB. This is a set of posterior probabilities for which the expected time

to discovery is equal to the penalty time c. In order to ‘bound’ this set Chew (1973) is

able to prove that SL ⊂ SB ⊂ SU , where

SU =

{
P : P = (p1, · · · , pn), max

i∈[n]
(piqi) ≤ 1/c

}
,

and

SL =
⋂
i∈[n]

P : P = (p1, · · · , pn),

piqi + 1

cmini∈[n] qi

∑
j∈[n]\{i}

pjqi ≤
1

c

 ∀i ∈ [n]

 .

Thus, if we define sL and sU as the numbers of searches conducted while following the

index policy until the posterior probabilities are contained in SL and SU respectively,

then the optimal termination point falls between these values.

Multiple Targets Assaf and Zamir (1985) present a variation of the classical dis-

crete search problem introduced in Section 2.1.1 where there are m targets, for some

known m ∈ N. The searcher’s objective is to find the sequence of locations to search

that minimised the expected time to discover the first target. Each target is hidden

independently using the same target distribution. For each i ∈ [n], let Xi denote the

number of targets in location i. Then X = {X1, · · · , Xn} has a multinomial distri-

bution. When a location is searched, the probability of discovering each target is qi

independently. Thus, the probability of finding at least 1 is 1− (1− qi)
Xi . The authors

show that the expected search time can be minimised by following an index policy with

indices given by
1− EX[(1−Xiqi(1− qi)

si)m]

ti
,

where for each i ∈ [n], si indicates the number of times that location i has previously

been searched and the expectation in the numerator is taken over the current posterior

for X.

Smith and Kimeldorf (1975) consider a variation of the classical discrete search

problem introduced in Section 2.1.1 where there is an unknown number of targets. Let

M be a random variable with a known distribution indicating the number of targets.



CHAPTER 2. LITERATURE REVIEW 18

Each target is hidden independently using the same target distribution. The searcher’s

objective is to minimise the expected time to discover one target. The authors show

that if there are at least three locations, then there exists an optimal policy in the form

of an index policy if and only if the number of hidden objects has a zero-truncated

Poisson distribution. The indices for this index policy are given by

1− EM [(1− piqi(1− qi)
si)M ]

ti
, (2.2)

where for each i ∈ [n], si denotes the number of times that location i has previously

been searched. Here the numerator is the probability that a search will find a target and

therefore cause the search to end. If the random variable M follows a zero-truncated

Poisson distribution with parameter λ > 0, then (2.2) becomes

1− e−λpiqi(1−qi)
si

ti
.

Assaf and Zamir (1987) consider the two-location version of this problem and show

that the index policy defined by (2.2) is optimal for the zero-truncated Poisson dis-

tribution, and more generally for any distribution such that log(E[Mx]) is concave for

x ∈ [0, 1].

Kimeldorf and Smith (1979) consider a variant of the model presented in Smith

and Kimeldorf (1975) where the objective is to minimise the expected time to discover

all targets. The authors show that, similar to when minimising the expected time to

discover the first target, an optimal policy exists in the form of an index policy for any

problem with n ≥ 3 if and only if M is a zero-truncated Poisson random variable. In

this case the indices are given by

eλpiqi(1−qi)
si − 1

ti
,

where for each i ∈ [n], si is the number of times that location i has been searched and

λ is the parameter of the zero-truncated Poisson random variable.

Lidbetter (2013) and Lidbetter and Lin (2019) both consider search games where

multiple objects are hidden among multiple locations. Lidbetter (2013) initially pro-

poses a search game where k objects are hidden among n locations (with n > k). Each



CHAPTER 2. LITERATURE REVIEW 19

location i has a search cost ci and can contain at most one object. When the searcher

searches a location he finds any object hidden there. The searcher’s objective is to find

all objects as quickly as possible in the worst case scenario. An adversary, who chooses

where the objects are hidden, wishes to maximise the time to find all objects in the

worst case scenario. The author shows that the optimal search strategy is to randomly

select a subset of k locations to search in any order. Each possible subset should be

chosen with probability proportional to the product of their search costs. If not all ob-

jects are discovered then the remaining locations should be searched in a random order.

A more general search game on a network is then introduced. The game considered by

Lidbetter and Lin (2019) also includes k objects hidden among n locations. However, in

this model, one location may contain multiple objects. Each time the searcher searches

a location they pay a cost and if that location contains at least one object the searcher

finds one of them.

2.1.5 Detection Process

In any search problem, the searcher is required to expend some resource to attempt

to discover the target. In a discrete search space, the searcher is usually restricted to

search only one location at a time. The expected resource could be time spent searching,

the cost of the search, physical effort or some function of all of these. Throughout this

section we will use time as the expended resource unless specifically stated otherwise.

Clearly, if the searcher searches location i and the target is not hidden there, then

the probability of finding the target is zero regardless of how long the searcher searches.

If the target is in the location being searched it may be appropriate to relate the amount

of time spent searching a location to a probability of detection.

In the classical discrete search problem the searcher is restricted to searches of a

certain length. This is called a discrete-time search model. Thus, if we wanted to

write the detection functions for the classical discrete problem, they would be piecewise

constant with jumps at regularly-spaced intervals.

Imperfect Specificity Kress et al. (2008) considers an extension to the classical



CHAPTER 2. LITERATURE REVIEW 20

discrete search problem presented in Section 2.1.1 where, for each location i ∈ [n],

there is a probability ri that the searcher incorrectly believes they have detected the

target. Thus, before ending the search, an additional verification step is required.

For each i ∈ [n], it takes vi units of time to verify the discovery at location i. This

verification process cannot overlook the target if it is there and has perfect specificity.

Thus, if the target is not found during this step, the location can be removed from

consideration going forward. The authors show that the optimal policy is an index

policy. In particular, if for each i ∈ [n], si is used to denote the number of times

location i has previously been searched, then it is optimal to search the location with

the largest value of
piqi(1− qi)

si

ti + rivi
.

Note that this is the same as the index policy given by (2.1) for the classical problem

but with the expected cost of the verification process added to the denominator.

Kress et al. (2008) also consider the case where it is only possible to carry out one

verification process. This may be the case in a hostage rescue problem were any raids

of locations other than those where the hostages are being held is likely to escalate

the situation. In this case the authors suggest that the objective function should be to

maximise the probability that the first detection is correct. They show that the optimal

policy for this objective function is an index policy with indices given by a variation of

(2.1), with the search time replaced by the false positive probability.

Different Search Modes Shechter et al. (2015) presents a search problem with two

search modes where the act of carefully searching a location is dangerous due to enemy

fire. Both search modes have perfect detection, meaning that any search of the target’s

location will discover it. If the searcher uses the fast mode to search a location then

the searcher is not at risk but there is a probability pQ that the target is damaged and

the search results in failure. On the other hand, if the slow mode is used then there

is no risk of the target being damaged but there is a probability pS that the searcher

is killed, which also means that the search fails. The objective in this problem is to

maximise the probability that the search is successful.



CHAPTER 2. LITERATURE REVIEW 21

Clarkson et al. (2020) extend the classical discrete search problem to include two

search modes. A fast search of a location takes less time compared to a slow search but

has a lower conditional probability of discovery. Clarkson et al. (2020) prove that if for

each location the sequence of fast and slow searches to be carried out is fixed then a

suitable version of the Gittins’ index policy described in Section 2.1.1 is optimal. The

authors also derive sufficient conditions for either mode to dominate the other, which

optimally solves the problem for some specific examples. They also provide heuristic

approaches for more general problems.

Following our review of contributions related to the discrete search model we now

turn to a discussion of the literature related to problems in optimal patrol.

2.2 Patrol Literature

Patrol theory arose as an area of research in the 1970s. Much of the early work on

patrol operations is focused on the optimal allocation of police patrol vehicles in various

environments. This work is discussed in Section 2.2.1. A more recent area of research

is robotic patrol. This involves one or more robots which are programmed to patrol an

area to prevent attacks. Attackers can observe the robots’ movements and may even

have knowledge of the patrol algorithm being used. This knowledge can be taken into

account when programming the robots to ensure a robust patrol pattern. This work is

discussed in Section 2.2.2. The last few decades have seen a renewed interest in patrol

problems. Much of this newer work takes a game-theoretic approach. The literature

on patrol games is discussed in Section 2.2.3.

2.2.1 Resource Allocation

In this section we review the literature on resource allocation for patrol.

Local police departments are required to have an active presence in their community.

Having police vehicles actively patrolling acts as a deterrent to potential criminals,

allows for rapid response when crimes are reported and increases the chance that officers



CHAPTER 2. LITERATURE REVIEW 22

will witness a crime in progress. Police jurisdictions are often too large to be patrolled

entirely in one go and so are divided into smaller regions. Larson (1972) reviews much of

the early work on urban police patrol analysis, with a particular emphasis on informing

strategic decisions such as the number of patrol vehicles to allocate to different regions.

Both Chelst (1978) and Chaiken and Dormont (1978) present algorithms for allocating

multiple patrol vehicles among several regions with known crime rates in an urban

environment. These algorithms are shown to give significant improvements compared

to simpler approaches based on allocating patrol resources in proportion to predicted

crime rates for different regions.

Patrol models outside of urban environments often require special treatment. Lee

et al. (1979) and Taylor III et al. (1985) consider the problem of patrolling highways.

The work of Birge and Pollock (1989) involves developing specialised patrol methods

for rural areas that put a greater emphasis on travel times between locations.

Some more recent papers in the patrol area are also concerned with resource alloca-

tion. Szechtman et al. (2008) considers a problem where a sensor sweeps along a section

of a border which is chosen by the patroller to maximise the rate at which attackers

are detected. Attackers arrive at a constant rate and the location of each attack is de-

termined by a known probability distribution. Once an attacker arrives at the border

they stay there for an amount of time given by another known probability distribution.

Initially the authors assume that the sensor will instantly detect and apprehend any

attacker it passes. Szechtman et al. (2008) also consider two extensions of this problem.

The first extension allows the sensor to move more quickly at the risk of overlooking

attackers, and the second extension requires the sensor to pause after discovering an

attacker.

Olson and Wright (1975) consider a patrol problem in an urban environment where

the patrol space is divided into discrete street segments, each of which has a known crime

rate. In this problem, the objective is to maximise the rate at which patrol vehicles

enter a segment in which a crime is in progress. The authors model the patroller’s

movement as a Markov Chain and use Monte Carlo techniques to create randomised

patrol schedules which are shown to significantly increase the chances of detecting



CHAPTER 2. LITERATURE REVIEW 23

crimes compared to previous methods.

2.2.2 Robotic Patrolling

Another formulation for patrol problems involves programming robots, such as drones,

to patrol some physical space. Chapter 2 of Basilico et al. (2012) reviews much of this

work. Using a robot rather than a human to patrol can be particularly advantageous

when the region being patrolled is potentially dangerous. This may be the case when

attackers are armed or when performing surveillance in a hostile environment. Robotic

patrollers also have the benefits of not experiencing any dip in performance as they get

distracted or tired. However, robotic patrollers also have drawbacks when compared to

their human counterparts. Human patrollers may sometimes move around the space

under cover and thus the attackers are unaware of their presence, which is not the case

for a drone flying overhead.

Random Attackers Many of the early contributions in this area assume that at-

tackers do not take patrollers into account when choosing when and where to attack.

Patrollers therefore wish to maximise the frequency of their visits to all locations in

order to catch these attackers as quickly as possible.

Yanovski et al. (2003) consider the problem of n robotic patrollers who are required

to patrol the edges of an arbitrary graph in such a way that the frequency between

visits to each edge is approximately uniform. The authors introduce an evolutionary

algorithm where each time a patroller arrives at a vertex they chose to next move along

the edge that has been traversed least recently. They show that the algorithm performs

well after an initial transient period and can adapt if edges are added to or removed

from the graph.

Elmaliach et al. (2009) consider the problem of n robotic patrollers who are required

to patrol a grid where some cells in the grid are blocked by obstacles and the remaining

cells are vulnerable to attacks. The robots are able to move only in the cardinal direc-

tion. They may move at different speeds depending on the direction they are moving

and changing direction may also take some additional time. The authors consider three



CHAPTER 2. LITERATURE REVIEW 24

possible objectives:

1. minimising the variance between the frequencies of visits to each location,

2. maximising the average frequencies between visits to each location and

3. maximising the minimum frequency between visits to each location.

The authors utilise an algorithm that finds the quickest cyclic path visiting all target

areas. Patrollers are then distributed uniformly along this cycle and all move in the

same direction. The authors show that this patrol pattern optimises all three objectives.

Strategic Attackers Other contributions assume that the attackers take the pa-

trollers into account when planning their attacks. In most cases, the robots are pro-

grammed by a centralised decision maker and then sent out into the environment. The

adversary (a decision-maker coordinating the actions of all attackers) can then observe

the robots behaviour before choosing where to attack. It is often assumed that the

adversary has full knowledge of the patrollers policy when choosing their own. This

type of game is called a sequential game, a leader-follower game or a Stackelberg game.

Agmon et al. (2008a) and Agmon et al. (2008b) consider k robots patrolling a

perimeter in discrete time. The perimeter is divided into segments that each take one

time step for a robot to traverse. Attackers choose one segment to attack and the

attack lasts t units of time. Agmon et al. (2008a) assumes that the k robots are equally

spread out and move in such a way that they maintain their distance from one another.

Three movement models are considered, each using a probability p to determine the

direction of movement. The optimal value p is found in each case. Agmon et al. (2008b)

considers the case where the adversary has no knowledge of the patroller’s policy and

shows that a deterministic policy is optimal in this case. This algorithm patrols only

a subset of the perimeter segments, meaning that if the adversary were to gain any

knowledge of the patroller’s policy then they would be able to exploit this information

to ensure all attacks target undefended segments. They also consider what happens

when the adversary has partial knowledge of the patroller’s policy and construct an

algorithm for this case.



CHAPTER 2. LITERATURE REVIEW 25

Basilico et al. (2009) and Basilico et al. (2012) consider a single robot patrolling

a graph in discrete time. At each time step the patroller can move to an adjacent

location.

Portugal and Rocha (2013) consider multiple robots patrolling a map. Special con-

sideration is given to practical aspects such as scalability as the number of robots

increases, recharging robots and decentralised decision-making which makes it harder

for an adversary to discover the patrol pattern ahead of time.

2.2.3 Patrolling Games

A patrolling game involves two decision makers: a patroller (or a defender that coor-

dinates multiple patrollers) and an attacker (or an adversary that coordinates multiple

attackers). These decision-makers are usually in direct opposition to each other, with

the attacker wanting to maximise the probability of attacks being successful and the

patroller wanting to minimise this probability. The game is often played on a graph. In

discrete patrolling games attacks can only take place at the nodes of the graph, whereas

in continuous patrolling games, attacks can also occur at the edges. Games can also

take place in discrete time, where the patroller can move between adjacent locations

at each time step, or in continuous time, where the patroller traverses the graph by

travelling along its edges.

Discrete Patrolling Games Motivated by recent developments in search games,

Alpern et al. (2011) propose a discrete patrolling game. This patrolling game is set on

a graph, where the n nodes represent the locations that can be attacked and the edges

represent routes between them. The game takes place in discrete time. An attack at

any location takes m time steps to complete, for some known m ∈ N. At each time

step, the patroller can move to and search one location that is connected by an edge to

their current location. The attacker wins if the patroller does not arrive at the location

under attack during the m time steps; otherwise, the patroller wins. Alpern et al.

(2011) consider two versions of this game. The first version is called a one-off game

and takes place over T time periods. Since the attack must complete before the game



CHAPTER 2. LITERATURE REVIEW 26

finishes, the attacker must choose a start time in the first T −m time steps. The second

version is called a periodic game and is played on a time circle {1, . . . , T}. For example,

if T = 24, these time steps could represent the 24 hours in the day. In a periodic game,

attacks can start at any time but the patroller is constrained to choose from patrol

cycles of length T , where an edge exists between the first and last location. Bounds are

derived for the probability of the patroller winning each version of the game as well as

some strategies for both players. Additional results are derived for patrol games played

on Hamiltonian, bipartite and line graphs.

Lin et al. (2013) considers a generalised version of the periodic game presented

by Alpern et al. (2011). Rather than an attack taking a fixed amount of time m,

the time taken to attack each location is instead distributed randomly according to a

known arbitrary distribution that can vary between locations. If the attacker remains

in this location for the full duration without a patroller’s interruption, then the attack

is successful and the patroller incurs a cost that can depend on the location. As in

Alpern et al. (2011), if the patroller detects the attacker before the attack is completed,

then the cost is zero. The patroller is also no longer constrained to only consider patrol

cycles of length T . Rather than choosing when they will attack, the attacker arrives at

their location of choice after some random amount of time. The patroller’s objective

is to minimise the expected cost of attack. Lin et al. (2013) also considers the case

where the location that is attacked is determined by a known probability distribution

rather than a second decision-maker. In both cases, the authors present an exact linear

program to compute the optimal patrol pattern. This algorithm scales very poorly with

the number of locations due to the curse of dimensionality, so a heuristic index policy

is also given. Lin et al. (2014) generalises this model further to allow for imperfect

detection. Both the game theoretic and random attacker cases are considered and an

index heuristic is derived for each case.

McGrath and Lin (2017) considers a different extension of Lin et al. (2013) in which

there is a deterministic travel time between each pair of locations. The authors show

that when there is only one patroller an optimal patrol pattern can be found using linear

programming. McGrath and Lin (2017) also consider the case of multiple patrollers. In



CHAPTER 2. LITERATURE REVIEW 27

this case, finding an optimal policy is intractable so heuristic approaches which involve

partitioning the locations into smaller patrol regions are considered.

Papadaki et al. (2016) expands on the work of Alpern et al. (2011) by finding an

optimal policy for both the attacker and patroller in a one-off game when the game is

played on a line graph. Special attention is given to this scenario due to its potential

application to patrolling a border. Similarly, Alpern et al. (2019) focuses on line graphs

but considers the periodic version of the problem. The authors find an optimal policy

for both decision-makers in the special case where m, the number of time periods that

the attacker needs to be in a location to complete an attack, is two. Alpern et al.

(2022b) considers a patrolling game in which the patroller wears a uniform, so the

attacker can decide when to start the attack based on when the patroller last visited.

Continuous Patrolling Games Alpern et al. (2016) extend the model of Alpern

et al. (2011) by allowing the attacker to attack points along the edges of the graph.

Rather than having discrete time steps the game takes place in continuous time with

the patroller moving at a constant speed. The authors derive optimal strategies for

both the attacker and patroller when the graph is a line. Garrec (2019) expands on the

work of Alpern et al. (2016) and derives optimal solutions for Eulerian graphs and for

a graph with two locations connected by three lines of the same length. Alpern et al.

(2022a) derive three further results for the continuous patrolling game in specific cases.

The authors also develop a patrol policy that they conjecture will be optimal for all

games played on a tree graph. Bui and Lidbetter (2023) prove that this conjecture is

true.

Lin (2022) considers a patrol game where a defender is required to protect a perime-

ter. The perimeter is continuous and any point along it could be subject to attack. At

some fixed point along the perimeter is a base. The defender can dispatch patrollers—

who wear uniforms—that depart from the base and each patroller travels around the

perimeter once in a chosen direction at a chosen speed. The defender can choose when

to send out patrollers as long as the long-run average rate that patrollers leave the

base is equal to a given value. The attacker can choose to attack any point along the



CHAPTER 2. LITERATURE REVIEW 28

perimeter at any time. Since the patrollers wear uniforms, the attacker can observe and

learn about the patrol pattern before deciding when to start the attack. Each patroller

passing by the location under attack independently detects the attack with probability

p. Each time a patroller passes the attacker while the attack is taking place, there

is a probability p that the attacker will be discovered. The problem is modelled as a

sequential game over an infinite time horizon where the defender chooses their policy

first. The attacker can then take the defender’s patrol policy into account when devis-

ing their attack policy. Lin (2022) proves that the defender can always find an optimal

policy where all patrollers are sent out from the base in the same direction and at the

same speed.

This concludes our review of the relevant literature on search and patrol problems.



Chapter 3

Searching Dispersed Locations

3.1 Introduction

Governments, military services, and other organizations are often required to spend vast

amounts of energy and resources on expensive search operations. The search for the

missing Malaysia Airlines Flight 370 is believed to have cost more than 100 million US

dollars prior to its suspension in 2017 (New Straits Times, 2017). In many situations,

minimizing search times not only saves resources but also optimizes other outcomes.

For example, in disaster relief contexts, a person’s survival may depend on how quickly

they are located. Moreover, a searcher traversing a dangerous environment is at greater

risk of personal injury the longer the search lasts (Lidbetter, 2020). In military and

anti-terrorism contexts, detecting hostile assets quickly reduces the risk of a successful

attack. Scenarios such as these are relevant to the topic of search theory, an area of

operations research dating back to the Second World War when the US Navy studied

how to detect German U-boats (Koopman, 1946). Since then, search theory has been

applied in many other settings, leading to the development of a rich body of literature;

see Stone (2004) and Washburn (2014) for comprehensive reviews.

In this paper, we consider a discrete search problem in which a stationary object

is hidden in one of n geographically distinct locations. Initially, a prior distribution

(p1, . . . , pn) is available to the searcher, where pi is the probability that the object is

hidden in location i, for i = 1, . . . , n, with
∑n

i=1 pi = 1. In order to locate the object,

29



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 30

the searcher carries out a sequence of searches. Each search of location i requires ti

units of time, i = 1, . . . , n. Additionally, if the object is in location i then the object

is discovered with probability qi, regardless of the number of times that location i has

previously been searched, for i = 1, . . . , n. We refer to qi as the detection probability

for location i, for i = 1, . . . , n. After carrying out an unsuccessful search, the searcher

updates her belief about the object’s location using Bayes’ theorem and then chooses

whether to carry out another search at the same location or move to a new location.

Our formulation differs from much of the previous work in this area by including travel

times to move between different locations. Specifically, we assume that it takes dij

units of time to move from location i to location j, for i, j ∈ {1, . . . , n}. The searcher’s

objective is to find a search sequence that minimizes the expected amount of time until

the object is discovered.

If the travel times dij are all set to zero, then our problem reduces to one that

has been studied extensively in the literature and is equivalent to a particular multi-

armed bandit problem. This connection was first established by Kelly in his comment

in Gittins (1979). Expanding upon this observation, Gittins (1989) gives a full account

of this problem. The optimal search policy states that at each epoch the best option is

to search the location that maximizes the index Gi(si), where

Gi(si) =
piqi(1− qi)

si

ti
, i = 1, . . . , n, (3.1)

and si is the number of times that location i has previously been searched. A full

derivation of these indices and proof of optimality can be found in Gittins et al. (2011).

Several extensions of the problem without travel times are addressed in the liter-

ature. Chew et al. (1967) include the possibility that the object is not in any of the

n locations. In this case, a cost is incurred for ending the search without discovering

the object and the authors derive an optimal stopping condition. Kress et al. (2008)

consider the case of imperfect specificity, where searches can potentially yield false pos-

itives. After a detection is made, a lengthier verification process must be carried out

before the search is completed. Subelman (1981) and Lin and Singham (2016) consider

the objective to maximize the probability of finding the object before a deadline. Clark-



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 31

son et al. (2020) allow each location to be searched using either a fast mode or a slow

mode, where the fast mode implies a shorter search time but also a smaller probability

of discovering the object.

Alpern et al. (2009) consider search games on a network with perfect detection.

They show that if the network is symmetric, than the hider should hide uniformly at

random. They then introduce a variant of the Chinese Postman Problem called the

Utilitarian Postman Problem (UPP) where the objective is to minimise the mean time

to deliver all mail. They demonstrate that the optimal solution to this problem also

provides an optimal search policy for their search game. Jotshi and Batta (2008) also

use the UPP to address search problems where the searcher is assumed to be hiding

uniformly at random on an arbitrary network. Alpern and Lidbetter (2014) extend the

study of network based search games to include a notion of variable speed.

Several other recent developments consider game theoretic formulations. Dagan

and Gal (2008) formulate a zero-sum game between a blind unit-speed searcher and a

stationary hider. Hohzaki (2016) reviews the literature on search games, where an ad-

versary chooses where to hide an object in order to make it difficult for the searcher to

find it. Clarkson et al. (2023), Clarkson and Lin (2024), and Bui et al. (2024) consider

a game-theoretic version of the special case of our problem with all travel times set to

zero, while Lidbetter (2013) and Lidbetter and Lin (2019) consider variations where

the searcher needs to find multiple hidden objects. Baston and Kikuta (2013) apply

game theory to another special case of our problem with perfect detection. McGrath

and Lin (2017) study a patrolling game that takes into account travel time between lo-

cations. Although some of the aforementioned game theoretic models take into account

geographical aspects by using a network formulation and others allow for imperfect de-

tection, to the best of our knowledge there are no previous studies that simultaneously

consider a network formulation, an infinite time horizon, and imperfect detection.

The inclusion of travel times in our problem makes it much more challenging. With-

out travel times, the additional cost (in terms of time required) of the next search has no

dependence on the location of any previous searches. When travel times are included,

however, the cost of the next search includes both the time required to travel to a new



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 32

location (if applicable) and the time to carry out the search itself. In addition, when

considering a particular location as a candidate to be searched next, the searcher also

needs to take into account not only the probability of discovering the object there, but

also its position relative to other locations that might be chosen for future searches.

The Gittins’ index policy, based on the indices defined in (3.1), is myopic in nature and

lacks the ability to plan ahead. For these reasons, our problem demands a non-myopic

approach even in the special case where all travel times are equal and non-zero (that

is, dij = d > 0 for i, j ∈ {1, . . . , n}) since the current location can always be reached

without traveling.

The principal contributions of this paper including the following:

1. We show that the Gittins’ index policy for the version of the problem with no

travel times also yields useful insight into the version with travel times, as it only

instructs the searcher to remain at her current location when it is optimal to do

so.

2. We draw upon the theory of restless bandit problems to derive an index-based

heuristic policy that explicitly takes into account the travel times between different

locations.

3. We derive the form of the optimal policy in the special case of two locations with

identical parameters and show that the index heuristic has a similar structure to

the optimal policy in this case, but with the index heuristic the searcher tends to

leave the current location prematurely.

4. We show that, in the simple two-location problem described above, the new index

heuristic only instructs the searcher to remain at her current location when it is

optimal to do so. This property also holds in more general n-location problems

with heterogeneous parameters provided that the travel times between all pairs

of locations are the same.

5. We introduce two additional heuristics in order to address the shortcomings of the

new index heuristic mentioned above, and show how the performance of a search



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 33

sequence can be further improved by performing extra steps based on insertion

heuristics and policy improvement.

6. We provide extensive numerical results to evaluate the performances of our heuris-

tics with respect to the approximate optimal values and demonstrate the benefits

of the improved methods using insightful comparisons.

The remainder of the paper is organized as follows. In Section 3.2, we formulate the

search problem as a semi-Markov decision process, explain why the problem is difficult

to solve, and use finite-stage dynamic programming to approximate optimal solutions.

In Section 3.3, we develop an index heuristic based on restless bandit theory and show

that it has a tendency to move away from the searcher’s current location prematurely.

In Section 3.4, we use these insights to develop a range of heuristic approaches that

build upon the simple index policy in order to achieve a stronger performance. In

Section 3.5, we carry out an extensive numerical study on a set of randomly-generated

problem instances with 4 locations, and also another set with 8 locations. Section 3.6

concludes the paper and suggests directions for future work.

3.2 Model Formulation and Preliminaries

This section formulates the problem of searching for an object in several dispersed

locations and develops some preliminary results. Section 3.2.1 formulates the search

problem as a semi-Markov decision process (SMDP). Section 3.2.2 discusses why the

SMDP is difficult to solve and offers some properties of an optimal policy. Section 3.2.3

explains how to approximate the optimal value via a finite-stage dynamic program.

3.2.1 Formulation as a Semi-Markov Decision Process

Consider a SMDP with the following features:

1. A stationary object is hidden in one of n distinct locations, labelled 1, . . . , n, for

some n ∈ N. For ease of notation, we write [n] = {1, . . . , n}. For each i ∈ [n], the



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 34

probability that the object is in location i is given by pi ∈ (0, 1). Together these

probabilities form a prior distribution P satisfying
∑n

i=1 pi = 1.

2. The searcher is initially at location 1. Decision epochs occur at the start of the

search procedure and after each unsuccessful search. At each decision epoch, one

action is chosen from the action space [n] where, for each i ∈ [n], action i denotes

moving to location i (if not already there) and searching location i once.

3. For each i ∈ [n], a search in location i takes ti units of time and is successful with

probability qi if the object is there. For each distinct pair i, j ∈ [n] it takes dij

units of time to travel from location i to location j. For completeness we define

dii ≡ 0 for all i ∈ [n].

4. The objective is to minimize the expected amount of time needed to discover

the object, which we refer to as the expected time to discovery and abbreviate as

ETD.

After each unsuccessful search, the probability distribution P is updated to P ′

according to the Bayes’ Theorem. Thus, the state of the SMDP can be written as

(i, (p′1, . . . , p
′
n)) ∈ [n] × (0, 1)n, where i is the searcher’s current location and, for each

j ∈ [n], p′j is the present (posterior) probability that the object is in location j. The

initial state is (1, (p1, . . . , pn)). If action j is chosen at the initial epoch and the search is

unsuccessful then the state updates to (j, (p′1, . . . , p
′
n)) where p

′
j = (1− qj)pj/(1− pjqj)

and p′i = pi/(1− pjqj) for each i ̸= j.

In the general context of SMDPs, a decision-making policy should associate a deci-

sion rule with any given state, where the decision rule is a (possibly randomized) method

of selecting an action. In our problem, the application of a policy to an initial state

generates a search sequence (i0, i1, . . .), where im ∈ [n] is the location to be searched

at decision epoch m ≥ 0 under the assumption that previous searches have been un-

successful. We assume the initial state to be known, so to carry out a search plan it

is sufficient to find an optimal search sequence rather than a full policy. Moreover,

standard theory (Puterman, 1994) implies that an optimal procedure for our problem

can be represented in such a form.



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 35

3.2.2 On the Optimal Policy

If dij = 0 for all i, j ∈ [n] then it is well established that, given state (i, (p′1, . . . , p
′
n)), it

is optimal for the next search to take place at the location j ∈ [n] that maximizes the

ratio p′jqj/tj, regardless of the current location i (Gittins, 1979). This ratio p′jqj/tj is

called the index of location j, for j ∈ [n], and indicates the relative attractiveness of

choosing location j as the location of the next search. The policy that always searches

the location with the highest index at any given moment is referred to as the Gittins’

index policy.

For a search problem with non-zero travel times, the Gittins’ index policy is not

guaranteed to be optimal. To illustrate this point, consider a symmetric two-location

search problem with parameters q1 = q2 = q, t1 = t2 = t and d12 = d21 = d. If q and

t are small and d is large then it is intuitive that an optimal policy will tend to carry

out multiple consecutive searches at the same location in order to reduce the amount

of time spent traveling. However, the Gittins’ index policy would frequently switch

between the two locations, regardless of the travel time required. In the more general

context of n-location problems, the travel time required to move to the location with

the largest index may motivate the searcher to visit a closer location first, or to carry

out additional searches at the current location. It is also intuitive that a cluster of

locations situated in proximity to each other should be more attractive to visit than an

isolated location. Thus, an optimal policy should take into account the full matrix of

travel times when making a decision.

Despite being suboptimal for our problem, the Gittins’ index policy still offers some

useful insights. Since it ignores travel times, it will naturally tend to overestimate

the attractiveness of moving to a different location. Thus, if it recommends that the

searcher should remain at the current location at a particular point in the search, then

it is intuitive that it is an optimal action. Our first result formalizes this idea.

Theorem 3.1. Consider the SMDP introduced in Section 3.2.1. Write (i, (p′1, . . . , p
′
n))

for the current state. If for each j ̸= i we have

p′iqi
ti

>
p′jqj

tj
,



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 36

then it is optimal to carry out the next search at location i.

Here we include an outline of the proof; further details are provided in Section

3.7.1. Suppose that the prerequisite conditions hold and consider an arbitrary policy.

Let π be the search sequence generated when this policy is applied to the current

state and suppose that the first location in this sequence is not i. Now let π̂ be a

modified version of this sequence that is constructed by identifying the first epoch at

which location i is searched in π and bringing this search forward in the sequence so

that it takes place immediately. We can show that π̂ is superior to π by comparing the

two sequences with respect to an equivalent criterion based on discounted rewards. The

comparison is made by making a series ofmaneuvers, starting from the original sequence

π and concluding with the modified sequence π̂. We carry out the maneuvers in such

a way that the search sequences obtained at intermediate stages are not admissible

procedures themselves, since they sometimes ignore travel times, but the starting and

ending procedures correspond to π and π̂ which are both admissible. It can be shown

that each maneuver results in a search procedure with a better performance than the

previous one, and therefore π̂ must be superior to π. Please refer to Section 3.7.1 for

full details.

According to Theorem 3.1, if the Gittins’ index of the searcher’s current location

is the largest, then it is optimal to search the current location again. If that is not the

case, however, then it is not clear what the optimal action is. In theory, it is ideal to

have a complete description of an optimal policy—mapping each state in the SMDP

to an optimal action—so that the searcher can apply an optimal policy to an initial

state to generate an optimal search sequence. In practice, however, it is sometimes

possible to obtain an optimal search sequence without a complete description of an

optimal policy, because not all states will be encountered when the searcher follows an

optimal policy. We next present an example in which an optimal search sequence can

be explicitly determined without a complete characterization of an optimal policy.

Consider a search problem with n = 2 locations with p1 = p2 = 0.5, q1 = q2 = q,

t1 = t2 = t and d12 = d21 = d > 0. We can exploit the symmetry of this problem to

determine an optimal search sequence. Given that the searcher begins in location 1



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 37

and both locations have the same parameter values, it is clear that moving to location

2 immediately is suboptimal, as it unnecessarily adds to the total travel time. The

searcher should therefore begin by searching the location 1 at least once. She must

then decide whether to search location 1 again or move to the second location.

Suppose that it is optimal to search location 1 for m times before traveling to

location 2, where m ≥ 1. If the object has not been found after these m searches,

then the posterior probability of the object being in location 2 is greater than 0.5. If

the searcher then switches to location 2 and carries out m unsuccessful searches there,

then the posterior probabilities for both locations are once again both equal to 0.5. At

this point we are in the same situation that we started in, except that the searcher has

switched from location 1 to location 2. It follows that location 2 should be searched a

further m times before the searcher moves back to location 1. Thus, an optimal search

sequence must instruct the searcher to search location 1 for m times for some m ∈ N

and then alternate between the two locations, searching 2m times on each visit.

Write T for the time needed for the searcher to find the object with the preceding

search sequence, which starts with m searches in location 1. Compute

E[T ] =
1

2

m∑
k=1

q(1− q)k−1(kt) +
1

2

m∑
k=1

q(1− q)k−1(mt+ d+ kt) + (2mt+ d+ E[T ])(1− q)m

=

(
t

q
+

3mt+ d

2

)
(1− (1− q)m)−mt+ (2mt+ d+ E[T ])(1− q)m,

because with probability (1− q)m, the searcher does not find the object in the first m

searches at location 1 or the first m searches at location 2, in which case the state of

the search becomes the same as that at the very beginning of the search. Solving for

E[T ] gives

E[T ] =
t

q
+

3mt+ d

2
+

(2mt+ d)(1− q)m −mt

1− (1− q)m
.



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 38

which implies

m∗ = argmin
m∈N

(
3mt+ d

2
+

(2mt+ d)(1− q)m −mt

1− (1− q)m

)

= argmin
m∈N

(
(mt+ d)

1 + (1− q)m

1− (1− q)m

)
= argmin

m∈N
f(m). (3.2)

It can be shown using differentiation that the function f(m) has a unique minimum in

R and so there exists an optimal search sequence of the form described earlier. This

solution will usually be unique; however, since m is restricted to the natural numbers,

there exist some cases where two consecutive values of m both correspond to optimal

policies. In these cases, we use the convention that m∗ is defined as the larger of the

two values.

3.2.3 Value Approximation via Finite-stage Dynamic Program-

ming

In this subsection, we introduce a finite-stage dynamic programming (DP) approach to

approximate the optimal ETD for a given initial state of the SMDP in Section 3.2.1.

Consider a variant of our search problem in which, for each location i ∈ [n], there is a

maximum number of searches bi that the searcher is allowed to carry out at that location.

If the searcher has not found the object after carrying out the maximum number of

searches at all n locations, then the object is revealed and the search immediately

comes to an end. By making the bi values sufficiently large, we can use the optimal

time to discovery in this problem variant as an approximation for the optimal ETD in

the original problem.

Our DP approach is based on bounding the state space by choosing suitable values

for the maxima bi. To determine these values, we first choose a small probability ε > 0

and then, for each location i ∈ [n], compute the minimum value of bi such that the

probability that the object is in location i and the searcher does not find it after bi

searches in location i is smaller than ε. Thus, we set bi = ⌈log(1−qi)
(ε/pi)⌉ for i ∈ [n].



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 39

Suppose that we want to approximate the optimal ETD for a given initial state

(1, (p1, . . . , pn)). At an arbitrary decision epoch, writeH = (i, (s1, . . . , sn)) as the search

history, where i is the searcher’s current location and sj is the number of times that lo-

cation j has been searched so far, for j ∈ [n]. Given the initial state (1, (p1, . . . , pn)) and

the search history (i, (s1, . . . , sn)), we can calculate the current state as (i, (p′1, . . . , p
′
n))

where, for each j ∈ [n],

p′j =
pj(1− qj)

sj∑n
k=1 pk(1− qk)sk

. (3.3)

If location j is searched next, then the search history is updated to

Hj = (j, (s′1, . . . , s
′
n)) (3.4)

where s′j = sj + 1 and s′i = si for i ̸= j.

Given an initial state (1, (p1, . . . , pn)) and a search history H = (i, (s1, . . . , sn)), the

value function V (H) gives the expected remaining search time if all subsequent actions

are optimal:

V (H) = min
j∈[n]

{
dij + tj + (1− p′jqj)V (Hj)

}
, (3.5)

where p′j and Hj are defined by (3.3) and (3.4) respectively.

We begin by setting V (i, (b1, . . . , bn)) = 0 for each i ∈ [n], which is the point when

the object is revealed free of charge. We then iterate backwards via repeated application

of (3.5) until we are able to derive the value of V (1, (0, . . . 0)), which corresponds to

the optimal ETD in our variant of the problem. Computationally, we carry out the

following steps:

1. Initialize M as an empty (n+1)-dimensional matrix of size n× b1 × . . .× bn. For

each i ∈ [n], set M(i, b1, . . . , bn) = 0. Also set k =
∑

i∈[n] bi.

2. (Backwards iteration) Consider all elements (i, s1, . . . , sn) of the matrix M such

that
∑

j∈[n] sj = k − 1. For each of these elements, initialize an empty vector W

of length n. Next, For each j ∈ [n], set

Wj =

dij + tj + (1− p′jqj)M(j, s
(j)
i , . . . , s

(j)
n ), sj < bj,

∞, sj = bj,

where s
(j)
k = sk + Ik=j for k ∈ [n]. Then set M(i, s1, . . . , sn) = minj Wj.



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 40

3. If k = 1, stop and output M(1, 0, 0, . . . , 0) as the optimal ETD. Otherwise, reduce

k by 1 and return to step 2.

This approach produces an approximation to the optimal value of the original search

problem. We also note that, having populated the matrix M with approximations for

all of the V (H) values, we can quickly generate an approximation for the optimal

search sequence (in a truncated form) by starting at (1, (0, 0, . . . , 0)), moving forwards

in time and identifying the minimizing action in (3.5) at each decision epoch. However,

this method still suffers from the curse of dimensionality as the number of locations

increases, so other approaches are needed for larger problems.

3.3 A Heuristic Method Based on Indices

In this section, we develop an index heuristic for the search problem formulated in

Section 3.2.1. Since the Gittins’ index policy is optimal for the version of our search

problem with no travel time, it is natural to explore an index policy when travel time

is present. The class of restless bandits problems (RBPs), first introduced by Whittle

(1988), is a generalization of the multi-armed bandit problem that allows bandits that

are not active to change state and earn rewards according to a particular set of rules. As

with most classes of multi-armed bandit problems, if the problem is of a reasonable size

then finding an optimal policy directly is computationally difficult. However, Whittle

(1988) developed an index heuristic using Lagrangian relaxation which has been shown

empirically to find near-optimal solutions in many RBPs.

3.3.1 Development of an Index Heuristic

Consider the search problem as described in Section 3.2.1. First, consider the problem

of choosing a search policy π to maximize the expected discounted reward Eπ[β
T ] where

β ∈ (0, 1) and T is the total search time. Under any deterministic, Markov search policy

π, write τπ(i, k) for the time until completion of the kth search of location i under policy



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 41

π. We can then write

Eπ[β
T ] =

n∑
i=1

∞∑
k=1

piqi(1− qi)
k−1βτπ(i,k). (3.6)

Now focus on the contribution to the objective Eπ[β
T ] accruing from visits to one

particular location. We drop the location identifier in this discussion and use location

parameters p, q and t for ease of presentation. While the searcher is away from this

location, no contribution is made to the objective function in (3.6), so we say that the

location is under the passive action, denoted b. If the location is passive and has been

searched k times to date, we say that it is in state (b, k). After a period of passivity,

when the searcher chooses to search the location, we say the location is active, denoted

a. However, before search can resume, there will be some travel time, denoted by

σ, to expend. In this account we will treat σ as a positive-valued random variable

independent of all else and for which E[βσ] < ∞. If the location is active and has been

searched k times to date, we say that it is in state (a, k). Based on this description, we

develop a semi-Markov decision process model of a single location which takes the form

of a restless bandit. We call this model the search location restless bandit (SLRB). The

key elements of the SLRB model are as follows:

1. The state space is Ω = ∪∞
k=0{(a, k), (b, k)}.

2. Actions {a, b} ≡ {active, passive} are available in each state.

3. State transitions are as follows:

(a) Under action a : (a, k) → (a, k+1) and (b, k) → (a, k+1). These transitions

take times t and t+ σ respectively. They both earn a (discounted) return of

p(1− q)kq, to be received once the transition is complete.

(b) Under action b : (a, k) → (b, k) and (b, k) → (b, k). These transitions both

take one unit of time to complete. Both transitions earn a (discounted)

return of W (referred to as a subsidy for passivity in Whittle (1988)) once

the transition is complete. Here W may be assumed to be positive. The

discount rate is β ∈ (0, 1).



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 42

4. Decision epochs occur at time zero and at the conclusions of all transitions.

5. The goal is to choose actions to maximize the expected discounted reward earned

over an infinite horizon. We use V (ω,W ) for the value (optimal expected dis-

counted reward) when in state ω ∈ Ω at time zero. Bellman’s optimality equations

are as follows for all k ∈ N:

V ((a, k),W ) = max
{
βtp(1− q)kq + βtV ((a, k + 1),W ); βW + βV ((b, k),W )

}
,

(3.7)

and

V ((b, k),W ) = max

{
βtE[βσ]p(1− q)kq + βtE[βσ]V ((a, k + 1),W );

βW

1− β

}
.

(3.8)

In the preceding equations, the active action is optimal whenever the maximum is

achieved by the first term and the passive action is optimal whenever the maximum

is achieved by the second term. The simple form of the second term in the second

equation arises from that fact that if the passive action is optimal in (b, k) then it will

continue to be so.

Whittle’s indices are only defined for bandits that meet an indexability condition.

This condition is only met if, as the level of passive subsidy increases, so does the

collection of states for which the passive action is optimal. We now write Πβ(W ) for the

set of states for which the passive action is optimal. Thus, if Πβ(W ) is non-decreasing

in W for all β then we say that the restless bandit is indexable with a Whittle Index

W (ω, β) : Ω → R given by W (ω, β) = inf {W ;ω ∈ Πβ (W )} . For this restless bandit

problem, indexability can be verified by examining the value equations. In particular,

if for some W ∗ ∈ R+, the maximum is achieved by the second term (which represents

the passive action) then for any W > W ∗ the maximum will also be achieved by the

second term. Moreover, the Whittle index is the smallest value of W for which the two

terms are equal.

Suitable development of the analysis in Glazebrook et al. (2006) yields the following

conclusion:



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 43

Proposition 3.2. The SLRB model is indexable, with Whittle indices given by

W ((a, k), β) = (1− β)
βtp(1− q)kq

(1− βt)
, k ∈ N,

and

W ((b, k), β) = (1− β)βtE[βσ]p(1− q)kqmax
r≥1

∑r−1
s=0 (1− q)s βst

1− βrtE (βσ)
, k ∈ N.

With these indices, an optimal policy for the SLRB with discount rate β is as follows:

In state ω, choose the passive action whenever W ≥ W (ω, β) and choose the active

action otherwise. This policy provides a natural calibration for the search locations,

both when being searched (and hence in some state (a, k)) and when not being searched

(and hence in some state (b, k)). However, our search model is not discounted and so

we are especially interested in the above indices in the limit β → 1, which we develop

as follows:

W (a, k) = lim
β→1

W ((a, k), β) =
p(1− q)kq

t
, k ∈ N

and

W (b, k) = lim
β→1

W ((b, k), β) = p(1− q)kqmax
r∈N

∑r−1
s=0(1− q)s

E[σ] + rt

= p(1− q)k max
r∈N

1− (1− q)r

E[σ] + rt
, k ∈ N.

To understand how the index heuristic works, consider the SMDP formulated in

Section 3.2.1. Suppose the current location is i and, for each j ∈ [n], location j has

previously been searched sj times. Our analysis suggests the index

Wii(si) =
piqi(1− qi)

si

ti
(3.9)

for the current location i and the index

Wij(sj) = pj(1− qj)
sj sup

k∈N

{
1− (1− qj)

k

dij + ktj

}
(3.10)

for location j ̸= i.

At each epoch, the corresponding index heuristic mandates that if (3.9) is greater

than or equal to (3.10) for all other locations then the searcher should carry out one



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 44

additional search at her current location. Otherwise, if (3.10) is larger (3.9) for at least

one location then the searcher should move to and search the location having the largest

index. If more than one of these locations have indices with the same largest value then

the searcher should choose one from these locations arbitrarily.

In the remainder of this paper, any mention of the index heuristic refers to the

heuristic defined by (3.9)–(3.10) and not the Gittins’ index policy discussed in Section

3.1.

3.3.2 Properties of the Index Heuristic

To gain insight into the index heuristic proposed in Section 3.3.1, we now compare it

with the optimal search policy in two special cases.

First, consider the special case in which all travel times are zero. In this case,

the indices (3.9)–(3.10) reduce to the Gittins’ indices in (3.1), which are known to be

optimal in this special case.

Second, consider the special case discussed in Section 3.2.2, in which the search

problem consists of n = 2 locations having identical parameters, namely, p1 = p2 = 0.5,

q1 = q2 = q, t1 = t2 = t and d12 = d21 = d > 0. Direct inspection of (3.9) and (3.10)

makes it clear that the index of the searcher’s current location is initially larger, so the

index heuristic mandates that the search should start there. However, the form of (3.9)

is such that this index decreases after each unsuccessful search, while the index of the

other location remains unchanged. Therefore, there exists a minimum value m̂ ∈ N

such that the index of the initial location falls below that of the other location after m̂

unsuccessful searches have taken place. Inspection of (3.9) and (3.10) yields that

m̂ = min

{
m ≥ 1 :

q(1− q)m

t
< max

k∈N

[
1− (1− q)k

d+ kt

]}
.

Following m̂ unsuccessful searches at the first location, the index heuristic mandates

m̂ searches at the new location. If these searches are also unsuccessful, then the indices

of the two locations are in the same ratio that they were at time zero, but with the

roles of the locations reversed. It then follows that a further m̂ searches are planned

for the new location (making 2m̂ in total since the first switch) before a second switch



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 45

takes place and the searcher returns to the starting location. We conclude that the

index heuristic has a similar structure to the optimal policy, but with the parameter m

set to m̂ rather than the optimal value m∗ defined in (3.2).

We next compare m̂ with m∗. The index heuristic explicitly takes into account the

travel time to the other location, but does not account for the time spent traveling

back to the current location in the future. It is intuitive that the index heuristic tends

to underestimate the long-term cost of switching to the other location, which suggests

that the index heuristic may advise the searcher to leave the current location before it

is optimal to do so. Our next result confirms this intuition by showing that m̂ ≤ m∗.

Proposition 3.3. In the two-location symmetric problem, m̂ ≤ m∗.

Proof. Set t = 1 without loss of generality. From (3.9) and (3.10) it follows that m̂

is the smallest m ∈ N such that

q(1− q)m < max
k∈N

1− (1− q)k

d+ k
.

It is sufficient to show that this inequality holds when m = k = m∗, or equivalently

that

d+m∗ ≤ 1− (1− q)m
∗

q(1− q)m∗ . (3.11)

From the definition of m∗ in (3.2) it follows that, for all k ∈ N, we have

(d+m∗)
1 + (1− q)m

∗

1− (1− q)m∗ ≤ (d+ k)
1 + (1− q)k

1− (1− q)k
.

In particular, this inequality holds when k = m∗ + 1. With this choice of k we obtain

d+m∗ ≤ 1− (1− q)m
∗
(q + (1− q)m

∗+1)

2q(1− q)m∗ . (3.12)

Combining (3.11) and (3.12) implies that it is sufficient to show

1− (1− q)m
∗
(q + (1− q)m

∗+1)

2q(1− q)m∗ ≤ 1− (1− q)m
∗

q(1− q)m∗ .

Rearranging this inequality yields:

(2− q)(1− q)m
∗ − (1− q)2m

∗+1 ≤ 1.



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 46

This inequality holds for m∗ = 1 and, since the left-hand side is decreasing with m∗,

we conclude that it holds for all m∗.

It follows from Proposition 3.3 that, in the two-location symmetric problem, the only

suboptimal actions given by the index heuristic are those that instruct the searcher to

move away from her current location. It is natural to ask whether a similar principle

holds in more general cases. Consider a problem with n locations in which all travel

times are identical; that is, dij = d > 0 for all i, j ∈ [n] with i ̸= j. We refer to this

as the symmetric travel case. We can show that in this case, it is always optimal to

conduct an additional search of the current location if the index heuristic recommends

this option. This result is a natural extension of Theorem 3.1, which established the

same property for the Gittins’ indices, albeit without assuming symmetric travel times.

Theorem 3.4. Consider the symmetric travel case, where any two locations can be

moved between in d > 0 units of time. Suppose that the searcher is at location i and,

for each j ∈ [n], location j has been searched sj times. If for each j ̸= i we have

Wii(si) =
piqi(1− qi)

si

ti
> Wij(sj) = pj(1− qj)

sj sup
k

{
1− (1− qj)

k

d+ ktj

}
then it is optimal to search location i next.

The proof follows similar arguments to that of Theorem 3.1 and involves showing

that, given any search sequence that begins by moving to a location j ̸= i, we can

perform a series of maneuvers in order to obtain a modified sequence that searches i

immediately and yields a smaller value for the ETD. Please refer to Section 3.7.2 for

full details.

3.4 Search Sequence Generation and Improvement

As discussed in Section 3.3, search sequences generated by the index heuristic defined

in (3.9) and (3.10) need not be optimal. A plausible explanation is that these indices

do not take into account the distances of candidate locations to other locations and the

future travel times. This section offers a few methods to address the shortcomings of

the index heuristic.



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 47

To evaluate the performance of a heuristic, apply it to an initial state to obtain a

search sequence and let T denote the random amount of time needed to find the object

with the search sequence. Compute the ETD by

E[T ] =
∫ ∞

0

P(T > t)dt =
∞∑
k=0

(τk+1 − τk)P(T > τk), (3.13)

where τk denotes the total time elapsed following completion of the kth unsuccessful

search, with τ0 ≡ 0. If the search sequence generated by the heuristic is truncated after

l searches, then a lower bound for the ETD is given by

ELB[T ] =
l∑

i=0

(τi+1 − τi)P(T > τi).

This lower bound can be made arbitrarily tight by extending the point of truncation.

Ideally, we would also like to have a tight upper bound for the ETD, but this is more

difficult to obtain.

We next present a method to approximate the ETD for a given search sequence.

Choose some small value ε > 0 and truncate the search sequence if si searches have

been carried out at location i, i ∈ [n], such that∑
i∈[n]

pi(1− qi)
si < ε. (3.14)

In other words, the probability of not finding the object after exhausting the searches

in the truncated search sequence is no more than ε. After truncating a search sequence,

append the truncated search sequence with a Hamiltonian cycle and repeat the same

Hamiltonian cycle indefinitely. The performance of this new sequence with repeated

Hamiltonian cycles can be computed exactly because the tail sum in (3.13) conforms

to a geometric pattern. For convenience, we simply use the ordered list of locations 1

to n as the Hamiltonian cycle. For example, if the last search before truncation was at

location n and si is the number of searches at location i ∈ [n] prior to truncation, then

this method produces an approximation of the ETD as

EPES[T ] = ELB[T ] +
∞∑
r=0

n∑
i=1

(di−1,i + ti)

(
i−1∑
a=1

pa(1− qa)
sa+r+1 +

n∑
a=i

pa(1− qa)
sa+r

)

= ELB[T ] +
n∑

i=1

(di−1,i + ti)

(
i−1∑
a=1

pa(1− qa)
sa+1

qa
+

n∑
a=i

pa(1− qa)
sa

qa

)
, (3.15)



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 48

where d01 := dn1. The preceding approximation obtained with this method is somewhat

pessimistic because a Hamiltonian cycle does not take into account any information that

can be used to shorten the ETD.

Section 3.4.1 introduces two new heuristics that instruct the searcher to conduct

one additional search at her current location if Wii(si) > Wij(sj) for all j ̸= i according

to (3.9) and (3.10), and otherwise use alternative approaches to determine where to

search next. Section 3.4.2 describes two methods to improve a given search sequence.

3.4.1 Other Index-based Search Heuristics

We now introduce two alternative approaches for constructing search sequences that

use the indices given by (3.9) and (3.10). Both heuristics make use of the observation

in Section 3.3.2 that when following the index heuristic the searcher tends to move

away from her location too soon and so these new heuristics only deviate from the

index heuristic when it instructs the searcher to move. The first heuristic creates a

planned sequence using the index heuristic and uses it to construct a more detailed

index corresponding to the option of moving away that explicitly takes into account all

planned searches and travel times before the searcher returns to her current location.

The second heuristic instead creates a mini-problem only using the current location and

the m other locations with the highest indices and then uses a dynamic programming

approach to approximate an optimal solution to that problem.

Round-Trip Index Heuristic

This heuristic is based on the idea that the index heuristic is too short-sighted in its

approach for deciding whether or not the searcher should move away from her current

location. In particular, the index heuristic fails to take into account the search times

and travel times that would be involved in visiting a sequence of other locations before

eventually returning to the current location. Therefore, we introduce a round-trip

heuristic in which the indices for moving between locations are informed by longer-

term considerations. This round-trip index heuristic forms a natural analogue of the

restless bandit index in (3.10) when the nature of the absence from location i is the



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 49

round trip mandated by the index heuristic rather than just the searches at one other

location.

Firstly, we create a planned sequence using the index heuristic, by iterating over

decision epochs and choosing the location of each new search according to the indices

(3.9)–(3.10). The planned sequence is truncated at the point where the criterion (3.14)

is satisfied and each location has been searched at least once thereafter.

A new, improved sequence is then created by carrying out the following steps:

1. Let the new sequence initially be empty. Begin at decision epoch m = 0.

2. Check the location to be searched at epoch m under the planned sequence. If

this location matches the searcher’s current location, then append this search

to the new sequence and increase m by 1. Otherwise (if the next location in

the planned sequence is different from the current location), let the index of the

current location be defined by (3.9) and let W (i → i) denote a new index that

indicates the value of moving to a new location and following the route proposed

by the planned sequence until a return to i is mandated. The index W (i → i) is

calculated by

W (i → i) =

∑K
j=1 pαj

(1− qαj
)sαj

{∑ναj

r=1 qαj
(1− qαj

)r−1
}

d(i → i) +
∑K

j=1 ναj
tαj

, (3.16)

where α1, . . . , αK is an ordered list of the locations to be visited between successive

visits to i (noting that some locations may be visited more than once over this

period), ναj
is the total number of searches to be conducted in location αj and

d(i → i) is the total amount of time spent traveling between all locations visited

(including the return trip back to i). If W (i → i) is larger than Wii(si) then

append the next search in the planned sequence to the new sequence and increase

m by 1. Otherwise, append an additional search in the current location to the

new sequence. Note that an extra search in the current location implies that the

index Wii(si) will change, but the index W (i → i) will not change.

3. If the stopping criterion (3.14) is satisfied for the new sequence, then stop. Oth-

erwise, return to step 2.



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 50

The new sequence given by this procedure may be seen as an adjusted version

of the index heuristic sequence in which each block of searches (i.e., each string of

consecutive searches carried out at a single location) can be extended in length, but is

never shortened.

Hybrid Heuristic

One shortcoming of the index heuristic is that it tends to instruct the searcher to leave

her current location prematurely, as discussed in Section 3.3.2. This subsection presents

a method to reevaluate the situation when Wii(si) in (3.9) is smaller than Wij(sj) in

(3.10) for some j ̸= i in order to decide whether or not the searcher should carry out

an additional search at location i.

Our new hybrid heuristic works by instructing the searcher to search the current

location one more time whenever the index heuristic would choose to do so, but using

a different procedure to make decisions when the index heuristic instructs the searcher

to move to a different location. Specifically, when the index heuristic asks the searcher

to leave her current location, we identify the current location and m other locations

having the highest indices (as defined by (3.10)) as candidate locations, where m is

a predetermined integer between 2 and n − 1. We then construct a new (m + 1)-

location sub-problem with the detection probabilities, search times, and travel times

for these m+1 candidate locations. Prior probabilities for the locations are obtained by

scaling the latest posterior probabilities so that they sum to one. The sub-problem is

then solved using the finite-stage dynamic programming algorithm described in Section

3.2.3.

Suppose the optimal policy given by the DP algorithm states that the current loca-

tion should be searched k times before moving to a different location (allowing for the

possibility that k = 0). Then, under the hybrid heuristic policy, we search the current

location k times and then move to whichever other location appears after the first move

in the DP search sequence. We also carry out a single search at the new location. This

process is then repeated, carrying out additional searches of the new location until the

index policy suggests moving to a different location, at which point a new sub-problem



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 51

is generated. The hybrid heuristic may visit the locations in a different order from that

of the index policy, as it explicitly considers more than one possible alternative location

as well as the current location when formulating the sub-problem.

Running the DP algorithm even once for a problem with m + 1 locations becomes

computationally intractable as m increases. We are therefore limited to using small

values of m. If m is fixed, then the heuristic scales well with the number of locations n

in terms of computational burden. However, as n increases, the sub-problem becomes

a less useful approximation of the actual problem, and the performance of the heuristic

deteriorates as a result.

3.4.2 Methods for Improving a Search Sequence

This subsection presents two methods for improving a given search sequence. The first

method is based upon the well-established technique of policy improvement in stochastic

dynamic programming. The second method takes an arbitrary base sequence and tests

the effects of making incremental, insertion-based changes to the sequence.

Policy Improvement

Policy improvement (PI) is a technique in stochastic dynamic programming that in-

volves repeated application of Bellman’s optimality principle in order to generate a

sequence of policies, with each policy improving upon its predecessor. First, a conve-

nient base policy is used to approximate the optimal value function for each state. In

each iteration, an improved policy is obtained by choosing the best action in each state

with respect to the approximated value function, which also yields a better approxi-

mation for the optimal value function. Under certain conditions, PI converges to an

optimal policy after finitely many iterations (Puterman, 1994). Unfortunately, carry-

ing out PI to optimality can be computationally intensive. In many cases, the biggest

improvement is usually made in the first step of the process (Tijms, 2003).

Recall from Section 3.2.3 that for a given initial state (1, (p1, . . . , pn)) and a search

history H = (i, (s1, . . . , sn))—the searcher is currently at location i, and location j has

been searched for sj times, for j ∈ [n]—we write V (H) for the expected additional



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 52

search time needed to find the object. The heuristic proposed here applies a single

step of PI to a suitably-chosen base policy. Let VBASE denote an approximation for

the value function calculated by applying the chosen base policy to a given state. An

approximation for the optimal value function V can then be derived as

V (i, (si, . . . , sn)) = min
j∈N

{
dij + tj +

(
1− pjqj(1− qj)

sj∑
k∈N pk(1− qk)sk

)
VBASE(j, (s

(j)
i , . . . , s(j)n ))

}
(3.17)

where VBASE(j, (s
(j)
i , . . . , s

(j)
n )) is an approximation for the expected remaining time to

discovery starting from (j, (s
(j)
i , . . . , s

(j)
n )) if the base policy is followed for the remainder

of the search.

Approximating the value of each possible state is not necessary, and would in fact

be more computationally expensive than finding an exact DP solution. Instead, at each

decision epoch, the searcher approximates the value of each state that could be reached

following an additional unsuccessful search at one of the n locations. Since the base

policy must be derived n times at each epoch it is necessary for the base policy to be

very fast to compute.

Greedy Insertion

The ETD under a particular search sequence can be computed quickly, which makes it

possible to look for improvement opportunities by evaluating small incremental changes.

Suppose we are given a truncated search sequence for an initial state, such as a search

sequence generated according to the index heuristic of section 3.3 or the hybrid heuris-

tic of 3.4.1. This search sequence, referred to as the base sequence, is then partitioned

into b blocks, where each block consists of a number of consecutive searches at the same

location and adjacent blocks correspond to different locations. Next, generate a popula-

tion of b distinct candidate search sequences, where the kth candidate sequence extends

the length of the kth block by one search, for k = 1, 2, . . . , b. Use (3.13) to calculate

a lower bound for the ETD for each of these candidate search sequences. If none of

these lower bounds are lower than that of the base sequence then we conclude that no

further improvements can be made with this method. If one or more of the candidate

search sequences produces a lower bound smaller than that of the base sequence then



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 53

we update the base sequence to be the candidate search sequence that produces the

lowest such lower bound. The process is then repeated until no further improvements

can be found.

3.5 Numerical Study

In this section we evaluate the performances of the heuristics presented in Sections 3.3

and 3.4 by testing them over a range of randomly-generated problem instances.

We designate three different policies as base heuristics. The first of these is the index

policy obtained from the restless bandit analysis given in Section 3.3. The second is

the round-trip index heuristic introduced in Section 3.4.1, and the third is the hybrid

heuristic described in Section 3.4.1.For the hybrid heuristic, we setm = 2 as the number

of alternative locations; that is, it considers three candidate locations (including the

current location) every time the DP procedure is called upon.

We evaluate these base heuristics both without any modifications and also after

applying the methods for further improvement described in Section 3.4.2. For all three

base heuristics, we test the effect of applying the greedy insertion method in Section

3.4.2. Also, for the index and round-trip heuristics we test the effect of applying the

policy improvement (PI) method in Section 3.4.2, followed by greedy insertion as a

final step. PI is applied first because it can change the order of location visited and

its runtime is very dependent on the base policy. We do not apply PI to the hybrid

heuristic as this proves to be too computationally expensive due to the hybrid’s use of

DP.

Given that we have proposed several different base heuristics, it is also insightful

to test the performance of PI with more than one base heuristic. This method is rec-

ommended by Bertsekas (2013) as a way to enhance the performance of PI in general.

Essentially the method works as follows: at each decision epoch we consider each of

the base heuristics separately and, for each of these heuristics, carry out the procedure

described in Section 3.4.2, with the function VBASE corresponding to the base heuris-

tic under consideration. In this way we obtain several different approximations for



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 54

V (i(si, . . . , sn)), defined in Section 3.4.2 as an approximation for the optimal expected

remaining time to discovery. We choose the action that yields the smallest approxima-

tion for V (i(si, . . . , sn)). In our experiments we carry out this method with only two

base heuristics (index and round-trip), as it becomes too slow computationally when

the hybrid heuristic is included.

3.5.1 Scenario Generation

In order to test the relative performances of our heuristics, we generated 400 scenarios

with 4 locations (n = 4) and 400 scenarios with 8 locations (n = 8). In the 4-location

scenarios, it is computationally feasible to approximate the optimal ETD using DP,

as described in Section 3.2.3. Thus, we can assess how close our heuristics are to

optimality. In the 8-location scenarios, however, DP becomes too computationally

cumbersome and we can only judge the performances of the heuristics by comparing

them with each other.

To generate the scenarios for n = 4 in our study, we began by randomly sampling

100 sets of parameter values as follows:

• Each prior probability pi was sampled independently from a U(0,1) distribution.

These probabilities were then re-scaled to satisfy
∑

i∈[n] pi = 1.

• Each detection probability qi was sampled independently from a U(0.2,0.9) dis-

tribution.

• Each search time ti was sampled independently from a U(0.1,1) distribution.

• To represent the geography of the problem, the travel times were calculated by

first randomly assigning each location a point in the unit square. That is, each

location was given a pair of coordinates (x, y) with x and y sampled independently

from a U(0, 1) distribution. The travel times dij for i, j ∈ [n] were then set in

proportion to the corresponding Euclidean distances, so that

dij = α
√

(xi − xj)2 + (yi − yj)2, i, j ∈ [n],



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 55

where α > 0 is the constant of proportionality. The travel time between any two

locations generated in this way is bounded between 0 and α
√
2. We refer to α

as a dispersion parameter, as it has the effect of scaling the distances between

locations.

Each of these 100 scenarios was then tested under four different cases for the value of

α, giving 400 distinct scenarios in total. It is clear that as α → 0, travel times become

negligible and thus the index heuristic of Section 3.3 tends to the Gittins’ index policy,

which is optimal in the limit. Thus, when α is close to zero, we can expect all of our

heuristics to achieve near-optimal performances. We therefore limited our numerical

study to values of α that are sufficiently large to present a challenge to the performance

of the heuristics. Specifically, we considered the cases α = 1, α = 2, α = 5 and α = 10.

As α increases, the incentive for the searcher to change location becomes smaller, so

that optimal search sequences are more likely to consist of longer blocks of consecutive

searches in the same location.

To generate the scenarios for n = 8, we used exactly the same method as for n = 4

and obtained another set of 100 scenarios which were then replicated across the same

four values of α.

3.5.2 Results for 4 Locations

First we assess the effectiveness of our heuristics in problems with n = 4. As discussed

earlier, the optimal ETDs and the ETDs given by the heuristics in our experiments

can only be approximated, although the approximation errors can be made arbitrarily

small. To approximate the optimal ETD in a particular scenario we use finite-stage

dynamic programming as described in Section 3.2.3, with the value ε = 10−7 used to

determine the values bi for i ∈ [4]. For each of the heuristics that we consider, we obtain

a pessimistic estimate of the ETD of the corresponding search sequence by using (3.15).

We again use ε = 10−7 to determine the point of truncation when calculating ELB[T ].

We then estimate the suboptimalities of our heuristics by calculating their percentage

deviations from the approximate optimal value. Given the pessimistic nature of the



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 56

estimate in (3.15), these suboptimality percentages can also be seen as pessimistic,

which implies that the performances of our heuristics are at least as good as indicated

by the reported results.

The results from the 400 scenarios with n = 4 are reported in Table 3.1. For each

value of α we have reported the average (approximate) percentage suboptimalities of the

various heuristics, as well as the 75th, 95th and 99th percentiles of these suboptimalities

and the average runtime (in seconds) over all scenarios. The three columns under

“Base” show the results of testing the three base heuristics without the use of either

greedy insertion or PI. The three columns under “Insertion” show the results of applying

greedy insertion to each of the base policies. The first two columns under “PI and

Insertion” show the results of applying PI (first) and greedy insertion (second) to the

index and round-trip heuristics, while the final column (entitled “Both”) shows the

results obtained by using both the index and the round-trip as base heuristics within

PI as described at the start of Section 3.5, with greedy insertion also used as a final

step.

As shown in Table 3.1, prior to the application of any further improvement method

(insertion or PI), the percentage suboptimalities of the round-trip and hybrid heuristics

are significantly lower than that of the index heuristic across all values of the dispersion

parameter α. The hybrid heuristic is the best-performing of the three base heuristics

at all but the highest percentile level (99%), but it also has a significantly higher mean

running time. The performances of the heuristics are fairly consistent across all values

of α, but the runtime of the hybrid heuristic notably decreases as α increases. This

reduction in runtime is probably due to the generated sequences changing location less

frequently as travel times increase, implying that fewer DP sub-problems need to be

constructed.

We can see that, across all base heuristics, greedy insertion provides major im-

provement at a relatively small extra computational cost. The index heuristic benefits

from the largest reduction in percentage suboptimality after applying greedy insertion,

since its major weakness is a tendency to leave the current location too soon. For the

base heuristics we can see that the mean running time is lower for the index heuristic



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 57

Base Insertion PI and Insertion

Scenario/Metric Index R-Trip Hybr Index R-Trip Hybr Index R-Trip Both

α = 1

Mean 6.109 2.371 2.009 2.781 2.201 1.767 0.584 0.357 0.322

75th Percentile 8.069 3.34 1.492 3.827 2.818 1.196 0.759 0.301 0.301

95th Percentile 13.551 7.672 6.674 9.826 7.672 6.674 2.385 1.824 1.789

Runtime (s) 0.032 0.044 30.308 1.12 0.165 30.37 12.053 14.257 24.556

α = 2

Mean 6.459 1.865 1.555 2.124 1.715 1.258 0.626 0.314 0.329

75th Percentile 8.686 2.37 1.635 2.847 2.148 1.119 0.799 0.337 0.372

95th Percentile 11.936 5.409 7.419 6.724 5.323 5.109 2.348 1.473 1.57

Runtime (s) 0.033 0.086 24.474 0.811 0.187 24.527 12.037 14.904 24.697

α = 5

Mean 7.131 2.502 2.148 3.016 2.42 1.861 0.693 0.34 0.34

75th Percentile 9.211 3.079 2.352 3.946 3.075 1.35 0.621 0.256 0.256

95th Percentile 15.577 12.365 11.185 12.475 12.12 11.158 4.005 1.867 1.867

Runtime (s) 0.033 0.046 20.097 0.54 0.103 20.138 12.411 15.623 24.806

α = 10

Mean 6.74 2.625 2.184 3.046 2.594 1.844 0.549 0.372 0.372

75th Percentile 9.225 2.903 1.56 4.412 2.902 0.856 0.406 0.293 0.293

95th Percentile 16.339 13.065 11.031 13.625 13.034 10.581 2.679 1.953 1.953

Runtime (s) 0.033 0.048 16.715 0.41 0.075 16.759 12.569 16.02 26.456

Table 3.1: Comparisons between heuristics with respect to percentage suboptimalities

and runtimes with n = 4.



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 58

than for the round-trip heuristic. This observation makes sense, since the first step

of the round-trip heuristic is to generate a search sequence using the index heuristic.

However, after insertion, the mean running time is higher for the index heuristic than

for the round-trip heuristic. This change is due to the number of insertion steps that

are needed. The base round-trip heuristic is much closer to optimal and so requires

significantly fewer additional searches to be added to the sequence before reaching the

point where no further improvements can be found.

Further significant improvements can be seen when PI is included. When comparing

the two versions of PI with a single base heuristic it appears that the round-trip heuristic

is a more effective base heuristic than the index heuristic across all metrics. As noted

in Section 3.4.2, the use of PI enables the round-trip heuristic to visit the locations in

a different order from that of the (base) index heuristic, and it seems to become much

stronger as a result. However, we should also note that PI in general is computationally

expensive, as indicated by the runtimes in the table.

When both the index and round-trip heuristics are used as base heuristics within

PI, we obtain further marginal improvements in the α = 1 case, although the results

for other α values are inconclusive. However, the runtime increases significantly in this

situation. It is similar to the total time required to run both single-policy versions

sequentially, which makes sense as PI largely consists of repeated application of the

chosen base heuristic.

3.5.3 Results for 8 Locations

Next, we evaluate the heuristics in larger problem instances with n = 8. For problems

of this size, approximating the optimal value of the ETD using finite-stage DP becomes

computationally intractable. Instead, in each scenario we use the performance of the

best-performing heuristic as a benchmark and calculate the percentage deviations of

the other heuristics from this benchmark. We refer to these differences as percentage

deficits. Within each scenario, the ETDs for the various heuristics are approximated in

exactly the same way as in the n = 4 case.

Results for the 400 experiments with n = 8 are presented in Table 3.2. The results



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 59

are labeled in the same way as those in Table 3.1, except that percentage deficits (with

respect to the best-performing heuristic) are shown rather than percentage suboptimal-

ities.

Base Insertion PI and Insertion

Scenario/Metric Index R-Trip Hybr Index R-Trip Hybr Index R-Trip Both

α = 1

Mean 8.203 4.25 2.736 4.057 4.087 2.282 0.905 0.201 0.2

75th Percentile 10.078 5.068 4.185 4.813 4.851 3.674 1.584 0.118 0.086

95th Percentile 13.424 7.67 6.892 7.645 7.556 6.292 3.185 1.166 1.166

Runtime (s) 0.159 0.225 97.01 17.115 2.04 98.772 240.881 284.697 459.857

α = 2

Mean 10.108 4.562 3.653 4.58 4.347 2.798 0.911 0.368 0.368

75th Percentile 12.903 6.044 5.219 6.641 5.621 4.128 1.367 0.208 0.208

95th Percentile 15.486 9.059 8.122 10.223 8.9 7.41 3.607 1.796 1.796

Runtime (s) 0.158 0.222 71.729 14.972 1.789 73.636 240.682 290.814 459.48

α = 5

Mean 11.723 5.143 4.305 5.469 5.052 3.362 0.949 0.369 0.369

75th Percentile 15.615 6.907 6.151 8.153 6.907 4.912 1.145 0.227 0.227

95th Percentile 18.544 12.062 10.215 12.518 12.062 9.001 4.406 1.85 1.85

Runtime (s) 0.161 0.463 55.683 8.747 1.148 57.219 240.696 306.997 467.694

α = 10

Mean 12.019 5.539 4.979 5.998 5.511 3.835 0.99 0.671 0.671

75th Percentile 15.881 8.75 8.383 8.84 8.75 6.746 0.999 0.215 0.215

95th Percentile 20.949 13.543 12.239 14.161 13.543 11.11 6.037 5.111 5.111

Runtime (s) 0.164 0.235 48.78 9.84 0.622 50.257 243.637 309.013 481.897

Table 3.2: Comparisons between heuristics with respect to percentage deficits and

runtimes with n = 8

As in the 4-location problems, we find that when the base heuristics are used with-

out any further subsequent improvements, the hybrid heuristic achieves the best per-

formance, followed by the round-trip heuristic. Notably, the mean percentage deficits

for all three base heuristics are significantly higher than the mean percentage subop-

timalities found in the 4-location problems. This observation indicates that for larger

problems, the gap between the base heuristics and the optimal solution is larger, and

our subsequent improvement methods can improve the base heuristics more. As one

would expect, the mean running times for all three heuristics are higher than in the



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 60

4-location case. For the index and round-trip heuristics the runtime is approximately

five times longer, whereas for the hybrid heuristic it is about three times longer.

The greedy insertion method improves the performances of all three base heuristics.

For the index heuristic, the application of insertion roughly halves the average percent-

age deficit at the cost of a significant increase in runtime. As in the 4-location case,

the round-trip heuristic with insertion is faster than the other post-insertion heuristics,

but it does not perform as well as hybrid with insertion.

The combined use of PI and insertion reduces the percentage deficit further under

both base heuristics (index and round-trip). As in the 4-location case, we find that

PI is particularly effective when applied to the round-trip heuristic, as it enables the

order of visiting locations to be changed from the default order given by the base index

heuristic. When both base policies are combined within PI we do not observe signifi-

cant improvements compared to the case where the round-trip heuristic is used as the

only base heuristic. We also note that the runtimes with PI are generally about 20

times longer than that in the 4-location case, indicating that PI does not scale to larger

problem sizes as easily as the base heuristics themselves.

3.6 Conclusions

In this paper we have considered a search problem with similar assumptions to those

studied in the literature and extended it in order to include travel times between lo-

cations. When the number of locations is small, a close approximation to an optimal

policy can be found using finite-stage dynamic programming. For larger problems, we

must consider heuristic approaches.

We have developed an index heuristic based on restless bandit theory. While the

index heuristic possesses a few desired properties, its major weakness is that it tends to

instruct the searcher to leave her current location too soon. To remedy this weakness

we have developed a few methods to improve the index heuristic, and use numerical

experiments to demonstrate their effectiveness.



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 61

There are several possible directions for further research. The assumption that the

object must be in one of the n locations (
∑

i pi = 1) could be relaxed, and alternative

objectives could also be considered, such as maximizing the probability of finding the

object by a certain deadline. A game theoretical dimension could also be incorporated

by allowing an intelligent hider to choose a location for the object in order to make the

searcher’s task as difficult as possible.

3.7 Appendix

3.7.1 Proof of Theorem 3.1

Suppose the search state is (i, p′1, . . . , p
′
n). We need to show that if

p′iqi
ti

>
p′jqj

tj
∀ j ∈ [n] \ {i}

then it is optimal to search location i.

Suppose the prerequisite conditions hold and consider an arbitrary search policy.

Let π be the search sequence obtained by applying that policy to the current state

and suppose that it starts by searching a location other than i. Let m denote the

position of the first appearance of i in π. To show that π is not optimal we consider a

modified search sequence π̂ in which the first search of i is moved to the beginning of

the sequence. To ease the comparison we assume that, when following π̂, the searcher

visits location i after carrying out the first m searches even if no searches take place at

i on that particular visit. This assumption ensures that both sequences are identical

after the first m searches, since both truncated search sequences visit each location the

same number of times, have the same duration and end at location i. It is therefore

sufficient to consider only the first m searches of both sequences.

To demonstrate that π̂ is superior to π we consider the expected discounted rewards

of both truncated sequences. Write E1(a
T ) and E2(a

T ) to denote the contribution of

the first m searches to the expected discounted reward for π and π̂ respectively. (Recall

that the expected discounted reward is defined in (3.6).) We will show that there exists



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 62

an a∗ > 0 for which

1 > a > a∗ =⇒ E1(a
T ) < E2(a

T ) =⇒ 1− E1(a
T )

1− a
>

1− E2(a
T )

1− a

and hence, taking the limit a → 1, we obtain E1(T ) ≥ E2(T ). To show that E1(a
T ) <

E2(a
T ) for all a ∈ (a∗, 1) with a suitably chosen a∗, we make a series of changes to the

expression for E1(a
T ) and show that each change results in an increased value for the

expected discounted reward. The intermediate expressions that we obtain by making

these changes do not necessarily correspond to the expected discounted rewards of

admissible search sequences, but the final expression is equal to E2(a
T ), ensuring that

the proof is valid.

Let τπ(k) denote the time at which the kth search is completed when following π. In

the argument that follows, the first change we make is to allow the first search of location

i to begin immediately after the completion of the previous search. At each subsequent

step, we bring the search of location i forwards so that it starts immediately after the

search that took place two searches earlier. Additionally, the search that would have

taken place immediately before the search of i is delayed by ti time units as a result.

More formally, the contribution of the first search of i to E1(a
T ) is p′iqia

τπ(m). Let

the position of this search be moved so that it starts immediately after the completion

of the previous search. Then its contribution becomes p′iqia
τπ(m−1)+ti . Since all other

terms are unchanged and τπ(m) > τπ(m−1)+ti it is clear that the expected discounted

reward increases as a result. Next, let j denote the location immediately preceding the

first search of i and write gj for the number of times that location j is searched before

this point. The contribution of this search to E1(a
T ) is p′jqj(1− qj)

gjaτπ(m−1). We now

make adjustments to these two searches. Let the search of location i conclude at time

τπ(m − 2) + ti and let the search of location j conclude at time τπ(m − 1) + ti. The

contributions of these two searches are now p′iqia
τπ(m−2)+ti and p′jqj(1− qj)

gjaτπ(m−1)+ti

respectively. The contributions of all other searches remain unchanged. The increase

in the contribution of the search at i is p′iqia
ti(aτπ(m−1) − aτπ(m−2)). The decrease in the

contribution of the search at j is

p′jqj(1− qj)
gjaτπ(m−1)(ati − 1) ≤ p′jqj(1− qj)

giatj(aτπ(m−2)+ti − aτπ(m−2)).



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 63

However by hypothesis we have

p′iqi
ti

>
p′jqj

tj

and hence
p′iqi
ti

>
p′jqj

tj
(1− qj)

gj

for any gj ≥ 0. From this we conclude that there exists an a1 < 1 for which 1 > a > a1

implies that
p′iqia

ti

aτπ(m−2)+ti − aτπ(m−2)
≥

p′jqj(1− qj)
gjatj

aτπ(m−1) − aτπ(m−2)

and hence that

p′iqia
ti(aτπ(m−1) − aτπ(m−2)) ≥ p′jqj(1− qj)

gjatj(aτπ(m−2)+ti − aτπ(m−2)).

This confirms that the manoeuvre proposed yields an increase in the expected dis-

counted reward for the range a ∈ (a1, 1).

The next maneuver similarly yields an increase for some range a ∈ (a2, 1), say. All

desired manoeuvres (of which there are a finite number) therefore yield an increase for

some range a ∈ (a∗, 1), from which we can conclude that

1 > a > a∗ =⇒ E1(a
T ) < E2(a

T ) =⇒ 1− E1(a
T )

1− a
>

1− E2(a
T )

1− a
,

as required.

3.7.2 Proof of Theorem 3.4

Consider the symmetric travel case, where any two locations can be moved between in

d units of time. Suppose the searcher is at location i and, for each k ∈ [n], location k

has been searched sk times. We need to show that if

Wii(si) =
piqi(1− qi)

si

ti
> Wij(sj) = pj(1− qj)

sj sup
k

{
1− (1− qj)

k

d+ ktj

}
∀ j ∈ [n] \ {i}

then it is optimal to search location i next.

Suppose the prerequisite conditions hold and consider an arbitrary policy. Let π be

the search sequence corresponding to that policy and suppose it starts by searching a



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 64

location other than i. This search sequence can be uniquely partitioned into blocks,

where each block consists of consecutive searches at the same location and adjacent

blocks correspond to different locations. Let the blocks be numbered according to the

order that they appear in the sequence π. For each block k ∈ N, let bk and ck denote

the location being searched and number of searches in the block respectively.

Suppose that the first block of searches at location i is block m ≥ 2. To show that π

is not optimal we define a modified sequence π̂ that follows π but with the first search

of i moved to the front. If cm = 1 then, under the new sequence π̂, we assume that the

searcher travels to location i after the first (m − 1) blocks but does not search there.

This assumption ensures that all subsequent searches happen at exactly the same time

under both policies. Consequently, it is sufficient to focus entirely on the truncated

search sequences involving only the first m blocks.

To demonstrate that π̂ is superior to π we consider the expected discounted rewards

for both truncated sequences. Write E1(a
T ) and E2(a

T ) to denote the contributions

of the searches in the truncated sequences for π and π̂ respectively to their expected

discounted rewards. We show that there exists an a∗ for which

1 > a > a∗ =⇒ E1(a
T ) < E2(a

T ) =⇒ 1− E1(a
T )

1− a
>

1− E2(a
T )

1− a

and hence, taking the limit a → 1, we have E1(T ) ≥ E2(T ). To show that E1(a
T ) <

E2(a
T ), a ∈ (a∗, 1), for some a∗, we make a series of changes to the expression for E1(a

T ),

each of which increases its value. The intermediate expressions do not necessarily

correspond to valid search sequences, but importantly the final expression corresponds

to E2(a
T ).

The first change is to allow the first search of location i to begin immediately after

the completion of the previous search. The timings of all subsequent searched remain

unchanged. This new sequence does not correspond to an admissible search sequence

for our problem, as it allows the searcher to search location i without moving to it. Since

the searcher gains the reward for searching i earlier, this maneuver clearly increases the

expected discounted reward.

To be more explicit, let τπ(k) denote the time at which the final search of the kth



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 65

block is completed under policy π. Thus,

τπ(k) =
k∑

i=1

(d+ tbicbi).

The contribution of the first search of i to Eπ[a
T ] is piqi(1 − qi)

siaτπ(m−1)+d+ti . If the

search of i is started immediately after the completion of the previous search, this con-

tribution becomes piqi(1−qi)
siaτπ(m−1)+ti . Since all other terms remain unchanged, it is

clear that this maneuver increases the expected discounted reward. At each subsequent

step, we bring the search of location i forwards so that it starts before the searcher

moves to the preceding block of searches. Additionally, each search in that block is

delayed by ti units of time. These intermediate steps do not correspond to valid search

sequences, as they allow the searcher to move to location i and move away from it again

without incurring any travel time. However, after the final maneuver is completed, the

search of i appears at the front of the sequence. Since i is the starting location, the

resulting sequence is valid and moreover corresponds to the modified sequence π̂.

It remains to show that each of these intermediate steps increases the expected

discounted reward. Each of these changes involves bringing forward the reward for the

first search of i and delaying the rewards from one block of searches. More explicitly,

for each k ∈ {1, . . . ,m − 1}, the change corresponding to moving the first search of i

in front of block k is defined as follows. For notational convenience, let j = bk. Then

the reward earned for searching i is brought forward by d + cjtj units of time and the

rewards earned for the searches in block k are each delayed by ti.

Consider the discounted rewards earned while carrying out the searches in the kth

block. Let gj be the total number of times that j appears in the search sequence prior

to this block of searches. The sum of these contributions is

cj∑
w=1

pjqj(1− qj)
sj+gj+w−1aτπ(k−1)+d+wtj .

If these rewards are delayed by ti time units then the contribution becomes

cj∑
w=1

pjqj(1− qj)
sj+gj+w−1aτπ(k−1)+ti+d+wtj .



CHAPTER 3. SEARCHING DISPERSED LOCATIONS 66

The decrease in the contribution of the searches at j can be found by taking the differ-

ence of these expressions, which is
cj∑

w=1

pjqj(1− qj)
sj+gj+w−1aτπ(k−1)+d+itj(1− ati).

If the reward for the first search of i is earned at time τπ(k) + ti then the contribution

of that search is

piqi(1− qi)
siaτπ(k)+ti = piqi(1− qi)

siaτπ(k−1)+cjtj+d+ti .

On the other hand, if the reward for the first search of i is earned at time τπ(k− 1)+ ti

then the contribution of that search becomes piqi(1− qi)
siaτπ(k−1)+ti . The contributions

of all other searches remain unchanged. The increase in the contribution of the search

at i is

piqi(1− qi)
siaτπ(k−1)+ti(1− ad+cjtj).

Hence, it remains only to verify that

piqi(1− qi)
siaτπ(k−1)+ti(1− ad+cjtj) >

cj∑
w=1

pjqj(1− qj)
sj+gj+w−1aτπ(k−1)+d+itj(1− ati).

However, by hypothesis we have

piqi(1− qi)
si

ti
> pj(1− qj)

sj
1− (1− qj)

cj−1

d+ cjtj
,

From this we conclude that there exists an a1 < 1 for which 1 > a > a1 implies that

piqi(1− qi)
si

ati

1− ati
> pjqj(1− qj)

sj
ad+cjtj

1− ad+cjtj

1− (1− qj)
cj−1

qj
.

and hence that

piqi(1− qi)
si

ati

1− ati
> pjqj(1− qj)

sj+gj
ad+cjtj

1− ad+cjtj

cj∑
w=1

(1− cjqj)
w−1.

This confirms that the manoeuvre proposed yields an increase in the expected dis-

counted reward for the range a ∈ (a1, 1).

The next manoeuvre similarly yields an increase for some range a ∈ (a2, 1), say.

All desired manoeuvres (of which there are a finite number) yield an increase for some

range a ∈ (a∗, 1) from which we can conclude that

1 > a > a∗ =⇒ E1(a
T ) < E2(a

T ) =⇒ 1− E1(a
T )

1− a
>

1− E2(a
T )

1− a
,

as required.



Chapter 4

Patrolling Dispersed Locations

4.1 Introduction

Organisations are often required to protect their assets from sabotage. If these assets

are in geographically dispersed locations, it can be prohibitively expensive to actively

protect them all at the same time. For example, when defending a large military

facility, it is impractical to guard all sections of the facility’s perimeter simultaneously.

Similarly, local law enforcement cannot be present in all parts of their jurisdiction at

once. To ensure that none of the assets are left undefended for too long, it is necessary

for one or more agents, usually called patrollers, to sequentially visit and search each

of these locations.

The study of patrol theory arose in the 1970s. Much of the early work, such as

that of Olson and Wright (1975), Chaiken and Dormont (1978) and Birge and Pollock

(1989), focused on optimally allocating police resources to intercept ongoing criminal

activity. In each of these papers, the authors assume that the crime rates in different

locations are known and use these rates to inform their policies. While making use of

known crime rates is useful, intelligent attackers may also take this information into

account and try to act unpredictably to avoid detection. Strategic planning on the

part of the attackers is more likely to occur for more impactful attacks such as acts of

terrorism or when a single decision maker is planning multiple coordinated attacks. In

the last few decades, much of the focus of the patrol literature has focused on game

67



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 68

theoretic models such as in Auger (1991), Alpern and Gal (2006), Lin et al. (2013)

and Lin et al. (2014). A more detailed review of the patrol literature can be found in

Chapter 2.

In this chapter we consider a patrol problem where a patroller is tasked with min-

imising the cost of damage caused by attacks within an area known as the search space.

An attack is broadly construed as an illicit activity undertaken by an attacker that has

an ongoing negative effect such as damaging infrastructure or leaking information. The

area under the patroller’s protection contains n key locations, for some n ∈ N, that

could be subject to an attack. In contrast with many of the patrol problems considered

in the recent literature, once an attack has started, it continues until the attacker is

discovered by the patroller. To the best of our knowledge there is only one paper that

considers an attacker that remains at a location until detected. Specifically, Blachman

(1959) introduces a variant of the search problem introduced by Koopman (1956) where

the target of the search is not initially present but arrives after some random amount

of time that is uniformly distributed over some very long interval. As in our model, it

is assumed that the target remains until detected.

The patroller moves between the locations and attempts to interrupt ongoing at-

tacks. The time required for her to travel from location i to a different location j is

dij. By definition, dij ≥ 0 for all i ̸= j and dii = 0 for all i. We assume that a direct

route from one location to another can take no longer than an indirect route since the

patroller can always travel via other intermediate locations without searching them.

Thus for all distinct i, j, k ∈ [n], dik ≤ dij + djk. However, we do not enforce that

dij = dji since travel times are not always dependant only on the distance travelled.

For example, travelling up a hill, potentially with heavy search equipment, may take

longer than making the reverse journey.

When she arrives at a location the patroller can choose to spend any amount of

time searching for attackers. For each attacker present at that location, the patroller

discovers them at rate λi. If more than one attacker is present then each attacker

will be detected independently at rate λi. Thus, the instantaneous discovery rate is

λi multiplied by the number of hidden attackers in that area. Any attacker present at



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 69

location i will be discovered by the patroller in time h > 0 with probability λih+ o(h)

independently of all else. When an attacker is discovered the attack ends instantly and

the patroller is free to continue her search of that location or to move elsewhere.

The objective of the patroller is to minimise the expected time to discover an attacker

regardless of where the attack occurs, if and when an attack occurs. The rationale

of this objective is that in many applications the patroller does not know where the

attacker is likely to attack. If an adversary is actively choosing a location to attack

to cause maximal harm, then the patroller’s objective is to minimise this maximal

harm that the attacker can cause. In the worst case scenario, the adversary may be

aware of the patroller’s policy, although we always assume they are unaware of the

patroller’s current location. It is therefore beneficial for the patroller to construct a

robust policy that minimises the damage incurred in the worst case scenario where all

attackers are directed to the least well defended location. To formulate this objective

we shall assume that the attackers arrive according to a Poisson process and allow

multiple attacks simultaneously. The patroller’s objective is to minimise the maximal

expected time to discover an attack among all locations. Formulating the problem in

this way makes it a sequential move game where the patroller acts first by choosing

a patrol strategy and the adversary moves second by choosing to attack the location

with the longest expected time to discovery. Our goal is to minimise the expected time

until discovery of an attacker regardless of where the attack occurs. Under the Poisson

Process assumption on attack arrivals we have that, conditional on an attacker being

present at a location, its time spent undiscovered is uniform over the appropriate time

interval irrespective of the Poisson attack rate. Further, in our model, under any policy,

the presence of additional attackers at a given location does not affect the expected time

to discover a particular attacker. Thus, the rate of the arrival process has no effect on

the performance of the chosen policy. Another consequence of detection events being

independent is that it is equivalent to minimising the expected time to discover a single

attacker. In this case the attacker’s arrival time is determined by a uniform distribution

over a very large interval.

Section 4.2 considers the special case where there are no travel times between loca-



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 70

tions and derives an optimal cyclic policy in this case. In Section 4.3 we define a simple

cycle as a repeating patrol pattern that visits each location exactly once per repetition.

We give some results that suggest that simple cycles perform well for a very broad class

of patrol problems and derive a formula for the expected time for a patroller to discover

an attacker at a particular location when following a simple cycle. We describe how to

use this formula to find the best simple cycle when the detection rates are homogeneous.

In Section 4.4 we define a sweep cycle that involves the patroller moving back and forth

along a line of points. We use the same approach to find formulas for the expected time

for a patroller to discover an attacker at a particular location when following a sweep

cycle. In Section 4.5 we introduce an algorithm for finding the best patrol pattern of

a particular cycle type that doesn’t rely on homogeneity of detection rates. Finally,

Section 4.6 concludes this chapter and gives some suggestions for further work.

4.2 The Case of No Travel Times

Consider a special case of the patrol problem presented in Section 4.1 where there are

no travel times. In other words, dij = 0 for all i, j ∈ [n]. Since the patroller can move

between any pair of locations instantaneously, we allow the patroller to allocate her

effort among multiple locations at the same time. For each i ∈ [n], if the fraction of effort

the patroller allocates to location i at time t ≥ 0 is hi(t) ∈ [0, 1], with
∑n

i=1 hi(t) = 1,

then at time t the instantaneous detection rate at location i is λihi(t), for i = 1, . . . , n.

In this section we will show that the optimal policy for this special case is for the

patroller to allocate a certain proportion of her effort to each location which remains

constant throughout. We will also derive what this proportion is. To prove this result

we first require the following lemma.

Lemma 4.1. Suppose g(x) is a function defined on x ∈ [0, c] for some c ∈ R+. If there

exist a, b ∈ R+ with a < b such that g(x) ∈ [a, b] for x ∈ [0, c], then∫ c

0
g(x)dx

c
≥ c∫ c

0
1

g(x)
dx

,

with equality if g(x) is constant for x ∈ [0, c].



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 71

Proof. Let g(x) be a function defined on x ∈ [0, c] for some c ∈ R+. Also let ϕ(y) = 1/y

and Y = g(X) where X is a uniform random variable over [0, c]. Jensen’s inequality

states that if ϕ is convex and Y is an integrable real valued random variable then

ϕ(E[Y ]) ≤ E[ϕ(Y )].

Since ϕ(y) is clearly convex, it follows that

1

E[g(X)]
≤ E

(
1

g(X)

)
.

Expressing these expectations as integrals gives us

c∫ c

0
g(x)dx

≤
∫ c

0
1

g(x)
dx

c
.

Inverting both sides yields the desired inequality∫ c

0
g(x)dx

c
≥ c∫ c

0
1

g(x)
dx

.

It is clear to see that if g(x) is constant for x ∈ [0, c] then equality is achieved.

This lemma is the continuous version of the inequality that states that the arithmetic

mean is greater than or equal to the harmonic mean.

Recall that targets arrive into the system according to a Poisson process and that

the patroller’s objective is to minimise the maximum expected time a target spends at

a location before being detected across all locations.

Theorem 4.2. Consider a particular location and write λ for the patroller’s detection

rate at this location. If the patroller adopts a cyclic patrol pattern where the long-

run fraction of effort spent at this location is capped at r ∈ (0, 1), then to minimise

the expected time to detect a target at this location, it is optimal for the patroller to

continuously allocate the same fraction of effort r at this location at all times. The

minimised expected time to detection is 1/(rλ).

Proof. An arbitrary policy can be delineated by some c > 0 and a function h(t) ∈ [0, 1]

defined for t ∈ [0, c] with the interpretation that the patroller allocates h(t) ∈ [0, 1]

fraction of her effort at time t ∈ [0, c] such that∫ c

0
h(t)dt

c
= r, (4.1)



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 72

and repeats the same pattern of length c indefinitely. It follows from renewal reward

theory that the long-run fraction of effort allocated to this location is r.

Consider a target that arrives at the location at a random time. Since attackers

arrive according to a Poisson process, they are equally likely to arrive at any point

during the cycle. The amount of time that has passed since the beginning of the

current cycle at the point of arrival is uniformly distributed over [0, c]. It remains to

show that the expected time the target spends at the location before being detected by

the patroller is minimised if h(t) = r for t ∈ [0, c].

To begin, write g(t) for the expected time for the patroller to detect a target that

arrives at time t ∈ [0, c], so we seek to minimise∫ c

0

g(t)
1

c
dt =

∫ c

0
g(t)dt

c
. (4.2)

Consider a target arriving at time t and condition on whether the target is detected in

the interval [t, t+ δ) to get

g(t) = δ + (1− λh(t)δ + o(δ)) g(t+ δ),

because with probability 1−λh(t)δ+o(δ) the target is still at the location at time t+ δ

so the expected additional time to detection is g(t+ δ). Rearrange the preceding to get

g(t+ δ)− g(t)

δ
=

(
λh(t) +

o(δ)

δ

)
g(t+ δ)− 1.

Taking δ → 0 yields

g′(t) = λh(t)g(t)− 1.

Solve the preceding for h(t) to get

h(t) =
g′(t)

λg(t)
+

1

λg(t)
.

Because the allocation function h(t) needs to meet the constraint in (4.1), we have that

rc =

∫ c

0

h(t)dt

=

∫ c

0

g′(t)

λg(t)
dt+

∫ c

0

1

λg(t)
dt

=
1

λ
ln g(t)

∣∣c
0
+

1

λ

∫ c

0

1

g(t)
dt

= 0 +
1

λ

∫ c

0

1

g(t)
dt,



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 73

where the last equality follows because g(c) = g(0) ≥ 1/λ, because the patrol pattern

of length c is repeated indefinitely, and that the expected time to detection is at least

1/λ, which can be achieved only if the patroller allocates all her effort at this location

all the time. Consequently, we have∫ c

0

1

g(t)
dt = λrc.

Using Lemma 4.1 and the preceding, we can find a lower bound for our objective

function in (4.2) as follows:∫ c

0
g(t)dt

c
≥ c∫ c

0
1

g(t)
dt

=
c

λrc
=

1

λr
. (4.3)

In other words, 1/(λr) is a lower bound for the expected time to detect a target at

this location, and this lower bound is achieved if g(t) is constant for t ∈ [0, c]. By

taking h(t) = r for t ∈ [0, c], the instantaneous detection rate at the location stays at

rλ at all times, so g(t) = 1/(λr) for t ∈ [0, c], which achieves the lower bound in (4.3).

Consequently, the optimal policy is to take h(t) = r for t ∈ [0, c], which completes the

proof.

Theorem 4.3. Consider the patrol problem with n locations with dij = 0, for all i, j ∈

{1, . . . , n}. Let λi denote the instantaneous detection rate of the patroller at location i,

for i = 1, . . . , n. The optimal patrol policy is to allocate ri fraction of time at location

i continuously, where

ri =
1/λi∑n
j=1 1/λj

. (4.4)

The expected time to detect the target regardless of where the target arrives is equal to

n∑
j=1

1

λj

.

Proof. An arbitrary policy can be delineated by some c > 0 and a function hi(t) ∈ [0, 1]

defined for t ∈ [0, c] with the interpretation that the patroller allocates hi(t) ∈ [0, 1]

fraction of her effort at location i, i = 1, . . . , n, at time t ∈ [0, c] such that

n∑
i=1

hi(t) = 1,



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 74

for t ∈ [0, c], and repeats the same pattern of length c indefinitely.

Compute

si =

∫ c

0
hi(t)dt

c
,

which represents the long-run fraction of effort allocated to location i, for i = 1, . . . , n.

If the fraction of the patroller’s effort allocated to location i is si, then according

to Theorem 4.2, the expected time to detect a target at location i is at least 1/(λisi).

Therefore, the value of the proposed policy is at least

max
i=1,...,n

1

λisi
.

By taking si = ri given in (4.4), for i = 1, . . . , n, we minimise the preceding to∑n
j=1 1/λj, which is therefore a lower bound for the optimal value. Finally, because

this lower bound can be achieved by taking hi(t) = ri for t ∈ [0, c] and i = 1, . . . , n, as

shown in Theorem 4.2, it follows that
∑n

j=1 1/λj is the optimal value and the policy

just described is the optimal policy.

Theorem 4.3 shows that in the case of no travel times, it is optimal for the pa-

troller to continuously allocate to a location the same fraction of effort that is inversely

proportional to the detection rate at that location. If the travel time is nonzero, then

at any given time the patroller is either moving between locations, or allocating 100%

effort at one location. It then becomes much more difficult to determine the optimal

patrol strategy.

4.3 A Simple Cycle

For a patrol problem with dij > 0 for all i, j ∈ [n], a patrol pattern is an infinite ordered

sequence of locations together with an infinite ordered sequence of search durations.

We describe a patrol pattern as cyclic, or a cycle, if it repeats after a finite number

of searches. A cycle can therefore be more succinctly represented by the truncated

location and duration sequences prior to repetition. In this section we will consider a

specific type of cycle called a simple cycle. We define a simple cycle as a cycle that visits

each location exactly once. Thus, the truncated sequences for a simple cycle for an n



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 75

location patrol problem are of length n and the sequence of locations is a permutation

of the set [n].

For example, consider a two location patrol problem. If the patroller chooses to

search the locations alternately and, for each i ∈ N, she decides that her ith search of

each location will last for a number of minutes equal to the ith digit of π then she is

following a patrol pattern but not a cycle. If instead she decides to search each location

for one minute on the ith search if i is even and two minutes if i is odd then she is

following a cycle but not a simple cycle. Finally, if she decides that every search of the

first location will be for one minute and every search of the second location will be for

two minutes then she is following a simple cycle.

In Section 4.3.1 we discuss some benefits of using simple cycles and provide some

theoretical results to show that certain patrol patterns can be improved by making

them simpler. In Section 4.3.2 we describe how to find the best possible simple cycle

for a given problem.

4.3.1 Motivation for a Simple Cycle

In this section we discuss the benefits of using a simple cycle.

Aside from performance, there are several practical reasons to use a simple cycle.

Firstly, by constraining ourselves to simple cycles we reduce the number of decision

variables, which makes it easier to find the best cycle of the given type. Secondly,

moving between locations in a fixed order and spending a specific amount of time at

each location feels very natural. This makes simple cycles particularly easy for patrollers

to implement and to explain to stakeholders.

While we expect simple cycles to perform well generally, they are particularly well

suited to a certain class of patrol problem. An n location ring network is a set of

n points arranged in a circle where it is only possible to move directly to adjacent

locations. Thus for each i, j ∈ [n] with i < j, the time taken to move from i to j is

min

(
j−1∑
k=i

dk,k+1,
n−1∑
k=1

dk,k+1 + dn,1 −
j−1∑
k=i

dk,k+1

)
.

Ring networks can be used for patrol problems that involve patrolling a border or some



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 76

other circular route. In these cases, moving directly between two locations that are not

adjacent may not be practical or even possible. For example, a guard that has been

instructed to protect the external entrances to a facility may not be allowed inside the

facility they are protecting and therefore to reach an entrance on the far side of the

facility they can either travel clockwise or anticlockwise around the perimeter. It would

then seem wasteful not to check any other entrances that they pass.

We will now present a few results that support the idea of using a simple cycle.

Consider a patrol problem with n locations, for some n ∈ N. Recall that the patroller’s

objective is to minimise the maximum expected time to discovery across all locations.

If a patrol pattern omits one or more locations then it is impossible to discover any

attackers at these locations. Even if a patrol pattern visits a location for some finite

amount of time then never visits there again there is a possibility that an attacker there

will not be discovered and so the expected time to discovery for that location is infinite.

It is therefore clear that an optimal patrol pattern must visit every location infinitely

many times.

Now, consider a cycle that visits a location i ∈ [n] twice for different lengths of time.

Since a location is being visited more than once, this is not a simple cycle. Our first

result demonstrates that the expected time to discover an attacker at location i can be

reduced by replacing the duration of both searches by their average.

Proposition 4.4. Any cycle that visits a location twice for different durations can be

improved by replacing the duration of each search by the average of both.

Proof. Consider a patrol problem and a corresponding cycle that visits location i ∈ [n]

twice for different durations. Suppose that the total duration of the cycle is c and that

the durations of the first and second searches of location i are x1 and x2 respectively.

Let s = x1 + x2. Also let y1 be the amount of time the patroller spends away from

location i after the first search there but before she returns. Similarly let y2 be the

amount of time she spends away after the second search of location i. These durations

comprise travel times as well as some time spent searching other locations.

Consider the expected number of attackers at location i throughout the cycle at

steady state. This scenario can be thought of as a queuing system with:



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 77

• A constant arrival rate of θ which represents attackers arriving at location i.

• Infinitely many servers, each with a constant service rate λ = λi, that are only

active while the searcher is in location i. The identifier i for the detection/service

rate is dropped for ease of notation.

The expected time a single attacker (or customer) spends in the system comprises the

expected service time (1/λ) and the expected idle time.

Let b denote the number of customers in the system at the start of the cycle in steady

state. Figure 4.1 shows the expected number of customers in the system throughout

the cycle. The white areas show when the servers are active and the grey areas show

when they are idle.

Figure 4.1: Number of customers over time in steady state

During steady state the number of customers in the system is the same at the start

and end of the cycle. Thus

b =

(
be−λx1 +

θ

λ
(1− e−λx1) + θy1

)
e−λx2 +

θ

λ
(1− e−λx2) + θy2

Here the first term gives the number of customers that are either in the system at

the start of the current cycle or arrive before the start of the second search and are

still present at the end of the cycle. The second and third terms give the number of

customers that arrive during and after the second search and are still present at the

end of the cycle. Collecting all b terms on the left hand side we get

(1− e−λs)b =

(
θ

λ
(1− e−λx1) + θy1

)
e−λx2 +

θ

λ
(1− e−λx2) + θy2



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 78

An expression for b can then by recovered by dividing both sides by 1− e−λs.

b = θ ·
( 1

λ
e−λx2 − 1

λ
e−λs + y1e

−λx2 + 1
λ
− 1

λ
e−λx2 + y2

1− e−λs

)
= θ ·

(− 1
λ
e−λs + y1e

−λx2 + 1
λ
+ y2

1− e−λs

)
= θ ·

(
1

λ
+

y1e
−λx2 + y2
1− e−λs

)
Write L for the long-run average number of customers in the system when the

patroller is on site (x1 and x2). The rate at which customers depart when the patroller

is on site is Lλ, so the average number of customers that depart the system in each

cycle is sLλ. The long-run average number of customers that arrive in each cycle is cθ.

Setting sLλ = cθ yields L = cθ/sλ. The area of the two white segments combined is

therefore

Ls =
cθ

λ

The area of the first shaded region is(
be−λx1 +

θ

λ
(1− e−λx1) +

θy1
2

)
y1

The area of the second shaded region is((
be−λx1 +

θ

λ
(1− e−λx1) + θy1

)
e−λx2 +

θ

λ
(1− e−λx2) +

θy2
2

)
y2

Adding these terms and dividing by c gives us the long-run average number of customers

in the system. We start by adding them together and rearranging.

cθ

λ
+ b(y1e

−λx1 + y2e
−λs) + θ

[
1

λ

[
y1(1− e−λx1) + y2(1− e−λs)

]
+ y1y2e

−λx2 +
y21 + y22

2

]
= θ

[
c

λ
+

y1 + y2
λ

+
(y1e

−λx2 + y2)(y1e
−λx1 + y2e

−λs)

1− e−λs
+ y1y2e

−λx2 +
y21 + y22

2

]
= θ

[
c

λ
+

y1 + y2
λ

+
y21e

−λs + y1y2(e
−λ(x2+s) + e−λx1) + y22e

−λs

1− e−λs
+ y1y2e

−λx2 +
y21 + y22

2

]
= θ

[
c

λ
+

y1 + y2
λ

+
y21 + y22 + y1y2(e

−λ(x2+s) + e−λx1)

1− e−λs
+ y1y2e

−λx2 − y21 + y22
2

]
= θ

[
c

λ
+

y1 + y2
λ

+
y21 + y22 + y1y2(e

−λx2 + e−λx1)

1− e−λs
− y21 + y22

2

]



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 79

Thus, the long-run average number of customers in the system is:

θ

λ
+

θ

c

[
y1 + y2

λ
+

y21 + y22 + y1y2(e
−λx2 + e−λx1)

1− e−λs
− y21 + y22

2

]
(4.5)

To find the values of x1 and x2 that minimise this expression we need only consider

terms that contain x1 and x2 and so it is equivalent to minimise

θ

[
y1y2(e

−λx2 + e−λx1)

1− e−λs

]
.

Thus the long-run average number of customers in the system is minimised when

e−λx1 + e−λx2

is minimised.

We can then conclude that the expected discovery time for an attacker at location

i is minimised by setting x1 = x2 = s/2. Thus, for each location it is optimal to set

x1 = x2 and y1 = y2, which can be achieved if every location has x1 = x2.

It is intuitive that this result should hold more generally. The following conjecture

considers a cycle that visits each location an arbitrary number of times.

Conjecture 4.5. Any cycle that visits a location more than once for different durations

can be improved by replacing the duration of each search by the average of them all.

In Appendix 4.7.1 we seek to generalise the proof of Proposition 4.4 to a cycle which

visits location i, m times for some m ∈ N with m ≥ 2, in order to prove the above

conjecture. For this more general case we show that the solution x1 = · · · = xm = s/m,

y1 = · · · = ym = (c− s)/m is a stationary point but have thus far been unable to show

that this corresponds to a unique minimum.

4.3.2 Optimising a Simple Cycle

In this section we consider how to find the best simple cycle for a given problem. Sup-

pose we are faced with an n location patrol problem of the type described in Section 4.1

and that we wish to follow a simple cycle. Let Σn denote the set of permutations of the



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 80

set [n]. A simple cycle is determined by an ordering σ ∈ Σn of the n locations together

with a vector x = (x1, x2, · · · , xn) ∈ (R+)n of search durations for each location, where

for each i ∈ [n], xi is the duration of the search at location i.

Additionally, for each i ∈ [n], write fi(σ,x) for the expected time for a patroller

to discover an attacker at location i under the simple cycle determined by (σ,x). The

patroller’s challenge is to choose a simple cycle (σ,x) to minimise f(σ,x) where

f(σ,x) = max
i∈[n]

{fi(σ,x)}.

Hence, the patroller’s problem is given by

min
σ,x∈Σn×(R+)n

f(σ,x) = min
σ,x∈Σn×(R+)n

max
i∈[n]

{fi(σ,x)}.

To address this problem we must first derive a formula for fi(σ,x) by evaluating the

expected time to discovery for a particular attacker at location i for some i ∈ [n] when

the patroller is following simple cycle (σ,x). Write c(σ,x) for the total length of the

cycle. Thus

c(σ,x) =
n∑

j=1

(xj + dσ(j),σ(j+1)),

using the convention that dσ(n),σ(n+1) = dσ(n),σ(1). In the following discussion we shall

sometimes write

c(σ,x) = C(x) +D(σ)

where

C(x) =
n∑

j=1

xj and D(σ) =
n∑

j=1

(
dσ(j),σ(j+1)

)
to distinguish between the search time and travel time components of the total cycle

time.

Suppose that the attacker is sent to attack location i for some i ∈ [n]. The expected

time to discover this attacker depends on where the patroller is at the time of arrival.

Since attackers arrive according to a Poisson process, attackers are equally likely to

arrive at any point during the patrol pattern. Let Z be a uniform random variable

over (0, c(σ,x)) and write E[T |Z = z] for the expected search time conditional on the



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 81

attacker arriving z units of time into the patroller’s current cycle. Thus,

fi(σ,x) =

∫ c(σ,x)

0

E[T |Z = z]

c(σ,x)
dz =

1

c(σ,x)

∫ c(σ,x)

0

E[T |Z = z] dz (4.6)

To find an expression for E[T |Z = z] we consider two scenarios. If the patroller is at

location i when the attacker arrives then we have z ∈ [0, xi). Otherwise, if the patroller

is travelling or is searching another location, then z ∈ [xi, c(σ,x)).

Firstly, consider z ∈ [0, xi). The contribution of the remainder of the current search

is: ∫ xi−z

0

λiye
−λiydy =

1

λi

(
1− e−λ(xi−z)(λi(xi − z) + 1)

)
No contribution is made while the patroller is away. The contribution of the first z time

units of the next search of location i is given by∫ xi

xi−z

(c(σ,x)− xi + y)λie
−λiy dy =

1

λi

(
e−λi(xi−z)(λi(c(σ,x)− z) + 1)

− e−λixi(λic(σ,x) + 1)
)

Thus the contribution of the first c(σ,x) time units is

1

λi

(
1− e−λix(λic(σ,x) + 1)

)
+ e−λi(xi−z)(c(σ,x)− xi).

Using recursion we have that

E[T |Z = z] =
1

λi

(
1− e−λixi(λic(σ,x) + 1)

)
+ e−λi(xi−z)(c(σ,x)− xi) + (c(σ,x) + E[T |Z = z])e−λixi

=
1

λi

(
1− e−λixi

)
+ e−λi(xi−z)(c(σ,x)− xi) + E[T |Z = z]e−λixi

Thus

E[T |Z = z](1− e−λixi) =
1

λi

(
1− e−λixi

)
+ (c(σ,x)− xi)e

−λi(xi−z)

So we have that

E[T |Z = z] =
1

λi

+
(c(σ,x)− xi)e

−λi(xi−z)

1− e−λixi
(4.7)

The total amount of time between the attacker’s arrival and detection consists of two

components: (a) the amount of time the patroller spends at the attacker’s location,



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 82

and (b) the amount of time the patroller spends away from the attacker’s location. In

(4.7), the first term 1/λi is the expected value of an exponential random variable which

corresponds to (a), and the second term corresponds to (b). Component (b) would be

zero if the patroller detects the attacker in the first xi − z time units. If the patroller

does not detect the attacker in the first xi−z time units, which occurs with probability

e−λ1(xi−z), then the number of times the patroller needs to go through an “off cycle”

c(σ,x)− xi before detecting the attacker follows a geometric distribution with success

probability 1 − e−λixi , whose expected value is 1/(1 − e−λixi). Putting these together

produces component (b) in (4.7).

Integrating over the values of z between 0 and xi gives us:∫ xi

0

(
1

λi

+
(c(σ,x)− xi)e

−λi(xi−z)

1− e−λixi

)
dz =

xi

λi

+
e−λixi(c(σ,x)− xi)

1− e−λixi

∫ xi

0

eλzdz

=
xi

λi

+
e−λixi(c(σ,x)− xi)

1− e−λixi

(
eλixi − 1

λi

)
Thus, ∫ xi

0

E[T |Z = z]dz =
c(σ,x)

λi

(4.8)

Next we consider z ∈ [xi, c(σ,x)). Since the attacker is in location i there is no

chance the patroller will discover them until she returns to location i. Thus,

E[T |Z = z] = c(σ,x)− z + E[T |Z = 0].

Setting z = 0 in (4.7) we have

E[T |Z = 0] =
1

λi

+
e−λixi(c(σ,x)− xi)

1− e−λixi

Thus

E[T |Z = z] = c(σ,x)− z +
1

λi

+
e−λixi(c(σ,x)− xi)

1− e−λixi

Integrating over the values of z between xi and c(σ,x) gives us:∫ c(σ,x)

xi

(
c(σ,x)− z +

1

λi

+
e−λixi(c(σ,x)− xi)

1− e−λixi

)
dz

=

(
c(σ,x) +

1

λi

+
e−λixi(c(σ,x)− xi)

1− e−λixi

)
(c(σ,x)− xi)−

[
z2

2

]c(σ,x)
xi



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 83

Thus,∫ c(σ,x)

xi

E[T |Z = z]dz = (c(σ,x)− xi)

(
c(σ,x)− xi

2
+

1

λi

+
e−λixi(c(σ,x)− xi)

1− e−λixi

)
(4.9)

Therefore, by adding (4.8) and (4.9) and dividing by c(σ,x) we have

fi(σ,x) =
1

λi

+
c(σ,x)− xi

c(σ,x)

(
c(σ,x)− xi

2
+

1

λi

+
e−λixi(c(σ,x)− xi)

1− e−λxi

)
or equivalently

fi(σ,x) =
1

λi

+
c(σ,x)− xi

c(σ,x)

(
1

λi

− c(σ,x)− xi

2
+

c(σ,x)− xi

1− e−λixi

)
(4.10)

This equation gives the expected time to discover an attacker at location i while

following a simple cycle of length c(σ,x) that searches location i for xi time units on

each visit and can be used to compute the expected time to discovery for attackers at

each location. Note that the total cycle time c(σ,x) depends on the choice of xi for

each location as well as the total travel time of the chosen ordering σ. The patroller

wishes to minimise the maximum expected time to discovery across all locations.

The following result demonstrates that for any duration vector x, the best choice of

ordering σ is a minimum Hamiltonian cycle.

Proposition 4.6. The patroller’s problem can always be solved by taking optimising

permutation σ∗ to be any Hamiltonian cycle that satisfies

D(σ∗) = min
σ∈Σn

D(σ)

Proof. Consider the quantity fi(σ,x) for some fixed x. From (4.10) we may write

E[T ] =
1

λi

+
C(x) +D(σ)− xi

C(x) +D(σ)

(
1

λi

+ (C(x) +D(σ)− xi)A(x)

)
for positive constant A(x). It is straightforward to show that for any σ1, σ2 ∈ Σn,

D(σ1) ≤ D(σ2) =⇒ fσ1i(x) ≤ fσ2i(x),∀i,x.

The result now follows easily.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 84

It remains to find the optimal choice for the duration vector, x. This choice will be

discussed further in subsequent sections.

It is useful to briefly examine the behaviour of (4.10) in some limiting cases. Firstly,

consider the behaviour of (4.10) as we vary the detection rates. It is clear that as a

particular detection rate tends to zero the expected time for the patroller to discover

an attacker hidden in the corresponding location diverges to infinity. This observation

makes sense since lowering the detection rate at a location increases the expected time

to discover an attacker hidden there. Next, consider what happens as the detection

rate at a particular location i diverges to infinity. Here we would expect the expected

search time to fall and for the optimal value of xi to tend to zero. For a fixed positive

value of xi, e
−λixi → 0 as λi → ∞. Therefore the expected search time would tend to

(c(σ,x)− xi)
2

2c(σ,x)
.

Thus, as the detection rate for a particular location increases the patroller should

spend less time searching there. As xi tends to 0, the preceding equation converges

to c(σ,x)/2, which is the expected time an attacker spends at the location until the

patroller returns to the location for the first time.

It is also clear that if the cycle time c(σ,x) (or, by extension, any of the travel

times involved in the cycle) tend to infinity then the expected time to find an attacker

also diverges to infinity. Again this observation makes sense as the patroller would be

spending an increasingly high proportion of her time travelling rather than searching.

4.3.3 The Case of Homogeneous Locations

In this section we seek to find the best simple cycle (σ,x), as described in Section 4.3,

for patrol problems with homogeneous locations. We describe the locations of a patrol

problem as homogeneous if the detection rate is the same at all locations. Throughout

this section we will use λ to denote the common detection rate.

The primary benefit of considering patrol problems with homogeneous locations,

and the reason for the inclusion of this section, is that since all detection rates are the

same it is intuitive that each location should be searched for the same amount of time.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 85

Thus, the problem of finding the best duration vector x reduces to a single dimension.

This intuition is formalised in the following result.

Proposition 4.7. A best simple cycle for a homogeneous patrol problem must visit each

location for the same duration.

Proof. Consider a simple cycle (σ,x) for a homogeneous patrol problem. Proposition

4.6 tells us that any permutation σ ∈ Σn that satisfies D(σ∗) = minσ∈Σn D(σ) can be

used to obtain a best simple cycle. Additionally, it is clear that the total cycle duration

is independent of the choice of permutation. We can therefore write

c(σ∗,x) = D(σ∗) + C(x).

By examining (4.10) we can see that for a fixed C(x) and for each i ∈ [n], fi(σ,x)

increases as xi decreases. Thus f(σ,x) is minimised by taking x1 = · · · = xn.

Now, consider a homogeneous patrol problem with n locations for some n ∈ N and

a common detection rate λ. Propositions 4.6 and 4.7 tell us that the best simple cycle

for this problem should visit the locations in an order σ∗ that constitutes a minimum

Hamiltonian cycle and that each location should be searched for x∗ units of time for

some x∗ ∈ R+.

Once a minimum Hamiltonian cycle has been found it remains to find x∗. This value

can be found by applying (4.10) to find the expected time to discovery when following

this cycle. To find the optimal search duration we need to find the value of x that

minimises (4.10) with c(σ,x) = D(σ∗) + nx. Thus we need to find

x∗ = argmin
x>0

(
D(σ∗) + nx− x

D(σ∗) + nx

(
1

λ
− D(σ∗) + nx− x

2
+

D(σ∗) + nx− x

1− e−λx

))
. (4.11)

For n = 2, (4.11) simplifies to

x∗ = argmin
x>0

(
D(σ∗) + x

D(σ∗) + 2x

(
1

λ
− D(σ∗) + x

2
+

D(σ∗) + x

1− e−λx

))
.

Finding a closed form for x∗ is challenging so using a numerical method, such as the

ternary search algorithm that we discuss in Section 4.5.2, is necessary.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 86

Table 4.1 shows the best search duration x∗, obtained numerically and rounded to

three decimal places, for different homogeneous two location patrol problems with a

common travel time d between each distinct pair of locations.

d = 1 d = 2 d = 3

λ = 1 2.709 3.323 3.731

λ = 2 1.661 2.021 2.257

λ = 3 1.243 1.505 1.674

Table 4.1: Best search duration for a 2 location patrol problem

We can see that as the common detection rate λ increases the best search duration

decreases. This observation makes sense as each location can be searched for less time

while still achieving the same probability of discovering an attacker that is already

there. We can also see that as d increases the best search duration also increases. This

observation also makes sense as if the time between consecutive visits to each location

increases then the searcher is more incentivised to stay at the location for longer in

order to reduce the probability that an attacker is overlooked. It is also worth noting

that despite the optimal search duration increasing with travel time, the percentage

of time spent searching each location actually falls. For λ = 1 the patroller spends

approximately 36.5% of her time searching each location when d = 1, 31.2% of her time

searching each location when d = 2 and 27.7% of her time searching each location when

d = 3.

Figure 4.2 shows how the expected time for the patroller to discover a particular

attacker varies with search duration x at each location for a 2 location homogeneous

patrol problem with detection rate λ = 1 and where all travel times are set to d = 1.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 87

Figure 4.2: Search time vs expected time to discovery

It appears that the expected time to discover an attacker is unimodal in x, the

search duration.

Figure 4.3 shows how the absolute sub-optimality of the expected time to detection

varies with time spent searching each location for patrol problems with 2, 3 and 4

locations with detection rate λ = 1 and where all travel times are set to d = 1.

Figure 4.3: Search time vs absolute sub-optimality of the expected time to detection



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 88

We can see that as the number of locations increases the optimal amount of time

to spend searching each location decreases. This observation makes sense since the

patroller has more locations to visit and shortening her stay at one location reduces the

amount of time she spends away from each of the others.

4.3.4 The Case of Heterogeneous Locations

The results of the previous section rely on the homogeneity of detection rates and the

use of Proposition 4.7 to reduce the dimensionality of the problem. In this section we

consider the broader class of heterogeneous patrol problems and derive a formula for

the expected time to discover an attacker when following a given simple cycle.

For simplicity we initially consider two location heterogeneous problems. The order-

ing σ ∈ Σ2 is arbitrary since both orderings simply involve alternating between the two

locations. The total duration of the simple cycle (σ,x) is therefore x1+d12+x2+d21 re-

gardless of the choice of σ ∈ Σ2. For ease of notation, write τ = d12+d21. To determine

the best values for the search durations x1 and x2 (denoted as x∗
1 and x∗

2 respectively)

we evaluate the time to discover a particular attacker under this cycle. Thus,

(x∗
1, x

∗
2) = argmin

(x1,x2)∈(R+)2
(max{f1(σ,x), f2(σ,x)}) .

For each i ∈ {1, 2}, we can find fi(σ,x) by applying (4.10) with c(σ,x) = x1 + x2 + τ ,

which yields

f1(x1, x2) =
1

λ1

+
τ + x2

τ + x1 + x2

(
1

λ1

− τ + x2

2
+

τ + x2

1− e−λ1x1

)
and

f2(x1, x2) =
1

λ2

+
τ + x1

τ + x1 + x2

(
1

λ2

− τ + x1

2
+

τ + x1

1− e−λ2x2

)
.

Now, we seek to generalise this result. Consider an n location heterogeneous problem

for some n ∈ N. Here, the ordering of the locations does matter. However, from

Proposition 4.6 we know that a best simple cycle can be obtained using any minimum

Hamilton cycle for the ordering. Without loss of generality, let σ be the identity ordering

and assume that this permutation is a minimum Hamiltonian cycle. To determine the



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 89

best optimal values for the search durations xi (denoted as x∗
i ) we evaluate the time to

discover a particular attacker under this cycle. Thus,

(x∗
1, · · · , x∗

n) = argmin
(x1,··· ,xn)∈(R+)n

(
max
i∈[n]

{fi(σ,x)}
)

(4.12)

For each i ∈ {1, · · · , n}, we can find fi(σ,x) by applying (4.10) with

c(σ,x) =
n∑

j=1

(
xj + dσ(j),σ(j+1)

)
,

using the convention that dσ(n),σ(n+1) = dσ(n),σ(1), which yields

fi(σ,x) =
1

λi

+
c(σ,x)− xi

c(σ,x)

(
1

λi

− c(σ,x)− xi

2
+

c(σ,x)− xi

1− e−λixi

)
. (4.13)

Like with the homogeneous case, finding a closed from for the optimal vector x of

search durations is challenging. A numerical approach for finding this vector is discussed

in Section 4.5.2.

4.4 A Sweep Cycle

In Section 4.3 we introduced the notion of a simple cycle and provided some examples

where we would expect a cycle of this type to perform particularly well. In this section

we consider a different cycle type, motivated by a different class of patrol problems.

4.4.1 Motivation of a Sweep Cycle

Consider a set of n locations that are positioned along some sort of road or path. These

locations could be carriages in a train, service stations along a motorway or roads

intersecting the border between two neighbouring counties. In each of these cases there

is a natural ordering given by the geography of the problem with location 1 at one end

of the path and location n at the other. In many of these cases it can be impractical

to move directly between two locations that are not adjacent. Thus, if locations are

labelled from one end of the path to the other, then for any distinct pair i, j ∈ [n] with

i < j, dij =
∑j−1

k=i dk,k+1. We describe such problems as line networks.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 90

If the patroller were following a simple cycle for a patrol problem on a line network

she would start at one end of the line and then move along the line to the other end,

visiting each location along the way. She would then travel back in the reverse direction

but this time ignoring all locations (i.e. not searching them) until she arrives back at

her starting point. It is worth noting that if the patroller were to stop at any of the

locations on the reverse journey there would be no additional travel time. Building on

this observation, one natural change that the patroller could make to her patrol pattern

is to split up the search time at each of the middle locations so that she searches for

part of the planned time on her first visit and the remaining time on the way back. It

is not immediately obvious how this time should be divided, or whether allowing the

search to be broken up into two parts would mean that the total time spent searching

each location in a cycle should change. We therefore introduce the sweeping cycle.

Consider an n location heterogeneous patrol problem for some n ∈ N, along with

some ordering σ ∈ Σn and a vector x ∈ (R+)2n of search durations. Note that the

vector of search durations here is twice as long as for a simple cycle. The sweep cycle

characterised by σ and x is denoted as (σ↔,x) and is defined as follows. For each

i ∈ [n], xi is the duration of the first search of location i and x2n+1−i is the duration of

the second search of location i. The patroller initially searches each of the locations in

the order given by σ, starting with location σ(1) and finishing with a search of location

σ(n). Hitherto, this cycle is the same as a simple cycle. For a simple cycle the patroller

would then travel back to location σ(1) and repeat the process. However, for a sweep

cycle, the patroller instead immediately searches location σ(n) again and then carries

out the reverse process, searching the locations in the reverse ordering (ie, location

σ(n), then location σ(n− 1) and so on). The patroller finishes the first full sweep upon

completing the second search of location σ(1).

For example, if the patroller is following the sweep cycle

((1, 2, 3)↔, (0.5, 0.6, 0.7, 0.8, 0.9, 1)),

then she would start by searching location 1 for 0.5 units of time, then location 2 for

0.6 units of time, then location 3 for 0.7 units of time. She would then continue to



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 91

search location 3 for a further 0.8 units of time before travelling back to location 2 to

search there for a further 0.9 units of time and finally back to location 1 to search for

1 unit of time.

4.4.2 Optimising a Sweep Cycle

In this section we consider how to find the best sweep cycle.

Our first result for the sweep cycle shows us that for each i ∈ [n] the best sweep

pattern searches location i for the same duration during both visits. This result is not

obvious as the time between visits may not be same on the left and right sweep.

Theorem 4.8. Consider an n location patrol problem, for some n ∈ N. For each

i ∈ [n], the duration of both searches of location i when following the best sweep cycle

are of the same duration.

Proof. A sweep cycle is a type of cycle where each location is visited twice and so

Proposition 4.4 tells is that each of these searches must be of the same duration.

This is useful as it allows us to half the number of decision variables from 2n to n

which will make finding the vector of best search durations much easier.

Since the sweep cycle was motivated by line networks, it is useful to consider how

they compare to simple cycles in this specific context.

Theorem 4.9. In a line network, the best sweep cycle outperforms the best simple cycle.

Proof. Consider a line network with n ≥ 3 locations labelled in order from one end of

the line to the other. Proposition 4.6 tells us that a best simple cycle can be found

using the the natural ordering, 1, . . . , n. Let x = {x1, . . . , xn} be the vector of durations

for a best simple cycle using this ordering. Now consider a sweep cycle using the same

ordering where for each i ∈ [n], each search of location i is of length yi = xi/2. Since

each location is searched twice, this sweep cycle has the same total length as the length

of our best simple cycle. For locations 1 and n, the two searches take place one after

the other so it is clear that fi(σ,x) = fi(σ↔,y) for i = 1, n. It follows from Proposition

4.4 that fi(σ,x) > fi(σ↔,y) for i = 2, . . . , n− 1. Since the patroller wishes to minimise



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 92

the maximum time to discovery across all locations, this sweep policy performs equally

to the best simple cycle. Now, arbitrarily select a location j ∈ {2, . . . , n − 1} and set

yj = (xj − ε)/2 for some small ε > 0. This change reduces the total cycle time for the

sweep cycle by 2ε. Thus for all i ̸= j, fi(σ,x) > fi(σ↔,y) and as long as ε is chosen to

be sufficiently small then fj(σ,x) > fj(σ↔,y). Thus, the performance of this improved

sweep cycle is better than that of the best simple cycle.

4.4.3 The Case of Homogeneous Locations

Consider a patrol problem where all locations have the same detection rate. Unlike

when deriving the best simple cycle, the homogeneity of detection rates does not allow

us to conclude that the best duration will be the same at each location when considering

a sweep cycle. The reason that the dimension of the problem cannot be reduced in this

way is that the time between searches is not consistent from location to location when

following a sweep cycle. In particular, after the first search of the location at the start

of the sweep, the patroller must go to and visit every other location twice. She will then

conduct her second search of the first location, which immediately rolls into another

search of the same location at the start of the next cycle. In contrast, the two searches

of a location near the middle of the sweep will be more evenly spaced throughout the

cycle. It is therefore intuitive that the best search duration is longer for the first location

than one in the middle. However, there are two locations that will always have the same

search duration when detection rates are homogeneous. These are the locations at the

start and end of the sweep cycle since both receive two consecutive searches and then

are not visited again for the rest of the cycle. This observation allows us to reduce the

number of decision variables by one, which makes finding the best sweep cycle easier.

It is worth noting that while the detection rates should be the same for these two

locations, they do not need to be the same everywhere else.

The number of decision variables can be further reduced if certain other conditions

are met. Suppose that, in addition to detection rates being homogeneous for all loca-

tions, the travel time between each pair of adjacent locations along the line are also the

same. In this case the number of decision variables can be reduced to ⌈n/2⌉. This con-



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 93

dition is met when all locations are equally spread out along a line. In this somewhat

more restrictive case, the best search duration for any particular location i ≤ ⌊n/2⌋

must be the same as the best search duration for location n + 1 − i. If n is odd then

there is one location where i = n + 1 − i so this location is paired with itself. This is

because the time that the patroller spends away from location i after the first search of

location i is the same as the time that the patroller spends away from location n+1− i

after the second search of location n+ 1− i and vice versa.

4.4.4 The Case of Heterogeneous Locations

Like with simple cycles, if the detection rates are heterogeneous, then the number of

decision variables is equal to the number of locations.

We now provide an approach for computing the best sweep pattern given a particular

ordering σ. Recall that we have defined a sweep so that the endpoints are visited twice

in each cycle. Without loss of generality, assume that the ordering being used is the

identity ordering. Thus the cycle pattern takes the form 1 → · · · → n → n → · · · → 1.

Thus the experience of each location i ∈ [n] is as follows. First it is searched for xi,

then the patroller goes away for yi1 units of time, then it is searched for a further xi

units of time, then finally the patroller goes away for yi2 units of time. Note that for

the end location the time spent away can be zero.

Let c be the total cycle time. Thus

c =
n∑

j=1

2xj +
n−1∑
j=1

(dj,j+1 + dj+1,j) .

For each i ∈ [n] let yi1 be the time taken between the first and second search of

location i. Also let yi2 be the sum of times before the first search and after the second

search of location i. Thus, y11 = 0 and y12 = c− 2x1. For all i ∈ [n]\{1},

yi1 =
i−1∑
j=1

2xj +
i−1∑
j=1

(dj,j+1 + dj+1,j) .

Similarly yn1 = c− 2xn and yn2 = 0. For all i ∈ [n− 1],

yi2 =
n∑

j=i+1

2xj +
n−1∑
j=i

(dj,j+1 + dj+1,j) .



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 94

By examining (4.5) from the proof of Proposition 4.4 and applying Little’s Law it is

clear that the expected time to discover an attacker at a location i ∈ [n] while sweeping

is

fi(σ,x) =
1

λi

+
1

c

[
yi1 + yi2

λi

+
y2i1 + y2i2 + 2yi1yi2e

−λxi

1− e−2λxi
− y2i1 + y2i2

2

]
. (4.14)

Recall that the patroller wishes to minimise the maximum expected time to discover

an attacker across all locations. She therefore wishes to find

(x∗
1, · · · , x∗

n) = argmin
(x1,··· ,xn)∈(R+)n

(
max
i∈[n]

{fi(σ,x)}
)

where for each i ∈ [n], fi(σ,x) is given by (4.14).

We can therefore use (4.14) to find the best sweep cycle using a numerical approach

that we discuss in Section 4.5.2.

4.5 Numerical Demonstration

In this section we numerically demonstrate how to compute the best simple cycle and

the best sweep cycle. For (4.13) and (4.14) computing exact gradients is challenging.

Therefore, to use standard gradient descent methods, we would have to approximate

the gradient, which can be computationally expensive in high dimensions. Gradient

descent methods also do not take into account any of the structural properties of the

functions they are trying to optimise. Both of the functions we are trying to optimise

appear to be unimodal. We therefore present a ternary search algorithm which can be

used to compute the minimum of a unimodal function without the need for gradient

approximations. In Section 4.5.1 we present a ternary search algorithm capable of

computing the best simple cycle for a patrol problem with homogeneous detection rates.

In Section 4.5.2 we explain how nesting ternary search algorithms allows us to compute

the best cycle of a given type more generally. In Section 4.5.3, we implement the nested

ternary algorithm on a few examples to find the best simple cycle and, where a sweep

cycle seems appropriate, also find the best sweep cycle. We also present examples to

show that simple cycles and sweep cycles are not always optimal.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 95

4.5.1 Ternary Search

The basic ternary search, where the objective is to find a point within a chosen tolerance

ε > 0 of the minimum of a unimodal function f with one bounded decision variable,

works as follows:

1. Initialise a and b as the lower and upper bounds for the decision variable.

2. Let l = (2a+ b)/3 and r = (a+ 2b)/3.

3. Evaluate f(l) and f(r).

4. If f(l) ≥ f(r) then it is clear that the minimum cannot be in the lower third

so we update a = l. Similarly, if f(l) ≤ f(r) then it is clear that the minimum

cannot be in the upper third so we update b = r.

5. If (b − a)/2 is less than ε return the approximate optimal value (a + b)/2. Oth-

erwise, return to Step 2.

The number of iterations required for convergence depends on the initial difference

between a and b and the chosen tolerance level required for termination.

We wish to use ternary search to find the best patrol pattern of a given cycle type

for an n location heterogeneous patrol problem. In this section we focus on finding the

best simple cycle for problems with homogeneous locations. Proposition 4.6 tells us

that any minimum Hamiltonian cycle will allow us to find a best simple cycle. For the

case of homogeneous detection rates, we can use Proposition 4.7 to reduce the problem

of finding the best search duration for a simple cycle to a single dimension. To find x∗,

the best search duration for a simple cycle, we need to minimise (4.11).

To be able to apply ternary search to the problem of finding the best simple cycle

we need to show that (4.11) is unimodal in x.

Proposition 4.10. The function

F (x) =
D(σ∗) + nx− x

D(σ∗) + nx

(
1

λ
− D(σ∗) + nx− x

2
+

D(σ∗) + nx− x

1− e−λx

)
.

has a unique minimum for x > 0.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 96

Proof. To show that F (x) has a unique minimum for x > 0 we show that it is convex.

A full account of this proof is given in Appendix 4.7.2.

To use ternary search we also need to know an upper bound for the decision variable

in order to begin iterations. This can be done using the following algorithm:

1. Set x̂i = 1 as an initial estimate of x∗
i .

2. Let L = x̂i/2 and U = 2x̂i.

3. Evaluate f(L), f(x̂i) and f(U).

4. If f(x̂i) < min(f(L), f(U)) then we can conclude that f(L) is a lower bound for

x∗
i and f(U) is an upper bound for x∗

i .

5. Otherwise, if f(x̂i) ≥ f(L) replace L by L/2 and if f(x̂i) ≥ f(U) replace U by

2U and return to Step 3.

In Section 4.5.2 we discuss how ternary search can be adapted for problems where

finding the best vector of search durations cannot be reduced to 1 dimension.

4.5.2 Nested Ternary Search

In Section 4.5.1 we introduced ternary search and described how it could be used to

find the best simple cycle when detection rates are homogeneous. We now consider how

this approach can be adapted for finding the best simple cycle when detection rates are

not homogeneous, and also for finding the best cycle of other cycle types.

The difficulty here is that ternary search is only capable of optimising a single

decision variable, but we are now attempting to find a best vector of search durations.

This challenge can be addressed by nesting ternary search algorithms within each other.

This approach results in an algorithm with n layers, where each layer is a ternary search

algorithm aiming to optimise a single decision variable. We start with the top layer

by using ternary search to optimise x∗
1. Each time we call the function f in this layer,

another ternary search algorithm is run to find the best value of x2 for that fixed value

of x1. In each subsequent layer another decision variable is fixed until at the bottom



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 97

layer we are trying to find the best value of xn for fixed values of x1, · · · , xn−1. This

nesting procedure solves the issue of having a multi-dimensional decision variable but

results in an algorithm that scales poorly with n in terms of computational intensity.

Another consideration when applying this nested ternary search algorithm is uni-

modality of the objective function.

Conjecture 4.11. For both simple cycles and sweep cycles, let f(x1, . . . , xn) be the

expected time to discovery for the cycle where each location i ∈ [n] is searched for xi

units of time. The function

g(x1, . . . , xn−1) = min
xn∈R+

[f(x1, . . . , xn)]

has only one local minimum.

Proving this result in general is challenging. However, for a particular problem

instance, it is possible to graphically verify this property.

As an example, consider a patrol problem with 3 locations and the following pa-

rameters: λ1 = λ2 = 1, λ3 = 2, d12 = d21 = d23 = d32 = 1, and d13 = d31 = 2. When

considering the best ordering for a simple cycle, we refer to Proposition 4.6, which tells

us that any minimum Hamiltonian cycle will allow us to find a best simple cycle. For

a three location problem, any ordering without repetition is a minimum Hamiltonian

cycle. To find x∗, the vector of best search durations, for a simple cycle we need to

minimise the maximum of fi(σ,x) over i ∈ [n] where fi(σ,x) is given by (4.13).

Figure 4.4 depicts a surface for g(x1, x2) as defined in Conjecture 4.11 and Figure

4.5 is a contour plot for the same function. We can see from Figures 4.4 and 4.5

that within the ranges shown x1, x2 ∈ (1, 5), there exists a unique minimum for g.

Applying ternary search yields a best search duration of 2.488 at locations 1 and 2,

which matches what we can see in the contour plot. The best x3 corresponding to

this unique minimum is 1.408, which yields an expected time to discovery of 5.306.

Consequently, Conjecture 4.11 holds for simple cycles in this case.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 98

Figure 4.4: Surface showing convexity for a simple cycle

Figure 4.5: Contour plot showing convexity for a simple cycle

Finding the best ordering for a sweep cycle for a general patrol problem is also

challenging. However, as mentioned earlier, we only suggest using a sweep pattern in

scenarios similar to line networks where an efficient ordering is obvious. In this case

the points are in a line so 1 → 2 → · · · → n is the obvious ordering. To find x∗, the

vector of best search durations, for a sweep cycle, we need to minimise the maximum

of fi(σ↔,x) over i ∈ [n] where fi(σ↔,x) is given by (4.14).

Figure 4.6 depicts a surface for g(x1, x2) as defined in Conjecture 4.11 and Figure 4.7



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 99

depicts a contour plot for the same function. We can see from Figures 4.6 and 4.7 that

within the ranges shown x1, x2 ∈ (0.5, 3), there exists a unique minimum. Applying

ternary search yields a best search duration of 1.139 at location 1 and 1.406 at location

2 which matches what we can see in the contour plot. The best x3 corresponding to

this unique minimum is 0.834. Consequently, Conjecture 4.11 holds for sweep cycles in

this case. A sweep cycle with these parameters has an expected time to discovery of

5.048, which is better than the best simple cycle.

Figure 4.6: Surface showing convexity for a sweep cycle

Figure 4.7: Contour showing convexity for a sweep cycle



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 100

4.5.3 Examples

In this section we examine some specific three and four location patrol problems. The

three location scenarios are shown in Figures 4.8, 4.9, 4.10 and 4.11 while four location

scenarios are shown in Figure 4.12 and six location scenarios are shown in Figures 4.13

and 4.14. In each of these figures, the patrol problems are depicted as graphs with each

node representing a location and each arc representing a route between two locations.

In each scenario, the location number is given inside the node and the detection rate

for that location is noted beside the node. The time to travel between two locations

is displayed next to the corresponding arc. For simplicity, in all of these scenarios

the travel times between each pair of distinct locations are symmetric and so for all

i, j ∈ [n] we have dij = dji. Note that where there is no arc between two nodes it should

be understood that there is no direct route between the corresponding locations. Thus

the travel time between these locations is equal to the shortest indirect route between

these locations. For example, in scenarios (d), (e) and (f), shown in Figure 4.9, there

is no direct route between locations 1 and 3 so d13 = d12 + d23 = 2.

Example 4.12. Scenarios (a), (b) and (c), given in Figure 4.8 are each geographically

symmetric, meaning that all travel times are set to d for some d ∈ R+. In each of these

scenarios, d = 1. Scenarios (a) and (b) also have homogeneous detection rates with

λ = 1 for all locations in scenario (a) and λ = 2 for all locations in scenario (b).

Figure 4.8: Three location examples with unit travel times

For scenarios (a) and (b), the best simple cycle can be found using the ternary

search algorithm as described in Section 4.5.1. For scenario (a), the best simple cycle

searches each location for x∗ = 2.230 units of time which yields an expected time to



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 101

discovery of f(σ,x∗) = 5.333. For scenario (b), the best simple cycle searches each

location for x∗ = 1.361 units of time which yields an expected time to discovery of

f(σ,x∗) = 3.540. Since the only difference between these two scenarios is that the

homogeneous detection rate is higher for scenario (b), the expected time to discover

each attacker in (b), even under the same policy, must be lower. Additionally, it makes

sense that this policy could be further improved by reducing the amount of time spent

searching each location, thereby allowing the patroller to get back to the other locations

more quickly.

Scenario (c) has heterogeneous detection rates with λ1 = λ2 = 1 and λ3 = 2. The

best simple cycle for this problem can be computed using nested ternary search as

described in Section 4.5.2. The search duration for the two locations with the lower

detection rate is x∗
1 = x∗

2 = 2.304 and the duration for the other location is x∗
3 = 1.284.

These values yield an expected time to discover an attacker of f(σ,x∗) = 4.723. This

result lies between the expected time to discover an attacker in scenarios (a) and (b),

because two of the detection rates are the same as in scenario (a) and the other is the

same as in scenario (b).

The best sweep cycle can also be computed for each of these scenarios using nested

ternary search. These are not the sorts of problems where we would expect a sweep

pattern to perform well and indeed we can see from Table 4.2 that the best sweep cycle

performs worse than the best simple cycle for all three scenarios. For scenario (c), the

order in which the sweep pattern should visit the locations is not immediately obvious.

The results presented in Table 4.2 are for when location 3 is visited last. We would

expect the same result if location 3 is visited first. If location 3 was visited second the

sweep cycle performs slightly worse with an expected time to discover an attacker of

f(σ↔,x) = 5.056. ▲

The best simple and sweep cycles for each of the three location scenarios are shown

in Table 4.2. Each of these results were calculated using ternary search or nested

ternary search. The tolerance ε in all cases was set to 10−8. Throughout this section

all numerical results are rounded to three decimal places.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 102

Best Simple Cycle Best Sweep Cycle

Scenario x∗
1 x∗

2 x∗
3 f(σ,x∗) x∗

1 x∗
2 x∗

3 f(σ↔,x∗)

(a) 2.230 2.230 2.230 5.333 1.415 1.124 1.415 5.657

(b) 1.361 1.361 1.361 3.540 0.883 0.620 0.883 3.865

(c) 2.304 2.304 1.284 4.723 1.406 1.139 0.834 5.047

(d) 2.425 2.425 2.425 5.932 1.415 1.124 1.415 5.657

(e) 1.473 1.473 1.473 4.096 0.883 0.670 0.883 3.865

(f) 2.488 2.488 1.408 5.306 1.406 1.139 0.834 5.048

(g) 3.742 3.742 3.347 14.667 2.296 1.552 2.296 14.081

(h) 3.778 3.778 3.778 15.083 2.373 1.471 2.373 14.884

Table 4.2: Three location results for simple cycles and sweep cycles

Example 4.13. Scenarios (d), (e) and (f) given in Figure 4.9 each show a line of three

evenly spaced locations with d12 = d23 = 1 and d13 = 2. Scenarios (d) and (e) have

homogeneous detection rates with λ = 1 for all locations in scenario (d) and λ = 2

for all locations in scenario (e). The best simple cycle for each of these scenarios can

be found using the ternary search algorithm described in Section 4.5.1. Scenario (f)

has detection rates of λ1 = λ2 = 1 and λ3 = 2. We can find the best simple cycle for

scenario (f) and the best sweep cycle for scenarios (d), (e) and (f) using nested ternary

search as described in Section 4.5.2.

Figure 4.9: Three location examples with points equally spaced along a line

For scenario (d), the search durations for the best simple cycle are all x∗ = 2.425,

which yields an expected time to discover each attacker of f(σ,x∗) = 5.932. The search



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 103

durations for the best sweep are x∗
1 = x∗

3 = 1.415 for locations 1 and 3 and x∗
2 =

1.124 for location 2. These values yield an expected time to discover each attacker of

f(σ↔,x∗) = 5.657. During the sweep pattern, the patroller spends a higher proportion

of her time at locations 1 and 3. This observation makes sense, since both of these

locations have long gaps without visitation during the cycle. Sweeping also spends a

lower proportion of time travelling between locations, leading to a lower expected time

to discover each attacker.

For scenario (e), the search durations for the best simple cycle are all x∗ = 1.473,

which yields an expected time to discover each attacker of f(σ,x∗) = 4.096. The

search durations for the best sweep are x∗
1 = x∗

3 = 0.883 for locations 1 and 3 and

x∗
2 = 0.670 for location 2. These values yield an expected time to discover each attacker

of f(σ↔,x∗) = 3.865.

For scenario (f), the search durations for the best simple cycle are all x∗ = 2.488,

which yields an expected time to discover each attacker of f(σ,x∗) = 5.306. The search

durations for the best sweep are x∗
1 = 1.406, x∗

2 = 1.139 and x∗
3 = 0.834. These values

yield an expected time to discover each attacker of f(σ↔,x∗) = 5.048. As with scenario

(d), the best sweep cycle also performs better for both of these scenarios. ▲

So far, the scenarios we have discussed have been chosen because they have char-

acteristics that make either simple cycles or sweep cycles perform well. Recall from

Section 4.3.1 that an n location ring network is a set of n points arranged in a circle,

where it is only possible to move directly to adjacent locations. Thus for each i, j ∈ [n]

with i < j, the time taken to move from i to j is

min

(
j−1∑
k=i

dk,k+1,

n−1∑
k=1

dk,k+1 + dn,1 −
j−1∑
k=i

dk,k+1

)
.

Scenarios (a), (b) and (c) are examples of ring networks which we would expect a

simple cycle to perform particularly well for. Scenarios (d), (e) and (f) are examples of

line networks which we would expect a sweep cycle to perform particularly well for, as

discussed in Section 4.4.

However, a simple cycle is not necessarily optimal on a ring network, and a sweep

cycle is not necessarily optimal on a line network, as demonstrated in the next few



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 104

scenarios.

Example 4.14. In general, to show that a particular cycle type is not optimal, we first

need to find the best cycle of the given type and then find at least one patrol pattern

that performs better. Consider scenario (g), in which location 1 is very far away from

the other two locations.

Figure 4.10: A three location example with points unevenly spaced along a line

It is intuitive that if two out of three locations are very close together while the third

is further away then it may be beneficial for the patroller to move between the closer

locations a few times before making the much longer journey to the distant location.

If we imagine the two closer locations getting closer and closer together, they could

eventually be treated as a super location where the patroller moves rapidly between

them during the search. Thus, the alternative cycle type that we propose takes the

form 1 → 2 → 3 → 2 → 3. The best cycle type of this form can be found using nested

ternary search, using an altered version of (4.14) where yi1 and yi2 are given as follows:

y11 = d12 + x2 + d23 + x3 + d32 + x2 + d23 + x3 + d31,

y12 = 0,

y21 = d23 + x3 + d32,

y22 = d23 + x3 + d31 + 2x1 + d12,

y31 = d32 + x2 + d23,

y32 = d31 + 2x1 + d12 + x2 + d23.

Recall that for each i ∈ [n], yi1 and yi2 denote the time spent away from location i

following the first and second searches respectively. Scenario (g), shown in Figure 4.10,



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 105

is a line network with d12 = 10 and d23 = 0.1. The detection rate at all these locations

is 1. The best simple cycle involves searching each location for 3.742 units of time at

each location, which yields an expected time to discovery of f(σ,x∗) = 14.667.

The best sweep cycle involves searching locations 1 and 3 for 2.296 time units and

location 2 for 1.552 time units, which yields an expected time to discovery of f(σ↔,x∗) =

14.081. The best cycle of the type 1 → 2 → 3 → 2 → 3 involves searching location 1

for x∗
1 = 2.481 time units and locations 2 and 3 for x∗

2 = x∗
3 = 1.949 time units. These

values result in an expected time to discover each attacker of 14.008 time units, which

is slightly better than the best sweep cycle. ▲

Example 4.15. Scenario (h), shown in Figure 4.11 is similar to scenario (a) but with

location 1 moved so that its distance from both other locations is 10. The distance

between location 2 and 3 remains 1 and all detection rates are set to λ = 1.

Figure 4.11: A three location example in a stretched triangle

As with Example 4.14 we can find the best simple cycle and the best sweep cycle

using nested ternary search as described in Section 4.5.2. The best simple cycle involves

searching each location for x∗ = 3.778 units of time. These values result in an expected

time to discovery of f(σ,x∗) = 15.083. The best sweep cycle visits the locations in the

order that they are labelled. Locations 1 and 3 are searched for x∗
1 = x∗

3 = 2.373 units

of time and location 2 is searched for x∗
2 = 1.471 units of time. These values result

in an expected time to discovery of f(σ,x∗) = 14.884. This result demonstrates that

the sweep cycle can perform better than a simple cycle even when the locations do not

form a line network. The best cycle of the type 1 → 2 → 3 → 2 → 3 involves searching

location 1 for x∗
1 = 2.937 units of time and locations 2 and 3 for x∗

2 = x∗
3 = 1.941 units



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 106

of time. These values yield an expected time to discover each attacker of 14.830 units

of time, which is slightly better than the best sweep cycle. ▲

Example 4.16. Scenarios (i) and (j), both given in Figure 4.12, each have homogeneous

detection rates with λ = 1 for each of their four locations.

Figure 4.12: Four location examples in a ring

Since both scenarios have homogeneous detection rates, Proposition 4.7 tells us that

the best simple cycle must have the same search duration at each location. We can

therefore calculate the best simple cycle using ternary search as described in Section

4.5.1. For scenario (i) the best search duration for a simple cycle is 2.067 at all locations,

which yields an expected time to discover each attacker of 8.136. For scenario (j) the

best search duration for a simple cycle is 3.552 at all locations, which yields an expected

time to discover each attacker of 21.366. Unsurprisingly the best search duration is

longer for scenario (j) than for scenario (i), as the total travel time for each cycle is

larger in scenario (j).

As with scenarios (g) and (h), scenario (j) includes some travel times that are very

large. In scenario (j), locations 1 and 2 are very far from locations 3 and 4. Therefore

it may be beneficial to visit the first two locations a few times before travelling to the

other two. Similarly, once the patroller is on the right-hand side it may be beneficial to

search location 3 and 4 a few times before returning. Thus, we propose the following

cycle type: 1 → 2 → 1 → 2 → 3 → 4 → 3 → 4. A formula for the expected time

to discovery can be found using an altered version of (4.14) where yi1 and yi2 are as



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 107

follows:

y11 = d12 + x2 + d21,

y12 = d12 + x2 + d23 + x3 + d34 + x4 + d43 + x3 + d34 + x4 + d41,

y21 = d21 + x1 + d12,

y22 = d23 + x3 + d34 + x4 + d43 + x3 + d34 + x4 + d41 + x1 + d12,

y31 = d34 + x4 + d43,

y32 = d34 + x4 + d41 + x1 + d12 + x2 + d21 + x1 + d12 + x2 + d23,

y41 = d43 + x3 + d34,

y42 = d41 + x1 + d12 + x2 + d21 + x1 + d12 + x2 + d23 + x3 + d34.

Since the locations are homogeneous and the travel times between visits are identical

for each location (one long trip and one short trip) it follows that using the same search

duration for each location should perform well. Because there is only one decision

variable, the ternary search algorithm can be used to find the best policy of this type.

For scenario (i) the best search duration for a cycle of this type with all searches the

same length is 3.308 at all locations, which yields an expected time to discover each

attacker of 8.567. This cycle performs worse than the best simple cycle. For scenario

(j) the best search duration for a cycle of this type with all searches the same length is

2.060 at all locations, which yields an expected time to discover each attacker of 16.527.

This cycle performs significantly better than the best simple cycle and demonstrates

that even in ring networks a simple cycle is not always optimal. ▲

Example 4.17. Scenarios (k) and (l), both given in Figure 4.13, include 6 locations

spaced at unit intervals along a line. In both scenarios, the detection rates are such

that λ1 = λ6, λ2 = λ5 and λ3 = λ4. It is clear to see that this symmetry will ensure

that the best possible cyclic policy involves searching location i for the same amount

of time as location 7− i, for each i ∈ {1, 2, 3}.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 108

Figure 4.13: Six location examples in a line

For scenario (k), locations 1 and 6 have a detection rate of 1, locations 2 and 5 have

a detection rate of 2 and locations 3 and 4 have a detection rate of 3. Since the locations

in the middle have higher detection rates and also have greater time separations between

successive visits during a cycle, we would expect these locations to have shorter optimal

search times. For the best sweep cycle locations 1 and 6 have a search time of 1.396,

locations 2 and 5 have a search time of 0.0749 and locations 3 and 4 have a search time

of 0.00493. Recall that we have defined a sweep cycle such that the two end locations

are visited twice in immediate succession so the total search durations at these locations

is 2.792.

For scenario (l), locations 1 and 6 have a detection rate of 3, locations 2 and 5 have

a detection rate of 2 and locations 3 and 4 have a detection rate of 1. The two factors

referred to in scenario (k) (for justifying the shorter search times for locations in the

middle) are therefore in opposition and it is not immediately obvious whether the inner

or outer locations should be searched for longer. For the best sweep cycle locations 1

and 6 have a search time of 0.622, locations 2 and 5 have a search time of 0.137 and

location 3 and 4 have a search time of 0.0282. ▲

Example 4.18. Scenario (m), given in Figure 4.14, is a ring of six locations. Locations



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 109

1 and 2 have a detection rate of 1, locations 3 and 4 have a detection rate of 2 and

locations 5 and 6 have a detection rate of 3. This scenario may be particularly applicable

when the locations in the cycle can be classified into distinct types. This may be based

on different environments such as ‘open grassland’ or ‘forested’ which could reasonably

affect the detection rates.

Figure 4.14: Six location example in a ring

The best simple cycle can be calculated using nested ternary search, noting that since

three pairs of locations share detection rates we only require three decision variables.

The best search durations are 2.175 for the two locations with a detection rate of 1,

1.162 for the two locations with a detection rate of 2 and 0.798 for the two locations

with a detection rate of 3. ▲

4.6 Conclusions

In this chapter we introduced a patrol problem where the patroller is tasked with

protecting a set of dispersed locations from attacks. The time needed for the patroller

to travel between these locations is fixed and depends on the locations that she is

moving between. While at a location, the patroller can spend any amount of time

searching it for attackers. Her search has a conditional detection rate which is known

and can vary between locations. Her objective is to minimise the expected duration of

an attack regardless of where that attack occurs.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 110

We first examined the special case where there is no cost of moving between any

pair of locations. We showed that for this case it is optimal to continuously allocate

a constant fraction of effort to each location and that at each location the fraction of

effort that should be allocated is inversely proportional to the detection rate.

Motivated by ring and line networks we presented two cycle types: simple cycles

and sweep cycles. For each cycle type, we derived a formula for the expected time

to discover an attacker at a particular location. We then described how to find the

best patrol pattern of each cycle type using a nested ternary search algorithm. The

discussion of each cycle type also included some special cases where the number of

decision variables that need to be optimised can be reduced.

We gave several examples of ring and line networks and show how to compute the

best simple cycles and the best sweep cycles. In each of these cases we used the nested

ternary search algorithm to compute the best parameters of a given cycle type. We

also gave examples to demonstrate that the optimal policy on a ring network is not

necessarily a simple cycle, and the optimal policy on a line network is not necessarily a

sweep cycle. Since we have no way of deciding the best cycle type the best we can do

is make an informed guess of what cycle type will perform well and then find the best

parameters of that cycle type.

A possible area of further work is to develop heuristics for a general network. Further

work is also needed to prove Conjecture 4.5.

In this chapter, we have assumed that the cost of an attack is the same at each

location. A natural extension to this problem is to weigh attacks at different locations

differently. These weights could be used to indicate higher value assets that could

be damaged or stolen, more dangerous machinery that is more likely to cause harm if

broken, or more sensitive sources of information that would be more harmful or costly if

leaked. This information could be included in the model via an additional parameter ci

where, for each i ∈ [n], ci indicates the cost per unit time of an attacker being present at

location i. The patroller’s new objective would be to minimise the maximum expected

cost of an attack across all locations.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 111

4.7 Appendix

4.7.1 Supporting Evidence of Conjecture 4.5

Consider a two location patrol problem and suppose there exists an optimal cycle of

length c in which each location is visited m times and where the total time spent

searching location 1 is s. Let one of the arrivals at location 1 be the start of the

cycle and for each i ∈ [m], let xi denote the length of time that the patroller searches

location 1 for during the ith visit. Thus
∑m

i=1 xi = s. Also let yi denote the time

spent away from location 1 immediately after the ith search. This value includes the

time to travel to and from location 2 as well as some time spent searching there. Thus∑m
i=1 yi = c − s. We claim that the optimal values for the durations of these searches

are x1 = · · · = xm = s/m and the optimal durations for the gaps between the searches

are y1 = · · · = ym = (c− s)/m.

Consider the expected number of attackers at location 1 throughout the cycle at

steady state. We can think of this scenario as a queuing system with:

• A constant arrival rate of θ which represents attackers arriving at location 1.

• Infinitely many servers, each with a constant service rate λ, that are only active

while the patroller is in location 1.

The expected time a single attacker (or customer) spends in the system is comprised

of the expected service time (1/λ) and the expected idle time.

Let b denote the number of customers in the system at the start of the cycle during

steady state. The figure below shows the expected number of customers in the system

throughout the cycle. The white areas show when the servers are active and the grey

areas show when they are idle.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 112

Thus

b =

(
· · ·
((

be−λx1 +
θ

λ
(1−e−λx1)+θy1

)
e−λx2 +

θ

λ
(1−e−λx2)+θy2

)
e−λx3 + · · ·+θym

)
.

Here the dots how the m terms nested within each other. Collecting all b terms on the

left hand side gives us

b(1−e−λs) =

(
· · ·
((

θ

λ
(1−e−λx1)+θy1

)
e−λx2+

θ

λ
(1−e−λx2)+θy2

)
e−λx3+ · · ·+θym

)
.

Dividing by (1− e−λs) and rearranging yields

b = θ

[
1

λ
+

ym +
∑m−1

i=1 yie
−λ

∑m
j=i+1 xj

1− e−λs

]
.

If we define xm+1 = 0, then we can rewrite this equation as

b = θ

[
1

λ
+

∑m
i=1 yie

−λ
∑m+1

j=i+1 xj

1− e−λs

]
.

Write L for the long-run average number of customers in the system when the

patroller is on site (x1 and x2). The rate at which customers depart when the patroller

is on site is Lλ, so the average number of customers that depart the system in each

cycle is sLλ. The long-run average number of customers that arrive in each cycle is cθ.

Setting sLλ = cθ yields L = cθ/sλ.

The area of all white segments combined is therefore

Ls =
cθ

λ
.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 113

The area of the first shaded region is(
be−λx1 +

θ

λ
(1− e−λx1) +

θy1
2

)
y1

= θy1

(
1

λ
+

y1
2

+
m∑
i=1

yie
−λ(x1+

∑m+1
j=i+1 xj)

1− e−λs

)
The area of the second shaded region is((

be−λx1 +
θ

λ
(1− e−λx1) + θy1

)
e−λx2 +

θ

λ
(1− e−λx2) +

θy2
2

)
y2

= θy2

1

λ
+ y1e

−λx2 +
y2
2

+
e−λ(x1+x2)

(∑m
i=1 yie

−λ
∑m+1

j=i+1 xj

)
1− e−λs


For each k ∈ [m] the area of the kth shaded region is yk multiplied by:(

· · ·
((

be−λx1 +
θ

λ
(1− e−λx1) + θy1

)
e−λx2 +

θ

λ
(1− e−λx2) + θy2

)
e−λx3 + · · ·+ θyk

2

)
This can be rewritten as

θyk

(
1

λ
− yk

2
+

∑m
i=k+1 yie

−λ(
∑m+1

j=i+1 xj+
∑k

j=1 xj) +
∑k

i=1 yie
−λ

∑k
j=i+1 xj

1− e−λs

)
.

Adding these terms and dividing by c gives us the long-run average number of

customers in the system.

We want to find the values of x1, x2, y1 and y2 that minimise the long-run average

number of customers in the system. The area of the white segments has no dependence

on these parameters so it is sufficient to only consider the area of the shaded segments,

so we wish to minimise:

m∑
k=1

yk

(
1

λ
− yk

2
+

∑m
i=k+1 yie

−λ(
∑m+1

j=i+1 xj+
∑k

j=1 xj) +
∑k

i=1 yie
−λ

∑k
j=i+1 xj

1− e−λs

)

=
y1 + · · ·+ ym

λ
− y21 + · · ·+ y2m

2



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 114

+
1

1− e−λs

m∑
k=1

(
yk

(
m∑

i=k+1

yie
−λ(

∑m+1
j=i+1 xj+

∑k
j=1 xj) +

k∑
i=1

yie
−λ

∑k
j=i+1 xj

))

=
y1 + · · ·+ ym

λ
− y21 + · · ·+ y2m

2
+

1

1− e−λs(
m∑
k=1

m∑
i=k+1

ykyie
−λ(

∑m+1
j=i+1 xj+

∑k
j=1 xj) +

m∑
k=1

k∑
i=1

ykyie
−λ

∑k
j=i+1 xj

)
In the first set of sums i > k whereas in the second set of sums i ≤ k.

=
y1 + · · ·+ ym

λ
− y21 + · · ·+ y2m

2
+

1

1− e−λs(
y21 + · · ·+ y2m +

m∑
k=1

k−1∑
i=1

ykyi

(
e−λ(

∑i
j=1 xj+

∑m
j=k+1 xj) + e−λ

∑k
j=i+1 xj

))
To find the values of x1, . . . , xm that minimise this expression we need only consider

terms that contain x1, . . . , xm. Thus we seek to minimise:

m∑
k=1

k−1∑
i=1

ykyi

(
e−λ(

∑i
j=1 xj+

∑m
j=k+1 xj) + e−λ

∑k
j=i+1 xj

)
(4.15)

subject to
m∑
j=1

xj − s = 0 and
m∑
j=1

yj − c+ s = 0.

We will attempt to minimise (4.15) using the method of Lagrangian multipliers.

Define the Lagrangian function L as

L(x1, , · · · , xm, y1, · · · , ym, Z1, Z2)

=
m−1∑
i=1

m∑
k=i+1

ykyi

(
e−λ(

∑i
j=1 xj+

∑m
j=k+1 xj) + e−λ

∑k
j=i+1 xj

)
+Z1(x1 + x2 + x3 − s) + Z2(y1 + y2 + y3 − c+ s)

Now, we need to find the critical points by taking partial derivatives with respect

to each variable and setting them equal to zero. Finding the partial derivatives with

respect to x1, y1, Z1 and Z2 is relatively straight forward.

δL
δx1

= −λ

(
m−1∑
i=1

m∑
k=i+1

yiyke
−λ(

∑i
j=1 xj+

∑m
k+1)xj

)
+ Z1 = 0



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 115

δL
δy1

=
m∑
k=2

yk

(
e−λ(x1+

∑m
j=k+1 xj) + e−λ

∑k
j=2 xj

)
+ Z2 = 0

δL
δZ1

=
m∑
i=1

xm − s = 0

δL
δZ2

=
m∑
i=1

ym − c+ s = 0

The other partial derivatives are a bit more challenging to compute. Recall that

we arbitrarily chose one of m visits of location 1 to be the start of the cycle and then

labelled the visits of m accordingly. By redefining the start of the cycle we can find an

expression that is equivalent to 4.15 but where the subscripts are shifted. To make use

of this observation it is necessary to define xm+t = xm and ym+t = ym for each t ∈ [m].

We can then write

δL
δxt

= −λ

(
m−1∑
i=1

m∑
k=i+1

yi+t−1yk+t−1e
−λ(

∑i
j=1 xj+t−1+

∑m
k+1 xj+t−1)

)
+ Z1 = 0

δL
δyt

=
m∑
k=2

yk+t−1

(
e−λ(xk+

∑m
j=k+1 xj+k−1) + e−λ

∑k
j=2 xj+k−1

)
+ Z2 = 0

This system of equations can be solved by taking x = x1 = · · · = xm = s/m,

y = y1 = · · · = ym = (c− s)/m,

Z1 = λy

(
m−1∑
i=1

ie−λix

)
and

Z2 = −2y

(
m−1∑
i=1

e−λix

)
.

We can therefore conclude that setting x = x1 = · · · = xm = s/m and y = y1 =

· · · = ym = (c− s)/m yields a stationary point for (4.15).

It remains to show that this stationary point is unique and corresponds to the

global minimum. The fact that these equations are not linear makes this problem very

challenging.



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 116

4.7.2 Proof of Proposition 4.10

Let

F (x) =
D(σ∗) + nx− x

D(σ∗) + nx

(
1

λ
− D(σ∗) + nx− x

2
+

D(σ∗) + nx− x

1− e−λx

)
. (4.16)

We want to show that (4.16) has a unique minimum for x > 0. This can be done

by showing that the second derivative is positive, i.e. proving convexity. Since we have

fixed σ∗ we will, for ease of notation, write d = D(σ∗) throughout this discussion. The

second derivative can then be written as

F ′′(x) =
G(x)

λ(d+ nx)3(1− e−λx)3
, (4.17)

where

G(x) =λ3(d+ nx)2(d+ (n− 1)x)2e−λx(1 + e−λx) (4.18)

− 2λ2(d+ nx)(d+ (n− 1)x)((n− 2)d+ n(n− 1)x)e−λx(1− e−λx) (4.19)

+ 2nd(1− e−3λx − 3e−λx + 3e−2λx) (4.20)

+ d2λ(1 + e−3λx − e−λx − e−2λx). (4.21)

Recall that n ∈ N\{1} and that d, λ > 0. It is therefore clear that the denominator

in (4.17) is positive. Since we can rewrite line (4.20) as 2nd(1 − e−λx)3 it is also clear

that this term is positive. The final term given by line (4.21) is also positive because

g(y) = e−λxy is convex in y, so g(0) + g(3) > g(1) + g(2).

Thus, to prove that (4.17) is positive it is sufficient to show that the sum of (4.18)

and (4.19) is positive. These terms have a common factor of

λ2(d+ nx)(d+ (n− 1)x)e−λx

which is clearly positive. We now proceed by induction on n. Define

fn(x) =λ(d+ nx)(d+ (n− 1)x)(1 + e−λx) (4.22)

− 2((n− 2)d+ n(n− 1)x)(1− e−λx) (4.23)

First, we consider

f2(x) = λ(d+ 2x)(d+ x)(1 + e−λx)− 4x(1− e−λx).



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 117

This expression is clearly increasing in d so it is sufficient to show that f2(x) > 0 when

d = 0. In this case

f2(x) = 2λx2(1 + e−λx)− 4x(1− e−λx).

Differentiating this with respect to x gives us

f ′
2(x) = 4λx+ 4e−λx − 2λ2x2e−λx − 4

Now define p = λx and consider

g(p) = 4p+ 4e−p − 2p2e−p − 4.

Its first, second and third derivatives are

g′(p) = 4− 4e−p − 4pe−p + 2p2e−p,

g′′(p) = 2pe−p(4− p),

g′′′(p) = 2e−p(p2 − 6p+ 4).

By examining g′′(p), we can see that g′(p) has a stationary point when p = 4 and since

g′′′(4) < 0, this stationary point is a maximum. Given that g′(0) = 0 and g′(p) → 4 as

p → ∞ and the stationary point is a maximum, g′(p) must always be positive. Hence

f ′
2(x) ≥ 0 and f2(x) ≥ 0 for all x > 0.

Moving on to the inductive step, we have

fn+1(x)− fn(x)

= −2d+ 2λnxe−λx + 2λdxe−λx − 4nx+ 2de−λx + 2λnx2 + 2λdx+ 4nxe−λx

= 2d(λx+ λxe−λx + e−λx − 1) + 2nx(2e−λx − 2 + λx+ λxe−λx).

Define p = λx and consider

g(p) = p+ pe−p + e−p − 1

and

h(p) = 2e−p − 2 + p+ pe−p.

It is sufficient to show that g(p) ≥ 0 and h(p) ≥ 0. We have

g′(p) = 2d(1 + e−p − pe−p − e−p) = 2d(1− pe−p).



CHAPTER 4. PATROLLING DISPERSED LOCATIONS 118

The function 1− pe−p is non-negative with a minimum when p = 1 and thus g′(p) ≥ 0.

Since g(0) = 0 this shows that g(p) ≥ 0.

It now only remains to show that h(p) ≥ 0. We have

h′(p) = 1− (1 + p)e−p (4.24)

h′′(p) = pe−p (4.25)

Is is clear that h′′(p) ≥ 0 so since h′(0) = 0 and h(0) = 0 it follows that h′(p) ≥ 0 and

h(p) ≥ 0 for p ≥ 0. This confirms that fn+1(x)− fn(x) ≥ 0.

Given that f2(x) ≥ 0 and fn+1(x)− fn(x) ≥ 0, we conclude that for all n ∈ N\{1},

fn(x) ≥ 0. This completes the proof that the function F (x) in (4.16) is convex.



Chapter 5

Conclusions and Further Work

In this chapter we conclude the thesis by summarising our contributions and proposing

some potential avenues for further work.

5.1 Summary

In this thesis, we have studied a search problem and a patrol problem. A key feature

shared by these two problems is that the searcher and the patroller both need to travel

between dispersed locations to look for attackers, whereas most of the works in the

literature assume travel times are negligible.

In the search problem presented in Chapter 3, a target is randomly hidden in one of

n locations (for some n ∈ N) according to a known probability distribution. A searcher

dynamically visits and searches these locations as directed by a search policy. We

initially applied the Gittins’ index policy, which is known to be optimal for the problem

without travel times, to the more general problem (with travel times). We showed

that whenever the index for the searcher’s current location is largest, this index policy

will always mandate an optimal action. Motivated by this discovery, we developed an

index-based heuristic policy using restless bandit theory that takes into account the

cost of moving to the candidate location. To gain some insight into how this index

heuristic performed, we compared it to the optimal policy in the case of two location

symmetric problems which can be solved analytically. We showed that in this case the

119



CHAPTER 5. CONCLUSIONS AND FURTHER WORK 120

structures of both the index policy and the optimal policy are the same, but the index

heuristic will sometimes search the current location fewer times than specified under

the optimal policy. More generally, we were able to prove that, when the travel times

are all the same, the index heuristic only instructs the searcher to remain at her current

location when it is optimal to do so.

We also developed two other heuristics that make use of these indices. The first

heuristic uses the standard index to plan a route and then uses this plan to construct a

more informed index. The second heuristic uses the indices to identify some candidate

locations and then uses dynamic programming to approximate an optimal policy on

the sub-problem only containing the candidate locations. For all three of these base

heuristics we proposed two methods for augmenting their performance. The first is an

iterative insertion method and the second is a single step policy improvement algorithm.

We then provided extensive numerical results to evaluate the performances of these

heuristics with respect to the approximated optimal values.

The second problem studied in this thesis, presented in Chapter 4, concerns a pa-

troller who patrols a set of dispersed locations to detect attackers. As with the search

problem, there is a travel time between each pair of locations. The patroller can spend

any amount of time searching each location on each visit, during which time they detect

any attacker at a constant rate. We initially explored the special case in which all travel

times are set to zero and showed that the optimal policy involves the patroller dividing

her effort between different locations. This is possible since the locations can be moved

between instantly and as frequently as required. We showed that at each location the

fraction of effort that should be allocated is inversely proportional to the detection rate.

For the case where travel times are non-zero we introduced two types of patrol

cycles—simple cycle and sweep cycle—that intuitively should perform well in some

broadly applicable classes of patrol problems. Simple cycles involve visiting each of

the locations in the same order. Moreover, each time a given location is visited, the

patroller spends the same amount of time searching that location. Intuitively, a simple

cycle is a strong policy for patrolling a perimeter.

As part of our work on simple cycles, we showed that:



CHAPTER 5. CONCLUSIONS AND FURTHER WORK 121

• If a cycle visits a location twice then both of these visits should be of the same

duration.

• The order in which locations are visited in the best simple cycle must correspond

to a minimum Hamiltonian cycle.

• In the special case where all detection rates are the same, all locations should be

visited for the same amount of time.

The second cycle type—the sweep cycle—is motivated by patrolling a border. In

the sweep cycle, the patroller searches all locations in some order during a forward trip

and then searches all locations in the reverse order in a return trip. As part of our work

on sweep cycles, we showed that:

• The best sweep cycle will spend the same amount of time searching each location

on both visits in a cycle.

• When the locations are arranged in a line, the best sweep cycle will always perform

better than the best simple cycle.

For each of these cycle types we derived a formula for the expected time to discover

an attacker across all locations. We then numerically computed the best simple cycle

and the best sweep cycle for a variety of examples. While a simple cycle and a sweep

cycle are strong candidate policies, we presented examples to show that the simple cycle

need not be optimal for a ring network, and the sweep cycle need not be optimal for a

line network.

5.2 Further Work

We now propose some possible directions for future research.

5.2.1 Extensions of the Search Model

There are many ways in which the distributed discrete search problem presented in

Chapter 3 can be extended. Since our problem is itself an extension of a well studied



CHAPTER 5. CONCLUSIONS AND FURTHER WORK 122

search problem, it is intuitive to initially consider extensions and variations of that

problem. Many of these extensions and variations are discussed in Chapter 2. We can

then consider including travel times within each of these models.

For example, Chew (1973) considers the possibility that the target is not in one

of the n locations (i.e., that
∑n

i=1 pi < 1) and shows that at each epoch an optimal

policy either searches the location with the largest Gittins’ index or stops searching.

An intuitive first attempt to generate a policy for a problem with travel times would be

to generate a search sequence using one of the approaches described in Chapter 3 and

then truncate it using an appropriate variation of the stopping rule from Chew (1973).

Alternative objectives could also be considered, such as maximising the probability

of finding the object by a certain deadline. For the classical problem without travel

times, Chew et al. (1967) shows that under certain conditions it is optimal to follow

the Gittins index policy until the next proposed search exceeds the deadline. However,

with this objective, the order in which locations are searched does not matter. It

therefore follows that each location should be visited at most once to avoid unnecessary

travel times. If the budget is sufficiently high and we can assume that all locations

will be visited at least once then we can simply remove the duration of the minimum

Hamiltonian cycle and solve the problem without travel times and a reduced budget. If

the budget is small, then for any subset of the locations we can find a candidate solution

that visits only those locations. This can be done by first subtracting the duration of

the minimum Hamiltonian cycle of the desired subset of locations from the budget and

then solving the problem without travel times. It makes more sense to omit locations

that have a high search cost, a low detection probability, a low initial hiding probability

or that are remote. If there are too many locations to check all possible subsets then a

heuristic could be devised to select suitable subsets.

5.2.2 Extensions of the Patrol Model

There are also a number of extensions that may be considered for the patrol model

presented in Chapter 4.

In our model, we assumed that the cost of an attack is the same at each location. A



CHAPTER 5. CONCLUSIONS AND FURTHER WORK 123

natural extension to this problem is to weight attacks at different locations differently.

These weights could be used to indicate higher value assets that could be damaged or

stolen, more dangerous machinery that is more likely to cause harm if broken or more

sensitive sources of information that would be more harmful or costly if leaked. This

information could be included in the model via an additional parameter ci where, for

each i ∈ [n], ci indicates the cost per unit time of an attacker being present at location

i. The patroller’s new objective would be to minimise the maximum expected cost of

an attack across all locations.

5.2.3 Extensions of Other Models

We now propose another model that includes travel times. Search operations often

take place over large areas and can last days, weeks or even years. Conditions affecting

the search can change drastically, both among locations and over time. For example,

adverse weather can make things harder to spot or interfere with sensors. Even in

shorter duration searches conditions may change. During a bomb scare, a searcher’s

ability to search an area improves after people have been evacuated. In this case, having

access to an alternative search mode such as sniffer dogs may be useful. Clarkson et al.

(2020) considers problems with multiple search modes but assumes that both modes

are available to the searcher at all times.

We can include this variability into the model as follows. Consider an object hid-

den in one of n geographically dispersed locations according to a known probability

distribution. At any given time the conditions at each location may be ‘good’ or ‘bad’.

Searches that are carried out while conditions are ‘good’ are more likely to be success-

ful. Each day, the searcher may pay to search one of these locations or wait for more

favourable conditions. Initially, the probability that the object is at location i is pi,

where p1 + . . .+ pn = 1. A search at location i has a cost of ci and the probability that

the search is successful is gi if the conditions are good and bi if the conditions are bad.

If the searcher chooses to wait, she will incur a cost of c0. This search model could have

many potential real-world applications.



Bibliography

Agmon, N., Kraus, S., and Kaminka, G. A. (2008a). Multi-robot perimeter patrol

in adversarial settings. In 2008 IEEE International Conference on Robotics and

Automation, pages 2339–2345. IEEE.

Agmon, N., Sadov, V., Kaminka, G. A., and Kraus, S. (2008b). The impact of adversar-

ial knowledge on adversarial planning in perimeter patrol. In Proceedings of the 7th

international joint conference on Autonomous agents and multiagent systems-Volume

1, pages 55–62.

Alpern, S., Baston, V., and Gal, S. (2009). Searching symmetric networks with

utilitarian-postman paths. Networks: An International Journal, 53(4):392–402.

Alpern, S., Bui, T., Lidbetter, T., and Papadaki, K. (2022a). Continuous patrolling

games. Operations Research, 70(6):3076–3089.

Alpern, S., Chleboun, P., Katsikas, S., and Lin, K. Y. (2022b). Adversarial patrolling

in a uniform. Operations Research, 70(1):129–140.

Alpern, S. and Gal, S. (2002). Searching for an agent who may or may not want to be

found. Operations Research, 50(2):311–323.

Alpern, S. and Gal, S. (2006). The theory of search games and rendezvous, volume 55.

Springer Science & Business Media.

Alpern, S. and Lidbetter, T. (2014). Searching a variable speed network. Mathematics

of Operations Research, 39(3):697–711.

124



BIBLIOGRAPHY 125

Alpern, S., Lidbetter, T., Morton, A., and Papadaki, K. (2016). Patrolling a pipeline.

In Decision and Game Theory for Security: 7th International Conference, GameSec

2016, New York, NY, USA, November 2-4, 2016, Proceedings 7, pages 129–138.

Springer.

Alpern, S., Lidbetter, T., and Papadaki, K. (2019). Optimizing periodic patrols against

short attacks on the line and other networks. European Journal of Operational Re-

search, 273(3):1065–1073.

Alpern, S., Morton, A., and Papadaki, K. (2011). Patrolling games. Operations research,

59(5):1246–1257.

Assaf, D. and Zamir, S. (1985). Optimal sequential search: a bayesian approach. The

Annals of Statistics, 13(3):1213–1221.

Assaf, D. and Zamir, S. (1987). Continuous and discrete search for one of many objects.

Operations Research Letters, 6(5):205–209.

Auger, J. M. (1991). An infiltration game on k arcs. Naval Research Logistics (NRL),

38(4):511–529.

Basilico, N., Gatti, N., and Amigoni, F. (2012). Patrolling security games: Definition

and algorithms for solving large instances with single patroller and single intruder.

Artificial intelligence, 184:78–123.

Basilico, N., Gatti, N., Amigoni, F., et al. (2009). Leader-follower strategies for robotic

patrolling in environments with arbitrary topologies. In Proceedings of the Interna-

tional Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS),

pages 57–64.

Baston, V. and Kikuta, K. (2013). Search games on networks with travelling and search

costs and with arbitrary searcher starting points. Networks, 62(1):72–79.

Bertsekas, D. P. (2013). Rollout Algorithms for Discrete Optimization: A Survey. In

Handbook of Combinatorial Optimization, edited by Panos M. Pardalos, Ding Zhu

Du and Ronald L. Graham, 2989-3013. New York: Springer.



BIBLIOGRAPHY 126

Birge, J. and Pollock, S. (1989). Modelling rural police patrol. Journal of the Opera-

tional Research Society, 40(1):41–54.

Blachman, N. M. (1959). Prolegomena to optimum discrete search procedures. Naval

Research Logistics Quarterly, 6(4):273–281.

Black, W. L. (1965). Discrete sequential search. Information and control, 8(2):159–162.

Blackwell, D. (1962). Notes on dynamic programming. Unpublished, Dept. of Stat.,

University of California.

Bui, T. and Lidbetter, T. (2023). Optimal patrolling strategies for trees and complete

networks. European Journal of Operational Research, 311(2):769–776.

Bui, T., Lidbetter, T., and Lin, K. Y. (2024). Optimal pure strategies for a discrete

search game. European Journal of Operational Research, 313(2):767–775.

Chaiken, J. M. and Dormont, P. (1978). A patrol car allocation model: Capabilities

and algorithms. Management Science, 24(12):1291–1300.

Chelst, K. (1978). An algorithm for deploying a crime directed (tactical) patrol force.

Management Science, 24(12):1314–1327.

Chew, M. C. (1973). Optimal stopping in a discrete search problem. Operations Re-

search, 21(3):741–747.

Chew, M. C. et al. (1967). A sequential search procedure. The Annals of Mathematical

Statistics, 38(2):494–502.

Clarkson, J., Glazebrook, K. D., and Lin, K. Y. (2020). Fast or Slow: Search in Discrete

Locations with Two Search Modes. Operations Research, 68(2):552–571.

Clarkson, J. and Lin, K. Y. (2024). Computing optimal strategies for a search game in

discrete locations. INFORMS Journal on Computing.

Clarkson, J., Lin, K. Y., and Glazebrook, K. D. (2023). A classical search game in

discrete locations. Mathematics of Operations Research, 48(2):687–707.



BIBLIOGRAPHY 127

Dagan, A. and Gal, S. (2008). Network search games, with arbitrary searcher starting

point. Networks: An International Journal, 52(3):156–161.

De Guenin, J. (1961). Optimum distribution of effort: an extension of the koopman

basic theory. Operations Research, 9(1):1–7.

Dobbie, J. M. (1968). A survey of search theory. Operations Research, 16(3):525–537.

Elmaliach, Y., Agmon, N., and Kaminka, G. A. (2009). Multi-robot area patrol under

frequency constraints. Annals of Mathematics and Artificial Intelligence, 57:293–320.

Enslow Jr, P. H. (1966). A bibliography of search theory and reconnaissance theory

literature. Naval Research Logistics Quarterly, 13(2):177–202.

Garrec, T. (2019). Continuous patrolling and hiding games. European Journal of

Operational Research, 277(1):42–51.

Gittins, J. (1974). A dynamic allocation index for the sequential design of experiments.

Progress in statistics, pages 241–266.

Gittins, J. (1989). Multi-armed bandit allocation indices. John Wiley & Sons.

Gittins, J., Glazebrook, K., and Weber, R. (2011). Multi-armed bandit allocation in-

dices. John Wiley & Sons.

Gittins, J. C. (1979). Bandit processes and dynamic allocation indices. Journal of the

Royal Statistical Society: Series B (Methodological), 41(2):148–164.

Glazebrook, K. D., Ruiz-Hernandez, D., and Kirkbride, C. (2006). Some indexable

families of restless bandit problems. Advances in Applied Probability, 38(3):643–672.

Hohzaki, R. (2016). Search games: Literature and survey. Journal of the Operations

Research Society of Japan, 59(1):1–34.

Jotshi, A. and Batta, R. (2008). Search for an immobile entity on a network. European

Journal of Operational Research, 191(2):347–359.



BIBLIOGRAPHY 128

Kadane, J. B. (1968). Discrete search and the Neyman-Pearson lemma. Journal of

Mathematical Analysis and Applications, 22(1):156–171.

Kadane, J. B. (1971). Optimal whereabouts search. Operations Research, 19(4):894–

904.

Kimeldorf, G. and Smith, F. H. (1979). Binomial searching for a random number of

multinomially hidden objects. Management Science, 25(11):1115–1126.

Koopman, B. O. (1946). Search and Screening. OEG Rep.

Koopman, B. O. (1956). The theory of search. i. kinematic bases. Operations research,

4(3):324–346.

Koopman, B. O. (1957). The theory of search: Iii. the optimum distribution of searching

effort. Operations research, 5(5):613–626.

Kress, M., Lin, K. Y., and Szechtman, R. (2008). Optimal discrete search with imperfect

specificity. Mathematical methods of operations research, 68(3):539–549.

Larson, R. C. (1972). Urban police patrol analysis, volume 28. MIT Press Cambridge,

MA.

Lau, H., Huang, S., and Dissanayake, G. (2008). Discounted mean bound for the

optimal searcher path problem with non-uniform travel times. European journal of

operational research, 190(2):383–397.

Lee, S. M., Franz, L. S., and Wynne, A. J. (1979). Optimizing state patrol manpower

allocation. Journal of the Operational Research Society, 30(10):885–896.

Lidbetter, T. (2013). Search games with multiple hidden objects. SIAM Journal on

Control and Optimization, 51(4):3056–3074.

Lidbetter, T. (2020). Search and rescue in the face of uncertain threats. European

Journal of Operational Research, 285(3):1153–1160.



BIBLIOGRAPHY 129

Lidbetter, T. and Lin, K. Y. (2019). Searching for multiple objects in multiple locations.

European Journal of Operational Research, 278(2):709–720.

Lin, K. Y. (2022). Optimal patrol of a perimeter. Operations Research, 70(5):2860–2866.

Lin, K. Y., Atkinson, M. P., Chung, T. H., and Glazebrook, K. D. (2013). A graph

patrol problem with random attack times. Operations Research, 61(3):694–710.

Lin, K. Y., Atkinson, M. P., and Glazebrook, K. D. (2014). Optimal patrol to un-

cover threats in time when detection is imperfect. Naval Research Logistics (NRL),

61(8):557–576.

Lin, K. Y. and Singham, D. I. (2016). Finding a hider by an unknown deadline.

Operations Research Letters, 44(1):25–32.

Matula, D. (1964). A periodic optimal search. The American Mathematical Monthly,

71(1):15–21.

McGrath, R. G. and Lin, K. Y. (2017). Robust patrol strategies against attacks at

dispersed heterogeneous locations. International Journal of Operational Research,

30(3):340–359.

Mela, D. F. (1961). Information theory and search theory as special cases of decision

theory. Operations Research, 9(6):907–909.

New Straits Times (2017). Final report on flight MH370 expected to be

completed this year - liow. https://www.nst.com.my/news/2017/02/216228/

final-report-flight-mh370-expected-be-completed-year-liow. Accessed:

2024-02-07.

Olson, D. G. and Wright, G. P. (1975). Models for allocating police preventive patrol

effort. Journal of the Operational Research Society, 26(4):703–715.

Papadaki, K., Alpern, S., Lidbetter, T., and Morton, A. (2016). Patrolling a border.

Operations Research, 64(6):1256–1269.



BIBLIOGRAPHY 130

Portugal, D. and Rocha, R. P. (2013). Distributed multi-robot patrol: A scalable and

fault-tolerant framework. Robotics and Autonomous Systems, 61(12):1572–1587.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley and sons.

Richardson, H. R., Stone, L. D., et al. (1971). Operations analysis during the under-

water search for Scorpion. Naval Research Logistics Quarterly, 18(2):141–157.

Ross, S. M. (1969). A problem in optimal search and stop. Operations Research,

17(6):984–992.

Ross, S. M. (1983). Introduction to stochastic dynamic programming: Probability and

mathematical.

Shechter, S. M., Ghassemi, F., Gocgun, Y., and Puterman, M. L. (2015). Trading off

quick versus slow actions in optimal search. Operations Research, 63(2):353–362.

Smith, F. H. and Kimeldorf, G. (1975). Discrete sequential search for one of many

objects. The Annals of Statistics, pages 906–915.

Stone, L. D. (2004). Theory of Optimal Search. Informs.

Stone, L. D., Royset, J. O., Washburn, A. R., et al. (2016). Optimal Search for Moving

Targets. Springer.

Subelman, E. J. (1981). A hide–search game. Journal of Applied Probability, 18(3):628–

640.

Sweat, C. W. (1970). Sequential search with discounted income, the discount a function

of the cell searched. The Annals of Mathematical Statistics, 41(5):1446–1455.

Szechtman, R., Kress, M., Lin, K., and Cfir, D. (2008). Models of sensor operations for

border surveillance. Naval Research Logistics (NRL), 55(1):27–41.



BIBLIOGRAPHY 131

Taylor III, B. W., Moore, L. J., Clayton, E. R., Davis, K. R., and Rakes, T. R. (1985).

An integer nonlinear goal programming model for the deployment of state highway

patrol units. Management Science, 31(11):1335–1347.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples. Biometrika, 25(3-4):285–294.

Tijms, H. C. (2003). A first course in stochastic models. John Wiley and sons.

Tognetti, K. P. (1968). An optimal strategy for a whereabouts search. Operations

Research, 16(1):209–211.

Washburn, A. R. (2014). Search and Detect. CreateSpace Independent Publishing

Platform.

Wegener, I. (1982). The discrete search problem and the construction of optimal allo-

cations. Naval Research Logistics Quarterly, 29(2):203–212.

Whittle, P. (1988). Restless bandits: Activity allocation in a changing world. Journal

of applied probability, 25(A):287–298.

Yanovski, V., Wagner, I. A., and Bruckstein, A. M. (2003). A distributed ant algorithm

for\protect efficiently patrolling a network. Algorithmica, 37:165–186.


