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Abstract

One of the most generally recognised rhythms observed across various living creatures

is the circadian rhythm, a recurrent biological activity lasting around 24 hours. It is

said to have evolved in reaction to the regular environmental alternation of light and

darkness. Pacemaker cells, which are thought to be critical in generating the circadian

rhythm, have been identified in suprachiasmatic nucleus (SCN) in 1972. However,

there is ongoing discussion about whether the circadian rhythm is a truly basic rhythm

generated in the SCN, or whether alternative mechanism are involved in its modulation.

Arousing stimuli, such as scheduled feeding, running wheel access, or metham-

phetamine (MA) administration, represent non-canonical circadian processes. Here,

we investigate the circadian rhythm in genetically modified mice with the Per1/2/3

genes knocked out, resulting in a disturbance of this rhythm, as Per1/2/3 genes are

essential components of the mammalian canonical circadian mechanism. Additionally,

the effect of MA, a potent central nervous system stimulant, was evaluated on Per1/2/3

genes knock out mice. As a reference, a group of wild-type mice was also recorded. In

each case wheel running activity was recorded every minute for a period of 4 to 9

weeks. The investigation aimed to deduce whether rhythms remained when the clock

genes were disabled and how MA affects them.

Nonlinear time-series analysis methods, specifically developed for analysis of

oscillatory processes with time-varying frequencies, where used to analyse the recorded

time series. We show that MA restores the circadian rhythm and increases the total

power. Moreover, the rhythm gets more irregular with MA administration compared to

the wild-type case. Additionally, MA introduces a new circabidian rhythm at around

40 hours.

In addition to the power analysis, couplings between rhythms on different time-

scales were considered. Firstly, harmonic analysis was performed to deduce which of

the observed oscillations result from independent modes. This analysis revealed that,
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in all Per1/2/3 knock out mice not exposed to MA, there is a harmonic relationship

between the 7 and 3.5 hour cycles. Following this, to elucidate the coupling between

the remaining independent modes, bispectral analysis and dynamic Bayesian inference

were applied. The Per1/2/3 knocked out mice exposed to MA exhibited coupling

between ∼24 hours and ∼1 hour oscillations, while in the Per1/2/3 knocked out mice

not exposed to MA a coupling between ∼8 hours and ∼1 hour oscillations was observed.

This study revealed the relationship between oscillators in the absence of a canonical

circadian clock as well as the effect of MA. Power and coupling analyses provide a useful

approach for understanding the functional significance of behavioural rhythms. Such

investigations are vital, as disruptions in circadian rhythms are implicated in various

diseases, including cancer, obesity, and mood disorders.

Based on the obtained results a phenomenological model was developed. It

elucidates the dynamic characteristics of circadian rhythms in Per1/2/3 knockout

mice, particularly focusing on the alterations induced by methamphetamine exposure.

The model captures the time-varying nature of oscillations and their interactions,

providing insights into the underlying mechanisms of circadian regulation and potential

implications for behavioural health.
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Glossary and abbreviations
IAAFT Iterative amplitude - adjusted Fourier transform. A method used for generat-

ing surrogates of a signal.

PSD Power spectral density. A method used to describe the distribution of power into

frequency components composing that signal.

WFT Windowed Fourier transform. Time-frequency representation.

WT Wavelet transform. Time-frequency representation.

TFR Time-frequency representation. It is a view of a signal (taken to be a function.

of time) represented over both time and frequency.

FT Fast Fourier transform. A fast algorithm for the computation of the Fourier.

DFT Discrete Fourier transform. transform, which transforms a signal from the time

domain to the frequency domain.

DBI Dynamical Bayesian Inference. A method used to determine whether a pair of

oscillators within a system.

SCN Suprachiasmatic Nucleus A cluster of cells located in the brain’s anterior

hypothalamus that is responsible for coordinating circadian rhythmicity in

mammals.

MASCO The methamphetamine-sensitive circadian oscillator.

FEO Food-entrainable oscillator

MA the methamphetamine Drug.

DD Constant darkness.

LD 12 hours light and 12 hours dark.
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1. Introduction

In many natural and life-related fields, cyclic and repeating events are common. These

behavioural and physiological patterns and processes can be divided into two groups

based on the mechanisms that initiate and govern them. Certain behavioural and

physiological cycles are directly caused by changes in the external environment. These

externally generated alterations in behaviour and physiology are known as ”masking”

effects and are caused by stimuli such as light, temperature, or social interaction [1].

Additional cycles are governed by intrinsic biological systems such as tissue clocks and

cellular oscillations. These events are known as biological rhythms, and they can last

from milliseconds to months or even years. They have been seen in the behaviour and

physiology of many species, and this diversity is important in maintaining strong and

operational biological systems [4].

Biological rhythms are divided into three types based on their duration or cycle

length. The first type consists of infradian rhythms, which are rhythms that repeat

for more than 24 hours, ranging from many days to months. The second category of

rhythms includes those with about 24-hour cycles, known as circadian rhythms, which

is encompassed everyday patterns of rest and activity in humans, as well as the release

of melatonin. Melatonin is a hormone generated by the pineal gland, and its secretion

reaches its highest point during the dark hours of the day [5, 6]. The third type

comprises ultradian rhythms, which are rhythms that last shorter than 24 hours. They

can have periods ranging from milliseconds to several hours [4]. Circadian rhythms

are distinct from the other two types of biological rhythms. They are distinguished
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by a relatively short time of around 24 hours, as opposed to ultradian and infradian

rhythms, which contain a diverse spectrum of biological rhythms exhibited with varying

durations.

Actigraphy, a method for monitoring physical activity patterns over extended

periods ranging from days to several weeks, serves as a cost-effective, non-invasive,

and ecologically valid approach in studying sleep-wake patterns in humans, see

figure 1.1 as an example. This technique holds particular promise for investigating

circadian abnormalities in individuals with insomnia. While the American Academy

of Sleep Medicine (AASM) does not mandate actigraphy for diagnosing insomnia, it

acknowledges it as an optional tool for examining suspected circadian disruptions in

this population [7].

Figure 1.1: Example of actigraphy data for the circadian component. The y-axis

indicates the days, and the black lines represent the rhythms. The x-axis shows the

time in hours.

However, the results from studies utilizing actigraphy to explore whether circadian

disruptions are a consistent characteristic of insomnia have been notably inconclusive

2



[8, 9]. This lack of consensus could be attributed to two potential factors: (i) circadian

disruption may not routinely manifest as a feature of insomnia by the time it becomes

chronic, or (ii) the methodology, and more likely, the statistical analysis employed, may

lack the sensitivity required to detect subtle yet significant levels of circadian disruption

if present. A notable challenge in employing actigraphy for sleep disorder diagnoses is

the difficulty in identifying and eliminating artifacts in the data [10]. This ongoing

challenge underscores the need for refined methodologies and analytical approaches

in utilizing actigraphy for a more accurate and insightful examination of circadian

disruptions in insomnia.

The traditional approach for examining circadian rhythms involves cosinor analysis

[11]. This method measures the 24-hour circadian cycle and other specific shorter or

longer periodic cycles. It does this by evaluating how well the experimental data align

with a pre-determined model made up of overlapping cosine functions. Cosinor analysis

is effective in determining key circadian parameters like mesor (the rhythm-adjusted

mean), amplitude (the extent of rhythm variation), period (the duration of one cycle),

and acrophase (the peak time of the rhythm). This technique allows for a detailed

assessment of these parameters, providing insights into the underlying mechanisms

of circadian rhythms and their variations under different conditions [11, 12, 13, 14].

Yet, when dealing with data that exhibit irregular patterns or whose statistical

characteristics change over time (known as nonstationary time series) [15, 16, 17], such

as those with a prevailing trend or data where amplitudes, frequencies, or phases vary

with time, it becomes significantly more challenging, if not impossible, to accurately

describe using models based on periodic functions. These complexities necessitate

more advanced analytical approaches. In cases where the data deviate from regular,

predictable patterns, traditional models like those based on cosine functions may not

capture the full extent of the variability and complexity inherent in the data. Therefore,

exploring alternative models or methods that can accommodate these variations, like

advanced statistical techniques or machine learning algorithms, might be necessary.
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These alternative approaches could provide a more nuanced understanding of irregular

or nonstationary data, leading to more accurate and comprehensive insights into the

underlying phenomena [18]. Moreover, a drawback of cosinor analysis is its struggle to

effectively represent irregular or changing patterns in time series data. If a physiological

time series shows inconsistencies, such as variations in amplitude, frequency, or phase

over time, cosinor analysis might not accurately depict these aspects. Furthermore,

it may fall short in detecting rhythm fragmentation, which is the breakdown of a

regular circadian rhythm due to events like daytime sleeping or nighttime activity.

Consequently, Although cosinor analysis is useful for assessing the 24-hour circadian

cycle and other regular cycles, it may not fully capture the complexities of irregular or

dynamically changing physiological rhythms. [18].

In this thesis, we aim to explore the behavioral rhythms that persist in a biological

system even when the standard circadian clock mechanisms are switched off and

external cues are absent. Modeling biological systems is challenging, and simplifications

often lead to the loss of key features. Within these systems, oscillators can display

varying frequencies, phases, amplitudes, and interactions. As a result, we need to

employ innovative numerical techniques to unravel their intricate dynamics. The time

series data collected from continuous behavioral monitoring have been examined using

a unique set of methods designed to resolve multi-oscillatory dynamics over time.

These algorithms focus on using both phases and amplitudes from the signals, which

is advantageous because amplitudes alone are more susceptible to noise and artifacts.

Importantly, our method does not depend on the assumption that phases or frequencies

are constant[19, 20].

1.1 Aims and objectives of the work

The main goal of this thesis is to investigate the behavioral rhythms that remain in

a biological system after the canonical circadian timekeeping mechanism is disabled
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and in the absence of external stimuli. These methods are tailored to enable the time-

resolved analysis of multi-oscillatory dynamics, capturing the intricate and evolving

nature of biological systems [19]. The algorithms used for analyzing biological systems

focus on both the phases and amplitudes of the signals, instead of relying solely on

amplitudes, which are more susceptible to noise and artifacts. Importantly, these

algorithms do not make the assumption that phases or frequencies remain constant.

This approach allows for a more accurate and nuanced understanding of the dynamic

and often fluctuating nature of biological oscillators, capturing the real-time variability

and complexity inherent in living systems.

1. Can circadian rhythm persist even when clock genes are knockout?

2. Does methamphetamine administration cause a disruption in the rhythm
of the mice?

3. Does the system retain a memory of past disturbances under varying
conditions?

To address and answer the following questions:

1.2 Outline of thesis

Chapter 2 delves deeply into the subject of circadian rhythms, examining their

physiological impacts and the significant role played by the suprachiasmatic nucleus

(SCN) and clock genes. Key areas of focus in this chapter include:

Physiological manifestations of circadian rhythms: Detailing how these

rhythms influence various bodily functions, including sleep patterns, hormonal secre-

tion, and metabolic processes.

Suprachiasmatic nucleus (SCN) and nlock genes: Exploring the SCN’s

position as the central regulator of circadian rhythms in mammals and the function
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of clock genes in maintaining these rhythms at a cellular level.

Molecular mechanisms: Investigating the molecular basis of circadian rhythms,

including the feedback loops and genetic expressions involved.

Peripheral oscillators: Understanding how cells outside the SCN, known as

peripheral oscillators, contribute to circadian regulation in different body parts.

Pacemakers and response to methamphetamine: understanding how cir-

cadian pacemakers, including the SCN, respond to external stimuli like metham-

phetamine, and the implications of this response.

Disruption of circadian rhythms: Discussing the causes and effects of circadian

disruption, including environmental factors, lifestyle choices, and exposure to certain

substances, and how these disruptions impact overall health and well-being.

Chapter 3 outlines the experimental protocol and details the behavioral data being

investigated. It includes:

Description of the experimental protocol: This section provides a thorough

explanation of the procedures, settings, and conditions under which the experiments

were conducted, ensuring clarity on how the behavioral data was collected.

Behavioral data information: The chapter presents comprehensive information

on all behavioral data under investigation, including the types of behaviors observed,

the conditions under which these behaviors were recorded, and the specific parameters

measured.

Introduction to analytical methods: Here, the chapter introduces the method-

ologies employed to analyze the collected data.

Chapter 4 presents an analysis of the data and the results obtained, and Chapter

5 presents the model which focuses on the dynamics of circadian rhythms and their

alterations following methamphetamine exposure in Per1/2/3 knockout (KO) mice.

Chapter 6 discusses the results presented in chapter 4.

Chapter 7 summarises the work presented in the thesis and outlines possible

directions for future research.
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Detailed information about the results of systematic analysis is provided in the

supplementary material and ethics approval from Prof. Shin Yamazaki, which is

available in PURE, together with the measured data used in the analysis.
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2. Biophysical review

2.1 Circadian rhythms

Circadian rhythms are biological cycles that occur over a 24-hour period and regulate

behaviors and physiological processes like sleep, body temperature, and metabolism

[21]. The fact that circadian rhythms are endogenous was definitively demonstrated

by NASA scientists and astronauts who discovered that rhythmicity in the fungus

Neurospora crassa is preserved in constant darkness during a space flight in which all

geophysical cues are removed.[1, 21]

The fungus kept the same circadian patterns in space as it did on Earth. This

established the presence of an internal biological timekeeping system, and the hunt for

the underlying mechanisms began in earnest [1, 22]. Scientists established three key

properties of circadian rhythms: they are self-sustained, meaning they persist even in

constant conditions; they can be synchronized by environmental cycles, such as light

and dark; and they maintain a consistent 24-hour period across a range of temperatures.

These properties form the basis for understanding circadian rhythms in organisms [23].

Moreover, when circadian rhythms continue to cycle without external cues, such as

light or other timing signals, they are referred to as free-running. This means that the

internal biological clock of an organism maintains a cycle close to 24 hours even in the

absence of environmental influences. The term ”free-running” describes the ability of

circadian rhythms to persist independently of external factors. The phase of a rhythm
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acts as a prominent point within the cycle, such as its peak or trough parameters as

illustrated in figures 2.1 and 2.2.

Figure 2.1: Modified from [1]. The amplitude, phase, and period of circadian rhythms

are three crucial factors to consider. The amplitude is the difference in output level

between the rhythm’s peak and trough values. The phase is the timing of a reference

point in the rhythm cycle in relation to a definite event. The period is the time interval

between two reference points in the rhythm.

Because the period is rarely exactly 24 hours, a minor mismatch between the

organism and its environment happens on a regular basis. Through daily phase shifts,

the circadian clock is synchronised to the external cycle. This synchronisation enables

us to match our rhythms to external timing cues like the light-dark cycle. When these

cues vary, as when travelling across time zones, our circadian rhythms undergo phase

shifts to realign with the new environmental cues, a process called as entrainment [1].

Many stimuli can cause rhythms to phase shift; however, the magnitude of the phase
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shift is dependent on when the signal is delivered during the cycle. The most obvious

signal in circadian entrainment is light, and light pulses have been used to construct

phase response curves. These represent phase-dependent-resetting responses to light

and are important tools for predicting how an organism would entrain to changes in

the environmental light-dark cycle or light intensity.
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Figure 2.2: Modified from [1]. Illustration of an early-morning light pulse exposure

that produces a delay in the commencement of the rhythm (top panel: phase delay,

blue arrow), with the phase occurring later than predicted (solid line, expected phase;

dotted line, delayed phase after light exposure). In contrast, late-night exposure to

a light pulse leads to an earlier commencement of the rhythm (bottom panel: phase

advance, blue arrow), where the phase arrives earlier than expected .
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2.1.1 The physiological expression of circadian rhythms

The circadian rhythm is the most obvious and well-studied of all the biological rhythms,

and practically every aspect of human physiology will show at least some degree of

circadian control. This is true even though all biological rhythms are evident in human

functioning. Sleep, temperature, and a variety of hormonal markers, most notably

melatonin levels, are frequently researched examples of phase markers that can be used

to determine the timing of the circadian cycle [24].

2.1.1.1 Temperature

Since it was originally observed in the 19th century, the circadian rhythm of core

body temperature (CBT) has been the subject of extensive research ever since it was

discovered to be a physiological phenomenon [25]. The temperature of an average

human’s body rises by around 0.5 degrees Celsius during the course of a day, reaching

its lowest point in the morning and rising to its highest point in the late afternoon

and evening [26]. It is common for an individual’s core body temperature to drop to

its lowest point during the second part of the sleep cycle, and this temperature drops

to its nadir, which is one of the major markers for circadian rhythms, around two

hours before the individual’s habitual waking time. The paraventricular nucleus and

the hypothalamus are responsible for the underlying control of temperature change.

They do this by modifying the activity of the autonomic nervous system.

Changes in CBT can be brought about by a variety of external variables, such as

smoking, drinking alcohol, and alterations in one’s routine; biological factors, such as

advancing age and illness; and physiological processes, such as physical activity and

metabolic rate [27, 28].
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2.1.1.2 Melatonin

Melatonin, a neurohormone secreted by the pineal gland, plays a crucial role in the

regulation of circadian rhythms and the promotion of sleep. It is responsible for

regulating the sleep/wake cycle, as well as other circadian and some biological rhythms.

Additionally, melatonin works as an immunostimulator and cytoprotective agent [29].

The cyclical release of hormones is an ubiquitous characteristic observed in all vertebrate

species [30]. Melatonin’s circadian rhythm can travel through the bloodstream and

reach every cell in the body because it is a hormone that circulates. It is likely that these

receptors reside on the membranes of all cells whose activity must be synchronised by the

melatonin rhythm [31], which is a demonstration of the significance of this regulation.

The widespread distribution of melatonin receptors [32, 33] is a demonstration of the

importance of this regulation.

Melatonin activities are pleiotropic, which means that it influences several pheno-

typic qualities that appear to be unrelated to one another. Nuclear receptors and various

additional binding sites and chemical interactions are also responsible for mediating

these effects. Because melatonin can affect cellular processes independently of receptors,

it is possible that membrane mediators are not necessary for the hormone to have

an effect on circadian gene expression in peripheral cells. This would be the case if

melatonin could control these processes. Since its production is instantly inhibited

by light, all animals that emit melatonin do so at night. It has been demonstrated

that the melatonin rhythm provides an optimal marker of circadian phase in humans

[34], specifically if samples (saliva, blood, or urine) are obtained in low light and

controlled posture settings. Since light melatonin onset is easily quantifiable in saliva

just before bedtime. Despite their potential diagnostic utility, melatonin tests are

neither a quick nor widely accessible approach. In 1963, Wurtman et al [35, 36]

made an important discovery about the impact of the circadian melatonin rhythm

on reproductive physiology. They found that the administration of melatonin resulted
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in a decrease in the weight of the ovaries in female rats. There exists empirical evidence

indicating that melatonin has an impact on the reproductive capacity of numerous

species. Moreover, it has been observed that the secretion pattern of melatonin, which

is regulated by exposure to light, directly impacts reproductive function [36].

2.1.1.3 Activity

One of the most apparent manifestation of the circadian rhythms is the pattern of

activity. The understanding of the characteristics of the circadian system, the influence

of zeitgebers in achieving optimal synchronisation with the 24-hour day, and the

mechanisms involved in sleep regulation has resulted in the formulation of rigorous

methodologies for studying circadian rhythms and activity. These research have

established the benchmark methods for determining circadian amplitude and phase,

and have determined the physiological or hormonal markers that are most effective for

this purpose. The current problem consists of developing simple markers that may be

used ambulatorily and which provide a good estimate of the phase of the circadian

cycle.

Long-term measurements taken over the course of at least one 24-hour cycle are

necessary for chronobiology. Polysomnography is the neurophysiological method that

is considered to be the gold standard for detecting sleep; nevertheless, it is also quite

expensive, requires that the individuals attend a sleep laboratory, and uses advanced

technology for interpreting the results. The latest microchip technologies make it

possible to collect non-invasive data continuously over the course of many days. Data

loggers are what actigraphy monitors are called, and they record digitally integrated

measures of a person’s gross motor activity. They keep track of the amount of white

light exposure, activity levels, and are a valid measure of the activity status of healthy

populations [7]. Actigraphy properly is a non-invasive technique used to assess cycles of

activity and rest over several days to several weeks. compared with polysomnography

which is a test used to diagnose sleep disorders, and shown robust inter unit reliability

14



and good validity [37]. The research was carried out by Pollak and colleagues [38] on

adults using two commercial devices.

Polysomnography is a test used to diagnose sleep disorders usually performed during

the night, while actigraphy is a non-invasive technique used to assess cycles of activity

and rest over several days to several weeks.

2.2 Suprachiasmatic nucleus (SCN)

During the 1970s, researchers conducted ablation studies in an effort to pinpoint the

location of the biological clock within the brain. Through the targeted destruction of

specific brain regions using minimal electric current, scientists determined that damage

to a particular area within the hypothalamus disrupted the normal daily rest-activity

rhythms of animals. This groundbreaking research directed their focus toward a specific

region, namely the anterior hypothalamus, which appeared to house the biological clock.

Identification of the precise location of the internal circadian clock occurred nearly

simultaneously in two independent laboratories while examining rats. Robert Moore’s

laboratory provided the original breakthrough. Given that light cues are the key signals

for establishing the circadian rhythm in animals, it was only natural to look at areas

associated with light reception. Moore’s tract tracing research showed a previously

unknown bidirectional connection from the retina to the hypothalamus, a portion of

the brain not directly related to vision. The hypothalamus, notably the suprachiasmatic

nucleus (SCN) located above the optic chiasm, was identified as the brain region that

receives information about environmental light [22, 39].
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Figure 2.3: Modified from [2] illustrating an entrainment of the circadian rhythm

to the 24-hour environmental light-dark cycle. Temporal information in the form of

sunlight enters through the eyes and is transmitted to the SCN. The SCN then passes

on this information to the rest of the circadian body clocks throughout the body.

The SCN plays a crucial role in maintaining the alignment of phases among different

tissues in the body. Its role as the central circadian pacemaker involves the

synchronization of various oscillators present throughout the brain and the body.

Instead of forcing rhythmicity upon cells that naturally lack it, the SCN serves as

a coordinator, harmonizing the rhythms of other timekeeping mechanisms. To put it

in perspective, the SCN functions much like the conductor of an orchestra, ensuring

the harmonious timing of various components. With this understanding, the circadian

system can be envisioned as a hierarchical structure, with the SCN occupying the

highest position [1, 40].

In order to ensure the optimal operation of the circadian timing system, it is

imperative to maintain synchronisation among all the circadian clocks throughout the
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body, as well as align them with the 24-hour day. This crucial task is carried out by

the suprachiasmatic nucleus (SCN), which serves as the master circadian pacemaker

(5). Similar to other types of cells [41], SCN neurons have the ability to establish

self-sustained circadian rhythms [42]. However, SCN neurons possess distinctive

characteristics that are significant in several ways. Initially, the cells in question get

direct visual input from the retina, enabling them to align their activity with the diurnal

rhythm [43] 2.3. Additionally, these organisms possess unique coupling systems that

are organised based on topography. This enables them to maintain synchronisation

with each other even under conditions of perpetual darkness [44]. Furthermore, these

organisms exhibit a distinct circadian rhythm in the frequency of neuronal firing. This

rhythm enables them to synchronise other cells in the body through several direct

and indirect channels [45]. Therefore, the suprachiasmatic nucleus (SCN) serves as

the central pacemaker that regulates the synchronisation, or entrainment, of secondary

cellular oscillators to the light/dark cycle. Moreover, due to internal coupling, the

suprachiasmatic nucleus (SCN) is capable of producing a synchronised output signal

even in the absence of a light/dark cycle.

This phenomenon explains the presence of ”free-running” circadian rhythms,

which last around 24 hours, in both physiological and behavioural processes that

persist under constant environmental conditions. However, it is important to note

that the suprachiasmatic nucleus (SCN) encompasses more than a mere collection

of interconnected oscillator cells that receive light input and produce synchronised

rhythmic output. Despite the ability of SCN neurons to oscillate autonomously,

their functionality is mostly dependent on collaborative interactions within the tissue,

relying more on input from neighbouring cells to form rhythmic patterns compared

to fibroblasts [46]. The SCN pacemaker is capable of generating output signals with

diverse phases to various tissues through the presence of phase diversity among its

constituent cells [47]. Moreover, alterations in the phase connections among neurons in

the suprachiasmatic nucleus (SCN) have the potential to modify the intensity or shape
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of rhythmic outputs at the level of the entire organism.

This phenomenon can explain the impact of persistent exposure to light [48],

variations in day length throughout the year [49], and certain genetic mutations that

influence the coupling of SCN neurons [50]. The suprachiasmatic nucleus (SCN) has a

higher level of precision in generating rhythmic output signals compared to individual

cells [51]. The rhythmic output of SCN is demonstrated to have greater resilience to

genetic alterations compared to individual cells [52]. Welch et al examined examines the

role of the suprachiasmatic nucleus (SCN) as a central regulator of circadian rhythms,

with a specific emphasis on its cellular autonomy and network characteristics [53].

2.3 Clock genes

The initial discovery of a gene responsible for the circadian rhythm was made in

Drosophila, specifically the period (Per) gene [54]. Subsequent investigations have also

brought to light another gene implicated in the circadian rhythm: the timeless (Tim)

gene [55, 56, 3]. In mammals like mice, the use of chemical mutagenesis techniques

facilitated the identification of the initial clock genes. One such gene is the circadian

locomotor output cycles kaput Clock gene, and mutations in this gene were found to

extend the rest-activity cycle. Further research in mouse circadian regulation led to the

identification of additional clock genes. These included the brain and muscle ARNT-

like protein 1 (Bmal1 ) gene, which acts as a partner to Clock, along with the Per1 and

Per2 genes. Additionally, the cryptochrome-1 (Cry1 ) and Cry2 genes, responsible for

encoding proteins involved in blue light reception in non-mammalian species, were also

discovered in the context of circadian regulation [57, 3].

Melatonin, primarily produced by the pineal gland, is crucial for managing the

sleep-wake cycle and other circadian rhythms. Its release is carefully regulated by

the suprachiasmatic nucleus (SCN), which receives light-dark cycle information from

the retina. At night, when light levels are low, the SCN prompts the pineal gland
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to secrete melatonin, inducing drowsiness and facilitating rest. In contrast, during

daylight hours, when light levels are elevated, melatonin secretion is inhibited. [58, 59]

Melatonin’s involvement in circadian oscillatory rhythms, especially as a neuroendocrine

regulator of molecular oscillatory systems, has been documented in previous research

[58, 59, 60, 61]. Experiments conducted with animal models have demonstrated that

melatonin plays a role in governing the circadian expression of various clock genes.

These include Per1 and Per2, Bmal1, reverse erythroblastosis virus, Clock, and Cry1,

and this regulation extends to both central and peripheral tissues that are responsive

to melatonin. Melatonin can also coordinate circadian oscillations in the cardiovascular

system by influencing the circadian rhythmic expression of Per1 and Bmal1 in the rat

heart [62]. Melatonin stimulates the expression of Cry1 while suppressing the expression

of other clock genes in the pituitary gland of sheep [63].

In the case of humans, counterparts of Clock, Bmal1, Per, and Cry genes have been

identified. Notably, the Clock gene, which is the sole cloned circadian rhythm gene, is

situated on chromosome 4 [64]. Additionally, there exist other clock genes responsible

for circadian regulation, including retinoic acid receptor-related orphan receptor and

casein kinase-1. These genes are involved in regulating the transcription of the Bmal1

gene. In fact, clock genes are expressed in many cells and tissues throughout the

body, allowing for the coordination of circadian rhythms at the systemic level. Various

peripheral tissues, such as the liver, heart, kidney, and skin, possess their own circadian

clocks, which contribute to the regulation of local physiological processes. [65]

2.4 The molecular mechanism of the cellular circa-

dian clock

The identification of various clock genes paved the way for the development of a

molecular clock model, which operates through a feedback loop spanning 24 hours
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[66]. The molecular mechanisms underpinning circadian rhythms exhibit considerable

similarity across different species. These mechanisms encompass enhancer elements,

repressor elements, and control circuits that encompass processes like phosphorylation-

dephosphorylation, methylation, acetylation reactions, and the formation of specific

protein dimers [67, 68]. In mammals, the molecular circadian system operates within

the central clock located in the hypothalamus, specifically in the suprachiasmatic nuclei,

as well as in secondary clocks found in the brain and various peripheral organs. When

the retina perceives light, it triggers alterations in the transcription of specific circadian

rhythm genes within the master clock. This demonstrates the body’s capacity to adapt

to shifts in the photoperiodic environment. The master clock serves to synchronize

multiple peripheral circadian oscillators, although the precise mechanisms involved in

this synchronization are still not fully understood [3]. The molecular circuitry of the

circadian clock appears to involve, in a broad sense, two categories of mechanisms.

First mechanism is the transcriptional which govern the regulation of genes at the

DNA level and the second one is post-transcriptional which oversee processes occurring

after transcription, downstream of gene expression as described in figure 2.4 [69, 3].

Transcriptional mechanisms can be summarized through autoregulatory feed-

back loops. The primary negative feedback loop relies on a combination of positive

and negative elements. In mammals, the positive elements consist of two proteins,

the CLOCK and BMAL1 transcription factors, which form heterodimers. The

two negative elements are also proteins, PER and CRY. Within a neuron of the

suprachiasmatic nucleus, the levels of PER and CRY are low in the morning. At

this time, the CLOCK-BMAL1 complex maximally activates the transcription of Per

and Cry genes. Nevertheless, the PER and CRY proteins don’t accumulate right

away because they are inherently unstable. This characteristic prevents the cycle from

being prematurely disrupted. Over the course of the day, they gradually become more

stable through interactions with other proteins. Subsequently, they form heterodimers

and ultimately relocate into the nucleus [70]. Once in the nucleus, they inhibit the

20



transcriptional activity of the CLOCK-BMAL1 heterodimer, consequently halting their

own transcription [71, 72]. As the activity of the Per and Cry genes diminishes,

the production of PER and CRY proteins also decreases. Their concentration peaks

at the onset of the night and subsequently declines. Simultaneously, the CLOCK-

BMAL1 heterodimer gradually recovers its activity during the nighttime. Therefore,

the fundamental molecular mechanism of the circadian clock primarily revolves around

a feedback loop composed of a positive element represented by the CLOCK-BMAL1

heterodimer and a negative element represented by the PER-CRY heterodimer [3]. A

full cycle of this loop takes approximately 24 hours to complete. Moreover, CLOCK

and BMAL1 heterodimers are also responsible for the daily transcription of numerous

clock-controlled genes (CCGs) across various peripheral tissues [73, 74, 75].

Post-transcriptional mechanisms The effective operation of the circadian loop

necessitates the eventual degradation of PER and CRY proteins after they have fulfilled

their role. While they are inhibiting the positive elements (CLOCK and BMAL1 ), the

initiation of a new cycle remains hindered. Multiple post-transcriptional processes,

therefore, influence the capacity of PER and CRY to interact with CLOCK and

BMAL1. The most thoroughly explored element is the modification of these proteins

via phosphorylation and dephosphorylation mechanisms. Several kinase proteins

target PER and/or CRY, and each of these two proteins can be phosphorylated

at multiple locations. These alterations either accelerate or slow their transit to

the proteasome. Ubiquitin tags proteins that are destined for destruction. Post-

transcriptional mechanisms governing the clock proteins within the primary molecular

loop are essential for maintaining the functionality of intracellular trafficking and the

degradation of clock proteins. These processes are critical for the proper operation of

the molecular loop over a 24-hour period [76, 3].
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Figure 2.4: Modified from [3], illustrating that the mammalian cell-autonomous

oscillator model CLOCK and BMAL1 are transcriptional activators that promote

the expression of Cry and Per genes. The protein products derived from these genes

come together in the cytoplasm to create dimers that enter the core. Within the core,

they serve two roles: firstly, repressing their own transcription by inhibiting CLOCK-

BMAL1, and secondly, activates the BMAL1 gene through a mechanism that has yet

to be fully elucidated. Thus, these proteins form two regulatory loops, one negative and

one positive. Also, these proteins activate clock-controlled genes (CCG), the products

of which send rhythm information to the rest of the organism via the clock’s output

channels.
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2.5 Peripheral oscillators

It is known that there are clocks in many additional peripheral tissues and cells, despite

the fact that the SCN is the location of the central clock in the body. Organs and

tissues like the liver, lungs, and heart each have their own clocks, but they must be

synchronised to the exogenous solar time source by the SCN [77, 78]. The molecular

mechanisms governing circadian clocks in peripheral tissues mirror those of the SCN

clock. These mechanisms entail the rhythmic activation of clock genes like BMAL1,

Per, and Cry, which establish interconnected feedback loops at the transcriptional and

translational levels. These oscillations drive circadian fluctuations in gene expression

and cellular functions within peripheral tissues. Peripheral oscillators play a vital role

in aligning physiological functions in individual tissues with systemic signals, including

feeding-fasting cycles, hormone variations, and activity rhythms. This synchronization

is crucial for maintaining optimal tissue performance and overall well-being [79].

This has been demonstrated in mice with a lesion in the SCN, in which the peripheral

clocks no longer synchronise with one another, neither between the same organ in

different animals nor between various organs in the same animal [78]. while extended

rhythms can still be found in the explanted peripheral tissues of animals that have had

their SCN lesioned. Guo et al. [80] conducted a series of fascinating studies in which

they lesioned the SCN in hamsters and assessed endogenous peripheral clock transcripts.

In this investigation, rhythms were lost in all of the tissues that were examined, which

was a slightly different finding compared to the one that Yoo et al. [78] observed.

However, the replacement of the SCN was only successful in restoring these rhythms in

some tissues (liver and kidney) and not others (heart and skeletal muscle). According

to these findings, the responses of peripheral organs to signals originating from the SCN

are distinct, and the liver and kidney must be getting their timing cues from a different

source than the rest of the body. Such as signals that are born in the blood or even

signals that are fed. However, due to the fact that these results indicate that caution is
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required when utilising a ’peripheral’ model to analyse the clock, it is imperative that

this be done. It is more likely that individual tissues will respond independently as

opposed to as part of a population [80].

The SCN acts as a core oscillator, entraining peripheral oscillators to the external

environment [81]. This occurs in response to internal cues from hormones (such Gcs)

or neurons, as well as external cues like the need to eat (known as ”zeitgebers”), a

situation in which daylight feeding of a nocturnal rodent will reverse the phase of the

peripheral clocks relative to that of the SCN, which is mostly unaffected by the situation

[82]. Another potential zeitgeber is the natural cycle of the surrounding temperature,

as temperature rhythms have been shown to produce oscillation in cultivated Rat-

1 fibroblasts [83]. The process of entrainment is essential since human cells do not

possess direct light sensitivity. However, lesser eukaryotic animals like Drosophila and

ZebraFish have peripheral tissues that are light-sensitive, and hence, they may not

necessarily rely on entrainment [84]. Similar to the suprachiasmatic nucleus (SCN),

peripheral clocks exhibit temperature compensation within the typical temperature

range observed in mammals, which spans from 33◦C to 42◦C. The rationale behind

this phenomenon remains ambiguous; nonetheless, numerous animal species possess

the ability to reduce their body temperature, a physiological state referred to as

torpor, under specific circumstances. Moreover, hibernation serves as the primary

mechanism for significant temperature reduction in animals. However, despite the

reduced metabolic activity during this period, it remains crucial for the animal to

awaken at an opportune moment, such as during the Spring season, necessitating the

maintenance of a functional internal clock [81].
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2.5.1 An additional pacemaker outside the SCN responsive to

methamphetamine

Methamphetamine (MA), is a stimulant that acts on the central nervous system.

It causes intoxication in those who consume it as a result of an increase in the

stimulation of dopamine and norepinephrine receptors in the brain. The effects of

using MA, which include alertness, euphoria, and a sensation of well-being, last for

a far longer period of time than those of a comparable nature that arise from using

cocaine, and the drug is metabolised by the body at a significantly slower rate. MA

is a derivative of amphetamine, which was initially synthesised in 1887 by a German

scientist and researched in depth for the first time in the early 1930s. Amphetamine is a

sympathomimetic medication that stimulates the sympathetic branch of the autonomic

nervous system. Its chemical structure is comparable to that of the sympathomimetic

ephedrine. As bronchial airway dilatation is one of the effects of amphetamine, the

drug was first used in medicine in 1932 as a nasal spray for the treatment of asthma.

Subsequent research revealed that the medication was also effective in providing relief

from narcolepsy, lowering activity levels in hyperactive youngsters, reducing appetite,

and making it possible for people (such as students and truck drivers) to remain awake

for longer stretches of time. In the 1930s and 1940s, amphetamine was utilised in the

treatment of a wide variety of additional illnesses and disorders. These conditions and

disorders included schizophrenia, addiction to morphine, smoking tobacco, low blood

pressure, radiation sickness, and even chronic hiccups [85].

In addition to being smoked, sniffed, or inhaled through the nose, MA can also

be injected, referred to as ”crystal” or ”meth” or ”speed.” The manner in which a

person takes MA plays a role, at least in part, in determining the timing and strength

of the ”rush” that comes with the usage of the substance. This ”rush” is brought on

by the release of high levels of dopamine into the brain, which is a result of taking

MA. When MA is smoked or injected, the effects are virtually instantaneous; when

25



snorted, they take around five minutes, and when swallowed, they take about 20

minutes. Increases in blood pressure, body temperature, heart rate, and breathing rate

are some of the immediate physiological changes that are related with the use of MA.

These changes are comparable to those that are induced by the fight-or-flight reaction.

Negative side effects include increased anxiety, insomnia, violent tendencies, paranoia,

and hallucinations. Other negative side effects include a high body temperature, stroke,

cardiac arrhythmia, stomach cramps, and shivering [86, 85].

The SCN of the hypothalamus is where the mammalian brain’s most important

circadian pacemaker is located [87, 88]. Methamphetamine, on the other hand, has the

ability to restore circadian rhythmicity in patients whose SCNs have been destroyed

by a lesion or inhibited by exposure to persistent strong light, conditions that lead

to irregular locomotor behaviour. At a molecular level, methamphetamine exerts

its impact on circadian rhythms chiefly by modulating neurotransmitter systems and

cellular signaling pathways integral to circadian regulation [87]

In addition, there are other circadian pacemakers that regulate locomotor activity

rhythms but do not rely on the SCN or the typical molecular timekeeping mechanism.

These extra-SCN pacemakers can be activated by various stimuli, including metham-

phetamine/amphetamine, restricted food availability (known as the food-entrainable

oscillator or FEO), and rewarding activities like wheel-running or palatable meals.

These findings suggest that the mammalian circadian system is more complex than

previously thought, involving multiple pacemakers with different regulatory mechanisms

[23].

Jennifer et al. [89] has studied an oscillator of the circadian rhythm that is sensitive

to the substance methamphetamine, which is a psychostimulant. The study outlines a

number of experiments that were conducted to study the characteristics of the MASCO

(methamphetamine-sensitive circadian oscillator). In one set of tests, mice that were

missing certain genes or had mutations in those genes were used. These genes are part of

the conventional circadian machinery. When administered with methamphetamine, the
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researchers discovered that these animals displayed circadian locomotor rhythms. This

finding indicates that MASCO can induce behavioral rhythms even without the SCN

and independently of the molecular feedback loops that underpin traditional circadian

rhythms. In another experiment, the participation of canonical clock genes in the

MASCO mechanism was tested by modifying or knocking out these genes in order to

evaluate whether or not they were engaged. The findings of these tests shed light on the

molecular mechanisms that are responsible for circadian rhythmicity and the possible

function that MASCO plays in the addiction to psychostimulants.

In 1982, Ikeda and Chiba conducted a study on the effects of various psychotropic

drugs on the circadian locomotor activity rhythms in Fischer rats. They found that

low-dose d-amphetamine administered in the drinking water had significant effects on

the locomotor activity rhythm. This resulted in an elevated activity bout at the end

of the activity period, followed by a free-running rhythm with a longer period. They

proposed the existence of at least two circadian oscillators in rats, with one oscillator

being more sensitive to amphetamine than the other [23].

The discovery made by Ken-Ichi Honma’s group revealed that the activity rhythm

induced by psychostimulants like methamphetamine is controlled by a circadian

oscillator located outside of the SCN. The circadian oscillator outside the SCN, often

activated by MASCO, operates independently but can interact with the SCN by

influencing rhythms under specific conditions, like restricted feeding schedules. While

the SCN is the primary light-entrained circadian regulator, MASCO can maintain

rhythms even when SCN function is compromised. However, MASCO and the SCN

can show synchronized rhythms when both are active, although they are governed

by different environmental cues (e.g., light for SCN, methamphetamine, or feeding

for MASCO). Thus, they represent separate but sometimes interacting pathways for

circadian regulation [79]. They found that low-dose methamphetamine had similar

effects on activity rhythms in rats as d-amphetamine, and this rhythm persisted even

in rats with SCN lesions. The methamphetamine-induced rhythm dissociates from the
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SCN-controlled rhythm, free-runs in light-dark cycles, and can also be entrained by

restricted feeding [23].

Taufique et al. [90] have discussed the genetics and functional significance of

the methamphetamine-sensitive circadian oscillator (MASCO). Their finding was in

the absence of the SCN, mice with SCN lesions and no methamphetamine treatment

exhibit irregular or frequent locomotor activity, indicating the absence of a discernible

MASCO output rhythm. This suggests that MASCO is a weak oscillator on its own and

cannot sustain a continuous activity rhythm without the presence of methamphetamine.

However, when methamphetamine is administered to mice with SCN lesions, a robust

free-running activity rhythm with a prolonged period of 26 to 30 hours emerges.

This indicates that MASCO becomes a strong oscillator with a longer period when

methamphetamine is present. Conversely, without methamphetamine treatment, the

SCN remains a strong oscillator while MASCO is weak. This leads to a strong coupling

between the SCN and MASCO, resulting in an activity rhythm with a period of

approximately 23.7 hours in constant darkness (DD) conditions. In constant light

(LL) conditions, the SCN oscillator is still stronger than MASCO, but the period of

the resulting activity rhythm is lengthened to about 26 hours.

Tataroğlu et al. [91] have discussed the presence of an SCN-independent oscillator

that contributes to behavioral rhythmicity in mammals, which challenges the complete-

ness of the model of mammalian circadian organization that posits the SCN as the main

pacemaker that orchestrates synchrony among the circadian oscillators present in almost

all tissues and is chiefly responsible for the generation of rhythms in locomotor activity.

The study investigates the effects of methamphetamine (MAP) on the circadian wheel-

running activity of intact, SCN-lesioned, or constant light (LL)-treated mice. The

doses of methamphetamine used were 0.0025%, 0.005%, 0.0065%, 0.0075%, or 0.01%

weight in volume (w/v). Food, water, or methamphetamine-containing water was

available ad libitum unless otherwise stated. In conculsion, there is evidence of an

SCN-independent oscillator, MASCO, that contributes to behavioral rhythmicity in
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mammals. The study suggests that MASCO interacts with the SCN in a strain, sex,

and dose-dependent manner in intact mice. Additionally, MASCO induces robust free-

running locomotor rhythmicity in SCN-lesioned mice, which persists for up to 14 cycles

after methamphetamine is withdrawn.

2.6 The disruption of circadian rhythms

The circadian system has undergone evolutionary adaptations in order to allow animals

to anticipate and take advantage of regular alterations in the external environment.

This adaptation optimises the physiological and behavioural functions of organisms to

specific periods of the day [92]. Nevertheless, contemporary society, characterised by

its constant activity and availability, presents countless instances in which our way of

life clashes with our inherent biological rhythms. These instances include shift work

and the disruption caused by travelling across different time zones, commonly known

as jet-lag. In addition, the utilisation of artificial light leads to the exposure to light

during unsuitable periods, encompassing nocturnal illumination as well as the exposure

to light emitted by mobile devices, such as smartphones, tablets, and computers. The

repercussions of circadian disturbance and aberrant light exposure on human health are

currently a subject of increasing concern. Individuals who are consistently exposed to

such circumstances may experience difficulties in their performance, sleep disturbances,

emotional disruptions, and gastrointestinal issues. It is widely believed that these

symptoms have an impact on approximately 5-10 % of individuals engaged in shift

employment.

Treatments aim to synchronise the internal circadian rhythm with the external

environment by many methods, including scheduled exposure to light or darkness,

strategic napping, and the administration of pharmaceutical interventions, such as

melatonin or caffeine [93, 94, 95, 92]. Given the rising prevalence of artificial light

sources, it is anticipated that such issues are poised to escalate in the forthcoming years.
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In order to examine the mechanisms that contribute to the negative health consequences

of circadian disruption, an expanding body of research has explored the impact of

abnormal light exposure on cognitive function. These studies have utilised rodents that

are housed under non-standard light-dark cycles. Nevertheless, these atypical LD cycles

may potentially exert their influence through other mechanisms.

Certain situations lead to exposure to light during the typical subjective night,

while others lead to a discrepancy between an individual’s internal circadian clock

and the external environmental time, necessitating a continuous adjustment of the

phase. The hypothesis posits that the discrepancy between circadian rhythms and

external environmental cues may underlie the adverse effects associated with circadian

disturbance [94]. There has been a suggestion that the discrepancy between circadian

rhythms and external factors may serve as the underlying cause for the adverse effects

of circadian disruption [94]. Supporting evidence for this claim can be found in

research where animals demonstrate compromised well-being when exposed to non-

24-hour environmental settings [94]. The most compelling evidence is derived from

studies on longevity. In these studies, it has been observed that wild-type mice exhibit

a decrease in lifespan when subjected to non-24 hour light-dark cycles [96]. Additionally,

tau mutant hamsters have been found to experience shortened longevity under 24 hour

settings, but display normal lifespan when exposed to persistent darkness [97, 98].

The aforementioned results suggest that the efficacy of a circadian clock is contingent

upon its synchronisation with the period of the surrounding environment. One potential

alternate explanation regarding the negative consequences of circadian disruption posits

that such circumstances lead to internal desynchrony. This refers to a situation in which

the circadian clocks in various tissues, or even distinct parts of the brain, may become

misaligned or lose their rhythmicity altogether. As a consequence, this can lead to

poorer performance. The phenomenon of internal desynchrony has been observed in

mice as a consequence of scheduled feeding. This leads to a lack of synchronisation

between the clocks in the SCN and the hippocampus, which in turn impairs learning
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and memory. Additionally, in rats subjected to 22-hour light-dark cycles, internal

desynchrony occurs within specific groups of neurons in the SCN, resulting in behaviour

similar to depression. The hypotheses of the mismatch between internal and external

time and internal desynchrony are not mutually exclusive and may both have a role in

the adverse consequences of circadian disturbance [92].

Tahara et al [99] discussed age-related circadian disorganization caused by sympa-

thetic dysfunction of peripheral clock regulation. The study sheds light on the changes

that occur in the adaptation of peripheral clocks to external signals with age. The effects

of age-related impairment of the peripheral clock on stress, exercise, and food stimuli

are discussed. The circadian clock plays a critical role in maintaining homeostasis,

preventing disease, and limiting the deleterious effects of aging. By maintaining a

robust circadian clock, individuals may be better able to resist the negative effects of

aging and maintain their health and well-being as they age.

There exists a correlation between disturbances in the circadian rhythm and other

age-related ailments, such as obesity, cancer, and dementia. The phenomenon of ageing

is correlated with a reduction in the diurnal fluctuations observed in the sleep-wake

cycle, body temperature, and hormone secretions. The manifestation of age-related

deterioration in the timing signal from the suprachiasmatic nucleus (SCN) has been

documented in the neuronal firing rhythms and membrane characteristics of SCN cells.

Furthermore, it was observed that the molecular clock exhibited regular oscillations

in the aged suprachiasmatic nucleus (SCN) in vivo. However, a more rapid drop in

oscillation was observed in cultured SCN derived from aged mice compared to those

derived from young mice. Several research have been conducted to assess the oscillations

of the molecular clock in aged peripheral tissues. In several of these investigations,

luciferase reporter transgenic mice or rats were utilised to examine the expression of core

clock genes (Per1 and Per2 ) in liver, lung, pineal gland, and kidney tissues obtained

from both young and old animals. Hence, perturbations to the circadian rhythm can

potentially contribute to the progression of the ageing phenomenon and age-associated
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ailments [99].
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3. Measurements and methods of

analysis

In this thesis, additional analysis was conducted to gain a deeper understanding and en-

sure the identification of existing rhythms throughout the experimental duration. This

in-depth examination was crucial to determine the persistence and characteristics of

rhythmic patterns under the experimental conditions. The signals that is investigated in

this report was obtained from Shin Yamazaki, University of Texas Southwestern,Dallas,

TX. In following agreement to use the data as well as ethics approval is provided as

background of this work and all letters in the appendex (a,b).

3.1 Study 1: Behavioural rhythm across multiple

conditions

These are the behavioral data from 8 triple knockout Per1/2/3−/− mice, each of which

was observed over a period of 140 days. Table 3.1 shows the information of all mice

and their gender. During the experiment and period of these days, all mice have

gone through several different stages. Mice have stayed the first 8 days in 12 hour in

constant darkness and 12 hour in constant light (12D:12L). The condition has moved to

constant darkness and mice have stayed for 11 days, with same condition all mice has

given (0.005%) methamphetamine in their drinking water and spent 26 days. Then the
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condition has moved to constant lightness for 74 days, the first 22 days under the effect of

the drug then the effect of the drug has finished and spent the rest in constant lightness.

Finally the mice return back to constant darkness until the end of the experiment. Fig

3.2 illustrates the behavioral data of mouse 1 within the investigation during 140 days.

Table 3.1: Information of all mice and their respective genders that are currently

under investigation.

Mice Gender

Mouse 1 ( PTKO-1002) Male

Mouse 2 (PTKO-8780) Male

Mouse 3 (PTKO-8840) Female

Mouse 4 (PTKO-8844) Male

Mouse 5 (PTKO-8896) Female

Mouse 6 (PTKO-8898) Female

Mouse 7 (PTKO-8845) Male

Mouse8 (PTKO-8975) Female

Table 3.2: Meaning of abbreviations.

abbreviation Meaning
LD 12 hours in constant light and 12 hours in constant dark

DD(1) Constant darkness.
MA & DD(1) Methamphetamine drug in constant darkness.
MA & LL Methamphetamine drug in constant lightness.

LL Constant lightness.
DD(2) Constant darkness.
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Moreover, animals were singly housed in cages (length × height × width: 29.5 × 11.5

× 12 cm) with unlimited access to a running wheel (diameter 11 cm), food (unless

otherwise indicated), and water. The cages were placed in light-tight, ventilated

boxes in light/dark conditions (light intensity: 200–300 lx) or in constant darkness

(as indicated for each experiment). Cages were changed every 3 wk. Wheel-running

activity was continuously recorded every minute by computer and initially analyzed

using ClockLab software (Actimetrics).

Figure 3.1: Illustration of the wheel which enables the mice to run inside the cage.

The same PC recorded the number of revolutions of the running wheel. Figure 3.2

shows the time series of mouse 1 and how its behaviour during 140 days. During the

investigation, the PC recorded nan values due to some issue that have interrupted the

recording, and this happened for all mice at the same time. Since this issue happened

for a low percentage of data points, the time series could later be utilized as an input

for analysis, with no impact on the general outcome.
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Figure 3.2: The behavioral data obtained from mouse 1, depicting the number of

revolutions of a running wheel per minute recorded over a span of 140 days. The red

lines on the graph indicate the start/end of a given condition.
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Figure 3.3: A 3 hours segment of 140 days of Murine behavioural data. The number

of revolutions of a running wheel was recorded every minute.

3.2 Study 2: Comparing wild type and per knock-

out mice under identical condition

3.2.1 A. Wild-type mice

In this study, three wild-type mice with active clock genes were observed over 32 days

while being kept in constant darkness to investigate their circadian rhythms. Figure

3.4 illustrates the behavioral data of mouse 1 within the investigation during 32 days,

and 4.11 also ilusrates the 3 hours segment of 32 days.
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Figure 3.4: The behavioral data obtained from wild mouse 1, depicting the number

of revolutions of a running wheel per minute recorded over a span of 32 days.

Figure 3.5: A 3 hours segment of 32 days of Murine behavioural data. The number

of revolutions of a running wheel was recorded every minute.
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3.2.2 B. Knocked out mice in constant darkness

This investigation focused on six triple knockout Per1/2/3−/− mice over a span of 45

days, during which they were maintained in constant darkness. Figure 3.6 illustrates

the behavioral data of mouse 1 within the investigation during 45 days, and 3.7 also

ilusrates the 3 hours segment of 45 days.

Figure 3.6: The behavioral data obtained from mouse 1, depicting the number of

revolutions of a running wheel per minute recorded over a span of 45 days.
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Figure 3.7: A 3 hours segment of 45 days of Murine behavioural data. The number

of revolutions of a running wheel was recorded every minute.

3.3 Study 3: Evaluating the effect of MA adminis-

tration utilising longer recording

3.3.1 A. Knocked out mice in light-dark and constant darkness

The experiment monitored seven mice for a duration of 93 days under two distinct

environmental conditions. Initially, they spent 26 days in a Light-Dark (LD) cycle, after

which they were transitioned to constant darkness for the remaining of the experiment.

Throughout this period, the clock gene in all the mice was inactivated. Figure 3.8

illustrates the behavioral data of mouse 1 within the investigation during 93 days, and

figure 3.9 also illustrates the 3 hours segment of 93 days.
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Table 3.3: Information of all mice included the study 3 (A) and their respective

genders.

Mice Gender

Mouse 1 ( PTKO-8911) Male

Mouse 2 (PTKO-9313) Male

Mouse 3 (PTKO-9501) Male

Mouse 4 (PTKO-9507) Male

Mouse 5 (PTKO-9509) Female

Mouse 6 (PTKO-9565) Female

Mouse 7 (PTKO-9567) Female

Figure 3.8: The behavioral data obtained from mouse 1, depicting the number of

revolutions of a running wheel per minute recorded over a span of 93 days.
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Figure 3.9: A 3 hours segment of 93 days of Murine behavioural data. The number

of revolutions of a running wheel was recorded every minute.

3.3.2 B. Knocked out mice in light-dark, constant darkness,

and methamphetamine administration

The experiment involved a longitudinal observation of five mice over the course of 135

days, subject to a series of environmental changes. Initially, the mice were placed

under a Light-Dark (LD) cycle for the first 6 days. This was followed by a 26-day

period in constant darkness. Subsequently, methamphetamine was administered via

their drinking water, and the mice remained in the constant darkness condition for

the duration of the experiment. Figure 3.10 illustrates the behavioral data of mouse 1

within the investigation during 135 days, and 3.11 also ilusrates the 3 hours segment of

135 days.
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Table 3.4: Information of all mice included the study 3 (A) and their respective

genders.

Mice Gender

Mouse 1 ( PTKO-7759) Female

Mouse 2 (PTKO-7786) Female

Mouse 3 (PTKO-8001) Female

Mouse 4 (PTKO-8003) Female

Mouse 5 (PTKO-8025) Male

Figure 3.10: The behavioral data obtained from mouse 1, depicting the number of

revolutions of a running wheel per minute recorded over a span of 135 days.
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Figure 3.11: A 3 hours segment of 135 days of Murine behavioural data. The number

of revolutions of a running wheel was recorded every minute.
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3.4 Dynamical systems and methods for analysing

them

3.4.1 Introduction

To acquire a better understanding of the underlying dynamics of any given system,

several methods can be applied to the data it generates. Data obtained from the system

can be investigated using methods that enable the temporal resolution of its oscillatory

dynamics. This temporal resolution allows for a detailed analysis of the system’s

periodic behaviors, oscillations, or rhythmic patterns over time. By examining the data

at different time scales, researchers can extract valuable information and statistical

features from the data. This includes measures such as mean, variance, distribution

properties, correlations, spectral characteristics, and other statistical descriptors. These

extracted features provide insights into the underlying dynamics of the system and

aid in understanding its behavior, variability, and statistical properties. Rather than

just amplitudes, the algorithms consider the amplitude, power, and phase aspects of

oscillations. Furthermore, the algorithms in question take into account the signals’

fluctuating frequencies and phases [100].

Dynamical systems are mathematical models that are used to explore how complex

systems behave and evolve over time. They are capable of describing a wide range of

events, from physical systems such as planetary motion to biological systems such as

population dynamics or biochemical reactions. It can be described by the equation:

dx

dt
= f(x). (3.1)

Equation 3.1 defines the progress of continuous-time systems. Iterated maps can be

employed when time is discrete [100], where f is a function that acts on the previous

state of x; f describes the infinitesimal change in the state x in an infinitesimal time
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interval t The concept of dynamical systems is related to a number of systems, such

as the linear harmonic oscillator, the planetary system, and the simple pendulum.

Dynamical systems that explicitly depend on time are referred to as nonautonomous

systems. In contrast to autonomous systems, where the evolution of the system does

not explicitly depend on time, nonautonomous systems have time-varying dynamics.

A differential equation with explicit time dependency is the most basic mathematical

representation of a nonautonomous system which is:

dx

dt
= f(x, t). (3.2)

System based on their mathematical qualities can be generically classified as linear

or nonlinear. Linear systems are much easier to solve and have much simpler properties

than nonlinear systems. A linear system’s output evolution is proportionate to its input

evolution. In nonlinear systems, however, such proportionality does not exist. Because

most open systems are nonlinearly dynamical, they are challenging to analyse [101].

3.4.2 Stochastic and deterministic systems

Given complete information about a linear system at a specific moment, it becomes

straightforward to ascertain the system’s state at every subsequent moment. This

characteristic facilitates the development of analytical solutions for the problem. This

implies that it is feasible to comprehend all the characteristics of the system inside

the framework of a linear model, without the need to observe the system’s dynamics.

In contrast, it is not feasible to analyse nonlinear systems, such as living systems,

using the aforementioned approach. Although it is possible to derive certain aspects of

nonlinear systems analytically, predicting the trajectory of such systems without the

aid of computer simulations or examining real system dynamics is not practical. It

is noteworthy that the complexity of a system is not the determining factor in this

matter. A linear system can exhibit significant intricacy, while a nonlinear system can
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possess relative simplicity. Nevertheless, the fundamental principles discussed herein

are applicable to the analysis of both linear and nonlinear systems [20].

When a fluctuation results from the interactions and actions of a large number

of variables or degrees of freedom, it is considered noisy or stochastic. As a result,

complicated behaviour can be created by the impact of random external stimuli on a

system. This can be modelled by including a noise term in the equations characterising

a system’s time series. The properties of the noise in the system are separate from

the system’s underlying dynamics. This distinction permits stochastic systems to be

treated as open systems.

A deterministic system is one that uses differential equations to explain how it

changes over time. It does not use any random factors to forecast its future behaviour.

Because probabilistic systems contain random elements, their evolution cannot be

predicted with precision. In a deterministic system, on the other hand, if we know

the initial state of the system at a certain moment, we can predict the events that will

occur in the system without any uncertainty.In chaotic systems, which are deterministic

autonomous systems, small differences in initial conditions may result in exponential

divergence in the resulting trajectories.

3.4.3 Oscillatory systems

An oscillatory system refers to a dynamic system where the solutions are confined

within certain limits but do not settle into a steady equilibrium state. An oscillatory

system, as a type of dynamical system, can be described as a physical system that

naturally exhibits oscillations. These oscillations are a result of disturbances to

the system’s equilibrium state (Hopf bifurcation) and are inherent to the system’s

characteristics. From a biological perspective, numerous oscillatory systems are present

within a human or other living organisms, where they continuously interact with

each other. All physiological processes in a biological system not only interact
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with other processes within the system but also constantly exchange matter and

energy with their environment. As a result, they exhibit oscillatory behavior. The

characteristics of oscillatory systems are influenced by the activities taking place within

them. These systems are classified as nonlinear because their behavior cannot be

accurately represented by linear equations. Instead, they require nonlinear equations

for a proper description. Importantly, the principle of superposition, which applies to

the combination of two or more oscillators, does not hold true for nonlinear systems

comprised of interacting oscillators.

3.5 Relationship between biological systems and

dynamical systems theory

3.5.1 Nonlinearity

For a linear system, if all its fundamental properties are known at a specific moment,

it is always feasible to estimate the system’s state at that time, making analytical

solutions to the system possible. This means that it is possible to understand all the

properties of a linear system without the need to observe its dynamics continuously

over time. Although it is possible to calculate some characteristics of these systems

analytically, fully understanding the trajectory of a real nonlinear system typically

requires monitoring its dynamics over time or simulating it. It’s important to note that

this challenge is not tied to the complexity of the system. However, these underlying

principles of analysis still apply regardless of the complexity when examining either

type of system. The implications of nonlinearity can indeed be quite significant. Not

only does it introduce mathematical complexities, but it also results in phenomena such

as hysteresis. This refers to a situation where the path a system takes moving from

one state to another differs from the path it follows when returning to the original

state. This difference in trajectories illustrates why the direction of time is crucial
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in analyzing nonlinear systems, as the system’s behavior can vary depending on the

sequence of events and the direction of change [19].

3.5.2 Openness

The nonlinearities mentioned earlier can be seen as manifestations of a unique

characteristic of living systems: their status as thermodynamically open systems that

exchange energy and matter with their environment. In contrast, many major theories

of dynamical systems often assume that the systems are closed, meaning they are

autonomous and can be fully described by their internal state.

Contrary to closed systems, living systems are inherently open and non-autonomous,

indicating that both their state and the factor of time are essential in describing their

dynamics. Consequently, the incorporation of time-dependent variables becomes an

unavoidable aspect when analyzing the dynamics of living systems. This reflects the

continuous interaction of living systems with their environment and the time-sensitive

nature of their responses and adaptations [19, 100].

3.6 Inverse approach to dynamical systems

Describing real-world system circumstances frequently necessitates a more realistic

framework involving non-autonomous differential equations. However, analysing these

equations is complicated and has proven to be problematic in many circumstances,

resulting in failed attempts. A critical stage in the implementation of a deterministic

description is phase space analysis. It is commonly used to rebuild the attractor in phase

space. This technique is suitable for autonomous systems that do not explicitly rely

on time, but it does not take into account time-dependent attractors [102]. Additional

dimensions in phase space are necessary to solve the problem of these systems’ time

dependence. This complicates the situation. In solving dynamical systems, the inverse

problems technique comes in handy, which involves determining the unknown inputs or
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parameters of a dynamical system based on observed outputs or behaviour. It can be

used to measure the system directly or to simulate it using a set of differential equations.

The only difference between the two techniques is that the first is limited by the available

data, whilst the second is limited by the approximations and simplifications made in

the model.

Many signal analysis methods presume that the data’s frequency distribution is

constant. In nonautonomous systems, however, this is not the case. Nonstationarity

is statistically represented as a change in either the mean or variance of a time series,

or both [103]. One widely used approach to visualize the dynamic characteristics of

a system’s time series is by determining its frequency spectrum. The discrete Fourier

transform (DFT) is a traditional approach for analysing time traces. However, applying

the DFT to nonstationary time series results in distorted or deceptive power spectra.

This limitation reduces its practical value as the computation of the power spectral

density often results in a ”1/f” spectrum, leading to the loss of critical information

[103]. Various windowing methods, including the windowed Fourier transform (WFT)

and wavelet transform (WT), have proven to be effective in analyzing time traces. The

WFT method faces limitations because of its fixed window size, which significantly

restricts its effectiveness in analyzing slow oscillations. In contrast, the WT method

overcomes this limitation by introducing an adaptive window size, thereby offering a

solution to address the issue [104]. The simultaneous visualization of the complete time-

frequency representations of a signal proves highly valuable for observing the dynamic

characteristics of the system and tracking their temporal evolution.

3.6.1 Time-domain

A signal obtained from a physical system can be initially represented in the time domain

as time traces. However, the underlying dynamical properties of nonautonomous

systems are often hidden within the data, making it challenging to visualize them
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solely in time-domain representations. To reveal the system’s dynamics, alternative

methods are necessary. These methods involve analyzing the variations in frequencies

and amplitudes of oscillations within the time series.

3.6.2 Preprocessing

Signal preprocessing is essential for efficient analysis, but it’s advisable to minimize

data manipulation. Time series data, especially when acquired experimentally from

living systems, can exhibit anomalies. These artifacts may originate from equipment-

induced movements or noises during the experiment. These artifacts influence the

statistical characteristics of the recorded time series throughout the entire study

duration, resulting in a noticeable trend. The ability to distinguish between undesirable

and nonstationary inherent dynamics within a signal is paramount during analysis.

An elementary approach involves scrutinizing the temporal signal longitudinally;

conspicuous deviations from established norms or documented patterns may indicate

undesirable trends stemming from factors like motion. Moreover, undesirable trends

induced by motion may manifest as pronounced spikes within the time series when

observed visually over time. To remove such undesirable trends, the signal is first

detrended by removing the non oscillatory trends from the original signal. This is

achieved by subtracting a best-fit cubic polynomial, see figure 3.12.

On the other hand, nonstationary dynamics inherent to the system (e.g., circadian

rhythms oscillating approximately every 24 hours) can be detected through the

application of time-frequency analysis methodologies. The act of eliminating this trend

from a time series is referred to as ’detrending’. Finding trends in time series, identifying

such trends, and then removing them from consideration are crucial steps in the data

analysis process in virtually every industry. Preprocessing has evolved into an essential

stage for the majority of statistical methods, including the computation of correlations

and spectral analysis [105]
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In pre-processing, filtering is still another important factor. If mean values are

computed or frequency analysis is used to remove trends, then the data should be

detrended. This is because the impacts of frequencies lower than the frequencies of

interest in this research may have an influence on the outcome results. There are

several different approaches that can be taken in order to buck a trend. It could be

done theoretically or statistically, although it is often carried out in the temporal domain

[106] [107].

Using a technique known as moving average to smooth out data is the best way

to apply detrending. Calculating the statistical mean of the data that is contained

within the window and utilising that number as the central point of the window is how

this is defined. After that, the window is shifted by one data point in the subsequent

step. After that, we compute the new mean, and so on and so forth. The change in

amplitude that occurs as a result of applying this approach to the time series can be

observed. Time series that have high frequency components, which are represented by

amplitude fluctuations that fluctuate quickly, are averaged over and minimised. On the

other hand, time series that have low frequency components, which are represented by

the amplitudes of long-term trends, remain mainly constant.

It is worth emphasizing that the window length l is the pivotal parameter that

governs the degree of smoothness in the resulting time series. larger windows, which

correspond to increased smoothing, filter out low-frequency components. Moreover,

when conducting frequency or time-frequency analysis, it is imperative to perform signal

averaging and subsequently subtract it from the original signal [19]. However, it is

essential to differentiate between smoothing and filtering. In the frequency domain,

filtering involves the direct manipulation or removal of information. In contrast, the

impact of time domain methods can be described as smoothing. Opting for time domain

smoothing over filtering offers the advantage of preserving information at each stage,

particularly when it comes to specific objectives in signal processing and noise reduction.

It allows for precise targeting of unwanted noise or interference, enabling the removal or
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attenuation of specific frequency components without affecting the underlying signal’s

relevant features.

Nevertheless, simple frequency domain filtering can eliminate Fourier components

within a specific frequency range, sacrificing information and yielding suboptimal results

when the time series contains non-sinusoidal components (i.e., the harmonics remain

unaffected). Smoothing is applicable to nonstationary time series as it operates in the

time domain and conserves all time-dependent information within the time series [19].

Figure 3.12: Comparison of behavioural data from Mouse 1, before and after

preprocessing.

3.6.3 Phase

Biological system time series are influenced by noise from various sources, which are

typically unstable. To gain a deeper understanding of the behavior of individual
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elements within biological systems and the nature of their interactions, it is essential to

develop and apply specialized analytical techniques [108]. In analyzing complex signals,

one important but less commonly addressed topic is the study of the instantaneous

phases of oscillations. A key aspect of this analysis involves separating ’amplitude’

dynamics from ’phase’ dynamics, which is crucial to much of the research. The concept

of phase in this context is a generalized version of the one-dimensional phase used in

simple harmonic oscillators [19].

x(t) = A cos (2πft+ ϕ0) , (3.3)

The term ”rotational frequency,” which is uniquely related to linear frequency by the

equation ω = 2πf , is commonly used for convenience. The instantaneous phase of the

system is represented by the cosine function. It represents the number of oscillations

the system completes over time t since the start of measurements, as expressed in the

argument of this function [108].

ϕ(t) = 2πft+ ϕ0 = ωt+ ϕ0, (3.4)

The instantaneous phase can never decrease over time, but it can increase at a variable

rate. It is measured in either radians or degrees, which are uniquely related. The

phase increases by 360 degrees, or 2π radians, during a complete oscillation cycle. In

equation 3.4, ϕ0 represents the initial phase of the oscillations. Oscillations with simple

waveforms may not necessitate instantaneous phase analysis, but for complex signals,

this information can be highly valuable in characterizing their features.

3.6.4 Frequency-domain

Prior to conducting frequency domain signal analysis, it is crucial to take into account

the properties of the data. Data obtained as time series from any physical system can
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be represented and analyzed in both the time domain and the frequency domain. In the

time domain, the data is expressed as a function of time, f(t), while in the frequency

domain, the data is depicted as the distribution of the system’s dynamics across different

frequencies. The maximum observable frequency in the signal is equal to half of the

sampling frequency (fs) employed for data measurement, which is known as the Nyquist

frequency. The time interval between two consecutive measurements is equivalent to

the inverse of the sampling frequency. In other words, ∆t is equal to 1 divided by

the sampling frequency, represented as ∆t = 1/fs. The minimum detectable frequency

relies on the duration of the data (L), where the lowest observable frequency (fmin) is

equal to 1 divided by the length of the data (1/L). Consequently, the data must be

longer than a single oscillation period, and it is not possible to differentiate between two

oscillations if their frequency difference is smaller than the minimum frequency. One

commonly employed method for visualizing signal dynamics is to represent them in the

frequency domain. This representation enables the observation of how oscillations and

variations are distributed across a potentially broad range of wavelengths.

The Fourier transform

In the field of physics, a physical process can be described and represented in either the

time domain or the frequency domain. Conversely, the frequency domain representation

describes the amplitude of the process, denoted as F, as a function of frequency, usually

represented as F(f). Each of these representations provides distinct types of information

about the same function. When time is measured in seconds, frequency is commonly

measured in (Hz), representing the number of cycles per second. The discrete Fourier

transform (DFT) is a technique utilized for signal analysis. It is typically introduced

through the concept of Fourier series. The Fourier transform F (ω) of a non-periodic

continuous function f(t) is defined as:

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt (3.5)
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Where the Fourier series of a periodic function can be represented as an infinite

series comprising sines and cosines.

f(t) = a0 +
∞∑
ω=1

[aω cos(ωt) + bω sin(ωt)] (3.6)

The angular frequency is donated as ω, while the Fourier coefficients are

a0 =
1

T

∫ T

0

f(t)dt, (3.7)

aω =
2

T

∫ T

0

f(t) cos

(
2πωt

T

)
dt, (3.8)

bω =
2

T

∫ T

0

f(t) sin

(
2πωt

T

)
dt. (3.9)

The shape of the function f(t) determines the specific values of these coefficients. Larger

coefficients correspond to more prominent modes or their harmonic in the signal. The

data obtained from the biological system will be used for discrete sampling. Therefore,

the Fourier transform of a signal can be written as:

F (ω) =
N−1∑
n=0

f(n) exp
−2πiωn

N
. (3.10)

This equation allows the conversion of a time series from the time domain to the

frequency domain, transforming a time-dependent series into one dependent on ω.

Essentially, any periodic components in the time series will manifest as peaks in the

Fourier transform at frequencies corresponding to those periodic terms. When a time

series contains frequencies beyond the observable range, issues arise with the Fourier

transform. Low-frequency components (< 1
L
) no longer behave periodically and instead
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appear as trends at these frequencies. Since the Fourier series of a non-periodic function

is an infinite sum of sine and cosine waves, most low-frequency oscillations tend to

accumulate at ω = 0, while higher-frequency oscillations are distributed across the

spectrum. Therefore, it’s essential to remove any trends from the time series before

performing a Fourier transform to ensure that the detected components within the

observable frequency range have accurate amplitudes. Even for frequencies within the

observable range, the Fourier transform poses challenges when used as a representation

in the frequency domain. Figure 3.13 visually demonstrates the process by which the

amplitudes of periodic components with different forms can be divided into modes that

are scattered over the frequency domain. This is achieved through the utilisation of

the transform’s emphasis on sinusoidal components. Hence, there exists a potential

for misclassification of higher frequency modes with significant amplitudes as distinct

components within the time series.
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Figure 3.13: Time series of three different periodic functions: (a) A sine wave,

(b) square wave and (c) sawtooth shape, as well as their one-sided Fourier transform

amplitudes, are shown in panels (d), (e), and (f). The sampling frequency was 1000Hz

Power spectral density

The most commonly used approach for visualizing the dynamic properties of a

signal is through the Fourier transform, which was discussed in the previous section

regarding the frequency domain. This study can be utilised to ascertain the occurrence

rate of deterministic processes that are observable in the time-series, achieved by

identifying distinct and isolated spectral peaks. Alternatively, when the frequency

vary significantly, the absence of peaks in the time-series can be utilised to identify it

as ”noise,” where the spectral power demonstrates a linear gradient on a log-log plot

of power spectral density (PSD) against frequency, see equation 3.11. An instance of a
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time-series is classified as ”white noise” when its PSD exhibits a continuous linear

gradient. Conversely, it is categorised as ”pink noise” when the power is directly

proportional to 1/fβ, where β is a value within the range of (0, 2). Lastly, a time-

series is labelled as ”blue noise” when β falls within the range of (−2, 0) [109].

The PSD for a discrete signal x(n)is given by the squared magnitude of the Discrete

Fourier Transform (DFT) divided by the signal length N :

P (fk) =
|X (fk)|2

N
, (3.11)

where X(fk) is the DFT of X(n) and fk is the frequency corresponding to the kth DFT

bin.

The term ”1/f noise” is used to describe the shape of the spectral density, P(f), of a

stochastic process that follows a specific pattern

P (f) =
constant

fα
, (3.12)

Where f is frequency and α ≥ 0 and determines the functional dependence of the

spectrum. Taking the logarithm of each side of Eq 3.12, we obtain

log(P ) = −α log(f) + log(constant), (3.13)

α is determined by the gradient of the straight line ( see figure 3.14) given by :

−α =

∑N/2−1
k=0

(
log (fk)− µlog(f)

) (
log (Pk)− µlog(P )

)∑N/2−1
k=0

(
log (fk)− µlog(f)

)2 , (3.14)

where µlog(P ), µlog(f) are the mean values, N is The total number of data points (or

frequency bins), fk: The frequency value at index k and Pk: The power (or power

spectral density) at the corresponding frequency fk [110]. Table 3.5 shows the slope
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values of all mice and the average value which is α = 1.21 ± 0.08. In the case of

nonautonomous systems, a representation solely in the frequency domain is inadequate

to capture all the information present in the signal. The characteristic feature of 1/f

noise is its power spectral density, which rises as the frequency decreases. However,

this representation does not convey information regarding the temporal variations or

changes in the noise over time.

Unlike autonomous systems, nonautonomous systems exhibit a time-varying be-

havior, where their dynamics can change over time due to external inputs or

internal mechanisms [109]. Consequently, to gain a comprehensive understanding

of nonautonomous systems, it is essential to take into account both the frequency

characteristics of the signal and how those characteristics evolve over time. By

considering both the frequency content and its temporal variations, a more complete

picture of the behavior of nonautonomous systems can be obtained. Certainly, the

power spectral density (PSD) is a useful tool for analyzing the frequency content of a

signal and determining the amplitude of each frequency component. However, it does

not provide any information about the phase relationships between these frequency

components. Additionally, the PSD representation lacks physical significance when it

comes to understanding the mechanisms of frequency modulation.
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Figure 3.14: Power spectral density (PSD) of behavioural data of mouse 1 from study

1. The red line is obtained by calculating the y–intercept to fit the line. The obtained

value α in this case is equal to 1.15.

Table 3.5: Values indicating the slope for all behavioral data recorded from all mice

from study 1. The values slope provides information about the type of noise or the

nature of the signal. It is considered pink noise as the value of the mean.

Mouse Slope Mean ±S.D.
1 1.15

1.21 ±0.08

2 1.04
3 1.23
4 1.30
5 1.26
6 1.22
7 1.25
8 1.22
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3.6.5 Time-frequency analysis

A physical signal can be represented in either the time domain or the frequency domain.

Even while the methods for time domain decomposition offer some advantages that the

Fourier transform does not, it would still be very helpful to have spectral approaches

that could be successfully applied to the time series of sophisticated systems [111].

Although a Fourier transform is capable of revealing a great deal of information about

a time series in the frequency domain, it can only be used to time series that contain

components that are either periodic or stationary. Because non-stationary dynamics are

only ever represented by discrete stationary components, this means that it is impossible

for it to convey accurate information regarding the development of the components over

time. As a consequence of this, a technique that monitors the phase and frequency of

a number of different components as time passes is necessary.

It is not uncommon for physiological and real-world signals to be erratic in certain

respects. By the way randomness or noise refers to unpredictable variations in a signal

that can arise from various sources. Noise is typically considered to be a stochastic

(random) process, and it can be characterized by its statistical properties. Non-

stationarity refers to signals whose statistical properties change over time. In real-world

systems, non-stationarity often arises from underlying trends, periodic components, or

structural changes in the process generating the signal [19, 112, 113].

These oscillatory components exhibit a great number of amplitudes and/or frequen-

cies that change over the course of time. The analysis of these variations in the time

domain or through the use of Fourier transforms is challenging, but the beating of

the heart is an excellent example. Although it is frequently centred around 1 Hz, the

frequency of heart contractions is constantly fluctuating about this average. Because

time and frequency are different dimensions, it is often more helpful to examine the

qualities of a signal in both time and frequency at the same time. This can be

accomplished by analysing certain projections of the signal onto a (two-dimensional)
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time-frequency plane, which results in the creation of a chart that is known as a time-

frequency representation (TFR). The analysis of multi component and nonstationary

time series that contain time-varying spectral features lends itself particularly well to

the practise of tracking the frequency content over time. This is because such time

series may be tracked using TFR. A crucial part of TFR is its capacity to recover the

oscillatory components of a signal, some of which may have time-varying characteristics

[107].

We are concentrating our efforts in this study on the behavioural signals that were

collected from mice. Due to the fact that these signals are non-stationary and non-

linear, a time-frequency analysis that is founded on wavelet transforms is very suitable

method for dealing with the complexity that they present. A wavelet-based extraction

method was employed for the goal of determining the characteristic rhythms of these

various signals, in addition to their temporal variability. This was accomplished by

using TFR [114].

Windowed Fourier transform

The Windowed Fourier transform (WFT) or Short Time Fourier Transform (STFT) was

developed as a solution to address the limitations of the standard Fourier transform and

power spectral density. By using the STFT, it is possible to overcome the constraints

of the Fourier transform when analyzing nonstationary signals and to create time-

frequency representations of the signals [104]. The signal can be decomposed in a

time-frequency plane by using STFT. The partition of this plane is stratified using

rectangular or Gaussian cells with the same dimension. moreover,each cell in the time-

frequency plane can be a rectangle, where the width corresponds to the duration of

the time segment and the height corresponds to the frequency range being analyzed.

Alternatively, cells can be shaped like Gaussian windows, which are bell-shaped curves.

This approach can be used to give more weight to frequencies near the center of

the window while tapering off toward the edges, allowing for smoother transitions in
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frequency [115].

In living systems, the frequency composition of the recorded signal can gradually shift

over time. In order to do research on this kind of signal, a short-time Fourier transform

that uses a window that covers a brief period of time is necessary [116]. Within each

of these time intervals, the frequency content of the signal is examined. This method

splits the signal up into these time frames. The window is subsequently shifted along

the signal, and the frequency content of the signal itself is examined, all in an effort

to achieve time localization [111]. This method involves the evaluation of both the

characteristic frequencies present in the signal and the corresponding time variations

associated with those frequencies. The outcomes are presented in the format of a

time-frequency representation. By employing the assumption of weak stationarity, it is

possible to obtain insights into the frequency characteristics of the signal by taking an

average across all windows [116]. The Short-Time Fourier Transform (STFT) can be

mathematically stated as follows:

Gs(ω, t) =

∫ L/2

−L/2

g(u− t)f(u)e
−2πiωu

l du, (3.15)

where f(u) represents a signal with a length of l, and g(u) represents a rectangular

function with a length of l that is zero outside−l/2 ≤ u ≤ l/2. The variable ω represents

a chosen frequency for analysis, whereas the variable t represents an arbitrary shift in

time. In addition to providing information on the frequency spectrum, the complex

coefficients of the STFT also provide information on the phase of the components,

which can be thought of as the location in the cycle in relation to time [19]. Note that

if g(u) is a Gaussian function, the transform becomes known as the Gabor transform.

This is something that should be kept in mind [117]. The following is a definition of

the Gaussian window function:

g(u) =
1√
2πf0

e−u2/2f2
0 . (3.16)
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When the resolution parameter f0 is taken into consideration, the Gaussian window

spread is what determines the trade-off between the time resolution and the frequency

resolution of a WFT: When the f0 resolution parameter has a smaller value, time

changes are reflected more quickly; however, it becomes more difficult to differentiate

between two components that are very close to one another in frequency [107].

The STFT method has its limitations due to a trade-off between time localization

and frequency resolution. This trade-off arises from the uncertainty principle, which

dictates that it is not possible to precisely determine both the frequency and the exact

time of a signal simultaneously. Hence, the choice of window size is adjusted based on

the specific requirements of the user, whether they prioritize better frequency resolution

or better time localization. A larger window can provide improved frequency resolution

but at the expense of poorer time localization, as the frequency resolution is directly

related to the length of the window. Additionally, the linear frequency resolution of the

STFT may not perform well in distinguishing distinct oscillatory modes, particularly

when analyzing low-frequency components in the data [104].

Continuous wavelet transform

Recognizing the limitations of the fixed window size in the WFT, a solution was sought

to overcome this constraint. The wavelet transform (WT) emerged as an optimal

solution, as it permits the window size to vary inversely with the frequencies present

in the data. This adaptive windowing approach entails using a wider window for

very slow oscillations and a smaller window for very fast oscillations. The WT, when

implemented in discrete steps, is referred to as the discrete wavelet transform (DWT).

In this approach, the window is applied to different parts of the signal without any

overlap between frequency bands. When this process is performed continuously, it

is referred to as the continuous wavelet transform (CWT). The wavelet transform is
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obtained from [20]

WT (s, t) =
1√
s

∫ ∞

−∞
ψ

(
u− t

s

)
g(u)du, (3.17)

where s is a scale parameter, t is a location on the signal in time and ψ is the mother

wavelt. The wavelet transform (WT) employs same wavelet function stretched and

contracted to examine the entire frequency interval of interest. It utilizes the scaling

factor and time shifting to compute each scale. A small window (wavelet) is utilized for

fast oscillations (high frequencies), while larger windows are used for slow oscillations

(low frequencies). As a result, the time resolution at high frequencies is not constrained

by the larger window required for detecting low frequencies [19].

When the wavelet basis employed is well-matched with the data, the convolution

between the wavelet and the data yields a significant value. This enables the generation

of a time-frequency representation of the entire signal by plotting time, frequency,

and amplitude on a three-dimensional graph. The wavelet power spectrum can be

determined by computing the integration of the squared magnitude of the wavelet

transform across different frequencies [19, 20]

PW (ω, t) =

∫ ω+ dω
dt

ω− dω
dt

|WT (ω, t)|2 dω. (3.18)

As a result, a vector representing the power of the entire time series is obtained, which

can be plotted against frequency. This allows for the comparison of power spectra

between different signals. This serves as a useful starting point in the analysis as it

helps identify the frequency range of the primary oscillatory components within the

signal being examined.

Wavelet types

Various wavelet forms exist, each possessing its unique properties and applications.
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The preferred wavelet in this study is the lognormal wavelet, which offers higher

resolution compared to the widely used Morlet wavelet [107]

ψ̂(x) =

 e−
(2πfr log x)2

2 x > 0

0 x ≤ 0
, (3.19)

where fr is the frequency resolution which is a parameter that determines the trade-off

between time localization and frequency resolution; the higher the value, the higher

the frequency resolution and the lower the time resolution. Signals obtained from real

systems have a finite length, while the Continuous Wavelet Transform (CWT) integrates

over an infinite time range. As a result, the wavelet transform near the boundaries, close

to t = 0 or when approaching the end of the signal, becomes undefined or ill-defined.

To address this limitation, a technique called signal padding is employed. Padding

involves extending the signal at both ends during the wavelet transform process, and

then removing the added regions to retain only the original period of interest.

Different types of padding methods are available, including zero padding, periodic

padding, and predictive padding. Despite the padding, a boundary effect can still be

observed when the wavelet transform is performed near the edges of the original signal.

The unaffected portion of the wavelet transform is referred to as the ”cone-of-influence,”

indicating the region where reliable analysis can be conducted without being influenced

by the boundary effects.

3.6.6 Ridge curve extraction

Ridge curve extraction is a technique used to extract the oscillatory modes or the

trajectory of a time-varying frequency from the time-frequency representations of the

data [118, 119]. It traces the highest amplitude peaks in a given frequency band.

This is achieved by finding the greatest amplitude of an oscillatory component at each

point in time. By combining the time-frequency representation with a time-averaged

power plot, it becomes possible to visualize the oscillatory components along with
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their corresponding frequencies. These frequency bands should cover the entire extent

of the oscillatory component, including the peak as well as the surrounding blurring

caused by the uncertainty principle. To ensure accuracy, it is important to focus

on extracting a single oscillatory component from the selected frequency band. The

frequency band for each mode in the spectrum can be determined by examining both

the time-frequency representation and the average amplitude spectrum. The minima

observed in the amplitude spectrum were utilized as reference points to establish initial

boundaries between different oscillatory components. These boundaries were further

adjusted based on the analysis of the time-frequency representation to prevent any

overlap between the oscillatory components.

Occasionally, missing data due to measurement errors leads to periods where there

is no information present. In this case, the ridge extraction algorithm may be unable to

trace the mode due to the lack of information, causing fluctuations to a different value.

However, these anomalies are transient and the ridges typically return to follow the

mode after this period. As such, these fluctuations have little impact upon the further

analysis. Figure 4.3 gives an example of the chosen boundaries for ridge extraction,

and the ridges for each oscillation in each mouse are shown in the appendix.

3.6.7 Detection of high harmonic components

Since WT inherits the issue of high harmonics resulting from nonlinearity and provides

time-dependent phase information, it enables the detection of relationships between

oscillations and the identification of harmonics in any mode of the signal [120]. The

method introduced by Sheppard et al. [120] allows for the differentiation between

genuine modes and harmonics of non-sinusoidal oscillations. This approach utilizes the

mutual information between harmonics that exhibit the same dynamics and involves

surrogate testing.
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3.6.8 Couplings

3.6.8.1 Bispectral analysis

The bispectral analysis is a valuable tool for detecting couplings between different

oscillatory modes within a time series, such as those observed in the wheel-running

activity of mice. In this study, we employ autobispectral analysis to explore the

potential phase couplings between modes in the time series data. The focus is on

determining whether two different oscillatory modes are phase-locked, which implies

a dynamic relationship between them, contributing to the overall rhythmic behaviour

[121, 122].

The method used is the wavelet bispectrum, denoted as Bw(s1, s2), which measures

the extent of phase coupling between oscillations at scales s1 and s2 over time.

Mathematically, this is expressed as:

Bw(s1, s2) =

∫
T

WT (s1, τ)W
∗
T (s2, τ)WT (s1 + s2, τ) dτ, (3.20)

where WT (s, τ) represents the wavelet transform of the signal at scale s and time τ ,

and W ∗
T is its complex conjugate. The integration is performed over a time interval T ,

where the scales s1 and s2 satisfy the condition:

1

s1
+

1

s2
=

1

s
. (3.21)

This formula enables us to quantify how much coupling is present between two

oscillatory modes at different scales over a certain time period.

In addition to the bispectral analysis, surrogate analysis is employed to verify the

significance of the results. Surrogate data are generated to test whether the observed

couplings are statistically significant or could occur by chance, ensuring the robustness
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of the phase coupling measurements.

3.6.8.2 Dynamical Bayesian Inference (DBI)

Estimating the relationship that exists between the two components and the manner

in which they are connected can be done using method called Dynamical Bayesian

Inference (DBI) [123]. Within a system, the frequencies and amplitudes of specific

oscillators are able to shift throughout the course of time. Then, the ways in which

they interact with various other components might likewise change over time. In point

of fact, dynamical Bayesian inference (DBI) identifies the couplings between oscillators

as functions of time; thus, this method can be utilised to comprehend the real nature

of what is beneath a system [123, 124, 125].

It is based on Bayes’ theorem, which uses knowledge of the evolution of the system

to forecast the future condition of the system. DBI is able to determine the model of

the dynamical system for a given pair of oscillators by analysing the coupling functions

between them. These functions are responsible for the interaction that occurs between

two oscillators [126]. As an approximation, differential equations can be written as

follows, with the joint phase dynamics decoupled (unidirectionally) from the overall

dynamics. This works well when the coupling is weak.

 ϕ̇1(t) = q1 (t, ϕ
1(t), ϕ2(t))

ϕ̇2(t) = q2 (t, ϕ
1(t), ϕ2(t))

, (3.22)

where ϕ1, ϕ2 are instantaneous phases of a given oscillatory mode, as defined by ridge

extraction [118], q1 is the coupling function from ϕ1 to ϕ2, and q2 is the coupling function

from ϕ2 to ϕ1. This method enables the detection of bidirectional coupling functions,q1,

q2, which tell us how the phase of one oscillator influences the phase of another, also

known as phase coupling, as defined in [123, 126].

Due it is assumed that the oscillator frequencies vary slowly, the coupling function

is assumed to also vary slowly over time. This is due of the assumption that the
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oscillator frequencies vary slowly. Therefore, the time-independent estimates of the

coupling strength, denoted by qtni (ϕ1, ϕ2), are computed during designated time periods.

To compute the coupling strength within each time window, it is necessary to first

determine if the phase of one component is influenced by the phase of the other

component or vice versa. In order to obtain precise findings,the size of the window is

chosen so that it encompasses at least 10 cycles of the lowest frequency of interest. This

is to ensure we have sufficient information for accurate determination of the dynamics of

each window (cite toturial). The approximating coupling functions qtni can be selected

to lie inside the span of some finite number of Fourier basis functions. The equation

that describes qtni for all pairs of phases (ϕ1, ϕ2) at a time tn is provided by

q
(
ϕ1, ϕ2

)
= a0 +

(
K∑
j=1

bj cos
(
jϕ2
)
+ cj sin

(
jϕ2
))

+

(
K∑
i=1

K∑
j=−K

dij cos
(
iϕ1 + jϕ2

)
+ eij sin

(
iϕ1 + jϕ2

))
,

(3.23)

for the values of the parameters a0, bj, cj,dij and eij. Within each window, a statistical

inference procedure is used to determine the coupling function between signals with

phases (ϕi(t), ϕj(t)) in accordance with Bayes’ theorem [127]. When determining the

interaction between two oscillators, there are a total of (2K+1)2 degrees of freedom for

each of the two functions (ϕi(t), ϕj(t)) when using a certain K-value, which is referred

to as the Fourier order. This K is selected as a second-order Fourier coefficient, and it is

used to define the number of degrees of freedom. The set of K prevents the introduction

of an excessive number of degrees of freedom, which can cause overfitting and lead to

inaccurate predictions. Following the computation of the result in a particular time

window, the propagation constant p ≥ 0 will decide the extent to which the result

will impact the calculation of the window that comes after it. When the value of p is

increased, it indicates that the result has a greater bearing on the computation that

takes place in the following window. Having a value of p that is excessively high for
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coupling functions that fluctuate over the course of time can restrict the accuracy of

the results.

The strength of the coupling that exists between one signal and another is measured

across each time interval as

ϵ21 = ∥q1 (ϕ1, ϕ2)∥

ϵ12 = ∥q2 (ϕ1, ϕ2)∥
(3.24)

Where q1(ϕ1, ϕ2) and q2(ϕ1, ϕ2) are the coupling functions. Each of these values ϵj→i is

simply equal to the Euclidean norm of the (2K + 1)2-dimensional vector of coefficients

in the Fourier expression for qtni . Eqs. (3.24) are rewritten

ϵj→i :=

(∫ 1

0

∫ 1

0

[
qtni (ϕ1, ϕ2)− a

(i)
0

]2) 1
2

, (3.25)

where a
(i)
0 defines the constant term in the Fourier expression for qtni . In point of fact,

the angular velocity of the phase oscillator i at time t ought to be constant if it is not

being influenced in any way by an additional oscillator j. Through the utilisation of

the surrogates approach, the importance of the coupling strength ϵ2→1 from ϕ2 to ϕ1

is investigated. For the purpose of determining whether or not the apparent coupling

between two oscillators is statistically significant, surrogates are utilised.

DBI offers a framework that is more adaptable and may be used to estimate the

coupling between nonlinear and nonstationary signals. In this method the underlying

dynamics of the signals are modelled as a probabilistic process. Bayesian inference is

then used to estimate the parameters that explain the coupling between the signals.

Moreover,DBI is a more reliable method for estimating the coupling between signals in

noisy and complicated systems since it can also use prior knowledge about the system

and can incorporate uncertainty in the measurements. This makes DBI a more desirable

method, see figure 4.20.
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3.7 Statistical tests

The reason we have applied non parametric tests is due the non Gaussian nature of the

distribution in the data as we later show in figure 4.4.

3.7.1 Wilcoxon signed-rank and sum-rank tests

The use of wavelet transform and windowed Fourier transform techniques allows for

the determination of time-averaged power in signal analysis, which holds greater

physical significance compared to frequency spectra obtained via the standard Fourier

transform, particularly for data stemming from nonautonomous dynamical systems.

These systems, characterized by their time-dependent behavior, require analytical

methods that can account for the temporal variations in their signal power. By

employing these advanced transforms, researchers can capture the dynamic changes over

time, providing a more accurate representation of the system’s behavior [128, 129, 130].

This enhanced analytical capability is especially valuable when conducting statistical

hypothesis testing. The time-averaged power serves as a robust metric for such tests,

offering a solid foundation for the application of non-parametric tests like the Wilcoxon

signed-rank test, which is used for paired samples to assess the differences between

matched pairs. Similarly, when dealing with two independent samples, the rank-sum

test (also known as the Mann-Whitney U test) can be applied. These tests do not

assume a normal distribution of the data, making them more versatile for a range of

data types and particularly suitable for the non-linear and non-stationary data typically

observed in nonautonomous systems. When we obtain bivariate data, specifically (x(t),

y(t)), from an identical population P and both data sets are measured in the same

units, such as millivolts, it becomes possible to compare the spectra derived from these

measurements. Let’s consider that we aim to evaluate the null hypothesis, which states

that, at each frequency value, the median of the signed differences between the spectral

values from the two data sets is zero.
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Furthermore, if we assume that the distribution of the signed differences is

symmetrical around a certain value, then the Wilcoxon signed-rank test is an

appropriate method to use for this hypothesis testing (sum of the ranks of the paired

differences). In the context of the thesis, the Wilcoxon signed-rank test was employed,

requiring that both datasets under comparison have an identical number of samples,

equivalent length, and the same sampling frequency. For the results of this test to be

deemed statistically significant, a p-value threshold of less than 0.05 was established.

The significance threshold of p=0.05 is a benchmark that is widely accepted in statistical

testing. This indicates that there is a probability of less than 5% that the observed

differences occurred by chance. This threshold ensures the accuracy of the findings by

reducing the possibility of making Type I errors, which occur when the absence of an

effect is wrongly interpreted as evidence against the null hypothesis [128, 129, 130].

For instances where the datasets being compared originate from two distinct

populations, the null hypothesis posited for testing stipulates that the median time-

averaged power at a given frequency f for the initial population is identical to that of

the second population. Under these circumstances, the appropriate statistical test to

utilize is the rank sum test. In such analyses, it is not a requirement for the datasets

to share an equal number of samples. The criterion for statistical significance in this

scenario is once again established as a p-value of less than 0.05 [128, 129, 131]..

3.7.2 Surrogates

Surrogates can be characterised as synthetic indicators that are employed to examine

the potential presence of a specific characteristic within systems. The individuals in

question exhibit patterns of behaviour similar to those observed within the system being

examined, although they do not possess ownership rights over the property subject

to inquiry. There exist a multitude of surrogates that can be employed for diverse

applications [132]. The primary signal from any given system, referred to as the ”real”
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signal, is treated in an identical manner to its surrogate signals. Upon implementing

the selected methodology on the initial signal as well as the surrogate set, a comparison

is made between the outcomes derived from the original data and the distribution

of results produced from the surrogates. If there is a statistically significant difference

between the original data and the surrogate set, at a certain confidence level determined

by the chosen statistical threshold, it can be inferred that the original system possesses

the specific attribute of interest. However, if the test lacks adequate strength, then the

system cannot be considered as possessing such a quality. Surrogates are employed as

a means to assess the statistical significance of findings derived from the examination

of wavelet phase coherence and dynamical Bayesian inference. In dynamical Bayesian

inference, the surrogates approach is employed to assess the statistical significance of

the estimated connection between two oscillators. The surrogates test offers a means

to assess the relative magnitude of the coupling strength. The surrogate test employed

for dynamical Bayesian inference involves the utilisation of cyclic phase permutation

(CPP). The signals will oscillate within the range of 0 and 2π. The signal is partitioned

into full cycles, which are randomly rearranged, while the partial cycles at the start

and finish stay unchanged.

Surrogates are employed in order to evaluate a null hypothesis at a predetermined

level of significance α, where α is a significance level that falls within the interval (0, 1).

To conduct a one-sided test, it is recommended to generate 1/(1 − α) − 1 surrogates.

Similarly, for a two-sided test, it is advisable to generate 2/(1−α)− 1 surrogates. The

null hypothesis can be rejected when there is a significant deviation between the value

of the statistic obtained from the data being analysed and the distribution of values

derived from the surrogate data. Alternatively, it is possible that the outcome may not

occur as indicated by previous research [133]. In order to enhance the discriminatory

capacity, it is vital to augment the quantity of surrogates.

In this thesis, for the bispectral analysis, 19 iterative amplitude adjusted Fourier

transform (IAAFT) surrogates were used. This approach involves adjusting the

75



amplitude of the Fourier-transformed data to create surrogates that maintain the

original amplitude distribution while randomizing the phase information. This allows

for the evaluation of non-linear interactions and dependencies in the data. For

DBI analysis, 19 cyclic phase permutation surrogates were generated. This method

randomizes the phase behavior of the original time series data while preserving the

overall structure and distribution of the data.
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4. Results

This chapter presents the analysis and findings derived from the data collection

methods and protocols detailed in Chapter 3. Initially, we will discuss the specific

frequency bands of interest and the implementation of the ridge extraction technique

to analyze them. Following this, we provide evidence of the circadian rhythm

presence, highlighting the variations observed in the rhythm when methamphetamine

is administered versus when it is not. Additionally, we explore and present the

harmonic relationships and coupling dynamics that occur in both scenarios: with

methamphetamine and without it.

4.1 Study 1: Behavioural rhythm across multiple

conditions

4.1.1 Frequency bands

In this thesis, the time series are wavelet-transformed in order to recover the oscillatory

components across time. This transformation takes place in the time-frequency domain.

Because of its higher resolution, the lognormal wavelet is the preferred type of wavelet

to use. The signal is processed using a wavelet transform, where each portion of

the signal that overlaps with the wavelet is converted into the frequency domain.

Adjustments are made to the wavelet as it moves across the signal to capture both

time and frequency information. According to the findings of this investigation, the
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value of the fr parameter that offered the best possible trade-off was 1.8. In order to

ensure that ridges are extracted for the entirety of the recording process, zero padding

was added to the entirety of the time-frequency representation for all mice.

It was discovered by applying the wavelet transform to the data that the Per1/2/3

triple knockout mice, when subjected to a range of different conditions, demonstrated

how methamphetamine has enhanced the rhythm after being administered to the mice.

This was the case after the mice were given the drug. The exact identical time-frequency

representation was obtained for each of the mice, even though they were all examined

using the same technique, figure 4.1 illustrates one mouse which is number 4. Violin

plots for the various periods of each oscillation are shown in the figure 4.4 illustrates

the violin plots which have been created to display the range of oscillation periods as

presented in the table 4.2, for all of the mice (1-8). These plots were generated based

on frequency ridges obtained through the process of ridge extraction. The use of violin

plots provides a visual summary that not only shows the distribution of these periods

across the sample of mice but also highlights the probability density of the data at

different values, offering a more nuanced understanding of the oscillatory behavior in

the study.

In order to extract ridges, the boundaries that are chosen must contain the full

oscillatory component under investigation and no other components. These boundaries

are represented by dashed lines. Figure 4.3 gives an example of the chosen boundaries

for ridge extraction. The ridges for each oscillation in each mouse are shown in the

Appendix. The time sequence of maximum amplitude peaks in time-frequency space

within the defined frequency interval is what gives rise to ridge curves. The values

that are displayed in table 4.1 were obtained by calculating the average frequency value

of the ridges, which were taken from the time-frequency representation through the

process of ridge extraction.
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Figure 4.1: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 4. The vertical black lines indicate the start/end of a

given condition, ( as all of the abbreviation described in chapter 2), where the horizontal

dashed black lines indicate the frequency band of interest.

Figure 4.2: Identification the band of interest and their associated values.
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Figure 4.3: The method for extracting ridges from a time-frequency representation,

and the extracted ridges. The wavelet transform is performed on the behavioral data

of mouse 4.

1 2 3 4 5
Mouse 1 37.0 ± 5.0 18.6 ± 2.0 10.7 ± 1.3 3.3 ± 0.5 1.5 ± 0.9
Mouse 2 35.0 ± 5.0 18.3 ± 2.5 9.6 ± 1.6 3.3 ± 0.4 1.5 ± 0.7
Mouse 3 34.2 ± 4.0 20.1 ± 3.0 10.3 ± 1.3 3.2 ± 0.4 1.4 ± 0.5
Mouse 4 32.7 ± 2.8 17.9 ± 2.1 5.9 ± 6.0 3.3 ± 0.6 1.5 ± 0.6
Mouse 5 35.2 ± 3.4 20.1 ± 2.6 7.3 ± 1.2 3.2 ± 0.3 1.5 ± 0.4
Mouse 6 40.2 ± 3.9 18.7 ± 3.2 7.8 ± 9.0 3.3 ± 0.4 1.4 ± 0.3
Mouse 7 35.0 ± 4.3 18.4 ± 3.5 9.0 ± 1.6 3.3 ± 0.5 1.5 ± 0.8
Mouse 8 34.5 ± 4.1 19.1 ± 2.5 9.5 ± 1.8 3.3 ± 0.4 1.4 ± 0.3
Mean 35.5 ± 1.3 18.8 ± 6.2 8.7 ± 3.8 3.3 ± 0.2 1.5 ± 2.1
Median 35.0 ± 1.3 18.3 ± 6.2 8.7 ± 3.8 3.3 ± 0.3 1.5 ± 2.1

Table 4.1: The oscillatory components were located by first determining the mean

frequency value of the ridges, followed by calculating the standard deviation of those

values. This was done by extracting the ridges from the time-frequency representation

using the ridge extraction method.
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Figure 4.4: Violin plots representing oscillation periods (1-6) for all mice (numbered 1-

8) were derived using frequency ridges from ridge extraction. The significant variability

in oscillation 3 could be due to genetic, environmental, or experimental factors.
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4.1.2 Circadian rhythms can persist even when clock genes

are knocked out

The wavelet transform analysis conducted on the behavioral data has yielded a

noteworthy finding— the 24-hour circadian rhythm persists even in the absence of

the clock gene. This intriguing revelation emerged during a meticulous examination of

the data using the wavelet transform, providing valuable insights into the robust nature

of circadian regulation within the system.

Figure 4.5: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 4. The red circle indicates the circadian rhythm. The

vertical black lines indicate the start/end of a given condition, ( as all of the abbreviation

described in chapter 2), where the horizontal dashed black lines indicate the frequency

band of interest. The wavelet transform is applied using the lognormal wavelet and a

frequency resolution parameter of 1.8.

Figure 4.5 illustrates the time-frequency representation of mouse 4’s behavioral data,

offering a visual representation of the observed phenomenon. The conspicuous red circle
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within the plot distinctly marks the presence of a rhythm in the LD condition. This clear

and identifiable rhythm showcases the resilience of the circadian cycle, emphasizing its

sustained regularity despite the absence of the clock gene. Given the intrinsic nature

of this circadian phenomenon, there is a compelling interest in delving deeper into its

dynamics. To further unravel the intricacies of this persistent circadian rhythm, we are

motivated to extend our investigation by analyzing additional datasets characterized

by long-term recordings under similar conditions.

4.1.3 Group average power across all conditions

We now present the average power across a period spectrum under three different

conditions over six days of recording which are LD, DD, and MADD as it is illustrated in

figure 4.6. The peaks in the figure indicate periods where there is a high average power,

which suggests that under these conditions, the subjects show a significant amount of

activity or expression with a specific rhythm. For instance, under LD conditions, there

are peaks corresponding to the circadian rhythm (around 24 hours), while under DD

conditions, these rhythms might free-run with a slightly different period due to the

absence of light cues.

The DDMA condition provides critical insights into the impact of methamphetamine

on biological rhythms. Methamphetamine is a potent central nervous system stimulant

that can profoundly disrupt normal biological and circadian rhythms. We observe that

the DDMA condition exhibits a distinctive pattern in comparison to the LD and DD

conditions. Specifically, the shape and position of the peaks in the power spectrum

are notably different. The peaks represent periods where there is a heightened average

power, indicating more intense or frequent activity in the biological variable being

measured.
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Figure 4.6: Average power across a period spectrum under three different conditions

over six days of recording. The x-axis shows the period in hours, on a logarithmic scale.

4.1.4 The system retains the memory following the MA

administration

When performing a wavelet transform analysis of behavioral data influenced by MA, as

shown in Figure 4.1. Moreover, Figure 4.7 presents a comparative analysis of the average

power in DD conditions, measured before (DD1) and after (DD2) the administration

of MA to mice. This comparison is designed to illustrate the effects of MA on the

biological rhythms or activities being studied.It becomes apparent that the system

retains a form of ’memory’ after the cessation of the drug’s effects. This observation is

made clearer in this figure. Before MA administration, the DD condition serves as a

baseline, representing the natural rhythms of the mice in the absence of light cues and

the drug. The system’s inherent tendency to revert to its original rhythmic patterns
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that were present before the introduction of methamphetamine. Despite the significant

disruption caused by the drug, which is detectable in the altered frequency and power

of the behavioral rhythms, the system shows an inclination to re-establish its baseline

state once the influence of the drug is removed.

Figure 4.7: Average power across a period spectrum under three different conditions

over six days of recording. Pink horizontal lines indicate the significant differences

between conditions with (p-value < 0.05). The shaded area in the plot represents the

variability around the average power values, typically shown as confidence intervals.

By displaying these intervals, the plot provides a visual indication of the uncertainty

or variability in the power measurements across different periods, helping to highlight

where significant differences might exist. The x-axis shows the period in hours, on a

logarithmic scale.

Pink horizontal lines indicate the significant differences between conditions with

(p-value < 0.05). The shaded area in the plot represents the variability around the

average power values, typically shown as confidence intervals. By displaying these
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intervals, the plot provides a visual indication of the uncertainty or variability in the

power measurements across different periods, helping to highlight where significant

differences might exist.

4.1.5 Hyperactivity following methamphetamine administra-

tion

As we compute the total power across all six conditions, it’s important to note that we

limited the calculation to a span of 6 days for each of these conditions. This decision

aligns with the duration of the LD condition, which also spans 6 days, influencing our

choice of the 6-day limit for analysis. The influence of methamphetamine administration

is prominently evident upon examining these mice, as depicted in Figure 4.8. The series

of violin plots within the figure encapsulates the total power across six experimental

conditions. A detailed examination reveals distinct alterations in rhythmicity following

the administration of methamphetamine to the mice, notably observed in conditions

MA & DD(1) and MA & LL. Moreover, the figure shows that there is a significant

difference between DD(1) and MADD(1), but not between DD(2) and MADD(1), which

can be attributed to the system’s memory, as discussed in the previous subsection.
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Figure 4.8: Violin plot for the total power in the 6 conditions, evaluated over a

6 day interval. Black horizontal lines indicate the significant differences between

conditions with (p-value <0.05). After performing the Wilcoxon rank test, the lines

above the violin plots indicate which conditions were compared, and the results of

those comparisons typically show whether there was a significant difference in the

distributions of those conditions.

Administering methamphetamine to the mice restored the 24 rhythm for MA & DD

and following the administration of the methamphetamine condition, the circadian

rhythm had a significantly increased the total power in the 1/13 - 1/27 hr band,

see figure 4.9. The plots provide a visual representation of how methamphetamine

influences the intensity and regularity of the mice’s circadian rhythms. It is anticipated

that the mice’s circadian rhythms will be disrupted in both instances because of the

gene deletion.
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Figure 4.9: Violin plot for the absolute power for the frequency band ( 1/27 hours

to 1/13 hours) for all conditions and across all mice evaluated over a 6 day interval.

Black vertical lines indicate the significant differences between conditions with (p-value

<0.05). After performing the Wilcoxon rank test, the lines above the violin plots

indicate which conditions were compared, and the results of those comparisons typically

show whether there was a significant difference in the distributions of those conditions.

Moreover, the figure 4.10 provides representation of the total power within the

frequency band spanning from 1/27 to 1/60 hours. A notable observation is the

clear emergence of a new rhythm following the initiation of methamphetamine

administration.. This visual depiction enhances our understanding of the impact of

methamphetamine on the rhythmic patterns within the specified frequency range.

However, since this study was conducted over a period of only six days, there wasn’t

sufficient time to comprehensively assess the effects of a rhythm falling between the 27

and 60-hour period. Therefore, we conducted an additional studies (2 and 3) with a

longer recording period to obtain more comprehensive insights.
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Figure 4.10: Violin plot for the absolute power for the frequency band ( 1/60 hours

to 1/27 hours) for all conditions and across all mice evaluated over a 6 day interval.

Black horizontal lines indicate the significant differences between conditions with (p-

value <0.05). After performing the Wilcoxon rank test, the lines above the violin plots

indicate which conditions were compared, and the results of those comparisons typically

show whether there was a significant difference in the distributions of those conditions.

4.2 Study 2: Comparing wild type and per knock-

out mice under identical condition

In this section we are comparing between wild mice and knocked out mice in the same

condition (DD). We have performed wavelet transform for both wild-type mice which

is illustrated in figure 4.11. These mice have intact Per genes, which contribute to

the regulation of the circadian clock. The wavelet transform of their activity under

constant darkness conditions usually shows a stable and consistent rhythm, aligned

with the expected 24-hour circadian cycle. This stability implies that the internal
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clock is functioning normally, driving regular patterns of behavior and physiology even

without external light cues to synchronize it.

Per gene knockout mice which is illustrated in figure 4.12, the absence of one or

more Per genes results in a marked disruption of the circadian rhythm. The wavelet

transform in this case often reveals that the rhythm is not only inconsistent but may also

lack the 24-hour periodicity typically observed in wild-type mice. The irregularity can

manifest as a rhythm with a shorter or longer period, or as a complete fragmentation

where no clear periodic pattern can be discerned. While circadian rhythms can emerge

in the absence of Per genes, these genes are essential for ensuring the stability, precision,

and adaptability of the circadian system, as well as for mitigating potential health risks

associated with disrupted rhythms.

Figure 4.11: Time-frequency representation obtained via the wavelet transform of

behavioural data from a wild mouse in constant darkness over 32 days (study 4). The

wavelet transform is applied using the lognormal wavelet and a frequency resolution

parameter of 1.8.
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Figure 4.12: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 1 in constant darkness over 45 days. The wavelet

transform is applied using the lognormal wavelet and a frequency resolution parameter

of 1.8.

4.3 Study 3: Evaluating the effect of MA adminis-

tration utilising longer recording

As previously mentioned in Study 1, the timeframe was insufficient to thoroughly

evaluate the effects of a rhythm falling within the period when the MA was

administered. We analyzed data both with the administration of MA, as illustrated

in figure 4.14, and without its effect as illustrated in figure 4.13. Time-average

power calculations were performed for specifically focusing on the DD condition. We

selected and processed data from a total of 65 days to compute the overall power

for this condition. There are noticeable peaks for both groups, with the red line

(Meth group) showing higher peaks than the blue line (No Meth group), suggesting
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stronger or more pronounced oscillatory activity at those periods. The group treated

with methamphetamine generally exhibits higher average power across several periods,

which could indicate that methamphetamine affects the intensity and regularity of the

oscillatory behaviors being measured.

Figure 4.13: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 1 (NOMA). The vertical black line indicates the start/end

of a given condition, where the horizontal dashed black lines indicate the frequency

band of interest. The wavelet transform is applied using the lognormal wavelet and a

frequency resolution parameter of 1.8.
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Figure 4.14: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 1(with MA). The vertical black line indicates the start/end

of a given condition, where the horizontal dashed black lines indicate the frequency

band of interest. The wavelet transform is applied using the lognormal wavelet and a

frequency resolution parameter of 1.8.

It is obvious that in the absence of methamphetamine, the circadian rhythm

is attenuated but still recognisable; on the other hand, once methamphetamine is

administered, the circadian rhythm becomes quite prominent. In addition, MA has

significantly enhanced the emergence of a new rhythm, with a pronounced effect

observed around the 40 hour This is a period of time in which the signals are largely

unpredictable when there is no exposure to methamphetamine 4.15.
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Figure 4.15: Group average power across 65 days of recording for two groups of mice

in DD condition. One group have been administered MA, indicated by the red line, and

the other group have not received methamphetamine (No MA), shown by the blue line.

The pink horizontal lines indicate periods where significant differences were observed

between the two groups with (p-value <0.05). while the shading indicated the 25th/

75th percentile.
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4.3.1 High harmonics components

By applying the harmonic finder algorithm to both methamphetamine-treated and

untreated mice in constant darkness, the algorithm effectively identifies the oscillatory

components that make up the harmonic connections. This approach helps to reveal the

underlying rhythmic patterns in both conditions. This analysis encompasses a complete

range of frequencies, thoroughly encompassing all relevant oscillatory components,

specifically oscillations 1, 2, 3, 4, and 5. This method allows for a clear comparison

of the impact of methamphetamine on the harmonic structures in these oscillatory

elements.

Figure 4.16 displays a representative MA-treated mouse, while Figure 4.17 illustrates

a MA-untreated mouse (additional harmonic results for other mice are presented

in the Appendix). The dashed lines in the figure trace the frequency limits for

each detected oscillation (labeled as oscillation 1 through 5) in the time-frequency

analysis. All potential oscillation pairings have been examined, with the dashed outlines

superimposed on the harmonic findings. When the overlap of combinations occurs in

regions with higher values, it indicates an increased likelihood of a harmonic connection

between the paired oscillations.

For all mice which treated with MA, there appears to be minimal or possibly

no discernible evidence indicating harmonic relationships. This implies that in the

spectral analysis of the data from the MA-treated group, the expected phase coupling

or frequency correlations that typically signify harmonic interactions were either absent

or too slight to be reliably identified. Additionally, the analysis shows no evidence of the

low-frequency band being in a harmonic relationship with any of the higher-frequency

bands.. This implies that the low-frequency oscillations observed in the MA group are

likely functioning as an independent mode of activity. The group not exposed to MA

exhibits clear signs of harmonic interaction, indicating a likely harmonic connection

between approximately 7 and 3.5 hours in most of the mice. This indicates that, within
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the spectral analysis of this control group, there is a detectable phase coupling or

frequency correlation within these time frames. Such harmonic relations are typically

indicative of regular, stable oscillatory activity, which in this case, were maintained or

undisturbed in the absence of methamphetamine treatment.
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Figure 4.16: The detected harmonics within the behavioral data of mouse 1 under

effectiveness of MA. The plot is a frequency-frequency representation showing what

oscillations are in harmonic relationships. The image is symmetric over the diagonal;

therefore, only half of the figure is considered. All the different combinations of

frequencies are investigated, and the dashed lines are plotted over the harmonic results.

The color code shows a dimensionless quantity obtained from the actual value, minus the

mean of the surrogate distribution, divided by the standard deviation of the surrogate

distribution. Negative values correspond to results with values lower than the surrogate

mean; therefore, significant results are those above 0. For oscillation combinations which

overlap with higher valued areas, the two frequencies are more likely in a harmonic

relationship.
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Figure 4.17: The detected harmonics within the behavioral data of mouse 1 with

no effectiveness of MA. The plot is a frequency-frequency representation showing what

oscillations are in harmonic relationships. The image is symmetric over the diagonal;

therefore, only half of the figure is considered. All the different combinations of

frequencies are investigated, and the dashed lines are plotted over the harmonic results.

The color code shows a dimensionless quantity obtained from the actual value, minus the

mean of the surrogate distribution, divided by the standard deviation of the surrogate

distribution. Negative values correspond to results with values lower than the surrogate

mean; therefore, significant results are those above 0. For oscillation combinations which

overlap with higher valued areas, the two frequencies are more likely in a harmonic

relationship.
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4.3.2 Bispectral analysis and coupling

Bispectral analysis has been employed for both groups of mice, those treated with

methamphetamine and those left untreated, under conditions of constant darkness.

This analytical approach enables the differentiation between harmonic and non-

harmonic components within the biological signals of the mice. To calculate the

biamplitude value, which is the modulus of the time-averaged instantaneous wavelet

bispectrum, at each point in frequency-frequency space, a process is followed that

includes the application of a statistical significance test. This test is used to identify

points in the frequency-frequency space where the biamplitude value is deemed

”significant.” In more detail, at each specific point within this space, the process involves

subtracting a critical threshold from the wavelet biamplitude value. This critical

threshold is determined at a 95% significance level and is derived from the bispectra

of the iterative amplitude adjusted Fourier transform (IAAFT2) surrogates. The

wavelet bispectra are calculated using a lognormal wavelet with frequency resolution

1.8. Through this method, significant biamplitude values are effectively isolated and

identified across the frequency-frequency space. Therefore, in these bispectra plots, the

strictly positive values (i.e., those that are not grey) indicate the regions where the

bispectrum value is deemed ”significant.” This means that the non-grey areas represent

points in the bispectra where the calculated values exceed the threshold of significance.

In the study involving mice treated with methamphetamine, as referenced in

the figure 4.18, there are indications of a possible interaction between the circadian

frequencies, which usually function on an approximate 24-hour cycle, and the high-

frequency bands that oscillate at a more rapid pace. This finding is significant as it

suggests that methamphetamine treatment may influence or alter the normal coupling

patterns in the circadian system of the mice.

In contrast, for the control group of mice that did not receive methamphetamine

4.19, a different pattern of coupling is observed. The coupling in this group appears to
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occur between the 7-hour mode, which is a shorter cycle compared to the circadian

rhythm, and the high-frequency oscillations. This contrast in coupling patterns

between the methamphetamine-treated group and the control group highlights the

potential impact of methamphetamine on the synchronization and interaction of

different frequency bands within the circadian system.

The bispectral analysis presented utilizes a time-averaged method to emphasize

potential couplings within the data. To delve deeper into the characteristics of these

couplings, such as their directionality, strength, and duration, dynamic Bayesian

inference (DBI) methods were employed. For each individual mouse, under both

conditions—with and without MA, DBI was applied to every possible pairing of

oscillations (labeled as oscillation 1, 2, 3,4 and 5), which were identified from the time-

frequency data through ridge extraction. Through DBI, the coupling strength between

pairs of oscillations was quantified over time, and this was done for both possible

directions of coupling. In alignment with the bispectral analysis, for mice administered

with MA, the coupling from circadian oscillation to high frequency oscillation emerged

as the most substantial and enduring over time. Conversely, in the absence of MA, the

coupling from ultradian oscillation to high frequency oscillation proved to be the most

consistent over time, thus supporting the findings of the bispectral analysis. Although

at a cursory look the coupling from oscillation 2 to oscillation 5 appears to be the

strongest, it is important to note that this prominence is observed only for a relatively

brief period within the overall time frame of the analysis.
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Figure 4.18: Wavelet bispectra of behavioural data from mouse 1 with MA, which

illustrate the wavelet biamplitude associated with each point in frequency-frequency

space. This representation is achieved after subtracting the 95% significance critical

threshold, as determined by a surrogate test. This test involves 19 numerically

generated IAAFT2 surrogate signals. The calculation of the wavelet bispectra is

performed using a lognormal wavelet, characterized by a frequency resolution of 1.8.
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Figure 4.19: Wavelet bispectra of behavioural data from mouse 3 with no MA,

which illustrate the wavelet biamplitude associated with each point in frequency-

frequency space. This representation is achieved after subtracting the 95% significance

critical threshold, as determined by a surrogate test. This test involves 19 numerically

generated IAAFT2 surrogate signals. The calculation of the wavelet bispectra is

performed using a lognormal wavelet, characterized by a frequency resolution of 1.8.
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Figure 4.20: (a,c) Group median values for the percentage of time the coupling results

between oscillations within murine behavioral data from all mice with MA (a) and

without MA in (c) is above the surrogate threshold, as a heatmap (color scale from

0 to 100). (b,d) Group median values for coupling strength (×10−4) within murine

behavioral data from all mice with MA (b) and without MA in (d) when the coupling

results are above the surrogate threshold, as a heatmap (color scale from 0 to 161).
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5. Model

Coupled phase oscillators were employed to represent the oscillatory modes and their

interactions as observed in the behavioral data. This approach allows for the creation of

a baseline with known parameters, which serves as a reference point for evaluating and

validating the outcomes of the experimental investigation. By establishing this ground

truth, it can better understand the accuracy and reliability of experimental findings, as

well as refine modeling techniques for future studies [134].

For the Per1/2/3 mice model, whether subjected to methamphetamine or not, the

structure included three principal oscillators: a high-frequency one, another oscillating

around seven hours, and a third oscillator approximating a circadian rhythm. To align

with the real data, the model used a 1-minute time step over a 65-day time series. The

coupling parameters were selected to accurately represent the observed dynamics. The

equations defining the coupled phases for the Per1/2/3 KO DD mice are as follows

[134].

ϕ̇1 = ω1

ϕ̇2 = ω2,

ϕ̇3 = ω3 + E1 cos (ϕ1 + π/2.5) + E2 cos (ϕ2 + π/2.5) ,

(5.1)

Where, ϕi are the phases of each oscillator, which are subsequently added together

to produce a time series,

X(t) = A1 cos(ϕ1(t)) + A2 cos(ϕ2(t)) + A3 cos(ϕ3(t)). (5.2)
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The amplitudes, A, were selected to be the best recreation of the observed power

spectra. The natural frequencies changed over time to allow us to represent the time-

variability witnessed in the experimental results,

ωi(t) = ωi0 + AiS(ωivart), (5.3)

where ωi0 is the natural frequency, S represents a square wave, Ai is the amplitude of the

frequency variation, and ωivar represents the frequency of the square wave modulation

applied to the natural frequency ωi(t).

For the wild-type mice, there seemed to be several coupled modes present, with the

circadian clearly the most dominant. As such, multiple phase oscillators were used [134]

ϕ̇1 = ω1 + E1 cos (ϕ6 + π/2.5) ,

ϕ̇2 = ω2,

ϕ̇3 = ω3 + E2 cos (ϕ2 + π/2.5) ,

ϕ̇4 = ω4 + E3 cos (ϕ3 + π/2.5) ,

ϕ̇5 = ω5 + E4 cos (ϕ4 + π/2.5) ,

ϕ̇6 = ω6 + E5 cos (ϕ4 + π/2.5) + E6 cos (ϕ1 + π/2.5) ,

(5.4)
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The parameters for each of these configurations are as follows

Parameters
Wild-

type
DD MDD

ω10 (Hz) 24 20 24

ω20 (Hz) 7.2 7.5 8

ω30 (Hz) 6 0.5 0.5

ω40 (Hz) 3 NA NA

ω50 (Hz) 1.25 NA NA

ω60 (Hz) 0.75 NA NA

ϵ1 0.1 0.05 0.2

ϵ2 0.1 0.2 0.05

ϵ3 0.1 NA NA

ϵ4 0.1 NA NA

ϵ5 0.1 NA NA

ϵ6 0.1 NA NA

A1 1.5 0.8 0.85

A2 0.25 0.3 0.3

A3 0.25 0.85 0.8

A4 0.5 NA NA

A5 0.65 NA NA

A6 0.3 NA NA
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Parameters Wild-type DD MDD

ω1var (Hz) 0.0000025 0.00025 0.00025

ω2var (Hz) 0.0005 0.0003 0.0003

ω3var (Hz) 0.001 0.1 0.1

ω4var (Hz) 0.0025 NA NA

ω5var (Hz) 0.05 NA NA

ω6var (Hz) 0.015 NA NA

Amp1 0.000000000001 0.0005 0.0005

Amp2 0.00001 0.0015 0.0015

Amp3 0.0005 0.125 0.125

Amp4 0.000001 NA NA

Amp5 0.0001 NA NA

Amp6 15 NA NA

5.1 Wild-type model

The model for wild-type mice demonstrated a clear and stable circadian rhythm with

an average frequency of approximately 24 hours. This indicates that the canonical

circadian clock, regulated by the Per1/2/3, is functioning effectively in these mice.

The time-frequency representation for wild-type mice, figure 5.1(B), generated through

wavelet transforms, which shows a consistent frequency pattern over time, with minimal

fluctuations. This stability suggests that the circadian clock is resilient to external

perturbations, maintaining a regular rhythm. The time-averaged power analysis showed

a single sharp peak centered around 24 hours, reflecting the robustness of the circadian

oscillator in wild-type mice, figure 5.1(C). The ridge extraction clearly capture the

strong, consistent 24-hour period seen in the wavelet power spectrum. The ridge at 24

hours is likely the most prominent and stable feature across the entire 30-day period
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[134], figure 5.1(D).

Harmonic analysis revealed significant evidence for harmonics centered on the

circadian oscillation in wild-type mice. This means that the observed peaks in

activity were not independent modes but rather related to the primary circadian

rhythm. The presence of harmonics indicates that the oscillatory behavior is tightly

regulated and exhibits predictable patterns, which is characteristic of a well-functioning

circadian system, figure 5.1(E). In terms of coupling, the bispectral analysis shows some

weak phase couplings, primarily between circadian and higher frequency oscillations,

although no strong patterns of coupling were found due to the short recording window

for these mice, figure 5.1(F).
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Figure 5.1: Multiscale oscillatory activity in wild-type. (A) Time-series of wheel

rotations per minute. (B) Time/frequency representations. (C) Time-averaged power.

(E) Harmonic analysis demonstrates pronounced harmonics, arising from circadian

oscillations. The colourful peaks indicate the detection of these harmonics. The

diagonal line, representing the comparison of the same oscillation to itself, shows high

mutual information, while off-diagonal peaks signify the presence of harmonics, such as

those observed between 24 and 12 hours. (F) Bispectral analysis highlights couplings

between oscillatory modes at different frequencies. Similar to harmonics, contoured

peaks indicate regions of significant coupling between these modes.

5.2 Per1/2/3 knockout DD model

The Per1/2/3 KO mice show disrupted circadian rhythms, and their activity becomes
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more fragmented, with multiple lower-frequency oscillations (e.g., around 7 hours). The

absence of a strong 24-hour rhythm is evident. Wavelet analyses indicate significantly

different power distributions, with reduced circadian power and enhanced ultradian

rhythms, figure5.2(B). The ridge extraction shows a weakened or nearly absent 24-hour

ridge, indicating the disruption of the dominant circadian rhythm. The ridge for the

24-hour period may be fragmented, signifying irregular or non-continuous circadian

activity. It focuses on an 8-hour period, where a more prominent ridge is visible, figure

5.2(D).

In Per1/2/3 knockout mice, the harmonic structure is notably altered. While some

harmonics exist (particularly between oscillations at 7 and 3.5 hours), the dominant

circadian-driven harmonics (like those at 12 and 8 hours) are absent or significantly

reduced. This indicates that the loss of Per genes disrupts the hierarchical organization

of oscillations, figure 5.2(E). In terms of coupling, Bispectral analysis of KO mice

reveals strong coupling between a 7-hour oscillator and high-frequency components.

The circadian to high-frequency coupling is weak, indicating a shift in the primary

driver of activity from circadian to ultradian rhythms [134],figure 5.2(F).
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Figure 5.2: Multiscale oscillatory activity in Per1/2/3 KO DD mice. (A) Time-series

of wheel rotations per minute. (B) Time/frequency representations. (C) Time-averaged

power. (E) Harmonic analysis demonstrates pronounced harmonics, arising from

circadian oscillations. The colourful peaks indicate the detection of these harmonics.

The diagonal line, representing the comparison of the same oscillation to itself, shows

high mutual information, while off-diagonal peaks signify the presence of harmonics,

such as those observed between 24 and 12 hours. (F) Bispectral analysis highlights

couplings between oscillatory modes at different frequencies. Similar to harmonics,

contoured peaks indicate regions of significant coupling between these modes.

5.3 Per1/2/3 Knockout DD with MA model

The Per1/2/3 KO mice exposed to methamphetamine exhibit further disruptions in
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their oscillatory behavior. High-frequency oscillations become more pronounced, and

coupling between these high frequencies and ultradian rhythms is more dominant.

Power in the high-frequency range increases significantly after methamphetamine

exposure, figure 5.3(B). Time-averaged power data shows a distinct shift in activity

patterns compared to both the KO DD and wild type groups. Ridge extraction

captures chaotic high-frequency oscillations, with both circadian and ultradian rhythms

disrupted, and no clear, continuous ridges for either rhythm [134], figure 5.3(D).

In the methamphetamine-exposed knockout mice, there is a lack of consistent

harmonic relationships between oscillatory modes. The methamphetamine disrupts

the normally harmonic nature of oscillations, particularly between the circadian and

ultradian frequencies. No clear harmonic structure, such as those seen in wild

type or unexposed knockout mice, is observed, figure 5.3(E). In terms of coupling,

Bispectral analysis reveals strong phase coupling between MASCO and high-frequency

components. This shows that methamphetamine amplifies specific coupling dynamics

that are absent in the unexposed KO mice, figure 5.3(F).
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Figure 5.3: Multiscale oscillatory activity in Per1/2/3 KO DD MA mice. (A)

Time-series of wheel rotations per minute. (B) Time/frequency representations. (C)

Time-averaged power. (E) Harmonic analysis demonstrates pronounced harmonics,

arising from circadian oscillations. The colourful peaks indicate the detection of these

harmonics. The diagonal line, representing the comparison of the same oscillation to

itself, shows high mutual information, while off-diagonal peaks signify the presence of

harmonics, such as those observed between 24 and 12 hours. (F) Bispectral analysis

highlights couplings between oscillatory modes at different frequencies. Similar to

harmonics, contoured peaks indicate regions of significant coupling between these

modes.
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6. Discussion and summary

In this chapter, we delve into a detailed examination and interpretation of the

experimental outcomes as outlined in Chapter 4. Our objective is to offer a coherent and

plausible explanation for the results obtained from our data collection and subsequent

analysis. To this end, we will provide a concise summary of these findings, setting the

stage for a thorough discussion. This will include an assessment of the significance of

the results, their alignment with existing literature, and the potential implications for

the field.

We explore the outcomes derived from the application of wavelet transform to

our dataset. Notably, the per1/2/3 triple knockout mice, when exposed to a

variety of conditions, exhibited a consistent response following the administration of

methamphetamine while the rhythms in wild-type mice are more stable and consistent.

This response was observed uniformly across the cohort of mice, as evidenced by the

time-frequency representations that were generated. Each mouse being evaluated using

the same wavelet transform technique, the results were remarkably similar, indicating

a robust effect of the drug on the circadian regulatory mechanisms of these genetically

modified organisms. This finding prompts a deeper inquiry into the influence of

methamphetamine on the circadian system, particularly in the absence of the per1/2/3

genes, which are traditionally associated with the regulation of these rhythms. The

uniformity in response across the experimental subjects underscores the potential utility

of wavelet transform as a reliable method for capturing drug effects in chronobiological

studies.
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6.1 Does circadian rhythm persist when clock

genes are knocked out?

We delve into the intriguing findings from the wavelet transform analysis of the

behavioral data. Remarkably, the analysis suggests that the 24-hour circadian

rhythm persists even in the absence of clock genes. This conclusion comes from

the meticulous examination of the data through wavelet transform techniques. The

time-frequency representation of Mouse 4 and mouse 1 behavioral data, as depicted

in Figure 4.5 and 4.6, allows for the clear observation of the circadian rhythm

under light-dark (LD) conditions. O’Neill et al. [135] in their study about

circadian rhythms in eukaryotes, particularly focusing on the unicellular green alga

Ostreococcus tauri, involved examining both transcriptional and non-transcriptional

mechanisms in circadian timekeeping. They have found that circadian cycles in

eukaryotes can persist under constant darkness even when transcription is inhibited,

indicating that the mechanisms underlying circadian clocks are resilient to disruptions

in cellular transcription and cytosolic translation. This finding underscores the robust

and adaptable nature of the circadian system, capable of maintaining its rhythmic

periodicity even in scenarios where key genetic elements, typically involved in rhythm

generation, are impaired or inactive. This research highlights the intricate and resilient

design of circadian systems, capable of sustaining essential biological rhythms against

a backdrop of genetic alterations. However, circadian rhythms can persist in Per1/2/3

knockout mice under constant darkness, but these rhythms may be less stable and

exhibit different characteristics compared to those in wild-type mice.
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6.2 Does methamphetamine administration cause

a disruption in the rhythm of the mice?

The tests conducted on the impact of methamphetamine on the circadian rhythms of

mice offered valuable new insights into how this substance can affect biological rhythms..

Methamphetamine, a potent psychostimulant, has been shown to significantly alter

circadian patterns, as evident in the altered activity and sleep cycles observed in

the test subjects. Upon detailed examination, the impact of methamphetamine

administration on the rhythmicity in mice is evident, particularly in the conditions

of methamphetamine under dark-dark (MA & DD(1)) and methamphetamine under

light-light (MA & LL) cycles. The figure 4.8 effectively illustrates the total power

within the frequency band that spans from 60 to 27 hours. Notably, there is

a discernible deceleration of the rhythm post the initiation of methamphetamine

treatment, highlighting the drug’s influence in altering the circadian patterns. This

observation highlights the profound impact of methamphetamine on the subjects’

internal biological clocks, as evidenced by the emergence of a clearly enhanced new

rhythm.

Moreover, the effects of methamphetamine on the circadian rhythms of mice, it’s

notable that administration of the drug appeared to restore the 24-hour rhythm in

the MA & DD conditions. Following methamphetamine administration, there was a

significant increase in the total power within the 27 - 13 hour frequency band, as shown

in figure 4.9. This suggests that methamphetamine not only alters the circadian rhythm

but can also intensify specific frequency bands within the rhythm. These changes

underline the profound impact that substances like methamphetamine can have on the

biological clocks of organisms, potentially altering their natural rhythms in significant

ways. Logan et al. [136] have mentioned in their study that exposure to drugs of abuse

can alter circadian rhythms and lead to the exacerbation or progression of certain

symptoms related to brain disorders . For example, studies have shown that chronic
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exposure to drugs such as cocaine, methamphetamine, and alcohol can disrupt circadian

rhythms and lead to sleep disturbances and other symptoms.

Ogeil et al. [137] has been demonstrated that methamphetamine significantly

disrupts circadian rhythms. Research suggests that amphetamine-type stimulants,

particularly MA, influence various circadian-regulated functions, including body tem-

perature, appetite, mood, and alertness. These substances have been found to

affect not only the direct outputs of the circadian clock but also the fundamental

mechanisms that control its operation. Furthermore, methamphetamine is known

to directly disrupt the circadian clock by altering the regulation of core clock genes,

crucial for the establishment and preservation of circadian rhythmicity. This evidence

underscores the profound and multifaceted impact of methamphetamine on the body’s

natural time-keeping systems. Brown et al. [23] also has studied of MASCO in

rodents. It was observed that when rodents are subjected to chronic administration

of low-dose methamphetamine, a distinct behavioral rhythm associated with MASCO

emerges. Intriguingly, both the food-entrainable oscillator (FEO) and MASCO

operate independently of the canonical circadian genes that are typically involved in

timekeeping. This independence was further elucidated through experiments measuring

the phases of luminescence rhythms in ex vivo tissues, which demonstrated that both

FEO and MASCO could function effectively in a system where the SCN acts as the

conductor, and the peripheral oscillators as the musicians. These findings suggest

that the SCN, while a primary circadian pacemaker, is not the sole entity capable

of orchestrating these biological rhythms. This insight points to a more complex

and versatile circadian system than previously understood, with multiple potential

pacemakers like the FEO and MASCO contributing to the overall temporal regulation

in organisms.

Applying the harmonic finder algorithm to both methamphetamine-treated and

untreated mice in constant darkness has yielded insightful results regarding oscillatory

behavior. In the methamphetamine-treated group, figure 4.16, the algorithm did not
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detect significant harmonic relationships, suggesting an absence or minimal presence of

expected phase coupling or frequency correlations. This lack of harmonic interaction,

especially in the low-frequency band, implies that these oscillations might be functioning

independently in the MA-treated mice. Conversely, the control group, which was

not exposed to methamphetamine, figure 4.17, showed substantial signs of harmonic

interaction, particularly between the 7-hour and 3.5-hour frequencies. Morris et al. [138]

has studied about the presence of noncanonical circadian pacemakers in mice, the study

used a harmonic finder algorithm to detect high harmonics in time-varying systems

and found that the 8-hour and 4-hour rhythms, as well as the 8-hour and 20-minute

rhythms, were in a harmonic relationship. This observation in the spectral analysis

indicates a detectable phase coupling or frequency correlation, suggesting a more

structured and interconnected oscillatory activity in the untreated group. The observed

results underscore methamphetamine’s capacity to disrupt the harmonic and rhythmic

dynamics within biological systems. This disruption manifests in the alteration of

typical frequency interactions and phase couplings, indicating that methamphetamine

can significantly affect the intricate balance of oscillatory activities that are essential for

normal physiological functioning. This insight sheds light on the broader implications

of methamphetamine use, particularly in terms of its potential to disturb the natural

rhythmic patterns inherent in biological systems.

Employing bispectral analysis and DBI, offer profound insights into the impact

of methamphetamine on the circadian system of mice. The time-averaged bispectral

analysis initially highlighted potential couplings within the data, but it was the

application of DBI that brought depth to our understanding, revealing the nuances of

these couplings in terms of their directionality, strength, and duration. In MA-treated

mice, a significant coupling between specific oscillations was observed, but notably, this

coupling was prominent only for a brief period. This transient nature of the coupling

suggests that MA might induce temporary but significant alterations in the oscillatory

patterns of the circadian system. In contrast, the control group displayed a different,
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more consistent coupling pattern, indicating a probable harmonic connection in the

absence of MA. Our analysis reveals a robust and stable coupling from longer rhythms

(hours) to shorter ones (minutes). In mammalian cell biology, transcription typically

occurs over a timescale of approximately 10 minutes, as noted by Shamir et al. [139].

This suggests that Oscillation 4 might be linked to essential cellular processes governed

by the metabolic cycle. Additionally, Yamazaki et al. [140] reported 14-minute neural

activity rhythms within and outside the hamster’s suprachiasmatic nucleus (SCN) under

constant darkness. This might indicate a broader biological significance of these shorter

rhythmic patterns, possibly extending beyond the scope of circadian rhythms.

6.3 Does the system retain a memory of past

disturbances under varying conditions?

Upon applying wavelet transform analysis to behavioral data affected by metham-

phetamine figure 4.1, and then observing the system post-removal of the drug’s effect,

it became evident that the system exhibits a form of memory as it obviously clear

as it illustrated in figure 4.8. The analysis revealed a tendency for the rhythmic

patterns to attempt a return to their pre-methamphetamine state. This observation

suggests that despite the significant impact of methamphetamine on circadian rhythms,

the underlying biological system retains a memory of its original state, striving to

re-establish the prior rhythm once the influence of the drug is diminished. This

finding highlights the resilience and adaptability of the circadian system, even in

the face of substantial external disturbances like drug administration. The research

conducted by Mahoney et al. [141] suggests that the effects of methamphetamine

can vary significantly based on dosage. Specifically, they found that administering

methamphetamine in low doses acutely can enhance certain cognitive functions. In
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individuals who are dependent on methamphetamine and show baseline cognitive

impairments, such as reduced attention, slowed information processing speed, and

diminished working memory, a low dose of the drug appeared to improve these

cognitive parameters. This finding introduces a nuanced perspective on the impact

of methamphetamine, indicating that its effects are not uniformly detrimental and can

be dose-dependent.
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7. Concluding remarks

7.1 Summary

To summarise, the following constitute the primary components of this thesis:

• The background of biological rhythms, encompassing circadian, ultradian, and

infradian rhythms, has been reviewed.

• The techniques for analyzing the behavioral data are explored and discussed.

• Nonlinear dynamical systems and the techniques for investigating them using time

series data are introduced.

• Behavioral data from various mice subjected to different conditions, including

those involving the administration of MA, are examined and discussed.

The primary objective of this thesis is to explore the persistence of behavioral

rhythms in biological systems when the standard circadian timekeeping mechanisms

are inactivated and administrate the MA to the mice and see the effect of it to them

under different conditions. Modeling such systems presents significant challenges, as

oversimplifications can obscure their most fascinating features. Within these systems,

oscillators display varying frequencies, phases, amplitudes, and interactive behaviors.

To decipher these complex dynamics, the study employs sophisticated numerical

techniques. The gathered time series data, representing behavioral observations over
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time, are subjected to specialized analytical methods. These methods are specifically

designed for time-resolved analysis of multi-oscillatory dynamics, thereby capturing

the detailed and dynamic nature of biological rhythms and their interactions. The

analytical algorithms applied to biological systems take into account both the phases

and amplitudes of signals, rather than just amplitudes which are more prone to noise and

distortions. Crucially, these algorithms operate without presuming constancy in phases

or frequencies. Such a methodology enables a more precise and detailed comprehension

of the dynamic, often variable characteristics of biological oscillators. It effectively

captures the inherent real-time variability and complexity present in living systems.

7.2 Original contributions

The following summarizes the original contributions of this study:

• Time frequency representation of the data indicated the rhythms across various

conditions which is revealed that the 24-hour circadian rhythm is maintained even

without the presence of the clock gene.

• The finding that administering MA to the mice restored the 24 rhythm for

MADD(1).

• MA caused an increase in total power compared to the other conditions.

• In the final DD condition, circadian activity appears to persist even in the absence

of MA exposure.

• The harmonic analysis revealed that, in all mice not exposed to MA, there is a

harmonic relationship between 7-8 hours and 3.5-4 hours cycles.
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• The characteristic frequency of the circadian rhythm in wild-type mice is almost

constant in time, contrary to the characteristic frequency of the circadian rhythm

restored by MA, which is highly variable.

• Bispectral analysis and DBI revealed a strong coupling between circadian

oscillation and the high-frequency ultradian rhythms in behavioral data of mice

exposed to MA. In contrast, mice not exposed to MA showed a strong coupling

between ultradian oscillation and the high-frequency band.

7.3 Future work

This project is anticipated to gain from the following upcoming endeavors:

• Long-term behavioral analysis: Extending the research to look at long-

term behavioral alterations in mice. Examining whether and how the effects

of methamphetamine exposure evolve or endure over time, potentially beyond

140 days.

• Recovery and reversibility studies: Study how the mice recover and if the

effects of the drug can be reversed after stopping exposure. This might include

gradually stopping methamphetamine use and watching how the mouse’s body

functions, and how its behavior changes back.

• Behavioral conditioning and cognitive assessments: Explore the cognitive

and behavioral conditioning aspects, assessing learning, memory, and adaptation

skills in mice-models over time.
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A. Data arrangements and

approvals

In following agreement to use the data as well as ethics approval is provided as

background of this work.
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Shin Yamazaki, Ph.D.
Professor, Department of Neuroscience
Director, Neuroscience Microscopy Facility
Director, O’Donnell Brain Institute NeuroMicroscopy Core

Peter O’Donnell Jr. Brain Institute

Department of Neuroscience

5323 Harry Hines Blvd., NA4.214 / Dallas, Texas 75390-9111 / 214-648-1830 Fax 214-648-1801

shin.yamazaki@UTSouthwestern.edu

January 3, 2024

RE: collaboration agreement

In accordance with our prior correspondence via email, I hereby confirm my consent for the sharing
of data collected by my group with Mansour Alanazi, under Aneta Stefanovska's supervision. It is
understood that the outcomes derived from this collaboration are presented in Mansour Alanazi's
Ph.D. Thesis, that will be submitted to Lancaster University in January 2024. It is already agreed that
a joint journal publication by the Lancaster University and UT Southwestern team will follow.

Sincerely,

Shin Yamazaki, Ph.D.
Director of the Neuroscience Imaging Laboratory
Director of the O’Donnell Brain Institute NeuroMicroscopy Core
Professor in the Department of Neuroscience
UT Southwestern Medical Center
6000 Harry Hines Blvd.
Dallas, Texas 75390-9111
U.S.A.

Email: shin.yamazaki@utsouthwestern.edu
Phone: 214-648-1830

Figure A.1: Agreement letter
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1

Shin Yamazaki

From: Topaz
Sent: Monday, July 5, 2021 2:39 PM
To: TOPAZ1; Mathieu Keck; Shin Yamazaki; Alexandra Brown
Subject: Animal Protocol 2016-101376-G is Approved

The IACUC office is pleased to inform you that the animal protocol indicated below has been approved.

InvesƟgator: Yamazaki, Shin
  Protocol Title: Revealing the Palatable Meal-Inducible Circadian Oscillator
  Protocol Number: 2016-101376-G
  Approval Date: 7/5/2021
ExpiraƟon Date: 7/5/2024

Please note that this documents approval of animal use only.  Any proposed use of hazardous biological material or
chemicals with your animals may not commence unƟl you have obtained approval from the InsƟtuƟonal Biosafety 
CommiƩee or Chemical Safety CommiƩee and have discussed the implementaƟon of that plan with the ARC Supervisor 
in your animal use facility.  Similarly, the use of radioacƟve materials or radiaƟon-producing devices with animals must
first be authorized by the Office of Safety and Business ConƟnuity (SBC) and discussed with the ARC Supervisor in your 
animal use facility.  AddiƟonal training for study personnel and animal care staff may also be required.

Please contact the IACUC office at IACUC@UTSouthwestern.edu if you have any quesƟons.  Please do not reply directly 
to this email.

----------------------------------------------------------------------------------------------

Warning: This is a private message. If the reader of this message is not the intended recipient you are hereby noƟfied 
that any disseminaƟon, distribuƟon or copying of this informaƟon is STRICTLY PROHIBITED.

University of Texas Southwestern Medical Center IACUC Office
5323 Harry Hines Boulevard
Dallas, Texas 75390-9107
phone: 214-648-0456
fax: 214-648-2109

________________________________

UT Southwestern

Medical Center

The future of medicine, today.

Figure A.2: IACUC protocol approval email
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B. Time-frequency representation

For time-frequency representations of the behavioural data, the signals are first

detrended. Then, the wavelet transform is applied using the lognormal wavelet and

a frequency resolution parameter of 1.8. A cone of influence is not applied. Figs.

B1–B4 show the time-frequency representations of behavioural data from mice 1–6.

The y-axis is in logarithmic scale. Five oscillatory components emerge for all mice.

The wavelet power is the squared amplitude of the wavelet, and has, along with the

average power, units (wheel revolutions/min)2.
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Figure B.1: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 1 and mouse 2 from study 1. The vertical black lines

indicate the start/end of a given condition, where the horizontal dashed black lines

indicate the frequency band of interest.
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Figure B.2: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 3 and mouse 5 from study 1. The vertical black lines

indicate the start/end of a given condition,where the horizontal dashed black lines

indicate the frequency band of interest.
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Figure B.3: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 6 and mouse 7 from study 1. The vertical black lines

indicate the start/end of a given condition,where the horizontal dashed black lines

indicate the frequency band of interest.
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Figure B.4: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 8 from study 1. The vertical black lines indicate the

start/end of a given condition, where the horizontal dashed black lines indicate the

frequency band of interest.

For the extra data that we have analysed, time-frequency representations of the

behavioural data, the signals are first detrended. Then, the wavelet transform is applied

using the lognormal wavelet and a frequency resolution parameter of 1.8. A cone of

influence is not applied. Figs. (B.5- B.7) show the time-frequency representations of

behavioural data from mice 1–7 which have only two conditions where Figs. (B.8-

B.9) show the time-frequency representations of behavioural data from mice 1–7 which

have the condition of administration of MA. The y-axis is in logarithmic scale. Five

oscillatory components emerge for all mice. The wavelet power is the squared amplitude

of the wavelet, and has, along with the average power, units (wheel revolutions/min)2.
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Figure B.5: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 3 and mouse 4 from study 2. The vertical black lines

indicate the start/end of a given condition,where the horizontal dashed black lines

indicate the frequency band of interest.
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Figure B.6: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 5 and mouse 6 from study 2. The vertical black lines

indicate the start/end of a given condition,where the horizontal dashed black lines

indicate the frequency band of interest.
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Figure B.7: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 7 from study 2. The vertical black lines indicate the

start/end of a given condition,where the horizontal dashed black lines indicate the

frequency band of interest.
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Figure B.8: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 2 and mouse 3 from study 3. The vertical black lines

indicate the start/end of a given condition,where the horizontal dashed black lines

indicate the frequency band of interest.
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Figure B.9: Time-frequency representation obtained via the wavelet transform of

behavioural data from mouse 4 and mouse 5 from study 3. The vertical black lines

indicate the start/end of a given condition,where the horizontal dashed black lines

indicate the frequency band of interest.
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C. Ridges

The technique employed for ridge extraction from a time-frequency representation is

applied in this study. The wavelet transform is executed on the behavioral data gathered

from all mice.

In the process of ridge extraction, it is imperative that the chosen boundaries

encapsulate the entire oscillatory component under investigation, and no more. To

ascertain accurate boundaries, both the time-frequency representation and the average

power spectrum are utilized. This comprehensive approach ensures the precision of

ridge extraction.

It is noteworthy that the units for wavelet power and the average power are expressed

in (wheel revolutions/min)², aligning with the specific characteristics of the behavioral

data and the oscillatory patterns being analyzed.
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Figure C.1: The method for extracting ridges from a time-frequency representation,

and the extracted ridges. The wavelet transform is performed on the behavioral data

of mouse 1.
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Figure C.2: The method for extracting ridges from a time-frequency representation,

and the extracted ridges. The wavelet transform is performed on the behavioral data

of mouse 2 and mouse 3.
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Figure C.3: The method for extracting ridges from a time-frequency representation,

and the extracted ridges. The wavelet transform is performed on the behavioral data

of mouse 5 and mouse 6.
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Figure C.4: The method for extracting ridges from a time-frequency representation,

and the extracted ridges. The wavelet transform is performed on the behavioral data

of mouse 7 and mouse 8.
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D. Alternative method to detect

interactions between oscillations

Phase coherence and phase difference

The wavelet phase coherence approach is utilised to assess the temporal relationship

between phases of two signals at certain frequencies of interest [142, 143, 144, 145, 146].

If oscillations are seen at identical frequencies in two distinct time series, and if the

difference between the instantaneous phases ϕ1k,n and ϕ2k,n remains constant, then we

can conclude that it might be stated that the oscillations exhibit coherence at the

specified frequency. The calculation of wavelet phase coherence (WPC) between the

signals x1(t) and x2(t) is achieved by performing wavelet transforms on each signal, as

described in Equation 3.17. The wavelet transform of signal f(t) is denoted as Wsi.

The calculation of WPC between the two signals [143] is provided as

WPCx1;x2(f) =
1

L

∫ L

o

eiarg[Wx1 (s,t)W
∗
x2

(s,t)]dt|, (D.1)

where the scale s is related to the frequency f by s = 1/(2πf). The phase coherence

function Cθ(fk) is obtained by computing and averaging over time the sine and cosine

components of the phase differences for the whole signal, effectively defining the time-

averaged WPC as

Cθ(ωk) =
√

⟨cos∆θkn⟩2 + ⟨sin∆θkn⟩2. (D.2)
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The phase coherence function Cθ(fk) as defined in equation D.2 is exactly the discrete

version of the phase coherence formula in equation D.1. In addition, we can also

calculate the phase difference ∆θkn between two signals according to

∆θkn = θ2k,n − θ1k,n. (D.3)

The value of ∆θkn lies within 180◦ and gives information about the phase of one

oscillator relative to the other.

Connections can be identified between two signals or components as a result of

their interactions or shared external factors on both. The reliability of the computed

coherence between processes is contingent upon the ability to replicate the computation

in the absence of interaction or common impact. One method for assessing the

importance coherence involves the utilisation of surrogate signals [147]. The surrogate

employed for all signals is the iterative amplitude adjusted Fourier transform (IAAFT),

as discussed in next Section. The null hypothesis posits that the phase relationship

between the signals is not influenced by frequency. This implies that surrogates can be

generated by the randomization of temporal phase information [20].
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E. High harmonic components

The phase time-series for each frequency component is meticulously extracted through

the application of the wavelet transform, enabling a pairwise comparison. This

comparative analysis serves as the basis for determining the presence of harmonic

relationships. The algorithm computes the mutual information between each pair,

providing insights into the intricate connections between frequency components.

To ensure a comprehensive exploration of harmonic relationships within the

frequency interval of interest, specific parameters are set for the harmonic algorithm.

These parameters guarantee the inclusion of all previously identified oscillatory

components in the investigative process, contributing to a holistic understanding of

the harmonic landscape.

The wavelet transform, characterized by a time resolution of 1.8, is employed to

extract the phase time-series for each frequency component. This meticulous approach

adds precision to the analysis. Additionally, the use of 19 amplitude-adjusted Fourier

transform (AAFT) surrogates further enhances the robustness of the examination,

contributing to the reliability of the findings. Figures D.1–D.4 visually represent

the detected harmonics present in the behavioral data collected from all mice. The

plots exhibit a frequency-frequency representation, illuminating the intricate harmonic

relationships among different oscillations. Notably, the symmetry observed over the

diagonal in the image implies that only half of the figure needs to be considered for a

comprehensive understanding of the harmonic patterns. This graphical representation

aids in visualizing the harmonic interplay within the dataset, offering insights into
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the complex dynamics of the observed oscillations. The colour code employed in this

representation indicates a dimensionless quantity derived by subtracting the mean of

the surrogate distribution from the actual value and then dividing it by the standard

deviation of the surrogate distribution. Negative values on the color scale signify results

lower than the surrogate mean, and, consequently, significant results are represented

by values above 0.

E.1 No MA case

Figure E.1: The detected harmonics within the behavioral data of mouse 2 with no

effectiveness of MA.
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Figure E.2: The detected harmonics within the behavioral data of mouse 3 with no

effectiveness of MA
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Figure E.3: The detected harmonics within the behavioral data of mouse 4 with no

effectiveness of MA
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Figure E.4: The detected harmonics within the behavioral data of mouse 5 with no

effectiveness of MA.
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Figure E.5: The detected harmonics within the behavioral data of mouse 6 with no

effectiveness of MA
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Figure E.6: The detected harmonics within the behavioral data of mouse 7 with no

effectiveness of MA
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E.2 MA case

Figure E.7: The detected harmonics within the behavioral data of mouse 2 under

effectiveness of MA.
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Figure E.8: The detected harmonics within the behavioral data of mouse 3 under

effectiveness of MA.
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Figure E.9: The detected harmonics within the behavioral data of mouse 4 under

effectiveness of MA.
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Figure E.10: The detected harmonics within the behavioral data of mouse 5 under

effectiveness of MA.
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F. Bispectral analysis

Bispectral analysis has been employed for both groups of mice, those treated with

methamphetamine and those left untreated, under conditions of constant darkness.

This analytical approach enables the differentiation between harmonic and non-

harmonic components within the biological signals of the mice. To calculate the

biamplitude value, which is the modulus of the time-averaged instantaneous wavelet

bispectrum, at each point in frequency-frequency space, a process is followed that

includes the application of a statistical significance test. This test is used to identify

points in the frequency-frequency space where the biamplitude value is deemed

”significant.” In more detail, at each specific point within this space, the process involves

subtracting a critical threshold from the wavelet biamplitude value. This critical

threshold is determined at a 95% significance level and is derived from the bispectra

of the iterative amplitude adjusted Fourier transform (IAAFT2) surrogates. The

wavelet bispectra are calculated using a lognormal wavelet with frequency resolution

1.8. Through this method, significant biamplitude values are effectively isolated and

identified across the frequency-frequency space. Therefore, in these bispectra plots, the

strictly positive values (i.e., those that are not grey) indicate the regions where the

bispectrum value is deemed ”significant.” This means that the non-grey areas represent

points in the bispectra where the calculated values exceed the threshold of significance.
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F.1 No MA case

Figure F.1: Wavelet bispectra of behavioural data from mouse 1.
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Figure F.2: Wavelet bispectra of behavioural data from mouse 4 and mouse 5.
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Figure F.3: Wavelet bispectra of behavioural data from mouse 6 and mouse 7.
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F.2 MA case

Figure F.4: Wavelet bispectra of behavioural data from mouse 2.
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Figure F.5: Wavelet bispectra of behavioural data from mouse 3 and mouse 4.
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Figure F.6: Wavelet bispectra of behavioural data from mouse 5.
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