
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Azorus: Commitments over Protocols for BDI Agents
Anonymous Author(s)

Submission Id: 47
Abstract

Commitments support flexible interactions between agents by cap-
turing the meaning of their interactions. However, commitment-
based reasoning is not adequately supported in agent programming
models. We contribute Azorus, a programming model based on
declarative specifications centered on commitments and aligned
with information protocols. Azorus supports reasoning about goals
and commitments and combines modeling of commitments and
protocols, thereby uniting three leading declarative approaches
to engineering decentralized multiagent systems. Specifically, we
realize Azorus over three existing technology suites: (1) Jason, a
popular BDI-based programming model; (2) Cupid, a formal lan-
guage and query-based model for commitments; and (3) BSPL, a
language and its associated tools for information protocols, includ-
ing Jason programming. We implement Azorus and demonstrate
how it enables capturing interesting patterns of business logic.
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1 Introduction

Important domains such as business and healthcare that involve
autonomous principals lend themselves to the application of decen-
tralized multiagent systems (MAS). Engineering flexible MAS calls
upon programming abstractions for social meaning, operational
interactions, and agent reasoning.

Commitments are a high-level abstraction that capture the social
meaning of a communicative act [26]. For example, an offer from
a seller to a buyer for some Item and Price may be modeled as a
commitment from the seller to the buyer that if payment of the
Price happens, then the shipment of Item will happen. Commitments
model autonomy by both enabling flexible engagements between
agents and yielding a standard for compliance [19, 33, 37]. There
has been work on expressive languages for commitments [9, 13].

Commitments, however, need to be layered on flexible interac-
tion protocols that minimally constrain when agents may perform
communicative acts in decentralized settings. For example, refund
without a prior payment would be meaningless; and accept and
reject should be mutually exclusive to be meaningful; however,

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), A. El Fallah Seghrouchni, Y. Vorobeychik, S. Das, A. Nowe (eds.), May 19
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shipment and payment may happen in any order. Because of their
emphasis on message ordering, traditional protocol specification
approaches [2, 4, 16, 35] are not suited to specifying flexible proto-
cols. For this purpose, we turn toward information protocols [27],
a declarative approach for specifying flexible protocols. Indeed a
motivation for information protocols was a suitable operational
layer for commitments [27, p. 498].

Commitments are not adequately supported in programming
models for multiagent systems. Popular approaches such as JADE
[5], Jason [7], JaCaMo [6], and SARL [20] provide diverse, use-
ful abstractions for engineering multiagent systems. However, the
abstractions for communication in these approaches are either low-
level (e.g., messaging in JADE and Jason and event spaces in SARL),
limited in repertoire, inflexible (support for FIPA Interaction Pro-
tocols [18] in JADE), or promote centralization (via artifacts in
JaCaMo). MOISE (the ‘Mo’ in JaCaMo) [22] supports a notion of
commitments but tightly couples them to agent goals; moreover,
the commitments are undirected and a distinguished organizational
entity tracks and enforces them, betraying an underlying central-
ized mindset. Baldoni et al. [1] model communicative acts and their
effects on commitments via JaCaMo artifacts. Kiko [14], an informa-
tion protocol-based programming model supports creating flexible,
decentralized MAS but does not support commitments.

We contribute Azorus (named after the helmsman of Jason’s ship,
the Argo), a commitment-based programming model that enables
implementing flexible MAS via BDI agents. We bring together for
the first time three declarative paradigms: commitments, informa-
tion protocols, and cognitive agents. For the latter, we adopt BDI
(belief-desire-intention) agents, which have beliefs and goals, and
execute plans in response to changes in beliefs and goals. Jason [7]
is a prominent exemplar of the paradigm (and the ‘Ja’ in JaCaMo).
The synthesis makes conceptual sense because in a multiagent sys-
tem, agents depend on others for the satisfaction of their goals [25].
Commitments capture such dependencies between agents [21], and,
as described above, motivate information protocols. Winikoff [34]
notes the lack of support for implementing flexible interactions in
agent programming approaches. Our synthesis addresses this gap.

• We contribute a novel formalization of Cupid [13], an ex-
pressive commitment language, in terms of abstract Jason
rules. We provide a compiler from Cupid to Jason that en-
ables a declarative, high-level abstraction for including com-
mitment events in Jason plans.

• We contribute a novel Jason communication adapter that
supports an agent’s internal reasoning by maintaining the
mapping between commitments and enactments of infor-
mation protocols and providing abstractions for querying
and reacting to commitment events and performing valid
communicative acts.

• We demonstrate interesting agent reasoning patterns for
exploiting Azorus and implementing flexible agents.
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Organization. The rest of the paper is organized as follows. Sec-
tion 2 introduces the necessary background on Cupid, information
protocols, and Jason. Section 3 introduces the Azorus programming
model via its architectural elements, including a Jason semantics for
inferring commitment events from communicative acts. Section 4
demonstrates some patterns for implementing flexible agents. Sec-
tion 5 evaluates our contributions conceptually. Section 6 summa-
rizes our contributions and raises some issues and future directions.

2 Background

We introduce Cupid, a language to specify commitments, informa-
tion protocols; and finally Jason.

2.1 Specifying Commitments in Cupid

Cupid is an approach for specifying commitments over databases
of business events [13].

Listing 1: Commitment specification in Cupid.

schema
o f f e r ( S e l l e r , Buyer , Id , Item , P r i c e )
key Id t ime Otime
ac cep t ( Buyer , S e l l e r , Id , Item , P r i c e )
key Id t ime Atime
i n s t r u c t ( Buyer , Bank , Id , P r i c e )
key Id t ime I t ime
t r a n s f e r ( Bank , S e l l e r , Id , P r i c e , Payment )
key Id t ime Ttime
shipment ( S e l l e r , Buyer , Id , Item , P r i c e )
key Id t ime St ime
re fund ( S e l l e r , Bank , Id , Item , Payment , Amount )
key Id t ime Rtime

commitment OfferCom S e l l e r to Buyer
c r e a t e o f f e r
detach t r a n s f e r [ , c r e a t e d OfferCom + 5]

where " Payment >= P r i c e "
d i s c h a r g e shipment [ , detached OfferCom + 5]

commitment AcceptCom Buyer to S e l l e r
c r e a t e a c c ep t
detach shipment [ , c r e a t e d AcceptCom + 5]
d i s c h a r g e t r a n s f e r [ , detached AcceptCom + 5]

where " Payment >= P r i c e "

commitment RefundCom S e l l e r to Buyer
c r e a t e o f f e r
detach v i o l a t e d OfferCom
d i s ch a r g e re fund [ , detached RefundCom + 2]

where " Amount >= Payment "

commitment TransferCom Bank to Buyer
c r e a t e i n s t r u c t
d i s c h a r g e t r a n s f e r [ , c r e a t e d TransferCom + 2]

where " Payment= P r i c e "

Listing 1 gives a Cupid specification. It first specifies the base
events along with their keys and timestamp attributes. The commit-
ment OfferCom specifies that offer creates a commitment (instance)
from seller to buyer. This commitment is detached if transfer hap-
pens within 5 time units (for purposes of this paper, seconds) of the
creation and Payment in the transfer is at least as much as Price in the
offer. The commitment expires (fails to be detached) if either of these
conditions is not met. The commitment is discharged if shipment
happens within 5 time units of being detached. The commitment is
violated if it fails to be discharged, that is, if shipment fails to occur
within the stipulated time.

AcceptCom specifies that accept creates a commitment from
buyer to seller that if shipment happens within 5 time units of its
creation, then transfer will occur within 5 time units of its being de-
tached. RefundCom specifies that offer creates a commitment from
seller to buyer if OfferCom is violated, then Refund of at least
the amount paid will be done with 2 time units of the violation (else,
obviously, the RefundCom will be violated). Refund demonstrates
the use of nested commitments, which may be used to capture
patterns such as compensation. TransferCom captures the bank’s
commitment to the buyer to do transfer upon instruct.

Table 1 defines the formal syntax of Cupid. Below, 𝒜 and 𝒯 are
the sets of agent names and time instants, respectively; in particular,
𝒯 = N ∪ {∞}, where N is the set of natural numbers and∞ is an
infinitely distant time instant.

Listing 1 uses a surface syntax for readability. We write and, or,
and except for ⊓, ⊔, and ⊖ respectively. In time intervals, we omit
lower and upper instants when they are 0 and∞, respectively. An
omitted detach clause means the commitment is unconditional. We
label commitments to simplify referring to commitment events.

Table 1: Syntax of Cupid [13].

Event −→ Base | LifeEvent
LifeEvent −→ created(𝒜, 𝒜, Expr, Expr, Expr) |

detached(𝒜, 𝒜, Expr, Expr, Expr) |
discharged(𝒜, 𝒜, Expr, Expr, Expr) |
expired(𝒜, 𝒜, Expr, Expr, Expr) |
violated(𝒜,𝒜, Expr, Expr, Expr)

Expr −→ Event[Time, Time] | Expr ⊓Expr |Expr ⊔Expr |
Expr ⊖ Expr | Expr where 𝜑

Time −→ Event + 𝒯 | 𝒯
ComSpec −→ commitment(𝒜, 𝒜, Expr, Expr, Expr)

Cupid specifies five life events for every commitment: created,
detached, expired, discharged, and violated. The semantics of Cupid
gives a query for each life event for a commitment. The idea is
to infer the life events (including their timestamps) from the base
events. Time intervals for an event ([Time, Time] in Table 1) are
interpreted strictly: the event is required to occur after (including
at) the initial moment but before the final moment of the interval.

In [13], Cupid’s semantics is given in relation algebra; its existing
implementation compiles each life event of a commitment into an
SQL query. Azorus provides a new implementation of Cupid into
Jason to enable BDI programming using commitments.
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2.2 Specifying Protocols

Information protocols are declarative interaction specifications
[27, 28]. In this approach, an interaction is specified as a com-
position of protocols—messages being the special case of atomic
protocols—in terms of the the information dependencies between
them. The idea is that an agent can emit any message whose infor-
mation dependencies are satisfied given its local state, that is, its
communication history. We adopt information protocols because
they support flexible and asynchronous multiparty enactments bet-
ter than traditional message ordering-oriented representations of
protocols [11].

We explain the main ideas via Listing 2, which gives an infor-
mation protocol named Ebusiness. It specifies several messages,
along with senders, receivers, and their information parameters.
The parameter Id is annotated key, meaning it serves to identify
enactments (and correlate messages). Adornments ⌜in⌝, ⌜out⌝, and
⌜nil⌝ for parameters capture information dependencies and are
interpreted relative to enactments. A message in some enactment
is viable (legal) for purposes of emission if it has bindings for all
parameters except those adorned ⌜nil⌝; the agent already knows
the bindings of all the ⌜in⌝ parameters (that is, the bindings must
exist in the agent’s local state); and it does not know the bindings
for any ⌜out⌝ parameter or ⌜nil⌝ parameters (they must not exist
in the local state). Sending the message adds it to the agent’s lo-
cal state (along with the bindings for the ⌜out⌝ parameters, thus
making them known). Receiving a message adds it to the receiver’s
local state (along with the bindings for all its parameters, thus mak-
ing them known). Notably, information protocols do not specify
message reception order.

Listing 2: An information protocol.

Ebus i n e s s {
r o l e s Buyer , S e l l e r , Bank
paramete r s out Id key , out Item , out P r i c e , out

S t a t u s

S e l l e r −> Buyer : o f f e r [ out Id key , out Item ,
out P r i c e ]

Buyer −> S e l l e r : a c c ep t [ i n Id key , i n Item , i n
P r i c e , out Dec i s i on ]

Buyer −> Bank : i n s t r u c t [ i n Id key , i n P r i c e ,
out D e t a i l s ]

Bank −> S e l l e r : t r a n s f e r [ i n Id key , i n P r i c e ,
i n De t a i l s , out Payment ]

S e l l e r −> Buyer : shipment [ i n Id key , i n Item ,
i n P r i c e , out S t a t u s ]

S e l l e r −> Bank : r e fund [ i n Id key , i n Item , i n
Payment , out Amount , out S t a t u s ]

}

Thus, in any enactment of Ebusiness, seller may send offer any-
time since all its parameters are ⌜out⌝. Once seller has sent offer, it
would know the bindings for Id, Item, and Price, which means it may
send shipment provided it does not already know the binding for
Status. By analogous reasoning, buyer may send accept or instruct
anytime after receiving offer; bank may send a transfer anytime
after receiving instruct; and seller may send refund anytime after

sending offer and receiving transfer. Messages shipment and refund
are mutually exclusive since they both bind Status (it is ⌜out⌝ in
both).

To get a sense of how flexible Ebusiness is, consider the fact
that it has 658 distinct maximal enactments (each a causally valid
permutation of sends and receives of its messages extended until
no agent is left with any viable message), including the enactment
depicted in Figure 1, which is notable because accept and transfer
are “reordered” in the communication infrastructure and seller
sends shipment even though it has not received accept.

BUYER SELLER BANK

offer

accept

instruct

transfer

shipment

Figure 1: Ebusiness enactment in which shipment is sent by
seller even as accept was in transit, based on [11, p. 1380].

2.3 Implementing Agents in Jason

Jason is an extended implementation of the AgentSpeak logic-
programming language for specifying agent behavior [7]. In Jason,
an agent is modeled as having beliefs, which capture the state of
the world; goals, which capture its objectives; and plans, which
are methods for realizing its goals. To facilitate building multia-
gent systems, Jason adopts communication primitives based on the
Knowledge Query and Manipulation Language, better known as
KQML [8].

To illustrate Jason’s programming model, especially, how it
weaves together communication and reasoning in an agent, List-
ing 3 give a snippet of how an agent Bob who plays seller in
Ebusiness might be implemented in Jason without any special sup-
port for protocols.

Listing 3: Jason snippet of a seller agent Bob.

buyer ( a l i c e ) .
i n _ s t o c k ( f i g s ) .
g o e s _ f o r ( f i g s , 1 0 ) .

! s t a r t .
+ ! s t a r t <−

? buyer ( Buyer ) ;
? g o e s _ f o r ( Item , P r i c e ) ;
. random ( Id ) ;
. send ( Buyer , t e l l , o f f e r ( Id , Item , P r i c e ) ) .

+ a c c ep t ( Id , Item , P r i c e , De c i s i on ) [ sou r c e ( Sender ) ]

3
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: i n _ s t o c k ( Item ) & buyer ( Sender )
<− . send ( Sender , t e l l , shipment ( Id , Item , P r i c e ,

yum) ) .

The first few lines of Listing 3 add beliefs that buyer is alice,
figs are in stock and that they go for the price of 10. Then the
goal start is asserted. The following lines show two plans. The first
is for the goal start and is executed whenever it is asserted. This
plan executes two queries to bind variables Buyer and Item and Price,
respectively. It then uses a library function to bind variable Id to a
random identifier. Finally, it uses the built-in function for sending
an offer to Buyer using the KQML speech act tell.

The following plan is for handling a received accept, which is
recorded as a belief when it is received by Bob and is executed
whenever such a belief is added. The plan checks (via guards) that
the Item is in stock and that the Sender is the buyer and if so sends
back a shipment message, again using a tell.

3 Programming Model, Architecturally

Figure 2 describes the Azorus architecture and programming model.
A MAS is specified in terms of commitments and an information
protocol. To implement an agent to play a role in the MAS, a pro-
grammer must supply the requisite internal logic. The Azorus tool-
ing generates an adapter (comprising the red-bordered components)
for the role being played by the agent based on the specifications.
These components maintain the agent’s local state (the protocol
state projected to the messages sent or received by the agent) as
a set of beliefs and provide primitives for commitment reasoning.
The agent’s internal logic uses the Azorus adapter to reason about
its commitments and perform communicative acts.

Internal Logic

Commitment Materializer

Commitment Queries

Base Event Adapter

Protocol Adapter

Commitment Events

Protocol State

Reasoning

Beliefs

Azorus Agent

Decentralized
Social State

stored by each agent

Azorus Tool

Commitments (Cupid)
Protocol (BSPL)

MAS Specification

Asynchronous Communication Service

no central store

Figure 2: Azorus architecture and programming model.

In the figure, state is represented in blue and computational
components in red. Each agent sits atop an Asynchronous Commu-
nication Service which it uses to send and receive message and has
the following components. Local State is a set of beliefs correspond-
ing to the messages sent and received by the agent. The Protocol
Adapter is a representation of protocol corresponding to the role

played by the agent in the protocol. It relies upon Local State to
compute the set of enabled communicative acts (explained shortly).
As messages are added to the Local State, the Base Event Adapter
adds Base Events as timestamped beliefs. Commitment Queries are
computed on top of Base Events. The queries may be used in an
agent’s Internal Logic, as illustrated later.

Materializing the commitment events would accommodate a re-
active programming style where Internal Logic is expressed as plans
that respond to their occurrence. Commitment Event Materializer
serves precisely this purpose. For every update of Local State, it
runs the Commitment Queries to figure out the commitment events
resulting from the update and asserts them as beliefs.

The value of Azorus arises from generating the Protocol Adapter,
Base Event Adapter, Commitment Queries, and Materializer from
commitments and protocols and packaging them as the Azorus
adapter. Specifically, the agent programmer may focus on writing
the Internal Logic based on the interface afforded by Azorus adapter:
local state (the communicative acts that have occurred), enabled
acts (the acts that may be performed), and commitment queries and
materialized commitment events (as capturing meaning).

Below we describe each computational component, including
how they update the stateful ones.

3.1 Protocol Adapter

Baldoni et al. [3] present a programming model for implement-
ing protocol-based Jason agents. Given an information protocol,
the Jason+BSPL protocol adapter enables the implementation of
Jason agents that play roles in the protocol. Specifically, an agent’s
protocol adapter maintains its local state. Based on the state and
the protocol specification, it keeps track of information-enabled
forms. The forms are necessarily partial message instances that
would be legal to send if completed. Specifically, a form’s ⌜in⌝ pa-
rameters have bindings from the local state, whereas the ⌜out⌝
parameters are unbound because their bindings don’t exist in the
local state; ⌜nil⌝ parameters are omitted from the form because
they are neither bound in the local state nor can be bound.

Listing 4 gives a possible local state for a seller agent and List-
ing 5 shows the forms available to it in that state.

Listing 4: A possible local state for a seller agent. It contains

instances of messages in the Ebusiness protocol.
o f f e r ( 1 , f i g , 1 0 )
o f f e r ( 2 , jam , 1 0 0 )
a c c ep t ( 2 , jam , 100 , yes )
t r a n s f e r ( 1 , f i g , done , 1 0 )

Listing 5: Enabled forms, showing parameters to be bound.

o f f e r ( Id , Item , Price )
shipment ( 1 , f i g , 1 0 , Status )
shipment ( 2 , jam , 100 , Status )

To write a Jason+BSPL agent, a programmer writes a set of
plans. Each plan is an event-triggered piece of code that gets some
enabled forms; completes them via some logic; and then attempts to
send them. If the attempt passes the required integrity checks, the
adapter turns the completed forms into messages on the wire and
records them in the local state.
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Listing 6 shows a Jason code snippet that represents a seller
agent’s internal reasoning. The first plan concerns communicating
offers. If there is an enabled offer form, then it completes the form
by checking if it has something to offer, and then attempts to send
it. The listing also contains a plan for completing and attempting
shipment forms. The enabled predicate and attempt are adapter
abstractions. The programmer uses them and also writes the plan
for completing the form. Notably, the programmer never writes
code to receive messages.

Listing 6: Some Jason+BSPL snippets.

@of fe r_p lan [ atomic ]
+ ! s e n d _ o f f e r
: enab led ( o f f e r ( out , out , out ) [ r e c e i v e r ( out ) ] )
<− ! comple te ( o f f e r ( Id , Item ,

P r i c e ) [ r e c e i v e r ( Buyer ) ] ) ;
! a t tempt ( o f f e r ( Id , Item ,

P r i c e ) [ r e c e i v e r ( Buyer ) ] ) .

@shipment_plan [ atomic ]
+ ! send_shipment ( Id , Item , P r i c e , Buyer )
: enab led ( shipment ( Id , Item , P r i c e ,

out ) [ r e c e i v e r ( Buyer ) ] )
<− ! comple te ( shipment ( Id , Item , P r i c e ,

S t a t u s ) [ r e c e i v e r ( Buyer ) ] ) ;
! a t tempt ( shipment ( Id , Item , P r i c e ,

S t a t u s ) [ r e c e i v e r ( Buyer ) ] ) .

+ ! comple te ( o f f e r ( Id , Item ,
P r i c e ) [ r e c e i v e r ( Buyer ) ] )

: o n _ o f f e r ( Id , Item , P r i c e ) & buyer ( Buyer )
<− − on_o f f e r ( Id , Item , P r i c e ) .

+ ! comple te ( shipment ( Id , Item , P r i c e ,
S t a t u s ) [ r e c e i v e r ( Buyer ) ] )

: i n _ s t o c k ( Item ) & c ond i t i o n ( S t a t u s ) &
buyer ( Buyer )

<− − i n _ s t o c k ( Item ) .

Jason+BSPL abstracts away the maintenance of the local state
and presents an interface to the programmer that supplies the
enabled communicative acts. However, it does not support meaning-
based reasoning—the programmer must encode when messages
should be sent using low-level reasoning.

3.2 High-Level Commitment Queries

To support commitment queries, we give abstract Jason rules of the
form head :- body. The rules are substantially more modular than
in [13], which facilitates comprehension and enhances confidence
that they capture intuitions correctly.

We treat all expressions of type Expr in Table 1, e.g.,𝑋 ⊓𝑌 ,𝑋 ⊔𝑌 ,
and so on, uniformly as events. [[𝑋 ]] refers to the predicate for event
𝑋 . For a base event 𝐸 with attributes ®𝑎 and timestamp 𝑡 , [[𝐸]] is
simply 𝐸 ( ®𝑎, 𝑡) and its instances are asserted beliefs. For example,
the predicate for offer is offer(Seller,Buyer, Id, Item, Price,Otime).
The rules below lift [[]] to all events.

Below, 𝐸, 𝐹 , and 𝐺 are either base or commitment life events;
𝐿 is a life event; more generally, 𝑋 and 𝑌 are events; ®𝑎𝑋 and 𝑡𝑋
refer to the attributes and timestamp of 𝑋 , respectively; 𝑡𝑝 stands
for a globally unique timestamp name in every application of the
rules in which it appears. [[𝑋 ]] ®𝑎𝑡 means that [[𝑋 ]]’s attributes and
timestamp are ®𝑎 and 𝑡 , respectively. Where obvious from the rule,
we omit them.

C1 says that an instance of [[𝐸 [𝑐,∞]]] is an instance of of 𝐸 that
has occurred at or after 𝑐 . C2 is similar.
C1 [[𝐸 [𝑐,∞]]] :- [[𝐸]] & 𝑐 ⩽ 𝑡𝐸 .

C2 [[𝐸 [0, 𝑑]]] :- [[𝐸]] & 𝑡𝐸 < 𝑑.

A compiler uses the abstract Jason to produce actual Jason.
Thus, for example, when the compiler encounters the expression
offer[0, 5], it will map it to a unique name such as offerPred1 and
spit out the Jason rule in Listing 7.

Listing 7: Compiler-generated Jason from applying C1.

o f f e r P r e d 1 ( S e l l e r , Buyer , Id , Item , P r i c e , Otime )
: − o f f e r ( S e l l e r , Buyer , Id , Item , P r i c e ,
Otime ) & 5 <= Otime .

C3 says that an instance of 𝑋 ⊓𝑌 represents correlated instances
of 𝑋 and 𝑌 and whose timestamp value is the max of their times-
tamps. Further, the set of attributes of the instance is the union of
the attributes in the 𝑋 and the 𝑌 instances.
C3 [[𝑋 ⊓ 𝑌 ]] ®𝑎𝑋∪®𝑎𝑌

𝑡𝑝
:- [[𝑋 ]] & [[𝑌 ]] & .max ( [𝑡𝑋 , 𝑡𝑌 ], 𝑡𝑝 ) .

Suppose the compiler encountered the expression offer[0,5] ⊓
accept[0,6]. Listing 8 gives the kind of actual Jason code generated.

Listing 8: Compiler-generated Jason from applying C3.

andPred3 ( S e l l e r , Buyer , Id , Item , P r i c e , T1 ) : −
/ / o f f e r P r e d 1 as d e s c r i b e d i n Listing 7
o f f e r P r e d 1 ( S e l l e r , Buyer , Id , Item , P r i c e , Otime ) &
/ / Assume a r u l e f o r a c c e p t [ 0 , 6 ] from app l y i n g C1
accep tP r ed2 ( S e l l e r , Buyer , Id , Item , P r i c e , Atime ) &
. max ( [ Otime , Atime ] , T1 ) .

C6 says that an instance of 𝐸 [𝐹 +𝑐,∞] is an instance of 𝐸 that has
occurred no earlier than 𝑐 time units after the correlated 𝐹 instance.
C7 says that an instance 𝐸 [0,𝐺 + 𝑑] is an instance of 𝐸 such that
if the correlated 𝐺 instance has occurred, then the 𝐸 should have
occurred before 𝑑 units after the 𝐺 ’s occurrence. The rest of the
rules in C4–C9 are straightforward applications of C3.
C4 [[𝐸 [𝑐, 𝑑]]] :- [[𝐸 [𝑐,∞] ⊓ 𝐸 [0, 𝑑]]] .

C5 [[𝐸 [𝐹 + 𝑐,∞]]] ®𝑎𝐸𝑡𝐸 :- [[𝐸]] & [[𝐹 ]] & 𝑡𝐹 + 𝑐 ⩽ 𝑡𝐸 .

C6 [[𝐸 [𝐹 + 𝑐, 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊓ 𝐸 [0, 𝑑]]].

C7 [[𝐸 [0,𝐺 + 𝑑]]] ®𝑎𝐸𝑡𝐸 :- [[𝐸]] & (not [[𝐺]] | ( [[𝐺]] & 𝑡𝐸 < 𝑡𝐺 + 𝑑)) .
C8 [[𝐸 [𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝑐,∞] ⊓ 𝐸 [0,𝐺 + 𝑑]]].
C9 [[𝐸 [𝐹 + 𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊓ 𝐸 [0,𝐺 + 𝑑]]] .

C10 says that an instance of 𝑋 ⊔ 𝑌 is either an 𝑋 instance or a 𝑌
instance. If correlated 𝑋 and 𝑌 instances have both occurred, then
the timestamp is the min of the two. The set of attributes of the
𝑋 ⊔𝑌 instance is the intersection of the attributes of the 𝑋 instance
and the 𝑌 instance. Taking the intersection guarantees the absence
of unbound attributes. C11 is straightforward.
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C10 [[𝑋 ⊔ 𝑌 ]] ®𝑎𝑋∩®𝑎𝑌
𝑡𝑝

:- ([[𝑋 ]] & [[𝑌 ]] & .min( [𝑡𝑋 , 𝑡𝑌 ], 𝑡𝑝 ) |
([[𝑋 ]] & not 𝑌 & 𝑡𝑝 = 𝑡𝑋 ) |
([[𝑌 ]] & not 𝑋 & 𝑡𝑝 = 𝑡𝑌 ).

C11 [[𝑋 where 𝜑]] :- [[𝑋 ]] & 𝜑 .
Let commitment(𝑥,𝑦, 𝑐, 𝑟,𝑢) represent a commitment specifica-

tion with debtor 𝑥 , creditor 𝑦, and create, detach, and discharge
expressions 𝑐 , 𝑟 , and 𝑢, respectively. For brevity, in the rules below,
we write commitment(𝑐, 𝑟,𝑢) instead of commitment(𝑥,𝑦, 𝑐, 𝑟,𝑢)
since the debtor and creditor are the same throughout.

C12–C14 give the rules for some of the commitment life events
of interest. For commitment(𝑐, 𝑟,𝑢), the created instances are the
𝑐 instances; detached instances represent correlated created and 𝑟
instances; and discharged instances represent correlated created
and 𝑢 instances.
C12 [[created (𝑐, 𝑟,𝑢)]] :- [[𝑐]] .
C13 [[detached (𝑐, 𝑟,𝑢)]] :- [[created (𝑐, 𝑟,𝑢) ⊓ 𝑟 ]] .
C14 [[discharged (𝑐, 𝑟,𝑢)]] :- [[created (𝑐, 𝑟,𝑢) ⊓ 𝑢]] .

Jason rules for computing expired and violated instances of com-
mitments require the notion of failed events. C15 says that an in-
stance of 𝐸 fails to occur at or after 𝑐 if it occurs before 𝑐 . C16 says
that an instance of 𝐸 fails to occur before 𝑑 either if it occurs at
or after 𝑑 or it does not occur at all. In both cases, the timestamp
of failure is 𝑑 . C20 says that an instance of 𝐸 fails to occur before
𝑡𝐺 + 𝑑 if either 𝐸 occurs at or after 𝑡𝐺 + 𝑑 or 𝐸 does not occur at
all. In both cases, the timestamp of failure is 𝑡𝐺 + 𝑑 . The rest of the
rules in C15–C22 are straightforward.
C15 [[𝐸 [𝑐,∞]]] :- [[𝐸 [0, 𝑐]]].
C16 [[𝐸 [0, 𝑑]]]𝑡𝑝 :- [[𝐸 [𝑑,∞]]] | not [[𝐸]]) & 𝑡𝑝 = 𝑑 .

C17 [[𝐸 [𝑐, 𝑑]]] :- [[𝐸 [𝑐,∞] ⊔ 𝐸 [0, 𝑑]]].
C18 [[𝐸 [𝐹 + 𝑐,∞]]] :- [[𝐸 [0, 𝐹 + 𝑐]]].
C19 [[𝐸 [𝐹 + 𝑐, 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊔ 𝐸 [0, 𝑑]]].

C20 [[𝐸 [0,𝐺 + 𝑑]]] ®𝑎𝐸𝑡𝑝 :- [[𝐺]] & ([[𝐸 [𝐺 + 𝑑,∞]]] | not [[𝐸]]) &
𝑡𝑝 = 𝑡𝐺 + 𝑑 .

C21 [[𝐸 [𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝑐,∞] ⊔ 𝐸 [0,𝐺 + 𝑑]]].
C22 [[𝐸 [𝐹 + 𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊔ 𝐸 [0,𝐺 + 𝑑]]].

C23—C25 extend failure to some more expressions following De
Morgan’s laws.
C23 [[𝑋 ⊓ 𝑌 ]] :- [[𝑋 ⊔ 𝑌 ]].
C24 [[𝑋 ⊔ 𝑌 ]] :- [[𝑋 ⊓ 𝑌 ]].
C25 [[𝑋 where 𝜑]] :- [[𝑋 ⊔ (𝑋 where not 𝜑)]].

C26 says that an instance of 𝑋 ⊖ 𝑌 is an instance of 𝑋 such that
the correlated 𝑌 has failed to occur. Its timestamp is the max of the
two.
C26 [[𝑋 ⊖ 𝑌 ]] ®𝑎𝑋𝑡𝑝 :- [[𝑋 ]] & [[𝑌 ]] & .max ( [𝑡𝑋 , 𝑡𝑌 ], 𝑡𝑝 ) .

C27 [[𝑋 ⊖ 𝑌 ]] :- [[𝑋 ⊔ 𝑌 ]].
C28–C29 give the rules of computing expired and violated in-

stances. An expired instance is one that has failed to detach; a
violated instance is one that has failed to discharge.
C28 [[expired (𝑐, 𝑟,𝑢)]] :- [[𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑐, 𝑟,𝑢) ⊖ 𝑟 ]] .

C29 [[violated (𝑐, 𝑟,𝑢)]] :- [[detached (𝑐, 𝑟,𝑢) ⊖ 𝑢]] .

Often, we are interested in life events that have actually occurred,
that is, their timestamp is no later than the current time, as C30
captures.

C30 [[now𝐿]] :- [[𝐿]] & 𝑡𝐿 ⩽ Now & system_time(𝑁𝑜𝑤).

3.3 Base Event Adapter

Base event schemas correspond to but may be different from mes-
sage schemas. For example, in Listing 2, message accept has a pa-
rameter decision whereas in Listing 1, the corresponding base event
schema has no such attribute.

The difference arises from the idea that Cupid specifications
concern purely meaning whereas information protocols concern
both meaning and coordination [29]. Specifically, every base event
schema corresponds to some message schema; however, the mes-
sage schema may feature additional parameters whose purpose is
to enable or disable the occurrence of other messages.

Moreover, each base event schema has an additional timestamp
attribute. Every time a message is sent or received, an instance
of the corresponding base event schema (if one exists) is asserted
where the value of its timestamp is the current system time. C31
gives the corresponding rule pattern, whose instance the tooling
generates for every base event schema, corresponding message pair
(𝑏 ( ®𝑎, 𝑡),𝑚( ®𝑝)).

3.4 Commitment Event Materializer

To materialize commitment events as beliefs, we assert an update
commitment events goal every time an agent asserts a base event
(as described above). Any base event affects commitments that are
relevant to some subset of enactments, as identified by the bindings
of the key attributes. Therefore, for efficiency, the update goal is
parameterized by key attributes that are common to the base event
schemas and are therefore guaranteed to occur in every life event
predicate. C31 triggers the update (®𝑘 ⊆ ®𝑎).

C31 +𝑚( ®𝑝) : system_time(Now) <- +𝑏(®𝑎, Now); !update(®𝑘).

C32 gives the abstract Jason plan for materializing commitment
events; [[𝑏𝑒𝑙_nowL]] is a predicate with the same attributes and
timestamp as [[nowL]]. The plan for the update goal consists of
asserting a belief corresponding to a life event if it is an instance of
the life event predicate but not yet asserted. Assume that the life
event predicates are [[𝐿1]],. . . , [[𝐿𝑛]].

C32 +!update(®𝑘) <- if ([[nowL1]] & not [[𝑏𝑒𝑙_nowL1]])
{ +[[𝑏𝑒𝑙_nowL1]]; }
. . .
if ([[nowL𝑛]] & not [[𝑏𝑒𝑙_nowL𝑛]])
{ +[[𝑏𝑒𝑙_nowL𝑛]]; }.

As explained above, ®𝑘 ⊆ ®𝑎 for every [[𝐿𝑖 ]] ®𝑎 .

4 Implementing Flexible Agents

We now give examples of how Azorus agents can reason about
commitments to flexibly enact protocols.
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4.1 With Commitments as Queries

Azorus offers a set of queries for each commitment as a module
(see Figure 2). These queries can be used for driving the choices of
the enabled messages computed by the protocol adapter module.

Listing 9: Commitments as queries in Azorus.

+ ! handle_form ( [ shipment ( Id , Item , P r i c e ,
out ) [ r e c e i v e r ( Buyer ) ] | _ ] )

: i n _ s t o c k ( Item ) &
now_detached_OfferCom ( S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp )
<− ! send_shipment ( Id , Item , P r i c e , Buyer ) .

+ ! handle_form ( [ shipment ( Id , Item , P r i c e ,
out ) [ r e c e i v e r ( Buyer ) ] | _ ] )

: not i n _ s t o c k ( Item ) &
now_detached_OfferCom ( S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp )
<− ! send_re fund ( Id , Item , Payment , Bank ) .

+ ! handle_form ( [ re fund ( Id , Item , Payment , out ,
out ) [ r e c e i v e r ( Bank ) ] | _ ] )

: now_detached_RefundCom ( S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp )

<− ! send_re fund ( Id , Item , Payment , Bank ) .

A common reasoning pattern is to discharge a commitment if it
is detached. The first plan in Listing 9 embodies this pattern. The
seller executes the goal send_shipment if the Item is in stock and
the commitment OfferCom is detached, that is, the shipment occurs
if the transfer has been done in a timely manner.

Otherwise, by the second plan, if the Item is not in stock but
OfferCom is detached, the goal send_refund is executed. The plan
for send_shipment is as in Listing 6 and the plan for send_refund is
analogous. The last plan is for when the commitment OfferCom is
violated (because shipping does not occur by the deadline); again,
the goal send_refund is executed. Both plans intend refund; however,
the second does it simply on the basis the detach of OfferCom
whereas the last plan does it upon the violation of OfferCom.

4.2 With Commitments as Events

Besides the set of queries for each commitment, an agent program
can exploit the commitment event materializer. The commitment
event materializer module (see Figure 2) produces an event for
each commitment state change in the form of a belief adding event.
These events can be exploited to support reasoning.

Listing 10: Commitments as events in Azorus.

+ ! o f f e r : o n _ o f f e r ( Id , Item , P r i c e )
<− ! s e n d _ o f f e r .

+ev_now_detached_OfferCom ( S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp )

: i n _ s t o c k ( Item )
<− ! send_shipment ( Id , Item , P r i c e , Buyer ) .

+ev_now_detached_RefundCom ( S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp )

<− ! send_re fund ( Id , Item , Payment , Bank ) .

For example, in Listing 10, the agent seller sends an offer to a
potential buyer. Upon a timely transfer, the commitment OfferCom
is detached and, by exploiting the rule C32, the event
+ev_now_detached_OfferCom is produced by adding the corre-
sponding belief to the seller agent’s belief base. This triggers the
plan for dealingwith such an event: the agent performs the shipment.
Analogously, in the case the event +ev_now_detached_RefundCom
is generated (the shipment does not occur within the deadline) the
agent performs the refund.

4.3 Timestamp-Based Reasoning

Recall that for a life event 𝐿, an instance of [[𝑛𝑜𝑤𝐿]] is an [[𝐿]]
instance that has actually occurred (that is, with current time as
the reference point). In general, any time instant, in the past or the
future, could be the point of reference.

Suppose the seller agent, as a matter of managing its commit-
ments, wanted to discharge the OfferCom commitments that will be
violated within 10 time units from now (unless, of course, shipment
is sent). Listing 11 shows how to accomplish this using a future
time instant as the point of reference.

Listing 11: Deadline-based reasoning.

+ ! handle_form ( [ shipment ( Id , Item , P r i c e ,
out ) [ r e c e i v e r ( Buyer ) ] | _ ] )

: i n _ s t o c k ( Item ) & v io l a t ed_Of fe rCom ( Id , . . . , T )
& system_t ime (Now) & T <= Now + 10

<− ! send_shipment ( Id , Item , P r i c e , Buyer ) .

5 Conceptual Evaluation

Let’s summarize what must be manually specified or coded and
what Azorus provides as abstractions. The commitment specifi-
cation, the protocol, and an agent’s internal reasoning must be
manually specified. Azorus supports the coding of internal reason-
ing by providing abstractions that enable reasoning about commit-
ments and performing communicative acts that are legal from the
standpoint of the protocol.

In virtually any multiparty application, commitments and pro-
tocols are domain objects; there is no avoiding reasoning about
them. Specifying them cleanly opens up the possibility of building
a tool-supported methodology around them, including verification
[15, 30, 31, 36] and programming abstractions (as we do in Azorus),
and other productivity tools such as IDEs. Not specifying them
means architects and programmers must figure out the possible
enactments and encode the reasoning using low-level abstractions.
Naturally, such code is likely to be ad hoc, complex, and error-prone
even for simple MAS involving rigid interactions between two par-
ties, let alone more than two party-MAS with flexible engagements
(such as the Ebusiness protocol, which, recall, has 658 enactments).

If Jason had just protocol support (as Jason+BSPL) provides, the
programmer would still have to encode reasoning about commit-
ments manually. Consider Listing 12, which shows a seller’s code
snippet. It says that the agent sends an enabled shipment if transfer
has occurred. Since transfer is required for the detach of OfferCom,
this seems to capture the intent behind the first plan in Listing 9. It
does not though because it misses the time-related reasoning.
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Listing 12: No support for commitment reasoning can lead

to errors by underspecification.

+ ! handle_form ( [ shipment ( Id , Item , P r i c e ,
out ) [ r e c e i v e r ( Buyer ) ] | _ ] )

: i n _ s t o c k ( Item ) &
t r a n s f e r ( Id , P r i c e , _ , Payment )

<− ! send_shipment ( Id , Item , P r i c e , Buyer ) .

With just commitment support, things could gowrong. Listing 13
gives an example that allows both shipment and refund, mutually
exclusive acts, to occur if the plan for reacting to transfer takes so
long to execute that shipment happens too late.

Listing 13: No support for protocols can lead to erroneous

communication.

+ t r a n s f e r ( Id , P r i c e , Payment )
: i n _ s t o c k ( Item ) &

now_detached_OfferCom ( S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp )

<− . send ( Buyer , t e l l , shipment ( Id , Item , P r i c e ,
yum) ) .

+now_detached_RefundCom ( S e l l e r , Buyer , Id , Item ,
P r i c e , Bank , Payment , Timestamp )

: Amount=Payment
<− . send ( Bank , t e l l , r e fund ( Id , Item , Payment ,

Amount , done ) ) .

Without protocol support, in Jason, programmers typically end
up using the tell for sending every message. We might as well
just drop KQML support (and FIPA ACL [17] support from JADE)
and instead consider the protocol messages themselves as first-
class communicative acts and express their meaning via social
abstractions such as commitments (see Singh’s essay in [10]), as
Azorus does.

6 Discussion

Azorus’ novelty is twofold. One, it shows how protocols as opera-
tional abstractions and commitments as high-level abstractions can
be leveraged in a multiagent programming model. Two, it extends
Jason, a popular BDI-based programming model with higher-level
communication abstractions. Azorus exploits practical, expressive
languages for commitments and protocols and the Azorus adapter
is the first careful working out of the interplay between proto-
col enactment and commitment reasoning. Its significance is also
two-fold. One, Azorus simplifies the engineering of flexible, decen-
tralized MAS. Two, it brings goals, commitments, and protocols—all
of which represent autonomy—in a single programming model.

We now discuss some issues that require further investigation.
Specifying Commitments. Different commitment specifica-

tions could be overlaid on the same protocol. Listing 14 shows an
alternative to the specification in Listing 1 (assume the same base
event schemas and we omit the alternative Alt-RefundCom). The
specification in Listing 1 is "direct" in that it gives the meaning
of both offer and accept as an exchange of shipment and transfer.
Assuming the buyer trusts the seller to discharge its commitments,
the expected enactment would be offer followed by transfer and

then shipment. By contrast, the specification in Listing 14 has a "wa-
terfall" flavor. Under the same assumption, the expected enactment
would be offer followed by accept, then shipment, and then transfer.

Listing 14: Alternative commitment specification.

commitment Al t −OfferCom S e l l e r to Buyer
c r e a t e o f f e r
detach ac c ep t [ , c r e a t e d OfferCom + 5]

where " Payment >= P r i c e "
d i s c h a r g e shipment [ , detached OfferCom + 5]

commitment Al t −AcceptCom Buyer to S e l l e r
c r e a t e a c c ep t
detach shipment [ , c r e a t e d AcceptCom + 5]
d i s c h a r g e t r a n s f e r [ , detached AcceptCom + 5]

where " Payment >= P r i c e "

The possibility of several alternative commitment specifications
motivates characterizing the specifications in terms of properties
and stakeholder requirements that they satisfy. More generally, we
need methodologies for deriving commitment specifications from
requirements.

Implementing Agents. Consider buyer and seller agents imple-
mented such that the seller waited for the buyer to detach OfferCom
by effecting transfer and the buyer waited for the seller to detach
AcceptCom by doing shipment. Naturally, in every enactment, the
agents end up deadlocked (even though the Ebusiness protocol itself
is live). It is tempting to take the view that the commitment specifi-
cation in Listing 1 lends itself to deadlocks. However, notice that
deadlocks can happen even with the alternative specification in
Listing 14 if neither agent is prepared to detach first. Often, a dead-
locked enactment is a result of agents exercising their autonomy
by not sending messages.

Some deadlocks may be unintentional, resulting from a narrow
reading of commitments and failing to take into other factors such
as trust (which is crucial to progress in interactions) and other
business requirements. For example, if a buyer trusts the seller
or the monetary amount involved is small or the item involved is
urgent, the buyer may be willing to detach OfferCom from the seller,
effectively moving first in the exchange. What we need are novel
methodologies for implementing agents that take into account the
various contextual assumptions and business requirements.

There has been work on studying commitments from the re-
quirements perspective and the ideas are potentially relevant for
both specifying commitment and implementing agents. Marengo
et al. [23] and Günay et al. [21] study commitments from the no-
tions of safety and control. Some work has studied relationships
between goals (as representation of requirements) and commit-
ments [12, 24, 32]. Studying commitments from the point of view
of concession (taking risk by moving first) [38] would also be also
interesting.

To summarize, there has been limited work on methodologies
for building flexible, decentralized MAS; it is a direction that should
yield rich dividends.

Supplementary Material. Contains our tooling and the Ebusiness
MAS code.
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