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Abstract

Regular vine sequences permit the organisation of variables in a random vector along a

sequence of trees. Vine-based dependence models have become greatly popular as a way

to combine arbitrary bivariate copulas into higher-dimensional ones, offering flexibility,

parsimony, and tractability. In this project, we use regular vine sequences to decompose

and construct the exponent measure density of a multivariate extreme value distribution,

or, equivalently, the tail copula density. Although these densities pose theoretical challenges

due to their infinite mass, their homogeneity property offers simplifications. The theory

sheds new light on existing parametric families and facilitates the construction of new ones,

called X-vines. Computations proceed via recursive formulas in terms of bivariate model

components. We develop simulation algorithms for X-vine multivariate Pareto distributions

as well as methods for parameter estimation and model selection on the basis of threshold

exceedances. The methods are illustrated by Monte Carlo experiments and a case study

on US flight delay data.

Key words: exponent measure, graphical model, multivariate Pareto distribution, pair

copula construction, regular vine, tail copula
∗Namur Institute for Complex Systems, University of Namur, Rue Grafé 2, 5000 Namur, Belgium. E-mail:

anna.kiriliouk@unamur.be, jeongjin.lee@unamur.be
†LIDAM/ISBA, UCLouvain, Voie du Roman Pays 20, 1348 Louvain-la-Neuve, Belgium. Corresponding

author. E-mail: johan.segers@uclouvain.be

1



1 Introduction

For multivariate extremes, margin-free tail dependence models based on max-stable distribu-

tions arise from classical limit theory for sample extremes (de Haan and Resnick, 1977). A

question of high interest is the construction of such models that are flexible, parsimonious, and

computationally tractable, and scale well as the dimension grows (Engelke and Ivanovs, 2021).

To do so, we propose a novel approach based on regular vine tree sequences (Bedford and Cooke,

2001, 2002), called X-vines. The models can easily be built in arbitrary dimension by combining

bivariate components only. The latter can be chosen independently from one another, giving

great flexibility. The pairs are grouped in trees, the number of which determines the complexity

of the model. Computations proceed by recursive algorithms.

For copula-based dependence modelling, outside the context of extreme value analysis, vine

constructions have grown into a versatile and widely applied approach (Czado, 2019; Czado

and Nagler, 2022; Nagler and Vatter, 2023). Our contribution is to make vine-based methods

operational, in theory and practice, for densities of exponent measures of multivariate extreme

value distributions. The challenge to overcome is that these densities do not integrate to one

but to infinity. A change of margin transforms these into tail copula densities, which still have

infinite mass, but with structural properties that resemble copula densities more closely.

Figure 1 shows a regular vine sequence V in dimension d = 5. The sequence consists of

four trees T1, . . . , T4, in which the edges of one tree become nodes in the next one. Each of the

d(d− 1)/2 = 10 pairs of variables appears as the leading pair before the semicolon on exactly

one edge. The numbers behind the semicolons refer to conditioning variables. The first tree

represents a Markov tree, while the subsequent trees add higher-order dependence relations.

An X-vine specification consists of a regular vine sequence V , together with, for each edge

in the first tree, a bivariate exponent measure or tail copula density, and, for each edge of the

subsequent trees, a bivariate copula density, not necessarily stemming from extreme value theory.

For the example in Fig. 1, four bivariate exponent measure densities (T1) and six bivariate

copula densities (T2, T3, T4) would be required. These bivariate components can be chosen

independently from another, without any constraints. Our main result shows how to combine
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T1 :
12 23

24
45

12 23 24 45
T2 : 13;2 34;2 25;4

13;2 34;2 25;4
T3 : 14;23 35;24

14;23 35;24
T4 : 15;234

Figure 1: A regular vine sequence V in dimension d = 5 consisting of trees T1, . . . , T4, where
Tj has d− j + 1 nodes and d− j edges. The nodes of T1 are {1, . . . , 5}, while the edges of Tj
become the nodes of Tj+1.

bivariate building blocks into a single multivariate exponent measure or tail copula density.

Further, we show that commonly used parametric models in extreme value analysis are actually

examples of such X-vine models. We leverage the recursive nature of regular vine sequences

both in theory and computations.

The models constructed in this way turn out to be the tail limits of regular vine copulas.

For the special case of D-vine copulas, such tail limits were already computed in Joe (1996)

and Joe et al. (2010), focusing on tail dependence functions rather than densities. Li and Wu

(2013) define tail densities and compute those of D-vine copulas in dimensions three and four. In

Simpson et al. (2021), tails of D-vine and C-vine copulas were investigated from the perspective

of the limiting shapes of sample clouds.

X-vine constructions are related to but different from recently proposed graphical models

for extremes, either for directed or undirected graphs (Gissibl and Klüppelberg, 2018; Engelke

and Hitz, 2020; Engelke et al., 2022, 2024). Markov trees (Segers, 2020; Hu et al., 2024) are a

special case in the intersection of graphical and X-vine models.

After reviewing background on multivariate extremes and regular vine sequences in Section 2,

we state a version of Sklar’s theorem for tail copula densities in Section 3. Some parametric

examples are worked out in Section 4, with a focus on the simplifying assumption that the

conditional copula densities only depend on the indices of the conditioning variables, but not

their actual values. Section 5 contains the paper’s main results, showing on the one hand how a
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general tail copula density can be decomposed along any regular vine sequence, and, on the other

hand, how to construct a tail copula density from a regular vine sequence and bivariate building

blocks. The so-called X-vine models arising in this way are put to work in the subsequent

sections, covering simulation algorithms (Section 6), parameter estimation and model selection

(Section 7), simulation studies (Section 8), and a case study on US flight delay data (Section 9)

taken from Hentschel et al. (2024). Section 10 concludes. The supplementary material contains

a detailed example to illustrate our theory, the proofs of the paper’s results, expressions based on

exponent measure densities, and additional numerical results. The methods are implemented in

the R (R Core Team, 2023) package Xvine1, relying in particular on packages graphicalExtremes

(Engelke et al., 2022) and VineCopula (Nagler et al., 2023).

2 Background

We write [d] = {1, . . . , d} for the index set of the variables. Bold symbols refer to multivariate

quantities. For a point x = (x1, . . . , xd) ∈ Rd and a subset J ⊆ [d], write subvectors as

xJ = (xj)j∈J and x\J = (xj)j∈[d]\J . Mathematical operations on vectors such as addition,

multiplication and comparison are considered component-wise.

2.1 Multivariate extreme value theory: tail copulas and their densities

Tail copulas. Classical extreme value theory starts from the assumption that the distribution

function F of a random vector X = (X1, . . . , Xd) is in the max-domain of attraction of a

multivariate extreme value distribution (Beirlant et al., 2004; de Haan and Ferreira, 2007). This

assumption concerns the tails of the univariate marginal distribution functions F1, . . . , Fd and

the tail dependence structure of X. Our focus is on the latter aspect, that is, on probabilities

of high values occurring jointly among the variables Xj. Let C be the survival copula of X:

under the standing assumption that F1, . . . , Fd are continuous, C is the distribution function of

the random vector U = (U1, . . . , Ud) with uniformly distributed components Uj = 1− Fj(Xj)

1Available from https://github.com/JeongjinLee88/Xvine
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for j ∈ [d]. Our interest is in high values of Xj and thus in low outcomes of Uj.

Definition 2.1 (Tail copula and tail copula measure). The (lower) tail copula R of C is the

function on E = (0,∞]d \ {∞} defined by

R(x) = lim
t↘0

t−1C(tx), x ∈ E, (2.1)

provided the limit exists. If it does, then the tail copula measure, denoted by the same symbol

R, is the Borel measure on E determined by R((0,x]) = R(x) for x ∈ E.

The term ‘tail copula’ stems from Schmidt and Stadtmüller (2006) in case d = 2. The tail

copula measure already appears in Einmahl et al. (2001) and is closely linked to the exponent

measure Λ in Eq. (2.9) below, introduced in de Haan and Resnick (1977). The limit (2.1)

appears in Jaworski (2006) and in Joe et al. (2010), who call it ‘tail dependence function’.

The total mass of the tail copula measure R equals infinity but R(B) is finite for Borel sets

B contained in {x ∈ E : minx ⩽M} for some M > 0. Its univariate margins are equal to the

one-dimensional Lebesgue measure:

∀j ∈ [d], ∀xj ∈ (0,∞), R ({y ∈ E : yj ⩽ xj}) = xj. (2.2)

Equation (2.1) implies that R is homogeneous of order one, both as a function and as a measure:

for x ∈ E, Borel sets B ⊆ E, and s ∈ (0,∞),

R(sx) = sR(x) and R(sB) = sR(B). (2.3)

Any Borel measure R on E satisfying (2.2) and (2.3) is a tail copula measure, i.e., is the limit

in (2.1) for some copula C; see Lemma B.1 in the supplement.

Tail copula densities. Throughout, we assume that the tail copula measure R has no mass on

the hyperplanes through infinity, R ({x ∈ E : xj = ∞}) = 0 for all j ∈ [d], so R is supported on

(0,∞)d. Further, we assume that R is absolutely continuous with respect to the d-dimensional
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Lebesgue measure with continuous density r : (0,∞)d → [0,∞), that is, R(B) =
∫
B
r(x) dx

for all Borel sets B ⊆ (0,∞)d. Choosing B = (0,x] for x ∈ (0,∞)d, we recover r from R by

r(x) = ∂d

∂x1···∂xd
R(x) for all x ∈ (0,∞)d. The marginal constraint (2.2) implies

∀j ∈ [d], ∀xj ∈ (0,∞),

∫
(0,∞)d−1

r(x) dx\j = 1. (2.4)

In view of (2.3), r is homogeneous of order 1− d:

∀s ∈ (0,∞), ∀x ∈ (0,∞)d, r(sx) = s1−d r(x). (2.5)

Properties (2.4) and (2.5) characterise the set of d-variate tail copula densities ; see Section 4 for

some parametric families.

By Scheffé’s lemma, if the copula C has density c and the tail copula measure R has density

r, then (2.1) is implied by limt↘0 t
1−dc(tx) = r(x) for all x ∈ (0,∞)d. Li and Wu (2013) call r

the (lower) tail density function of C. A word of caution: for a given copula density c, the limit

limt↘0 t
1−dc(tx) may exist for all x ∈ (0,∞)d but not be a tail copula density, as the marginal

constraint (2.4) may fail. A case in point is the independence copula, with density c ≡ 1, in

which case the said limit is zero.

Margins of tail copulas. For non-empty J ⊆ [d], let πJ : (0,∞)d → (0,∞)J denote the

coordinate projection x 7→ πJ(x) = xJ and let RJ = R ◦ π−1
J denote the J-th marginal measure

RJ(B) = R
(
π−1
J (B)

)
= R

({
x ∈ (0,∞)d : xJ ∈ B

})
, (2.6)

for Borel sets B ⊆ (0,∞)J . The choice B =
∏

j∈J (0, xj] for xj ∈ (0,∞) shows that RJ is the tail

copula measure of the copula CJ of UJ = πJ(U ), as in Definition 2.1. For xJ ∈ (0,∞]J \ {∞},

we have RJ(xJ) = R(x̃J) with x̃j = xj if j ∈ J and x̃j = ∞ if j ∈ [d] \ J . For xJ ∈ (0,∞)J ,
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the density rJ of the measure RJ is

rJ(xJ) =
∂|J |∏
j∈J ∂xj

RJ

(∏
j∈J

(0, xj]

)
=

∫
x\J∈(0,∞)d−|J|

r(x) dx\J , (2.7)

and, provided J ̸= [d], is obtained from r by integrating out the variables xj with indices j ̸∈ J .

Relations between tail copulas and other concepts in multivariate extremes. We

review a number of related terms from multivariate extreme value theory. This paragraph can

be skipped at first reading, as the contributions in Sections 3 to 5 do not depend on it.

Equation (2.1) is equivalent to the assumption that the random vector V = (V1, . . . , Vd)

with Vj = 1/Uj for j ∈ [d] satisfies

lim
n→∞

P(V ⩽ nz)n = G(z) = exp {−ℓ (1/z)} , z ∈ (0,∞)d, (2.8)

that is, V is in the max-domain of attraction of a multivariate extreme value (or max-stable)

distribution G defined in terms of the stable tail dependence function ℓ(x) = R (E \ [x,∞]) for

x ∈ [0,∞)d. The margins of V are unit-Pareto, P(Vj > x) = 1/x for x ⩾ 1, while those of G are

unit-Fréchet, Gj(x) = exp(−1/x) for x > 0. Equivalently, the distribution of V is multivariate

regularly varying (de Haan and Resnick, 1977; Resnick, 2007) with limit measure

Λ( · ) = R ({x ∈ E : (1/x1, . . . , 1/xd) ∈ · }) on [0,∞)d \ {0} , (2.9)

that is, tP(V ∈ tB) → Λ(B) as t→ ∞ for Borel sets B contained in [0,∞)d \ [0, ε]d for some

ε > 0 and satisfying Λ(∂B) = 0, with ∂B the boundary of B. The measure Λ is called exponent

measure because of the identity G(z) = exp {−Λ ([0,∞) \ [0, z])} for z ∈ (0,∞)d.

Another statement equivalent to (2.1) is that the conditional distribution of V /t given

maxV > t is asymptotically multivariate Pareto, that is, we have the weak convergence

(V /t | maxV > t)⇝ Y , t→ ∞, (2.10)
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where Y is a random vector supported on L>1 :=
{
y ∈ [0,∞)d : maxy > 1

}
with distribution

equal to the restriction of Λ in (2.9) to L>1 and normalized to a probability measure,

P(Y ∈ B) = Λ(B ∩ L>1)/Λ(L>1) (2.11)

for Borel sets B ⊆ Rd and normalizing constant Λ(L>1) = ℓ(1). For y ∈ L>1, we also have

P(Y ⩾ y) = R(1/y)/ℓ(1).

Up to a location shift, multivariate Pareto distributions are a special case of multivariate

generalised Pareto distributions introduced in Rootzén and Tajvidi (2006). They play a prominent

role in the theory of graphical models for extremes (Engelke and Hitz, 2020).

In practice, it may be convenient to reduce the information contained in the tail copula

measure to a dependence coefficient. In this paper, we will encounter the tail dependence

coefficients χJ = R({x ∈ (0,∞]d : maxj∈J xj < 1}) = RJ(1, . . . , 1) for index sets J ⊆ [d] with

two or more elements.

If the tail copula measure R is concentrated on (0,∞)d and has density r, the exponent

measure and the multivariate Pareto distribution have densities too. The exponent measure Λ

is concentrated on (0,∞)d and has density

λ(y) = r(1/y)
d∏

j=1

y−2
j , y ∈ (0,∞)d, (2.12)

while the multivariate Pareto vector Y has probability density λ(y)/ℓ(1) for y ∈ L>1.

2.2 Regular vine sequences and the vine telescoping product formula

Informally, a regular vine sequence on d elements consists of a linked set of d−1 trees, where the

edges in tree j−1 become nodes in tree j, joined by an edge only if they share a common node as

edges in tree j − 1, for j ∈ {2, . . . , d− 1} (Bedford and Cooke, 2002). Regular vine copulas, also

called pair copula constructions, allow for flexible high-dimensional modelling using parametric

families of bivariate copulas as building blocks for the edges of each tree. For recent overviews,
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see, for example, Czado (2019) or Czado and Nagler (2022). Our objective is to do the same

for tail copula densities. All concepts introduced below are illustrated via a five-dimensional

example in Section A of the supplementary material.

A tree T = (N,E) is a connected, acyclic graph comprising a finite node set N and an edge

set E ⊆ {{x, y} : x, y ∈ N, x ̸= y}. Any two distinct nodes in a tree are connected by a unique

path.

Definition 2.2 (Regular vine (tree) sequence). An ordered set of trees V = (T1, . . . , Td−1) is a

regular vine tree sequence on d ⩾ 3 elements if T1 = (N1, E1) is a tree with node set N1 = [d],

while for j ∈ {2, . . . , d− 1}, the tree Tj = (Nj, Ej) has node set Nj = Ej−1 and the proximity

condition holds: for any {a, b} ∈ Ej, we have |a ∩ b| = 1, that is, two nodes in Tj can be

connected only if, as edges in Tj−1, they share a common node.

Definition 2.3 (Complete union, conditioning set, conditioned set). Let V = (T1, . . . , Td−1) be

a regular vine sequence, with Tj = (Nj, Ej). For any edge e ∈ Ej, the complete union of e is

Ae = e if j = 1 and Ae = Aa ∪ Ab if e = {a, b} and j ∈ {2, . . . , d− 1}. Informally, Ae is the

subset of nodes in [d] reachable from e by the membership relation. The conditioning set of an

edge e = {a, b} ∈ Ej with j ⩾ 2 is De = Aa ∩ Ab and the conditioned set of e is Ce = Ce,a ∪ Ce,b

with Ce,a = Aa \De = Aa \Ab and Ce,b = Ab \De = Ab \Aa. If e = {a, b} ∈ E1, then Ce,a = {a},

Ce,b = {b}, Ce = e and De = ∅.

For an edge e = {a, b} ∈ Ej , the sets Ce,a, Ce,b and De are disjoint and their union equals Ae,

a node set with j +1 elements. The sets Ce,a and Ce,b are singletons while De has j − 1 elements.

Clearly, De = Aa \ Ce = Ab \ Ce. The edge e is also written as e = (Ce,a, Ce,b;De) and, since Ce,a

and Ce,b are singletons, {ae} and {be}, say, we abbreviate e = (ae, be;De), with ae, be ∈ [d] and

the convention that ae < be, that is, ae = min Ce and be = max Ce. Similarly, for e = {a, b} ∈ E1,

the convention is that a < b. In Fig. 1, for instance, the edge e labelled (14; 23) in T3 has ae = 1,

be = 4, and De = {2, 3}. See Section B.1 in the supplement for some additional properties.

For positive scalars γ1, . . . , γd, the identity
∏d

j=2(γj/γj−1) = γd/γ1 is a telescoping product.

Regular vine sequences enjoy a similar property that will be key to Theorem 5.1 and which, to

the best of our knowledge, has not yet been stated in the literature.
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Lemma 2.4 (Vine telescoping product). Let d ⩾ 3 be an integer and let γJ ∈ (0,∞) for

every non-empty J ⊆ [d], with γj := γ{j} = 1 for every j ∈ [d]. Given a regular vine sequence

V = (Tj = (Nj, Ej))
d−1
j=1 on [d], we have

γ[d] =
∏
e∈E1

γe ·
d−1∏
j=2

∏
e={a,b}∈Ej

γDe · γAe

γAa · γAb

. (2.13)

With the notation γI|J = γI∪J/γJ , the last factor in (2.13) is

γDe · γAe

γAa · γAb

=
γ{ae,be}|De

γae|De · γbe|De

. (2.14)

Remark B.4 in Appendix B.1 in the supplement generalises Lemma 2.4 to factorisations of

γJ for certain non-empty subsets J ⊆ [d], while Remark B.5 provides a generalisation of (2.13)

without the restriction that γj = 1 for all j ∈ [d].

3 Sklar’s theorem for tail copula densities

Let r be a d-variate tail copula density, so properties (2.4) and (2.5) hold. Recall its multivariate

margins in (2.7). For non-empty, disjoint I, J ⊂ [d] and for xI ∈ (0,∞)I and xJ ∈ (0,∞)J such

that rJ(xJ) > 0, define rI|J(xI |xJ) := rI∪J(xI∪J)/rJ(xJ) for all xI∪J ∈ (0,∞)I∪J . Viewing the

“conditional” tail copula density rI|J as an |I|-variate probability density, we can decompose it

into |I| univariate probability densities and a copula density.

Proposition 3.1 (Sklar’s theorem: direct part). Let r be a d-variate tail copula density and

let I, J ⊂ [d] be non-empty and disjoint. For xJ ∈ (0,∞)J such that rJ(xJ) > 0, the function

rI|J( · |xJ) : (0,∞)I → [0,∞), defined via xI 7→ rI|J(xI |xJ), is a probability density on (0,∞)I .

For i ∈ I, it has marginal probability density xi 7→ ri|J(xi|xJ) and cumulative distribution

function xi 7→ Ri|J(xi|xJ) :=
∫ xi

0
ri|J(t|xJ) dt, with quantile function ui 7→ R−1

i|J (ui|xJ). If
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|I| ⩾ 2, then the copula density of rI|J( · |xJ) is

∀uI ∈ (0,∞)I , cI;J(uI ;xJ) :=
rI|J(xI |xJ)∏
i∈I ri|J(xi|xJ)

with xi = R−1
i|J (ui|xJ). (3.1)

The homogeneity property (2.5) induces certain scaling properties.

Lemma 3.2 (Scale equi- and invariance). In Proposition 3.1, for xJ ∈ (0,∞)J such that

rJ(xJ) > 0, the family
{
rI|J( · |txJ) : t ∈ (0,∞)

}
of probability densities is a scale family: if the

random vector ξI has probability density rI|J( · |xJ), then the random vector tξI has probability

density rI|J( · |txJ). As a consequence, for all t ∈ (0,∞), xI ∈ (0,∞)I , uI ∈ (0, 1)I and i ∈ I,

we have ri|J(txi|txJ) = ri|J(xi|xJ), R−1
i|J (ui|txJ) = t ·R−1

i|J (ui|xJ), and

cI;J(uI ; txJ) = cI;J(uI ;xJ). (3.2)

In particular, if J = {j} for some j ∈ [d], then cI;j( · ;xj) = cI;j( · ; 1) does not depend on the

value of xj ∈ (0,∞).

Remark 3.3 (Conditional independence). Let Y be the multivariate Pareto vector in (2.11),

suppose d ⩾ 3, and let i, j be distinct elements in [d], with J = [d]\{i, j}. Provided r is positive

and continuous, Yi and Yj are conditionally independent given YJ in the sense of Definition 1

in Engelke and Hitz (2020) if and only if ci,j;J(ui, uj;xJ) = 1 for all (ui, uj) ∈ (0, 1)2 and

xJ ∈ (0,∞)J , the density of the independence copula. This statement follows by combining the

factorization property in Proposition 1 in Engelke and Hitz (2020) with equations (2.12) and

(3.1); see also (C.1) in Appendix C in the supplement for an expression of cI;J in terms of the

exponent measure density λ.

Definition 3.4 (Simplifying assumption). The family of copula densities cI;J( · ;xJ) in (3.1)

satisfies the simplifying assumption if the copula densities do not depend on xJ ∈ (0,∞)J , that

is, there exists a single copula density cI;J such that cI;J(uI ;xJ) = cI;J(uI) for all uI ∈ (0, 1)I

and xJ ∈ (0,∞)J .

If J is a singleton, J = {j}, the scale invariance (3.2) implies that {cI;j( · ;xj) : xj ∈ (0,∞)}
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always satisfies the simplifying assumption. In Section 4, we will see that the copula families

induced by many commonly used parametric exponent measure models satisfy the simplifying

assumption for all I and J .

As a converse to Proposition 3.1, we can combine several tail copula densities along a

scale-invariant family of copula densities to form a tail copula density in higher dimensions.

With slight abuse of notation, write i ∪ J := {i} ∪ J for i ∈ I. A family of k-variate copula

densities {c( · ; θ) : θ ∈ Θ} indexed by a Borel set Θ ⊆ Rm is jointly measurable if the map

(u, θ) 7→ c(u; θ) is Borel measurable on (0, 1)k ×Θ.

Proposition 3.5 (Sklar’s theorem: converse part). Let I ∪ J be a partition of [d] into two

disjoint, non-empty sets, with d ⩾ 3 and |I| ⩾ 2. Let (ri∪J)i∈I be an |I|-tuple of (|J | + 1)-

variate tail copula densities with common margin rJ . Let
{
cI;J( · ;xJ) : xJ ∈ (0,∞)J

}
be a

jointly measurable family of |I|-variate copula densities such that (3.2) holds. Then the function

r : (0,∞)d → [0,∞) defined by

r(x) := rJ(xJ) ·
∏
i∈I

ri|J(xi|xJ) · cI;J
(
Ri|J(xi|xJ), i ∈ I;xJ

)
, (3.3)

for x ∈ (0,∞)d such that rJ(xJ) > 0 and zero otherwise, is a d-variate tail copula density with

margins ri∪J for i ∈ I.

4 Parametric families of tail copula densities

We will compute the copula densities cI;J( · ;xj) in (3.1) for tail copula densities r arising

from two parametric families: the scaled extremal Dirichlet model (Section 4.1) due to Belzile

and Nešlehová (2017), encompassing the logistic, negative logistic and Dirichlet max-stable

models, and the Hüsler–Reiss model (Section 4.2). For both families, the simplifying assumption

(Definition 3.4) is satisfied for all choices of I and J , and the copula densities cI;J take on known

parametric forms. This section can be skipped at first reading.
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4.1 Scaled extremal Dirichlet model

In dimension d ⩾ 2, consider parameters α1, . . . , αd > 0 and ρ > −min(α1, . . . , αd) with ρ ̸= 0.

The angular measure density of the scaled extremal Dirichlet model is introduced in Belzile

and Nešlehová (2017, Proposition 5). By Eq. (2.12) and Lemma B.2 in the supplement, the

corresponding tail copula density is

r(x) =
Γ(ᾱ + ρ)

d|ρ|d−1
∏d

j=1 Γ(αj)
·

{
d∑

j=1

c(αj, ρ)
1/ρx

−1/ρ
j

}−ρ−ᾱ

·
d∏

j=1

c(αj, ρ)
αj/ρx

−αj/ρ−1
j , (4.1)

for x ∈ (0,∞)d, where ᾱ = α1 + · · · + αd and c(α, ρ) = Γ(α + ρ)/Γ(α). The model is closed

under marginalisation: for J ⊆ [d] with |J | ⩾ 2, the marginal tail copula density rJ in (2.7) is

of the same form in dimension |J | and with parameters (αj)j∈J and ρ. The model unites and

extends several well-known parametric families in multivariate extreme value analysis:

• if α1 = . . . = αd = 1 and ρ > 0, we get the negative logistic model (Joe, 1990);

• if α1 = . . . = αd = 1 and −1 < ρ < 0, we obtain the logistic model (Gumbel, 1960);

• if ρ = 1, we get the Coles–Tawn extremal Dirichlet model (Coles and Tawn, 1991).

In McNeil and Nešlehová (2010, Definition 3), the family of Liouville copulas is defined as

the collection of survival copulas of random vectors of the form Y = SW , where W has a

Dirichlet distribution on the unit simplex and is independent of the positive random variable S.

The special case where W is uniformly distributed on the unit simplex yields the family of

Archimedean copulas (McNeil and Nešlehová, 2009).

Proposition 4.1. Let r be the scaled extremal Dirichlet tail copula density in (4.1) in dimension

d ⩾ 3. For every pair of disjoint, non-empty subsets I, J ⊂ [d] with |I| ⩾ 2, the copula densities

cI;J( · ;xJ) in (3.1) satisfy the simplifying assumption (Definition 3.4). If ρ > 0, then cI;J is

equal to the density of the |I|-variate Liouville copula with Dirichlet parameters (αi)i∈I and with

radial density on (0,∞) proportional to s 7→ s
∑

i∈I αi−1 · (s+ 1)−ρ−
∑

k∈I∪J αk . If ρ < 0, then cI;J

is equal to the density of the survival copula of the above Liouville copula.

In special cases, the copula densities cI;J can be identified more explicitly (calculations in

Appendix B.3 in the supplement):
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• if α1 = . . . = αd = 1 and ρ > 0, then cI;J is the density of the |I|-variate Clayton copula

with parameter θ/ (1 + |J |θ) with θ = 1/ρ > 0;

• if α1 = . . . = αd = 1 and −1 < ρ < 0, then cI;J is the density of the |I|-variate Clayton

survival copula with parameter θ/ (|J |θ − 1) with θ = −1/ρ > 1.

In both cases, the dependence decreases as the number |J | of conditioning variables increases.

4.2 Hüsler–Reiss model

Let Dd be the set of symmetric, strictly conditionally negative definite matrices, that is, all

matrices Γ = (Γij)
d
i,j=1 ∈ Rd×d of the form Γij = Var(Ai − Aj) for a d-variate random vector

A = (A1, . . . , Ad) with positive definite covariance matrix, i.e., Γ is a variogram matrix. Fix

k ∈ [d] and consider the (d− 1)× (d− 1)-dimensional positive definite covariance matrix

Σ(k) = 1
2
(Γik + Γjk − Γij)i,j ̸=k ; (4.2)

for Γ as in the previous sentence, we have Σ
(k)
ij = Cov(Ai − Ak, Aj − Ak). The d-variate

Hüsler–Reiss tail copula density is

r(x; Σ(k)) =

(∏
i:i ̸=k

x−1
i

)
ϕd−1

(
x̄\k; Σ

(k)
)
, x ∈ (0,∞)d, (4.3)

where ϕd−1 is the centered (d − 1)-dimensional Gaussian density with the stated covariance

matrix and x̄\k =
(
log(xi/xk)− 1

2
Γik

)
i:i ̸=k

. The exponent measure density λ associated to r via

(2.12) appears in Engelke et al. (2015), where it is shown that it does not depend on the choice

of k ∈ [d]. The corresponding max-stable distribution G in (2.8) goes back to Hüsler and Reiss

(1989), who studied maxima of triangular arrays of Gaussian random vectors.

For a matrix M and for index sets K and L, write MKL = (Mij)i∈K,j∈L. Let Φ denote the

standard normal distribution function and recall that the m-variate Gaussian copula density

with (m×m)-dimensional positive definite correlation matrix R evaluated in u ∈ (0, 1)m is

cR(u) = |R|−1/2 · exp
{
−1

2
z⊤ (R−1 − Ip

)
z
}

where zi = Φ−1(ui). (4.4)
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Proposition 4.2. Let Γ be a d × d variogram with d ⩾ 3 and let r be the Hüsler–Reiss tail

copula density in (4.3). For every pair of disjoint, non-empty subsets I, J ⊂ [d] with |I| ⩾ 2,

the copula densities cI;J( · ;xJ) in (3.1) satisfy the simplifying assumption (Definition 3.4). The

copula density cI;J is equal to the |I|-variate Gaussian copula density (4.4) with correlation

matrix RI|J = (∆
(k)
I|J)

−1/2Σ
(k)
I|J (∆

(k)
I|J)

−1/2 for any k ∈ J , where ∆
(k)
I|J is the diagonal matrix with

the same diagonal as Σ
(k)
I|J = Σ

(k)
II − Σ

(k)
IJ

(
Σ

(k)
JJ

)−1

Σ
(k)
JI .

The matrix RI|J in Proposition 4.2 is the correlation matrix of the conditional Gaussian

distribution with covariance matrix Σ
(k)
I|J , the corresponding Schur complement. Its expression

depends on the choice of k ∈ J , although the actual matrix does not. It remains to be

investigated how to express it in terms of the Hüsler–Reiss precision matrix Θ introduced in

Hentschel et al. (2024).

5 Vine decompositions of tail copula densities

5.1 X-vines: density decomposition and construction

In this section, we show that any tail copula density r in dimension d ⩾ 3 can be decomposed

along any regular vine sequence (Definition 2.2) on d elements into d− 1 bivariate tail copula

densities and
∑d−2

i=1 i =
(
d−1
2

)
bivariate copula densities. Moreover, copula densities with only

a single conditioning variable satisfy the simplifying assumption (Definition 3.4). Conversely,

starting from any regular vine sequence on d ⩾ 3 elements, any collection of d− 1 bivariate tail

copula densities and any collection of
(
d−1
2

)
bivariate copula densities, a d-variate tail copula

density can be assembled. We coin tail copula densities constructed in this way as X-vines.

Appendix C in the supplement states the main results in terms of exponent measure densities.

Theorem 5.1 (Tail copula density decomposition along a regular vine). Let r be a d-variate

(d ⩾ 3) tail copula density and let V = (Tj)
d−1
j=1 with Tj = (Nj, Ej) be a regular vine sequence on
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[d]. For x ∈ (0,∞)d, we have

r(x) =
∏
e∈E1

rae,be(xae , xbe) ·
d−1∏
j=2

∏
e∈Ej

cae,be;De

(
Rae|De(xae|xDe), Rbe|De(xbe|xDe);xDe

)
, (5.1)

where, for e = (ae, be;De) ∈ E2 ∪ · · · ∪ Ed−1, the pair-copula density cae,be;De is

cae,be;De (uae , ube ;xDe) =
rae,be|De(xae , xbe|xDe)

rae|De(xae|xDe) · rbe|De(xbe|xDe)
, (5.2)

with xae = R−1
ae|De

(uae|xDe) and xbe = R−1
be|De

(ube|xDe) for uae , ube ∈ (0, 1).

The decomposition (5.1) also applies to marginal tail copula densities rJ for index sets

J = Af for some edge f in the vine; see Remark B.7 in the supplement. For the pair copula

Cae,be;De( · , · ;xDe) associated to the edge e = (ae, be;De) in the regular vine sequence, consider

the first-order partial derivatives

Cae|be;De(uae | ube ;xDe) :=
∂

∂ube
Cae,be;De(uae , ube ;xDe) =

∫ uae

v=0

cae,be;De(v, ube ;xDe) dv,

Cbe|ae;De(ube | uae ;xDe) :=
∂

∂uae
Cae,be;De(uae , ube ;xDe) =

∫ ube

v=0

cae,be;De(uae , v;xDe) dv.

(5.3)

Theorem 5.2 (Recursion and uniqueness). In the setting of Theorem 5.1, for any e =

(ae, be;De) ∈ E2 ∪ · · · ∪ Ed−1, we have

Rae|De∪be(xae |xDe∪be) = Cae|be;De

(
Rae|De(xae|xDe) | Rbe|De(xbe|xDe);xDe

)
,

Rbe|De∪ae(xbe|xDe∪ae) = Cbe|ae;De

(
Rbe|De(xbe |xDe) | Rae|De(xae|xDe);xDe

)
.

(5.4)

As a consequence, r is determined uniquely by the bivariate tail copula densities ra,b for e =

{a, b} ∈ E1 and the bivariate copula densities cae,be;De( · ;xDe) for e ∈ E2 ∪ · · · ∪ Ed−1 and

xDe ∈ (0,∞)De.

Equation (5.4) is effectively a recursive relation, allowing to reduce the number of conditioning

variables until there is only one conditioning variable left. The reason is that each of the indices

ae|De and be|De in (5.4) is itself of the form af |Df ∪ bf or bf |Df ∪ af for an edge f ∈ e in Ej−1,
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i.e., one level lower than e.

Definition 5.3 (X-vine tail copula density). A d-variate tail copula density r is an X-vine

along a regular vine sequence V if for each edge e ∈ E2 ∪ · · · ∪ Ed−1, the pair copula densities

cae,be;De( · , · ;xDe) do not depend on the value of xDe ∈ (0,∞)De .

Example 5.4 (Trivariate case). By Lemma 3.2, a trivariate tail copula density r is always an

X-vine, and this along any of the three possible regular vine sequences on {1, 2, 3}. For the vine

determined by E1 = {{1, 2} , {2, 3}}, for instance, we have

r(x1, x2, x3) = r12(x1, x2) r23(x2, x3) · c13;2
(
R1|2(x1|x2), R3|2(x3|x2)

)
, (5.5)

where c13;2(u1, u3) =
r(x1, 1, x3)

r12(x1, 1) r23(1, x3)
with xj = R−1

j|2(uj|1), j ∈ {1, 3} .

The function r is thus completely specified by the two bivariate tail copula densities r12 and r23

and one bivariate copula density c13;2. The form (5.5) was already discovered for tail copula

densities of D-vine copulas in Li and Wu (2013).

By Propositions 4.1 and 4.2, the scaled extremal Dirichlet model (including the logistic,

negative logistic and extremal Dirichlet models) and the Hüsler–Reiss family have conditional

copula densities cI;J( · ;xJ) that always satisfy the simplifying assumption. As a consequence,

they are examples of X-vine tail copula densities too, and this along any regular vine sequence.

Definition 5.5 (X-vine specification). The triplet (V ,R, C) is an X-vine specification on d

elements (d ⩾ 3) if:

1. V = (Tj)
d−1
j=1 with Tj = (Nj, Ej) is a regular vine sequence on [d];

2. R = {rae,be : e = {ae, be} ∈ E1} is a family of bivariate tail copula densities;

3. C =
{
cae,be;De : e = (ae, be;De) ∈

⋃
j⩾2Ej

}
is a family of bivariate copula densities.

Fig. 2a in Section 8 shows an example of an X-vine specification involving a mix of parametric

models for the bivariate (tail) copula densities.
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Theorem 5.6 (X-vine tail copula density construction). Let (V ,R, C) be an X-vine specification

on d ⩾ 3 elements. Then the function r defined by

r(x) =
∏
e∈E1

rae,be(xae , xbe) ·
d−1∏
j=2

∏
e∈Ej

cae,be;De

(
Rae|De(xae|xDe), Rbe|De(xbe|xDe)

)
(5.6)

with the functions R · | · defined recursively by

Rae|De∪be(xae|xDe∪be) = Cae|be;De

(
Rae|De(xae|xDe) | Rbe|De(xbe|xDe)

)
Rbe|De∪ae(xbe|xDe∪ae) = Cbe|ae;De

(
Rbe|De(xbe|xDe) | Rae|De(xae|xDe)

)
 (5.7)

is a d-variate tail copula density. For e ∈ E1, the bivariate margin of r is equal to re ∈ R, while

for e = (ae, be;De) ∈ E2 ∪ · · · ∪Ed−1, the pair copula density cae,be;De( · , · ;xDe) in (5.2) is equal

to cae,be;De ∈ C. In particular, r is an X-vine.

In Example 5.4 with d = 3, the vine V = (T1, T2) is determined by E1 = {{1, 2} , {2, 3}},

while R = {r12, r23} and C = {c13;2}, and (5.6) reduces to (5.5).

5.2 X-vines as limits of regular vine copula densities

A natural question is whether X-vine tail copula densities arise as the lower tail dependence

limits of regular vine copula densities, as introduced in Bedford and Cooke (2002). Below, we

show that this is indeed the case, provided the pair copula densities at the edges of the first tree

have the corresponding bivariate tail copula densities as lower tail dependence limits. In the

passage to the limit, the regular vine sequence is preserved and so are the pair copulas at all

trees starting from the second one.

Let V = (Tj)
d−1
j=1 with Tj = (Nj, Ej) be a regular vine sequence on d elements, for d ⩾ 3.

For every edge e = (ae, be;De) ∈
⋃d−1

j=1 Ej, let cae,be;De be a bivariate copula density, with

copula Cae,be;De and conditional distribution functions Cae|be;De and Cbe|ae;De . For e ∈ E1, the

conditioning set De is empty and we simply write cae,be and so on. Then there is a d-variate
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regular vine copula density c given by

c(u) =
∏
e∈E1

cae,be(uae , ube) ·
d−1∏
j=2

∏
e∈Ej

cae,be;De

(
Cae|De (uae|uDe) , Cbe|De (ube|uDe)

)
, (5.8)

where, for a random vector U with density c, the conditional distribution function of (Uae , Ube)

given UDe = uDe is

Cae,be|De (uae , ube|uDe) = Cae,be;De

(
Cae|De (uae|uDe) , Cbe|De (ube|uDe)

)
. (5.9)

Assumption 5.7. Let c be a d-variate regular vine copula density as in (5.8), with d ⩾ 3.

(i) For every edge e ∈ E1, there exists a bivariate tail copula density rae,be such that limt↘0 t ·

cae,be(tx, ty) = rae,be(x, y), for (x, y) ∈ (0,∞)2.

(ii) For every edge e ∈
⋃d−1

j=2 Ej, the pair copula density cae,be;De is continuous.

Proposition 5.8. Under Assumption 5.7, we have limt↘0 t
d−1 · c(tx) = r(x) for x ∈ (0,∞)d,

where the X-vine tail copula density r is generated by the triple (V ,R, C) as in Theorem 5.6 with

• V the same regular vine sequence as in (5.8),

• R = {rae,be : e ∈ E1} for rae,be in Assumption 5.7(i), and

• C the same bivariate copula densities for edges e ∈ Ej with j ⩾ 2 as in (5.8).

In particular, the copula C of c has tail copula R with tail copula density r.

Proposition 5.8 is foreshadowed by Theorem 3.4 and Example 3.5 in Li and Wu (2013), who

consider D-vine copulas and who require stronger convergence properties.

5.3 Truncated X-vines

If the bivariate copula density cae,be;De associated with an edge e ∈ E2 ∪ · · · ∪ Ed−1 is equal

to the independence one, cae,be;De ≡ 1, the corresponding factor drops out in (5.1) and the

recursive formulas in (5.4) and (5.7) simplify to Rae|De∪be (xae|xDe∪be) = Rae|De (xae|xDe) and

Rbe|De∪ae (xbe|xDe∪ae) = Rbe|De (xbe|xDe). Sparse X-vine specifications arise when cae,be;De ≡ 1

for many edges e ∈ E2 ∪ · · · ∪ Ed−1. Model selection of sparse vine copulas in high dimensions
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has been investigated in Müller and Czado (2019) and Nagler et al. (2019). The case where

all pair copulas are equal to the independence one for all edges starting from a given tree is of

practical importance (Brechmann et al., 2012; Brechmann and Joe, 2015).

Definition 5.9. A truncated regular vine tree sequence V = (T1, . . . , Tq) on d ⩾ 3 elements with

truncation level q ∈ {1, . . . , d− 2} is an ordered set of trees for which there exists a regular vine

tree sequence V ′ = (T ′
1, . . . , T

′
d−1) on d elements such that Tj = T ′

j for all j ∈ {1, . . . , q}.

Definition 5.10. The triplet (V ,R, C) is a truncated X-vine specification on d elements (d ⩾ 3)

with truncation level q ∈ {1, . . . , d− 2} if:

1. V = (Tj)
q
j=1 is a truncated regular vine tree sequence on [d];

2. R = {ra,b : e = {a, b} ∈ E1} is a family of bivariate tail copula densities;

3. C = {cae,be;De : e = (ae, be;De) ∈
⋃q

j=2Ej} is a family of bivariate copula densities; in case

q = 1, we have C = ∅.

By definition, any truncated X-vine specification can be completed to a full X-vine specifica-

tion by completing the truncated regular vine tree sequence V to a full one V ′ as in Definition 5.9

and by setting cae,be;De ≡ 1 for all e ∈ E ′
q+1 ∪ · · · ∪ E ′

d−1. The resulting X-vine copula density r

does not depend on the way in which the truncated regular vine tree sequence V is completed,

since the factorisation in (5.1) simplifies anyway to

r(x) =
∏
e∈E1

rae,be(xae , xbe) ·
q∏

j=2

∏
e∈Ej

cae,be;De

(
Rae|De(xae|xDe), Rbe|De(xbe|xDe)

)
, (5.10)

The right-hand side of (5.10) involves
∑q

j=2(d− j) bivariate copula densities. The truncation

level q allows to tune the trade-off between sparsity and flexibility. If q = 1, the second product

is empty and the model is a Markov tree as in Engelke and Hitz (2020), Segers (2020) and

Engelke and Volgushev (2022). Increasing q and adding trees (‘layers’) yields more complex

dependence models. Truncated X-vine specifications will be shown at work in Section 9.
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6 Sampling from X-vine Pareto distributions

6.1 Inverted multivariate Pareto distributions

In Section 2, we introduced the multivariate Pareto distribution (2.11) as a limit model for high

threshold excesses in (2.10). In the context of tail copula measures, it is more convenient to

work with their reciprocals.

Definition 6.1. The d-variate random vector Z has an inverted multivariate Pareto distribution

if there exists a d-variate tail copula measure R such that P(Z ∈ B) = R(B ∩ L)/R(L), for

Borel sets B, with L =
{
x ∈ (0,∞]d : minx < 1

}
; equivalently, if there exists a multivariate

Pareto random vector Y such that Z = 1/Y .

If R is concentrated on (0,∞)d and has density r, then Z has probability density x 7→

r(x)1(x ∈ L)/R(L). In general, for j ∈ [d], the conditional distribution of Zj given Zj < 1 is

uniform on (0, 1); this follows from the marginal constraint (2.2). For Borel sets B, we have

P(Z ∈ B | Zj < 1) = R
(
B ∩ L(j)

)
, (6.1)

where the set L(j) =
{
x ∈ (0,∞]d : xj < 1

}
has R-measure one. Hence, on L(j), the probability

density x 7→ r(x)1{xj < 1} of (Z | Zj < 1) coincides with the tail copula density r.

For the random vector U in Definition 2.1, the inverted multivariate Pareto vector Z is the

weak limit in

(tU | minU < 1/t)⇝ Z, t→ ∞. (6.2)

For non-empty J ⊆ [d], we have (tUJ | minUJ < 1/t) ⇝ Z|J
d
= (ZJ | minZJ < 1), as t →

∞. The conditional marginal Z|J has a |J |-variate inverted multivariate Pareto distribution

associated with the marginal tail copula measure RJ in (2.6). In contrast, ZJ does not necessarily

have an inverted multivariate Pareto distribution, as minZJ < 1 is not guaranteed.
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6.2 Sampling from (inverted) multivariate Pareto distributions

Through equations (2.10) and (6.2), the (inverted) multivariate Pareto distribution serves

as a model for a random vector conditionally on the event that at least one variable takes

a value far in the tail of its respective marginal distribution. The L-shaped support of the

(inverted) multivariate Pareto distribution makes direct random sampling from it a little awkward.

Lemma 2 in Engelke and Hitz (2020) provides an ingenious algorithm that reduces the task

of sampling a multivariate Pareto random vector Y to sampling the conditional distributions

(Y | Yj > 1) for every j ∈ [d]. Below, we study the equivalent problem of simulating from the

conditional distribution of (Z | Zj < 1) for X-vine tail copula densities.

We will do so by inverting the Rosenblatt transformation (Rosenblatt, 1952), applying

conditional quantile functions with an increasing number of conditioning variables successively

to independent uniform random variables. A judicious choice of the ordering of the variables

permits to compute the required conditional quantile functions recursively in terms of the

bivariate ingredients of the X-vine specification. This sampling order (Cooke et al., 2015) is

encoded by the permutation constructed in the next lemma.

Lemma 6.2. Let V be a regular vine sequence on d elements. For all j ∈ [d], there exists a permu-

tation σj of {1, . . . , d} such that (i) σj(1) = j and (ii) there exist edges ej,1 ∈ E1, . . . , ej,d−1 ∈ Ed−1

such that σj(k) ∈ Cek−1
and {σj(i) : i = 1, . . . , k} = Aej,k−1

for all k ∈ {2, . . . , d}.

Let r be an X-vine tail copula density as in Definition 5.3. For each edge e ∈ E2 ∪ . . .∪Ed−1

and for fixed 0 < ube < 1, let uae 7→ C−1
ae|be;De

(uae|ube) be the inverse of the distribution function

uae 7→ Cae|be;De (uae|ube), with Cae|be;De defined in (5.3). Similarly for C−1
be|ae;De

. Recall from

Proposition 3.1 that for i ∈ [d], non-empty J ⊆ [d] \ {i}, and xJ ∈ (0,∞)d such that rJ(xJ) > 0,

the quantile function ui 7→ R−1
i|J (ui|xJ) is the inverse of the distribution function xi 7→ Ri|J(xi|xJ).

Inverting (5.4) yields the recursive relations

R−1
ae|De∪be(uae|xDe∪be) = R−1

ae|De

(
C−1

ae|be;De

(
uae | Rbe|De(xbe|xDe)

)
| xDe

)
,

R−1
be|De∪ae(ube|xDe∪ae) = R−1

be|De

(
C−1

be|ae;De

(
ube | Rae|De(xae|xDe)

)
| xDe

)
.

(6.3)
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Let W1, . . . ,Wd be independent random variables, all uniformly distributed on (0, 1). For

j ∈ [d], let σj be a permutation of [d] satisfying the two requirements in Lemma 6.2. Define a

random vector Z(j) = (Z
(j)
1 , . . . , Z

(j)
d ) recursively as follows:

Z
(j)
j = Wj and Z(j)

σj(k)
= R−1

σj(k)|σj({1,...,k−1})

(
Wσj(k) | Z

(j)
σj({1,...,k−1})

)
, k ∈ {2, . . . , d} . (6.4)

Proposition 6.3. Let Z be an inverted multivariate Pareto random vector associated with

the X-vine tail copula density r. For j ∈ [d], the distribution of Z(j) in (6.4) is equal to the

one of Z conditionally on Zj < 1. For every k ∈ {2, . . . , d}, the conditional quantile function

R−1
σj(k)|σj({1,...,k−1}) is of the form R−1

ae|De∪be or R−1
be|De∪ae for some edge e = ej,k−1 ∈ Ek−1 and can

thus be computed recursively via (6.3).

The simulation algorithm based on Proposition 6.3 relies on structure matrices encoding

regular vine sequences as explained in Appendix A in the supplement. In Section 8, we apply the

algorithm to assess the estimation methods from Section 7 through Monte Carlo experiments.

7 Estimation and model selection

Let Xi = (Xi,1, . . . , Xi,d) for i ∈ {1, . . . , n} be an independent random sample from a distribution

function F with continuous but unspecified margins F1, . . . , Fd and whose survival copula C

has lower tail copula R (Definition 2.1). Suppose that the tail copula density r is an X-vine

with specification (V ,R, C) (Definitions 5.3 and 5.5 and Theorem 5.6). We propose a procedure

to estimate r from the excesses over a high multivariate threshold.

The regular vine sequence V = (Tj)
d−1
j=1 with trees Tj = (Nj, Ej) may be known or not.

The bivariate tail copulas ra,b for edges e = {a, b} ∈ E1 in the first tree and the bivariate

copula densities cae,be;De for edges e = (ae, be;De) ∈ Ej in trees j ⩾ 2 are assumed to belong

to prespecified (lists of) parametric families. The X-vine specification may be truncated

(Definition 5.10), leading to a simpler model.

The basis of the method is a link between the conditional copula densities cI;J in Sklar’s

theorem (Proposition 3.1) on the one hand and the inverted multivariate Pareto distribution
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(Definition 6.1) on the other hand (Section 7.1). In Section 7.2, we propose parameter estimates,

supposing that V is given and that parametric families of (tail) copula densities have been

specified for all edges. In Section 7.3, finally, we treat model selection, which comprises the

selection of the parametric families of the bivariate model components, the selection of the

regular vine sequence V , and the selection of the truncation level q.

7.1 Copulas and inverted multivariate Pareto distributions

Let r be a d-variate tail copula density, not necessarily an X-vine. In Sklar’s theorem (Proposi-

tion 3.1), suppose that the copula density cI;J satisfies the simplifying assumption (Definition 3.4).

The following proposition shows how to transform an inverted multivariate Pareto random

vector Z associated to r into a random vector with density cI;J .

Proposition 7.1. Let r be a d-variate tail copula density and let Z be an inverted multivariate

Pareto random vector associated to r. Let I, J ⊂ [d] be non-empty and disjoint.

(i) For zJ ∈ (0,∞)J such that min zJ < 1 and rJ(zJ) > 0, the conditional density of ZI given

ZJ = zJ is rI|J( · |zJ).

(ii) Suppose |I| ⩾ 2. If cI;J( · ; · ) satisfies the simplifying assumption (Definition 3.4), then,

conditionally on the event minZJ < 1, the random vector
(
Ri|J(Zi|ZJ)

)
i∈I is independent

of ZJ and its density is cI;J .

By statement (ii), the density of
(
Ri|J(Zi|ZJ)

)
i∈I given ZJ ∈ A is equal to cI;J for any

non-empty set A ⊆
{
z ∈ (0,∞)J : minz < 1

}
. For estimation, we will use this property for

A = (0, 1)J , requiring in effect that all variables (rather than at least one) in J exceed a high

threshold. We do so in order to avoid a potential bias stemming from including too many

non-extreme values in the procedure. An alternative would be to opt for a censored likelihood

approach (Ledford and Tawn, 1996).
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7.2 Sequential maximum likelihood estimation of X-vines

Let the d-variate tail copula density r be an X-vine specified by (V ,R, C) as in Theorem 5.6.

Assume that the bivariate tail copula densities (R) and bivariate copula densities (C) belong

to specified parametric families. Let the parameter vector be denoted by θ = (θR, θC): here,

θR = (θe)e∈E1 contains the parameters (or parameter vectors) θe ∈ Θe associated with each

pairwise tail copula density rae,be for e ∈ E1, while θC = (θC,j)
d−1
j=2 for θC,j = (θe)e∈Ej

denotes

the parameters (or parameter vectors) θe ∈ Θe associated with each bivariate copula density

cae,be;De for e ∈
⋃d−1

j=2 Ej . While it is possible to derive the full likelihood of an X-vine (inverted)

multivariate Pareto distribution, performing parameter estimation with the full model in high

dimensions is challenging. Instead, using the X-vine decomposition into bivariate components

and recursively defined quantities (Theorem 5.6), we outline a sequential procedure for parameter

estimation, tree by tree. This approach is inspired by the one for regular vine copulas (see, e.g.,

Czado, 2019), but with suitable adaptations to the extreme value context.

(1) Standardising the margins and selecting sub-samples. Recall that X1, . . . ,Xn is

an independent random sample from F , with survival copula C, tail copula R and tail copula

density r. For i = 1, . . . , n and j ∈ [d], let Ûi,j = 1− F̂j(Xi,j), where F̂j denotes any estimator

of the marginal distribution function Fj(x) = P(Xi,j ⩽ x). One possibility is the empirical

distribution function, and to avoid boundary effects, we set

Ûi,j = 1− (rnki,j −0.5)/n, (7.1)

where rnki,j =
∑n

s=1 1(Xs,j ⩽ Xi,j) is the (maximal) rank of Xi,j among X1,j, . . . , Xn,j. We

view the points Ûi = (Ûi,1, . . . , Ûi,d) as pseudo-observations from the survival copula C.

By Eq. (6.2), for large t > 0, the rescaled points tÛi for i ∈ {1, . . . , n} such that min Ûi < 1/t

constitute pseudo-observations from a distribution that approximates the inverted multivariate

Pareto distribution associated with r. We set t = n/k where, in an asymptotic setting,
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k = kn ∈ {1, . . . , n} satisfies k → ∞ and k/n→ 0. For j ∈ [d] and Ûi,j as in (7.1), let

Kj =
{
i = 1, . . . , n : Ûi,j < k/n

}
(7.2)

be the set of indices i corresponding to the k largest observations for the jth component. Further,

put KJ =
⋂

j∈J Kj and K =
⋃

j∈[d]Kj, which are, respectively, the set of indices i corresponding

to large observations in all variables in J ⊆ [d] simultaneously and the set of indices with large

observations in at least one variable. Write Ẑi = (Ẑi,j)j∈[d] where Ẑi,j = (n/k) Ûi,j. In view of

Eq. (6.2), we treat {Ẑi}i∈K as a sample of |K| pseudo-observations of the inverted multivariate

Pareto distribution associated with r. The sample size |K| is random, and from (7.1), we have

k ⩽ |K| ⩽ dk. For non-empty J ⊆ [d] and i ∈ K, we write Ẑi,J = (Ẑi,j)j∈J .

(2) Estimating the tail copula parameters θR in T1. For each edge e = {ae, be} ∈

E1, we estimate the parameter (vector) θe associated with the bivariate tail copula density

rae,be( · ; θe). By Eq. (6.1), for j ∈ {ae, be}, the conditional density of (Zae , Zbe) given Zj < 1 is

rae,be(zae , zbe ; θe)1(zj < 1). We use maximum pseudo-likelihood estimation to fit this density

to the sub-samples (Ẑi,ae , Ẑi,be) for both i ∈ Kae and i ∈ Kbe , with Kj as in Eq. (7.2). More

precisely, we maximise each of the two pseudo-likelihoods

LR,e

(
θ(j)e ; (Ẑi,ae , Ẑi,be), i ∈ Kj

)
=
∏
i∈Kj

rae,be

(
Ẑi,ae , Ẑi,be ; θ

(j)
e

)
, j ∈ {ae, be}, (7.3)

over θ(j)e ∈ Θe, yielding estimates θ̂(ae)e and θ̂
(be)
e , respectively. The final estimate is θ̂ae,be =

{θ̂(ae)e + θ̂
(be)
e }/2. The idea of averaging maximum pseudo-likelihood estimators on product

spaces has already been proposed for the Hüsler–Reiss model (Engelke et al., 2015, 2022). Other

estimation approaches include censored likelihoods (Ledford and Tawn, 1996; de Haan et al.,

2008) or empirical stable tail dependence functions (Einmahl et al., 2008, 2018).

(3) Estimating the copula parameters θC in T2, . . . , Td−1. Estimation of the parameters

associated with edges e = (ae, be;De) in Ej for j ∈ {2, . . . , d− 1} is based on a similar procedure
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as the one employed in regular vine copulas (Czado, 2019, Section 7.2). The main difference

concerns the definition of the pseudo-observations: if θ̂(E1:(j−1)) denotes the parameter estimates

associated with the edges in E1:(j−1) = E1 ∪ · · · ∪ Ej−1, by Proposition 7.1(i), for i ∈ KDe ,

pseudo-observations (Ûi,ae;De , Ûi,be;De) from cae,be;De can be defined by

Ûi,ae;De = Rae|De

(
Ẑi,ae | Ẑi,De ; θ̂(E1:j−1)

)
, Ûi,be;De = Rbe|De

(
Ẑi,be | Ẑi,De ; θ̂(E1:j−1)

)
. (7.4)

The full procedure is detailed in Section D of the supplement.

7.3 Model selection for X-vines

Model selection for X-vines based on a random sample X1, . . . ,Xn from F involves:

(1) selecting a regular vine sequence V = (T1, . . . , Td−1);

(2) given the regular vine sequence obtained in (1), choosing adequate bivariate parametric

(tail) copula families, R and C.

In fact, the two procedures are executed together sequentially, progressing from one tree to the

next tree. First, we describe step (2) given the regular vine sequence V .

Selecting parametric (tail) copula families given a truncated regular vine sequence.

We first consider the specification of R in Definition 5.5 in tree T1. Let BR,1:T = (BR,1, . . . ,BR,T )

be the list of candidate bivariate tail copula families. For each edge e = (ea, eb) ∈ E1, specifying

R involves choosing the bivariate tail copula family among BR,1:T . Similar to the idea of

averaged maximum pseudo-likelihood estimates in Section 7.2, we use the averaged-AIC value

for selecting bivariate tail copula families. For each edge e and each BR,t, t = 1, . . . , T ,

we obtain two maximum pseudo-likelihood estimates θ̂(t,ae)e and θ̂
(t,be)
e , derived through the

maximisation of log-likelihood functions on product spaces; see (7.3). The averaged-AIC value

is AICe (BR,t) = 2ν(t) − 1
2

{
logLR,e

(
θ̂
(t,ae)
e

)
+ logLR,e

(
θ̂
(t,be)
e

)}
, where ν(t) is the number of

parameters in BR,t. We select the bivariate tail copula family with the lowest averaged-AIC

among AICe (BR,1) , . . . ,AICe (BR,T ).

Similarly, to specify C and select the bivariate parametric copula family among a list of

27



candidates for each edge in E2 ∪ · · · ∪Ed−1, we follow common practice in vine copula modelling

and choose the family with the lowest AIC; see Brechmann (2010) and Czado (2019, Section 8.1).

It is worthwhile to note that when implementing the model selection step for an edge e in

Ej, only the trees T1, . . . , Tj need to have been selected, but not the trees Tj+1, . . . , Td−1. This

sequential approach aligns well with the vine learning procedure in the next paragraph.

Selecting the regular vine sequence. Morales-Napoles (2010) showed that the number of

regular vine sequences on d elements is equal to d! 2(
d−2
2 )−1, making it impossible to go through

all possible vine sequences. We adopt a model selection approach similar to the one in Dissmann

et al. (2013), choosing trees sequentially from T1 to Td−1.

To select the first tree, T1, on the node set N1 = [d], we follow a procedure as in Engelke and

Volgushev (2022) and Hu et al. (2024). For every pair {a, b} of distinct elements in [d], let wa,b be

a nonnegative weight derived from the data. We use an empirical version of the tail dependence

coefficient χa,b = Ra,b(1, 1), setting wa,b equal to χ̂a,b = 1
k

∑n
i=1 1

{
Ûi,a ⩽ k/n, Ûi,b ⩽ k/n

}
,

where Ûi,a and Ûi,b are defined as in (7.1). Another possible edge weight could be the empirical

extremal variogram as in Engelke and Volgushev (2022). For subsequent trees T2, . . . , Td−1, the

edge weight is chosen to be the absolute value of the empirical Kendall’s tau. All trees are

selected as maximum spanning trees; see, for example, Czado (2019, Section 8.3).

Selecting truncated regular vine tree sequences. The model selection procedure described

above may set all pair-copulas to the independence copula in the subsequent trees from Tq+1 to

Td−1 for a truncation level q ∈ {1, . . . , d− 2}. In this case, the resulting model corresponds to

the truncated X-vine model in Definition 5.10. Besides an information criterion, we consider two

additional criteria for selecting the independence copula at an edge e: when the effective sample

size |KDe| = nDe falls below a certain low value, or when the absolute value of the empirical

Kendall’s tau is close to zero. Sparsity induced by a smaller effective sample size, is more likely

when the total sample size n is relatively small with respect to the dimension d.

Even when the above criteria are not met, when d is large, it is natural to limit the number

of model parameters by considering truncated X-vines, since Dissmann’s algorithm captures as
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much dependence as possible in the first few trees. We use a modified Bayesian information

(mBIC) to determine the truncation level, inspired by the one for regular vine copulas in

Nagler et al. (2019). This modified version adjusts the prior probability in the BIC to penalise

dependence copulas more severely in trees at higher levels. More specifically, assuming that for

any edge e ∈ Ej for j ⩾ 2, the parametric family has a single parameter θe and that a value

of θe = 0 corresponds to the independence copula, the mBIC includes independent Bernoulli

variables 1(θe ̸= 0) with mean ψe = ψj−1
0 for e ∈ Ej and a hyperparameter ψ0 ∈ (0, 1): set

mBIC(1) = 0 and, for q ∈ {2, . . . , d− 1}, put

mBIC(q) =

q∑
j=2

∑
e∈Ej

1(θe ̸= 0)

{
log nDe − 2 log

(
ψe

1− ψe

)}
− 2 log

 LC,e

(
θ̂e

)
(1− ψe)−1


 (7.5)

with LC,e as in (??). The selected truncation level q∗ is the value of q in {1, . . . , d− 1} that

minimises mBIC(q). In practice, we will set ψ0 = 0.9 as in Nagler et al. (2019).

8 Simulation study

We conduct three simulation studies, evaluating the proposed procedures for parameter estima-

tion, selection of bivariate parametric (tail) copula families, and vine truncation.

8.1 Parameter estimation

We first consider the 5-dimensional X-vine model r in Fig. 2a. The bivariate tail copula densities

rae,be in the first tree T1 = (N1, E1) are chosen from the Hüsler–Reiss model, the negative

logistic, logistic, and Dirichlet families (Section 4), while the bivariate copula densities cae,be;De

in the subsequent trees Tj = (Nj, Ej) for j ∈ {2, 3, 4} are taken from the Clayton, Gumbel, and

Gaussian copula families. Fig. 2a shows the values specified for the tail dependence coefficient

χ = R(1, 1) or for Kendall’s τ for each edge. The formulas connecting the parameters of the

families of tail copula densities with χ are given in Appendix E.1 in the supplement.

Implementing simulation algorithms as detailed in Section 6 and Appendix A in the sup-
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Figure 2: (a) An X-vine specification (V ,R, C) on d = 5 variables. The bivariate tail copula
densities rae,be in the first tree T1 are selected from the Hüsler–Reiss (HR), negative logistic
(NL), logistic (L), and Dirichlet (Diri) parametric families, each with specified tail dependence
coefficients χ. The bivariate copula densities cae,be;De in the subsequent trees T2, T3, T4 are
chosen from the Clayton (Clay), Gumbel (Gum), and Gaussian (Ga) copula families, each with
specified Kendall’s tau τ . (b) Box-plots (■ for T1 ■ for T2 ■ for T3 ■ for T4) of dependence
measure estimates from bivariate parametric families selected sequentially from the data for the
X-vine specification in (a). The red lines indicate the specified parameter values.

plement, we generate multivariate inverted Pareto random samples Z1, . . . ,Zn associated with

r. As in Eq. (7.1), we transform to Û1, . . . , Ûn, with Ûi,j based on the rank of Zi,j among

Z1,j, . . . , Zn,j. We then take the sub-sample {Ẑi}i∈K with K =
⋃

j∈[d]Kj and Kj as in (7.2).

We set (n, k) = (4 000, 200) and perform sequential parameter estimation as in Section 7.2

over 200 repetitions. We obtain maximum pseudo-likelihood estimates and corresponding

dependence measures, χ̂ and τ̂ , using the relations in Appendix E.1 of the supplement, for

each of the ten edges in the vine. In Fig. 2b, box-plots present dependence measure estimates

of parametric families based on the X-vine specification in Fig. 2a. The four left-most box-

plots (■) show the tail dependence coefficient estimates χ̂ for the four edges e ∈ E1, and the

remaining plots display Kendall’s tau estimates τ̂ for the six edges e ∈ E2 ∪ E3 ∪ E4. The plot

supports the validity of the sequential method for estimating tail dependence measures. We

see that estimation uncertainty becomes larger at higher tree levels. Sections F.1.1–F.1.3 in

the supplement include additional box-plots: first, of dependence measures as in Fig. 2b, but

30



supposing that the bivariate parametric families are known, second, of dependence measures with

varying sample sizes and threshold exceedances, and third, of maximum likelihood estimates of

tail copula densities for a specific edge e ∈ E1 with varying (n, k).

8.2 Selecting parametric (tail) copula families

We assess algorithm effectiveness in selecting bivariate parametric families for each edge in each

tree, using the X-vine specification in Fig. 2a. While the flexibility of X-vine models allows us

to consider any bivariate parametric family, we simplify the process by considering a catalogue

of four candidate tail copula models for T1: the Hüsler–Reiss, logistic, negative logistic, and

Dirichlet models, along with a catalogue of nine candidate pair-copula families for T2, T3, T4:

Independence, Gaussian, Clayton, Survival Clayton, Gumbel, Survival Gumbel, Frank, Joe, and

Survival Joe copulas, as implemented in the R package VineCopula (Nagler et al., 2023).

Using again 200 repetitions with (n, k) = (4 000, 200), we assess the accuracy of the (averaged)

AIC in Section 7.3 in selecting bivariate parametric families. The overall proportion of correctly

selected families across all trees is 60%. For individual trees, the proportions are 62% for T1,

78% for T2, 55% for T3, and 10% for T4. The specific proportions for each edge in each tree are

T1 99% 40% 60% 49%

T2 58% 93% 82%

T3 42% 68%

T4 11%

The lower proportions observed for e23 and e45 in E1 result from the challenge in distinguishing

between the logistic and negative logistic models. Overall, the proportion of accurately selected

families decreases with declining effective sample size and Kendall’s tau estimate across tree

levels. We observe the lowest proportion for the deepest edge e15;234 where the corresponding

pair-copula exhibits weak dependence. For this edge, the algorithm selects the independence

copula 110 times out of 200.

In Section F.1.4 of the supplement, we investigate the effective sample sizes for each tree.
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8.3 Tree selection and truncation

We consider a higher dimensional X-vine model where residual dependence weakens with

increasing tree level. Specifically, for V we consider a 50-dimensional C-vine, that is, in each

tree Tj, there is a single node aj ∈ [d] such that aj belongs to the conditioned set Ce of all

edges e ∈ Ej. The first tree includes the Hüsler–Reiss models and negative logistic models with

randomly assigned parameter values θe ∈ [1, 2] for e ∈ E1. Subsequent trees contain bivariate

Gaussian copulas with partial correlations ρe = 1.1− 0.1j for e ∈ Ej and j ∈ {2, . . . , 9}, and

ρe = 0.1 for e ∈ Ej with j ⩾ 10. This X-vine specification allows us to explore truncated X-vine

models by setting pair-copulas with weak dependence to independence copulas.

We use a single inverted multivariate Pareto sample of size n = 1 000 from the X-vine model

directly, i.e., without rank transformation and thresholding. As in Sections 7.2 and 7.3, we

sequentially select trees T1, . . . , Td−1 using χ̂e for e ∈ E1 and τ̂e for e ∈ Ej, j ⩾ 2, as edge

weights, with χ̂e as in Eq. (E.1) in the supplement. For each selected tree, we choose the

bivariate parametric families with the lowest (averaged) AIC for each edge and estimate the

associated parameters. Additionally, independence copulas are chosen in subsequent trees if

either |τ̂e| < 0.05 or nDe < 10 for each edge.

To explore truncated X-vine models, we use the mBIC in (7.5) with ψ0 = 0.9 as in Nagler

et al. (2019). The estimated mBIC-optimal truncation level is q∗ = 19 (dotted line in Fig. 3a).

We assess the goodness of fit by comparing pairwise χ-values from the true X-vine model with

those from the fitted 50-dimensional X-vine model via Monte Carlo simulations (as explained in

Section E.2 in the supplement) in Fig. 3b. For the truncated X-vine model, the χ-plot in Fig. 3c

resembles that of the full model but exhibits more variability, particularly for lower χ-values.

9 Application: US flight delay data

We apply X-vine models to investigate extremal dependence among large flight delays in the US

flight network. The raw data set is accessible through the US Bureau of Transportation Statistics2.
2https://www.bts.dot.gov
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Figure 3: Simulation study: (a) The mBIC plotted across tree levels with a dotted line indicating
the selected mBIC-optimal truncation level of q∗ = 19. (b) χ-plot comparing pairwise χ values
from the true X-vine model to those obtained from the fitted 50-dimensional X-vine model via
Monte Carlo simulations. (c) Similar to (b) but for the truncated fitted X-vine model.

These flight delay data were analysed by Hentschel et al. (2024) who first selected airports with

a minimum of 1 000 flights per year and applied a k-medoids clustering algorithm to identify

homogeneous clusters in terms of extremal dependence. This clustering approach not only makes

the analysis suitable for modelling extremal dependence but also reveals shared frequent flight

connections between airports and similar geographical characteristics in each cluster. Focusing

on the Hüsler–Reiss family, Hentschel et al. (2024) fitted an extremal graphical model to large

flight delays of airports in the Texas cluster to investigate conditional independence.

For the purpose of model comparison, we also analyse daily total delays (in minutes) in the

Texas cluster. The cluster comprises d = 29 airports and counts n = 3603 days from 2005 to

2020, during which all airports have recorded measurements. This pre-processed data is available

through the R-package graphicalExtremes (Engelke et al., 2022). A graphical representation of

the actual flight connections between airports is presented in Fig. 4a.

Let x̂i, for i = 1, . . . , n, denote the measurements. Following the standardisation process

with the rank transformation (7.1) as in Section 7.2, we take the sub-sample ẑi = (n/k)ûi for

i ∈ K =
⋃

j∈[d]Kj as in (7.2). We choose k = 0.13n in order to have a large enough effective

sample size with respect to the number of variables.

Assigning χ̂e for e ∈ E1 and τ̂e for e ∈ Ej, j ⩾ 2, as edge weights, we select the trees of the
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Figure 4: (a) Flight graph illustrating connection flights between airports joined by edges in the
Texas cluster. (b) The X-vine graph with the first seven trees superimposed, showing for trees
T2 to T7 only the 113 out of 147 edges for which a copula other than the independence copula
is selected, for 141 edges in total. (c) The estimated extremal Hüsler–Reiss graph structure
using the regularised method with a tuning parameter value of ρ∗ = 0.1, totalling 148 edges.
Corresponding χ-plots comparing empirical pairwise tail dependence coefficients with those
from the fitted graphical models: (d) the flight graph, (e) the truncated X-vine graph, and (f)
the extremal Hüsler–Reiss graph using the EGlearn algorithm.

regular vine sequentially as in Section 7.3. Fig. F.5a in the supplement shows the first maximum

spanning tree. The corresponding estimated tail dependence coefficients vary between 0.42 and

0.65, with a mean of 0.55. Out of the d − 1 = 28 edges in T1, selected bivariate tail copula

families include the Hüsler–Reiss (8 edges), negative logistic (3 edges) and Dirichlet models (17

edges). Subsequent trees with a total of 378 edges are then chosen with the following pair-copula

families (number of edges in parentheses): Independence (201), Gaussian (31), Clayton (8),

Gumbel (26), Frank (34), Joe (36), Survival Clayton (31), Survival Gumbel (9), and Survival

Joe (2). As the tree level rises, we observe a decline in residual dependence and an increase

in the number of independence copulas. The X-vine algorithm sets all pair copulas to the
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independence copula from T21, that is, the vine is truncated at level q = 20.

To evaluate the X-vine model’s efficacy in capturing extremal dependence for large flight

delays between airports, we compare bivariate and trivariate empirical tail dependence coefficients

with those from the fitted X-vine models in Section F.2.2 in the supplement. Fig. F.6 indicates

a satisfactory fit, both for the full 29-dimensional model and for the truncated model.

To further explore truncated X-vine models with a lower truncation level, we use the mBIC

in Eq. (7.5). Fig. F.7a in the supplement illustrates the mBIC-optimal truncation level of

q∗ = 7, which corresponds to 113 dependence copulas [Gaussian (17), Clayton (3), Gumbel (23),

Frank (16), Joe (25), Survival Clayton (22), Survival Gumbel (6), and Survival Joe (1)] out

of the 147 total edges from T2 to T7. The total number of bivariate model components is thus

28+ 113 = 141. Additionally, we investigate how the truncation level changes over the threshold

range in Fig. ??. It appears that the mBIC-optimal truncation levels are not overly sensitive to

the choice of the threshold. The superimposed graph of the first seven vine trees is shown in

Fig. 4b, showing for T2 to T7 only the 113 out of 147 edges for which a copula other than the

independence one is selected. The vine tree sequence from T1 to T7 is presented in Fig. F.5.

Returning to model comparison, we consider extremal Hüsler–Reiss graphical models (Engelke

et al., 2021; Hentschel et al., 2024). Hentschel et al. (2024) obtained a sparse Hüsler–Reiss

graphical model using the EGlearn algorithm (Engelke et al., 2021). The tuning parameter ρ ⩾ 0

controls sparsity. The empirical extremal variogram matrix Γ̂ is used as edge weight for the

minimum spanning tree with smaller elements in Γ̂ indicating stronger extremal dependence.

Following Engelke et al. (2022), the data set is split in half: a training set for model fitting and

a test set for tuning parameter selection. We determine the optimal tuning parameter, ρ∗ = 0.1,

by evaluating the Hüsler–Reiss log-likelihood across tuning parameter values ρ from the test set.

The resulting sparse extremal graph with 148 edges and ρ∗ = 0.1 is shown in Fig. 4c.

We assess the goodness of fit using the entire sub-sample and compare empirical tail

dependence coefficients to those obtained from the fitted graphical models as explained in

Appendix E.2 in the supplement: the Hüsler–Reiss extremal graphical model for the flight graph

in Fig. 4d, the truncated X-vine model with q∗ = 7 in Fig. 4e, and the extremal Hüsler–Reiss
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graphical model with ρ∗ = 0.1 in Fig. 4f, respectively.

The flexibility of a vine-based dependence model allows the selection of various (tail) copula

families with the lowest AIC. Recall from Section 4.2 that the Hüsler–Reiss model arising from

the X-vine specification is constructed using bivariate Hüsler–Reiss tail copula densities in the

first tree and bivariate Gaussian copulas in subsequent trees. In the truncated X-vine model, 8

out of 28 edges prefer Hüsler–Reiss models in T1, while in trees Tj for j ⩾ 2, a total of 96 out of

113 edges favour copula families other than the Gaussian one. However, uncertainty in sequential

parameter estimation tends to accumulate across tree levels. Consequently, the χ-plot of the

truncated X-vine model shows a better fit but more variability. In contrast, the χ-plot of the

extremal Hüsler–Reiss graphical model has less variability but seems biased towards higher tail

dependence. Fig. F.8 in the supplement presents a model comparison similar to Figs. 4d–4f, but

focusing exclusively on the Hüsler–Reiss model and using empirical tail dependence coefficients

derived from the empirical extremal variogram matrix.

10 Discussion

We have opened the door to the construction and the use of extremal dependence models based

on regular vine tree sequences. For (ordinary) copulas, the methodology has been extensively

developed in the literature since its inception more than two decades ago. Our contribution

is to deliver the theoretical and methodological advances required to apply vine machinery in

the extreme value context too. The key consists of a version of Sklar’s theorem applied to tail

copula densities, together with a telescoping product formula for regular vine sequences.

While the proposed methodology is fully operational, it is clearly open to improvement, while

many open questions remain, just as for ordinary regular vine copulas. We name just a few. The

vine sequence learning method inspired by Dissmann et al. (2013) aims to capture dependence

by the first several trees in the sequence, but there is no guarantee that it retrieves the true

structure. The regular vine atlas of Morales-Nápoles et al. (2023) can serve as a test bed for

evaluating vine learning approaches. While the parameter estimators were shown to perform
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well in simulations, their large-sample theory remains to be developed, in line with Hobæk Haff

(2013). For the Hüsler–Reiss model, the precise connection between the variogram matrix and

the correlation parameters of the bivariate Gaussian copulas remains to be elucidated and the

effect of truncation on the Hüsler–Reiss precision matrix (Hentschel et al., 2024) to be uncovered.

The relation between X-vines and graphical models for extremes as in Engelke and Hitz (2020)

deserves further investigation, perhaps leveraging results of Zhu and Kurowicka (2022). Finally,

as our approach is limited to dependence structures generated from max-stable distributions, a

completely open question is whether it can be extended to other settings in multivariate extreme

value analysis, such as the conditional extremal dependence model (Heffernan and Tawn, 2004)

or the geometric sample-cloud approach (Nolde, 2014; Simpson et al., 2021).
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