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Abstract: Subpixel mapping (SPM) addresses the widespread mixed pixel problem in remote sensing images 10 

by predicting the spatial distribution of land cover within mixed pixels. However, conventional pixel-based 11 

spectral unmixing, a key pre-processing step for SPM, neglects valuable spatial contextual information and 12 

struggles with spectral variability, ultimately undermining SPM accuracy. Additionally, while extensively 13 

utilized, supervised spectral unmixing is labor-intensive and user-unfriendly. To address these issues, this 14 

paper proposes a fully automatic, unsupervised object-based SPM (UO-SPM) model that exploits object-scale 15 

information to reduce spectral unmixing errors and subsequently enhance SPM. Given that mixed pixels are 16 

typically located at the edges of objects (i.e., the inner part of objects is characterized by pure pixels), 17 

segmentation and morphological erosion are employed to identify pure pixels within objects and mixed pixels 18 

at the edges. More accurate endmembers are extracted from the identified pure pixels for the secondary spectral 19 

unmixing of the remaining mixed pixels. Experimental results on 10 study sites demonstrate that the proposed 20 

unsupervised object (UO)-based analysis is an effective model for enhancing both spectral unmixing and SPM. 21 

Specifically, the spectral unmixing results of UO show an average increase of 3.65% and 1.09% in correlation 22 

coefficient (R) compared to Fuzzy-C means (FCM) and linear spectral mixture model (LSMM)-derived coarse 23 

proportions, respectively. Moreover, the UO-derived results of four SPM methods (i.e., Hopfield neural 24 
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network (HNN), Markov random field (MRF), pixel swapping (PSA) and radial basis function interpolation 25 

(RBF)) exhibit an average increase of 5.89% and 3.04% in overall accuracy (OA) across the four SPM methods 26 

and 10 study sites compared to the FCM and LSMM-based results, respectively. Moreover, the proportions of 27 

both mixed and pure pixels are more accurately predicted. The advantage of UO-SPM is more evident when 28 

the size of land cover objects is larger, benefiting from more accurate identification of objects. 29 

Keywords: Mixed pixel, subpixel mapping (SPM), super resolution mapping, downscaling, spectral unmixing. 30 
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1. Introduction 33 

Land cover mapping is crucial for environmental and land management, supporting various fields such as 34 

resource management, urban planning (Wang et al., 2018; Shi et al., 2022), disaster management (Shaw and 35 

Banba, 2017), carbon sequestration monitoring (Houghton et al., 2012; Holmberg et al., 2023) and climate 36 

modeling (Pielke Sr et al., 2011). Remote sensing is adopted widely for land cover mapping, due to the 37 

common advantages of raster image format, large synoptic coverage, internal precision of measurement and 38 

repeat visit capability (Auch et al., 2022; Brown et al., 2022). However, spaceborne remote sensing data, 39 

especially for large-scale and coarse spatial resolution scenes, commonly suffer from the mixed pixel problem 40 

where the spatial unit of the image (i.e., the pixel) may contain multiple land cover types on the ground. This 41 

makes the goal of conventional hard classification (i.e., one pixel one class) ill-defined, resulting in inaccurate 42 

boundaries and loss of distinct land cover types in thematic maps produced by this approach (Atkinson, 2009). 43 

Soft classification methods (e.g., spectral unmixing) can represent the multiple classes within pixels as 44 

proportions (Shi and Wang, 2014; Pfoch et al., 2023). Specifically, in spectral unmixing, classes are 45 

represented by endmembers (pure spectral signatures of different land cover types), and each mixed pixel in the 46 

scene is decomposed into proportions of these endmembers (Keshava, 2003; Plaza et al., 2011). However, the 47 

spatial position of each class within each pixel remains unknown in the coarse proportions, and it can be 48 

challenging to present such information in a single thematic map when the number of classes is large (Wang et 49 
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al., 2014b). Subpixel mapping (SPM), also termed super-resolution mapping, is an effective solution to this 50 

issue. SPM can reveal the nature of class mixing (Fisher, 1997), encompassing both the land cover composition 51 

and the spatial arrangement of the classes within the mixed pixels. 52 

Generally, the SPM approach divides pixels into smaller units (i.e., s×s subpixels, s is the zoom factor) and 53 

assigns class labels to these units such as to map land cover at the finer spatial resolution. Due to the existence 54 

of multiple solutions to the spatial distribution within mixed pixels, SPM is inherently an ill-posed problem. To 55 

tackle this inverse problem, SPM relies on two core pillars: spatial prior and data fidelity. In essence, the spatial 56 

prior term specifies the rules for allocating land cover classes at the desired fine spatial resolution, thereby, 57 

reducing the space of possible solutions directly. Existing SPM methods focus predominantly on investigating 58 

various spatial prior terms, mainly through two streams. The first, spatial dependence or attraction, assumes 59 

that similar land cover classes tend to be located closer together. Conventional methods in this stream include 60 

the pixel swapping algorithm (PSA) (Atkinson, 2005), Hopfield neural network (HNN) (Tatem et al., 2002), 61 

Markov random field (MRF) (Kasetkasem et al., 2005) and radial basis function (RBF) (Wang et al., 2014a). 62 

The second stream aims to regularize the ill-posed problem by extending the spatial prior term through adding 63 

guidance on spatial details, involving panchromatic images (Nguyen et al., 2011), digital elevation models 64 

(Ling et al., 2008), seed labeled points (Chen et al., 2023), Google Earth images (He et al., 2022), temporally 65 

adjacent fine land cover maps (Li et al., 2021; Wang et al., 2022; Zhang et al., 2022), and coarse-to-fine image 66 

patches (Shang et al., 2020; Zhang et al., 2023). This type of spatial prior is effective and appealing when 67 

accessible. However, acquisition of the ancillary data is often laborious, and uncertainties may arise, such as 68 

registration error, scale difference and land cover changes over time. 69 

The second pillar of SPM, the data fidelity term, is conventionally constructed through coarse proportion 70 

constraints, a universal strategy adopted by most SPM methods. Specifically, the underlying principle is that 71 

the number of subpixels for each land cover class within the coarse pixels should conform to predefined 72 

proportions. This coarse proportion information is generally extracted by applying spectral unmixing to the 73 

original coarse spatial resolution multi-spectral images, implying that spectral unmixing serves as a 74 
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pre-processing step for SPM. However, as a widely acknowledged open issue, spectral unmixing-predicted 75 

proportions, for input to SPM, are not error-free (Dong et al., 2022). For example, the PSA and RBF methods, 76 

which adhere strictly to the coarse proportions, generate noise-like erroneously labeled subpixels when errors 77 

exist in the proportions. To handle this situation, certain SPM approaches adopt a more lenient interpretation of 78 

the coarse proportions constraint to obtain a more smoothed result. For example, MRF imports a spectral 79 

constraint term to balance data fidelity between the real spectral images and the proportion constraints. 80 

Additionally, the HNN model employs soft values (ranging from 0 to 1) instead of hard labels (certain to be 0 81 

or 1) to represent class probabilities for each subpixel. These methods can partially mitigate minor noise-like 82 

erroneous subpixels in the SPM process. However, they fall short of dealing fully with proportion-dependent 83 

error in the SPM results. Moreover, the misclassified subpixels brought by errors in the coarse proportions 84 

have a negative effect on the spatial prior term of SPM. 85 

To circumvent the reliance on spectral unmixing results, He et al. (2021) proposed an end-to-end 86 

deep-learning-based framework for SPM that omits the intermediate spectral unmixing step, with more 87 

attention on a learning sub-scale spatial pattern prior. However, the outcomes show that land cover categories 88 

may not be retrieved without the coarse proportion constraints. In contrast, methods with proportion constraints 89 

can recover all the land cover classes of interest, but may inherit any proportional errors in the final fine land 90 

cover maps. Hence, it is imperative to provide reliable class proportions for more accurate SPM results. 91 

To mitigate errors in the coarse proportions, Yin et al. (2023) introduced a fraction (i.e., proportion) error 92 

eliminating convolutional neural network (CNN) model. Using training data obtained by adding simulated 93 

Gaussian-distributed errors to error-free proportions obtained through degrading the target, the network 94 

enables learning about the proportional errors. To reduce shadow effects, Hao et al. (2023) optimized the 95 

proportions by incorporating water, vegetation and shadow index features. Wang et al. (2020) addressed the 96 

effect of the point spread function through a Gaussian convolution kernel, obtaining enhanced coarse 97 

proportions as input for SPM. However, traditional pixel-level interpretation of spectral signatures faces 98 

challenges when dealing with complex land cover structures (Borsoi et al., 2021). This challenge is 99 
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exacerbated when there is significant spectral variability among land cover classes, originating from variation 100 

in material properties, environmental conditions, illumination angles and sensor characteristics (Wang et al., 101 

2016; Wang et al., 2022). Hence, it becomes necessary to explore information not only on the spectrum of 102 

individual pixels, but also from the perspective of spatial contextual information. 103 

In the hard classification domain, object-based image analysis can be effective for extracting spatial 104 

contextual information with reduced sensitivity to noise and variation (Hao et al., 2024), yet challenges persist 105 

in addressing the mixed pixel problem. Within the SPM domain, the literature on object-based SPM models is 106 

limited. For example, Ling et al. (2012) refined building mapping by extracting the main orientation of each 107 

building object as a spatial prior. Chen et al. (2017) shifted the conventional class allocation strategy from 108 

subpixel or class units to an object level for soft-then-hard SPM methods (Wang et al., 2014b). Nevertheless, 109 

object-scale information in these methods is employed for allocating subpixels with proportion constraints, 110 

retaining errors from spectral unmixing. Consequently, as a crucial pre-processing step of SPM, spectral 111 

unmixing necessitates object-oriented analysis to fully utilize neglected spatial contextual information within 112 

remote sensing images. 113 

Early developments in spectral unmixing generally exploited spectral information alone. Given that remote 114 

sensing images contain both spatial and spectral information (Xu et al., 2022), incorporating spatial 115 

information into spectral unmixing has gained increasing attention in recent years (Shi and Wang, 2014; Hong 116 

et al., 2024). Existing methods for integrating spatial information into spectral unmixing focus primarily on 117 

two aspects. First, in the step of endmember selection, spatial information is used to find the purest or most 118 

representative endmembers (Plaza et al., 2002; Deng and Wu, 2013) or to share endmember combinations 119 

within spatially homogenous regions (Zare et al., 2013). Second, in the step of coarse proportion estimation, 120 

spatial information is considered by maximizing the spatial coherence among adjacent neighbors (Borsoi et al., 121 

2020; Cao et al., 2022). Overall, the utilization of spatial information has shown great potential for enhancing 122 

spectral unmixing. However, these methods are fundamentally pixel-wise methods for unmixing the original 123 

images, meaning that object-scale information in the unmixing results is not fully leveraged. Furthermore, 124 
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before the implementation of SPM, supervised spectral unmixing is typically conducted to obtain the input 125 

coarse proportions, which requires selection of endmembers. Unsupervised SPM models, which are more 126 

convenient and user-friendly, are rarely considered in existing methods. 127 

This paper introduces an unsupervised and automatic object-based SPM (UO-SPM) model to enhance SPM 128 

for both mixed and pure pixels concurrently. The object-based analysis is applied following an unsupervised 129 

soft classification process to group coarse proportions into objects. Recognizing that mixed pixels are often 130 

located at the intersection areas of different land cover classes (edges of objects) in real geographical scenes, a 131 

morphological operation is implemented to discriminate pure pixels within objects and mixed pixels at the 132 

edges of objects. Subsequently, pure pixels are less likely to be misidentified, and more accurate pure spectral 133 

signatures are more likely to be utilized for the secondary spectral unmixing of the remaining mixed pixels. 134 

Ultimately, the proposed UO-SPM model, with its comprehensive analysis of object-scale, pixel-scale and 135 

subpixel-scale information, can increase the accuracy of spectral unmixing and ultimately SPM without 136 

requiring additional human input. The main contributions are three-fold. First, an object-based strategy is 137 

proposed for SPM. The UO-SPM model effectively detects mixed pixels through object-based analysis, 138 

specifically focusing on the edges of objects. These detected mixed pixels are further enhanced through a 139 

supervised secondary spectral unmixing process. Second, the proposed UO-SPM is an entirely automatic 140 

unsupervised SPM model, taking coarse spectral images as input to generate fine spatial resolution land cover 141 

maps without manual input. The proposed model is adaptable to various SPM algorithms utilizing coarse 142 

proportions as part of the data fidelity term and is validated on diverse conventional algorithms, including PSA, 143 

RBF, HNN and MRF. Third, the characterization of spatial dependence in SPM is shifted from the pixel level 144 

to the object level. With UO-SPM, pure pixel information within objects is further utilized as prior information 145 

when allocating land cover classes within mixed pixels. 146 

The remainder of this paper is structured as follows. Section 2 outlines the flowchart of UO-SPM, followed 147 

by a comprehensive description of each stage, encompassing unsupervised soft classification, object-based 148 

identification of mixed and pure pixels, and spectral unmixing and SPM for the remaining mixed pixels. 149 
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Section 3 demonstrates the effectiveness of UO-SPM based on experimental results on three multi-spectral 150 

datasets. Section 4 discusses open issues related to UO-SPM and Section 5 concludes the paper. 151 

 152 

 153 

2. Methods 154 

The flowchart of the UO-SPM model is illustrated in Fig. 1 with three main stages. The detailed explanations 155 

of each stage are provided below. 156 

 157 

 158 

Fig. 1. Flowchart of the proposed unsupervised object-based subpixel mapping (UO-SPM). 159 

 160 

2.1. Unsupervised soft classification 161 

In the conventional SPM workflow, when dealing with a coarse spatial resolution multi-spectral image, the 162 

initial step involves employing a spectral unmixing model to derive the coarse proportions. The LSMM, 163 

chosen for its simplicity and physical interpretability, is applied widely as a pre-processing step in existing 164 

SPM models (Olthof and Fraser, 2024). Then the coarse proportions are utilized directly in SPM, providing the 165 

data coherence term. However, the spectral unmixing technique faces uncertainties in addressing the spectral 166 
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variation problem of land cover classes, irrespective of the chosen models, and errors inevitably impact the 167 

SPM process negatively. In the proposed UO-SPM model, an unsupervised Fuzzy-C means (FCM) technique 168 

is utilized to generate an initial soft classification result, forming the basis for subsequent object-based 169 

analysis. 170 

As shown in Fig. 1, the unsupervised FCM method is applied directly on the coarse spatial resolution 171 

multi-spectral image. The FCM is essentially an unsupervised clustering algorithm with the objective of 172 

minimizing the dissimilarity between data points (i.e., pixels) and cluster centers of land cover classes. Instead 173 

of forcing to a specific cluster, FCM assigns membership degrees, which represent the probabilities of 174 

belonging to each cluster. Given N pixels in the coarse spatial resolution multi-spectral image y , the objective 175 

function is defined as 176 
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in which C  is the total number of clusters, m is a fuzziness index that determines the level of fuzziness, kv  is 178 

the center of cluster k, and ( )k n  is the membership degree of pixel n to cluster k with the constraints. 179 

The fuzzy membership values generated by FCM exhibit correlation with the actual proportions of land 180 

covers on the ground (Fisher and Pathirana, 1993). However, these values, while helpful in representing 181 

individual pixels, often neglect the contextual information within objects. This oversight can result in large 182 

errors in the spectral unmixing results. To address this limitation, a two-step object-oriented approach is 183 

adopted. Initially, segmentation and erosion operations are applied to the fuzzy map predicted by FCM, 184 

enhancing the delineation of object boundaries (introduced in Section 2.2). Subsequently, the mixed pixels 185 

within these objects, characterized with reduced errors, undergo supervised spectral unmixing for increased 186 

accuracy (introduced in Section 2.3). 187 

 188 
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2.2. Object-based identification of pure and mixed pixels 189 

2.2.1. Segmentation 190 

Segmentation is not applied directly to the original multi-spectral images, but rather to the FCM results for 191 

two primary reasons. First, FCM offers a representation of the uncertainty in the data, making it valuable for 192 

addressing regions with overlapping diverse land cover classes. Second, over- and under-segmentation can 193 

occur easily when applied to the original data, while FCM provides greater flexibility in handling clusters of 194 

various shapes. In this paper, the Otsu algorithm (Otsu, 1979) is employed to find the optimal threshold 195 

automatically for segmenting the coarse proportions into background and foreground objects for each land 196 

cover class. The Otsu algorithm operates on histogram-based principles with the goal of maximizing inter-class 197 

variance between two classes and minimizing the intra-class variance simultaneously. This aligns with the 198 

concept of coarse proportions with errors for each land cover class. Given one cluster of the FCM result, the 199 

optimal threshold is found by testing intensity levels that can maximize the inter-class variance. 200 

 201 

2.2.2. Pixel identification by morphological erosion 202 

Mixed pixels are generally located at the intersection of different land cover types, that is, the edge pixels of 203 

objects. Moreover, the Otsu algorithm may face challenges when the proportion of a certain class is small or 204 

when the background is complex (e.g. simultaneous presence of forest and grass classes). Therefore, 205 

morphological erosion is applied consecutively to exclude pixels located at the edge of objects, which are more 206 

likely to be mixed pixels. This approach effectively addresses the intra-spectral variability problem by 207 

identifying inner pixels of objects (more likely to be pure pixels) through the segmentation of the FCM results 208 

into objects, for each land cover class in the FCM results. Overall, this segmentation-then-erosion step is the 209 

key to coping with the problem of complex land cover structures with evitable spectral variation by fully 210 

utilizing the latent contextual object-based information in the coarse proportions. 211 

 212 
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2.3. Spectral unmixing and SPM for mixed pixels 213 

2.3.1. Spectral unmixing for remaining mixed pixels 214 

The LSMM method is utilized, but plays distinct roles compared to FCM in the UO-SPM framework. 215 

Specifically, the FCM method serves as the foundation of the subsequent segmentation and erosion steps, 216 

while the purpose of utilizing LSMM is to further increase the unmixing accuracy of the identified remaining 217 

mixed pixels. In LSMM, the spectral response of a mixed pixel is viewed as a linear weighted sum of its 218 

component land cover spectra in that pixel, expressed by 219 

 1
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 (2) 220 

in which ny  is the vector for spectral responses in B  wavebands of a pixel n, kf  is the proportional coverage 221 

of class k in the observed pixel and e  is a residual error term. The columns of kE  represent pure spectra of the 222 

k land cover class in the absence of noise, commonly derived from pre-defined pure pixels. Once E is defined, 223 

the mixture model can estimate the class composition kf  of a pixel from its spectral response ny  subject to the 224 

constraints. 225 

The endmember matrix E is commonly derived from manual selection of pure pixels. However, this 226 

approach is laborious, making it unsuitable for mapping diverse regions in real-world scenes. In the UO-SPM, 227 

the endmembers are approximated by calculating for the filtered inner pixels of objects (more likely to be pure 228 

pixels) in the segmentation-then-erosion process. That is, E is acquired readily from the identified pure pixels 229 

for each land cover class. Additionally, the identified pure pixels belonging to different land cover classes 230 

inherently exhibit inter-class spectral variability. Therefore, the extraction of pure spectra is abundantly 231 

accessible and more comprehensive for diverse regions compared to labor-intensive manual selection.  232 

 233 

2.3.2. SPM for the remaining mixed pixels 234 
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In general, SPM models use the spatial attraction and data fidelity terms to predict the fine spatial resolution 235 

land cover map X̂ , which can be formulated as 236 

 ˆ arg max( ( )) arg min( ( , , ))A D X X X Y H   (3) 237 

where 
1 1 1 2 2 2

1 2 1 2[ , ... , , ... ... ]C

N N Ny y y y y y yY  denotes the coarse spatial resolution coarse proportion image with N 238 

pixels for C land cover classes, 1 2[ , ,..., ]s Nx x x X  is the resultant fine land cover map, ( )A X  is the summary 239 

of spatial attraction between each subpixel in X and its spatial neighbors, H represents the degradation process 240 

between X and Y, and 
2

2( , , ) || ||D  X Y H Y HX , which represents the data coherence between the predicted 241 

fine land cover map and the coarse proportion. 242 

In the proposed UO-SPM model, benefitting from the object-based pixel identification step, the two terms 243 

can be expressed based on the identified pure objects and the remaining mixed pixels as: 244 

 ˆ ( ) ( ) arg max( ( ) ( )) arg min( ( , , ))object object pixel pixel to obejct pixelA D A A D     X X X X X X Y H   (4) 245 

in which objectX  and pixelX  represent the detected pure pixels in objects and the remaining mixed pixels, 246 

respectively, while ( )A  and ( )D  are the spatial attraction term and data fidelity term, respectively. Ideally, 247 

the spatial attraction term of pure pixels in objects ( )objectA X  is maximized, yielding a zero value for ( )objectD X  248 

if the detection of mixed and pure pixels is correct. Through the object-based analysis, pure pixels inside 249 

objects are included after the erosion step, and the remaining mixed pixels are further decomposed by 250 

supervised spectral unmixing. Thereby, prediction for the remaining pixels can utilize the object-scale 251 

information (i.e., the settled inner pure pixels of objects) as a spatial prior to reduce the uncertainties in SPM, as 252 

represented by the spatial dependence term ( )pixel to obejctA  X  in Eq. (4). 253 

The UO-SPM is proposed to reduce errors in spectral unmixing through unsupervised object-based analysis, 254 

and ultimately increase the accuracy of SPM. Thus, UO-SPM is a universal model instead of a specific SPM 255 

algorithm. After detecting pure pixels and unmixing mixed pixels using the UO-based strategy, the final SPM 256 
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of the remaining mixed pixels can be conducted by any existing SPM methods that use spectral unmixing as a 257 

pre-processing step. 258 

 259 

3. Experiments 260 

3.1. Study area and datasets 261 

To evaluate the effectiveness of the proposed UO-SPM approach, experiments were conducted on 10 study 262 

sites (Fig. 2 and Table 1). The locations of these sites on the world map and their corresponding input coarse 263 

images are shown in Fig. 2. For Site 1, the 80 m coarse multi-spectral image used as input for SPM was derived 264 

by degrading a 10 m reference Sentinel-2 multi-spectral image acquired on July 3, 2019 with a scale factor of 265 

eight. For Sites 2-10, the 30 m multi-spectral Landsat images used as inputs for SPM were acquired from the 266 

United States Geological Survey (USGS) (https://earthexplorer.usgs.gov/). The center coordinates, acquisition 267 

dates, sizes of the input coarse images (i.e., 30 m Landsat) and 10 m Sentinel-2 reference images are listed in 268 

Table 1. For quantitative evaluation, the fine spatial resolution land cover maps (Lines 2 and 4 of Fig. 3) for the 269 

study areas were obtained using a support vector machine (SVM) applied to the temporally closest 10 m 270 

multi-spectral Sentinel-2 images (Lines 1 and 3 of Fig. 3) acquired from the Copernicus European Space 271 

Agency hub (https://dataspace.copernicus.eu/). The zoom factor of SPM was eight for Site 1 and three for Sites 272 

2-10. 273 

 274 
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Fig. 2. The locations of the 10 study sites on the world map and their corresponding input coarse spatial resolution images. The false 275 

color coarse images are composited using Near-Infrared (NIR), Red and Green bands as RGB. 276 
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Fig. 3. The 10 m false-color Sentinel-2 images and the corresponding land cover maps derived with a support vector machine (SVM) 279 

used for accuracy assessment. 280 

 281 

Table 1 Detailed information of the 10 study sites 282 

Site Center coordinates 

Source of input 

coarse multi-spectral 

images 

Acquisition date of 

Coarse images 

(Month/Day/Year) 

Size of coarse 

images 

Acquisition date of 

Sentinel-2 images 

(Month/Day/Year) 

Size of fine 

reference land 

cover maps 

Zoom 

factor 

of SPM 

1 30°17’ S 29°50’ E Degraded Sentinel-2 07/03/2019 225×225 07/03/2019 1800×1800 8 

2 0°17’ S 15°46’ E Landsat 8 09/07/2022 200×200 09/07/2022 600×600 3 

3 46°03’ N 5°10’ E Landsat 9 10/06/2023 800×800 10/06/2023 2400×2400 3 

4 28°08’ N 115°16’ E Landsat 9 10/16/2023 200×200 10/16/2023 600×600 3 

5 30°28’ N 114°33’ W Landsat 8 06/08/2023 400×400 06/09/2023 1200×1200 3 

6 34°01’ S 151°4’ E Landsat 8 07/12/2023 400×400 07/13/2023 1200×1200 3 

7 45°14’ S 169°45’ E Landsat 9 01/07/2023 400×400 01/08/2023 1200×1200 3 

8 67°58’ N 127°28’ W Landsat 9 06/25/2023 400×400 06/25/2023 1200×1200 3 

9 37°58’ N 76°31’ W Landsat 9 10/02/2023 400×400 10/02/2023 1200×1200 3 

10 8°48’ S 69°22’ W Landsat 8 08/26/2023 400×400 08/27/2023 1200×1200 3 

 283 
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3.2. Benchmark methods and evaluation indices 284 

As previously mentioned, the UO-SPM model can be integrated with any SPM method that uses spectral 285 

unmixing as a pre-processing step. The UO-SPM model addresses errors in spectral unmixing through 286 

unsupervised object-based analysis. To validate the benefits of the unsupervised object-based (UO) analysis, 287 

we examined the performance of UO-SPM using four conventional SPM algorithms, including HNN, MRF, 288 

PSA and RBF. These methods exhibit distinct characteristics in terms of spatial and data fidelity terms. At the 289 

object-scale, subpixels within the inner part of objects (i.e., identified pure pixels) are assigned to their 290 

corresponding class across all SPM methods. Regarding the pixel-scale information (i.e., coarse proportions of 291 

the remaining mixed pixels), the HNN and MRF methods do not adhere strictly to the coarse proportions, while 292 

PSA and RBF comply strictly with the coarse proportions. Moreover, the object scale information (i.e., 293 

subpixels that are assigned to one class already) aids in predicting the remaining subpixels through the spatial 294 

attraction term. This term is defined between subpixels and subpixels for methods including MRF, HNN and 295 

PSA, while for RBF it operates between subpixels and pixels. More details can be found for PSA in Atkinson 296 

(2005), HNN in Nguyen et al. (2006), MRF in Tolpekin and Hamm (2008) and RBF in Wang et al. (2014a). 297 

Moreover, the morphological filtering and fraction refilling (MFFR) algorithm (Ling et al., 2014) was used as 298 

a benchmark, involving interpolation, morphological operations (e.g., erosion or opening) and final 299 

optimization of the SPM result. 300 

For comparison, the original unsupervised FCM and supervised LSMM were also implemented for the four 301 

SPM algorithms. In summary, 16 methods were examined, namely, UO-HNN, UO-MRF, UO-PSA, UO-RBF, 302 

FCM-HNN, FCM-MRF, FCM-PSA, FCM-RBF, FCM-MFFR-erode, FCM-MFFR-open, LSMM-HNN, 303 

LSMM-MRF, LSMM-PSA, LSMM-RBF, FCM-MFFR-erode and LSMM-MFFR-open. Note that the MFFR 304 

method is a type of object-based method. Therefore, it was not integrated into the UO-based model and 305 

compared with the UO-SPM methods directly. During the experiments, the parameters for all methods were set 306 

empirically or based on suggestions from the existing literature. Specifically, the window size was set to 3×3 307 

subpixels for MRF and HNN, 5×5 subpixels for PSA and MFFR, and 3×3 pixels for RBF. The morphological 308 
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structure size was set to 3 for the UO-based methods (i.e., UO-HNN, UO-MRF, UO-PSA and UO-RBF) and 309 

the MFFR-based methods (i.e., FCM-MFFR-erode, FCM-MFFR-open, LSMM-MFFR-erode and 310 

LSMM-MFFR-open). 311 

 312 

3.3. Spectral unmixing results 313 

The proposed UO-SPM model addresses errors caused by the spectral unmixing process. Consequently, it is 314 

crucial to assess the coarse proportions with and without considering the object-based analysis. To this end, the 315 

UO-based spectral unmixing results were compared to those obtained using the FCM and LSMM methods. 316 

For visual comparison, the spectral unmixing results and error images for sites 1, 4 and 9, presented in Figs. 317 

4-6, respectively, reveal noteworthy distinctions among the three methods. The error images were generated by 318 

comparing the spectral unmixing results to the ideal proportions, with the latter derived by degrading the 319 

SVM-based fine spatial resolution land cover map with the corresponding zoom factor for each site. The 320 

second line in Figs. 4-6 depicts the results produced by the FCM-based spectral unmixing method. Clustering 321 

pixels with spectral similarity tends to generate ambiguous and over-smoothed proportion images at the 322 

boundaries of land cover classes. The third line displays the results obtained through LSMM, revealing 323 

numerous noise pixels in the backgrounds of the land cover classes, misidentified as mixed pixels. In contrast, 324 

the UO-derived unmixing results, depicted in the fourth line, exhibit proportions that are closer to the ideal 325 

proportions, particularly for the inner regions of objects. The error images indicate that the FCM and LSMM 326 

results generally exhibit larger errors, with more pixels displaying both overestimated and underestimated 327 

proportion errors. The error images in Figs. 4-6 reveal a larger number of error pixels with deeper colors in the 328 

FCM and LSMM results compared to those of the UO results. In summary, visual comparison between the 329 

coarse proportions and error images emphasizes that the proportion error is the smallest for the object-based 330 

analysis in the UO-SPM framework, outperforming the other two spectral unmixing methods. 331 

 332 

 333 



 

 

17 

 Proportions  Errors  

R
ef

er
en

ce
 

    

    
F

C
M

 

        

L
S

M
M

 

        

U
O

 

        

R
ef

er
en

ce
 

    

   

 

F
C

M
 

        

L
S

M
M

 

        

U
O

 

        

 Burned Tree Bare  Burned Tree Bare  

Fig. 4. Spectral unmixing results, corresponding proportion error maps (compared to the ideal coarse proportions derived by 334 

degrading the reference land cover map with a zoom factor of three) and zoom-in scenes for site 1 (with a zoomed subarea in the last 335 

four lines). 336 
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Fig. 5. Spectral unmixing results, corresponding proportion error maps (compared to the ideal coarse proportions derived by 337 

degrading the reference land cover map with a zoom factor of three) and zoom-in scenes for Site 4 (with a zoomed subarea in the last 338 

four lines). 339 
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Fig. 6. Spectral unmixing results, corresponding proportion error maps (compared to the ideal coarse proportions derived by 341 

degrading the reference land cover map with a zoom factor of three) and zoom-in scenes for Site 9 (with a zoomed subarea in the last 342 

four lines). 343 

 344 

Quantitative evaluation of the spectral unmixing results for the 10 sites was conducted based on the 345 

correlation coefficient (R), root-mean-square-error (RMSE) and mean-absolute-error (MAE) between the 346 

spectral unmixing results and the ideal coarse proportions (obtained by degrading the reference land cover map 347 

with the zoom factor of each site). For clearer comparison, the differences in R, RMSE and MAE between the 348 

spectral unmixing results of the UO and FCM (denoted as ‘UO than FCM’) and those of the UO and LSMM 349 

(denoted as ‘UO than LSMM’) are listed in Table 2, as highlighted in bold. 350 

In alignment with the visual evaluation presented in Figs. 4-6, the results for the LSMM surpass those of 351 

FCM, with larger R and smaller RMSE and MAE values. This suggests that the resulting coarse proportions 352 
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generated by unsupervised FCM are less accurate than LSMM. Moreover, the UO method produces the most 353 

accurate coarse proportions across the 10 sites, as indicated by the largest R, and smallest RMSE and MAE 354 

values overall. More precisely, the R value of the UO method surpasses that of the FCM and LSMM results by 355 

an average of 3.65% and 1.10%, respectively. The MAE and RMSE values of UO are decreased by an average 356 

of 15.22% (an absolute decrease of 0.0302) and 37.33% (an absolute decrease of 0.0453), respectively, 357 

compared to those of the FCM method. Compared to the LSMM method, the MAE and RMSE values of the 358 

UO method are decreased by an average of 5.65% (an absolute decrease of 0.0101) and 24.74% (an absolute 359 

decrease of 0.0250), respectively. 360 

 361 

Table 2 Accuracy assessment of spectral unmixing results for the 10 sites based on correlation coefficient (R), root-mean-square-error 362 

(RMSE) and mean-absolute-error (MAE) compared to ideal coarse proportions 363 

Index Method Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10 

R 

FCM 0.9416 0.8605 0.8266 0.8030  0.8656 0.9092 0.8595 0.8982 0.8665 0.9112 

LSMM 0.9551 0.8875 0.8398 0.8778  0.9111 0.9162 0.8895 0.9255 0.8760 0.9191 

UO 0.9663 0.9161 0.8518 0.8807  0.9127 0.9206 0.9012 0.9297 0.8936 0.9344 

UO than FCM 0.0247 0.0556 0.0252 0.0777  0.0471 0.0114 0.0417 0.0315 0.0271 0.0232 

UO than LSMM 0.0112 0.0286 0.0120 0.0029  0.0016 0.0044 0.0117 0.0042 0.0176 0.0153 

RMSE 

FCM 0.1456 0.2187 0.2272 0.2238  0.2126 0.1813 0.2056 0.1912 0.2035 0.1706 

LSMM 0.1315 0.1928 0.2177 0.1795  0.1747 0.1739 0.1838 0.1648 0.1970 0.1635 

UO 0.1135 0.1671 0.2102 0.1797  0.1736 0.1698 0.1732 0.1613 0.1835 0.1467 

UO than FCM -0.0321 -0.0516 -0.017 -0.0440  -0.039 -0.0115 -0.0324 -0.0299 -0.0200 -0.0239 

UO than LSMM -0.0180 -0.0257 -0.0075 0.0002  -0.0011 -0.0041 -0.0106 -0.0035 -0.0135 -0.0168 

MAE 

FCM 0.0828 0.1423 0.1465 0.1388  0.147 0.1146 0.1264 0.1147 0.1105 0.0898 

LSMM 0.0801 0.1045 0.1300 0.1011  0.1062 0.1017 0.1033 0.0895 0.1085 0.0854 

UO 0.0483 0.0652 0.1051 0.0920  0.0865 0.0794 0.0785 0.0696 0.0798 0.0560 

UO than FCM -0.0345 -0.0771 -0.0414 -0.0468  -0.0605 -0.0352 -0.0479 -0.0451 -0.0307 -0.0338 

UO than LSMM -0.0318 -0.0393 -0.0249 -0.0091  -0.0197 -0.0223 -0.0248 -0.0199 -0.0287 -0.0294 

 364 

Since the aim of the UO strategy is to reduce spectral unmixing errors by identifying mixed and pure pixels, 365 

the mixed and pure pixels are assessed separately. Fig. 7 illustrates these assessments on the 10 sites based on 366 

the R and RMSE between the coarse proportions and ideal proportions. As shown in Fig. 7, the UO strategy 367 

generally produces the largest R and the smallest RMSE among the three methods for both the mixed and pure 368 

pixels. Further, UO is more advantageous for pure pixels, producing a larger R and smaller RMSE compared to 369 
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those in mixed pixels. Specifically, compared to LSMM, the R value is increased by an average of 0.14% and 370 

the RMSE value is decreased by an average of 0.52% in mixed pixels across the 10 sites. For pure pixels, the R 371 

value is increased by an average of 1.32% and the RMSE value is decreased by an average of 15.79% across 372 

the 10 sites. This suggests that the segmentation step can effectively reduce the likelihood for pure pixels to be 373 

misidentified as mixed pixels. 374 

 375 

  

  
 FCM  LSMM  UO 376 

Fig. 7. Correlation coefficient (R) and root-mean-square-error (RMSE) of coarse proportions in mixed and pure pixels compared to 377 

the corresponding ideal coarse proportions for the 10 study sites. 378 

 379 

3.4. SPM results 380 

As a general model, UO-SPM was evaluated in four forms, that is by combining with four SPM methods, 381 

namely UO-HNN, UO-MRF, UO-PSA and UO-RBF. Simultaneously, six standard SPM methods (HNN, 382 

MRF, PSA, RBF, MFFR-open and MFFR-erode) were applied to two types of coarse proportions obtained by 383 

the FCM and LSMM method to provide 12 benchmarks for the UO-SPM results. Figs. 8-10 display the 16 384 

SPM results, with a zoom factor of eight for site 1 and of three for sites 4 and 9. The zoomed coarse images for 385 

the three sites are also depicted in Figs. 8-10. 386 

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10
0.70

0.80

0.90

1.00

R
 i

n
 m

ix
ed

 p
ix

el
s

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10
0.70

0.80

0.90

1.00

R
 i

n
 p

u
re

 p
ix

el
s

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10
0.00

0.05

0.10

0.15

0.20

R
M

S
E

 i
n
 m

ix
ed

 p
ix

el
s

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10
0.00

0.05

0.10

0.15

0.20

R
M

S
E

 i
n
 p

u
re

 p
ix

el
s



 

 

22 

Firstly, the results of the UO-based methods (i.e., UO-HNN, UO-MRF, UO-PSA and UO-RBF, see line 4 of 387 

Figs. 8-10) that consider proportions based on object-based analysis, exhibit a significantly closer alignment 388 

with the reference images compared to those of the FCM- and LSMM-based methods (i.e., methods prefixed 389 

with FCM and LSMM, see lines 2-3 of Figs. 8-10). Specifically, the UO-based methods demonstrate 390 

remarkable improvements in restoring large-sized objects with more continuous boundaries, and exhibit fewer 391 

speckle artifacts for all datasets, as seen in the zoomed images of Figs. 8-10. Additionally, the LSMM-based 392 

methods can generate more details of small objects than the FCM-based methods, but at the cost of producing 393 

scattered noise. Overall, the proposed UO-SPM framework is effective for the various SPM methods, 394 

outperforming the original SPM methods that use FCM- and LSMM-derived proportions. 395 

Secondly, with the same spectral unmixing methods, the HNN- and MRF-based methods present smoother 396 

and visually more appealing results than those of the PSA-, RBF- and MFFR-based methods, while the PSA-, 397 

RBF- and MFFR-based methods tend to produce speckle-like artifacts, especially at the boundaries of objects. 398 

This because the MRF and HNN can eliminate small amounts of noise through the spatial smoothing term 399 

without perfectly conforming to the coarse proportions. It is noteworthy that, through object-based analysis, 400 

the UO-PSA and UO-RBF methods also mitigate errors obviously in the inner parts of objects compared to the 401 

results of LSMM-PSA and LSMM-RBF. Moreover, although morphological operations were considered in the 402 

MFFR method, the refilling process of MFFR still complies to the coarse proportions. Overall, as errors in 403 

spectral unmixing are inevitable in real applications, the UO-MRF and UO-HNN would be more suitable for 404 

land cover mapping among the 16 SPM methods in practice. 405 

In conclusion, all of the UO-SPM-based methods reconstruct more accurate results than the FCM- and 406 

LSMM-based versions for both large-sized and small-sized land cover classes. Furthermore, the comparison 407 

between different SPM methods reveals that the SPM methods strictly satisfying the coarse proportion 408 

constraints (i.e., PSA and RBF) can be notably enhanced within the UO-SPM framework. Meanwhile, the 409 

UO-MRF and UO-HNN produce visually more accurate predictions than PSA, RBF and MFFR-based 410 

methods. 411 
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 Burned  Tree Bare 412 

Fig. 8. SPM results for Site 1 (with a zoomed subarea in the last three lines). 413 
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LSMM-HNN LSMM-MRF LSMM-PSA LSMM-RBF LSMM-MFFR-erode LSMM-MFFR-open 

      
UO-HNN UO-MRF UO-PSA UO-RBF Reference (10 m) 30 m image 

      
FCM-HNN FCM-MRF FCM-PSA FCM-RBF FCM-MFFR-erode FCM-MFFR-open 
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UO-HNN UO-MRF UO-PSA UO-RBF Reference (10 m) 30 m image 

 Tree   Urban  Crop  Water 415 

Fig. 9. SPM results for Site 4 (with a zoomed subarea in the last three lines). 416 
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LSMM-HNN LSMM-MRF LSMM-PSA LSMM-RBF LSMM-MFFR-erode LSMM-MFFR-open 

      
UO-HNN UO-MRF UO-PSA UO-RBF Reference (10 m) 30 m image 

 Tree  Urban  Crop  Water 418 

Fig. 10. SPM results for Site 9 (with a zoomed subarea in the last three lines). 419 

 420 
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Table 3 Overall accuracy (OA) of SPM results for the 10 sites 423 

 Methods HNN MRF PSA RBF MFFR-erode MFFR-open 

Site 1 

FCM-SPM 0.8949 0.9058 0.8385 0.8414 0.8387 0.8408 

LSMM-SPM 0.9154 0.8864 0.8344 0.8387 0.8344 0.8375 

UO-SPM 0.9176 0.9211 0.9028 0.9050   

Site 2 

FCM-SPM 0.8545 0.8665 0.7061 0.7092 0.7079 0.7077 

LSMM-SPM 0.8766 0.8814 0.7801 0.7811 0.7796 0.7805 

UO-SPM 0.8933 0.8977 0.8590 0.8593   

Site 3 

FCM-SPM 0.8020 0.8189 0.6775 0.6765 0.6752 0.6748 

LSMM-SPM 0.8148 0.8321 0.7158 0.7199 0.7122 0.7155 

UO-SPM 0.8183 0.8385 0.7686 0.7714   

Site 4 

FCM-SPM 0.7354  0.7230  0.6620  0.6637  0.6578  0.6592  

LSMM-SPM 0.7950  0.7889  0.7436  0.7448  0.7343  0.7401  

UO-SPM 0.7954  0.7920  0.7664  0.7665    

Site5 

FCM-SPM 0.8239 0.8334 0.7266 0.7302 0.7260 0.7270 

LSMM-SPM 0.8582 0.8465 0.7943 0.7959 0.7262 0.7269 

UO-SPM 0.8603 0.8554 0.8341 0.8348   

Site 6 

FCM-SPM 0.8672 0.8763 0.7895 0.7919 0.7885 0.7896 

LSMM-SPM 0.8834 0.8809 0.8108 0.8113 0.7885 0.7896 

UO-SPM 0.8790 0.8861 0.8544 0.8542   

Site 7 

FCM-SPM 0.8261 0.8338 0.7147 0.7168 0.7126  0.7133  

LSMM-SPM 0.8575 0.8130 0.7690 0.7701 0.7598  0.7653  

UO-SPM 0.8621 0.8649 0.8216 0.8227   

Site 8 

FCM-SPM 0.8584 0.8700 0.7903 0.7934 0.7898 0.7906 

LSMM-SPM 0.8820 0.8836 0.8326 0.8347 0.8267 0.8315 

UO-SPM 0.8882 0.8902 0.8729 0.8736   

Site 9 

FCM-SPM 0.8336 0.8489 0.7585 0.7590 0.7577  0.7580  

LSMM-SPM 0.8507 0.8693 0.7639 0.7644 0.7597  0.7622  

UO-SPM 0.8571 0.8657 0.8241 0.8238   

Site 10 

FCM-SPM 0.8766 0.8852 0.8131 0.8151 0.8118  0.8129  

LSMM-SPM 0.8944 0.9049 0.8149 0.8164 0.8117  0.8140  

UO-SPM 0.9047 0.9129 0.8764 0.8766   

 424 

Table 3 lists the overall accuracy (OA) of the SPM methods combined with the FCM, LSMM and 425 

UO-derived proportions, delineated line-by-line for the 10 sites. Across all experiments, the OA values of 426 

UO-SPM consistently surpass those of the FCM and LSMM-based methods. Specifically, the OAs of the 427 

UO-PSA and UO-RBF methods exceed those of the FCM-PSA and LSMM-RBF by an average of about 9% 428 

and surpass those of the LSMM-PSA and LSMM-RBF by an average of about 5% for the 10 sites. Although 429 

the enhancement is less pronounced for the HNN and MRF methods, there is still an increase in OA compared 430 

to the results of the FCM-based and LSMM-based methods. More precisely, the OA of the UO-MRF method 431 

exceeds those of FCM-MRF and LSMM-MRF by 2.63% and 1.38%, respectively. For HNN, the OA of 432 

UO-HNN is 3.03% and 0.48% larger than FCM-HNN and LSMM-HNN, respectively. Furthermore, the 433 

UO-MRF produces the largest OA among all methods, with an average of 87.25%. The MFFR-erode and 434 
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MFFR-open methods exhibit OAs similar to RBF and PSA. Overall, the UO-SPM model is demonstrated to be 435 

effective for all four SPM methods, achieving larger OAs compared to the original methods with both the FCM 436 

and LSMM-derived proportions. 437 

 438 
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Fig. 11. Classification accuracies (in terms of OA) for mixed pixels and pure pixels for the 10 sites. 440 

 441 

As pure and mixed pixels are handled differently in the SPM process, the accuracies of the two types of 442 

pixels are analyzed separately for the 10 sites, as shown in Fig. 11. Incorporation of the UO-SPM model results 443 
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in an observable increase in OA for both mixed and pure pixels. This increase is more apparent for mixed 444 

pixels in the case of UO-HNN and UO-MRF, while for UO-PSA and UO-RBF, the enhancement is more 445 

apparent for pure pixels than for mixed pixels. For example, compared to FCM-HNN, the accuracies of mixed 446 

pixels are increased by 10.72%, 10.85% and 3.11%, and those of pure pixels by 0.09%, 0.15% and 0.07% for 447 

sites 1-3, respectively. Moreover, the OAs for mixed pixels are generally smaller than for pure pixels, 448 

reflecting the difficulty, but also importance, of addressing the mixed pixel problem. 449 

 450 

4. Discussion 451 

4.1. Consideration of unsupervised FCM 452 

Since the initial step of UO-SPM involves unsupervised FCM, the reliability of the FCM results warrants 453 

consideration. In the proposed UO-SPM model, initial FCM-derived coarse proportions are used to identify 454 

mixed and pure pixels through a segmentation-then-erosion step, followed by secondary LSMM-based 455 

unmixing of the remaining mixed pixels using endmembers extracted by averaging the spectral values of all 456 

filtered pure pixels (i.e., a global LSMM strategy that uses the same endmembers for all pixels). Thus, the 457 

initial FCM step might affect the identification of mixed and pure pixels and subsequently affect the accuracy 458 

of secondary spectral unmixing. To evaluate this, the spectral unmixing results of the original UO strategy 459 

were compared to two other versions, as listed in Table 4. Specifically, ‘FCM-global’ denotes the original UO 460 

strategy that conducts the segmentation-then-erosion step on the FCM-derived coarse proportions, followed by 461 

global LSMM for the remaining mixed pixels (i.e., the proposed scheme). ‘LSMM-global’ involves 462 

conducting the segmentation-then-erosion step on the LSMM-derived coarse proportions and then 463 

decomposing the identified mixed pixels using global LSMM. ‘FCM-local’ denotes conducting a 464 

segmentation-then-erosion step on the FCM results, followed by local LSMM that uses different endmembers 465 

for each pixel, which are extracted from its surrounding pure pixels. 466 

 467 
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Table 4 Comparison of three spectral unmixing strategies based on the R, RMSE and MAE between the results and ideal coarse 468 

proportions for the 10 sites 469 

Index Method Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10 Average 

R 

FCM-global (proposed) 0.9663  0.9161  0.8518  0.8807  0.9127  0.9206  0.9012  0.9297  0.8936  0.9344  0.9107  

LSMM-global 0.9697  0.9243  0.8397  0.8857  0.9130  0.9254  0.9045  0.9299  0.8917  0.9301  0.9114  

FCM-local 0.9673  0.9189  0.8515  0.8778  0.9098  0.9182  0.8992  0.9294  0.8919  0.9338  0.9098  

RMSE 

FCM-UO 0.1135  0.1671  0.2102  0.1797  0.1736  0.1698  0.1732  0.1613  0.1835  0.1467  0.1679  

LSMM-global 0.1057  0.1590  0.2180  0.1741  0.1725  0.1637  0.1703  0.1600  0.1846  0.1513  0.1659  

FCM-local 0.1122  0.1645  0.2104  0.1816  0.1765  0.1724  0.1750  0.1607  0.1849  0.1474  0.1686  

MAE 

FCM-global (proposed) 0.0483  0.0652  0.1051  0.0920  0.0865  0.0794  0.0785  0.0696  0.0798  0.0560  0.0760  

LSMM-global 0.0487  0.0598  0.1092  0.0939  0.0878  0.0803  0.0838  0.0727  0.0832  0.0576  0.0777  

FCM-local 0.0467  0.0623  0.1046  0.0934  0.0881  0.0803  0.0791  0.0694  0.0804  0.0560  0.0760  

 470 

As observed in Table 4, the difference between the ‘LSMM-global’ and ‘FCM-global’ results is small, with 471 

a difference of 0.07% in average R, indicating that the segmentation-then-erosion step in the proposed UO 472 

model reduces the errors in the FCM-derived coarse proportions effectively. Additionally, the ‘FCM-local’ 473 

method produces accuracy comparable to the ‘FCM-global’ method, since the difference between them is only 474 

in the unmixing of the filtered mixed pixels. Overall, despite being an unsupervised approach, the proposed 475 

‘FCM-global’ strategy achieves relatively satisfactory coarse proportions and can contribute to more accurate 476 

SPM results. 477 

 478 

4.2. Alternatives to segmentation algorithm 479 

To tackle the mixed pixel problem, pixel-based analysis is employed widely in current spectral unmixing 480 

and SPM. However, the pre-spectral unmixing process introduces inevitable uncertainties, affecting not only 481 

mixed pixels, but also leading to misidentification of pure pixels due to intra-class and inter-class spectral 482 

variability issues. This is a common limitation in many existing SPM methods that rely on coarse proportions 483 

as a data fidelity term. In this paper, the UO-SPM model incorporates the Otsu-based segmentation method to 484 

divide the coarse proportions of each land cover class into targets (more likely to be pure pixels of one class) 485 

and backgrounds (more likely to be mixed pixels or pure pixels for other classes). With the goal of minimizing 486 

intra-class variance, the Otsu algorithm is appropriate for segmenting the coarse proportions that generally 487 
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exhibit an obvious two peaks-distributed histogram. Otsu may not be optimal under every circumstance, such 488 

as when the coarse proportion is significantly affected by noise, or when there is a considerable area difference 489 

between the target and background. Nevertheless, it is widely acknowledged that there is no perfect algorithm 490 

that will work with every satellite sensor image (Kotaridis and Lazaridou, 2021). Alternative segmentation 491 

algorithms, such as edge detection and region merging, may demonstrate better performance than Otsu in 492 

specific scenarios. Regarding these methods, it must be noted that the selection of parameters should be done 493 

carefully, as the choice will impact directly on the segmentation output. 494 

In the UO-SPM model, Otsu has the obvious advantage of automatic threshold selection without the need for 495 

parameters or supervision, making it ideal for integration into the proposed unsupervised models. Moreover, 496 

the main goal of employing segmentation is utilization of object-oriented contextual information to 497 

differentiate mixed and pure pixels from the coarse proportions. This enables the exclusion of noisy errors in 498 

the pure pixels while simultaneously obtaining more accurate spectral unmixing for the mixed pixels by 499 

application of a secondary supervised spectral unmixing step. Therefore, the key to UO-SPM is not which 500 

segmentation method is used, but the appropriate use of spatial contextual information through an object-based 501 

analysis, a consideration lacking in conventional pixel-based spectral unmixing and SPM. 502 

 503 

4.3. Ideal width of mixed pixel 504 

Ideally, the width of mixed pixels is expected to be one coarse pixel, corresponding to the edge pixels at the 505 

intersection of two land cover objects. In the UO-SPM experiments, the size of the structuring element in the 506 

morphological erosion step was set to three. This decision was made considering the challenges posed by errors 507 

in the pre-spectral unmixing process and uncertainties in the segmentation results, making it difficult to 508 

identify precisely the one-pixel width of mixed pixel positions. If the morphological erosion step is set too 509 

small, it could result in a substantial omission error for the mixed pixels. To investigate the impact of different 510 

sizes of the structuring element in the erosion step, we examined the UO-based spectral unmixing result using 511 

elements with a size of 1, 2, 3, 5 and 7 pixels for the 10 study sites. The average R values (for the 10 sites) of the 512 
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UO-derived coarse proportions with different sizes of structuring elements are shown in Fig. 12. It can be seen 513 

that the average R values for all pixels and mixed pixels increase initially and then decrease as the size of the 514 

structuring element increases. Additionally, the R values for pure pixels tend to decrease when the size of 515 

structuring element exceeds three. Furthermore, the difference in the average R values between the results of 516 

UO with different structuring sizes is less than 1.2% for all pixels. Overall, while the proposed UO model 517 

requires setting the parameter of the structuring element, it demonstrates satisfactory performance with a 518 

setting of three, as evaluated across the 10 sites. Hence, a size of 3 pixels for the structuring element is 519 

suggested for the proposed UO-SPM model. 520 

 521 

  522 
 All pixels Mixed pixels Pure pixels 523 

Fig. 12. Assessment of the impact of the size of the structuring element (SE) on the UO-derived spectral unmixing results for the 10 524 

study sites. 525 

 526 

4.4. Limitations of UO-SPM 527 

With the object-scale analysis, the proposed UO-SPM model leverages contextual relations that a single 528 

pixel view lacks. The underlying assumption of UO-SPM is that land cover objects are large-sized, typically 529 

larger than one coarse pixel (i.e., a H-resolution case) (Atkinson, 2009). For example, in a Landsat image with 530 

a spatial resolution of 30 m, the proposed UO-SPM requires objects to be larger than 90 m × 90 m (i.e., 3×3 531 

Landsat pixels) to identify ideal pure pixels using a structuring size of three for erosion. This makes the method 532 
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more suitable for homogeneous areas. However, this does not follow that the method is not applicable to 533 

small-sized land covers, as they may be identified as mixed pixels after the erosion step and then are 534 

decomposed to obtain coarse proportions. To assess the discrepancies in accuracies between the H-resolution 535 

and L-resolution cases, the edge density (ED) of the 10 study sites was calculated from the reference land cover 536 

maps by dividing the total edge length by the total area. Specifically, the number of pixels at the edges is 537 

viewed as the total edge length, while the total number of pixels is considered as the total area. That is, the unit 538 

of ED here is the number of edge pixels per pixel. A larger edge density indicates a more complex and 539 

fragmented landscape (Clément et al., 2017), representing more L-resolution cases in the coarse image, while 540 

smaller edge density suggests more contiguous patches, representing more H-resolution cases. 541 

 542 

 543 

Fig. 13. The relationship between the edge density (ED) of the reference land cover images and the increase in R value of the 544 

UO-derived coarse proportions compared to the LSMM-derived results for the 10 sites (a larger edge density represents a more 545 

fragmented landscape, more likely indicating an L-resolution case in the coarse image). 546 

 547 

The relationship between ED and the increase in R of the UO-derived coarse proportions compared to 548 

LSMM for the 10 sites is shown in Fig. 13. With less fragmented objects (i.e., smaller ED value), the advantage 549 

of the UO-strategy over LSMM is more evident. This suggests that the proposed method is more suitable for 550 

the H-resolution case. The reason is that when the size of target object is small, as in the L-resolution case, the 551 
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effectiveness of the object-scale analysis diminishes in detecting objects within the coarse pixel, further 552 

affecting the performance of spectral unmixing and SPM. Since there is no guidance on predicting the fine land 553 

cover distribution within a coarse pixel, for such pixels, if they were correctly segmented as backgrounds by 554 

the proposed UO-SPM model for all classes (i.e., remaining mixed pixels), they would be further decomposed 555 

in the secondary spectral unmixing step. Conversely, if such pixels were erroneously segmented as pure pixels 556 

for one class, the error would propagate into the SPM results. To overcome the challenge of small-sized objects 557 

(particularly for those falling entirely within a coarse pixel), the utilization of auxiliary data, such as fine spatial 558 

resolution temporally adjacent land cover maps, should be a potential approach. Additionally, to effectively 559 

identify objects in Landsat images using UO-SPM, the classification system should be defined at a higher 560 

representation level. For example, finding pure pixels for asphalt, concrete and roofing materials within ‘urban 561 

areas’ in Landsat images can be challenging. Therefore, it is reasonable to group these materials into a single 562 

category, such as an ‘urban’ class, as is commonly adopted in existing global land cover products based on 563 

Sentinel-2 and Landsat images (Zhang et al., 2021; Brown et al., 2022). Under such a classification system, 564 

regions can be considered relatively homogeneous with significant intra-class variance at the pixel scale. In this 565 

scenario, the object-based analysis in UO-SPM offers great advantages compared to pixel-based strategies for 566 

addressing such intra-class variance. 567 

 568 

4.5. Applicability to scenes with a large number of classes 569 

Due to the limited number of spectral bands in multi-spectral images, spectral unmixing methods face 570 

inherent challenges in capturing sufficient spectral information to differentiate between a large number of land 571 

cover classes. For example, decomposing different types of vegetation, such as trees and shrubs, becomes 572 

difficult with only a few spectral bands due to their spectral similarity. Additionally, linear unmixing methods 573 

(e.g., LSMM) become more suitable when the number of classes is smaller than the number of bands. In the 574 

experiments in Section 3, the proposed UO model was applied to multi-spectral images using a relatively 575 
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coarse land cover taxonomy with limited spectral bands. When sufficient spectral bands are available to 576 

differentiate land cover classes, such as hyperspectral images, coarse proportions can be obtained more readily. 577 

 578 

   

C1 (Broccoli_green_weeds_1) 

C2 (Broccoli_green_weeds_2) 
C3 (Fallow) 

C4 (Fallow_rough_plow) 

C5 (Fallow_smooth) 
C6 (Stubble) 

C7 (Celery) 

C8 (Grapes_untrained) 
C9 (Soil_vineyard_develop) 

C10 (Corn_senesced_green_weeds) 

C11 (Lettuce_romaine_4wk) 

C12 (Lettuce_romaine_5wk) 

C13 (Lettuce_romaine_6wk) 

C14 (Lettuce_romaine_7wk) 
C15 (Vineyard_untrained) 

C16 (Vineyard_vertical_trellis) 

 

 
(a) (b) (c)  

Fig. 14. The hyperspectral Salinas AVIRIS dataset with 16 classes. (a) Original 3.7 m image (Bands 90, 65 and 55 as RGB). (b) 579 

Simulated 11.1 m coarse image obtained by degrading (a) with a scale factor of 3. (c) 3.7 m land cover map produced by Zhao et al. 580 

(2020). 581 
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Fig. 15. Spectral unmixing results for the 11.1 m hyperspectral Salinas AVIRIS dataset. 583 
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To evaluate the potential of the proposed object-based analysis in scenes with a large number of land cover 585 

classes, a hyperspectral image acquired by the Airborne/Visible Infrared Imaging Spectrometer (AVIRIS) 586 
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sensor was used, as shown in Fig. 14. The image was captured over Salinas Valley in California, USA, and 587 

contains 204 spectral bands (after noise removal) between 0.4 and 2.5 μm, with a spatial resolution of 3.7 m 588 

and spatial size of 510 × 210 pixels. The original 3.7 m hyperspectral image was degraded to 11.1 m to simulate 589 

the coarse image for spectral unmixing, as shown in Fig. 14(b). The 3.7 m land cover map in Fig. 14(c) was 590 

generated by the method developed in Zhao et al. (2020), and has an OA of 99.40% when compared to the 591 

available ground reference data. Similarly, the reference for 11.1 m coarse proportions was produced by 592 

degrading Fig. 14(c) with a scale factor of 3. Here, for spectral unmixing, the unsupervised FCM method was 593 

not considered, as several land cover classes cannot be identified when the number of land cover classes is 594 

large. The proposed UO scheme was also extended to cope with the challenging case in this section. 595 

Specifically, a supervised spectral unmixing method called extended SVM (eSVM) (Li et al., 2015) was 596 

employed to replace FCM in the proposed method. The eSVM decomposes mixed pixels by considering their 597 

proximity to the class cores of pure endmembers, without making hard label decisions. Accordingly, two 598 

supervised spectral unmixing methods were implemented, including eSVM and eSVM-O. For the eSVM 599 

method, we selected randomly 10% of the pure pixels from each land cover class in the reference coarse 600 

proportion images as training samples to predict the remaining pixels. For eSVM-O, the 601 

segmentation-then-erosion step with a structuring size of 3 for erosion was applied to the eSVM-derived 602 

proportions, while the remaining mixed pixels inherited the eSVM-derived proportions directly. Visual 603 

inspection in Fig. 15 shows that compared to the results of eSVM, the eSVM-O reduces the errors noticeably in 604 

the inner regions of objects, and the results are obviously closer to the reference. As listed in Table 5, the 605 

quantitative evaluations based on R, RMSE and MAE align with the visual comparison. Furthermore, the two 606 

coarse proportions were used as inputs to the SPM methods (including HNN, MRF, PSA and RBF) to generate 607 

the 3.7 m spatial resolution maps. The results are shown in Fig. 16, and the accuracy assessment is provided in 608 

Table 6. It can be seen that the SPM predictions show obvious reduction in errors both visually and 609 

quantitatively when using proportions derived from eSVM-O. Overall, when sufficient spectral bands are 610 

available to distinguish between a large number of land cover classes, such as in hyperspectral images, the 611 
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object-based analysis proposed in this paper is helpful to further enhance the unmixing results and, eventually, 612 

to increase the accuracy of SPM predictions. 613 

 614 

Table 5 Spectral unmixing accuracies for the hyperspectral Salinas AVIRIS dataset 615 

 R  RMSE  MAE 

 eSVM eSVM-O  eSVM eSVM-O  eSVM eSVM-O 

C1 0.9657 0.9705  0.0463 0.0376  0.0109 0.0055 

C2 0.9759 0.9800  0.0631 0.0480  0.0199 0.0096 

C3 0.8794 0.9236  0.1959 0.1511  0.1115 0.0519 

C4 0.8531 0.8560  0.1293 0.1215  0.0462 0.0301 

C5 0.8599 0.9094  0.0910 0.0712  0.0343 0.0179 

C6 0.9796 0.9794  0.0529 0.0416  0.0160 0.0085 

C7 0.9770 0.9774  0.0511 0.0421  0.0131 0.0070 

C8 0.8624 0.8945  0.1612 0.1386  0.0725 0.0421 

C9 0.9099 0.9340  0.1791 0.1415  0.0960 0.0463 

C10 0.8740 0.8811  0.1113 0.1022  0.0410 0.0276 

C11 0.8870 0.9146  0.0994 0.0818  0.0387 0.0211 

C12 0.9132 0.9456  0.0680 0.0478  0.0245 0.0110 

C13 0.9465 0.9493  0.0416 0.0358  0.0110 0.0066 

C14 0.9185 0.9266  0.0469 0.0425  0.0139 0.0092 

C15 0.8099 0.8507  0.1497 0.1318  0.0605 0.0361 

C16 0.9348 0.9385  0.0577 0.0486  0.0147 0.0084 

Overall 0.9027 0.9249  0.1088 0.0906  0.0390 0.0212 

 616 
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Fig.16. SPM results (3.7 m) for the hyperspectral Salinas AVIRIS dataset. 617 
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Table 6 OA of SPM results for the hyperspectral Salinas AVIRIS dataset 618 

 HNN MRF PSA RBF 

eSVM-SPM 76.60% 91.66% 68.25% 68.36% 

eSVM-O-SPM 84.68% 92.03% 82.56% 82.49% 

 619 

5. Conclusion 620 

As a pre-processing step of SPM, spectral unmixing produces coarse proportions, serving as a crucial data 621 

fidelity term for various SPM methods, and influencing SPM results greatly. However, widely used 622 

pixel-based spectral unmixing methods often introduce inevitable errors due to inherent spectral variability in 623 

the observed data. Moreover, pixel-based spectral analysis neglects valuable contextual information on land 624 

cover objects, and commonly used supervised-based spectral unmixing methods entail human input, resulting 625 

in a heavy labor burden. In this paper, we introduced a fully automatic object-based SPM model, namely 626 

UO-SPM, to increase the accuracy of spectral unmixing and ultimately SPM. Given that mixed pixels are often 627 

located at the boundaries of land cover classes (i.e., edge of objects), this paper developed an object-scale 628 

strategy to identify both mixed and pure pixels. The proposed UO-SPM model was integrated with four SPM 629 

methods (i.e., UO-MRF, UO-HNN, UO-PSA and UO-RBF) and evaluated across three multi-spectral datasets. 630 

The results were compared with two versions of the existing morphological operation-based SPM method, that 631 

is, MFFR-erode and MFFR-open. 632 

The key findings are as follows. Firstly, the proposed UO-SPM model offers an effective solution to reduce 633 

errors in spectral unmixing results, subsequently enhancing SPM, with an average increase of 3.65% and 1.09% 634 

in R value for coarse proportions compared to FCM and LSMM, respectively. The UO-SPM strategy produced 635 

larger accuracies for SPM than the FCM-SPM and LSMM-SPM methods, with an average increase of 5.89% 636 

and 3.04% in OA compared to the FCM-SPM and LSMM-SPM results, respectively. Secondly, evaluation of 637 

mixed and pure pixels reveals that both are more accurately classified by the UO-SPM model for all SPM 638 

methods. The results include fewer erroneous speckle-like subpixels within pure pixels and produce a more 639 

satisfactory fine land cover distribution for mixed pixels. Thirdly, the proposed UO-SPM model is applicable 640 

for both SPM methods that comply strictly with the coarse proportions (i.e., RBF and PSA) and methods that 641 

do not strictly preserve the coarse proportions (i.e., MRF and HNN). The increase in accuracy is more obvious 642 
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for UO-PSA and UO-RBF than that for UO-MRF and UO-HNN, while UO-MRF produces the most accurate 643 

results among all methods. Lastly, the advantage of UO-SPM is more evident for land cover types with 644 

large-sized objects than for those with small-sized case. With the aim of detecting mixed pixels located at the 645 

edges of objects, the proposed UO-SPM model is more suitable for the H-resolution case than the L-resolution 646 

case. 647 
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