
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Azorus: Commitments over Protocols for BDI Agents
Anonymous Author(s)

Submission Id: 47
Abstract

Commitments support flexible interactions between agents by cap-
turing the meaning of their interactions. However, commitment-
based reasoning is not adequately supported in agent programming
models. We contribute Azorus, a programming model based on
declarative specifications centered on commitments and aligned
with information protocols. Azorus supports reasoning about goals
and commitments and combines modeling of commitments and
protocols, thereby uniting three leading declarative approaches
to engineering decentralized multiagent systems. Specifically, we
realize Azorus over three existing technology suites: (1) Jason, a
popular BDI-based programming model; (2) Cupid, a formal lan-
guage and query-based model for commitments; and (3) BSPL, a
language and its associated tools for information protocols, includ-
ing Jason programming. We implement Azorus and demonstrate
how it enables capturing interesting patterns of business logic.

CCS Concepts

• Computing methodologies→Multi-agent systems.

Keywords

Decentralization, Decision making, Asynchrony, Causality

ACM Reference Format:

Anonymous Author(s). 2025. Azorus: Commitments over Protocols for BDI
Agents. In Proc. of the 24th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 9 pages.

1 Introduction

Important domains such as business and healthcare that involve
autonomous principals lend themselves to the application of decen-
tralized multiagent systems (MAS). Engineering flexible MAS calls
upon programming abstractions for social meaning, operational
interactions, and agent reasoning.

Commitments are a high-level abstraction that capture the social
meaning of a communicative act [26]. For example, an offer from
a seller to a buyer for some Item and Price may be modeled as a
commitment from the seller to the buyer that if payment of the
Price happens, then the shipment of Item will happen. Commitments
model autonomy by both enabling flexible engagements between
agents and yielding a standard for compliance [19, 33, 37]. There
has been work on expressive languages for commitments [9, 13].

Commitments, however, need to be layered on flexible interac-
tion protocols that minimally constrain when agents may perform
communicative acts in decentralized settings. For example, refund
without a prior payment would be meaningless; and accept and
reject should be mutually exclusive to be meaningful; however,

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), A. El Fallah Seghrouchni, Y. Vorobeychik, S. Das, A. Nowe (eds.), May 19
– 23, 2025, Detroit, Michigan, USA. © 2025 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

shipment and payment may happen in any order. Because of their
emphasis on message ordering, traditional protocol specification
approaches [2, 4, 16, 35] are not suited to specifying flexible proto-
cols. For this purpose, we turn toward information protocols [27],
a declarative approach for specifying flexible protocols. Indeed a
motivation for information protocols was a suitable operational
layer for commitments [27, p. 498].

Commitments are not adequately supported in programming
models for multiagent systems. Popular approaches such as JADE
[5], Jason [7], JaCaMo [6], and SARL [20] provide diverse, use-
ful abstractions for engineering multiagent systems. However, the
abstractions for communication in these approaches are either low-
level (e.g., messaging in JADE and Jason and event spaces in SARL),
limited in repertoire, inflexible (support for FIPA Interaction Pro-
tocols [18] in JADE), or promote centralization (via artifacts in
JaCaMo). MOISE (the ‘Mo’ in JaCaMo) [22] supports a notion of
commitments but tightly couples them to agent goals; moreover,
the commitments are undirected and a distinguished organizational
entity tracks and enforces them, betraying an underlying central-
ized mindset. Baldoni et al. [1] model communicative acts and their
effects on commitments via JaCaMo artifacts. Kiko [14], an informa-
tion protocol-based programming model supports creating flexible,
decentralized MAS but does not support commitments.

We contribute Azorus (named after the helmsman of Jason’s ship,
the Argo), a commitment-based programming model that enables
implementing flexible MAS via BDI agents. We bring together for
the first time three declarative paradigms: commitments, informa-
tion protocols, and cognitive agents. For the latter, we adopt BDI
(belief-desire-intention) agents, which have beliefs and goals, and
execute plans in response to changes in beliefs and goals. Jason [7]
is a prominent exemplar of the paradigm (and the ‘Ja’ in JaCaMo).
The synthesis makes conceptual sense because in a multiagent sys-
tem, agents depend on others for the satisfaction of their goals [25].
Commitments capture such dependencies between agents [21], and,
as described above, motivate information protocols. Winikoff [34]
notes the lack of support for implementing flexible interactions in
agent programming approaches. Our synthesis addresses this gap.

• We contribute a novel formalization of Cupid [13], an ex-
pressive commitment language, in terms of abstract Jason
rules. We provide a compiler from Cupid to Jason that en-
ables a declarative, high-level abstraction for including com-
mitment events in Jason plans.

• We contribute a novel Jason communication adapter that
supports an agent’s internal reasoning by maintaining the
mapping between commitments and enactments of infor-
mation protocols and providing abstractions for querying
and reacting to commitment events and performing valid
communicative acts.

• We demonstrate interesting agent reasoning patterns for
exploiting Azorus and implementing flexible agents.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Anon. Submission Id: 47

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Organization. The rest of the paper is organized as follows. Sec-
tion 2 introduces the necessary background on Cupid, information
protocols, and Jason. Section 3 introduces the Azorus programming
model via its architectural elements, including a Jason semantics for
inferring commitment events from communicative acts. Section 4
demonstrates some patterns for implementing flexible agents. Sec-
tion 5 evaluates our contributions conceptually. Section 6 summa-
rizes our contributions and raises some issues and future directions.

2 Background

We introduce Cupid, a language to specify commitments, informa-
tion protocols; and finally Jason.

2.1 Specifying Commitments in Cupid

Cupid is an approach for specifying commitments over databases
of business events [13].

Listing 1: Commitment specification in Cupid.

schema
o f f e r (S e l l e r , Buyer , Id , Item , P r i c e)
key Id t ime Otime
ac cep t (Buyer , S e l l e r , Id , Item , P r i c e)
key Id t ime Atime
i n s t r u c t (Buyer , Bank , Id , P r i c e)
key Id t ime I t ime
t r a n s f e r (Bank , S e l l e r , Id , P r i c e , Payment)
key Id t ime Ttime
shipment (S e l l e r , Buyer , Id , Item , P r i c e)
key Id t ime St ime
re fund (S e l l e r , Bank , Id , Item , Payment , Amount)
key Id t ime Rtime

commitment OfferCom S e l l e r to Buyer
c r e a t e o f f e r
detach t r a n s f e r [, c r e a t e d OfferCom + 5]

where " Payment >= P r i c e "
d i s c h a r g e shipment [, detached OfferCom + 5]

commitment AcceptCom Buyer to S e l l e r
c r e a t e a c c ep t
detach shipment [, c r e a t e d AcceptCom + 5]
d i s c h a r g e t r a n s f e r [, detached AcceptCom + 5]

where " Payment >= P r i c e "

commitment RefundCom S e l l e r to Buyer
c r e a t e o f f e r
detach v i o l a t e d OfferCom
d i s ch a r g e re fund [, detached RefundCom + 2]

where " Amount >= Payment "

commitment TransferCom Bank to Buyer
c r e a t e i n s t r u c t
d i s c h a r g e t r a n s f e r [, c r e a t e d TransferCom + 2]

where " Payment= P r i c e "

Listing 1 gives a Cupid specification. It first specifies the base
events along with their keys and timestamp attributes. The commit-
ment OfferCom specifies that offer creates a commitment (instance)
from seller to buyer. This commitment is detached if transfer hap-
pens within 5 time units (for purposes of this paper, seconds) of the
creation and Payment in the transfer is at least as much as Price in the
offer. The commitment expires (fails to be detached) if either of these
conditions is not met. The commitment is discharged if shipment
happens within 5 time units of being detached. The commitment is
violated if it fails to be discharged, that is, if shipment fails to occur
within the stipulated time.

AcceptCom specifies that accept creates a commitment from
buyer to seller that if shipment happens within 5 time units of its
creation, then transfer will occur within 5 time units of its being de-
tached. RefundCom specifies that offer creates a commitment from
seller to buyer if OfferCom is violated, then Refund of at least
the amount paid will be done with 2 time units of the violation (else,
obviously, the RefundCom will be violated). Refund demonstrates
the use of nested commitments, which may be used to capture
patterns such as compensation. TransferCom captures the bank’s
commitment to the buyer to do transfer upon instruct.

Table 1 defines the formal syntax of Cupid. Below, 𝒜 and 𝒯 are
the sets of agent names and time instants, respectively; in particular,
𝒯 = N ∪ {∞}, where N is the set of natural numbers and∞ is an
infinitely distant time instant.

Listing 1 uses a surface syntax for readability. We write and, or,
and except for ⊓, ⊔, and ⊖ respectively. In time intervals, we omit
lower and upper instants when they are 0 and∞, respectively. An
omitted detach clause means the commitment is unconditional. We
label commitments to simplify referring to commitment events.

Table 1: Syntax of Cupid [13].

Event −→ Base | LifeEvent
LifeEvent −→ created(𝒜, 𝒜, Expr, Expr, Expr) |

detached(𝒜, 𝒜, Expr, Expr, Expr) |
discharged(𝒜, 𝒜, Expr, Expr, Expr) |
expired(𝒜, 𝒜, Expr, Expr, Expr) |
violated(𝒜,𝒜, Expr, Expr, Expr)

Expr −→ Event[Time, Time] | Expr ⊓Expr |Expr ⊔Expr |
Expr ⊖ Expr | Expr where 𝜑

Time −→ Event + 𝒯 | 𝒯
ComSpec −→ commitment(𝒜, 𝒜, Expr, Expr, Expr)

Cupid specifies five life events for every commitment: created,
detached, expired, discharged, and violated. The semantics of Cupid
gives a query for each life event for a commitment. The idea is
to infer the life events (including their timestamps) from the base
events. Time intervals for an event ([Time, Time] in Table 1) are
interpreted strictly: the event is required to occur after (including
at) the initial moment but before the final moment of the interval.

In [13], Cupid’s semantics is given in relation algebra; its existing
implementation compiles each life event of a commitment into an
SQL query. Azorus provides a new implementation of Cupid into
Jason to enable BDI programming using commitments.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Azorus: Commitments over Protocols for BDI Agents AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.2 Specifying Protocols

Information protocols are declarative interaction specifications
[27, 28]. In this approach, an interaction is specified as a com-
position of protocols—messages being the special case of atomic
protocols—in terms of the the information dependencies between
them. The idea is that an agent can emit any message whose infor-
mation dependencies are satisfied given its local state, that is, its
communication history. We adopt information protocols because
they support flexible and asynchronous multiparty enactments bet-
ter than traditional message ordering-oriented representations of
protocols [11].

We explain the main ideas via Listing 2, which gives an infor-
mation protocol named Ebusiness. It specifies several messages,
along with senders, receivers, and their information parameters.
The parameter Id is annotated key, meaning it serves to identify
enactments (and correlate messages). Adornments ⌜in⌝, ⌜out⌝, and
⌜nil⌝ for parameters capture information dependencies and are
interpreted relative to enactments. A message in some enactment
is viable (legal) for purposes of emission if it has bindings for all
parameters except those adorned ⌜nil⌝; the agent already knows
the bindings of all the ⌜in⌝ parameters (that is, the bindings must
exist in the agent’s local state); and it does not know the bindings
for any ⌜out⌝ parameter or ⌜nil⌝ parameters (they must not exist
in the local state). Sending the message adds it to the agent’s lo-
cal state (along with the bindings for the ⌜out⌝ parameters, thus
making them known). Receiving a message adds it to the receiver’s
local state (along with the bindings for all its parameters, thus mak-
ing them known). Notably, information protocols do not specify
message reception order.

Listing 2: An information protocol.

Ebus i n e s s {
r o l e s Buyer , S e l l e r , Bank
paramete r s out Id key , out Item , out P r i c e , out

S t a t u s

S e l l e r −> Buyer : o f f e r [out Id key , out Item ,
out P r i c e]

Buyer −> S e l l e r : a c c ep t [i n Id key , i n Item , i n
P r i c e , out Dec i s i on]

Buyer −> Bank : i n s t r u c t [i n Id key , i n P r i c e ,
out D e t a i l s]

Bank −> S e l l e r : t r a n s f e r [i n Id key , i n P r i c e ,
i n De t a i l s , out Payment]

S e l l e r −> Buyer : shipment [i n Id key , i n Item ,
i n P r i c e , out S t a t u s]

S e l l e r −> Bank : r e fund [i n Id key , i n Item , i n
Payment , out Amount , out S t a t u s]

}

Thus, in any enactment of Ebusiness, seller may send offer any-
time since all its parameters are ⌜out⌝. Once seller has sent offer, it
would know the bindings for Id, Item, and Price, which means it may
send shipment provided it does not already know the binding for
Status. By analogous reasoning, buyer may send accept or instruct
anytime after receiving offer; bank may send a transfer anytime
after receiving instruct; and seller may send refund anytime after

sending offer and receiving transfer. Messages shipment and refund
are mutually exclusive since they both bind Status (it is ⌜out⌝ in
both).

To get a sense of how flexible Ebusiness is, consider the fact
that it has 658 distinct maximal enactments (each a causally valid
permutation of sends and receives of its messages extended until
no agent is left with any viable message), including the enactment
depicted in Figure 1, which is notable because accept and transfer
are “reordered” in the communication infrastructure and seller
sends shipment even though it has not received accept.

BUYER SELLER BANK

offer

accept

instruct

transfer

shipment

Figure 1: Ebusiness enactment in which shipment is sent by
seller even as accept was in transit, based on [11, p. 1380].

2.3 Implementing Agents in Jason

Jason is an extended implementation of the AgentSpeak logic-
programming language for specifying agent behavior [7]. In Jason,
an agent is modeled as having beliefs, which capture the state of
the world; goals, which capture its objectives; and plans, which
are methods for realizing its goals. To facilitate building multia-
gent systems, Jason adopts communication primitives based on the
Knowledge Query and Manipulation Language, better known as
KQML [8].

To illustrate Jason’s programming model, especially, how it
weaves together communication and reasoning in an agent, List-
ing 3 give a snippet of how an agent Bob who plays seller in
Ebusiness might be implemented in Jason without any special sup-
port for protocols.

Listing 3: Jason snippet of a seller agent Bob.

buyer (a l i c e) .
i n _ s t o c k (f i g s) .
g o e s _ f o r (f i g s , 1 0) .

! s t a r t .
+ ! s t a r t <−

? buyer (Buyer) ;
? g o e s _ f o r (Item , P r i c e) ;
. random (Id) ;
. send (Buyer , t e l l , o f f e r (Id , Item , P r i c e)) .

+ a c c ep t (Id , Item , P r i c e , De c i s i on) [sou r c e (Sender)]

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Anon. Submission Id: 47

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

: i n _ s t o c k (Item) & buyer (Sender)
<− . send (Sender , t e l l , shipment (Id , Item , P r i c e ,

yum)) .

The first few lines of Listing 3 add beliefs that buyer is alice,
figs are in stock and that they go for the price of 10. Then the
goal start is asserted. The following lines show two plans. The first
is for the goal start and is executed whenever it is asserted. This
plan executes two queries to bind variables Buyer and Item and Price,
respectively. It then uses a library function to bind variable Id to a
random identifier. Finally, it uses the built-in function for sending
an offer to Buyer using the KQML speech act tell.

The following plan is for handling a received accept, which is
recorded as a belief when it is received by Bob and is executed
whenever such a belief is added. The plan checks (via guards) that
the Item is in stock and that the Sender is the buyer and if so sends
back a shipment message, again using a tell.

3 Programming Model, Architecturally

Figure 2 describes the Azorus architecture and programming model.
A MAS is specified in terms of commitments and an information
protocol. To implement an agent to play a role in the MAS, a pro-
grammer must supply the requisite internal logic. The Azorus tool-
ing generates an adapter (comprising the red-bordered components)
for the role being played by the agent based on the specifications.
These components maintain the agent’s local state (the protocol
state projected to the messages sent or received by the agent) as
a set of beliefs and provide primitives for commitment reasoning.
The agent’s internal logic uses the Azorus adapter to reason about
its commitments and perform communicative acts.

Internal Logic

Commitment Materializer

Commitment Queries

Base Event Adapter

Protocol Adapter

Commitment Events

Protocol State

Reasoning

Beliefs

Azorus Agent

Decentralized
Social State

stored by each agent

Azorus Tool

Commitments (Cupid)
Protocol (BSPL)

MAS Specification

Asynchronous Communication Service

no central store

Figure 2: Azorus architecture and programming model.

In the figure, state is represented in blue and computational
components in red. Each agent sits atop an Asynchronous Commu-
nication Service which it uses to send and receive message and has
the following components. Local State is a set of beliefs correspond-
ing to the messages sent and received by the agent. The Protocol
Adapter is a representation of protocol corresponding to the role

played by the agent in the protocol. It relies upon Local State to
compute the set of enabled communicative acts (explained shortly).
As messages are added to the Local State, the Base Event Adapter
adds Base Events as timestamped beliefs. Commitment Queries are
computed on top of Base Events. The queries may be used in an
agent’s Internal Logic, as illustrated later.

Materializing the commitment events would accommodate a re-
active programming style where Internal Logic is expressed as plans
that respond to their occurrence. Commitment Event Materializer
serves precisely this purpose. For every update of Local State, it
runs the Commitment Queries to figure out the commitment events
resulting from the update and asserts them as beliefs.

The value of Azorus arises from generating the Protocol Adapter,
Base Event Adapter, Commitment Queries, and Materializer from
commitments and protocols and packaging them as the Azorus
adapter. Specifically, the agent programmer may focus on writing
the Internal Logic based on the interface afforded by Azorus adapter:
local state (the communicative acts that have occurred), enabled
acts (the acts that may be performed), and commitment queries and
materialized commitment events (as capturing meaning).

Below we describe each computational component, including
how they update the stateful ones.

3.1 Protocol Adapter

Baldoni et al. [3] present a programming model for implement-
ing protocol-based Jason agents. Given an information protocol,
the Jason+BSPL protocol adapter enables the implementation of
Jason agents that play roles in the protocol. Specifically, an agent’s
protocol adapter maintains its local state. Based on the state and
the protocol specification, it keeps track of information-enabled
forms. The forms are necessarily partial message instances that
would be legal to send if completed. Specifically, a form’s ⌜in⌝ pa-
rameters have bindings from the local state, whereas the ⌜out⌝
parameters are unbound because their bindings don’t exist in the
local state; ⌜nil⌝ parameters are omitted from the form because
they are neither bound in the local state nor can be bound.

Listing 4 gives a possible local state for a seller agent and List-
ing 5 shows the forms available to it in that state.

Listing 4: A possible local state for a seller agent. It contains

instances of messages in the Ebusiness protocol.
o f f e r (1 , f i g , 1 0)
o f f e r (2 , jam , 1 0 0)
a c c ep t (2 , jam , 100 , yes)
t r a n s f e r (1 , f i g , done , 1 0)

Listing 5: Enabled forms, showing parameters to be bound.

o f f e r (Id , Item , Price)
shipment (1 , f i g , 1 0 , Status)
shipment (2 , jam , 100 , Status)

To write a Jason+BSPL agent, a programmer writes a set of
plans. Each plan is an event-triggered piece of code that gets some
enabled forms; completes them via some logic; and then attempts to
send them. If the attempt passes the required integrity checks, the
adapter turns the completed forms into messages on the wire and
records them in the local state.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Azorus: Commitments over Protocols for BDI Agents AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Listing 6 shows a Jason code snippet that represents a seller
agent’s internal reasoning. The first plan concerns communicating
offers. If there is an enabled offer form, then it completes the form
by checking if it has something to offer, and then attempts to send
it. The listing also contains a plan for completing and attempting
shipment forms. The enabled predicate and attempt are adapter
abstractions. The programmer uses them and also writes the plan
for completing the form. Notably, the programmer never writes
code to receive messages.

Listing 6: Some Jason+BSPL snippets.

@of fe r_p lan [atomic]
+ ! s e n d _ o f f e r
: enab led (o f f e r (out , out , out) [r e c e i v e r (out)])
<− ! comple te (o f f e r (Id , Item ,

P r i c e) [r e c e i v e r (Buyer)]) ;
! a t tempt (o f f e r (Id , Item ,

P r i c e) [r e c e i v e r (Buyer)]) .

@shipment_plan [atomic]
+ ! send_shipment (Id , Item , P r i c e , Buyer)
: enab led (shipment (Id , Item , P r i c e ,

out) [r e c e i v e r (Buyer)])
<− ! comple te (shipment (Id , Item , P r i c e ,

S t a t u s) [r e c e i v e r (Buyer)]) ;
! a t tempt (shipment (Id , Item , P r i c e ,

S t a t u s) [r e c e i v e r (Buyer)]) .

+ ! comple te (o f f e r (Id , Item ,
P r i c e) [r e c e i v e r (Buyer)])

: o n _ o f f e r (Id , Item , P r i c e) & buyer (Buyer)
<− − on_o f f e r (Id , Item , P r i c e) .

+ ! comple te (shipment (Id , Item , P r i c e ,
S t a t u s) [r e c e i v e r (Buyer)])

: i n _ s t o c k (Item) & c ond i t i o n (S t a t u s) &
buyer (Buyer)

<− − i n _ s t o c k (Item) .

Jason+BSPL abstracts away the maintenance of the local state
and presents an interface to the programmer that supplies the
enabled communicative acts. However, it does not support meaning-
based reasoning—the programmer must encode when messages
should be sent using low-level reasoning.

3.2 High-Level Commitment Queries

To support commitment queries, we give abstract Jason rules of the
form head :- body. The rules are substantially more modular than
in [13], which facilitates comprehension and enhances confidence
that they capture intuitions correctly.

We treat all expressions of type Expr in Table 1, e.g.,𝑋 ⊓𝑌 ,𝑋 ⊔𝑌 ,
and so on, uniformly as events. [[𝑋]] refers to the predicate for event
𝑋 . For a base event 𝐸 with attributes ®𝑎 and timestamp 𝑡 , [[𝐸]] is
simply 𝐸 (®𝑎, 𝑡) and its instances are asserted beliefs. For example,
the predicate for offer is offer(Seller,Buyer, Id, Item, Price,Otime).
The rules below lift [[]] to all events.

Below, 𝐸, 𝐹 , and 𝐺 are either base or commitment life events;
𝐿 is a life event; more generally, 𝑋 and 𝑌 are events; ®𝑎𝑋 and 𝑡𝑋
refer to the attributes and timestamp of 𝑋 , respectively; 𝑡𝑝 stands
for a globally unique timestamp name in every application of the
rules in which it appears. [[𝑋]] ®𝑎𝑡 means that [[𝑋]]’s attributes and
timestamp are ®𝑎 and 𝑡 , respectively. Where obvious from the rule,
we omit them.

C1 says that an instance of [[𝐸 [𝑐,∞]]] is an instance of of 𝐸 that
has occurred at or after 𝑐 . C2 is similar.
C1 [[𝐸 [𝑐,∞]]] :- [[𝐸]] & 𝑐 ⩽ 𝑡𝐸 .

C2 [[𝐸 [0, 𝑑]]] :- [[𝐸]] & 𝑡𝐸 < 𝑑.

A compiler uses the abstract Jason to produce actual Jason.
Thus, for example, when the compiler encounters the expression
offer[0, 5], it will map it to a unique name such as offerPred1 and
spit out the Jason rule in Listing 7.

Listing 7: Compiler-generated Jason from applying C1.

o f f e r P r e d 1 (S e l l e r , Buyer , Id , Item , P r i c e , Otime)
: − o f f e r (S e l l e r , Buyer , Id , Item , P r i c e ,
Otime) & 5 <= Otime .

C3 says that an instance of 𝑋 ⊓𝑌 represents correlated instances
of 𝑋 and 𝑌 and whose timestamp value is the max of their times-
tamps. Further, the set of attributes of the instance is the union of
the attributes in the 𝑋 and the 𝑌 instances.
C3 [[𝑋 ⊓ 𝑌]] ®𝑎𝑋∪®𝑎𝑌

𝑡𝑝
:- [[𝑋]] & [[𝑌]] & .max ([𝑡𝑋 , 𝑡𝑌], 𝑡𝑝) .

Suppose the compiler encountered the expression offer[0,5] ⊓
accept[0,6]. Listing 8 gives the kind of actual Jason code generated.

Listing 8: Compiler-generated Jason from applying C3.

andPred3 (S e l l e r , Buyer , Id , Item , P r i c e , T1) : −
/ / o f f e r P r e d 1 as d e s c r i b e d i n Listing 7
o f f e r P r e d 1 (S e l l e r , Buyer , Id , Item , P r i c e , Otime) &
/ / Assume a r u l e f o r a c c e p t [0 , 6] from app l y i n g C1
accep tP r ed2 (S e l l e r , Buyer , Id , Item , P r i c e , Atime) &
. max ([Otime , Atime] , T1) .

C6 says that an instance of 𝐸 [𝐹 +𝑐,∞] is an instance of 𝐸 that has
occurred no earlier than 𝑐 time units after the correlated 𝐹 instance.
C7 says that an instance 𝐸 [0,𝐺 + 𝑑] is an instance of 𝐸 such that
if the correlated 𝐺 instance has occurred, then the 𝐸 should have
occurred before 𝑑 units after the 𝐺 ’s occurrence. The rest of the
rules in C4–C9 are straightforward applications of C3.
C4 [[𝐸 [𝑐, 𝑑]]] :- [[𝐸 [𝑐,∞] ⊓ 𝐸 [0, 𝑑]]] .

C5 [[𝐸 [𝐹 + 𝑐,∞]]] ®𝑎𝐸𝑡𝐸 :- [[𝐸]] & [[𝐹]] & 𝑡𝐹 + 𝑐 ⩽ 𝑡𝐸 .

C6 [[𝐸 [𝐹 + 𝑐, 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊓ 𝐸 [0, 𝑑]]].

C7 [[𝐸 [0,𝐺 + 𝑑]]] ®𝑎𝐸𝑡𝐸 :- [[𝐸]] & (not [[𝐺]] | ([[𝐺]] & 𝑡𝐸 < 𝑡𝐺 + 𝑑)) .
C8 [[𝐸 [𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝑐,∞] ⊓ 𝐸 [0,𝐺 + 𝑑]]].
C9 [[𝐸 [𝐹 + 𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊓ 𝐸 [0,𝐺 + 𝑑]]] .

C10 says that an instance of 𝑋 ⊔ 𝑌 is either an 𝑋 instance or a 𝑌
instance. If correlated 𝑋 and 𝑌 instances have both occurred, then
the timestamp is the min of the two. The set of attributes of the
𝑋 ⊔𝑌 instance is the intersection of the attributes of the 𝑋 instance
and the 𝑌 instance. Taking the intersection guarantees the absence
of unbound attributes. C11 is straightforward.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Anon. Submission Id: 47

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

C10 [[𝑋 ⊔ 𝑌]] ®𝑎𝑋∩®𝑎𝑌
𝑡𝑝

:- ([[𝑋]] & [[𝑌]] & .min([𝑡𝑋 , 𝑡𝑌], 𝑡𝑝) |
([[𝑋]] & not 𝑌 & 𝑡𝑝 = 𝑡𝑋) |
([[𝑌]] & not 𝑋 & 𝑡𝑝 = 𝑡𝑌).

C11 [[𝑋 where 𝜑]] :- [[𝑋]] & 𝜑 .
Let commitment(𝑥,𝑦, 𝑐, 𝑟,𝑢) represent a commitment specifica-

tion with debtor 𝑥 , creditor 𝑦, and create, detach, and discharge
expressions 𝑐 , 𝑟 , and 𝑢, respectively. For brevity, in the rules below,
we write commitment(𝑐, 𝑟,𝑢) instead of commitment(𝑥,𝑦, 𝑐, 𝑟,𝑢)
since the debtor and creditor are the same throughout.

C12–C14 give the rules for some of the commitment life events
of interest. For commitment(𝑐, 𝑟,𝑢), the created instances are the
𝑐 instances; detached instances represent correlated created and 𝑟
instances; and discharged instances represent correlated created
and 𝑢 instances.
C12 [[created (𝑐, 𝑟,𝑢)]] :- [[𝑐]] .
C13 [[detached (𝑐, 𝑟,𝑢)]] :- [[created (𝑐, 𝑟,𝑢) ⊓ 𝑟]] .
C14 [[discharged (𝑐, 𝑟,𝑢)]] :- [[created (𝑐, 𝑟,𝑢) ⊓ 𝑢]] .

Jason rules for computing expired and violated instances of com-
mitments require the notion of failed events. C15 says that an in-
stance of 𝐸 fails to occur at or after 𝑐 if it occurs before 𝑐 . C16 says
that an instance of 𝐸 fails to occur before 𝑑 either if it occurs at
or after 𝑑 or it does not occur at all. In both cases, the timestamp
of failure is 𝑑 . C20 says that an instance of 𝐸 fails to occur before
𝑡𝐺 + 𝑑 if either 𝐸 occurs at or after 𝑡𝐺 + 𝑑 or 𝐸 does not occur at
all. In both cases, the timestamp of failure is 𝑡𝐺 + 𝑑 . The rest of the
rules in C15–C22 are straightforward.
C15 [[𝐸 [𝑐,∞]]] :- [[𝐸 [0, 𝑐]]].
C16 [[𝐸 [0, 𝑑]]]𝑡𝑝 :- [[𝐸 [𝑑,∞]]] | not [[𝐸]]) & 𝑡𝑝 = 𝑑 .

C17 [[𝐸 [𝑐, 𝑑]]] :- [[𝐸 [𝑐,∞] ⊔ 𝐸 [0, 𝑑]]].
C18 [[𝐸 [𝐹 + 𝑐,∞]]] :- [[𝐸 [0, 𝐹 + 𝑐]]].
C19 [[𝐸 [𝐹 + 𝑐, 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊔ 𝐸 [0, 𝑑]]].

C20 [[𝐸 [0,𝐺 + 𝑑]]] ®𝑎𝐸𝑡𝑝 :- [[𝐺]] & ([[𝐸 [𝐺 + 𝑑,∞]]] | not [[𝐸]]) &
𝑡𝑝 = 𝑡𝐺 + 𝑑 .

C21 [[𝐸 [𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝑐,∞] ⊔ 𝐸 [0,𝐺 + 𝑑]]].
C22 [[𝐸 [𝐹 + 𝑐,𝐺 + 𝑑]]] :- [[𝐸 [𝐹 + 𝑐,∞] ⊔ 𝐸 [0,𝐺 + 𝑑]]].

C23—C25 extend failure to some more expressions following De
Morgan’s laws.
C23 [[𝑋 ⊓ 𝑌]] :- [[𝑋 ⊔ 𝑌]].
C24 [[𝑋 ⊔ 𝑌]] :- [[𝑋 ⊓ 𝑌]].
C25 [[𝑋 where 𝜑]] :- [[𝑋 ⊔ (𝑋 where not 𝜑)]].

C26 says that an instance of 𝑋 ⊖ 𝑌 is an instance of 𝑋 such that
the correlated 𝑌 has failed to occur. Its timestamp is the max of the
two.
C26 [[𝑋 ⊖ 𝑌]] ®𝑎𝑋𝑡𝑝 :- [[𝑋]] & [[𝑌]] & .max ([𝑡𝑋 , 𝑡𝑌], 𝑡𝑝) .

C27 [[𝑋 ⊖ 𝑌]] :- [[𝑋 ⊔ 𝑌]].
C28–C29 give the rules of computing expired and violated in-

stances. An expired instance is one that has failed to detach; a
violated instance is one that has failed to discharge.
C28 [[expired (𝑐, 𝑟,𝑢)]] :- [[𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑐, 𝑟,𝑢) ⊖ 𝑟]] .

C29 [[violated (𝑐, 𝑟,𝑢)]] :- [[detached (𝑐, 𝑟,𝑢) ⊖ 𝑢]] .

Often, we are interested in life events that have actually occurred,
that is, their timestamp is no later than the current time, as C30
captures.

C30 [[now𝐿]] :- [[𝐿]] & 𝑡𝐿 ⩽ Now & system_time(𝑁𝑜𝑤).

3.3 Base Event Adapter

Base event schemas correspond to but may be different from mes-
sage schemas. For example, in Listing 2, message accept has a pa-
rameter decision whereas in Listing 1, the corresponding base event
schema has no such attribute.

The difference arises from the idea that Cupid specifications
concern purely meaning whereas information protocols concern
both meaning and coordination [29]. Specifically, every base event
schema corresponds to some message schema; however, the mes-
sage schema may feature additional parameters whose purpose is
to enable or disable the occurrence of other messages.

Moreover, each base event schema has an additional timestamp
attribute. Every time a message is sent or received, an instance
of the corresponding base event schema (if one exists) is asserted
where the value of its timestamp is the current system time. C31
gives the corresponding rule pattern, whose instance the tooling
generates for every base event schema, corresponding message pair
(𝑏 (®𝑎, 𝑡),𝑚(®𝑝)).

3.4 Commitment Event Materializer

To materialize commitment events as beliefs, we assert an update
commitment events goal every time an agent asserts a base event
(as described above). Any base event affects commitments that are
relevant to some subset of enactments, as identified by the bindings
of the key attributes. Therefore, for efficiency, the update goal is
parameterized by key attributes that are common to the base event
schemas and are therefore guaranteed to occur in every life event
predicate. C31 triggers the update (®𝑘 ⊆ ®𝑎).

C31 +𝑚(®𝑝) : system_time(Now) <- +𝑏(®𝑎, Now); !update(®𝑘).

C32 gives the abstract Jason plan for materializing commitment
events; [[𝑏𝑒𝑙_nowL]] is a predicate with the same attributes and
timestamp as [[nowL]]. The plan for the update goal consists of
asserting a belief corresponding to a life event if it is an instance of
the life event predicate but not yet asserted. Assume that the life
event predicates are [[𝐿1]],. . . , [[𝐿𝑛]].

C32 +!update(®𝑘) <- if ([[nowL1]] & not [[𝑏𝑒𝑙_nowL1]])
{ +[[𝑏𝑒𝑙_nowL1]]; }
. . .
if ([[nowL𝑛]] & not [[𝑏𝑒𝑙_nowL𝑛]])
{ +[[𝑏𝑒𝑙_nowL𝑛]]; }.

As explained above, ®𝑘 ⊆ ®𝑎 for every [[𝐿𝑖]] ®𝑎 .

4 Implementing Flexible Agents

We now give examples of how Azorus agents can reason about
commitments to flexibly enact protocols.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Azorus: Commitments over Protocols for BDI Agents AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

4.1 With Commitments as Queries

Azorus offers a set of queries for each commitment as a module
(see Figure 2). These queries can be used for driving the choices of
the enabled messages computed by the protocol adapter module.

Listing 9: Commitments as queries in Azorus.

+ ! handle_form ([shipment (Id , Item , P r i c e ,
out) [r e c e i v e r (Buyer)] | _])

: i n _ s t o c k (Item) &
now_detached_OfferCom (S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp)
<− ! send_shipment (Id , Item , P r i c e , Buyer) .

+ ! handle_form ([shipment (Id , Item , P r i c e ,
out) [r e c e i v e r (Buyer)] | _])

: not i n _ s t o c k (Item) &
now_detached_OfferCom (S e l l e r , Buyer , Id ,

Item , P r i c e , Bank , Payment , Timestamp)
<− ! send_re fund (Id , Item , Payment , Bank) .

+ ! handle_form ([re fund (Id , Item , Payment , out ,
out) [r e c e i v e r (Bank)] | _])

: now_detached_RefundCom (S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp)

<− ! send_re fund (Id , Item , Payment , Bank) .

A common reasoning pattern is to discharge a commitment if it
is detached. The first plan in Listing 9 embodies this pattern. The
seller executes the goal send_shipment if the Item is in stock and
the commitment OfferCom is detached, that is, the shipment occurs
if the transfer has been done in a timely manner.

Otherwise, by the second plan, if the Item is not in stock but
OfferCom is detached, the goal send_refund is executed. The plan
for send_shipment is as in Listing 6 and the plan for send_refund is
analogous. The last plan is for when the commitment OfferCom is
violated (because shipping does not occur by the deadline); again,
the goal send_refund is executed. Both plans intend refund; however,
the second does it simply on the basis the detach of OfferCom
whereas the last plan does it upon the violation of OfferCom.

4.2 With Commitments as Events

Besides the set of queries for each commitment, an agent program
can exploit the commitment event materializer. The commitment
event materializer module (see Figure 2) produces an event for
each commitment state change in the form of a belief adding event.
These events can be exploited to support reasoning.

Listing 10: Commitments as events in Azorus.

+ ! o f f e r : o n _ o f f e r (Id , Item , P r i c e)
<− ! s e n d _ o f f e r .

+ev_now_detached_OfferCom (S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp)

: i n _ s t o c k (Item)
<− ! send_shipment (Id , Item , P r i c e , Buyer) .

+ev_now_detached_RefundCom (S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp)

<− ! send_re fund (Id , Item , Payment , Bank) .

For example, in Listing 10, the agent seller sends an offer to a
potential buyer. Upon a timely transfer, the commitment OfferCom
is detached and, by exploiting the rule C32, the event
+ev_now_detached_OfferCom is produced by adding the corre-
sponding belief to the seller agent’s belief base. This triggers the
plan for dealingwith such an event: the agent performs the shipment.
Analogously, in the case the event +ev_now_detached_RefundCom
is generated (the shipment does not occur within the deadline) the
agent performs the refund.

4.3 Timestamp-Based Reasoning

Recall that for a life event 𝐿, an instance of [[𝑛𝑜𝑤𝐿]] is an [[𝐿]]
instance that has actually occurred (that is, with current time as
the reference point). In general, any time instant, in the past or the
future, could be the point of reference.

Suppose the seller agent, as a matter of managing its commit-
ments, wanted to discharge the OfferCom commitments that will be
violated within 10 time units from now (unless, of course, shipment
is sent). Listing 11 shows how to accomplish this using a future
time instant as the point of reference.

Listing 11: Deadline-based reasoning.

+ ! handle_form ([shipment (Id , Item , P r i c e ,
out) [r e c e i v e r (Buyer)] | _])

: i n _ s t o c k (Item) & v io l a t ed_Of fe rCom (Id , . . . , T)
& system_t ime (Now) & T <= Now + 10

<− ! send_shipment (Id , Item , P r i c e , Buyer) .

5 Conceptual Evaluation

Let’s summarize what must be manually specified or coded and
what Azorus provides as abstractions. The commitment specifi-
cation, the protocol, and an agent’s internal reasoning must be
manually specified. Azorus supports the coding of internal reason-
ing by providing abstractions that enable reasoning about commit-
ments and performing communicative acts that are legal from the
standpoint of the protocol.

In virtually any multiparty application, commitments and pro-
tocols are domain objects; there is no avoiding reasoning about
them. Specifying them cleanly opens up the possibility of building
a tool-supported methodology around them, including verification
[15, 30, 31, 36] and programming abstractions (as we do in Azorus),
and other productivity tools such as IDEs. Not specifying them
means architects and programmers must figure out the possible
enactments and encode the reasoning using low-level abstractions.
Naturally, such code is likely to be ad hoc, complex, and error-prone
even for simple MAS involving rigid interactions between two par-
ties, let alone more than two party-MAS with flexible engagements
(such as the Ebusiness protocol, which, recall, has 658 enactments).

If Jason had just protocol support (as Jason+BSPL) provides, the
programmer would still have to encode reasoning about commit-
ments manually. Consider Listing 12, which shows a seller’s code
snippet. It says that the agent sends an enabled shipment if transfer
has occurred. Since transfer is required for the detach of OfferCom,
this seems to capture the intent behind the first plan in Listing 9. It
does not though because it misses the time-related reasoning.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Anon. Submission Id: 47

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Listing 12: No support for commitment reasoning can lead

to errors by underspecification.

+ ! handle_form ([shipment (Id , Item , P r i c e ,
out) [r e c e i v e r (Buyer)] | _])

: i n _ s t o c k (Item) &
t r a n s f e r (Id , P r i c e , _ , Payment)

<− ! send_shipment (Id , Item , P r i c e , Buyer) .

With just commitment support, things could gowrong. Listing 13
gives an example that allows both shipment and refund, mutually
exclusive acts, to occur if the plan for reacting to transfer takes so
long to execute that shipment happens too late.

Listing 13: No support for protocols can lead to erroneous

communication.

+ t r a n s f e r (Id , P r i c e , Payment)
: i n _ s t o c k (Item) &

now_detached_OfferCom (S e l l e r , Buyer , Id ,
Item , P r i c e , Bank , Payment , Timestamp)

<− . send (Buyer , t e l l , shipment (Id , Item , P r i c e ,
yum)) .

+now_detached_RefundCom (S e l l e r , Buyer , Id , Item ,
P r i c e , Bank , Payment , Timestamp)

: Amount=Payment
<− . send (Bank , t e l l , r e fund (Id , Item , Payment ,

Amount , done)) .

Without protocol support, in Jason, programmers typically end
up using the tell for sending every message. We might as well
just drop KQML support (and FIPA ACL [17] support from JADE)
and instead consider the protocol messages themselves as first-
class communicative acts and express their meaning via social
abstractions such as commitments (see Singh’s essay in [10]), as
Azorus does.

6 Discussion

Azorus’ novelty is twofold. One, it shows how protocols as opera-
tional abstractions and commitments as high-level abstractions can
be leveraged in a multiagent programming model. Two, it extends
Jason, a popular BDI-based programming model with higher-level
communication abstractions. Azorus exploits practical, expressive
languages for commitments and protocols and the Azorus adapter
is the first careful working out of the interplay between proto-
col enactment and commitment reasoning. Its significance is also
two-fold. One, Azorus simplifies the engineering of flexible, decen-
tralized MAS. Two, it brings goals, commitments, and protocols—all
of which represent autonomy—in a single programming model.

We now discuss some issues that require further investigation.
Specifying Commitments. Different commitment specifica-

tions could be overlaid on the same protocol. Listing 14 shows an
alternative to the specification in Listing 1 (assume the same base
event schemas and we omit the alternative Alt-RefundCom). The
specification in Listing 1 is "direct" in that it gives the meaning
of both offer and accept as an exchange of shipment and transfer.
Assuming the buyer trusts the seller to discharge its commitments,
the expected enactment would be offer followed by transfer and

then shipment. By contrast, the specification in Listing 14 has a "wa-
terfall" flavor. Under the same assumption, the expected enactment
would be offer followed by accept, then shipment, and then transfer.

Listing 14: Alternative commitment specification.

commitment Al t −OfferCom S e l l e r to Buyer
c r e a t e o f f e r
detach ac c ep t [, c r e a t e d OfferCom + 5]

where " Payment >= P r i c e "
d i s c h a r g e shipment [, detached OfferCom + 5]

commitment Al t −AcceptCom Buyer to S e l l e r
c r e a t e a c c ep t
detach shipment [, c r e a t e d AcceptCom + 5]
d i s c h a r g e t r a n s f e r [, detached AcceptCom + 5]

where " Payment >= P r i c e "

The possibility of several alternative commitment specifications
motivates characterizing the specifications in terms of properties
and stakeholder requirements that they satisfy. More generally, we
need methodologies for deriving commitment specifications from
requirements.

Implementing Agents. Consider buyer and seller agents imple-
mented such that the seller waited for the buyer to detach OfferCom
by effecting transfer and the buyer waited for the seller to detach
AcceptCom by doing shipment. Naturally, in every enactment, the
agents end up deadlocked (even though the Ebusiness protocol itself
is live). It is tempting to take the view that the commitment specifi-
cation in Listing 1 lends itself to deadlocks. However, notice that
deadlocks can happen even with the alternative specification in
Listing 14 if neither agent is prepared to detach first. Often, a dead-
locked enactment is a result of agents exercising their autonomy
by not sending messages.

Some deadlocks may be unintentional, resulting from a narrow
reading of commitments and failing to take into other factors such
as trust (which is crucial to progress in interactions) and other
business requirements. For example, if a buyer trusts the seller
or the monetary amount involved is small or the item involved is
urgent, the buyer may be willing to detach OfferCom from the seller,
effectively moving first in the exchange. What we need are novel
methodologies for implementing agents that take into account the
various contextual assumptions and business requirements.

There has been work on studying commitments from the re-
quirements perspective and the ideas are potentially relevant for
both specifying commitment and implementing agents. Marengo
et al. [23] and Günay et al. [21] study commitments from the no-
tions of safety and control. Some work has studied relationships
between goals (as representation of requirements) and commit-
ments [12, 24, 32]. Studying commitments from the point of view
of concession (taking risk by moving first) [38] would also be also
interesting.

To summarize, there has been limited work on methodologies
for building flexible, decentralized MAS; it is a direction that should
yield rich dividends.

Supplementary Material. Contains our tooling and the Ebusiness
MAS code.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Azorus: Commitments over Protocols for BDI Agents AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Mical-
izio. 2018. Commitment-based Agent Interaction in JaCaMo+. Fundamenta
Informaticae 159, 1-2 (2018), 1–33. https://doi.org/10.3233/FI-2018-1656

[2] Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti. 2006. A
Priori Conformance Verification for Guaranteeing Interoperability in Open En-
vironments. In Proceedings of the 4th International Conference on Service-Oriented
Computing (ICSOC) (Lecture Notes in Computer Science, Vol. 4294). Springer,
Chicago, 339–351. https://doi.org/10.1007/11948148_28

[3] Matteo Baldoni, Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh.
2024. Jason+BSPL: Including Communication Protocols in Jason. https://drive.
google.com/file/d/18cFBUUykuxdPZ3NB1NM4gzU9JODJnmey/view Agent
Toolkits Special Track at the 21st European Conference on Multi-Agent Systems.

[4] Bernhard Bauer, Jörg P. Müller, and James Odell. 2000. An Extension of UML by
Protocols for Multiagent Interaction an existing Multi-Agent Planning System.
In Proceedings of the 4th International Conference on Multiagent Systems (ICMAS).
IEEE Computer Society, Boston, 207–214. https://doi.org/10.1109/ICMAS.2000.
858455

[5] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. 2007. Developing
Multi-Agent Systems with JADE. Wiley, Chichester, UK. https://doi.org/10.1002/
9780470058411

[6] Olivier Boissier, Rafael H. Bordini, Jomi Fred Hübner, Alessandro Ricci, and
Andrea Santi. 2013. Multi-agent oriented programming with JaCaMo. Science
of Computer Programming 78, 6 (June 2013), 747–761. https://doi.org/10.1016/j.
scico.2011.10.004

[7] Rafael H. Bordini and Jomi Fred Hübner. 2010. Semantics for the Jason Variant
of AgentSpeak (Plan Failure and some Internal Actions). In Proceedings of the
19th European Conference on Artificial Intelligence (ECAI) (Frontiers in Artificial
Intelligence and Applications, Vol. 215). IOS Press, Lisbon, 635–640. https://doi.
org/10.3233/978-1-60750-606-5-635

[8] Hans Chalupsky, Tim Finin, Rich Fritzson, Don McKay, Stu Shapiro, and Gio
Wiederhold. 1992. An Overview of KQML: A Knowledge Query and Manipulation
Language. TR. University ofMaryland Computer Science Department, Baltimore.

[9] Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. 2013. Repre-
senting and Monitoring Social Commitments using the Event Calculus. Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS) 27, 1 (July 2013),
85–130. https://doi.org/10.1007/s10458-012-9202-0

[10] Amit K. Chopra, Alexander Artikis, Jamal Bentahar, Marco Colombetti, Frank
Dignum, Nicoletta Fornara, Andrew J. I. Jones, Munindar P. Singh, and Pınar
Yolum. 2013. Research directions in agent communication. ACM Transactions on
Intelligent Systems and Technologies 4, 2 (2013), 20:1–20:23.

[11] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2020. An Evalu-
ation of Communication Protocol Languages for Engineering Multiagent Sys-
tems. Journal of Artificial Intelligence Research (JAIR) 69 (Dec. 2020), 1351–1393.
https://doi.org/10.1613/jair.1.12212

[12] Amit K. Chopra, Fabiano Dalpiaz, F. Başak Aydemir, Paolo Giorgini, John My-
lopoulos, and Munindar P. Singh. 2014. Protos: Foundations for Engineering
Innovative Sociotechnical Systems. In Proceedings of the 22nd IEEE International
Requirements Engineering Conference (RE). IEEE Computer Society, Karlskrona,
Sweden, 53–62. https://doi.org/10.1109/RE.2014.6912247

[13] Amit K. Chopra and Munindar P. Singh. 2015. Cupid: Commitments in Relational
Algebra. In Proceedings of the 29th Conference on Artificial Intelligence (AAAI).
AAAI Press, Austin, Texas, 2052–2059. https://doi.org/10.1609/aaai.v29i1.9443

[14] Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra. 2023. Kiko:
Programming Agents to Enact Interaction Protocols. In Proceedings of the 22nd
International Conference on Autonomous Agents andMultiAgent Systems (AAMAS).
IFAAMAS, London, 1154–1163. https://doi.org/10.5555/3545946.3598758

[15] Mohamed El Menshawy, Jamal Bentahar, Hongyang Qu, and Rachida Dssouli.
2011. On the Verification of Social Commitments and Time. In Proceedings of
the 10th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). IFAAMAS, Taipei, 483–490.

[16] Angelo Ferrando, Michael Winikoff, Stephen Cranefield, Frank Dignum, and
Viviana Mascardi. 2019. On Enactability of Agent Interaction Protocols: Towards
a Unified Approach. In Proceedings of the 7th International Workshop on Engineer-
ing Multi-Agent Systems (EMAS) (Lecture Notes in Computer Science, Vol. 12058).
Springer, Montréal, 43–64. https://doi.org/10.1007/978-3-030-51417-4_3

[17] FIPA. 2002. FIPA Agent Communication Language Specifications. FIPA:
The Foundation for Intelligent Physical Agents, http://www.fipa.org/repository/
aclspecs.html.

[18] FIPA. 2003. FIPA Interaction Protocol Specifications. http://www.fipa.org/
repository/ips.html FIPA: The Foundation for Intelligent Physical Agents. Ac-
cessed 2024-08-11.

[19] Nicoletta Fornara and Marco Colombetti. 2002. Operational Specification of a
Commitment-Based Agent Communication Language. In Proceedings of the 1st
International Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). ACM Press, Melbourne, 535–542. https://doi.org/10.1145/544862.
544868

[20] Stéphane Galland, Sebastian Rodriguez, and Nicolas Gaud. 2020. Run-time
Environment for the SARL Agent-Programming Language: The Example of the
Janus platform. Future Generation Computer Systems 107 (June 2020), 1105–1115.
https://doi.org/10.1016/j.future.2017.10.020

[21] Akın Günay, Michael Winikoff, and Pınar Yolum. 2015. Dynamically Generated
Commitment Protocols in Open Systems. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS) 29, 2 (March 2015), 192–229. https://doi.org/10.
1007/s10458-014-9251-7

[22] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. 2007. Developing
Organised Multiagent Systems using the MOISE+ Model: Programming Issues at
the System and Agent Levels. International Journal of Agent-Oriented Software
Engineering 1, 3/4 (2007), 370–395. https://doi.org/10.1504/IJAOSE.2007.016266

[23] Elisa Marengo, Matteo Baldoni, Amit K. Chopra, Cristina Baroglio, Viviana Patti,
and Munindar P. Singh. 2011. Commitments with Regulations: Reasoning about
Safety and Control in Regula. In Proceedings of the 10th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS). IFAAMAS, Taipei,
467–474. https://doi.org/10.5555/2031678.2031684

[24] Felipe Meneguzzi, Mauricio C. Magnaguagno, Munindar P. Singh, Pankaj R.
Telang, and Neil Yorke-Smith. 2018. GoCo: Planning Expressive Commitment
Protocols. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 32,
4 (July 2018), 459–502. https://doi.org/10.1007/s10458-018-9385-0

[25] Jaime Simão Sichman, Rosaria Conte, Yves Demazeau, and Cristiano Castel-
franchi. 1994. A Social Reasoning Mechanism Based on Dependence Networks.
In Proceedings of the 11th European Conference on Artificial Intelligence. John
Wiley and Sons, Amsterdam, 188–192.

[26] Munindar P. Singh. 1998. Agent Communication Languages: Rethinking the
Principles. IEEE Computer 31, 12 (Dec. 1998), 40–47. https://doi.org/10.1109/2.
735849

[27] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-
ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the
10th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). IFAAMAS, Taipei, 491–498. https://doi.org/10.5555/2031678.2031687

[28] Munindar P. Singh. 2012. Semantics and Verification of Information-Based
Protocols. In Proceedings of the 11th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). IFAAMAS, Valencia, Spain, 1149–1156.
https://doi.org/10.5555/2343776.2343861

[29] Munindar P. Singh. 2014. Bliss: Specifying Declarative Service Protocols. In
Proceedings of the 11th IEEE International Conference on Services Computing (SCC).
IEEE Computer Society, Anchorage, Alaska, 235–242. https://doi.org/10.1109/
SCC.2014.39

[30] Munindar P. Singh and Samuel H. Christie V. 2021. Tango: Declarative Semantics
for Multiagent Communication Protocols. In Proceedings of the 30th International
Joint Conference on Artificial Intelligence (IJCAI). IJCAI, Online, 391–397. https:
//doi.org/10.24963/ijcai.2021/55

[31] Pankaj R. Telang and Munindar P. Singh. 2012. Specifying and Verifying Cross-
Organizational Business Models: An Agent-Oriented Approach. IEEE Transac-
tions on Services Computing 5, 3 (July 2012), 305–318. Appendix pages 1–5.

[32] Pankaj R. Telang, Munindar P. Singh, and Neil Yorke-Smith. 2019. A Coupled Op-
erational Semantics for Goals and Commitments. Journal of Artificial Intelligence
Research (JAIR) 65 (May 2019), 31–85. https://doi.org/10.1613/jair.1.11494

[33] Michael Winikoff. 2007. Implementing Commitment-Based Interactions. In
Proceedings of the 6th International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). IFAAMAS, Honolulu, 868–875. https://doi.org/10.
1145/1329125.1329283

[34] Michael Winikoff. 2012. Challenges and Directions for Engineering Multi-Agent
Systems. CoRR abs/1209.1428 (2012).

[35] Michael Winikoff, Nitin Yadav, and Lin Padgham. 2018. A New Hierarchical
Agent Protocol Notation. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 32, 1 (Jan. 2018), 59–133. https://doi.org/10.1007/s10458-017-9373-9

[36] Pınar Yolum. 2007. Design Time Analysis of Multiagent Protocols. Data and
Knowledge Engineering Journal 63, 1 (2007), 137–154.

[37] Pınar Yolum and Munindar P. Singh. 2002. Flexible Protocol Specification
and Execution: Applying Event Calculus Planning using Commitments. In
Proceedings of the 1st International Joint Conference on Autonomous Agents
and MultiAgent Systems (AAMAS). ACM Press, Bologna, 527–534. https:
//doi.org/10.1145/544862.544867

[38] Pınar Yolum and Munindar P. Singh. 2007. Enacting Protocols by Commitment
Concession. In Proceedings of the 6th International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). IFAAMAS, Honolulu, 116–123. https:
//doi.org/10.1145/1329125.1329158

9

https://doi.org/10.3233/FI-2018-1656
https://doi.org/10.1007/11948148_28
https://drive.google.com/file/d/18cFBUUykuxdPZ3NB1NM4gzU9JODJnmey/view
https://drive.google.com/file/d/18cFBUUykuxdPZ3NB1NM4gzU9JODJnmey/view
https://doi.org/10.1109/ICMAS.2000.858455
https://doi.org/10.1109/ICMAS.2000.858455
https://doi.org/10.1002/9780470058411
https://doi.org/10.1002/9780470058411
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.1007/s10458-012-9202-0
https://doi.org/10.1613/jair.1.12212
https://doi.org/10.1109/RE.2014.6912247
https://doi.org/10.1609/aaai.v29i1.9443
https://doi.org/10.5555/3545946.3598758
https://doi.org/10.1007/978-3-030-51417-4_3
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
https://doi.org/10.1145/544862.544868
https://doi.org/10.1145/544862.544868
https://doi.org/10.1016/j.future.2017.10.020
https://doi.org/10.1007/s10458-014-9251-7
https://doi.org/10.1007/s10458-014-9251-7
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.5555/2031678.2031684
https://doi.org/10.1007/s10458-018-9385-0
https://doi.org/10.1109/2.735849
https://doi.org/10.1109/2.735849
https://doi.org/10.5555/2031678.2031687
https://doi.org/10.5555/2343776.2343861
https://doi.org/10.1109/SCC.2014.39
https://doi.org/10.1109/SCC.2014.39
https://doi.org/10.24963/ijcai.2021/55
https://doi.org/10.24963/ijcai.2021/55
https://doi.org/10.1613/jair.1.11494
https://doi.org/10.1145/1329125.1329283
https://doi.org/10.1145/1329125.1329283
https://doi.org/10.1007/s10458-017-9373-9
https://doi.org/10.1145/544862.544867
https://doi.org/10.1145/544862.544867
https://doi.org/10.1145/1329125.1329158
https://doi.org/10.1145/1329125.1329158

	Abstract
	1 Introduction
	2 Background
	2.1 Specifying Commitments in Cupid
	2.2 Specifying Protocols
	2.3 Implementing Agents in Jason

	3 Programming Model, Architecturally
	3.1 Protocol Adapter
	3.2 High-Level Commitment Queries
	3.3 Base Event Adapter
	3.4 Commitment Event Materializer

	4 Implementing Flexible Agents
	4.1 With Commitments as Queries
	4.2 With Commitments as Events
	4.3 Timestamp-Based Reasoning

	5 Conceptual Evaluation
	6 Discussion
	References

