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Abstract

The Luce Choice Rule (or, equivalently, the multinomial logit model) is

extensively used in economics and other fields. Classical characterizations

rest on Luce’s Choice Axiom, when all choice sets are available, and Luce’s

Product Rule in the case of binary choice. Yet, actual datasets typically

consist neither of all choice sets nor all binary choice sets. We provide

a characterization for the general case, allowing also for zero choice prob-

abilities. Building upon this characterization, we derive implications for

experimental design in terms of three criteria: falsification, identification,

and prediction.
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1 Introduction

The Luce Choice Rule is one of the most prominent models of stochastic choice.

With an appropriate transformation, it is equivalent to the multinomial logit
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model, which is widely used to model empirical choice data (McFadden, 1974,

2001). Every logistic regression on discrete choice data implicitly assumes that

utilities are translated into choices through the Luce Choice Rule (Moffatt, 2015).

Applications extend to game theory, where Luce choice underlies the concept of

(logit) Quantal Response Equilibrium (McKelvey and Palfrey, 1995, 1998; Goeree

et al., 2005). Under the name “softmax function,” logit choice is routinely used in

neuroscience and cognitive psychology to fit models to data. The standard drift-

diffusion model of Ratcliff (1978) (see also Ratcliff and Rouder, 1998; Fudenberg

et al., 2018) and the rational inattention model of Sims (2003), applied to discrete

choice, generate logit choice probabilities (Matejka and McKay, 2015).

In this paper, we provide a characterization of the Luce Choice Rule that applies

when choice data is available for an arbitrary collection of menus (i.e., choice sets)

and derive implications of the characterization for experimental design. Given

the widespread applications of the Luce Choice Rule, it is surprising that both

of the well-known existing characterizations do not apply to most experiments or

surveys, where it is often infeasible to collect data for the requisite menus. The

first characterization in Luce (1959) rests on the celebrated Luce Choice Axiom

and requires data for all possible menus. The second characterization in Luce and

Suppes (1965) rests on the Luce Product Rule and covers the case of binary choice

(all menus of two alternatives). Neither characterization generalizes to a dataset

with an arbitrary collection of menus. For instance, the two characterizations are

not nested: the Luce Choice Axiom is vacuous for binary choice, while the Luce

Product Rule is not sufficient in a framework with all menus.

To illustrate, consider a stochastic choice dataset consisting of a collection

of menus M (the choice sets for which data is available) and the corresponding

frequencies P (a,M) with which any given alternative a ∈M is chosen from menu

M ∈M. The Luce Choice Axiom states that the probability that alternative a will

be chosen from menu M should be equal to the probability that a is chosen from

any subset M ′ ⊆M such that a ∈M ′ times the total probability that alternatives

from M ′ are chosen from M ; that is, the following condition should be satisfied.

P (a,M) = P (a,M ′)
∑

a′∈M ′

P (a′,M).

The Luce Product Rule considers only binary menus and states that, for any three

alternatives,

P (a1,M12)P (a2,M23)P (a3,M13) = P (a3,M23)P (a2,M12)P (a1,M13),
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where Mij is shorthand for the binary menu {ai, aj}; that is, the product of choice

frequencies forming an intransitive choice cycle should be equal in the clockwise

and counterclockwise directions.

Now suppose that there are four alternatives {a, b, c, d} but the dataset contains

choice frequencies only for the following set of menus:

M =
{

{a, b, c}, {a, d}, {b, d}, {c, d}
}

.

The condition for the Luce Choice Axiom is vacuously satisfied for the three binary

menus and, for the menu {a, b, c}, the condition cannot be verified because the

dataset does not include the menus {a, b}, {a, c} or {b, c}. Moreover, there are

no choice cycles over binary menus in this dataset and the Luce Product Rule is

therefore vacuous. Thus, neither the Luce Choice Axiom nor the Luce Product

Rule provide any testable implications of the Luce Choice Rule. However, there

are testable implications. For instance, it is easily verified that observing both

P (a, {a, d}) > P (b, {b, d}) and P (a, {a, b, c}) < P (b, {a, b, c}) is not consistent

with the Luce Choice Rule.

We introduce an axiom—the General Product Rule (GPR)—that characterizes

the Luce Choice Rule for an arbitrary collection of menus. First, we say that

an array of alternatives and menus [a1, . . . , an+1;M1, . . . ,Mn] form an overlapping

sequence if data for all menus M1, . . . ,Mn is available and, for all i = 1, . . . , n, the

alternative ai and its successor ai+1 are different but are both available in the menu

Mi; that is, the alternative represent choices along a chain of overlapping menus.

The alternatives on such an overlapping sequence are said to be connected; which

we show is an equivalence relation. We then say that an overlapping sequence is an

overlapping cycle if a1 = an+1; that is, when the alternatives form an intransitive

choice cycle. Similar to the Luce Product Rule, the GPR requires that the product

of choice frequencies along an intransitive cycle should be equal in the clockwise

and counterclockwise direction, but requires this to hold only for overlapping cycles

(of any length) in the dataset.

In contrast to the Luce Choice Axiom and the Luce Product Rule, the GPR

therefore captures restrictions on both binary and non-binary menus, but does not

require data from all menus or all binary menus to be available. For instance, the

above example has many overlapping cycles. In particular, [a, b, d, a; {a, b, c}, {b, d},

{a, d}] and [d, b, a, d; {b, d}, {a, b, c}, {a, d}] are two overlapping cycles that form
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intransitive choice cycles in the clockwise and counterclockwise direction and the

GPR requires that

P (a, {a, b, c})P (b, {b, d})P (d, {a, d}) = P (d, {b, d})P (b, {a, b, c})P (a, {a, d}),

which is violated when P (a, {a, d}) > P (b, {b, d}) and P (a, {a, b, c}) < P (b, {a, b, c}).

Our main result shows that a stochastic choice dataset can be rationalized by the

Luce Choice Rule if and only if the product of choice frequencies along every

overlapping cycle in the dataset is equal in either direction of the cycle.

Additionally, in our characterization, we allow for censored alternatives; that

is, we do not impose Positivity (an axiom in Luce, 1959; Luce and Suppes, 1965)

but rather allow some alternatives in a menu to be chosen with probability zero.

This is important in practice because, empirically, it cannot be guaranteed that

all alternatives are chosen in each menu. Moreover, as we will show, there is a

close connection between restrictions on menus and censoring of alternatives. The

reason is that, if a menu is not available in a dataset, one could artificially add it

while specifying that all alternatives in this menu but one are not chosen. On the

censored experiment, the added menu is then not part of any overlapping cycle

and therefore introduces no testable restrictions for the Luce Choice Rule.

A recent literature has considered the Luce Choice Rule with censored alterna-

tives, providing characterizations of two-stage logit models where first a criterion

is used to discard some alternatives (e.g., if the utility is below a certain thresh-

old) and then logit choice is applied to the remaining alternatives. Existing models

with censored alternatives include Ahumada and Ülkü (2018), Echenique and Saito

(2019), Horan (2021), and Doğan and Yıldız (2021). All of these, however, con-

sider a framework where all menus are available; for this particular case, our result

boils down to previous theorems in Ahumada and Ülkü (2018) and Echenique and

Saito (2019). Actually, because of the relationship between restrictions on menus

and censoring of alternatives, one could also build an alternative proof of our main

result starting from the theorems in Ahumada and Ülkü (2018) and Echenique

and Saito (2019), although none of these provide the characterization when the

menus are restricted (see Remark 2 in Section 3.1).

The extensive literature on logit choice has also considered many other general-

izations and variants, but all require a rich class of menus. For instance, generaliza-

tions allowing for established behavioral anomalies (Gul et al., 2014; Faro, 2023),

variants focusing on attention and perception (Echenique et al., 2018; Tserenjig-

mid, 2021; Kovach and Tserenjigmid, 2022b; Heydari, 2021), and characterizations

4



pinning down or fixing the utility function (Ahn et al., 2018; Breitmoser, 2021).

We discuss related literature further in Section 5.

Our results are of interest for the empirical discrete-choice literature since they

clarify the testable conditions that characterize the Luce Choice Rule for general

datasets. They are also of interest for experimental work where practical consid-

erations (such as monetary or time constraints) often restrict the set of menus on

which choice data is collected. We apply our characterization to consider three po-

tential criteria that may factor into an experimental design, where the experiment

consists of the menus chosen by the experimenter before stochastic choice data is

collected from the experimental participants.

First, we consider experiments that allow for a falsification of the Luce Choice

Rule. With a rich collection of menus (e.g., all menus or all binary menus), it is

always possible to falsify the Luce Choice Rule. However, as we show, there are

potential experiments on which every stochastic choice dataset is Luce rationaliz-

able. For instance, if the menu {a, b, c} is not included in the above example, there

are no overlapping cycles, and the Luce Choice Rule is not falsifiable. An experi-

mental researcher interested in providing evidence of Luce behavior may therefore

need to include (or add) specific menus to ensure that the Luce Choice Rule has

testable implications. We hence characterize when the choice data from a new

experiment can be used to falsify the Luce Choice Rule on a previous experiment.

Second, we consider the identification of the utilities for the alternatives in

the Luce Choice Rule. With a rich collection of menus (e.g., all menus or all

binary menus), the utilities in the Luce Choice Rule are always unique up to a

rescaling by a strictly positive constant. However, as we show, this identification

does not extend: for an arbitrary collection of menus, utilities are identified up to

rescaling within each equivalence class (generated by the overlapping sequences)

but are completely independent across equivalence classes. As a result, there

are experiments on which, for any Luce rationalizable dataset, it would not be

possible to compare utilities across some alternatives. We hence characterize the

experiments that allow for identification (up to rescaling) of all alternatives and

also highlight some trade-offs between identification and falsification.

Finally, when practical considerations necessitate a restriction of the menus to

be included for data collection, the ability to predict Luce choice behavior on other

menus may also factor into an experimental design. We hence characterize when

the stochastic choice data from an experiment can be used to uniquely predict

choice behavior consistent with the Luce Choice Rule for out-of-sample menus.
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The paper is structured as follows. Section 2 introduces the framework. Section

3 describes the GPR, states and proves the main characterization result, and dis-

cusses the relation to previous axioms. We also provide a tighter characterization

that removes some redundancies. Section 4 discusses implications for experimental

design. Section 5 reviews the related literature and Section 6 concludes. Except

for the main characterization result, all proofs are in the Appendix.

2 Framework

2.1 Stochastic choice dataset

Let A be a finite set of alternatives and M∗ = 2A\{∅} be the collection of all

nonempty menus of alternatives. We call a non-empty collection of menus M ⊆

M∗ an experiment and A(M) =
⋃

M∈M M the range of the experiment.

For an experimentM, let S(M) = {(a,M) ∈ A×M | a ∈M } be the set of

possible choice observations, where (a,M) is interpreted as the observation that,

when offered menu M , a decision maker chose the alternative a ∈M . A stochastic

choice function (SCF) on experiment M is a mapping P : S(M) 7→ [0, 1] such

that
∑

a∈M P (a,M) = 1 for all M ∈M.

A stochastic choice dataset is a pair θ = (M, P ) consisting of an experiment

M and a SCF P on M. The experiment M is the set of menus offered to the

decision maker(s), which is chosen by nature or the experimental designer. For

each menu M ∈M, P (a,M) is the empirical frequency or proportion of times that

the alternative a was chosen from M by the decision maker(s). When M 6=M∗

we say that menus have been restricted in the sense that choice data has not been

collected for all possible menus.

A stochastic choice dataset (M, P ) fulfills Positivity if P (a,M) > 0 for all

(a,M) ∈ S(M). This is an axiom in the original characterizations of the Luce

Choice Rule (Luce, 1959; Luce and Suppes, 1965). We will not, however, assume

Positivity, i.e., we explicitly consider stochastic choice datasets where some alter-

natives are chosen with zero probability in some menus. In this case, we speak of

censored alternatives, possibly in addition to restricted menus.

For an experimentM, a choice correspondence is a mapping C :M→M∗ such

that C(M) ⊆M for all M ∈ M; in that case, AC(M) = A ({C(M) | M ∈M})

is the C-censored range. In particular, for a stochastic choice dataset θ = (M, P ),

the choice correspondence Cθ(M) := {a ∈M | P (a,M) > 0} is the support of P

onM. The support captures the empirical observation of which alternatives have
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Figure 1: Graphical depictions of the three experiments in Example 1.

actually been chosen in each menu. The support is the identity mapping if and

only if θ satisfies Positivity.

Example 1. Experiments can be represented graphically by depicting alternatives

as nodes, binary menus as edges connecting nodes, and other menus with outlines

containing nodes. For instance, Figure 1(left) illustrates the example from the

introduction: an experiment M with range A(M) = {a, b, c, d} and menusM =

{{a, b, c}, {a, d}, {b, d}, {c, d}}. Figure 1(center) represents a different experiment

M′ with range A(M′) = {a, b, c, d, e} and menus M′ = {{a, b}, {c, d}, {c, d, e}}.

Figure 1(right) represents the C-censored experiment on M′ when C({a, b}) =

{a, b}, C({c, d}) = {c, d}, and C({c, d, e}) = {d, e}. �

2.2 Luce Choice Rule

Given an experiment M, a choice correspondence C : M → M∗, and a utility

function v : A(M) 7→ R++, we denote by

PC
v (a,M) =



















v(a)
∑

b∈C(M)

v(b)
if a ∈ C(M)

0 if a /∈ C(M)

(1)

the C-censored Luce SCF generated by v on the experimentM.1

1Using the transformation u(a) = ln v(a), the first part of Equation (1) can be rewritten as

P (a,M) = eu(a)
(
∑

b∈M
eu(b)

)−1
with u : A(M) 7→ R a (not necessarily positive) real-valued

function. This corresponds to the well-known (multinomial) logit model (e.g., McFadden, 2001).
By virtue of the logarithmic transformation, the Luce Choice Rule and the logit model are
equivalent in the sense that a stochastic choice dataset can be rationalized by one if and only if
it can be rationalized by the other (see, e.g., Anderson et al., 1992, Chapter 1).
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A stochastic choice dataset θ = (M, P ) can be rationalized by a (censored)

Luce Choice Rule (or is Luce rationalizable), if there exists a utility function v :

A(M) 7→ R++ such that

P (a,M) = PCθ
v (a,M) ∀ (a,M) ∈ S(M).

We denote the set of utility functions that can Luce rationalize the stochastic

choice dataset θ = (M, P ) by

V(θ) =
{

v : A(M)→ R++

∣

∣ P = PCθ
v

}

.

Let P(M) be the set of all SCFs on experimentM, and L(M) be the set of SCFs

P ∈ P(M) such that the stochastic choice dataset (M, P ) is Luce-rationalizable;

hence P ∈ L(M) if and only if V(M, P ) 6= ∅. It is also sometimes useful to

classify SCFs in terms of their support. Given an experiment M and a choice

correspondence C defined on any experiment that contains M, we denote by

PC(M) =
{

P ∈ P(M)
∣

∣ C(M,P )(M) = C(M) ∀M ∈M
}

the set of C-censored

SCFs onM and by LC(M) = PC(M) ∩ L(M) the C-Luce rationalizable SCFs.

2.3 Connected alternatives and overlapping cycles

Given an experiment M and a choice correspondence C on M, an array of al-

ternatives and menus φ = [a1, . . . , an+1;M1, . . . ,Mn] is an overlapping C-sequence

(of length n ≥ 1) in M if Mi ∈ M and ai, ai+1 ∈ C(Mi) with ai 6= ai+1 for all

i ∈ {1, . . . , n}. For convenience, we denote the i-th alternative by ai(φ) and the

i-th menu by Mi(φ).

Alternatives a and b are C-connected in M, written a ∼C
M b, if there is an

overlapping C-sequence φ of length n inM such that a = a1(φ) and b = an+1(φ).

Lemma 1 in the Appendix shows that ∼C
M is an equivalence relation on AC(M),

and we denote the corresponding quotient set by QC(M).

If φ is an overlapping C-sequence of length n inM and a1(φ) = an+1(φ), then

φ is an overlapping C-cycle inM. An overlapping cycle φ of length n is degenerate

if Mi(φ) = Mj(φ) for all i, j = 1, . . . , n, and non-degenerate otherwise.

Example 1 (continued). The experimentM in Figure 1(left) has, among others, the

nondegenerate overlapping cycle [a, b, c, d, a; {a, b, c}, {a, b, c}, {c, d}, {a, d}] and all

alternatives are connected. The experimentM′ in Figure 1(center) has the nonde-

generate overlapping cycle [c, d, e, c; {c, d}, {c, d, e}, {c, d, e}] and two equivalence

classes Q(M′) = {{a, b}, {c, d, e}}. The C-censored experiment on M′ in Figure
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1(right) has the same equivalence classes as the uncensored experiment but has no

non-degenerate overlapping cycles. �

Remark 1. Luce (1959, Definition 1, p. 25) introduced the concept of a finitely

connected domain, which required that all a, b with P (a, {a, b}) > 1/2 be linked

by a chain with P (ai, {ai, ai+1}) ∈ [1/2, 1) for all i = 1, . . . , n. Suppes et al.

(1989, Chapter 17, Theorem 7), Horan (2021), and also the working-paper version

of Echenique and Saito (2019) consider the related concept of a linked domain:

assuming that M contains all binary menus, every pair of alternatives a, b are

linked by a chain of alternatives a = a1, a2, . . . , an+1 = b such that ai, ai+1 are

imperfectly discriminated for all i = 1, . . . , n, meaning that P (ai, {ai, ai+1}) ∈

(0, 1) (and hence ai 6= ai+1). If C is the support of P , an overlapping C-sequence is

essentially a chain of imperfect discrimination where the binary menus are replaced

by arbitrary ones. We do not impose a linked (or finitely connected) domain but

merely use overlapping C-sequences to state conditions for our results.

3 Luce rationalizable datasets

Our main result characterizes the set of Luce rationalizable stochastic choice

datasets for any experiment. To this end, we say that a stochastic choice dataset

θ = (M, P ) satisfies the General Product Rule (GPR) if the following holds.

Axiom 1 (GPR). For any overlapping Cθ-cycle [a1, . . . , an+1;M1, . . . ,Mn],

n
∏

i=1

P (ai,Mi) =

n
∏

i=1

P (ai+1,Mi). (2)

Each side of Equation (2) describes products of non-zero choice probabilities

along an intransitive choice cycle in θ = (M, P ). On the left-hand side, a1 is chosen

when a2 is available, a2 is chosen when a3 is available, and so on, but an is chosen

when a1 is available; hence, the intransitive choice cycle a1 → a2 → . . .→ an → a1.

On the right-hand side, a2 is chosen when a1 is available, a3 is chosen when a2 is

available, and so on, but a1 is chosen when an is available; hence, the counterclock-

wise choice cycle a1 ← a2 ← . . . ← an ← a1. The GPR, therefore, requires that

products of choice probabilities be equal for the clockwise and counterclockwise

cycles; intuitively, violations of transitivity are not systematic in the sense that

one direction of an intransitive cycle is not more likely than another.

9



Theorem 1. A stochastic choice dataset θ = (M, P ) for an arbitrary collection

of menus M ⊆ M∗ can be rationalized by a (censored) Luce Choice Rule if and

only if it satisfies the General Product Rule.

Proof. For necessity, suppose θ = (M, P ) can be rationalized by a Luce Choice

Rule: there is v : A(M) → R++ such that (1) is satisfied for all (a,M) ∈ S(M).

Let [a1, . . . , an+1;M1, . . . ,Mn] be an overlapping Cθ-cycle inM. Then,

n
∏

i=1

P (ai,Mi) =
n
∏

i=1

(

v(ai)
∑

b∈Mi
v(b)

)

=

∏n

i=1 v(ai)
∏n

i=1

(
∑

b∈Mi
v(b)

)

=

∏n

i=1 v(ai+1)
∏n

i=1

(
∑

b∈Mi
v(b)

) =

n
∏

i=1

(

v(ai+1)
∑

b∈Mi
v(b)

)

=

n
∏

i=1

P (ai+1,Mi),

and so the GPR is satisfied.

The argument for sufficiency is as follows. Lemma 2 in the Appendix shows

that θ = (M, P ) can be rationalized by a Luce Choice Rule if and only if each

equivalence class Q ∈ QCθ(M) can be, independently, rationalized by a Luce

Choice Rule. Therefore, it is without loss of generality to focus on a stochastic

choice dataset θ = (M, P ) where a ∼Cθ

M b for all a, b ∈ A(M) (if not, the same

argument can be applied to each equivalence class separately).

Now fix an arbitrary a∗ ∈ ACθ(M) and define v(a∗) = 1. For a ∈ ACθ(M), let

[a1, . . . , an+1;M1, . . . ,Mn] be an overlapping Cθ-sequence with a = a1 and an+1 =

a∗. Define

v(a) =
n
∏

i=1

P (ai,Mi)

P (ai+1,Mi)
.

We need to show that v(a) is well-defined, that is, v(a) is independent of

the chosen sequence. Let [b1, . . . , bn+1;M
′
1, . . . ,M

′
n] be another overlapping Cθ-

sequence with a = b1 and bn+1 = a∗. Then, we observe that

[a1, . . . , an+1, bn, . . . , b2, b1;M1, . . . ,Mn,M
′
n, . . . ,M1]

is an overlapping Cθ-cycle. By Equation (2),

n
∏

i=1

P (ai,Mi) · P (an+1,M
′
n)

n
∏

i=2

P (bi,M
′
i−1) =

n
∏

i=1

P (ai+1,Mi)
n
∏

i=1

P (bi,M
′
i)

and, since an+1 = a∗ = bn+1,

n
∏

i=1

P (ai,Mi)

P (ai+1,Mi)
=

n
∏

i=1

P (bi,M
′
i)

P (bi+1,M
′
i)
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and hence v(a) is well-defined.

Consider any M ∈ M and any a ∈ Cθ(M). Let [a1, . . . , an+1;M1, . . . ,Mn] be

an overlapping Cθ-sequence with a = a1 and an+1 = a∗. For any b ∈ Cθ(M) with

b 6= a, [b, a1, . . . , an+1;M,M1, . . . ,Mn] is an overlapping Cθ-sequence connecting b

and a∗, and hence

v(b) =
P (b,M)

P (a,M)

n
∏

i=1

P (ai,Mi)

P (ai+1,Mi)
=

P (b,M)

P (a,M)
v(a).

It follows that

∑

b∈cθ(M)

v(b) =
v(a)

P (a,M)

∑

b∈cθ(M)

P (b,M) =
v(a)

P (a,M)
,

implying that

P (a,M) =
v(a)

∑

b∈cθ(M) v(b)
,

which completes the proof.

3.1 Special cases

We briefly discuss some special cases that highlight the relation to prior charac-

terizations of the Luce Choice Rule.

Unrestricted menus and noncensored alternatives. When all menus are

available, Luce (1959) shows that a stochastic choice dataset can be rationalized

by a Luce Choice Rule if and only if it satisfies Positivity and the Luce Choice

Axiom. Adapted to an arbitrary collection of menus, (M, P ) satisfies the Luce

Choice Axiom if

P (a, A) = P (a, B)
∑

b∈B

P (b, A).

whenever a ∈ B ⊆ A for menus A,B ∈ M. With Positivity, the Luce Choice

Axiom is equivalent to the Independence of Irrelevant Alternatives (IIA):2 if a, b ∈

A ∩ B ∈M for menus A,B ∈M, then

P (a, A)

P (b, A)
=

P (a, B)

P (b, B)
.

2Luce (1959) shows the equivalence between the Luce Choice Axiom and IIA when all menus
are available but, with the adapted definition of the axioms, it is straightforward to adapt the
argument to an arbitrary collection of menus.
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Under Positivity, the GPR implies IIA and hence the Luce Choice Axiom because,

if a, b ∈ A ∩ B ∈ M for A,B ∈ M, then the GPR implies P (a, A)P (b, B) =

P (b, A)P (a, B).

Binary menus and noncensored alternatives. When the experiment con-

sists of all binary menus B = {M ∈M∗ | |M | = 2}, Luce and Suppes (1965)

show that a stochastic choice dataset can be rationalized by a Luce Choice Rule

if and only if it satisfies Positivity and the Luce Product Rule. Adapted to an

arbitrary collection of menus, (M, P ) satisfies the Luce Product Rule if

P (a, {a, b})P (b, {b, c})P (c, {a, c}) = P (b, {a, b})P (c, {b, c})P (a, {a, c})

whenever a, b, c ∈ A are distinct and {a, b}, {a, c}, {b, c} ∈ M. Clearly, under Pos-

itivity, the GPR implies the Luce Product Rule. Moreover, it follows immediately

from the argument in Luce and Suppes (1965, footnote 9, p. 341) that the two

axioms are equivalent whenM = B.

Unrestricted menus and censored alternatives. The case of censored alter-

natives, but with unrestricted menus, has been studied in Ahumada and Ülkü (2018),

Echenique and Saito (2019), and Horan (2021). All those works consider a product

rule similar to the GPR, called Axiom 1 by Ahumada and Ülkü (2018), Cyclical

Independence by Echenique and Saito (2019), and Strong Product Rule by Horan

(2021). For any given support, the special case of Theorem 1 whereM =M∗ en-

compasses the results in this prior literature, specifically Ahumada and Ülkü (2018,

Theorem 1) and Echenique and Saito (2019, Theorem 1). However, these works

provide additional results characterizing specific models for how the choice corre-

spondence Cθ arises, which is not our focus (see Section 5).

Remark 2. An alternative proof of Theorem 1 could be given starting from Theo-

rem 1 of Ahumada and Ülkü (2018) or Theorem 1 of Echenique and Saito (2019).

The idea is to extend a stochastic choice dataset (M, P ) to another stochastic

choice dataset (M∗, P ′) by defining P ′(·,M) = P (·,M) for all M ∈ M, and set-

ting P ′(a,M) = 1 for some arbitrary a ∈ M whenever M ∈ M∗ \ M. It can

be shown that the menus in M∗ \ M do not create any additional overlapping

cycles in the censored experiment. As a result, the GPR on (M, P ) boils down

to the axioms of Ahumada and Ülkü (2018) and Echenique and Saito (2019) on

(M∗, P ′). Applying their theorems to the extended stochastic choice dataset (and

appropriately undoing the transformation afterwards) would yield our characteri-

zation. Hence, results when not all menus are available and when not all menus are
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observed can be derived from each other. However, our approach is conceptually

simpler as the dataset in our characterization corresponds to the actual empirical

dataset and not to an artificial extension of it.

Restricted menus and noncensored alternatives. An important special

case of Theorem 1 is the characterization of the noncensored Luce Choice Rule

for an arbitrary collection of menus; the proof follows immediately because Cθ is

the identity if and only if θ satisfies Positivity.

Corollary 1. A stochastic choice dataset θ = (M, P ) for an arbitrary collection

of menusM⊆M∗ can be rationalized by an noncensored Luce Choice Rule if and

only if it satisfies Positivity and the General Product Rule.

3.2 Characterization by Elementary Cycles

By Theorem 1, the Luce Choice Rule provides a testable restriction for every over-

lapping Cθ-cycle. However, many of these restrictions are redundant. To provide

a tighter characterization, we say that an overlapping C-cycle φ is elementary if

it is non-degenerate and ai(φ) 6= aj(φ) whenever i 6= j. Write EC(M) for the set

of elementary C-cycles on experimentM.

If Equation (2) is satisfied for all overlapping Cθ-cycles, then it is clearly sat-

isfied for the elementary cycles. Moreover, all non-elementary overlapping cycles

can be obtained as the juxtaposition of two or more elementary cycles, and it is

therefore sufficient to verify that Equation (2) is satisfied for elementary cycles.

Proposition 1. A stochastic choice dataset θ = (M, P ) is Luce rationalizable if

and only if Equation (2) is satisfied for every elementary Cθ-cycle in ECθ(M).

Proposition 1 reduces the number of conditions that need to be checked to

verify if a stochastic choice dataset is Luce rationalizable. It also permits a char-

acterization of experiments on which it is possible to verify the Luce Choice Rule

independently. Here, it is useful to classify SCFs according to their support. In

addition, we require notation for the restriction of SCF to a smaller experiment.

If P ∈ PC(M), we denote by PM′ the restriction of P to the smaller experiment

M′ ⊂M, defined by PM′(a,M) = P (a,M) for all (a,M) ∈ S(M′). Given a choice

correspondence C describing the support, the following definition then formalizes

when two experiments are independent.

13



Definition 1. Two disjoint experimentsM1 andM2 are C-Luce independent if,

for any SCF P ∈ PC(M1 ∪M2),

P ∈ LC(M1 ∪M2) ⇐⇒ PMi
∈ LC(Mi) for i = 1, 2.

When two experiments are Luce independent, one can therefore verify whether

the stochastic choice dataset on the union is Luce rationalizable by, independently,

verifying whether its restrictions to M1 and M2, respectively, are Luce ratio-

nalizable. Properties of the set of elementary C-cycles characterizes when two

experiments are Luce independent.

Proposition 2. Two disjoint experiments M1 and M2 are C-Luce independent

if and only if there is a partition of the set of elementary cycles onM1 ∪M2 into

elementary C-cycles that are only on M1 and elementary cycles that are only on

M2; that is, E
C(M1 ∪M2) = E

C(M1) ∪ E
C(M2).

3

Whether two experiments are Luce independent or not therefore depends on

whether the union of the experiments introduces new elementary cycles that do not

already belong to one of the two experiments. As a result, the set of elementary

cycles can also be used to partition any experiment into smaller parts that are Luce

independent of one another other. We say that {M1, . . . ,MK} is an independent

C-partition of experimentM if, for all k = 1, . . . , K, the following are satisfied:

• Mk ⊆M andMk is C-Luce independent ofM\Mk, and

• ifM′
k (Mk, thenM

′
k is not C-Luce independent ofMk\M

′
k.

That is, any two equivalence classes are C-Luce independent of each other and it

is not possible to divide any equivalence class further into two experiments that

are C-Luce independent of each other.

Corollary 2. Every experiment has a unique independent C-partition. More-

over, if {M1, . . . ,MK} is the independent C-partition for experiment M, then

EC(Mk) = ∅ if and only if |Mk| = 1, and EC(M) =
⋃

k:|Mk|>1 E
C(Mk).

Example 2. To illustrate, consider the three experiments in Figure 2 when C is the

identity. The experiment on the left-hand-side has no elementary cycles, and every

menu is a singleton equivalence class in the independent C-partition. In the ex-

periment in the center, the independent C-partition has three equivalence classes:

3It is straightforward to show that, if two experiments are C-Luce independent when C

is the identity mapping, then the experiments are C′-Luce independent for any given choice
correspondence C′. However, the converse does not hold in general.
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Figure 2: Experiments discussed in Example 2.

{{a∗, a}, {a∗, b}, {a, b}}, {{a∗, c}, {a∗, d}, {c, d}}, and {{a∗, e}, {a∗, f}, {e, f}}. Fi-

nally, the independent C-partition for the experiment on the right-hand-side has

only one equivalence class that contains all menus. �

4 Experimental Design

In an experimental setting, a stochastic choice dataset consists of the experiment,

which is chosen by the experimenter, and a SCF, which is the actual choice data

collected from the experimental participants. Experimental design is concerned

with the choice of an experiment, and practical considerations (e.g., monetary or

time constraints) often dictate a judicious restriction of the menus for which choice

data will be collected. We consider implications of our characterization in terms of

three criteria that may factor into the design of an experiment: falsification (the

power to reject the Luce Choice Rule), identification (the power to identify, up

to rescaling, a unique utility for each alternative), and prediction (the power to

predict Luce choice uniquely for out-of-sample menus).

There is, however, a caveat: the experiment is chosen without knowing the

support, i.e., which alternatives will be censored. As our results emphasize, the

implications of the Luce Choice Rule pertain to the stochastic choice data on

the censored experiment. In an experimental design problem, we can view the

restriction of menus as exogenous, but the censoring of menus is endogenous. This

limitation is unavoidable.

Our approach will be to state conditions on experiments given censoring for

an arbitrary but fixed choice correspondence. When the choice correspondence

is the identity, the censored experiment coincides with the experiment chosen at

the experimental design stage. Hence, our results apply directly when the SCF
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satisfies Positivity, since in this case the support is the identity. This will be our

leading interpretation in the discussion. It is, however, useful to allow for the

possibility of censored alternatives in the statement of results because there are

various approaches in the literature to explicitly model the support in a censored

Luce Choice Rule (see Section 5). In the conditions we state, additional restric-

tions coming from a specific model of the support (or any other prior information

about the support) can be incorporated in the choice correspondence to adjust the

conditions accordingly for the censored experiment.

To state our conditions, we require notation to describe the extension of a SCF

to a larger domain. SupposeM1 andM2 are disjoint experiments, C is a choice

correspondence on M1 ∪M2, and P1 ∈ P
C(M1) is a C-censored SCF on M1.

Then, we denote by PC(M1 ∪M2|P1) =
{

P ∈ PC(M1 ∪M2) | PM1 = P1

}

the

set of C-censored extensions of P1 to the experimentM1 ∪M2, and by LC(M1 ∪

M2|P1) = PC(M1 ∪M2|P1) ∩ L
C(M1 ∪ M2) the set of C-Luce rationalizable

extensions.

4.1 Falsification

Before choice data is collected, any experiment M can give rise to a stochastic

choice dataset consistent with the Luce Choice Rule because Pv ∈ L(M) for any

utility function v : A(M)→ R++. However, the Luce Choice Rule is not falsifiable

for every experiment. We call Luce unfalsifiable an experiment on which every

stochastic choice dataset can be rationalized by Luce choice.

Definition 2. An experimentM is C-Luce unfalsifiable if every C-censored stochas-

tic choice dataset onM is Luce rationalizable, i.e., LC(M) = PC(M).

A corollary of Proposition 1 characterizes Luce unfalsifiable experiments for an

arbitrary choice correspondence.

Corollary 3. An experiment M is C-Luce unfalsifiable if and only if it has no

elementary C-cycles, i.e., EC(M) = ∅.

An experiment without elementary cycles cannot, therefore, provide compelling

evidence that choice behavior follows the Luce Choice Rule because every SCF on

the experiment can be rationalized by a Luce Choice Rule.

Example 2 (continued). In a “star” experimental design, a reference option a∗ is

fixed, and participants are given binary menus of the form {a∗, a} for all alterna-

tives a ∈ A(M), a 6= a∗. An example of a star design is given on the left-hand

side of Figure 2. This experiment is Luce unfalsifiable: Axiom GPR has no bite
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because there are no elementary cycles. However, if the experimenter added any

additional menu to the design creating at least one elementary cycle, as in the

examples on the center and right-hand side of Figure 2, the experiment would

become Luce falsifiable. �

Star designs are common in experimental economics and psychology. For in-

stance, Clithero (2018) collected choice frequencies only for a star design, and

hence the dataset obtained there (also used in Alós-Ferrer et al., 2021) contains

no elementary cycles (falsification was not the article’s objective; further choices

not involving the star center were made only once, in a second part). Davis-Stober

et al. (2015) (also used in Alós-Ferrer and Garagnani, 2024) based their design on

a star-shaped set of comparisons across lotteries, but (for different reasons than

those explained here) also included additional comparisons creating elementary

cycles.

To falsify the Luce Choice Rule, a stochastic choice dataset for a star experi-

ment must be complemented with choice data from additional menus. However,

it is not always the case that choice data from any additional menus can falsify

the Luce Choice Rule on an existing stochastic choice dataset. The question is,

therefore, given a stochastic choice dataset for an initial experiment, for which

additional menus should data be collected to ensure falsifiability? Suppose that

θ = (M1, P1) is a Luce rationalizable stochastic choice dataset and M2 is an

experiment that is disjoint from M1. Collecting additional choice data for the

experimentM2 could falsify the Luce Choice Rule in one of two ways. First, if the

experiment M2 is not Luce unfalsifiable, then the choice data restricted to M2

could be inconsistent with the Luce Choice Rule. This falsifies the Luce Choice

Rule onM1 ∪M2 but not because of additional restrictions related to the initial

stochastic choice dataset. Second, even when the choice data restricted toM2 is

Luce rationalizable, the combined dataset onM1 ∪M2 may not be. This case is

of interest because it highlights cross restrictions that choice data from the new

experimentM2 imposes for the existing dataset onM1.

Definition 3. Let M1 and M2 be two disjoint experiments, C be a choice cor-

respondence on M1 ∪ M2, and P1 ∈ L
C(M1). Then, M2 can C-Luce falsify

θ = (M1, P1) if, for all extensions P ∈ P
C(M1 ∪M2|P1),

P ∈ LC(M1 ∪M2) ⇐⇒ PM2 ∈ L
C(M2).

The following proposition characterizes when a new experiment can Luce falsify

an existing stochastic choice dataset.
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Proposition 3. The experimentM2 can C-Luce falsify θ = (M1, P1) if and only

if there is some elementary C-cycle on M1 ∪M2 that contains menus from both

M1 andM2, i.e., E
C(M1 ∪M2) 6= E

C(M1) ∪ E
C(M2).

For a given support, whether a new experiment can Luce falsify the stochastic

choice data from an existing experiment is, therefore, a property only of the two

experiments and does not depend on the particular SCF on the initial experiment.

In particular, Luce falsifiability depends only on the structural properties of the

two experiments, and not on the given SCF P1: the new experiment M2 can

Luce falsify stochastic choice data on the initial experiment M1 if and only if

the elementary cycles onM1 ∪M2 cannot be partitioned into elementary cycles

only on M1 and elementary cycles only on M2. In particular, this means that

experiments are not Luce independent. As a result, the conditions for falsification

are symmetric: if M2 cannot Luce falsify choice on M1, then M1 also cannot

Luce falsify choice onM2.

Example 3. Let A = {a, b, c, d, e} and consider experiment M1 = {{a, c}, {b, c}},

depicted by solid lines on the left of Figure 3. This experiment contains no el-

ementary cycle, hence it is Luce unfalsifiable. However, the experiment M2 =

{{c, d}, {c, e}, {d, e}}, depicted by dashed lines on the left of Figure 3 is Luce

falsifiable, because it contains elementary cycle φ = [c, d, e, c; {c, d}, {d, e}, {c, e}].

Now consider the joint experimentM1∪M2. The addition ofM2 toM1 does

generate a new condition for falsifiability, the one corresponding to φ. However,

this new condition does not impose any restriction on the data on M1. Hence,

neither of the two experiments can falsify each other.

However, consider instead the example in the center of Figure 3, where A =

{a, b, c, d},M1 = {{a, b}, {a, c}} (depicted by solid lines), andM2 = {{b, d}, {c, d}}

(depicted by dashed lines). Separately, both experiments M1 and M2 are Luce

unfalsifiable, but taken together the larger experiment M = M1 ∪M1 is Luce

falsifiable, as it contains an elementary cycle. That is, neither experiment would

be able to provide data falsifying the Luce Choice Rule, but when one is added to

the other, the Luce choice has testable implications.

The example on the right of Figure 3 is as the previous one, but the experiment

M1 includes the menu {b, c}. HenceM1 is Luce falsifiable in itself, as it includes

an elementary cycle. Further, M2 can Luce falsify M1 (and vice versa), as its

addition creates a new elementary cycle which was also not present inM2. �
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Figure 3: Experiments discussed in Example 3.

4.2 Identification

When choice data for either all menus or all binary menus are available, the utility

function in a Luce Choice Rule is unique up to rescaling by a strictly positive

constant (see, e.g., Luce and Suppes, 1965, Chapter 5.2). That means that any

Luce rationalizable dataset pins down uniquely the ratio of utilities for any two

alternatives. However, for an arbitrary collection of menus, the utilities are only

unique up to rescaling within each Cθ-equivalence class. Recall that, for an ex-

perimentM and any choice correspondence C onM, QC(M) is the quotient set

corresponding to the equivalence relation ∼C
M.

Proposition 4. Let θ = (M, P ) be a stochastic choice dataset with QCθ(M) =

{Q1, . . . , Qm} and v ∈ V(θ). Then, w ∈ V(θ) if and only if there exists a collection

of strictly positive scalars (λ1, . . . , λm) such that, for i = 1, . . . , m,

v(a) = λiw(a) ∀ a ∈ Qi.

As a result, there are experiments where, for any Luce rationalizable dataset,

it is not possible to compare the utilities for some of the alternatives. When such

comparisons are of economic interest, the ability to identify (up to rescaling) the

utilities of all alternatives may therefore also factor into an experimental design.

Definition 4. Let M be an experiment and C a choice correspondence on M.

Then,M is C-Luce identified if, for any P ∈ LC(M), whenever v, w ∈ V(M, P ),

there exists λ > 0 such that v(a) = λw(a) for all a ∈ AC(M).

The following corollary characterizes Luce identified experiments for an arbi-

trary choice correspondence.
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Corollary 4. Experiment M is C-Luce-identified if and only if all alternatives

are C-connected, i.e, a ∼C
M b for all a, b ∈ AC(M).

Since alternatives can be connected by overlapping sequences that are not

part of elementary cycles, the conditions that allow for identification are distinct

from the conditions that allow for falsification. Fixing a choice correspondence C,

Proposition 4 and Corollary 4 show that the identification for an experiment M

depends on the partition QC(M), with C-Luce identification being achieved when

QC(M) = {AC(M)}. In contrast, falsifiable implications of the Luce Choice Rule

depend on set of elementary C-cycles EC(M) and can often be described in terms

of the independent C-partition {M1, . . . ,MK} for the experimentM.

To illustrate, consider the experiments in Example 2 (Figure 2). When C is the

identity, QC(M) = {AC(M)} in all three experiments and so these experiments

are Luce identified. However, in the experiment on the left of Figure 2, |Mk| =

1 for all k in the independent C-partition: the experiment is Luce unfalsifiable

because no menu is part of an elementary cycle. In contrast, the experiments in

the center and the right of Figure 1 are also Luce identified but |Mk| > 1 for all

k in the independent C-partition: every menu belongs to an elementary cycle. By

adding some additional menus, these experiments achieve identification together

with conditions that allow for a falsification of the Luce Choice Rule, which now

has testable implications for every menu.

The experiment on the right of Figure 2 has the additional property that the

independent C-partition is {M}; that is the experiment cannot be further divided

into separate parts that Luce independent of one another. By Proposition 3, the

stochastic choice data on any subset of menus in M can be used to Luce falsify

stochastic choice on the remaining menus. As such, the Luce Choice Rule has more

testable implications than for the experiment in the center of Figure 2, where the

independent C-partition has three distinct equivalence classes. However, in terms

of an experimental design, these additional testable restrictions come at the cost

of collecting data for an additional set of menus. In contrast, the experiment in

the center of Figure 2 is Luce identified, has testable implications of the Luce

Choice Rule on every menu, and has the additional property that, if any of the

menus are removed, either the experiment is no longer Luce identified or some of

the remaining menus are no longer part of an elementary cycle. In that sense,

the experiment in the center is efficient because any smaller experiment either

fails to identify unique utilities (up to rescaling) for all of the alternatives or has

an independent C-partition with singleton menus that do not contribute data to

falsify the Luce Choice Rule.
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These examples highlight the importance of considering both identification and

falsification as part of an experimental design. As a final illustration, consider the

experiment from Example 1 (Figure 1, left) but without the menu {b, d}. The

discussion in the introduction applies also when the menu {b, d} is removed; that

is, the Luce Choice Axiom and Luce Product Rule are vacuous for this experi-

ment. However, for an experimental design, this experiment actually has desirable

properties. First, note that (when C is the identity) the experiment is Luce iden-

tified because all alternatives are connected by overlapping sequences (as with all

the experiments in Figure 2). Second, the independent C-partition contains only

one equivalence class, namely the entire experiment. That means, every subset

of menus can Luce falsify choice on the remaining menus (as in Figure 2, right).

However, the experiment is also efficient: if any subset of menus is removed, ei-

ther the new experiment is not Luce identified or has an independent C-partition

containing singleton menus that do not contribute conditions to falsify the Luce

Choice Rule (as in Figure 2, center). In contrast, the experiment that includes

menu {b, d} is Luce identified, cannot be divided into Luce independent parts, but

is not efficient because there is a smaller experiment (for instance, where menu

{b, d} is removed) that is also Luce identified and where every menu contributes

data that can falsify the Luce Choice Rule.

4.3 Prediction

When practical considerations dictate a restriction of the menus, a third criterion

that may factor into an experimental design is the power to predict Luce ratio-

nalizable choice behavior on menus that are not in the sample for which data will

be collected. Suppose, again, that M1 and M2 are two experiments, and the

experimenter wants to use choice data from experiment M1 to predict behavior

in experiment M2. For any Luce rationalizable SCF P1 ∈ L(M1), there is an

extension toM1 ∪M2 that is Luce rationalizable.4 However, we are interested in

cases where this extension is unique: if the experimenter is interested in choice be-

havior on a collection of menusM, for which subset of menusM′ ⊆M must data

be collected in order to uniquely predict Luce choice behavior on the remaining

menus inM\M′.

4Suppose v ∈ V(M1, P1) and define w : A(M1 ∪ M2) → R++ by w(a) = v(a) for all
a ∈ A(M1) and w(b) = 1 for all b ∈ A(M1 ∪M2)\A(M1); then Pw is a Luce rationalizable
extension of P1 toM1 ∪M2.
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Definition 5. LetM1 andM2 be disjoint experiments and C be a choice corre-

spondence onM1∪M2 such that C(M2) contains no singleton menus.5 Then,M1

can C-Luce predict choice onM2 if |L
C(M1∪M2|P )| = 1 for some P ∈ LC(M1).

The following proposition characterizes when Luce rationalizable choice from

one experiment can predict Luce choice in another experiment.

Proposition 5. The experimentM1 can C-Luce predict choice onM2 if and only

if the range of M1 contains the range of M2 and any two alternatives that are

C-connected in M2 are already C-connected in M1; that is A
C(M2) ⊆ A

C(M1)

and, for all a, b ∈ AC(M2), if a ∼
C
M2

b, then a ∼C
M1

b.

Analogously to falsification, Proposition 5 shows that, for a given choice cor-

respondence, prediction is a feature of the experiments and not of the stochastic

choice functions because it depends only on the structural relation between the

experiments. That is, if M1 can C-Luce predict choice on M2, then |L
C(M1 ∪

M2|P )| = 1 for any P ∈ LC(M1). First, it is only possible to predict Luce choice

behavior on M2 if its range is contained in the range of M1, since stochastic

choice data fromM1 imposes no restrictions on the relative frequency of alterna-

tives outside its range. Second, any two alternatives that are connected in M2

must already be connected in M1; that is, each C-equivalence classes on M2 is

contained in a C-equivalence class onM1. In that case, each C-equivalence class

inM1 identifies a utility (up to rescaling) for the Luce Choice Rule which deter-

mines uniquely the Luce rationalizable stochastic choices onM2. That does not

mean that the experimentM2 does not yield potentially useful choice information

because, of course, the experimentM2 may still Luce falsify the stochastic choice

dataset fromM1.

Example 4. Consider the two experiments in Figure 4 (left), i.e. experimentsM1 =

{{a, b}, {c, d}} andM2 = {{a, c}, {b, d}}. These experiments have the same range.

However, even assuming that all alternatives are chosen with positive probability,

none of the experiments can be used to predict the choice frequencies in the other,

since there is no relation between connections in the experiments. In contrast, in

the example in the center of the figure, experiment M1 = {{a, b}, {c, d}, {b, d}}

can predict choice frequencies in the second experiment M2 = {{a, c}}, but not

vice versa. Last, in the example on the right of the figure, experiment M1 =

{{a, b}, {b, d}, {c, d}, {a, c}} and M2 = {{a, b}, {b, c}, {c, d}, {a, d}} can predict

5We impose the restriction that C(M2) does not contain singleton menus to avoid distin-
guishing cases later and because, for a singleton menu, the choice probability is always 1 and so
there is nothing to predict.
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Figure 4: Experiments discussed in Example 4.

Luce choice in each other. That is, an experimenter only needs to collect choice

data for one of these experiments in order to make a unique prediction for Luce

choice on the other. �

5 Related Literature

The Luce Choice Rule is a fundamental building block of the discrete choice liter-

ature (McFadden, 1974; Anderson et al., 1992), and the empirical literature is too

extensive to review. Reflecting the importance of the model for applied work, a

large theoretical literature has examined extensions of the Luce Choice Rule and

their axiomatic properties.

The seminal characterization in Luce (1959) and Luce and Suppes (1965) both

require a rich domain, that is, they do not allow for an arbitrary collection of

menus. Further, they both require Positivity (the requirement that all choice

probabilities are strictly positive), and hence do not allow for censored alternatives.

However, the original Luce Choice Axiom was formulated including a condition for

the case of zero probabilities (Luce, 1959, p. 6), which obviously becomes void with

Positivity. Several works have characterized explicit extensions of the Luce rule

where Positivity is dropped, hence giving rise to models with censored alternatives

(usually called censored Luce or censored logit models), where zero probabilities

are allowed. An interpretation of those extensions is that a first decision stage

eliminates certain alternatives and a second decision stage corresponds to a Luce

Choice Rule over a restricted set of alternatives.6

6An early application of this idea is the random-demand model of McCausland (2009), which
considers a specific domain where alternatives are consumption bundles and those which provide
relatively less of all goods (and strictly less of some good) are eliminated in a first stage.
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In this spirit, Ahumada and Ülkü (2018) study Luce rules with limited consid-

eration where all menus are available, and characterize it through a single axiom

(Axiom 1). This axiom is equivalent to the GPR when all menus are available,

thus the characterization (Ahumada and Ülkü, 2018, Theorem 1) can be derived

from Theorem 1, as mentioned in Section 3.1. Echenique and Saito (2019) also

characterize censored Luce models where all menus are available. Their cyclical

independence axiom is equivalent to the GPR for this case, and thus their char-

acterization (Echenique and Saito, 2019, Theorem 1) can also be derived from

Theorem 1. These authors further study threshold models, a particular class of

censored Luce rules where alternatives become censored when their relative utility

falls below a fixed threshold. Horan (2021) studies a lexicographic choice rule with

the same interpretation (and also requiring all menus to be available), but also asks

when the first-stage selection can be rationalized by a binary relation. The result-

ing stochastic semi-order model generalizes the threshold models of Echenique and

Saito (2019). For characterization purposes, however, the Strong Product Rule

used in Horan (2021) is again equivalent to the GPR if all menus are available.

Also related to this approach is Doğan and Yıldız (2021), which considers a

new axiom called odds supermodularity, requiring that the odds against an existing

alternative increase at least additively as new alternatives are added to the choice

set. This axiom characterizes preference-oriented Luce rules, which are a particular

case of censored Luce rules where the first-stage eliminates alternatives which do

not maximize a given, fixed preference relation. Again, this result requires that all

menus are available. Of course, if censoring is dropped, the original Luce Choice

Rule is obtained, that is, odds supermodularity and Positivity together provide

an alternative characterization of the Luce Choice Rule (Echenique and Saito,

2019, Corollary 1). Relating directly to the revealed preference literature and to

two-stage Luce models, Cerreia-Vioglio et al. (2021) show that, in a setting where

all menus are available but Positivity is dropped, a random choice rule satisfies

Luce’s Choice Axiom if and only if the choice correspondence defined by its support

satisfies the Weak Axiom of Revealed Preference and random choice then follows

by a tie breaking rule that satisfies Rényi’s (1955) Conditioning Axiom.

The recent literature has also examined other generalizations of the Luce Choice

Rule, which can accommodate received behavioral anomalies, but has done so

maintaining the assumption that all or at least a rich class of menus are available.

Gul et al. (2014) study extensions of the Luce Choice Rule that allow for violations

of the weak axiom of revealed preference. They consider rich choice rules where

the set of available menus is not necessarily the collection of all possible menus,
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but it is still “rich” in the sense that the choice probability for a given menu as a

subset of other menus can be varied continuously, even when the superset menus

are required to exclude another, fixed menu. In particular, this implies an infinite

number of available menus. A preliminary result in this work (Gul et al., 2014,

Theorem 1) identifies a condition which characterizes the Luce Choice Rule within

the class of rich choice rules. Faro (2023) consider discrete choice models where

the set of alternatives might contain replicas. The objective is to address the well-

known duplicates problem (Debreu, 1960) (an issue also addressed by Gul et al.,

2014). This work provides an axiomatic characterization of the Luce model in a

context with replicas, maintaining both Positivity and that all menus are available.

Other work has considered generalizations of the Luce Choice Rule capturing

attentional and perceptual phenomena, with the aim of encompassing well-known

behavioral anomalies. The perception-adjusted Luce models of Echenique et al.

(2018) include a perception order, which allows for violations of independence of

irrelevant alternatives. Their characterization assumes Positivity and that all bi-

nary and ternary menus are available. Relatedly, Tserenjigmid (2021) considers

order-dependent Luce models, where the utility of alternatives depends on their

relative ordering in the menu. These fulfill Positivity and are characterized by

weakening the IIA and the Luce Product Rule. The characterization assumes that

all menus are available. Kovach and Tserenjigmid (2022b) consider focal Luce mod-

els including a bias toward a menu-dependent set of focal alternatives. The model

assumes that all binary menus are available. Focal Luce models are characterized

by Positivity, the Luce Product Rule, and a modification of IIA. Heydari (2021)

considers random arbitration rules, which extend the Luce Choice Rule when alter-

natives can be ranked along multiple attributes, specifying that choices depend on

menu-specific reference points. Alternatives which are dominated attribute-wise

in a menu are never chosen, violating Positivity. However, the model assumes that

all menus are available.

Recently, Kovach and Tserenjigmid (2022a) have provided characterizations

of nested logit, a widely-used generalization of logit choice which also allows for

violations of IIA as the similarity effect (or the existence of duplicates; Debreu,

1960). Nested logit amounts to a two-step logit procedure, where first a set or nest

of alternatives is chosen from a predetermined collection of such nests, and then an

alternative from the chosen nest is itself chosen. The characterization of Kovach

and Tserenjigmid (2022a) assumes Positivity and that all menus are available.

Other axiomatic work on the Luce Choice Rule has looked at more fine-grained

characterizations which pin down not only the logit functional form, but also the
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characteristics of the utility functional form (in a multi-attribute setting). For ex-

ample, Ahn et al. (2018) characterize the logit model with linear utility when only

average population choices are observable. Breitmoser (2021) has studied the gen-

eral axiomatic foundations of conditional logit, where the utilities are specified ex

ante rather than being part of the characterization. More recently, Cerreia-Vioglio

et al. (2023) have characterized a kind of logit choice rules where the probability-

generating utility depends on time constraints and initial biases, allowing a depen-

dence of choice probabilities on externally-imposed deadlines and initial anchors.

Although the technical assumptions on underling choice spaces vary, these works

maintain Positivity assumptions and the availability of all (finite) menus.

Lastly, although most work on the Luce Choice Rule has concentrated on static

representations, some contributions have also looked at explicitly dynamic frame-

works. For example, Gul et al. (2014) considered the extension of the Luce Choice

Rule to dynamic problems, and Fudenberg and Strzalecki (2015) provided an ax-

iomatic characterization of a Discounted Adjusted Luce Model in an intertemporal

setting where the decision maker chooses from a menu of actions yielding an out-

come for the current period and a menu of actions for the next one.

In summary, most of the characterizations of choice rules related to or general-

izing the Luce Choice Rule maintain both Positivity and a rich set of menus. Some

contributions weaken Positivity (allowing censored alternatives), but none of them

addresses the problem of arbitrarily restricted menus. Most of the literature has

imposed additional structure on the Luce Choice Rule or its generalization with

censored alternatives, while essentially maintaining a framework with a rich set of

menus. In contrast, we generalize the Luce Choice Axiom/Luce Product Rule in

order to provide a characterization of the censored Luce Choice Rule that applies

for any collection of menus.

Last, we remark that the fact that obtaining data for all choice menus is im-

practical has led to alternative approaches which abstract from questions of falsifi-

cation and concentrate instead on fitting of models to data. In particular, conjoint

analysis introduces attribute variation for choice problems across individuals, es-

pecially survey designs. This approach goes back to Luce and Tukey (1964) and

is extensively used in marketing (Green and Rao, 1971; Hainmueller et al., 2014).

The new tools for experimental and survey design that we provide can be used as

a complement to conjoint analysis to, e.g., ensure falsifiability while improving the

empirical fit of models and data.
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6 Conclusion

The Luce Choice Rule, or multinomial logit model, is widely used in economics and

beyond to model choice data. However, empirical work deals with limited datasets.

For practical (e.g., cost) considerations, datasets rarely contain all potential menus,

or even all binary menus. Yet, all previous characterizations of logit choice rest

upon the assumption that data for a rich set of menus is observed. We provide a

characterization of the Luce Choice Rule that allows for an arbitrary collection of

menus, and hence can be applied to any actual stochastic choice dataset. Further,

extending previous work, our characterization applies when not all alternatives are

observed with positive probability, as will often be the case in actual datasets.

When an empirical researcher designs an experiment or survey, the objectives

of research must be balanced against the practical limitations. Building upon our

characterization, we provide further results that show how to determine whether

an experiment will fulfill three criteria. The first is falsification, i.e. whether the

data will allow for potentially falsifying the Luce Choice Rule. The second is

identification, i.e. whether it will be possible to uniquely pin down a utility function

underlying the Luce Choice Rule. The third is prediction, i.e. being able to predict

choice frequencies for out of sample menus.

Our contribution is therefore twofold. On one hand, we provide a characteriza-

tion of Luce choice that applies independently of the practical dataset limitations

that are to be expected in empirical work. On the other hand, we provide tools that

empirical researchers can use, before data collection, to ensure that data-collection

designs efficiently accomplish some common research objectives.
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Appendix

We first establish two lemmata that are used in the proof of Theorem 1 and then

provide proofs for the remaining results.

The following lemma establishes some properties of the relation ∼C
M.

Lemma 1. SupposeM is an experiment and C is a choice correspondence onM.

(i) The binary relation ∼C
M is an equivalence on AC(M).

(ii) For each Q ∈ QC(M) and M ∈M, either C(M) ⊆ Q or C(M) ∩Q = ∅.

(iii) For each Q ∈ QC(M) with |Q| ≥ 2 there is an overlapping sequence

[a1, . . . , an+1;M1, . . . ,Mn] on C(M) such that
⋃n

i=1C(Mi) = Q.

Proof. For part (i), if a ∈ AC(M), then a ∈ C(M) for some M ∈ M, and

so [a, a;M ] is an overlapping sequence in C(M). Hence, a ∼C
M a. If a ∼C

M

b for a 6= b, then there is an overlapping C-sequence [a1, . . . , an+1;M1, . . . ,Mn]

with a = a1 and b = an+1. Letting a′i = an+1−i and M ′
i = Mn+1−i for i =

1, . . . , n, [a′1, . . . , a
′
n+1;M

′
1, . . . ,M

′
n] is an overlapping C-sequence with b = a′1 and

a = a′n+1, and so b ∼C
M a. Now consider distinct a, b, d ∈ AC(M) with a ∼C

M b

and b ∼C
M d, i.e., there are overlapping C-sequences [a1, . . . , am+1;M1, . . . ,Mm]

and [b1, . . . , bk+1;N1, . . . , Nk] with a = a1, b = am+1 = b1 and d = bk+1. Then

[a1, . . . , am, b1 . . . , bk+1;M1, . . .Mm, N1, . . . Nk] is an overlapping C-sequence with

a = a1 and c = bk+1, and so a ∼C
M d. Hence, ∼C

M is reflexive, symmetric and

transitive, thus an equivalence relation.

Part (ii) follows because if a ∈ C(M) ∩ Q and b ∈ C(M), then [a, b;M ] is an

overlapping C-sequence, implying that a ∼C
M b. Hence b ∈ Q, and so C(M) ⊆ Q.

For part (iii), let Q ∈ QC(M) and consider any distinct a, b ∈ Q. Since

a ∼C
M b, there is an overlapping C-sequence [a1, . . . , an+1;M1, . . . ,Mn] with a = a1

and b = an+1. It follows from part (ii) that
⋃n

i=1C(Mi) ⊆ Q. If equality holds,

the argument is complete. If not, there is d ∈ Q\
⋃n

i=1C(Mi), and the argu-

ment for transitivity in part (i) shows that there is an overlapping C-sequence

[a′1, . . . , a
′
m+1;M

′
1, . . . ,M

′
m] such that {a, b, d} ⊆

⋃m

j=1C(M ′
j) ⊆ Q. Since all al-

ternatives in Q are related by ∼C
M, repeating this argument eventually yields

Q ⊆
⋃m

j=1C(M ′
j) ⊆ Q.

The following lemma shows that a stochastic choice dataset is Luce rationaliz-

able if and only if there is an independent Luce Choice Rule for each equivalence

class on the experiment.
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Lemma 2. A stochastic choice dataset θ = (M, P ) can be rationalized by a Luce

Choice Rule if and only if there exists a collection of utility functions
(

vi : Qi →

R++)
m
i=1, one for each equivalence class Qi ∈ Q

Cθ(M), such that, for i = 1, . . . , m,

P (a,M) =







vi(a)∑
b∈Cθ(M) vi(b)

if a ∈ Cθ(M)

0 if a /∈ Cθ(M)
(3)

whenever (a,M) ∈ S(M), Cθ(M) ⊆ Qi, where m is the number of equivalence

classes in QCθ(M). Moreover, in that case, θ has a Luce representation with

a utility function v : A(M) → R++ given by v(a) = vi(a) for all a ∈ Qi and

i = 1, . . . , m and v(b) arbitrary for b ∈ A(M) \ ACθ(M).

Proof. Suppose θ can be rationalized by a Luce Choice Rule: there exists v :

A(M)→ R++ such that (1) is satisfied whenever a ∈ M ∈ M. For i = 1, . . . , m,

define vi : Qi → R++ by vi(a) = v(a). Then (3) is satisfied whenever ai ∈M ⊆ Qi.

The converse follows because the equivalence relation ∼Cθ

M on alternatives also

induces a partition of the menus by Lemma 1. For each equivalence class Qi ∈

QCθ(M), letMi = {M ∈M | Cθ(M) ⊆ Qi}. Then Mi ∩Mj = ∅ for all i 6= j,

and it follows by Lemma 1(ii) that
⋃m

i=1Mi contains the supports of all the relevant

menus. Now suppose there is a collection of utility functions
(

vi : Qi → R++)
m
i=1

such that (3) holds whenever a ∈ Cθ(M) ⊆ Qi. For i = 1, . . . , m, let v(a) = vi(a)

if a ∈ Qi, and let v(b) be arbitrary when b ∈ A(M)\ACθ(M). Then, v : A(M)→

R++ satisfies (1) whenever a ∈M ∈M.

Proof of Proposition 1

Proof. Let θ = (M, P ) be a stochastic choice dataset. The GPR trivially implies

that Equation (2) holds for every elementary Cθ-cycle on M. To see the con-

verse, suppose that Equation 2 is satisfied for every elementary cycle in ECθ(M).

Now consider an arbitrary non-degenerate overlapping Cθ-cycle on M, denoted

[a1, . . . , an+1;M1, . . . ,Mn] with an+1 = a1. First, suppose only one alternative is

repeated, aj = a1 (w.l.o.g). Then, consider alternatives a1, . . . , aj−1 and menus

M1, . . . ,Mj−1. We have that ai, ai+1 ∈ Cθ(Mi) for i = 1, . . . , j − 2, aj−1 ∈

Cθ(Mj−1), and a1 = aj ∈ Cθ(Mj−1). Hence, by (2) for elementary Cθ-cycles,

j−1
∏

i=1

P (ai,Mi) =

j−2
∏

i=1

P (ai+1,Mi) · P (a1,Mj−1).
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Now consider alternatives aj = a1, aj+1, . . . , an. We have that ai, ai+1 ∈ Cθ(Mi)

for i = j, . . . , n − 1, an ∈ Cθ(Mn), and an+1 = a1 = aj ∈ Cθ(Mn). Hence, by (2)

for elementary Cθ-cycles,

n
∏

i=j

P (ai,Mi) =

n−1
∏

i=j

P (ai+1,Mi) · P (a1,Mn)

Thus,

n
∏

i=1

P (ai,Mi) =

j−1
∏

i=1

P (ai,Mi)

n
∏

i=j

P (ai,Mi)

=

j−2
∏

i=1

P (ai+1,Mi) · P (a1,Mj−1) ·
n−1
∏

i=j

P (ai+1,Mi) · P (a1,Mn) =

n
∏

i=1

P (ai+1,Mi)

where the last equality follows because an+1 = a1 = aj . The GPR then follows by

induction on the number of repeated alternatives.

Proof of Proposition 2

Proof. First, suppose that EC(M1∪M2) = E
C(M1)∪E

C(M2). Let P ∈ P
C(M1∪

M2) and let θ = (M1∪M2, P ). It is immediate that any utility that censored Luce

rationalize θ also censored Luce rationalize θi = (Mi, PMi
) for i = 1, 2. Conversely,

suppose that θi is C-Luce rationalizable for i = 1, 2. Then, by Theorem 1, Equation

2 is satisfied for every elementary C-cycle in EC(Mi) for i = 1, 2. Hence, because

EC(M1 ∪M2) = E
C(M1 ∪M2) = E

C(M1) ∪ E
C(M2), Equation 2 is satisfied for

every elementary C-cycle in EC(M1 ∪M2). Hence, by Proposition 1, θ is C-Luce

rationalizable. Therefore,M1 andM2 are C-Luce independent.

Now suppose that M1 and M2 are C-Luce independent. We want to show

that EC(M1 ∪M2) = E
C(M1) ∪ E

C(M2). By contradiction, suppose this is not

true. Since EC(Mi) ⊆ E
C(M1 ∪M2) for i = 1, 2, it follows that there exists some

φ ∈ EC(M1 ∪M2) \
(

EC(M1) ∪ E
C(M2)

)

. Write φ = [a1, . . . , an+1;M1, . . . ,Mn],

an+1 = a1, n ≥ 2. Since φ is neither an elementary C-cycle in M1 nor an el-

ementary C-cycle in M2, some of the menus in the list M1, . . . ,Mn are in M1

and some are in M2. Hence, there exists j∗ ∈ {1, . . . , n} such that Mj∗ ∈ M1

and Mj∗−1 ∈ M2 (modulo n) or vice versa (the symmetric case is identical). In

particular, aj∗ ∈ C(Mj∗) ∩ C(Mj∗−1) ⊆ A
C(M1) ∩ A

C(M2).
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Define some v1 : A(M1) 7→ R++ and then define v2 : A(M2) 7→ R+ by

v2(a) =































v1(aj∗) + 1 if a = aj∗

v1(a) if a ∈ AC(M1) \ {aj∗}

1 if a ∈ AC(M2) \ A
C(M1)

0 otherwise

Define a SCF P onM1 ∪M2 by P (a,M) = Pv1(a,M) for all (a,M) ∈ S(M1)

and P (a,M) = Pv2(a,M) for all (a,M) ∈ S(M2). This is a well-defined SCF

becauseM1 andM2 are disjoint. Then (Mi, PMi
) = (Mi, Pvi), which is C-Luce

rationalizable by construction. Since M1 and M2 are C-Luce independent, it

follows that P ∈ LC(M1 ∪M2). By Proposition 1, Equation (2) must hold for φ.

For each menu M ∈ M1 ∪M2, define i(Mj) = 1 if M ∈ M1 and i(Mj) = 2 if

M ∈M2. Define also v(M) =
∑

a∈M vi(Mj)(a). Again, this is well-defined because

M1 andM2 are disjoint. Equation (2) for φ can be written as follows.

n
∏

j=1

vi(Mj)(aj)

v(Mj)
=

n
∏

j=1

vi(Mj)(aj+1)

v(Mj)
=

n
∏

j=1

vi(Mj−1)(aj)

v(Mj−1)
,

where the subindices are modulo n. The product of the denominators is identical

on both sides, hence the equation simplifies to

n
∏

j=1

vi(Mj)(aj) =

n
∏

j=1

vi(Mj−1)(aj).

Let j 6= j∗. If aj ∈ A
C(M1) ∩ A

C(M2), then v1(aj) = v2(aj) by construction

of v2. Hence the term for aj is identical on both sides of the equality. If aj ∈

AC(M2)\A
C(M1), we must have that i(Mj) = i(Mj−1) = 2, since there is no

menu in M1 containing aj . Symmetrically, if aj ∈ A
C(M1)\A

C(M2), we must

have that i(Mj) = i(Mj−1) = 1, since there is no menu in M2 containing aj . In

both cases, again, the term for aj is identical on both sides of the equality. Thus,

the last equation reduces to

vi(Mj∗ )(aj∗) = vi(Mj∗−1)(aj∗).

By the choice of aj∗ , i(Mj∗) = 1 and the left-hand side is equal to v1(aj∗),

while i(Mj∗−1) = 2 and the right-hand side is equal to v2(aj∗) = v1(aj∗) + 1.

This contradicts that P ∈ LC(M1 ∪M2), and so M1 and M2 are not C-Luce

independent.
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Proof of Corollary 2

With some abuse of notation, for an elementary C-cycle φ of length n, we write

M ∈ φ if M = Mi(φ) for some i ∈ {1, . . . , n}.

Proof. Fix an experiment M and a choice correspondence C on M. We con-

struct the independent C-partition as follows. First let M′ = {M1, ...,MJ} =
{

M ∈M
∣

∣ ∀φ ∈ EC(M),M /∈ φ
}

be the set of all menus inM that are not part

of any elementary C-cycle on M. If M′ = M, the independent C-partition

is {{Mj} | j = 1, . . . , J }. Otherwise, for two menus M,M ′ ∈ M\M′, write

M ∼E M ′ if there exist menus N1, . . . , Nn ∈M such that M = N1, M
′ = Nn and,

for all i = 1, . . . , n−1, there exists some φi ∈ E
C(M) such that Ni, Ni+1 ∈ φi. It is

easily verified that ∼E is an equivalence relation onM\M′. LetMJ+1, . . . ,MK

be the corresponding equivalence classes. Then, {M1, . . . ,MJ ,MJ+1, . . . ,MK}

is the independent C-partition.

By Proposition 2, to verify that any two equivalence classes in {M1, . . . ,MK}

are C-Luce independent, it suffices to show that EC(M) =
⋃K

k=1 E
C(Mk). Sup-

pose not. Then, there exists φ ∈ EC(M)\
⋃K

k=1 E
C(Mk). Thus, there are menus

M,M ′ ∈ φ such that M ∈ Mk and M ′ ∈Mk′ for some k 6= k′ (it must then be the

case that k, k′ ∈ {J +1, . . . , K}). But, since M,M ′ ∈ φ, it follows that M ∼E M ′,

which contradicts that they are in different equivalence classes.

Finally, we need to verify that, for any k ∈ {J + 1, . . . , K}, there does not

exist M′
k ( Mk such that M′

k and Mk\M
′
k are C-Luce independent. Suppose

this is not the case. Then, it follows by Proposition 2 that EC(Mk) = E
C(M′

k) ∪

EC(Mk\M
′
k). Let M ∈ M′

k and M ′ ∈ Mk\M
′
k. Since M ∼E M ′, there exists

N1, . . . , Nn such that M = N1, M
′ = Nn and, for all i = 1, . . . , n− 1, there exists

some φi ∈ E
C(M) such that Ni, Ni+1 ∈ φi. Since M ∈ M′

k and M ′ ∈ Mk\M
′
k,

there exists some i ∈ {1, . . . , n − 1} such that Ni ∈ M
′
k, Ni+1 ∈ Mk\M

′
k, and

hence φi ∈ E
C(M) with Ni, Ni+1 ∈ φi, implying that φi ∈ E

C(Mk)\(E
C(M′

k) ∪

EC(Mk\M
′
k)), a contradiction.

Proof of Corollary 3

Proof. If EC(M) = ∅, by Proposition 1 the GPR is vacuously satisfied for any

stochastic choice dataset θ = (M, P ). Thus,M is Luce unfalsifiable.

Conversely, suppose there is an elementary C-cycle φ on M. Since φ is non-

degenerate, there is an elementary C-cycle φ̃ = [a1, . . . , an+1;M1, . . . ,Mn] such

that M1 6= Mn. Moreover, |C(Mi)| ≥ 2 for each i = 1, ..., n. Let P ∈ PC(M),

and define Pε by Pε(a,M) = P (a,M) if M 6= M1, Pε(a1,M1) = 1− ε, Pε(b,M1) =
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ε
|C(M1)|−1

for b ∈ C(M1)\{a1}, and P (c,M1) = 0 for c ∈ M1\C(M1). Then,

Pε ∈ P
C(M) for ε ∈ (0, 1). However, limε→0

∏n

i=1 Pε(ai,Mi) =
∏n

i=2 P (ai,Mi)

while limε→0

∏n

i=1 Pε(ai+1,Mi) = 0. Hence, there exists ε∗ ∈ (0, 1) such that

Equation (2) is not satisfied and so, by Theorem 1, Pε∗ /∈ LC(M). Thus, M is

not Luce unfalsifiable.

Proof of Proposition 3

Proof. Let M1 and M2 be disjoint experiments, C a choice correspondence on

M1 ∪M2, and P1 ∈ L
C(M1).

First, suppose EC(M1∪M2) = E
C(M1)∪E

C(M2). Let P ∈ P
C(M1∪M2|P1)

such that PM2 ∈ L
C(M2). Then, since PM1 = P1 ∈ L(M1), it follows that

Equation (2) is satisfied for all elementary C-cycles on M1 ∪ M2 and so P ∈

LC(M1 ∪M2). Hence,M2 cannot Luce falsify (M1, P1).

Now, suppose EC(M1 ∪ M2) 6= E
C(M1) ∪ E

C(M2). Then, there exists an

elementary C-cycle φ = [a1, . . . , an+1;M1, . . . ,Mn] onM1 ∪M2 where M1 ∈ M1

and Mn ∈M2. Now define two SCFs P and P ′ onM1 ∪M2 by, for all (a,M) ∈

S(M1 ∪M2),

P (a,M) =



















P1(a,M) if M ∈ M1

1
|C(M)|

if M ∈ M2, a ∈ C(M)

0 otherwise

and

P ′(a,M) =



















P1(a,M) if M ∈M1

1+1[a=a1]
|C(M)|+1[a1∈C(M)]

if M ∈M2, a ∈ C(M)

0 otherwise

.

Hence, P, P ′ ∈ PC(M1 ∪M2|P1). Moreover, (M2, PM2) can be C-censored Luce

rationalized by the utility v(a) = 1 for all a ∈ A(M2) and (M2, P
′
M2

) can be C-

censored Luce rationalized by the utility v′(a) = 1 + 1[a = a1] for all a ∈ A(M2).

If P is not Luce rationalizable we are done, so suppose that P ∈ LC(M1∪M2|P1).

In that case, we show that P ′ /∈ LC(M1 ∪M2|P1), which implies that M2 can
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C-Luce falsify (M1, P1). By Theorem 1, it is sufficient to show that Equation 2 is

not satisfied for φ. To show this, note that, on one hand,

∏n

i=1 P
′(ai,Mi)

∏n

i=1 P
′(ai+1,Mi)

=

∏

i:Mi∈M1
P1(ai,Mi)

1∏
i:Mi∈M2

(|C(Mi)|+1[a1∈Mi])
∏

i:Mi∈M1
P1(ai+1,Mi)

2∏
i:Mi∈M2

(|C(Mi)|+1[a1∈Mi])

=
1

2

∏

i:Mi∈M1
P1(ai,Mi)

∏

i:Mi∈M1
P1(ai+1,Mi)

because M1 ∈M1 but Mn ∈M2. On the other hand,

∏n

i=1 P (ai,Mi)
∏n

i=1 P (ai+1,Mi)
=

∏

i:Mi∈M1
P1(ai,Mi)

1∏
i:Mi∈M2

|C(Mi)|
∏

i:Mi∈M1
P1(ai+1,Mi)

1∏
i:Mi∈M2

|C(Mi)|

=

∏

i:Mi∈M1
P1(ai,Mi)

∏

i:Mi∈M1
P1(ai+1,Mi)

,

and so
∏n

i=1 P
′(ai,Mi)

∏n

i=1 P
′(ai+1,Mi)

6=

∏n

i=1 P (ai,Mi)
∏n

i=1 P (ai+1,Mi)
= 1.

Hence, Equation 2 is not satisfied for the elementary C-cycle φ onM1 ∪M2, and

so P ′ /∈ LC(M1 ∪M2|P1). Hence,M2 can C-Luce falsify (M1, P1).

Proof of Proposition 4

Proof. Let θ = (M, P ) be a stochastic choice dataset with v ∈ V(θ), and w :

A(M) → R++. First, suppose that there exists a collection of strictly positive

scalars (λ1, . . . , λm) such that, for i = 1, . . . , m, v(a) = λiw(a) whenever a ∈

Qi ∈ Q
cθ(M). Let (a,M) ∈ S(M); then, by Lemma 2, Cθ(M) ⊆ Qi for some

i = 1, . . . , m and Cθ(M) ∩Qj = ∅ for all j 6= i. Therefore,

PCθ
v (a,M) = 1[a ∈ Cθ(M)]

v(a)
∑

b∈Cθ(M) v(b)
= 1[a ∈ Cθ(M)]

λiw(a)
∑

b∈Cθ(M) λiw(b)

= 1[a ∈ Cθ(M)]
w(a)

∑

b∈Cθ(M) w(b)
= PCθ

w (a,M),

and so w ∈ V(θ).

Now let w ∈ V(θ). For each i = 1, . . . , m, choose some a∗i ∈ Qi ∈ Q
Cθ(M) and

let λi =
v(a∗i )

w(a∗i )
. Fix some i = 1, . . . , m and let a ∈ Qi. If a = a∗i , then λiw(a) =

v(a) by construction. If a 6= a∗i , then there exist an overlapping Cθ-sequence

[a∗i , a2, . . . , an, a;M1, . . . ,Mn] onM that Cθ-connects a
∗
i and a. Therefore,
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w(a∗i )

w(a2)

w(a2)

w(a3)
· · ·

w(an)

w(a)
=

P (a∗i ,M1)
∑

b∈Cθ(M1)
w(b)

P (a2,M1)
∑

b∈Cθ(M1)
w(b)

· · ·
P (an,Mn)

∑

b∈Cθ(Mn)
w(b)

P (a,Mn)
∑

b∈Cθ(Mn)
w(b)

=
P (a∗i ,M1)

∑

b∈Cθ(M1)
v(b)

P (a2,M1)
∑

b∈Cθ(M1)
v(b)
· · ·

P (an,Mn)
∑

b∈Cθ(Mn)
v(b)

P (a,Mn)
∑

b∈Cθ(Mn)
v(b)

=
v(a∗i )

v(a2)

v(a2)

v(a3)
· · ·

v(an)

v(a)

because v, w ∈ V(θ). Hence,

w(a∗i )

w(a)
=

v(a∗i )

v(a)
=

λiw(a
∗
i )

v(a)
,

and so v(a) = λiw(a).

Proof of Corollary 4

Proof. LetM be an experiment and C be a choice correspondence onM. First,

suppose that a ∼C
M b for all a, b ∈ AC(M). Then, for any stochastic choice

dataset θ = (M, P ) that is C-censored, |QCθ(M)| = 1. Therefore, by Theorem 4,

if v, w ∈ V(θ), there exists λ > 0 such that v(a) = λw(a) for all a ∈ AC(M), and

soM is C-Luce identified.

Conversely, suppose that QC(M) = {Q1, . . . , Qm} where m > 1 and let θ =

(M, P ) be a C-censored stochastic choice dataset with v ∈ V(θ). Define w :

A(M)→ R++ by

w(a) =







2v(a) if a ∈ Q1

v(a) otherwise
.

Then, by Proposition 4, w ∈ V(θ) but there does not exist λ > 0 such that

v(a) = λw(a) for all a ∈ AC(M); henceM is not C-Luce identified.

Proof of Proposition 5

Proof. First, suppose M1 can C-Luce predict stochastic choice on M2. We first

show thatAC(M2) ⊆ A
C(M1). For contradiction, suppose not. Then, there exists

a ∈ C(M) ∈ C(M2) with a ∈ AC(M1 ∪M2) \ A
C(M1). Moreover, since C(M2)

does not contain singletons, there is b ∈ C(M) \ {a}. Now let P1 ∈ L
C(M1) such
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that there exists a unique extension P ∈ LC(M1∪M2|P1). Let v ∈ V(M1∪M2, P )

and define v′ : A(M1 ∪M2)→ R++ by

v′(d) =



















v(d) if a ∈ AC(M1)

v(d) + 1 if a ∈ AC(M1 ∪M2) \ A
C(M1)

0 otherwise

By construction, the restriction of Pv′ to M1 coincides with P1. However, if

b ∈ AC(M1), then

Pv(a,M)

Pv(b,M)
=

v(a)

v(b)
6=

v(a) + 1

v(b)
=

Pv′(a,M)

Pv′(b,M)
;

and if b ∈ AC(M1 ∪M2) \ A
C(M1), then

Pv(a,M)

Pv(b,M)
=

v(a)

v(b)
6=

v(a) + 1

v(b) + 1
=

Pv′(a,M)

Pv′(b,M)
.

Hence, Pv 6= Pv′ and so |LC(M1 ∪M2|P1)| > 1.

Now suppose there exists P1 ∈ L
C(M1) such that |LC(M1 ∪ M2|P1)| = 1,

and let a, b ∈ A(M2) be such that a ∼C
M2

b but, for contradiction, a ≁C
M1

b.

Since P ∈ LC(M1), there exists a utility function v : A(M1) 7→ R++ such that

P = PC
v . Since a ≁C

M1
b, a and b are in different equivalence classes ofM1, which

we denote Qa and Qb, respectively. Fix any λ > 0 and define a utility function

vλ : A(M1) 7→ R++ by

vλ(c) =







λv(c) if c ∈ Qa

v(c) if c ∈ A(M1) \Qa

Denote Pλ = Pvλ , which is a SCF onM1∪M2, and denote by P 1
λ the restriction

of Pλ to M1. It follows from Proposition 4 that P 1
λ = P for all λ, that is, Pλ ∈

LC(M1 ∪ M2|P ) for all λ. However, a ∼C
M2

b and hence a ∼C
M1∪M2

b, i.e. a

and b are in the same equivalence class of ∼C
M1∪M2

. It follows from Proposition

4 that Pλ 6= Pλ′ whenever λ 6= λ′, i.e. LC(M1 ∪M2|P ) contains infinitely many

different C-Luce rationalizable SCFs extending P . This contradicts that |LC(M1∪

M2|P1)| = 1, and so it must be the case that a ∼C
M1

b.

For the converse, suppose AC(M2) ⊆ A
C(M1) and, for all a, b ∈ AC(M2),

a ∼C
M2

b implies a ∼C
M1

b. Now let P1 ∈ L
C(M1), and suppose there exist two

P, P ′ ∈ LC(M1∪M2|P1). Since A
C(M2) ⊆ A

C(M1) there exist v, v
′ : A(M1) 7→
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R++ such that P = PC
v and P ′ = PC

v′ as SCFs on M1 ∪ M2. Note that the

restrictions of P, P ′ toM1 are both equal to P1.

Let Q1, . . . , QK be the equivalence classes of ∼C
M1

on M1. Since C(M2) has

no singleton menus and a ∼C
M2

b implies a ∼C
M1

b, it follows that Q1, . . . , QK are

also the equivalence classes of ∼C
M1∪M2

onM1 ∪M2.

Let vk, v
′
k be the restrictions of v, v

′ to the equivalence class Qk for k = 1, . . . , K.

Since the restrictions of P and P ′ toM1 are both equal to P1 and v, v′ are defined

on M1, Theorem 4 implies that there exist λ1, . . . , λK such that vk = λkv
′
k for

k = 1, . . . , K. But since Q1, . . . , QK are also the equivalence classes of ∼c
M1∪M2

,

Proposition 4 implies that P = P ′ as SCFs onM1∪M2. Hence |L(M1∪M2|P1)| =

1 and, since P1 was arbitrary, it follows thatM1 can C-Luce predictM2.

40


