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Abstract

In manufacturing safety-critical components, brazing stands out for its
ability to form strong, cost-efficient joints between dissimilar materials.
Despite its importance, the brazing process often falls short in efficiency
and precision due to its reliance on manual labour. Simultaneously,
full automation, while enhancing certain operational aspects, lacks the
adaptability and decision-making prowess inherent to human operators.
This thesis addresses these challenges within the brazing process by
advocating for a synergistic integration of robotics and artificial intelligence
(AI) in a human-robot collaboration (HRC) framework. It uniquely
combines human expertise with advanced machine capabilities, aiming to
refine brazing operations beyond the reach of solely human or automated
endeavours.

Central to the thesis is the development of a category-agnostic object
localisation strategy. This technique enables robots to recognise and
position brazing filler metal (BFM) across a diverse array of joint configu-
rations without prior specific knowledge of the objects. By leveraging AI-
driven insights, this approach significantly enhances operational precision
and adaptability, illustrating its utility in complex assembly tasks where
traditional methods fall short.

Building on this foundation, a learning-based visual servoing method
is introduced. This innovative approach allows robots to dynamically
adjust their actions in real-time based on visual feedback, navigating
complicated environments and performing tasks with heightened accuracy.
Such capability is crucial for ensuring the consistent placement of BFM
under varying conditions, demonstrating a marked improvement in the
process’s reliability and efficiency.

Finally, an intuitive human-robot collaboration framework is proposed.
This model is designed to seamlessly integrate the strengths of both
humans and robots, facilitating a partnership that leverages the precision
of automation and the judgement of human operators. Through examples
such as collaborative adjustment of brazing parameters in response to real-
time observations, the framework underscores the importance of human
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insight in augmenting robotic capabilities.
This approach not only advances the brazing process by mitigating the

reliance on skilled labour and enhancing safety standards but also lays
a foundation for applications beyond brazing, highlighting the transfor-
mative potential of integrating human and robotic expertise in industrial
processes.
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Chapter 1

Introduction

1.1 Motivation

Brazing plays a pivotal role in manufacturing safety-critical components, offering the
unique capability to join dissimilar materials and form robust, cost-efficient bonds.
This process is indispensable across a wide spectrum of industries, from aerospace
to automotive, where the integrity of joint connections is non-negotiable [1, 2, 3].
Brazing is chosen over comparable techniques like welding due to its unique advantages
in joining dissimilar materials, lower operating temperatures reducing thermal stress
and distortion, and particular suitability for thin materials and complex assemblies.
Unlike welding, brazing maintains the base material properties while creating strong
joints, making it crucial for safety-critical components [4]. Despite its advantages,
the efficiency and precision of brazing are significantly constrained by its reliance on
manual techniques. In an era marked by Industry 4.0, with its emphasis on automation
and smart manufacturing, the integration of robotics into brazing processes presents
a promising avenue to enhance both accuracy and operational efficiency.

However, the current state of brazing automation faces several critical challenges.
Firstly, there are significant limitations in autonomous capabilities. Existing
automation in brazing is often restricted to repetitive common tasks, requiring
specialised machines for specific operations. The unstructured environments typical in
brazing operations pose significant challenges for traditional robotic systems, limiting
their ability to adapt to varying workpieces and conditions. This limitation results in
inflexibility and increased setup times when switching between different brazing tasks
or product lines, hindering the overall efficiency of the manufacturing process.

Secondly, there is a strong dependency on human operators in the brazing process,
particularly for tasks requiring dexterity and decision-making. This reliance not only
leads to potential inconsistencies but also exposes workers to repetitive tasks that
can cause fatigue and reduce overall efficiency. The industry is facing a growing
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shortage of skilled labor, further exacerbating the challenges of maintaining high-
quality brazing operations. The dependence on human expertise introduces variability
in process quality and productivity, making it difficult to achieve consistent results
across different production runs.

Lastly, accessibility issues present a significant challenge in certain brazing scenar-
ios. Some environments are unsafe or physically unreachable for human operators,
such as those involving hazardous materials or spaces with severe limitations. The
complexity of brazing techniques often requires extensive training periods, creating
a steep learning curve that further compounds the skilled labour shortage. These
accessibility issues not only pose safety concerns but also limit the potential for process
optimisation in challenging environments, restricting the industry’s ability to innovate
and improve efficiency in more demanding applications.

To address these challenges, the brazing industry requires advancements in three
key areas:

• Flexible Manufacturing Systems: There is a pressing need for intelligent robotic
systems capable of navigating unstructured environments and adapting to
various brazing tasks with minimal reprogramming. Such systems should be
able to take over repetitive or physically demanding tasks, thereby improving
consistency and reducing worker fatigue. The development of these systems
would significantly enhance the adaptability of brazing operations to different
product types and batch sizes.

• Human-Robot Co-Activity: The development of intuitive interfaces for human-
robot interaction is crucial. These interfaces should enable seamless task
handover between humans and robots, effectively combining the precision of
automation with human expertise in decision-making and problem-solving. This
collaboration has the potential to leverage the strengths of both humans and
robots, leading to improved process efficiency and quality.

• Intuitive Teleoperation: For scenarios where direct human presence is imprac-
tical or unsafe, advanced teleoperation systems are required. These systems
should be capable of interpreting human intentions accurately and provide
intuitive control interfaces, allowing skilled operators to apply their expertise
remotely. The development of such systems would not only enhance safety but
also extend the reach of human expertise to challenging brazing environments.

By focusing on these areas, this research aims to develop comprehensive solutions
that not only enhance the efficiency and quality of brazing processes but also
address the broader challenges facing the manufacturing industry in the era of
smart automation. The potential impact of such advancements extends beyond
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brazing, potentially setting new standards for human-robot collaboration in complex
manufacturing processes.

1.2 Aims and Scope

The overall aim of this research is to develop an intelligent, flexible, and collaborative
robotic system for brazing applications that addresses the three key challenges
identified: limited autonomous capabilities, human dependency, and accessibility
issues. To tackle these challenges, this research focuses on three corresponding areas,
including flexible manufacturing systems, human-robot co-Activity, and intuitive
teleoperation.

Specifically, the research aims to:
1) Develop flexible manufacturing systems to address Limited Autonomous

Capabilities:

- Design and implement intelligent robotic systems capable of navigating unstruc-
tured brazing environments.

- Create adaptive algorithms that enable robots to handle various brazing tasks
with minimal reprogramming.

- Enhance the system’s ability to quickly adjust to different product types and
batch sizes.

2) Establish effective human-robot co-activity to mitigate human dependency:

- Develop intuitive interfaces for seamless human-robot interaction in brazing
processes.

- Create collaborative frameworks that optimise task allocation between humans
and robots.

- Implement systems that leverage human expertise for complex decision-making
while utilising robotic precision for repetitive tasks.

3) Implement intuitive teleoperation solutions to overcome accessibility issues:

- Design advanced teleoperation systems that allow skilled operators to perform
complex brazing tasks remotely.

- Develop haptic feedback mechanisms to enhance operator sensory input in
remote operations.
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- Create intelligent interfaces that accurately interpret and execute human
intentions in challenging or hazardous environments.

The scope of this research encompasses:

- Development of computer vision (CV) and machine learning (ML) algorithms
for robotic perception in unstructured brazing environments.

- Design and implementation of human-robot interfaces (HRI) for collaborative
brazing tasks.

- Creation of advanced teleoperation systems with enhanced feedback capabilities.

- Integration of these technologies into a cohesive system for brazing applications.

- Validation and testing of the developed systems in both simulated and real-world
brazing scenarios.

1.3 Thesis Outline

The thesis structure is depicted in a logical flow given in Fig. 1.1.
This thesis begins with Chapter 1, which presents the fundamental motivation

driving the enhancement of brazing processes through advanced robotics and artificial
intelligence. The chapter establishes three critical challenges in contemporary brazing
practices: limited autonomous capabilities, human dependency, and accessibility
constraints. Following the problem formulation, it delineates the research aims and
scope, setting the foundation for subsequent technical discussions.

The overview of the organisation is given here:
Chapter 2: Preliminaries
Chapter 2 lays the groundwork by introducing essential preliminaries and theo-

retical foundations. The chapter commences with brazing technology fundamentals
before transitioning into intelligent manufacturing concepts. It then details the
simulation frameworks vital for experimental validation, encompassing both hardware
configurations and software architectures. Particular attention is paid to hand-
eye calibration methodology and the implementation of digital twin technology for
teleoperation applications.

Chapter 3: Literature Review
This chapter lays the foundation of the thesis by surveying the landscape of

academic and industrial research related to brazing, with a particular focus on the
integration of automation and robotics to enhance efficiency, precision, and safety in
brazing operations. It starts by providing a comprehensive overview of traditional
brazing techniques, highlighting their strengths and limitations, and underscores
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Figure 1.1. Research framework showing the progression from fundamental
robot perception (Chapter 4) through human-robot collaboration (Chapter 5) to
teleoperation (Chapter 6). The integration of visual servoing, collaborative control,
and human-robot interfaces forms a cohesive approach to flexible manufacturing
automation.
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the critical need for innovation in this domain. The discussion then transitions to
the exploration of intelligent manufacturing principles, illustrating their potential to
redefine brazing processes through advanced automation and data-driven decision-
making. Further, the chapter delves into the specifics of robotic applications in
brazing, examining the role of robots in automating repetitive tasks such as braze
pasting and component placement. This includes an analysis of current technologies,
their operational frameworks, and the challenges they face in practical applications.
Special attention is given to the concept of category-agnostic localisation and the
importance of precise hand-eye calibration in ensuring the accuracy and reliability of
robotic actions within the brazing context. The exploration continues by addressing
learning-based visual servoing, a key component in enabling robots to adapt and
respond to dynamic manufacturing environments. This section assesses various
approaches, including reinforcement learning techniques, and their applicability to the
challenges of brazing operations. It evaluates how these methods contribute to the
development of more intelligent and autonomous robotic systems capable of complex
decision-making and real-time adjustments. Then the focus shifts to the human-
robot collaboration (HRC) in the context of brazing. It investigates frameworks and
strategies for learning from human expertise, metrics for evaluating HRC efficiency,
and models for adaptive collaboration that can accommodate the nuances of brazing
tasks in both human-robot co-activity and teleoperation scenarios. The role of
teleoperation is also explored as a means to extend human capabilities and enhance
safety, particularly in hazardous working conditions.

Chapter 4: Category-Agnostic Object Localisation
Chapter 4 introduces category-agnostic visual servoing, representing a significant

advancement in robotic perception and control. The chapter presents a comprehensive
comparative analysis of visual servoing algorithms before introducing a novel hybrid
approach for category-agnostic object detection and manipulation. This framework
seamlessly integrates learning-based methods with traditional control strategies,
validated through extensive experimentation in both simulated and physical envi-
ronments.

Chapter 5: Human Intention-Aware Collaboration
Building upon enhanced robotic perception, Chapter 5 addresses human-robot

collaboration through an intention-aware framework. The chapter details the devel-
opment of dynamic control strategies that adapt to human intentions, incorporating
real-time hand pose estimation and gesture recognition. This multimodal approach
demonstrates significant improvements in collaborative task execution, particularly in
manufacturing scenarios.

Chapter 6:Human Interaction-Oriented Teleoperation
Chapter 6 explores human interaction-oriented teleoperation, presenting both

physical controller-based interfaces and gesture-based systems. The chapter details
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the integration of haptic feedback mechanisms and evaluates system performance
across various teleoperation scenarios, emphasizing the practical implementation
aspects in real-world applications.

The thesis concludes with Chapter 7, synthesising the research contributions
while contextualising their significance within the broader robotics and manufacturing
domains. This final chapter also presents a critical discussion of future research
directions, particularly focusing on the evolution of flexible manufacturing systems
and human-robot collaboration frameworks.

This outline guides the reader through the systematic progression of the thesis,
from its inception to the realisation of novel solutions and their implications for
intelligent manufacturing in brazing processes.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter engages in a comprehensive exploration of existing related works, aiming
to establish the current state of knowledge in the field. This critical examination
serves two primary purposes: firstly, to identify gaps, trends, and advancements
in the existing body of literature, and secondly, to discern the methodologies and
approaches employed in prior research endeavours. This systematic analysis of the
available literature contextualises the research within the broader academic landscape
and guides the formulation of a research framework that either builds upon, challenges,
or refines existing theories and methodologies.

In this section, the following questions are aimed to be answered: 1) What is
brazing? 2) How to braze? 3) What currently exists as a gap in the brazing landscape?
4) Which process in brazing can benefit greatly from robotics and AI technology? 5)
What industrial/academic implications could addressing this gap have? By providing
insights into these questions, this research can further narrows down the focus and
refining the research scope.

2.2 Brazing Background

Brazing, a well-established manufacturing process, plays a crucial role in fabricating
various safety-critical components. According to the definition by the American
Welding Society [5], brazing encompasses a group of joining processes that achieve
material coalescence by heating them to the brazing temperature and utilising a filler
metal (solder) with a liquidus above 450°C and below the solidus of the base metals.
One distinctive feature that sets brazing apart from other joining methods is the use
of brazing filler metals to bond base materials. By employing a filler metal with a
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melting temperature lower than that of the base material, the base material remains
solid during the brazing process. The advantages and disadvantages of the brazing
process are presented in Table 2.1.

Brazing can be further categorised based on the brazing method, which encom-
passes three main techniques: open-air brazing, controlled atmosphere brazing, and
laser brazing [4].

• Open-air Brazing: This method encompasses two primary approaches: torch
brazing and induction brazing. Torch brazing utilises a welding torch as the
heat source, while induction brazing employs a high-frequency electromagnetic
field induction as a contactless and flameless heat source. Induction brazing
offers several advantages, including localised heating, repeatability, and ease of
automation, making it a preferred choice in various applications compared to
torch brazing.

• Controlled Atmosphere Brazing: This technique is particularly suitable
for joining oxidised materials. The brazing process takes place in a controlled
atmosphere to prevent oxidation of the materials being brazed. Furnace
brazing, conducted in a vacuum furnace, eliminates the need for flux during
the brazing process, streamlining the post-braze cleaning process. Additionally,
the temperature at each stage of the vacuum brazing process can be precisely
controlled using computer programs, ensuring the production of high-quality
brazed parts.

• Laser Brazing: Widely used in automotive manufacturing, laser brazing
involves using a laser to melt the wire-form filler metal. Similar to laser beam
soldering, laser brazing provides highly concentrated heat, resulting in minimal
thermal deformation. This property makes it ideal for joining lightweight,
appearance-conscious, and rigid components. As a result, laser brazing is
commonly employed in joining automotive roofs, side panels, and trunk lids,
where precision and aesthetic considerations are critical.

Achieving a high-quality braze joint hinges on four crucial factors that significantly
enhance brazing quality, manufacturing productivity, and operator safety.

1. Proper Cleaning and Protection of Parts: Essential to the brazing
process, regardless of the method employed, is the proper cleaning and protection
of parts. This aims to prevent oxidation and contamination during brazing. Failure
to address this aspect can result in oxidation-related defects, compromising joint
integrity. Addressing this issue may involve advanced cleaning machines and stricter
working environment rules, which fall beyond the scope of the study.

2. Design of the Parts: Thorough capillary actions into the joint depend on
the design of the parts, requiring meticulous attention to joint, clearance, and fixture
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Table 2.1. A list comparing the advantages and disadvantages of brazing.

Advantages Disadvantages

Brazed parts suffer less from warping or over-
heating: the brazing process is operated at a
lower temperature (compared with the welding
process) which leads to lower possibilities of
damaging base metals.

For non-permanent joint joining: the brazing
process produces permanent joints which are
usually irreversible and hard to restore to
the previous form after joining. Mechanical
fastening is enough and might be more
economical and convenient than brazing in this
particular situation.

Brazed joints are ductile: brazed joints can
withstand more shock and vibration than other
joining methods which property can be used in
joining high sealing requirements materials.

For low strength joint joining: similarly, brazing
can provide joints with large tensile strength.
Joint has low demand on strength or leak
tightness might consider other more economical
joining methods.

Brazing can join dissimilar materials: for
example, brazing is capable of joining ceramic
to metal.

The brazing process is relatively easy: brazing
can be fast while it still dependent on human
worker’s skills.

Brazing is an economical process.

Brazing can produce strong joints: brazing
can provide a stronger joint than the metal
(nonferrous metals and steel) to be joined.

design. Poor design choices, such as wide gaps or uneven joint clearances, can hinder
capillary action and lead to brazing failure. Attention to design details is crucial, and
advancing this factor involves process parameter optimisation, akin to an engineering
problem.

3. Even and Precise Heating of Parts: Uneven heating can impede the flow
of brazing filler metal, leading to defects such as incomplete penetration. Achieving
precise and controlled heating is essential for the production of robust and reliable
brazed joints. Enhancements in this area can be realised through the implementation
of more accurate control algorithms and integrated sensor technology, benefiting from
mature solutions available in both industrial and academic domains [6, 7] and related
technologies, such as welding.

4. The Pasting of Brazing Filler Metal (BFM). The amount and location of
BFM deposition influence the heating time required for the assembly and the weight
of the joints. Manual brazing involves feeding the filler metal during the heating
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process adjacent to the joint, while automated brazing methods and furnace brazing
may apply the filler metal before the in-phase brazing process [5]. However, industry
solutions and academic contributions to this factor remain limited, primarily due
to challenges in measuring and recording dynamic interactions between parts, joint
designs, materials, and BFMs during dispensing. Both the accuracy and repetitivity of
the robot and the experience of humans are essential, making this problem non-trivial.
Combining robotics and AI has great potential in this process, as seen in its successful
application in robot perception [8, 9, 10], control [11, 12, 13], and collaboration with
humans [14, 15, 16].

To illustrate the integration of human expertise and robotic capabilities in brazing
processes, Fig. 2.1 presents an example implementation of intelligent digitized
brazing. This particular approach demonstrates one possible workflow encompassing
three distinct phases: pre-pasting preparation, pasting execution, and post-process
analysis. The example utilizes QR codes for process information management and
incorporates both human demonstration and automated execution paths depending
on task complexity. While this implementation shows one potential solution for
combining human expertise with robotic precision, numerous other approaches
and configurations are possible depending on specific application requirements and
available technologies.

2.3 Intelligent Manufacturing Overview

After identifying the specific gap in the brazing landscape and recognising the
substantial benefits that robotics and AI technology can bring to the braze pasting
process, a fundamental question arises: How can these technologies contribute to its
enhancement? This section delves deeper into this question through an exhaustive
review of related technologies.

Intelligent manufacturing, often referred to as Industry 4.0, represents a paradigm
shift in the way products are designed, produced, and delivered. At its core, it
entails the seamless integration of cutting-edge technologies, data-driven processes,
and human expertise to create a highly efficient and adaptable manufacturing
ecosystem [17]. The significance of intelligent manufacturing cannot be overstated. It
offers a means to elevate production processes to unprecedented levels of efficiency,
quality, and flexibility. By harnessing the power of automation, data analytics,
and human-machine collaboration, manufacturers can address the demands of a
dynamic market, reduce costs, and enhance their global competitiveness. In recent
years, the advancement of computer vision and deep learning algorithms has spurred
technological innovation, particularly in the development of robust camera vision
systems for rapid and precise welding. A notable example is the hybridisation of
extreme learning machines and genetic algorithms, proposed in 2016 by Rong et al.
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Figure 2.1. An example implementation of digitized brazing process integration.
The illustrated workflow shows one possible approach divided into three phases:
Prior to Pasting (left), showing process encoding through QR codes; Pasting Stage
(centre), demonstrating both human demonstration and automated execution paths;
and Analysis (right), featuring vision-based quality assessment. This represents one of
many possible configurations for integrating human expertise with robotic capabilities
in brazing applications.
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[18]. This innovative approach leverages published experimental data to construct
a predictive model for the top and bottom dimensions of weld beads. By finely
controlling welding parameters such as speed and wire feed rate, the extreme learning
machine accurately forecasts the bead profile’s top and bottom width. The genetic
algorithm component further refines predictions, yielding minimised relative errors
and improved quality.

• Collaborative Robots

In recent years, the domain of robotics has undergone a remarkable transformation.
The conventional view of robots as rigid, pre-programmed machines that perform
repetitive tasks in controlled environments has evolved into a far more sophisticated
and adaptable paradigm. A new generation of robots, often referred to as ”smart
robots” or ”learning robots,” has emerged, setting the stage for a technological
revolution in the field of robotics [19]. These learning robots, equipped with advanced
machine learning and artificial intelligence techniques, possess the remarkable ability
to acquire knowledge, adapt to changing environments, and make informed decisions.
They can navigate complex and unstructured surroundings, interact seamlessly with
humans, and perform tasks that require both precision and flexibility. This transfor-
mation is largely attributed to the advent of robot learning, a multidisciplinary field
that marries the principles of robotics, machine learning, and artificial intelligence.

Robots can be broadly classified into two subsets: traditional robots and
collaborative robots, also known as cobots. Traditional robots are designed to replace
human workers in performing tasks. However, they face challenges related to safety
regulations, which require them to be enclosed within cages, separating them from
human operators. This isolation results in a discrete production process, which
may not be optimal for processes that require close human involvement. Cobots,
on the other hand, have emerged as part of the Industry 4.0 concept, providing
manufacturing with intelligence and flexibility. They allow humans and robots to work
in close proximity within a shared workspace [20]. The concept of cobots was initially
introduced in [21], and they are defined as ”robots intended for direct human-robot
interaction within a shared space or where humans and robots are in close proximity.”

Traditional industrial robots, designed for high-volume manufacturing, operate
in isolated environments due to safety concerns and regulatory requirements. In
contrast, collaborative robots (cobots) represent a distinct category of robotic systems
engineered specifically for direct human-robot interaction within shared workspaces
[22]. While both types serve manufacturing purposes, cobots incorporate advanced
sensing and control features that enable safe operation alongside human workers
without the need for physical barriers. The key distinction of cobots lies in
their inherent safety features and adaptability to human presence. These include
force/torque monitoring, collision detection, and speed/separation monitoring, all

13



Chapter 2. Preliminaries 2.3. Intelligent Manufacturing Overview

regulated under ISO/TS 15066:2016 safety standards. Unlike traditional industrial
robots that prioritize speed and payload capacity, cobots emphasize safe interaction,
teachability, and flexible deployment. This makes them particularly suitable for tasks
requiring frequent reprogramming or human oversight.

In modern manufacturing environments, cobots serve as complementary tools
rather than replacements for human workers. They excel in applications where
complete automation is either impractical or undesirable, such as small-batch
production or processes requiring human judgment. The integration of cobots enables
manufacturing systems to leverage both the consistency of automation and human
cognitive capabilities. When implemented in Human-Robot Collaboration (HRC)
scenarios, these systems can achieve higher flexibility than fully automated solutions
while maintaining better consistency than purely manual operations. Table 2.2
provides a detailed comparison between traditional industrial robots and cobots,
highlighting their distinct characteristics and applications.
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Table 2.2. Comparison between industrial robots and collaborative robots.

Industrial robot Collaborative robot

Flexibility Not flexible. Fixed installation.
Changes on a product line are limited
and require a long time for reprogram-
ming and testing.

Flexible. Allows frequent changes on
the product line and can quickly adapt
to different products. Suitable for
small batch production and customised
services.

Efficiency Fast. Slow.

Cost Expensive. Requires additional expen-
diture on installation, design, customer
training, and after-sales maintenance.

Relatively affordable.

Safety Separate workspace. Usually fenced. Can work alongside humans (Need to
be designed in accordance with ISO/TS
15066:2016).

Deployment Time-consuming design, setup, and
customer training.

Easy to program. Many cobots can
be programmed or reprogrammed in
a short time using methods like hand
guiding, coding, or 3D visualisation
technology.

Intelligence No self-awareness. Limited failure
detection capabilities.

Real-time monitoring of load, location,
and tactile pressure [23]. Easily
incorporates artificial intelligence tech-
nologies.

Application
scenario

Repeated and relatively fixed manu-
facturing lines with high demands for
accuracy and payload.

Dynamic product lines with frequent
changes. Particularly suited for pro-
cedures involving human workers and
customised or intelligent systems.

Payload High. Low.

In summary, collaborative robots represent a significant advancement in the field
of automation, offering flexibility, safety, and intelligence to manufacturing processes.
They bridge the gap between human workers and automated systems, creating a
harmonious and efficient working environment.

• Industry-Academia Gap

Large disparities persist between the industrial and research sectors in the field of
collaborative robots. Industrial environments impose stricter constraints, while most
research settings fail to adequately demonstrate the adaptability and versatility of
cobots within partially unstructured work environments [24]. In [25], four critical
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gaps in current cobot research for industrial settings are identified: human safety,
intuitiveness, adaptability, and employability.

• Human Safety: The paramount concern in industrial applications involving
cobots is the safety of human operators. These environments typically neces-
sitate close human-robot interaction, making comprehensive safety protocols
essential.

• Intuitiveness: For cobots to achieve widespread adoption, they must be
accessible to users without extensive technical training. Innovations like the
integration of Human-Robot Collaboration (HRC) with mixed reality (MR)
technologies, as explored in [26], show promise. By blending virtual and
augmented realities, MR allows for an intuitive, interactive interface between
humans and robots, potentially lowering the barriers related to training and
programming.

• Adaptability: The capacity of cobots to adjust seamlessly to various tasks and
environments is critical for their effective deployment across different industrial
sectors. This flexibility not only enhances their utility but also maximises their
operational efficacy, underscoring the need for systems that can easily transition
between tasks with minimal downtime.

• Employability: Bridging the gap between theoretical cobot concepts and their
practical application is crucial for realising their full potential in industrial
settings. Digital Twin (DT) technology, a cornerstone of Industry 4.0, plays a
vital role in this context by providing realistic simulations for training, testing,
and validating cobot systems. Despite the high fidelity of these simulations,
discrepancies between virtual and physical environments can pose challenges,
especially in fine-tuning reinforcement learning algorithms, thus pointing to an
essential area for further research and development.

This thesis directly addresses the notable gaps in the adaptability and intuitiveness
of Cobots within the specific context of brazing operations. Current advancements
in cobot technology, while promising, have not fully met the nuanced requirements
of brazing tasks, which demand high levels of precision and flexibility. The research
presented here aims to narrow this gap by developing a framework that improves
cobots’ ability to interact with human operators in a more intuitive manner and to
adapt efficiently to the diverse challenges of brazing. By concentrating on these key
issues, the thesis proposes a pragmatic approach that seeks to enhance the practical
deployment of cobots in brazing, thereby contributing to the broader field of robotic
automation in specialised manufacturing environments. This focused endeavours is
intended to provide a solid foundation for the future integration of Cobots in complex
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tasks, emphasising a realistic assessment of current technologies and their potential
for improvement.

2.4 Robot Control Overview

In this section, a brief introduction to different robot control methods are provided,
highlighting their advantages, disadvantages, and application scenarios. In general,
there are three ways to generate robot control: offline programming, Learning from
Demonstration (LfD), and teleopearation.

Offline programming is one of the most basic function of robot control which
normally programmed by scripts, through teach pedant or GUI. In comparison, LfD
is a popular method for robots to learn new skills quickly, where a human operator
manually guides the robot through the desired task. LfD serves as a significant part in
robot automation that imparts human knowledge and skills to robots. LfD offers the
advantage of intuitive and natural interaction, as the human can directly demonstrate
the task using their own expertise. This method is particularly suitable for complex
tasks that are challenging to program explicitly. However, LfD requires skilled human
operators and may be time-consuming, as the robot needs to learn from multiple
demonstrations to generalise the task. Additionally, the accuracy of reproducing the
demonstrated task can be influenced by variations in human demonstrations. It is
a compelling alternative to offline programming methods in complex environments
where the task cannot be easily scripted or optimised [27].

There are two main categories of LfD: model-based methods, such as sampling-
based motion planning [28] and trajectory optimisation [29], and model-free methods
such as recurrent neural network-based methods [30, 31], CNN-based methods [32, 33,
34], and RL-based methods [35, 36]. While model-based methods have shown to be
reliable and sample-efficient, achieving excellent results [37, 38], they are still limited
by human performance. On the other hand, model-free methods have the ability to
explore the state space and sometimes generate control policies that surpass human
performance [39]. However, like other machine learning techniques, these methods
also face challenges such as sample inefficiency [40], increasing difficulty of the task
due to large action dimensionality [41], and poor performance in noisy demonstrations
[42]. A basic demonstration of using LfD is given in Fig. 2.2, showcasing the seamless
translation of human-guided expertise into robotic action in a box-opening tasks.
Targeting the limitations of the two categories, recent studies have proposed new
techniques for LfD. For instance, [43] proposed the idea of dividing any robot task into
reaching and interaction stages, respectively. They found that humans are not very
good at producing quality demonstrations when reaching, but excel at interaction,
which is an embodiment of human knowledge. Following this idea, it is fair to say
that a reaching method without specifying the target location is the first step toward
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Figure 2.2. Demonstration of the box-opening task using Programming by
Demonstration (LfD). The top panel shows a human operator guiding the robot
through the task, while the bottom panel displays the precise execution of the task
by the robot. Sequential images capture different stages of the process, from left to
right.

true robot autonomy. A segmentation-based visual servoing method was introduced
in the follow-up work [44], which does not rely on further training after a one-shot
demonstration and can be deployed in new environments immediately.

On the other hand, teleoperation controls the robot remotely by a human
operator. Teleoperation provides real-time control and immediate feedback, making
it suitable for tasks that require human intervention or in hazardous environments.
A teleoperation platform with two Phantom Omni hand controllers for preliminary
testing and validation of remote bilateral control is established as in Fig. 2.3. It
allows the human operator to leverage their perception and decision-making abilities,
ensuring precise and adaptable robot behaviour. However, teleoperation relies heavily
on the operator’s skills and may not be scalable for complex tasks or long-duration
operations. Latency and communication constraints can also affect the performance
of teleoperated robots.

Apart from the aforementioned three mainstream approaches, there also exists
hybrid approaches, combining multiple control methods, have also emerged. These
approaches aim to leverage the strengths of different methods to overcome their indi-
vidual limitations. For example, a hybrid approach could involve initial teleoperation
for task demonstration, followed by LfD to refine the learned behaviour. Such hybrid
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methods can offer a balance between human expertise and autonomous learning,
enabling efficient and adaptable robot teaching. Table 2.3) provides a comparison
of different robot control methods.

Figure 2.3. Dual hand-controller teleoperation platform used for preliminary
teleportation testing and validation.
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Table 2.3. Comparison of Robot Control Methods

Teaching
Method

Advantages Disadvantages Applications

Offline Pro-
gramming

Direct, suitable for sim-
ple and repeated tasks
(with parameters clearly
defined)

Requires programming
skill, time-consuming,
accuracy influenced
by variations in
demonstrations

Extensive experience
learning/training time

LfD Intuitive and natural in-
teraction, suitable for
complex tasks

Requires skilled opera-
tors, time-consuming, ac-
curacy influenced by vari-
ations in demonstrations

Complex task program-
ming, skill transfer

Teleoperation Real-time control, imme-
diate feedback, precise
and adaptable behaviour

Relies on operator
skills, may not scale for
complex tasks, latency
and communication
constraints

Human intervention, haz-
ardous environments

Hybrid Ap-
proaches

Balance between
human expertise and
autonomous learning,
efficient and adaptable
teaching

Complexity in combining
methods, potential inte-
gration challenges

Task refinement, leverag-
ing multiple methods

2.5 Reinforcement Learning Basis

Reinforcement Learning (RL) represents a distinct approach within the broader
spectrum of machine learning techniques, characterised by its focus on learning
optimal actions through trial and error to maximise rewards in a given environment.
Unlike traditional machine learning algorithms, which often rely on large datasets
to train models in a supervised manner, RL requires no prior knowledge about the
system model, making it particularly suited for applications where explicit examples
of correct behaviour are not available. This feature sets RL apart from other machine
learning strategies, where the emphasis is on pattern recognition and prediction based
on historical data. In comparison to deep learning, another subset of machine learning
known for its ability to process and learn from large amounts of unstructured data,
RL excels in scenarios requiring decision-making and policy optimisation. While deep
learning algorithms excel in identifying patterns and making predictions from complex
inputs, they are less equipped to directly address problems of sequential decision-
making under uncertainty—a core strength of RL [45].

The application of RL in highly complex and dynamic environments, such as those
encountered in robot manipulation and process control, has demonstrated substantial
benefits. Research indicates that RL algorithms not only offer superior stability and
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computational efficiency compared to traditional optimal control algorithms [46] but
also adapt effectively to changes in the environment, optimising actions based on
the feedback received. This adaptability is a key advantage of RL, enabling it to
outperform both conventional machine learning and deep learning algorithms in tasks
that involve complex sequences of decisions and actions.

Given these considerations, RL is chosen for visual servoing in robotics due to
its inherent ability to iteratively improve and find optimal solutions in dynamic
environments without the need for predefined models. This capability makes RL
particularly appealing for visual servoing applications, where the robot must adapt to
varying visual inputs and physical conditions to perform tasks accurately. The choice
of RL is justified by its proven track record in enhancing both the efficiency and
effectiveness of robotic control systems, surpassing the capabilities of other machine
learning and deep learning approaches in this specific context. The advantages of RL
algorithms are summarised as follows:

• Resource Efficiency: RL algorithms have low online computational complexity
[47].

• Inherent Adaptability: RL algorithms do not rely on predefined models.

• Handling Complexity: RL algorithms can process high-dimensional sensory
inputs [48].

• High Performance: RL algorithms are capable of achieving results close to
optimality.

• Simplified Hyperparameters: RL algorithms typically have fewer hyperparame-
ters and are less sensitive to tuning.

Typically, RL algorithms are applied in complex environments that can be
described by a Markov Decision Process (MDP). An MDP is a memory-less discrete
stochastic process that models state transitions influenced by agent policies and
environmental stochasticity. While RL holds great promise, it demands substantial
training data, which can be challenging to generate or collect for robots due to safety
hazards and energy costs associated with interactions in the physical world. However,
recent research has explored methods to overcome data scarcity, including fine-tuning
and boosting the training process through human demonstrations [40, 49, 50, 51].
Additionally, conventional data augmentation techniques used in deep learning can
be adapted for training RL algorithms.

When designing reinforcement learning algorithms normally the following four
parts should be considered:
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• Observation and State: The process of observation and state plays a
pivotal role in the design of reinforcement learning algorithms. This process
represents the state of the agent within the Markov Decision Process (MDP).
After each action is taken and the environment changes, observations are made
to update the agent’s understanding of its surroundings. These observations
are fundamental, providing the agent with the information necessary to make
informed decisions and optimise its policy.

• Action: In the domain of reinforcement learning, actions serve as the
cornerstone of agent behaviour. They embody the choices made by the agent and
dictate its interactions with the environment. The research is centred around
the strategic design and execution of actions that guide the agent toward its
predefined objectives.

• Reward Function: The design of the reward function profoundly influences
the convergence of the reinforcement learning algorithm and represents a pivotal
challenge in the field of robotics. This function acts as the guiding star for policy
optimisation, offering feedback on the agent’s performance. To address the issue
of sparse binary rewards and enhance learning efficiency, this research have
pioneered a data-driven reward function. This approach rectifies the sample
efficiency problem by providing the policy with timely and meaningful feedback.
It draws inspiration from human behaviour when reaching for an object with
a specific gesture. Initially, coarse movements are executed when the target is
distant, with fine adjustments coming into play as proximity increases, ensuring
precision. While the reward function is not easily hand-crafted, it encapsulates
the essence of the task’s objectives. It provides continuous and task-aligned
guidance for policy optimisation, effectively forming a closed loop with the
agent’s actions. This synergy significantly expedites the training process by
ensuring the policy receives immediate feedback, thereby staying aligned with
the task’s objectives.

In recent years, reinforcement learning algorithms have emerged as promising
methods for addressing this challenging control, decision making and optimisation
tasks.

• Control: Chen et al. [52] demonstrated the use of an expectation maximisation-
based RL algorithm to control tendon-driven serpentine manipulators, which
excel in minimally invasive surgical tasks. These manipulators navigate confined
spaces through keyhole incisions but are challenging to control due to non-
linearities and model uncertainties. The proposed algorithm combined Learning
from Demonstration and EM RL to teach these manipulators surgical tasks.
Rajeswaran et al. [53] addressed the control of multi-fingered hands, a
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complex problem due to high dimensionality and numerous potential contacts.
They introduced a combination of RL and imitation learning called demo
augmented policy gradient (DAPG). DAPG effectively scaled up to complex
manipulation tasks with a high-dimensional 24-degree-of-freedom hand in a
simulated environment. Importantly, this algorithm integrated a small number
of human demonstrations, significantly reducing the required robot learning
time. Brito et al. [54] applied an RL algorithm for inspection trajectory
control, allowing operators to interact and change action paths in real-time,
improving actions iteratively. Schmidt et al. [55] introduced an architecture
that enables the implementation of an RL framework on Programmable Logic
Controllers (PLCs). This approach involves coupling non-real-time learning
frameworks with the real-time environments of PLCs. Consequently, the need
for external interfaces from the production unit is eliminated. This not only
eliminates potential safety hazards associated with transferring models via
internet connections but also reduces integration efforts. Such a solution holds
the potential to save on equipment replacement costs and minimise downtime
for factories aiming to upgrade their systems to align with the Industry 4.0
framework.

• Decision Making: Autonomous decision-making has become a significant area
of focus within the realm of robot teleoperation and visual servoing, driven by
the need for robots to navigate and adapt to a variety of tasks and environmental
conditions with minimal human intervention [56, 57, 58]. This advancement
enables robots to not only follow predefined tasks but also to dynamically adjust
to changes in real-time, thereby increasing their utility in diverse operational
scenarios. RL acts as a key method for developing such autonomous capabilities,
which allows robots to learn and refine decision-making strategies through trial-
and-error interactions with their environment. RL is particularly effective in
motion prediction tasks [59, 60, 61], where it helps machines to derive optimal
actions based on historical outcomes, thus enhancing their ability to make
informed decisions in future scenarios. However, the practical application
of RL and autonomous decision-making faces several challenges, notably in
dealing with environmental uncertainties. These can include sensor inaccuracies
and unpredictable movements within the robot’s operational space. The
reinforcement learning model’s exploration-exploitation approach is designed to
navigate these uncertainties, improving decision-making capabilities by learning
from variable conditions. Despite these advancements, reliance on RL for robot
teleoperation is not without its drawbacks. The approach demands significant
volumes of training data to reach an acceptable level of performance, and in
complex environments, developing an effective strategy might require extensive
and costly data collection efforts [62]. Additionally, the training phase for
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RL algorithms can be time-consuming, potentially limiting their application in
situations demanding immediate responsiveness. Furthermore, there’s a risk
that RL models could develop strategies that are either unsafe or ethically
questionable, especially when deployed in real-world settings [63, 64]. These
concerns highlight the necessity for careful consideration of safety and ethical
standards in the development and implementation of autonomous decision-
making systems for robots

• Optimisation: Li et al. [65] applied multi-agent game theory in a non-zero-
sum game framework to optimise performance in large-scale unknown industrial
processes. Local RL-based optimisation addressed individual production index
sub-problems, contributing to overall plant-wide performance. This strategy
effectively navigated complex trade-offs in industrial settings, considering factors
like cost, maintenance, quality, time, and labour. However, the inherent
black-box nature of RL algorithms poses challenges in safety-critical industrial
scenarios, requiring attention to the predictability and trustworthiness of
robots. Rossi et al. [66] proposed an RL-based robot arm path planning
approach aimed at reducing task completion time in collaboration with humans.
They showed that unsupervised learning paradigms could produce similar or
better results compared to annotated motion datasets, saving time and effort.
Reinforcement learning was compared to other methods such as Programming
by Demonstration (LfD), which, although intuitive, can be time-consuming.
Zhu et al. [67] introduced the Dynamic Actor-Advisor Programming (DAAP)
algorithm, aiming to minimise both task costs and constraint risks concurrently,
with a focus on sample efficiency, safety, and scalability. Integrating this
approach with lower-level safety measures shows promise for deploying RL in
industrial settings. Jiang et al. [68] used RL to address optimal selection
of process control inputs in the flotation process. The algorithm ensured
optimal tracking of operational indices while maintaining inputs within specified
bounds. Khader et al. [69] applied Q-learning-based RL to optimise surface
mount technology (SMT) in PCB manufacturing by controlling stencil printing
parameters. These implementations demonstrate RL’s potential in enhancing
process control and optimisation in industrial contexts.

In summary, when implementing RL algorithms in industrial settings, it’s crucial
to address the following challenges:

• Observation Space Limitations: The observation space of RL agents in
real-world scenarios can be significantly smaller than the state space. Practical
sensors may provide only partial state information.
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• Reward Design Complexity: Designing appropriate reward functions for
RL algorithms in physical environments can be intricate. Sparse rewards in
real-world settings can substantially impact the convergence of RL algorithms.

• Stability and Theoretical Framework: The theoretical stability of RL
algorithms is an ongoing area of development. Ensuring the robustness and
safety of RL-based systems in industrial applications remains a concern.

• Safety Concerns: RL algorithms can sometimes act unpredictably, which is a
significant safety consideration in critical industrial environments.

2.6 Simulation for Robot Learning

Simulated environments are gaining increasing attention for providing virtual rep-
resentations of factory environments. As mentioned earlier in the literature review
chapter, this virtual mirroring concept is significant for the training, testing, and
validation of robots due to its safety advantages and its ability to generate large
amounts of data without exposing real robots to potentially slow, expensive, and
dangerous exploratory learning processes. However, these virtual environments have
limitations. While they offer valuable data for analysis, they cannot perfectly replicate
all the details of the physical world. This difference can significantly affect robot
learning such as reinforcement learning algorithms. For example, in a simulation,
an agent applying a reinforcement learning algorithm can observe the system as a
whole, using this global observation as its own state to make decisions. However, in a
real-world scenario, observations come from various sensors, each providing a different
aspect of environmental information. Integrating data from these sensors forms the
agent’s observation. This means that the observation dimension is limited by the
number and characteristics of sensors, providing only a partial observation compared
to the all-encompassing view in a simulated environment. In this section, two main
simulators: Pybullet and Gazebo, are introduced, each serves for specific purposes
and tasks.

2.6.1 Simulation Setup

• Docker

To enhance the experiment reproducibility, software isolation, and ease of
deployment for other research, a containerisation technology called Docker is used
in the experiment. This section delves into the integration of Docker within the
experimental setup, highlighting the benefits it brings to the research.

Benefits of Docker in robotics research:
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• Experiment Reproducibility: Docker enables the encapsulation of the entire
experimental environment, including all dependencies and software libraries,
into a single container. This ensures the exact reproduction of experiments,
mitigating compatibility issues and minimising the ”it works on my machine”
problem.

• Isolation: Docker containers operate in isolated environments, preventing
conflicts between software components. This is particularly valuable when
multiple experiments with different requirements share the same hardware setup.

• Portability: Docker containers, being lightweight, can be effortlessly transferred
between different systems, allowing seamless transitions of experiments across
various computational platforms.

• Version Control: Docker facilitates version control of experiment environments.
By creating and maintaining specific Docker images for each iteration, changes
can be precisely tracked, and reverting to previous setups becomes feasible.

In the research conducted, Docker plays a crucial role in maintaining the integrity
and reproducibility of the experiments. The following practices are adopted:

Firstly, containerised simulation environments are employed. Docker is used to
create isolated simulation environments for the testing and validation of algorithms.
These environments encapsulate simulation software, device drivers, and control
modules, ensuring consistent simulations across various systems. Secondly, emphasis
is placed on Dependency Management. All software dependencies, including ROS
packages, libraries, and drivers, are containerised using Docker. This guarantees that
experiments can be executed on any Docker-supported system, irrespective of the
underlying system’s configuration. Finally, Experiment Packaging is emphasised.
Each experiment is encapsulated as a Docker image, encompassing the essential
codebase, datasets, and configuration files. This approach facilitates researchers in
effortlessly pulling these images and launching experiments without concerns about
compatibility issues.

However, it is important to acknowledge Docker’s limitation in providing serial
port support, presenting challenges for devices with high-frequency data exchange
or stringent communication requirements. For instance, difficulties were encountered
when attempting to use the Phantom Omni, a haptic device with six degrees of
freedom (DoF), within Docker or Windows Linux Subsystem (WSL). While techniques
such as USB mapping (with usbipd) facilitated a connection between the device and
the system inside the Docker container, they introduced significant latency in the data
exchange process. Consequently, the device would disconnect within a minute during
testing. Unfortunately, this issue remains unresolved as of the writing of this thesis.
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Figure 2.4. Gripper control program in Compute Box.

Figure 2.5. Example of WSL.

• Windows Subsystem for Linux

The Windows Subsystem for Linux (WSL) is a compatibility layer developed by
Microsoft to run a Linux kernel interface and command-line tools directly on Windows
10 and 11. WSL provides a convenient way for developers to work with Linux-based
tools and applications without the need for a dedicated Linux virtual machine or
dual-boot setup. Here are reasons why WSL and Docker solution is desired in the
experiment: firstly, WSL allows Windows users to execute Linux commands and run
Linux applications directly on their Windows machines. It supports a wide range
of Linux distributions (Ubuntu 20.04 is used for experiment). Secondly there is no
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virtualisation overhead. Unlike traditional virtual machines, WSL does not require
resource-intensive virtualisation. It runs Linux binaries directly on the Windows
kernel, resulting in minimal performance overhead, which is particularly advantageous
when employing resource-intensive tools such as Gazebo and RViz. In addition, it
seamlessly integrates with the Windows file system. This means that codes can be
assessed inside windows system directly from the WSL command line, making it easy
to work with files from both environments. In the experimentation, WSL played a
crucial role in bridging the gap between Windows and Linux environments. Despite
having access to an Ubuntu 20.04 computer, WSL command-line capabilities and the
ability to execute Linux-based tools seamlessly alongside Windows applications are
desired. This integration proved to be of paramount importance in the comprehensive
management and orchestration of the diverse components comprising the experimental
setup. These components encompassed a spectrum of devices, ranging from Windows-
based to Linux-based, and WSL served as the unifying platform that streamlined their
interactions. An illustrative depiction of WSL is presented in Fig. 2.5, offering a visual
glimpse into the operational dynamics of this innovative compatibility layer.

2.6.2 Simulators Comparison

Gazebo Simulator
In the realm of intricate robot applications, ROS stands out with its suite of

software libraries and tools. Gazebo, a simulator within ROS, is employed for the
development of both the digital twin platform and an extended teleoperation platform.
A Gazebo-based environment within ROS serves as a pivotal arena for generating
and collecting robot data, thereby enhancing the richness of the training dataset.
Additionally, ROS’s moveit! planning environment is instrumental in facilitating
complex motion planning, a crucial component of the research (see Fig. 2.9 (c)).
Notably, the setup of ROS typically requires a Linux system, and in this research,
ROS is implemented on Ubuntu 20.04, equipped with the full desktop version of the
noetic release.

PyBullet Simulator
PyBullet, a user-friendly Python module, plays a pivotal role in robot learning.

Widely acclaimed for its applications in physics simulation, robotics, and deep
reinforcement learning [70]. This versatile toolkit, leveraging the Bullet Physics SDK,
excels in loading articulated bodies from formats like Unified Robot Description
Format (URDF) and Spatial Data File (SDF). Among its rich functionalities
are forward dynamics simulation, inverse dynamics computation, forward and
inverse kinematics, collision detection, and ray intersection queries, making it the
platform of choice for various tasks in the research. Beyond its core physics
simulation capabilities, PyBullet extends support to rendering by employing a
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Figure 2.6. The Gazebo digital twin environment, coupled with Docker containers,
serves as a bridge between virtual and physical environment, establishing the
cornerstone for the integration of digital twins in the research.

CPU renderer and OpenGL visualisation, further accommodating compatibility with
virtual reality headsets. Particularly noteworthy is PyBullet’s tailored emphasis
on reinforcement learning, rendering it uniquely well-suited for swift programming,
algorithm training, validation, and testing. This strategic alignment seamlessly
harmonises with the objectives of the robot learning segment, prioritising an accessible
platform for algorithm training over meticulous rendering accuracy. Moreover, the
simulation architecture is able to extend beyond PyBullet, incorporating the Robot
Operating System (ROS) platform for a more comprehensive approach to simulation,
data generation, and results demonstration. Table 2.4 provides a comprehensive
comparison between PyBullet and Gazebo, aiding in the selection of the most suitable
platform for specific research or application needs.This research employs ROS to
establish a visualisation platform using rviz, providing an interactive environment
for algorithm monitoring and refinement.
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Table 2.4. Comparison between PyBullet and Gazebo.

Feature PyBullet Gazebo

Simulation
Environment

Python-based physics simulator Extensive robotics simulator within
ROS

Community
Support

Active community with regular up-
dates and contributions.

Well-established community with
extensive documentation and sup-
port.

Usage Ideal for ML research and robotic
control development.

Widely used for both research
and industry applications, including
robotic manipulation and naviga-
tion.

Application Areas Physics simulation, robotics, deep
reinforcement learning

Broad spectrum including robotics,
autonomous systems, teleopeation
and sensor simulation

SDK/Framework Leverages Bullet Physics SDK, pri-
marily designed for use with Python.

Integrated with ROS, which sup-
ports C++ and Python.

Functionality Forward and inverse dynamics sim-
ulation, kinematics, collision detec-
tion, ray intersection queries

Multi-robot simulation, physics sim-
ulation, sensor simulation, dynamic
environment creation

Visualisation Limited visualisation capabilities Robust visualisation using rviz

Motion Planning Basic functionalities Advanced motion planning through
ROS moveit!

Data Generation Suitable for certain applications Extensive data generation capabili-
ties within ROS

Real-world Physics
Simulation

Focuses on accurate physics simula-
tion for robotic applications.

Aimed at simulating robots in real-
world scenarios, including physics
and sensors.

2.6.3 Simulation Environment

To facilitate the safe and cost-effective training of robot learning algorithms, a
foundational simulation environment has been established. In this rudimentary
configuration, the objective is to enable the robot to explore its environment
autonomously through visual information. The robot should perform tasks without
prior knowledge of the object’s characteristics, necessitating randomisation in the
type and position of the objects. This simulation leverages the PyBullet simulator
to emulate the robot learning task. The PyBullet simulator takes centre stage in
emulating this autonomous learning task. Built upon the robust Bullet physics engine,
PyBullet facilitates the seamless observation of state information for interactive
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objects, including task-specific items, the table, and the robot itself. This rich state
information, encompassing spatial position, orientation, velocity, and acceleration
of task objects, proves instrumental for training data-driven algorithms. It’s worth
noting that, due to inherent limitations in sensor capabilities regarding quantity and
precision, only a subset of this state information can be utilised as input. In this
foundational simulation configuration, a UR5e robot equipped with a ROBOTIQ
2F-85 gripper is employed for its user-friendly interface and widespread acceptance in
contemporary research. The gripper’s control is based on position, offering continuous
input between 0 to 1. The robot maintains a fixed spatial position, situated above
a worktable where objects are randomly generated. A snapshot of this simulation
environment is depicted in Fig. 2.9 (a). This tailored setup is predominantly devised
for the reinforcement learning based visual servoing chapter, emphasising the robot’s
autonomous controlling using visual information. Consequently, an RGB camera,
mounted on the gripper and adhering to the eye-in-hand setting [71], is simulated to
furnish observation data for the robot’s learning endeavours.

Figure 2.7. Robotiq 2F-85 gripper in
simulation.

Figure 2.8. UR5e robot arm used in
simulation.

2.6.4 Domain Randomisation

Simulations offer a safe and cost-effective means to teach robots, allowing for extensive
exploration, learning from trial and error, rapid prototyping and facilitates the
development of complex behaviours. However, the challenge lies in accurately
transferring the learned behaviours from simulation to the real-world, as the
simulation may not capture all the dynamics and uncertainties present in the physical
environment. Domain randomisation is an effective technique for domain transfer of
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Figure 2.9. Simulation and Visualisation Components: (a) PyBullet simulation
environment, illustrating the virtual setting for experimentation. (b) Rviz
visualisation of the robot, providing a dynamic and interactive display. (c) MoveIt
motion planning.

learnt knowledge from simulation environment to real-world environment [72]. The
domain randomisation includes randomising visual shapes of the scene, lightning,
camera position, camera parameters and etc.. With the help of domain randomisation,
the learnt policy will focus less on the appearance of the object and the scene while
focus more on the geometric patterns. In addition, the randomness of the scene can
lead to an improved robustness when dealing with an unfamiliar scene in real-world.
This research randomises the texture of table, ground, and the appearance of task
objects by applying texture images extracted from DTD texture database [73]. The
eye-on-hand camera is in fixed position, but the experiment randomises the FoV of
the camera by adding a small random number to the pre-set FoV value.

2.7 Hand-Eye Calibration

2.7.1 Hand-Eye Calibration Basis

In the realm of robotics, the precise coordination of vision systems and robotic
manipulators is a critical component of numerous applications. Whether it’s picking
and placing objects with high accuracy, recognising and tracking objects in an
environment, or even guiding a robotic surgical instrument, the synchronisation of
cameras and robot arms is indispensable. This synchronisation is achieved through a
process known as hand-eye calibration.

• Forward Projection Process
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The transformation of 3D real-world points into a 2D image, a process commonly
employed in image processing and computer vision applications, is known as forward
projection. This section delves into the intricacies of this transformation, encom-
passing the crucial stages of converting from a world coordinate system to camera
coordinates, subsequently to image coordinates, and finally, to pixel coordinates. The
objective is to understand the fundamental concepts and mathematical foundations
underpinning this process.

• World Coordinates to Camera Coordinates

The initial phase of forward projection involves the conversion of 3D real-world
points, defined in the world coordinate system, to the camera coordinate system.
This transformation is achieved through external camera parameters, comprising
the rotation matrix (R) and the translation matrix (T). These parameters play
a pivotal role in aligning multiple camera coordinate systems with a common
world coordinate system. Detailed methodologies for achieving this transformation,
including the specific procedures and calculations involved, will be elaborated upon in
the subsequent chapter, featuring Algorithm 2 for the eye-in-hand configuration and
Algorithm 1 for the eye-to-hand setup.

To enhance the clarity of the upcoming description, a distinct representation is
employed compared to the previous section. In mathematical terms, the conversion
from world coordinates (Xw, Yw, Zw) to camera coordinates (Xc, Yc, Zc) can be
articulated as follows: 

Xc

Yc

Zc

1

 = [R|T ]


Xw

Yw

Zw

1

 (2.1)

, where [R|T ] represents the concatenation of the rotation matrixR and the translation
matrix T. The outcome is a set of 3D points represented in the camera coordinate
system.

• Camera Coordinates to Image Coordinates

The next step in the forward projection process involves the projection of 3D
camera coordinates onto the 2D image plane. This crucial transformation is facilitated
by the camera’s intrinsic parameters, with a specific focus on the focal length denoted
as (f). To perform this transformation, a perspective transformation is utilised,
taking into account the 3D camera coordinates (Xc, Yc, Zc) and producing the resulting
2D image coordinates (u, v). The perspective transformation can be mathematically
expressed as follows:
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u = f ·
(
Xc

Zc

)
(2.2)

v = f ·
(
Yc

Zc

)
(2.3)

Here, (u, v) represents the image coordinates, while (Xc, Yc, Zc) represents the
camera coordinates. The focal length (f) serves as a scaling factor in this projection,
defining the precise relationship between real-world units and image units.

• Image Coordinates to Pixel Coordinates

The final step in the forward projection process involves converting image
coordinates (u, v) into pixel coordinates (x, y) while considering the camera’s intrinsic
parameters, which include the optical centre (Ox, Oy) and sampling rates (Sx, Sy).
This conversion from image coordinates to pixel coordinates is mathematically
expressed as:

x = Sx · u+Ox (2.4)

y = Sy · v +Oy (2.5)

Here, the terms (Ox, Oy) account for the optical centre’s shift, and the sampling
rates (Sx, Sy) are scaling factors applied during the imaging process. It’s noteworthy
that in many depth cameras, including Intel Realsense D435i used in the experiments,
camera coordinates to image coordinates and image coordinates to pixel coordinates
are seamlessly integrated into the camera’s intrinsic matrix, streamlining the entire
projection and affine transformation process.

2.7.2 Hand-Eye Calibration Setup

Hand-eye calibration is essential for a robot to understand the connection between
its movements and the camera’s observations. This process involves defining a
mathematical model that links two key coordinate systems: the robot’s end effector
and the camera mounted on it. By establishing this relationship, the robot gains the
ability to accurately interpret the spatial positioning of objects as seen through the
camera’s lens. Consequently, this alignment between the robot’s perception and its
actions facilitates effective interaction with the surrounding environment.

Two primary scenarios guide hand-eye calibration, each with distinct considera-
tions:
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• Eye-to-Hand Calibration: In this scenario, the camera is positioned
externally to the robot’s end effector. This configuration is common in
scenarios where the camera is fixed in place, and the robot interacts with the
environment. The aim is to determine the transformation between the camera’s
coordinate system and the robot’s base coordinate system. This transformation
is typically represented by the equation: CH = T ∗ EB, where CH represents
the transformation between the Camera and the robot’s end effector, T is the
transformation matrix representing the end effector’s pose relative to the base
and EB represents the transformation between the camera and the end effector.
The detailed procedure for this calibration process is provided in Algorithm 1.

• Eye-in-Hand Calibration: In this scenario, the base and various joints of the
robot, as well as the end effector, are already defined through a URDF. Here, the
goal is to determine the transformation between the camera and the robot’s end
effector. This transformation is typically represented by the equation: CH =
EC ×CE, where EC represents the transformation between the end effector and
the camera andCE represents the transformation between the camera and the
robot’s base. The detailed procedure for this calibration process is provided in
Algorithm 2.

Algorithm 1 Eye-to-Hand Calibration Procedure

Require: Calibration object with known 3D features
Require: Images of the object from various poses
Require: Recorded robot end-effector poses
Initialise empty lists: Tcamera-to-object, Tcamera-to-robot

for each captured image do
Estimate Tcamera-to-object from image features
Calculate Tcamera-to-robot using robot pose data
Extract rotation matrix R and translation vector t from Tcamera-to-robot

Append R and t to Tcamera-to-object and Tcamera-to-robot

end for
Aggregate data in Tcamera-to-object and Tcamera-to-robot

Calculate the final Teye-to-hand using the aggregated data
return Teye-to-hand

In both scenarios, the calibration process typically involves placing a distinctive
marker on the robot’s end effector and then using algorithms and specialised software
to compute the transformation between the camera and the end effector. This
transformation, crucial for achieving precise coordination, enhances the robot’s
capability to accurately interact with and understand its surroundings.
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Algorithm 2 Eye-in-Hand Calibration Procedure

Require: Calibration object with known 3D features
Require: Images of the object from various poses
Require: Recorded robot end-effector poses
Initialise empty lists: Tcamera-to-object, Tcamera-to-robot

for each captured image do
Estimate Tcamera-to-object from image features
Calculate Tcamera-to-robot using robot pose data
Extract rotation matrix R and translation vector t from Tcamera-to-robot

Append R and t to Tcamera-to-object and Tcamera-to-robot

end for
Aggregate data in Tcamera-to-object and Tcamera-to-robot

Calculate the final Teye-in-hand using the aggregated data
return Teye-in-hand

• Aruco Markers

Aruco markers, which abbreviate ”Augmented Reality University of Cordoba
markers,” are binary square-based reference markers that find extensive use in camera
pose estimation. These markers offer several distinct advantages, including simplicity,
speed, and robust detection capabilities. An Aruco marker comprises a square shape
distinguished by a wide black border and an inner binary matrix, which carries a
unique identifier or ID. The prominent black border aids in swift marker detection
in images, while the inner binary code serves identification, error detection, and
correction purposes. The size of an Aruco marker determines the dimensions of its
internal matrix; for instance, a 4x4 marker contains a 16-bit binary pattern.

In essence, Aruco markers operate as a form of encoding, much like the familiar
QR codes encountered in the daily lives. However, differences in their encoding
methods result in variations in information storage, capacity, and application. With
four distinctive corner points and internal binary coding, a single Aruco marker
supplies sufficient information for mapping from a two-dimensional realm to a three-
dimensional space. This capability facilitates exploration of projection relationships
between these two worlds, making it invaluable for applications such as pose
estimation and camera calibration.

OpenCV’s ArUco module comprehensively supports Aruco markers, encompassing
their creation, detection, and use in tasks like pose estimation and camera calibration.
Additionally, this module provides features such as marker boards. In this section,
the primary focus centres on the creation and detection of Aruco markers.

To employ Aruco markers for spatial coordination estimation, the following steps
are typically followed:
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• Camera Calibration: Before utilising Aruco markers for spatial coordination
estimation, precise camera calibration is indispensable. This calibration process
ensures accurate knowledge of the camera’s intrinsic parameters, including focal
length, distortion coefficients, and principal point. OpenCV offers tools for
camera calibration, which are crucial for precise spatial coordination estimation.

• Marker Detection: This process involves identifying and detecting Aruco
markers within the camera’s field of view. It entails locating the marker’s corners
and decoding its unique ID. The distinctive black border and inner binary matrix
contribute to the robustness and reliability of this detection process. The image
coordinates of the marker’s corners form the basis for subsequent computations.

• Pose Estimation: After Aruco marker detection, pose estimation techniques
come into play to determine the marker’s position and orientation within
the camera’s coordinate system. This involves solving the Perspective-n-
Point (PnP) problem, which calculates the transformation matrix between
the marker and the camera. This matrix contains translation and rotation
components, enabling the transformation of the marker’s coordinates to the
camera’s coordinate system.

• Spatial Coordination Calculation: With the information obtained from
pose estimation, it becomes possible to calculate the spatial coordinates of the
Aruco marker. These coordinates are represented in a 3D Cartesian coordinate
system. The translation component of the transformation matrix provides the
marker’s position, while the rotation component describes its orientation in 3D
space. The detailed steps will be introduced in the next section.

The results, which employ OpenCV for the real-time detection and localisation of
Aruco markers in each frame of the camera video stream, are presented in Fig. 2.10.
The estimated poses of the markers are calculated, and their corresponding axes are
drawn.

Figure 2.10. Visualisation of Aruco Markers Detection and Pose Estimation.
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In summary, Aruco markers serve as fiducial markers, facilitating the estimation
of spatial coordinates within a camera’s field of view. This process involves camera
calibration, marker detection, pose estimation, and spatial coordination calculation.
The simplicity and robustness of Aruco markers, combined with the capabilities
of computer vision libraries like OpenCV, render them indispensable for spatial
coordination estimation for the tasks.

• Eye-to-Hand Calibration

This section outlines the practical process of performing eye-to-hand calibration of
an UR5e robotic arm and a RealSense camera, which is run on Ubuntu 20.04 system.

The calibration setup involves the following key steps:

1. Hardware Configuration: Prepare the UR5e robotic arm within a controlled
environment, ensuring it is correctly configured. Position the RealSense camera
optimally to capture the workspace. Utilise ArUco markers as reference points.

2. Software Preparation: Configure the software environment, including the
installation of ROS (Robot Operating System) on the Ubuntu 20.04 system.
Install the RealSense SDK to interface with the camera. Ensure the UR5e
robotic arm driver is installed and configured. Finally, install the ‘easy handeye‘
package to streamline the calibration process.

3. Calibration Procedure: This involves attaching ArUco markers to the robotic
arm’s end effector. Initialise the RealSense camera to capture RGB images.
Move the robotic arm through different poses within its workspace, ensuring
visibility of the markers, and simultaneously capture corresponding RGB
images. UEmploy the ‘easy handeye‘ package to compute the transformation
matrix, representing the spatial relationship between the camera’s coordinate
system and the robot’s end effector (see Fig. 2.11).

4. Verification and Refinement: After obtaining calibration results, verify the
accuracy of the transformation. Assess the robotic arm’s ability to interact with
the environment based on the calibrated data. If necessary, refine calibration
parameters for optimal precision.

In contrast to the idealised pinhole camera model, which works well for small field-
of-view scenarios, real-world cameras, especially those designed for capturing wide-
angle or fish eye images, often employ convex lenses. While the pinhole camera model
accurately represents imaging in situations with a small field of view, where lines in
the 3D world map to lines in the image, it falls short in cases involving wide-angle or
fish eye lenses, leading to distortion in the images. This distortion manifests as the
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Figure 2.11. The calibration process unfolds from left to right and top to bottom.
This sequence visually details the procedure, with AR marks attached to the robot
hand.

curvature of straight lines from the 3D world when projected onto the image plane.
Consequently, the assumptions made for coordinate transformations in the pinhole
model no longer hold, necessitating the introduction of camera distortion parameters
and the application of distortion correction techniques.

Camera lens distortion primarily falls into two categories: radial distortion and
tangential distortion, with other forms of distortion having minimal impact and often
being neglected.

• Radial distortion: Radial distortion arises due to the shape of the camera
lens, and it becomes more pronounced as one moves towards the edges of the
lens. This type of distortion results in straight lines in the real world appearing
curved in the captured image.

• Tangential Distortion: Tangential distortion, on the other hand, is caused
by misalignment between the lens and the image sensor (CMOS or CCD). With
advancements in camera manufacturing processes, this type of distortion has
become less common, and it is typically not a significant concern in modern
camera systems.

When dealing with cameras that have a small FoV, such as smartphone cameras,
the distortion can often be neglected due to the pinhole camera approximation,
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where straight lines in the 3D world remain straight in the image. However, in
scenarios requiring wide-angle or fish eye cameras, distortion becomes a critical factor,
necessitating distortion correction.

There are various methods for correcting camera distortion, with two common
approaches being:

• Lens Calibration: This method involves capturing calibration images with
known patterns (e.g., checkerboards) and analysing the distortions in these
images to estimate the camera’s distortion parameters. Once these parameters
are known, they can be used to correct distortion in subsequent images taken
with the same camera.

• Software-Based Correction: In situations where calibration is not feasible
or practical, software-based distortion correction can be applied. This method
involves the post-processing of captured images using distortion correction
algorithms. These algorithms use mathematical models to remove distortion
effects from the images.

Distortion correction is crucial for applications such as computer vision, image
stitching, and photogrammetry, where accurate geometric relationships between
objects in the real world and their representation in images are essential. By
accounting for and correcting lens distortions, the images captured by wide-angle
or fisheye cameras can accurately represent the geometry of the scenes they capture.

Depth cameras, also known as depth-sensing cameras or 3D cameras, are a
category of imaging devices designed to capture depth information in addition to
traditional 2D images. These cameras have become increasingly popular in various
fields, including computer vision, robotics, augmented reality, and more. Depth
cameras offer valuable characteristics, including precise depth perception crucial
for tasks like object recognition, 3D mapping, and obstacle avoidance, while also
incorporating RGB imaging for comprehensive perception. They supply real-time
data for swift decision-making and control, and their compact size facilitates seamless
integration into diverse devices and systems. Depth cameras works on the basis
of active depth sensing, where they emit a form of energy, typically infrared light,
and subsequently measure the time it takes for this emitted energy to return after
interacting with objects in the surrounding environment. Depth cameras can be
categorised into two main types based on their principle of operation: the Time-of-
Flight (ToF) approach and the Structured Light Projection approach.

• Time-of-Flight: Time-of-flight (ToF) depth cameras emit short bursts of
infrared light and measure the time it takes for these light pulses to bounce
back to the camera’s sensor. This time measurement is directly proportional to

40



Chapter 2. Preliminaries 2.8. Simulation for Teleoperation

the distance between the camera and the object. ToF cameras use specialised
sensors, such as photodiodes, to capture the returning light and convert it into
depth information.

• Structured Light Projection: Structured light projection involves projecting
a known pattern, often a grid or series of stripes, onto the scene using an infrared
projector. The camera then captures the deformed pattern as it interacts with
objects in the environment. By analysing the deformation of the pattern, the
camera can compute depth information.

In the experimental setup, depth cameras, specifically the Intel RealSense D435i,
played a vital role in various tasks. These cameras provided depth information that
allowed us to create detailed 3D reconstructions of the environment and keypoint
position calculation. This was particularly valuable for robot navigation, object
manipulation, and hand-eye calibration tasks. The image of the Intel RealSense
D435i, employed in the experiment, is depicted in Fig. 2.12. The depth cameras’
real-time capabilities ensured that the robotic system could react promptly to changes
in the environment. Additionally, the cameras’ integration with the ROS simplified
their incorporation into the robotics framework, enabling seamless data access and
processing.

Figure 2.12. Image of the Intel RealSense D435i used in the experiment along with
an illustrative example of a colour/depth image captured by the sensor.

2.8 Simulation for Teleoperation

2.8.1 Digital Twin Basis

In the domain of intelligent manufacturing, digital twin (DT) technology serves as
a critical asset in streamlining and refining manufacturing processes. Essentially,
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digital twins are virtual replicas mirroring real-world systems or processes. These
comprehensive models encapsulate the intricacies of the physical system, aiming to
closely imitate its complexities. The core function of a DT is to offer an environment
that replicates the real world, fostering a space for experimentation, testing, and
analysis without the need to directly impact the physical system. Developing and
validating robotic systems pose significant challenges. Real-world testing can be
both hazardous and expensive, especially when working with intricate systems or
novel algorithms. However, the creation of a virtual duplicate of the system in
simulation allows for the safe and cost-effective testing and refinement of algorithms.
This facet holds particular significance for complex systems demanding multiple trial
runs, enabling rapid iterations and improvements in approach. Utilising digital twin
technology significantly expedites the development process, ensuring the rapid and
safe evolution of reliable and effective robotic systems.

Digital twin can be regarded as a tripartite framework, comprising the digital
layer, the physical layer, and the cognitive layer. The digital layer serves as the
foundation, encompassing crucial elements such as data ingestion, involving the
collection, aggregation, and processing of information. This layer also embraces
simulations through virtual models, analytical tools, and visualisation methods such
as human interfaces. The physical layer incorporates tangible assets and robots from
the real world, along with sensor data gathered through data collection and human
input. The layer is further fortified by actuator control for managing control signals
and algorithms. The Illustration of the Three Layers and Corresponding Components
in a Digital Twin Framework is given in Fig. 2.13.

Figure 2.13. Digital Twin Framework Layers and Corresponding Components.
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DT has various communication modes that can be chosen depend on the specific
use case and requirements of the system. Different modes offer varying levels of real-
time interaction, data flow, and control, making them suitable for a wide range of
applications across industries like manufacturing, healthcare, and aerospace. Here
are a few key communication modes that are relevant to DT systems in intelligent
manufacturing settings:

• Synchronous Communication: In this mode, the digital twin operates in
real-time coordination with its physical counterpart. It constantly receives and
sends data, ensuring that both systems remain synchronised. This mode is
crucial for applications where immediate feedback and response are necessary,
such as industrial control systems.

• Asynchronous Communication: Asynchronous communication allows data
to be exchanged between the DT and the physical system without strict real-
time constraints. It’s often used for scenarios where a slight delay is acceptable,
such as remote monitoring and data logging.

• Bi-Directional Communication: This mode enables data exchange in both
directions, allowing the DT to send data to the physical system and vice versa.
This two-way communication is vital for applications that involve decision-
making and action implementation in both domains, like collaborative robotics.

• Unidirectional Communication: In this mode, data flows in only one
direction, typically from the physical system to the DT. It’s often employed for
data acquisition and analysis, where the DT continuously receives information
from the real-world system for monitoring and modelling.

• Sensor Data Streaming: This communication mode involves real-time
streaming of sensor data from the physical system to the DT. This data can
include information from cameras, environmental sensors, or any other data
source. It’s crucial for applications that require the DT to have up-to-date
information about its real-world counterpart.

• Control and Command Communication: This mode is employed when the
DT is used to control or guide the actions of the physical system. It allows the
DT to send commands and control signals to the physical system, facilitating
actions like remote robotic control or automated process adjustments.
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Figure 2.14. Digital twin deployment with PyBullet

2.8.2 Digital Twin Setup

For digital twin setup and demonstration, this research creates two experimental
platforms each serves for different purpose and tasks requirement.

First of all, a PyBullet-based environment is created for deployed in a Virtual
Reality (VR) environment with an HTC Vive or Oculus Rift VR device with the Valve
Steam SDK installed. This DT implemented in PyBullet operates in unidirectional
communication mode, facilitating data flow in two different directions. This DT
environment works in two communication modes. The first mode involves data
transmission from the physical to the digital realm, termed the ”monitoring mode”.
In this mode, the information flows from the real-world system to the digital twin,
allowing for continuous observation, analysis, and feedback generation within the
virtual environment. This process is integral for real-time monitoring and evaluation.
Conversely, the second mode, termed the ”following mode,” functions by relaying
information from the digital twin back to the physical system. Here, the virtual
environment initiates instructions and commands, guiding the actions or adjustments
in the real-world system based on the analysis conducted within the digital twin.
This mode enables the real-world system to adapt and react to the insights and
decisions generated within the digital counterpart. The flowchart depicted in Fig.
2.15 illustrates the working principles of both modes: the monitoring mode (left) and
the following mode (right).

In addition to the PyBullet, another environment utilising the Gazebo simulator
with a configuration akin to the PyBullet simulator. This platform is established for
safe algorithm validation and lays the groundwork for future explorations in virtual
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reality and teleoperation. In contrast to the PyBullet simulation setup outlined earlier,
this platform prioritises the emulation of real-world scenarios over efficient learning
algorithm training. Within this simulated environment, Gazebo functions as the
digital twin, replicating the brazing process, as depicted in Fig. 2.6. It enhances
the capability to conduct experiments and gather data under controlled, repeatable
conditions, establishing a secure digital twin for previewing and predicting actions
before real-world execution. Docker serves as the foundational technology, facilitating
component encapsulation and consistent deployment across diverse environments.
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Figure 2.15. Flowchart of the monitoring mode (left) and the following mode (right).

This platform integrates human expertise with robotic capabilities for efficient
and intuitive interactions and human demonstrated data collection for algorithm
training. The connection between the DT and the tangible world is achieved with
controllers, which can take various forms such as the Phantom Omni hand-controller,
a PS2 controller, space mouse or even simple manipulation using a 2D mouse. These
controllers transmit commands to the Gazebo environment, instigating actions in
the simulation. This intricate interplay precisely mimics the behaviour of a real-
world brazing system, providing insights for refining the intelligent manufacturing
processes. The environment contains a UR5e robot equipped with an OnRobot
3-finger gripper. In addition, the extensibility of the environment accommodates
the addition of multiple robotic arms, thereby facilitating multi-agent collaborative
endeavours. Within this environment, the constituent elements encompass the robotic
platform, diverse objects, and a meticulously replicated workspace mirroring the
configuration of the real-world experiment, thereby ensuring faithful representation.
The visual representation of this digital twin is aptly captured in Fig. 2.14, illustrating
its dynamic operational framework.
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Chapter 3

Literature Review

3.1 Visual Servoing Overview

3.1.1 Robot Vision

Robot perception refers to the process of extracting visual information from the envi-
ronment to enable robots to interact with their surroundings effectively. Recent years
have witnessed a notable increase in academic research pertaining to robot perception,
which involves leveraging a diverse range of sensors to facilitate comprehending and
interpreting the surrounding environment [8, 74, 75, 76]. With the advancements in
computer vision and ML techniques, robots can now recognise, interpret, and make
decisions based on the perception information gathered [77]. This has resulted in the
widespread use of robot perception in various applications, including the navigation
of mobile robots, providing context-awareness for service robots [78], robot arm
manipulation [79], manufacturing [80, 81], mobile robots [82], transportation guidance
for logistic [83], and many more.

3.1.2 Visual Servoing

The ability to distinguish between task objects and other objects and precisely reach
them to perform tasks is a hallmark of human dexterity. While robots have made
significant strides in recent years, replicating this level of performance remains a
formidable challenge. Current robots often rely on accurate target positions and
inverse kinematics techniques to determine the appropriate joint configuration for
reaching objects [84]. Unfortunately, this approach typically requires prior knowledge
of the desired target location, making the system vulnerable to failures caused by
even minor variations. Therefore, it is crucial to develop a more robust and adaptive
approach that can handle the complexity of real-world scenarios.
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To overcome the constraints posed by pre-defined target positions, robots can
utilise sensors to gather environmental perception data. This information enables
robots to deduce target locations or estimate real-time errors, contributing to the
development of a more resilient closed-loop system. Various feature detection
algorithms have been proposed to accurately distinguish the task object from other
distractions in the environment, including SIFT [85], SURF [86], FAST [87], ORB [88],
and others. In recent years, convolutional neural networks (CNNs) have been widely
applied for feature extraction in a variety of vision tasks, such as object detection [89,
90], recognition [91, 92], and tracking [93, 94]. CNNs are preferred for their robustness
in dealing with occlusion, deformation, and other changes in object appearance.
Additionally, recent studies have shown that enhancing the CNN’s encoding of shape
information can further improve the performance of template matching [95].

Nevertheless, the dependability of these systems is frequently impacted by
environmental intricacies. Factors such as variations in ambient light or distractions
within the robot’s field of view can disrupt detection outcomes, posing challenges in
designing perception algorithms that consistently operate in diverse environments.
In the context of industry and early-stage research, a structured and controlled
environment is often necessary to compensate for interference [96]. This may
involve pre-defining the workspace, designing specific detection algorithms based
on the 3D features of task objects or the environment, and setting up a simple
background [97]. However, such an approach sacrifices flexibility and adaptability,
and may not be suitable for daily tasks or small-batch production with frequent
changeovers. Moreover, handcrafting a model for object recognition and localisation
is time-consuming and impractical for every object in daily life. To achieve complex
environment robot flexible manufacturing, robots can benefit from using vision-based
control, also known as visual servoing, to increase the flexibility and adaptability of
the system and enable the robot to perform a wide range of tasks, including those
that were not explicitly programmed beforehand.

Visual servoing utilises visual feedback from a camera to control the motion and
position of a robot arm, making it a versatile and adaptable approach for human-
robot interaction [98, 99, 8, 100] and teleoperation [101, 102, 103, 104, 105]. While
visual servoing is just one application of robot perception, it is a critical one for many
robotic applications that require accurate and precise control of robot arm movement.
One of the major advantages of visual servoing is its ability to work in unstructured
environments, as it can adapt to changes in the environment and the objects being
manipulated. Moreover, it can operate without requiring a precise or prior model of
the robot’s dynamics, making it more flexible and easier to implement in practice.
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3.1.3 Category-Agnostic Localisation

As discussed in the last paragraph, human beings possess a remarkable innate ability
to swiftly locate and identify objects within cluttered environments by presenting
with a query image so that it does not need prior knowledge of the specific object.
Transferring this capability to a robot arm, which can exploit object features in an
image as cues, can be a significant advancement towards the finding and reaching
of arbitrary unknown objects in unfamiliar settings, which thereby thrives versatile
interaction types [106, 107] and the robot application in extreme environments [108,
109]. The introduction of query images provides an intuitive means of interaction with
robots, allowing humans to communicate their intentions using the most instinctive
form of information, namely visual information. In this context, human-robot
interaction (HRI) plays a crucial role as a “third eye-hand agent”, augmenting the
robot’s capabilities and assisting humans in accomplishing complex tasks [110]. The
potential of such capabilities holds immense promise across a wide range of robot-
assisted tasks, including table cleaning, factory sorting, and warehouse fetching.
However, achieving this level of capability remains a highly challenging endeavour
for robots.

Prior research advancements in the field of computer vision have made significant
contributions toward enabling robots in unstructured environments. Numerous
studies have explored the application of computer vision algorithms for object
detection, classification, and segmentation [88, 111, 112, 113] in various scenarios,
such as agriculture [114, 115], autonomous driving [116, 117], and indoor navigation
[118, 119]. Semantic segmentation techniques, in particular, have been widely
employed to accurately segment and classify objects [120, 118, 114, 121]. State-of-
the-art models trained on large-scale datasets or fine-tuned with additional data have
achieved impressive performance in object recognition tasks [122, 123]. However, these
approaches are limited by the fixed number of detectors and struggle to generalise to
scenarios involving objects with rich shapes, colours, and textures, such as daily life
and manufacturing tasks. Also, these techniques often rely on specific models trained
on extensive datasets or fine-tuned with additional data, encompassing diverse classes
of objects. Unfortunately, these approaches face limitations due to their fixed number
of classes, which hampers their direct application to brazing or other manufacturing
tasks involving objects with arbitrary shapes. Follow by this, a research question
comes out: to steer the robot with vision information, how can the robot know the
target position without pre-defining a fix location?

To address this gap, research on category-agnostic methods has emerged to
enhance robotics perception in more diverse environments. A milestone in category-
agnostic segmentation is the work by [124], which can output category-agnostic
masks and generalise to unseen categories. In the context of autonomous driving,
[125] proposed a class-agnostic multi-object tracking method that handles rich and
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arbitrary object classes. [126] introduced an Mask-RCNN-based method for seg-
menting arbitrary objects using depth images. Another class-agnostic segmentation
network based on dense feature comparison was presented in [127]. In comparison
to the proposed method, which also involves a query image for comparison, the
aforementioned methods require one annotated training image, while the method
does not rely on manual annotations. Another line of research has focused on
developing robotic grasping systems that exploit cues to achieve object manipulation
and grasping. Approaches that utilise both query and image inputs to directly predict
the desired robot actions have been proposed in [128, 44]. While these techniques show
promise, they often rely on closed-loop recurrent control to compensate for estimation
errors, which can be impractical in scenarios where trajectory planning is crucial and
requires a separation of the estimation and control processes.

3.1.4 Category-Agnostic Servoing

Visual servoing can be categorised based on control methods into two branches:
image-based visual servoing (IBVS) and position-based visual servoing (PBVS). In
PBVS, vision data is used to reconstruct the 3D pose of the robot and generate a
kinematic error in Cartesian space [129]. On the other hand, IBVS generates an error
directly from image plane features. While PBVS often requires three-dimensional
reconstruction [130], which is highly sensitive to camera calibration parameters, IBVS
is known for its robustness with respect to camera calibration accuracy and stability
under noisy conditions, which makes it well-suited for operation in unstructured
environments where it can adapt to changes and operate without requiring a precise
model of robot dynamics [131].

However, controlling the robot with IBVS can be challenging since the action is
applied directly to the image plane. To address this issue, data-driven methods have
gained increasing attention in various fields, including manufacturing [132], robotics
[133, 134, 106], and optics [135]. Among these methods, RL has shown great potential
in generating control policies without requiring a model of the system as discussed
in the last section. By learning implicitly from a pre-specified reward function and
optimising the reward through interactions with the environment, RL can converge
to a learned policy that maximises the reward [136].

IBVS tasks can be addressed using various image processing and computer vision
techniques. These tasks can be divided by whether the image has depth information.
Depth information provides a detailed representation of the scene’s three-dimensional
geometry, allowing for a more accurate understanding of the scene’s structure and
spatial relationships between objects [137, 138]. In comparison, RGB images have
become increasingly popular for robot applications due to their widespread availabil-
ity, high-resolution imaging capability, and ability to provide colour information for
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object detection [139], recognition [140] and classification. However, relying solely on
RGB information can pose challenges and limitations, such as occlusion, changes in
illumination, and noise, which can adversely affect the accuracy and reliability of the
control system [141]. Despite these challenges, researchers have continued to explore
ways to improve the performance and robustness of visual servoing systems that use
only RGB information. For example, [142] proposes an attention-based network that
is still able to estimate depth information even when an object is partially obstructed
from view, which can lead to incomplete RGB information. Direct visual odometry
methods have also been used to compensate for illumination changes, which can cause
significant variations in RGB information, leading to misinterpretation or incorrect
interpretation of visual data [143]. Additionally, semantic segmentation is utilised in
the RGB-based approach to deal with noisy and unstructured environments [144].

IBVS techniques can be classified according to the type of sensor used, with RGB
cameras being a popular and cost-effective option for low-cost robot systems [8].
However, using RGB as the sole perception source for a robot system poses several
challenges. One significant challenge is noise. Optical sensor noise, which can be
caused by various factors such as electronic noise, environmental noise, or motion blur,
can introduce significant errors into the control system, leading to reduced accuracy
and decreased performance. Other challenges and limitations of using only RGB
information for visual servoing include the lack of depth information, limited field of
view, and sensitivity to variations in camera pose and calibration. To overcome these
challenges and limitations, researchers have developed various techniques that use
additional sources of visual data or modalities, such as depth or infrared information,
to enhance the performance and robustness of visual servoing systems.

Nevertheless, utilising RGB information exclusively for visual servoing presents
several distinct advantages, rendering it a competitive choice for numerous robot
systems. One significant advantage is that RGB cameras are widely available,
relatively inexpensive, and can provide high-resolution images, making them a popular
choice for many robotic applications. RGB information can also provide valuable
colour information, which can be useful for object recognition and tracking. Moreover,
using RGB information for visual servoing can be computationally efficient, as it
requires minimal preprocessing of the visual data. This can be especially important
for real-time applications where rapid response times are critical. Despite these
advantages, it is important to acknowledge the challenges and limitations of relying
solely on RGB information for visual servoing and explore ways to overcome them to
improve the accuracy and reliability of robotic systems.

RGB camera based IBVS techniques can be broadly categorised into three main
branches: ML based approaches, feature-based approaches, and hybrid approaches.
ML based approaches, such as YOLO [111], Faster R-CNN [145], Mask R-CNN
[146], RetinaNet [147], and SSD-6D [148], take an image as input and output the
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object location in either the image domain or the real-world coordinate system.
These algorithms are trained to recognise different types of objects and can adapt
to variations in object appearance and lighting. Transfer learning techniques can
also be employed to fine-tune these methods for specific tasks. On the other hand,
feature-based approaches use extracted features such as edges, corners, and SIFT
features [85] to estimate the object pose and location. In contrast to semantic
segmentation, which classifies every pixel in the image, template matching uses
predefined templates of objects to find their matches and predict the object bounding
box. Each template is created by extracting specific features from a set of images
containing the target object. Hybrid approaches combine the strengths of both
feature-based and ML based approaches by leveraging the robustness of feature-based
approaches to handle occlusions and changes in lighting while utilising the adaptability
of ML-based approaches to handle variations in object appearance.

One of the challenges in visual servoing is the design of a robust controller that
can handle estimation errors caused by the feature extractor and control the robot
arm in the image plane. End-to-end methods have been explored to estimate the pose
for visual servoing in previous works [34, 149, 33, 32, 30]. However, directly deriving
the control policy from visual information can lead to a tremendous state or action
space, which is often challenging for exploration, especially when dealing with sparse
rewards, and the algorithm may fail to converge. Many end-to-end methods train the
perception and control systems jointly [150, 31, 151, 152]. The method processes the
raw visual information and controls the robot in two separate modules without any
prior knowledge of the task object and the environment, rather than using observed
images as input to infer the control command [31] or utilising the adapted perception
information to drive the robot with traditional control law [34].

Additionally, the distinct dynamics of the real world and simulation world pose
challenges when transferring models trained in simulation to the real world. This has
led to the emergence of the ”sim-to-real” research field. In a study by Pinto et al. [153],
an actor-critic training algorithm was proposed to address this challenge. The critic
network was trained on full states, while the actor network used rendered images.
This method reduces the need for expensive and potentially dangerous real-world
training processes. Compared to traditional simulator-based reinforcement learning
policy training, this approach minimises performance degradation when transitioning
from simulated observations to real-world observations.

To derive a mapping from the raw perception information to robot control
strategies, RL has attracted growing interest. RL has shown great potential in
decision-making [154], control [102, 155], and achieving superhuman performance
in various games [48, 156]. However, applying RL to robot manipulation is not
straightforward due to several challenges. Firstly, the real-world robot environment
has limited access to the states of objects within it, such as their position, speed,
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and acceleration, leading to partial observation. Secondly, the spatial complexity of
the real world is high, while RL sample efficiency is low, resulting in high training
costs. Thirdly, safety must be considered when training the robot, and direct
training on a real-world robot can be energy-inefficient and potentially hazardous
to its surroundings during exploration. In recent years, training in a simulation
environment has become a more conventional approach due to its efficiency and
safety in data collection and algorithm training. However, the reality gap between
the simulated environment and its physical counterpart poses a new challenge when
transferring the trained policy to the physical robot. Thus, simulation-to-real-world
(Sim2Real) problems remain a trending research topic in this area, aiming to narrow
the performance gap between simulation and the real-world [157, 158, 159].

3.2 Human-Robot Collaboration Overview

Human-Robot Collaboration (HRC) is a research area within the field of human-
robot interaction (HRI) that focuses on designing, implementing, and evaluating
robotic systems involving direct interaction between humans and robots [160]. HRC
has offered a compelling synergy between humans and machines in various domains
[161], where the need for efficient and seamless interactions between humans and
robots becomes increasingly imperative [162]. Understanding the dynamics of HRC
requires examining the various types of relationships that can exist between humans
and Cobots. [163] classified these relationships into four types, as depicted in Fig. 3.1.
These include the ”independent” relationship, where the operator and Cobot share
the same space but perform different tasks; the ”simultaneous” relationship, where
they work on the same or different workpieces together; the ”supportive” relationship,
where they collaborate towards a common goal; and the ”sequential” relationship,
where they sequentially work on the same piece.

In the specific context of this research project, the objective is to design a robotic
system to optimise the brazing process, specifically the brazing pasting process.
While automated machines can improve efficiency and repeatability, they often face
challenges in achieving universal integration within complex manufacturing scenarios.
When human operators are involved alongside automated machines, achieving full
automation becomes impractical. For example, in the vacuum furnace brazing
process, although the brazing itself can be automated, pre- and post-brazing processes
still require manual intervention. Additionally, the hand-off time between human
operators and automated machines, as well as speed matching issues, introduce
complexity to the system. In such cases, a more flexible manufacturing model is
needed, and HRC offers a potential solution. By incorporating Cobots into the
production line, it becomes possible to leverage their collaborative abilities to assist
human workers. This approach enables the seamless integration of human skills and
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Figure 3.1. Classification of Cobot-human relationships [163].

robot precision, addressing the limitations of fully automated production lines and
offering flexibility in scenarios where complete automation is challenging or unrealistic.
This section provides an overview of the human-robot interfaces, HRC control, and
metrics for evaluating HRC in the context of the robot pasting tasks and propose a
framework that allows human to collaborate with robot intuitively.

3.2.1 Human-Robot Interfaces

In recent years, there has been a surge of interest in the development of HRC devices
and methods. One of the challenges faced by HRC is designing robots that can
collaborate with humans in a natural and intuitive way [107]. Humans have evolved
to interact with other humans, and designing robots that can interact with humans in
a way that feels natural and intuitive is a difficult task. The widespread adoption of
HRC technology faces a critical bottleneck: the reliance on dedicated, often expensive,
external controllers. The high cost of such controllers limits the widespread adoption
of robot teleoperation to some extent.

Existing HRI predominantly rely on joystick or button-based interfaces [164,
165]. These interfaces, while effective, pose cognitive demands and lack the innate
intuitiveness characteristic of natural human interactions. Conversely, the pursuit
of enhanced precision and sophisticated hand controllers complicates the learning
curve for new users, rendering the technology more economically burdensome. For
example, various studies have focused on evaluating or devising devices that utilise
hand controllers to provide physical interaction for robot control [166, 167]. While
these controllers offer accuracy, they tend to be costly and lack intuitiveness, as they
do not directly map human intentions to robot control. In scenarios where robotic
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movements adhere to relatively straightforward and non-complex trajectories, the
intricate controls inherent in conventional hand controllers may prove excessive. This
conundrum hinders broader adoption, particularly in applications where streamlined
and easily accessible control interfaces could significantly enhance task performance
[168].

Vision-based methods offer a relatively affordable and straightforward deployment
option compared to other approaches. Among these methods, hand gesture-based
teleoperation stands out as an intuitive means of controlling robots. Advancements
in artificial intelligence and computer vision have led to improvements in hand
detection, hand gesture recognition [169, 170, 171], and hand pose estimation [172,
173, 174] algorithms, making them increasingly accurate, faster, and more robust,
which makes them a more common choice in robot teleoperation. For example, [164]
proposed a dual camera based hand gesture recognition system for surgical robot
teleoperation. [175, 175] program the robot through static hand gestures. However,
these methods typically utilise hand gestures solely for commanding or for a specific
purpose, which still does not fully convey human intent, such as omitting control
over the robot’s velocity or the direct control of the robot. Hand gesture-based
approaches proposed in [176] and [177] directly map hand gestures to the robot’s
dexterous hand movements, offering intuitive and flexible control. However, these
methods require users to continuously demonstrate the desired movements, which
can be inaccurate and fatiguing. Additionally, a subset of these devices lack force
feedback, hindering the operator’s ability to perceive the robot’s interaction with the
environment; while those that do possess force feedback are vulnerable to hacking or
tampering, introducing potential safety hazards to both the robot and its operator ,
especially in situations involving critical aspects of human life, such as remote surgery
. Their relatively intricate nature also impedes their timely deployment in scenarios
involving contingencies or demanding high temporal responsiveness.

Virtual-Reality (VR) devices can provide an immersive HRI environment [178,
179]. However, traditional VR devices are not always suitable for human operators
to perform tasks in all application scenarios owing to factors such as cybersickness.
Furthermore, VR devices are often costly, which also restricts the adoption of robot
teleoperation. Additionally, existing VR devices primarily emphasise offering an
immersive experience to the operator, while VR systems generally introduce latency,
which may impede the operator’s control of the robot and fail to achieve satisfactory
performance in terms of operator interaction. Compared to VR, Augmented Reality
(AR) typically has lower device requirements. AR experiences can be achieved by
using smartphones or tablets with AR applications, which makes AR more accessible
and user-friendly [180, 181]. Additionally, this approach reduces the likelihood of
motion sickness that can occur in VR experiences. AR technology requires accurate
perception and tracking of the real-world environment, as well as the integration of
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virtual content with it. This presents technical challenges for both hardware and
software development, including the need for high-precision sensors and algorithms.
Therefore, despite the intuitiveness and naturalness of VR and AR, it still cannot
avoid the reliance on large datasets and high-precision sensors.

In contrast, devices that rely on human signals, such as gloves [182], inertia
sensors [183, 184, 185, 186], motion capture systems, brain-computer interfaces
(BCI) [187, 188], voice recognition [189], hand gesture recognition [175, 190], and
electromyographic (EMG) signal devices, facilitate the mapping of human intention
to robot control, thereby simplifying the transfer of intention from human to robot.
Although these approaches offer intuitiveness and direct mapping of human intention
to robot control, they often require complex and customised devices, resulting in high
costs that hinder widespread adoption. Additionally, despite their intuitive nature,
these devices still necessitate training time for operators to familiarise themselves with
the environment.

In conclusion, there is a pressing need for a cost-effective, intuitive HRC interface
that bridges the gap between human intent and robot action. The most ideal
natural interaction state between humans and robots for brazing or other similar
scenarios is a seamless, fluent, and intuitive interactive experience that resembles
natural communication with another human being. Intuitive means requiring no
complex instructions or learning curves, streamlining the training process for users
and facilitating a seamless and natural interaction between humans and robots. Cost-
effective means liberating users from the reliance on expensive, specialised controllers
through the utilisation of readily available technology.

3.2.2 Human-Robot Collaboration Control

HRC control strategy can be categorised into two primary approaches: predictive
human motion modelling [191, 192, 193] and reactive strategies.

Reactive strategies prioritise real-time adaptation to human input without explicit
modelling [194]. Conversely, predictive human motion modelling techniques utilise
ML and predictive modelling to enable machines to proactively respond to human
movements [107, 195, 105, 196, 197, 198]. The aim is to create more anticipatory and
responsive interactions, enhancing the intuitiveness of HRC, which allows robots to
learn directly from task data to achieve optimal parameters for various applications
[199]. Through the training of ML algorithms, the model can learn and capture
the patterns and regularities of human motion from a large amount of data. This
enables the model to cope with different people’s motion habits and styles, and has
a certain generalisation capability. By leveraging predictive human motion modelling
techniques, robots can enhance their collaboration with humans. They can anticipate
human’s next actions, thereby facilitating improved coordination and alignment of
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their own behaviours. This capacity for HRC fosters increased work efficiency and
safety, while also fostering cooperation and mutual trust between humans and robots.
As a result, it significantly contributes to the advancement and wider adoption of
human-robot collaboration.

However, these conventional methods come with their own set of limitations. One
notable issue is the reliance on additional devices and signal processing, including
technologies such as EMG [200, 201, 202, 203], electroencephalography (EEG) [204],
or physiological signal-based approaches [205, 206, 207]. While these techniques
have shown promise in certain contexts, they introduce elevated costs and increased
complexity into the interaction setup. Users are often required to wear or employ these
devices, which can be cumbersome and detract from the natural flow of interaction.
Furthermore, large datasets are often required for training in HRC [208], which
can be time-consuming and resource-intensive. This process, although crucial for
the machine to understand human intentions, may not capture the full range of
behaviours. Consequently, these systems may struggle to adapt beyond their training
data, limiting their versatility in real-world settings. Thus, there’s a need for more
intuitive, adaptable, and less cumbersome approaches to HRC that align better with
natural human communication and require minimal additional equipment or extensive
data collection.

3.2.3 Human-Robot Collaboration Metrics

The current landscape of research in HRC can be distilled into two primary threads.
The first centres on simplifying the programming and instructions for Cobots, while
the second thread explores more advanced forms of interaction by equipping Cobots
with semantic understanding capabilities or AI-driven anticipation skills [209]. Both
of these threads represent the cutting edge of academic research in HRC. At the heart
of these two threads lies a fundamental shift—from humans adapting to machines to
machines adapting to humans [210]. This transformation underscores the overarching
goal of HRC research: to enhance intelligence and digitisation in human-robot
collaboration.

An examination of recent research trends in Cobot-related concepts [23] reveals
a predominant focus on developing specific aspects of Cobot capabilities. These
endeavours highlight five distinctive dimensions of Cobots:

• Mobility: The ability to move the robot from one location to another.

• Intelligence: Cobots should possess awareness of their surroundings and
generate feedback.

• Connectivity: This pertains to both human-Cobot communication and Cobot
system communication.
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• Actuation: The capability to execute safe and dynamic trajectories.

• Human-Centredness: Cobots should provide support to human operators
from both physical and mental perspectives.

These five dimensions serve as crucial metrics for assessing and evaluating HRC
systems. The most extensively researched areas in HRC encompass proposing
frameworks for Cobot deployment, mathematical modelling of the Cobot environment,
and comprehensive surveys. Among the diverse applications of Cobots, assembly
processes have garnered substantial attention, with particular emphasis on enhancing
human-robot communication. This examination underscores that HRC research is
primarily driven by industry needs, highlighting the importance of aligning research
with practical industrial requirements and technological innovation. Given the broad
applicability of HRC across various industries, the establishment of standardised or
widely accepted design principles or frameworks can significantly aid in guiding the
design, development, and integration of Cobots. In recent years, such frameworks
have gained attention, with one prominent example outlined in [22]. This framework
comprises three layers, each featuring two complementary viewpoints:

• System Viewpoint: Comprising contextual and conceptual aspects.

• Embodiment Viewpoint: Encompassing logical and physical facets.

• Detail Viewpoint: Focusing on risk and safety requirements.

Within each layer, four distinct starting points for consideration exist: data,
function, interconnection, and motivation. This matrix-style framework offers a com-
prehensive evaluation of Cobot design and implementation, facilitating assessments
of the comprehensiveness of system design concepts.

From an embodiment design perspective, the architecture of Cobots can be
categorised into various modules. [211] introduced a three-phase cyclical framework
representing three core, interconnected modules essential for Cobots as illustrated in
Fig. 3.2. In this taxonomy, every phase of the circle corresponds to perception, skills,
and behaviours. These three modules constitute the foundational components of a
Cobot’s operation. The perception phase focuses on gathering essential information
about the surrounding environment and determining target points. Once the working
space and tasks are perceived and defined, Cobots proceed to compose the individual
skills module, forming complex motion plans. These motions are then executed by
the behaviour module, which includes actuators, leading to changes in the state of
the system. This cyclical process offers a coherent paradigm for both the logical and
physical design of Cobots.

In alignment with the aforementioned taxonomy [211], the literature on HRC can
be classified into three tracks:
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Figure 3.2. Schematic Representation of Intelligent Cobot Architecture [211]

• Perception Design Track: The perception module of a cobot plays a
pivotal role in acquiring essential environmental information. Enhanced
perception leads to heightened contextual awareness, thus bolstering the cobot’s
intelligence. Furthermore, ensuring the safety of human operators hinges on the
effectiveness of cobot perception.

Sensors serve as the primary means of environmental perception and can
significantly impact HRC system performance. Integrating data from diverse
sensors poses a challenge, which can be mitigated through the use of an Internet
of Things (IoT) Multi-sensor Data Fusion (MDF) platform. This platform,
utilising data from various sensors like infrared, WiFi, and sub-THz cameras,
offers real-time cobot environmental perception [22].

Nevertheless, sensor limitations introduce their own set of challenges. Research
by [212] highlights significant latency in vision-based sensor systems, particularly
concerning human movement and position detection, compared to control and
actuation systems. Addressing sensor latency is critical in ensuring the safety
of collaborative human-robot environments, particularly in vision-based HRC
systems sensitive to task completion times.

• Skills Design Track: Skills encompass a set of actions performed by the robot
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to execute specific aspects of a task. For example, driving a nail into a hole
involves several sub-actions like recognising a hammer, picking it up, identifying
the target nail, picking up the nail, positioning it correctly, and finally, driving
it into the hole. Skills can be considered as the building blocks that cobots use
to execute tasks.

Robots can acquire these skills through various methods. Two predominant
methods in industrial robotics are code-based programming and human demon-
stration. In [213], a framework for intricate sanding of complex surfaces was
proposed, combining standard stiff position-controlled industrial manipulators
with trajectory generation techniques derived from computer-aided design
(CAD) and Programming by Demonstration.

ML techniques have gained traction in skill acquisition due to their ability
to handle complex tasks. [214] introduced a hybrid approach that combined
imitation learning with Q-learning-based reinforcement learning to enable a
humanoid robot to perform collaborative tasks with humans. Other methods
involve human demonstration and kinesthetic teaching, as seen in [215], and
monocular camera-based learning, as demonstrated in [216]. However, data
requirements and computing limitations can affect the widespread adoption of
these methods in manufacturing.

• Behaviours Design Track: Behaviours in cobots are composed of skills.
To orchestrate a set of skills harmoniously, [217] proposed an object-centric
framework for learning and sequencing robot manipulation skills based on
demonstrations. This approach minimises manual modelling efforts and
enhances the flexibility and reusability of learned skills.

Safety is a paramount concern when designing cobot behaviours, encompassing
aspects such as predictability, speed/torque limits, path planning, and obstacle
avoidance. In [218], an adaptive motion planning system was introduced to
enhance worker safety while increasing operational efficiency. This system
incorporates a worker motion predictor and an online trajectory generator to
minimise waiting times and avoid contact during irregular worker movements.

Efficiency is another key consideration in behaviour design. Efficiency metrics
encompass time, cost, and human energy. For assembly line operations,
efficiency can be affected by task sequencing and tool switching frequency
between humans and robots. [219] proposed an adaptive algorithm to reduce
human-robot and robot-robot tool switches while ensuring operator safety
through a transparent and comprehensible workflow. Ergonomics is also
considered by dynamically adjusting robot behaviour according to the operator’s
position and preferences, as demonstrated in [220] using a two-layered genetic
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algorithm to optimise task distribution and sequencing in a shared workspace.
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Chapter 4

Category-Agnostic Visual Servoing

4.1 Introduction

In the context of brazing processes, the objects that require localisation present a
diverse and challenging landscape for robotic systems. These objects primarily include
brazing filler metals (BFMs), flux materials, and the workpieces themselves. BFMs
come in various forms such as wire, paste, powder, or preformed shapes, each with
unique visual and physical characteristics. For instance, brazing wires can be thin and
reflective, making them difficult to detect against varying backgrounds. Paste and
powder forms of BFM often lack distinct features and can blend with surrounding
surfaces. Workpieces in brazing applications range from simple geometries to
complex, irregular shapes, depending on the industry and specific application. These
may include heat exchanger components, automotive parts, aerospace structures,
or intricate electronic assemblies, each presenting its own set of challenges for
localisation.

The pursuit of flexible manufacturing systems for brazing processes is significantly
hampered by the limitations of traditional robotic vision and control systems when
faced with this object diversity. Conventional object detection and localisation
approaches often rely on predefined models or extensive training data for specific
object categories. However, the wide variety of BFMs, fluxes, and workpieces
encountered in brazing operations renders such category-specific methods inadequate.
Furthermore, the dynamic nature of brazing environments, where object appear-
ances can change due to heat application or flux coating, adds another layer of
complexity. This chapter addresses these challenges by exploring category-agnostic
object detection, localisation, and visual servoing techniques. These approaches are
crucial for enabling robots to handle the diverse, often untrained, and irregularly
shaped components common in flexible brazing manufacturing environments. The
investigation is structured into three main parts:
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1) Category-Agnostic Vision Algorithms Comparison: this part begins by com-
paring various visual servoing algorithms specifically designed for scenarios involving
irregularly shaped objects. This comparative analysis provides a foundation for
understanding the strengths and limitations of existing approaches in flexible
manufacturing contexts.

2) Category-Agnostic Localisation: Building on this foundation, this part in-
troduces a novel hybrid approach that integrates deep learning with feature-based
methods. The proposed method aims to achieve robust category-agnostic object
detection and localisation, enabling robots to handle a wide range of workpieces
without prior training on specific shapes.

3) Category-Agnostic Visual Servoing: The final part of this chapter explores the
development of visual servoing frameworks that leverage category-agnostic localisation
capabilities. Two distinct approaches are investigated: image-based visual servoing
(IBVS) and position-based visual servoing (PBVS). The IBVS framework utilises a
feature extractor to embed image information, focusing on algorithmic robustness. In
contrast, the PBVS framework estimates position difference and servo based on the
estimated position difference. Both methods aim to enable robots to reach previously
unseen objects without requiring calibration, addressing the challenge of operating
in complex, less-informed environments. These frameworks are designed to allow
robots to autonomously navigate and interact with diverse objects in unstructured
environments, a key requirement for flexible manufacturing systems. The development
of these visual servoing techniques represents a significant step towards enhancing the
adaptability and efficiency of robotic systems in flexible manufacturing scenarios.

Throughout these investigations, this chapter focus on two critical aspects of
flexible manufacturing: the visual perception of diverse objects and the servoing
control to interact with these objects. The approach emphasises the development
of systems that can adapt to varying workpieces and conditions with minimal
reprogramming, directly addressing the challenge of Limited Autonomous Capabilities
identified in the research aims. By developing these category-agnostic techniques,
the chapter aim to enhance the flexibility and adaptability of robotic systems in
manufacturing processes. The proposed methods not only improve the robots’ ability
to handle diverse workpieces. The results of the investigations demonstrate promising
advancements in precision and accuracy, outperforming conventional methods and
widely-used models. These improvements position the approach as an effective tool for
enhancing the capabilities of flexible manufacturing systems, particularly in scenarios
requiring adaptable and intelligent robotic vision and control.

The following sections will delve into the methodologies, experiments, and results
of the investigations, providing a comprehensive analysis of the contributions to the
field of flexible manufacturing systems through advanced visual servoing techniques.
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4.2 Methods

4.2.1 Category-Agnostic Vision Algorithms Comparison

This section first introduce and compare the performance of different CV algorithms
in the context of category-agnostics. This section compares three different approaches:
a feature-based approach, a hybrid approach, and a machine-learning-based approach.
To evaluate the performance of the approaches, experiments in a simulated environ-
ment using the PyBullet physics simulator (modified version of the basis environment)
is conducted and introduced in the evaluation section. The experiments included
different levels of complexity, including different numbers of distractors, varying
lighting conditions, and highly-varied object geometry.

Some of the most representative algorithms for each category have been selected
and tested respectively. For machine learning-based approaches, this research has
tested a state-of-the-art semantic segmentation model, namely DeepLabv3+ [221].
For feature-based approaches, this research has tested SIFT [85] and ORB [88]. For
the hybrid approaches, the method proposed in [222] has been tested. This algorithm
comprises a convolutional neural network (CNN) extractor to extract features in both
the template and captured image and compare their similarities using Normalised
Cross-Correlation (NCC) [223]. The hybrid approach combines the strengths of
both feature-based and machine learning-based approaches to achieve flexible object
recognition and localisation.

The machine learning approach trains a deep learning model for semantic
segmentation and uses connected component labelling to locate the object in the
image. In contrast, the feature-based approach extracts distinctive features from
the object and scene using Scale-Invariant Feature Transform (SIFT) and Oriented
FAST and Rotated BRIEF (ORB) feature detectors and matches them to obtain
correspondences between the two. The hybrid approach combines the strengths of
both approaches by using the output of the semantic segmentation as a mask to limit
the search for matching features, thereby improving efficiency and accuracy.

• Machine Learning-Based Approach

The machine learning-based approach uses a deep neural network to perform
semantic segmentation of the image, followed by connected component labelling to
locate the object. Specifically, this research employs a fine-tuned DeepLabv3+ [221]
with a ResNet-50 [224] backbone for semantic segmentation. DeepLabv3+ is a state-
of-the-art model that uses atrous convolution and a decoder module to refine the
segmentation output. ResNet-50 is a widely used backbone architecture that has
shown excellent performance in various computer vision tasks. The model on the
collected dataset has been fine-tuned, which was generated in a simulator and included
corresponding ground truth labels, using the cross-entropy loss function.
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To accommodate the irregular shape and varying colour of the objects in the
settings, this work trained the machine learning model to recognise background
instead of object recognition. This approach allows the trained algorithm to detect
any non-background objects within the field of view. During the inference stage, the
trained model is applied to the input image Im to generate a pixel-wise semantic
segmentation map M , with each pixel classified into one of the pre-defined categories.
The binary mask of the object is then obtained using a connected component labelling
function, which represents the object’s region in the image. Finally, a bounding box
of the object is computed based on the binary mask, which is defined as the minimum
rectangle that encloses the binary mask. This approach accurately localises the object
in complex and cluttered scenes, and the use of semantic segmentation and connected
component labelling makes the approach robust to variations in lighting, viewpoint,
and object appearance, which makes it suitable for a wide range of applications.

• Feature-Based Approach

In addition to the machine learning-based approach, this research also explores
feature-based approaches for object detection and location. Feature-based approaches
involve extracting distinctive features from the object and matching them with the
features extracted from the scene. The study compares two popular feature detection
algorithms (i.e., SIFT and ORB). Both algorithms are widely used and have been
verified to be robust to scale, rotation, and illumination changes. The SIFT algorithm
detects key points in an image and computes descriptors for each key point based on
the scale-space extrema. ORB, on the other hand, computes the descriptor using
binary robust independent elementary features (BRIEF) with additional orientation
information.

Figure 4.1. Sample scenes in the simulation environment, which includes a 6 degree-
of-freedom (DoF) UR5e robot, a wrist camera, and randomly generated objects and
backgrounds.

To locate the object using feature-based approaches, features were first extracted
from both the object template and the input image using either SIFT or ORB. This
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work then matches the extracted features from the template and input images using
brute-force matching, which results in a set of candidate correspondences. To obtain
the final set of correspondences, Random Sample Consensus (RANSAC) algorithm is
used to filter out any outliers. Finally, the method locates the object by drawing a
bounding box around the set of matched points.

Figure 4.2. Variation of distractors in the image, ranging from 0 to 5, can affect the
performance of IBVS.

It has been noted that feature-based approaches can be complementary to machine
learning-based approaches, as they can provide an alternative means of object
detection and location that may be more suitable for certain applications.

• Hybrid Approach

The hybrid approach combines the strengths of both machine learning and feature-
based approaches to improve efficiency and accuracy. The definition of hybrid
approach is vague. This research proposes a form that combines the use of a CNN
for feature extraction with similarity comparison algorithms to locate the object in a
lower dimension. The proposed method uses the VGG-16 backbone neural network to
extract feature maps Ft and Fm from both the template image It and the input image
Ii, respectively. The method first pass the template and input images through the
VGG-16 network and extract the feature maps Ft and Fm from the last convolutional
layer of the network. The feature maps are then normalised to have zero mean and
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unit variance. To locate the object in the input image, NCC [223] method is used
to measure the similarity between the extracted feature maps as a function of their
relative displacement. NCC is defined as the ratio of the cross-correlation of two
images to the product of their standard deviations and is calculated as below:

γ =

∑
i

[
Fm − F̄m

] [
Ft − F̄t

]√∑
i

[
Fm− F̄m

]2∑
i

[
Ft − F̄t

]2 . (4.1)

Here, F̄m is the mean of Fm in the range under Ft, and F̄t is the mean of Ft.
The coordinate of the matching point (xmax, ymax) is located at the peak γmax in the
cross-correlation. This approach benefits from the ability of CNNs to extract high-
level features from images and NCC’s ability to accurately locate the object in a lower
dimension, making it robust to scale, rotation, and illumination changes.

4.2.2 Category-Agnostic Localisation

Efficient and accurate object detection and localisation play a crucial role in enabling
robots to understand and interact with their environment. Following the exploration
of visual servoing methods, another question arises: How does the robot determine
the target position without pre-defining a fixed location when it can be steered using
visual information? This section proposes a two-stage method that takes an image
query and a real-time image as input segments the target object and predicts the
transformation from the query to the real-time image, providing valuable information
for servoing and grasp planning. This method segments the target object and
predicts the transformation from the query to the real-time image, providing valuable
information for servoing and grasp planning. The advantage of this approach is
that it can extract hidden information from the template, such as shape, colour,
provided without learning the affordances of new objects, which makes the method
more practical in brazing settings, where parts might be in random and irregular
shapes, and able to extend to other tasks.

• Problem Formulation

The objective of this section is to develop a category-agnostic visual servoing
method that enables robots to grasp arbitrary unknown objects using object images
as queries. The proposed method aims to overcome the limitations of fixed-
class approaches and eliminate the need for extensive datasets or manual labelling.
By combining semantic segmentation and feature-based matching techniques, this
research aims to enhance the perception and manipulation capabilities of robots in
unstructured environments.
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The problem can be mathematically defined as follows: Given an input image I
containing both the scene and the target object, the task is to accurately localise and
segment the target object within the image. Let S represent the segmented target
object, which is a binary mask indicating the pixels belonging to the object and the
background pixels. The method should be capable of handling arbitrary unknown
objects with rich shapes, colours, and textures. Additionally, it should generalise
well across different object categories without the need for specific training or prior
knowledge about the objects.

Formally, the problem can be represented as finding the optimal segmentation
mask S∗ that maximises the objective function f(S):

S∗ = argmax
S

f(S) (4.2)

where f(S) captures the quality of the segmentation, considering factors such as
object boundary accuracy, pixel-wise classification accuracy, and overall semantic
consistency. The goal is to achieve high values of f(S) for accurate and reliable
object localisation and segmentation.

Furthermore, the method should be able to handle real-time applications and
operate within the limitations of robotic systems, including limited computational
resources, fast processing times, and low-latency requirements. The proposed method
should provide a reliable and efficient solution for object detection and localisation
tasks, enabling robots to interact with unknown objects in dynamic and unpredictable
environments.

• A Two-Stage Method

To address the problem of reliable and efficient object detection and localisation, a
two-stage approach consisting of object segmentation and transformation prediction is
proposed. By separating the image domain prediction and spatial location control of
the robot, interpretability and provide flexibility are enhanced, especially in scenarios
where trajectory planning plays a crucial role. The proposed method is designed to
provide a reliable and efficient solution that does not rely on closed-loop recurrent
control or extensive training datasets, making it suitable for real-world applications
with limited computational resources and manual labelling requirements.

In the architecture, as depicted in Fig. 4.14, the image and query pass through
a Convolutional Neural Network (CNN), which outputs the foreground image and
the background. The object segmentation stage utilises a pre-trained semantic
segmentation model to obtain pixel-wise class predictions for the input image I. The
segmented target object, denoted as S, is a binary mask that indicates the pixels
belonging to the object and the background pixels. By leveraging deep learning and
large-scale datasets, the segmentation model effectively distinguishes different object
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Figure 4.3. Example of randomly generated objects. These 3D CAD models are used
for the generation of the data set and for the simulation real-time object.

regions within the image. To achieve category-agnostic segmentation, the model were
modified to predict only two classes: objects and all other background. This approach
can be seen as a background removal technique, allowing for the identification and
isolation of objects for further processing.

Once the target object has been segmented, the transformation prediction stage
aims to estimate the spatial location and orientation of the object with respect to
the query image. This step involves comparing the segmented target object S with
a provided template image using keypoint matching and homography estimation
techniques. The estimated transformation matrix T maps the coordinates of the
target object to the template image coordinates. The best match is determined based
on the number of inlier matches and the quality of the estimated transformation. By
analysing the spatial relationship between the template and the segmented object,
the method can predict the object’s location and orientation in the scene.

To evaluate the effectiveness of the proposed method, experiments were conducted
using various test scenarios and evaluate the accuracy of object localisation. This work
compared the performance of the method against existing category-specific approaches
and analyse its adaptability to different object categories and environmental condi-
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tions. Additionally, this work explored the potential for automatic dataset generation
to enhance the method’s flexibility and adaptability in various robotic tasks. By
providing a reliable and efficient solution for object detection and localisation, the
method aims to empower robots to interact with unknown objects in dynamic and
unpredictable environments.

4.2.3 Category-Agnostic Servoing

Image-Based Category-Agnostic Visual Servoing
IBVS poses a significant challenge for robotic systems, as it involves detecting

the object and controlling the robot arm based on image feedback. These tasks
are further complicated by various interference such as changes in ambient lighting,
distractions, and background clutter. Recent research suggests that reinforcement
learning is a promising approach to learning efficient control policies for such tasks.
This section presents a novel reinforcement learning-based visual servoing approach
for grasping unseen objects, which employs domain randomisation to bridge the reality
gap between simulation and the real world. The full-state observation capability of
the simulator and design an estimator is leveraged to predict the position difference
between the robot and the object. The reinforcement learning agent is then trained
to use this estimation information to control the robot’s movements. The proposed
framework mimics the closed-loop system of human perception and action, with the
eyes (perception), hand (robot controller), and brain (RL agent) working in concert.
Through extensive experimentation, it has been demonstrated that the framework is
highly integrated, with each module complementing and enhancing the performance
of the others.

• Framework Overview

Followed by the idea from the last chapter, the approach is based on a template
matching algorithm that utilises the deep features extracted from a pre-trained
Convolutional Neural Network (CNN) to track the object of interest. The proposed
method processes the raw visual information and controls the robot in two separate
modules: visual feedback and control. The visual feedback module extracts the
deep features from the current image and compares them with the template features
to obtain the error. The feature extraction module provides feedback for the RL
controller, reducing the exploration difficulties for the RL algorithm and enabling
faster convergence to a robust policy. The novel algorithm combines the robustness of
both the backbone convolutional neural network (CNN) and the RL algorithm. The
control module generates the control command based on the error and sends it to the
robot controller to move the robot arm in the image plane towards the target object.

69



Chapter 4. Category-Agnostic Visual Servoing 4.2. Methods

The proposed IBVS structure is illustrated in Fig. 4.4. It is designed to enable
a robot to servo to a desired image without the need for further programming or
prior knowledge about the exact location of the object or the image Jacobian. The
framework consists of two main components: the RL agent and the environment that
the RL agent interacts with. At each time step, the current extracted visual features
f(t) and the desired visual features f ∗(t) are used to calculate the error e(t), which
is the difference between f(t) and f ∗(t). This error signal serves as the input to the
controller used by the RL agent.
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Figure 4.4. The proposed RL-based IBVS scheme. The agent, which applies
SAC algorithm, receives as input an error estimation and the previous action.
The environment receives the end-effector velocity as an input and calculate the
corresponding motor command with inverse kinematics and takes an image after the
agent action being executed. The feature extractor, maps the provided template
image with the current image and estimates the feature.

The objective of feature extraction is to derive the error e(t) in the image by
extracting features such as the change of the object position compared with the last
frame image. This e(t) is then used for controlling the robot’s motion. Accurately
matching the task object in the current frame is crucial for feature extraction.
There are generally four methods used for feature extraction in the computer vision
field: template matching, feature matching, shape/outline detection, and data-
driven matching. Traditional template matching requires translation consistency,
and it is sensitive to deformation and other appearance changes. Feature matching
is less sensitive to complicated deformation but requires complicated shapes to
extract enough feature points, and can be time-consuming. Shape detection uses
morphological transformations to detect the outline but is susceptible to noise. In
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Figure 4.5. Architecture of the proposed IBVS framework. The robot moves in
the world frame while capturing images at different time steps. In each time step,
the captured image is pre-processed and fed into a feature extractor to extract deep
features. The similarity is computed by comparing the template feature and the
current map, which produces the estimated position of the object in the image plane
and a confidence level.

this method, a CNN is used as the feature extractor. Compared to the other methods
mentioned, the CNN feature extractor is less vulnerable to noise, and does not require
intrinsic camera parameters or the use of hand-eye calibration to obtain the extrinsic
camera parameters. In particular, this research is interested in a general model that
can be applied directly to different unseen objects without human engineering, where
there is no need to design hand-crafted models or fine-tune the parameters for a
specific object.

To locate the target object in the current image, a deep CNN is used to extract
feature vectors Ftemp and Fmap(t) from a low-resolution template image Itemp and a
full-resolution current image It, respectively. To compare the similarity between the
two feature vectors, this experiment use normalised cross-correlation (NCC) [223],
which is the same module used in the proposed category-agnostic visual servoing
algorithm introduced in the last chapter. Specifically, the experiment computes the
distance between Ftemp and Fmap(t) as follows:

γ =

∑
i

[
Fmap − F̄map

]
[Ftemp − F̄temp]√{∑

i

[
Fmap − F̄map

]2∑
i[Ftemp − F̄temp]2

} , (4.3)
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where F̄map is the mean of Fmap in the range under Ftemp and F̄ temp is the
mean of the Ftemp. The coordinate of the matching point (xmax, ymax) is located at
the peak γmax in cross-correlation.

• Reinforcement Learning based Controller

The IBVS system aims to minimise the error between the current and target
image features. This research addresses the problem of learning to move the robot to
a desired location in an image plane without any prior knowledge of the object shape,
pose information, or camera parameters. In the setup, only a single template image
is provided, and any additional information provided by augmented reality markers
or camera calibration is not available. Therefore, the feature Jacobian cannot be
explicitly calculated. The problem is formalised as a Markov Decision Process (MDP)
framework < S,A, Ps,a, R > over discrete time steps in an environment E, where S, A,
and R denote the sets of states, actions, and rewards. Ps,a is the transition probability
that describes the probability of the agent moving from state s(t) to a new state s(t+1)
after taking the action a(t). The final objective of the RL agent is to find a policy
π that predicts an action a(t) ∈ A based on the observation of the state s(t) ∈ S at
each time step t, which maximises the expected reward S ×A → R. The cumulative
expected reward can be written as:

E(s(t),a(t))∼ρπ

[∑
t

R (s(t), a(t))

]
. (4.4)

In the previous section, the feature extraction scheme that results in a higher
dimensional feature value was introduced. The environment receives (xmax, ymax) and
NCC score γmax from the feature extractor, which are combined with the last step
action a(t− 1) to form a 4-dimensional vector:

s(t) = {ex(t), ey(t), γ(t), a(t− 1)}, (4.5)

where ex(t) and ey(t) represent the normalised error of the template centre to the
matched centre in the image plane. The reward function is defined as:

It =

{
0, e(t) ≥ ethresh

−1, e(t) < ethresh
(4.6)

This function calculates the error in the image plane, given by e(t) =√
(ex(t))2 + (ey(t))2, and provides feedback based on whether the threshold value is

exceeded.

• Feature Extractor Model
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A NCC-based template matching approach is used, as proposed by [222], as the
base for the perception module. This approach takes scale adaptive deep convolutional
feature vectors from both the template and the current frame image using a pre-
trained VGG-16 network and measures the similarity of the output features to locate
the target. The feature extraction module is initialised with the template image of
the task object, and use the maximal correlation value on the map to find the target
location in the image plane. It is important to note that the peak correlation value
of the same image is not always located at the centre of the image, so location at
initialisation must be found this. Once the feature extraction module has located the
target, it provides features to the reinforcement learning algorithm, which generates
a motor command that moves the robot in the image domain.

• Training Methodology using Soft Actor-Critic RL

For training the agent, this research chooses Soft Actor Critic (SAC) [225], which
is an off-policy maximum entropy RL algorithm. In addition to maximising the
cumulative reward as described in Equation 4.4, SAC algorithm also aims to maximise
the entropy of the action taken by the agent. The modified expected reward used in
SAC is given as:

E(s(t), a(t)) ∼ ρπ

[∑
t

R (s(t), a(t)) + αH (π (· | s(t)))

]
. (4.7)

Here, α is a temperature parameter that determines the trade-off between max-
imising the expected reward and maximising the entropy of the action distribution.
This parameter is tuned to balance exploration and exploitation during training.
During training, experience by running multiple episodes of the task is collected,
each consisting of a sequence of state-action pairs. The experience is then used to
update the policy and value function networks using stochastic gradient descent. The
Q-values, Actor, and Value function are trained with the Adam optimiser using the
same learning rate of 3e-4. The RL agent is trained and tested using an episodic RL
setting. At the beginning of each episode, a random object is generated on the table.
The robot arm moves towards the object to fetch the template image and initialise the
feature extractor. After initialisation, the task scene is created, including resetting
the robot motor to a fixed position and generating the target and distractors in the
FoV of the wrist camera. Additional noise is added to the environment by varying
the light direction, brightness, and diffusion coefficient. In each episode, the agent
is rewarded according to Equation 4.6. Setting the error threshold ethresh too large
or too small can lead to task failures. The error threshold is set to 0.1. A looser
definition for the threshold would lead to a jittery robot arm, as there is no penalty
for the jitter, and a stricter definition would lead to longer exploration time before
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the algorithm converges. Early termination occurs in two scenarios: when the object
is out of the FoV for ten time steps, and when the robot arm moves out of the preset
boundaries. In both cases, the total reward is set to -200, which is the highest penalty
term that one episode can receive.

Figure 4.6. Examples of visual servoing process in simulation.

Position-Based Category-Agnostic Visual Servoing
In contrast to IBVS, PBVS plans the movement based on estimated robot’s relative

position. The framework consists of an eye” that estimates the approximate position
of the target object, and a brain” that guides the robot arm to reach the object
through iterations of eye estimation and action. To this end, an estimator to estimate
the position difference between the target view and the current view is trained in an
“eye-in-hand” setting. Furthermore, a reinforcement learning-based policy network
is introduced to guide the robot arm with the estimation information. Unlike the
prior IBVS framework, which relies on feature extraction and matching in the image
space, this PBVS approach explores reducing reliance on hand-designed perception
modules in an end-to-end fashion. By directly estimating 3D positions, it enhances
the robot’s versatility in complex environments but introduces more uncertainties and
algorithmic challenges.
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(a) (b)

Figure 4.7. Real-world experimental setup for testing the proposed framework. (a)
Initial setup before testing. (b) Experimental setup at the end of the testing phase.

To achieve this, the method aims to recognise the target object and to establish
a relationship between actions and the changes in the image domain that result
from those actions. As a result, the proposed framework can be divided into two
interconnected components: (1) an estimator that calculates the positional difference
between the current state and the target state, and (2) a policy network that uses the
estimator’s output to generate the robot’s next action. Fig. 4.12 provides an overview
of the approach.

• The Estimator Module

The estimator module is a key component of the proposed method, as it is
responsible for estimating the position difference between the template image and
the current image. Specifically, this module takes two images as input, the template
image I0 and the current image It, and is expected to output the difference vector
which indicates the direction and magnitude of the required movement to reach the
target. To achieve this, a CNN with two branches is used, where the first branch
processes the template image and the second branch processes the current image.
The two branches are then combined and passed through a fully connected layer to
generate the final output. In this way, the estimator module establishes a mapping
between the visual features of the observed state and the corresponding action required
to move towards the target.

• The Estimator Network Architecture
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The estimator module uses ResNet 50 [224] as the back-end and consists of the
convolutional layers of ResNet 18 pre-trained on ImageNet to extract image features.
Both the template image and the current image are fed through the same network,
and the output image features of the two images are concatenated before being
passed through three fully-connected (FC) hidden layers and an output layer. The
three FC layers consist of 1024, 256, and 128 nodes, respectively, and use the ReLU
activation function [226]. The output of the estimator module contains four nodes: an
estimated position difference vector pointing to the goal position and the magnitude.
The network is trained using smooth L1 loss, which is calculated by comparing the
predicted pose difference ypred with the ground truth pose difference ytrue.

• Training the Estimator

Data collection and algorithm training are performed in a simulated environment.
The process starts by randomly generating an object with a random position within
the robot’s field of view (FoV). The robot arm is then moved randomly to approach
the object and capture the template image I0. To ensure that the estimator learns
only the relative spatial relationship between the images, instead of learning the
camera parameters, the object is moved to a different position. Thus, the input to the
estimator consists of two images captured at different positions with different camera
relative locations. 10,000 such pairs of images are generated to form the training
set. The training process consists of two phases. In the first phase, the pre-trained
ResNet 18 model is used to initialise the feature extractor’s weights. In the second
phase, the entire estimator network is fine-tuned using the Adam optimiser [227] with
a learning rate of 0.001 and a batch size of 32. The network is trained for 200 epochs
with early stopping if the validation loss does not improve after 20 epochs. Smooth
L1 loss, also known as the Huber loss, is used to calculate the difference between the
predicted position difference vector and the ground truth position difference vector.
The trained estimator network is then used to provide input observations to the policy
network during the interaction with the environment.

• RL For Policy Training

To train the policy network, this method adopt Soft Actor-Critic (SAC) [228, 229]
as the RL algorithm. SAC is built under the Maximum Entropy RL framework and
has shown to be an effective off-policy RL algorithm for continuous control tasks.
To further enhance the sample efficiency and stability of the training process, the
Hindsight Experience Replay (HER) [230] technique is applied. HER allows the agent
to learn from failures by relabelling the original transitions with states from past
episodes in the replay buffer, which can lead to higher sample efficiency and faster
convergence. As the goal is to reach a specific object, sparse and binary rewards are
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Figure 4.8. Simulated scenes with various task objects and textures were captured
from both goal and random positions to generate a randomized dataset for training
and evaluation.

used instead of carefully shaped rewards. This is particularly important in scenes
with sparse rewards and high-dimensional state spaces, where it is difficult for the
algorithm to receive meaningful feedback.

The observation space for the RL algorithm is the output of the estimator module,
which is a low-dimensional representation of the spatial relationship between the goal
position and the current position instead of raw images from the RGB camera. This
approach significantly reduces the complexity and state dimension of the original
task while retaining the critical information required for the robot to reach the goal
position. By treating the prior estimator’s output as the observation of the RL
algorithm, the need for hand-eye calibration and carefully-tuned control algorithms is
eliminated. Additionally, RL is capable of handling uncertainties in the environment,
reducing the impact of potential errors in the estimator on the overall movement of
the robot.

rt is the reward received by the reinforcement learning agent at time step t. In
this algorithm, the while loop continues until the reward is not equal to -1. xz(t) is
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Figure 4.9. Left: compare the average episode reward of the proposed method with
DDPG with HER replay buffer and replace the output of the estimator module with
an accurate position difference. Middle: ablation experiments. Right: compare to
other RL algorithms.

the height of the robot end-effector at time step t. This is used to determine if the
robot has moved upward or not. The loop continues until the end-effector reaches the
desired object position, which means it should stop moving upward and xz(t) should
not increase anymore. xz(0) is the height of the robot end-effector at the initial
position. This is used as a reference point to compare with xz(t) and determine if the
robot has moved upward or not.

4.3 Experiment

4.3.1 Category-Agnostic Vision Algorithms Comparison

This experiment utilised PyBullet [70] platform, as describe in the previous section,
to evaluate the approach in simulation. The simulated environment consists of a 6
DoF UR5e robot and a wrist camera with a field of view of 60 degrees and an image
size of 256 × 256 pixels. The robot is controlled using a Cartesian space position
controller, and the simulation includes a set of randomly generated rigid objects or
daily objects.

The generation of CAD objects begins with primitive geometric shapes serving
as base components, where cubes, cylinders, and spheres are parametrically defined
with randomly sampled dimensions within predefined ranges suitable for brazing
applications. The shape composition phase combines multiple primitives using
boolean operations including union, intersection, and difference to create complex
geometries. Each object is composed from a varying number of primitive shapes,
typically between two and five, arranged in a hierarchical composition tree. Spatial
relationship constraints ensure the physical validity of the resulting objects while
maintaining sufficient complexity to challenge the localisation algorithm.

These composed shapes subsequently undergo surface modifications through
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several transformations. A Perlin noise function applies random perturbations
to surface points, creating natural variations in the object geometry. Smoothing
operations maintain manufacturability while edge rounding and filleting operations
enhance realism. The scale of these features varies randomly to test the algorithm’s
robustness across different size domains.

The background of the working area is generated randomly and it includes both
pure colour backgrounds and texture backgrounds. The simulation environment is
depicted in Fig. 4.1, which shows sample scenes with randomly generated objects
and backgrounds. To evaluate the robustness of the algorithms to changes in the
environment, the number of distractors in the scene and the lighting conditions were
varied, including the distance between the light source and the object being rendered,
the amount of ambient light, and the amount of diffuse and specular lighting in the
scene.

This experiment compares the accuracy, efficiency, and robustness of the proposed
IBVS techniques. The accuracy and robustness of the algorithms are evaluated using
Intersection over Union (IoU), which is calculated by measuring the overlap between
the predicted and ground truth bounding boxes. This work tested the algorithms on a
set of 50 different objects with varying textures and backgrounds while controlling the
camera parameters and environment. Additionally, to add difficulty to the evaluation,
distractors were introduced by creating cluttered environments for 2D image-based
algorithms. This work believes that these evaluations would provide valuable insights
into the suitability of different algorithms for IBVS applications.

To evaluate efficiency, the processing time of different algorithms were tested,
which directly affects the performance of the robotic system. In an IBVS system, the
robot must be able to quickly and accurately locate the object of interest in the image
frame and use that information to guide its motion toward the desired goal. If the
object recognition and location process is slow, it can significantly degrade the overall
performance of the system, leading to slower and less accurate robotic movements.
This can be particularly problematic in applications where the robot needs to perform
tasks in real-time or where there are time-sensitive constraints. Therefore, it is crucial
to develop fast and efficient algorithms for object recognition and location that can
meet the speed requirements of the IBVS system. The efficiency evaluation results
are presented in Table 4.1, which reports the average processing time in seconds and
the standard deviation across multiple trials.

The images in Fig. 4.2 illustrate the effect of adding different numbers of
distractors to an image in an IBVS system. The images show examples of the same
object with varying degrees of clutter and complexity, which can affect the speed and
accuracy of object recognition and localisation algorithms. This is a demonstration of
the importance of developing robust and efficient algorithms that can handle varying
levels of clutter and background noise in IBVS applications.

79



Chapter 4. Category-Agnostic Visual Servoing 4.3. Experiment

Table 4.1. Efficiency Evaluation
Algorithm Avg (%) Std
Semantic 0.136 0.0979
ORB 0.0335 0.0672
SIFT 0.0198 0.00614
Hybrid 0.867 0.187

Table 4.2. Accuracy Evaluation with Different Numbers of Distractors (Accuracy %)

Algorithm 0 1 2 3 4 5
Semantic 91.5 - - - - -
ORB 83.9 57.2 49.2 29.9 32.7 4.63
SIFT 88.9 73.9 50.7 34.2 54.6 29.8
Hybrid 89.1 74.2 69.6 58.3 35.0 26.4

• Data Generation and Dataset Preparation

To ensure the reliability and validity of the experimental findings, a diverse and
extensive dataset for object detection and localisation is created. The fine-tuning
process of the pre-trained semantic segmentation model required collecting both
RGB images and their corresponding labelled segmentation images. However, manual
labelling can be a time-consuming task. To overcome this challenge, this experiment
employed a combination of synthetic data generation techniques, real-world textures,
and scanned 3D objects to automatically generate a large volume of template images,
RGB images, and their segmented counterparts. The dataset encompassed a wide
range of objects with varying shapes, sizes, textures, and colours. Variations in
lighting conditions, backgrounds, and camera placements have also been introduced
to realistically simulate various real-world scenarios. By utilising this diverse and
rich dataset in the experiments, the performance of different IBVS methods under a
variety of challenging conditions were able to comprehensively evaluated.

In addition, to efficiently train a category-agnostic semantic segmentation model,
this experiment employs an automatic data generation process in simulator. The
experiment created a synthetic training dataset comprising 10,000 images, image
queries, and corresponding ground truth mask sets. The ground truth mask
provides binary segmentation information, distinguishing between the objects and
the background. Each image-query pair consists of random objects, including the
target object, along with a variable number of distraction objects ranging from 1
to 6. This work generates a diverse range of background textures using domain
randomisation techniques. This process ensures that the trained network can handle
different background variations encountered in real-world scenarios. In addition, to
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Figure 4.10. Failure Analysis.

enhance the robustness of the network and enable seamless transfer from simulation
to reality, additional randomisation factors were introduced. These factors include
object poses, camera poses, and light conditions. By varying these parameters, a more
comprehensive training dataset was created that captures the variations encountered
in practical environments.

To simulate realistic camera-in-hand robot settings, this work constrain the camera
movement to the x-y plane, maintaining a top-down view. This restriction ensures
that the camera’s perspective resembles that of a robot operating in a real-world
scenario. After generating the images, the distraction objects were removed from the
scene, leaving only the target object. This work then generates a randomised picture
of the target object with varying positions, orientations, and lighting conditions.
Utilising the full state accessibility provided by the simulator, masks are computed
that determine the set of pixels belonging to the target object in the RGB image.
These computed masks serve as ground truth labels for training the network.
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Figure 4.11. Example results for query object localisation in different random
scenes. The predictions for the RGB image are boxed. Each input image represents
a randomly generated scenario where arbitrary objects are added to an unseen
background within the field of view.

Additionally, the ground truth bounding box of the target object was computed,
providing precise spatial information for evaluation purposes. By leveraging automatic
data generation, a diverse and extensive training dataset is ensured, facilitating the
training of a category-agnostic semantic segmentation model capable of accurately
localising target objects in real-world scenarios.

4.3.2 Category-Agnostic Localisation

In this section, the experimental setup used to evaluate the effectiveness of the
proposed method for object detection and localisation is presented. A series of
experiments are conducted to assess the performance, robustness, and generalisation
capabilities of the method in various scenarios. The experiments involved both
synthetic images and real-life images.

The experiments were conducted with the basic version PyBullet environment
which details are given in the last chapter. This simulation environment consisted of
a UR robot equipped with a camera system. This experiment utilised a combination
of generated datasets and real-world images for evaluation.

To ensure that the network did not have prior exposure to the objects, unseen
objects were introduced in the simulator. A total of 1,000 random objects were
generated, with 200 objects used for dataset generation and 100 objects reserved
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for testing. Examples of the arbitrary-shaped objects are demonstrated in Fig.
4.3. The simulation testing scenario consisted of a table with randomly generated
objects placed on it. The number of objects on the table was set to 5 or 6 to
provide a challenging task.To validate the proposed method, the category-agnostic
semantic segmentation results with the ground truth generated were compared using
the information provided by the simulator.

For the real-world dataset validation, four different experimental conditions to
thoroughly validate the performance of the method were conducted. Each experiment
was designed with variations in background, light direction, light intensity, and object
arrangement. By introducing these diverse conditions, this work aimed to increase
the challenge and evaluate the robustness of the approach in different real-world
scenarios. The variations in background provided a test for the method’s ability
to distinguish objects from complex and cluttered environments. Different light
directions and intensities challenged the method’s capability to handle variations
in illumination conditions, simulating realistic scenarios where objects may be
encountered under different lighting conditions. Additionally, the variations in object
arrangement assessed the method’s ability to accurately detect and localise objects
in different spatial configurations. Through these experiments, valuable insights into
the performance of the method across various challenging real-world conditions can be
obtained, further validating its effectiveness and potential for practical applications.
Additionally, the method’s performance on the generated dataset is evaluated to assess
its generalisation capabilities. The training dataset comprised 9,000 images, while
1,000 images were allocated for validation.

The proposed method utilised the DeepLab V3 model with a ResNet-50 backbone
for improved efficiency. To adapt the ResNet-50 to the requirements, the number of
output classes are reduced to two: foreground object and background. The model was
implemented using the PyTorch framework and trained using the generated dataset.
The Adam optimiser was used with a learning rate of 0.00001. The training process
was conducted on an RTX 3060 GPU.

4.3.3 Category-Agnostic Servoing

Image-Based Category-Agnostic Visual Servoing
This section provides details on the implementation of the proposed IBVS method.

PyBullet [70] is utilised to evaluate the approach in simulation. Similar to the basis
simulation environment, the simulated environment includes a 7 degree-of-freedom
UR5e robot. An additional wrist camera is included in this experiment with a field
of view of 60◦ and an image size of 256× 256 pixels. Before each episode of training,
a template image of size 32 × 32 pixels is captured. The robot is controlled using a
Cartesian velocity controller, and the simulation includes a set of randomly generated
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simple rigid objects.
The environment is wrapped as a goal-oriented environment that takes three inputs

to form the state S: the achieved goal (the current position), the desired goal (true
object position), and the observation (information provided by the estimator). At
each time step t, a live image from the camera is captured and fed into the estimator
module along with the template image to obtain a predicted value. This value is passed
to the RL algorithm to predict a robot motor command A. By using the estimator
output as the observation, the complexity of the task is reduced and the impact of
potential errors from the raw images captured by the camera. Sparse rewards were
used to specify the task aims implicitly. The RL agent receives a negative value if
the distance to the desired position is larger than a preset threshold value, or 0 if it
is smaller than the threshold value at each time step t.

• Data Generation for IBVS

Learning algorithms training requires the robot to interact with the environment.
This exploration in environments usually takes a lot of time for training which is more
particular in environments with spare rewards and large action or/and observation
dimension. In recent years, some techniques [230] or sample-efficient algorithms [41]
has been proposed to solve this problem. In the research, instead of using sparse
rewards or hand-designed rewards, a deep learning-based reward function is proposed
which provides abundant real-time feedback for the training of the RL algorithm.

Therefore, data must be collected to train this reward function. In this settings,
as the observation is provided by the the on-hand camera, RGB image is the first
choice for the input of the reward function. The target of this reward function is the
improvement of the previous action. If the robot managed to move towards the target
gesture, the reward will be positive, and accordingly, the reward will be negative
when moving away. This means that the reward function will have at least three
inputs: image of the target gesture, current image and previous image. The output
is the estimated position and orientation differences which forms a seven element
vector (three elements for the x-axis, y-axis and z-axis, and four elements orientation
differences in quaternion).

To generate input-output pairs for the reward function, the following steps are
undertaken:

At the initial/reset position, the robot arm’s end effector vector is set to be
perpendicular to the ground. During the data generation process, the robot arm’s
gesture should gradually move from the bottleneck position to the initial/reset
position. This is done by setting the value of the displacement x(t) or ration as
the value of a normal distribution function, which the expected value is proportional
to the difference value between the final state xfinal and the current state xcurrent(t):
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Algorithm 3 Data generation and pre-processing

1: Initialise the environment and the Cobot. Generate the task environment with
random texture and a random object for reaching.

2: repeat
3: repeat
4: Generate a random relative gesture (or pre-designed gesture) where the Cobot

will move to.
5: Take a image on this gesture which is used as the target image for this set of

data.
6: Record the target gesture.
7: until The number of this dataset is satisfied.
8: until The total group number of the dataset is satisfied.

Output: Groups of dataset with different object, texture, and starting position.

x(t) ∼ N
(
µ(t), σ2

)
, µ(t) = (xfinal − xcurrent(t))/350, (4.8)

where the proportional value is set to 350 to simulate a smooth return-to-centre speed.
After the raw data is generated, data must be processed to form the input-output pairs
to be able to be fed into the neural network. The input comprises three images: the
target image, the current image, and the previous image. The reward function has
two layers: the first estimates the gesture difference, and the second compares two
images taken at different times, providing marks based on whether the robot moves
closer to the target gesture. To align with this input paradigm, one image from a
group that is not the target image of this group is taken out and concatenated with
the target image of this group.

Position-Based Category-Agnostic Visual Servoing
The reaching process can be viewed as an interaction between the robot and the

RL agent, as illustrated in Fig. 4.12. At each time step t, the agent takes an action to
move the robot toward the target, based on the output of the estimator. The action
is the desired velocity of the end-effector, which is converted into joint positions using
inverse kinematics. Once the robot reaches a new position, it captures a new image
and sends it to the estimator, which provides a new observation that is passed back to
the agent. This forms a closed-loop scheme that is executed repeatedly. During the
training stage, the agent receives a reward in addition to the state observation, which
indicates the goal. The reward is calculated based on an accurate position, which is
only available in the simulator.

• PBVS Data Collection

To train the estimator part, the image and the position difference pair were
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Figure 4.12. Overview of the proposed method consisting of two main parts:
estimator training and policy training. The dataset for training the estimator
is generated through human demonstrations (bottom). At each time step t, the
estimator takes the template image I0 and the current image It as inputs and provides
the observation to the agent. The adapted estimator network is used to train the
policy network while the agent interacts with the environment (top).

collected to form the training dataset. In specific, two images were collected, which
are a template image of a random object and an image of the same object taken at
another position, and their real-world distance to form an input-output pair.

Data is generated in the simulator and the data collection is run automatically.
First, the robot and a random object are reset to a random initial position, and
then the object is generated randomly on the table. Secondly, a template image is
automatically collected. Starting from this position, the robot arm moves upward by
sampling from a set of actions. These actions have different time-varying probabilities
to ensure the robot moves upward overall. There are seven actions in the data
collection process: staying still, moving along the plus and the minus x-axis, moving
along the plus and the minus y-axis, and moving along the plus and the minus z-axis,
respectively.

A collection process is defined, which includes the robot collecting data continu-
ously in the environment with one initial human demonstration, as a group of data
set Dpose. When the step is less than 30, the probability of moving along the plus
z-axis is set to a higher value, and the minus z-axis is set to a lower value to avoid
colliding with the task object. Then, the probability of actions is the same except for
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moving along the plus z-axis, which is dependent on the step taken and a little bit
higher than other actions to ensure covering as many regions as possible.

4.4 Results and Discussion

4.4.1 Category-Agnostic Vision Algorithms Comparison

Based on the experiments, it has been found that testing algorithms’ success
rates under various lighting conditions are critical to assess their robustness to
environmental changes. In the experiments, this work evaluated the performance of
the algorithms under different lighting conditions, including changes in the distance
between the light source and the object, variations in the ambient, diffuse, and
specular coefficients. Various real-world lighting conditions were simulated and the
algorithms’ ability to generalise were tested by controlling these parameters. To better
illustrate the results, Blinn-Phong model were used to calculate the illumination
for a given set of ambient, diffuse, and specular coefficients. The findings suggest
that machine learning based approach (semantic segmentation and hybrid approach)
performs better under diverse lighting conditions and have a better potential for
deployment in real-world applications.

The results of the accuracy evaluation with different numbers of distractors are
presented in Table 4.2. It shows the accuracy percentages of four IBVS algorithms
(Semantic, ORB, SIFT, and Feature) under varying numbers of distractors. The
results show that Semantic performs the best with an accuracy of 91.5% on average,
even with five distractors. ORB, SIFT, and Feature have lower accuracy compared
to Semantic. The accuracy decreases as the number of distractors increases for all
algorithms. The highest decrease in accuracy is observed for ORB, which drops from
83.9% without any distractors to only 32.7% with four distractors. SIFT also shows
a significant drop in accuracy as the number of distractors increases. These results
demonstrate the effectiveness of hybrid approaches over other algorithms in cluttered
environments.

The failure images are shown in Fig. 4.10. In analysing the failure examples of the
tested algorithms, it was found that ORB and SIFT algorithms were prone to failure in
situations where there were occlusions, lighting changes, or when the object of interest
was rotated or scaled. On the other hand, the semantic segmentation algorithm
failed when the background texture was complex and resembled objects, leading to
confusion between the object and the background. The hybrid approach showed
better performance than the other algorithms in terms of accuracy and robustness.
However, it was found to be more computationally expensive and slower than the
other algorithms. These findings suggest that while the hybrid approach may be
suitable for applications where accuracy is paramount and computational resources
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are not a constraint, other algorithms such as ORB and SIFT may be more suitable
for real-time applications where speed and efficiency are critical factors.

Although semantic segmentation cannot be directly used to match unseen objects
with the provided template image, it is observed that semantic segmentation
algorithms can be adapted to segment such objects with fine-tuning, which has a
relatively low cost compared to the potential accuracy gains. Additionally, this work
found that the output of semantic segmentation can be used as a mask to narrow down
the search space for feature matching. Combining this approach with feature detectors
can lead to a promising hybrid solution that reduces computational complexity while
improving the accuracy of feature matching. This technique has the potential to
enhance the performance of IBVS in robotic systems, especially in situations where
computational resources are limited.

The efficiency evaluation results are shown in Table 4.1. The semantic method has
the highest processing time, with an average of 0.136s, while the SIFT method has
the lowest, with an average of 0.0198s. The ORB and hybrid methods have processing
times of 0.0335s and 0.867s, respectively. The hybrid method, which combines deep
learning and feature matching algorithms, has a higher processing time than the
other methods but also achieves the highest accuracy, as shown in Tables 4.1 and
4.2. Overall, the results demonstrate the trade-off between accuracy and efficiency in
IBVS systems and highlight the importance of developing algorithms that can achieve
both high accuracy and fast processing times.

Although the experimental results demonstrate the effectiveness of these IBVS
approaches, it is important to consider the limitations and potential challenges of
each method when applied to real-world scenarios. For example, machine learning-
based methods may be prone to false positives or missed detection in complex scenes
with high variability. Additionally, feature-based approaches may struggle with
scalability when applied to large datasets. Therefore, it is important for researchers
and practitioners to carefully evaluate the strengths and weaknesses of each method
before applying them in real-world scenarios.

However, it is crucial to acknowledge that the practicality of the RGB-based IBVS
approach can vary depending on the specific environmental conditions. In scenarios
where the environment is well-structured and the height of the background is known,
depth cameras have the advantage of providing more precise object recognition and
detection. Consequently, in cases where there is sufficient budget or familiarity with
the environment, the RGB-based approach may be less competitive.

Furthermore, PBVS utilising deep learning models is an alternative solution for
low-cost robot visual servoing. PBVS relies on inferring object pose estimation from
2D information, which may not be as accurate as IBVS which directly estimates errors
in the image space. However, the advantage of PBVS lies in its image-to-Cartesian
space mapping, which simplifies the design of control laws in the image domain and
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reduces dependency on camera location. As such, PBVS shows promise as a viable
option for certain applications where accuracy requirements are less stringent and
ease of control law design is a priority.

Figure 4.13. Example results of semantic segmentation, where each color represents
a different object class.

4.4.2 Category-Agnostic Localisation

To evaluate the performance of the proposed method with image queries, several
evaluation metrics were utilised, including recall and intersection over union (IoU).
Recall indicates the ability to correctly detect and select the same object as the query
image, while IoU measures the overlap between the predicted object region and the
ground truth region. The IoU is calculated as:

IoU =
|A ∩B|
|A ∪B|

, (4.9)

where A is the predicted region and B is the ground truth region. These metrics
provide a comprehensive assessment of the method’s accuracy and robustness.

The experiment analysed the segmentation results and compared them with the
ground truth annotations to assess the effectiveness of the method in accurately
localising and segmenting the target objects. Additionally, the method was compared
with feature-based template matching methods (SIFT [231] and ORB[88]) and
YOLOv3 [232] in a simulation environment, as shown in Table 4.3. For Yolov3, this
work simply used the class on the query image as a hint to find the matched object.
The results were lower than in other datasets, as the objects have arbitrary shapes and
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Figure 4.14. The proposed method contains two stages: At the stage 1, the input
image and query are segmented by the foreground object and the background. Then
the foreground is kept and used to mask the image and cropped into different
proposals. The processed query and proposals are fed into the feature detection
module in stage 2 to match the target object and estimate the rotation.

are harder to classify. Fig.4.11 showcases example results of query object localisation
in various random scenes. The predictions for the RGB image are visually highlighted
with bounding boxes. Each input image represents a unique scenario generated by
randomly adding arbitrary objects to an unseen background within the field of view.
This demonstrates the method’s ability to handle diverse environmental conditions
and accurately localise objects of interest.

Table 4.3. Comparison of average IoU and recall for each method. Porposed method
achieves the highest performance.

Method Avg IoU Avg Recall

Proposed method 0.91 0.88
Feature-based methods 0.34 0.45
Yolov3 0.87 0.12

In addition to the simulated environment, this experiment also tested the method
with real-world images. It is worth noting that the dataset used for training solely
consists of synthetic images and has not seen any of the objects in the real-world
experiments conducted. To further validate the robustness, the real-world experiments
were carried out under different light conditions, various backgrounds, and different
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Figure 4.15. Real-world images for the validation of the tested algorithm. From left
to right: cropped segmented query, images with different camera parameters, query,
segmented mask, and the final prediction of the object’s location.

image or query shapes (3024 by 3024 or 1276 by 1276 pixels). The results are shown
in Fig. 4.15. Four example scenes are depicted, and the corresponding results are
presented on the rightmost side. From left to right shows the cropped segmented
query image, the input real-world image, the real-world image after masking by the
generated mask, and the final results. The results suggest that the method can handle
different camera parameters, diverse scenes with unseen arbitrary objects. However,
it is worth noting that the segmentation might still predict multiple object segments
on the same object, which can lead to localisation failures.

4.4.3 Category-Agnostic Servoing

The experiments aim to address two primary questions: (1) Can an RL agent learn
to servo the robot in the image plane from deep features? and (2) How well do
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deep features perform compared to traditional template matching algorithms? To
answer the first question, this experiment created a simulated visual servoing scene
for training the control policy. The results are shown in Fig. 4.6, which depicts the
simulation scene at different time steps, along with the template matching results
with high and low confidence. The right-most two images show the template image
and the estimated results with the target location marked in a red circle, respectively.
Despite the occasional noisy and unreliable data, the learned visual servoing RL agent
is capable of identifying the target object in the presence of other distractors. The
RL-based agent can converge, and it exhibits stable behaviour around 25,000 episodes,
as shown in the training curve (see Fig. 4.16).

Figure 4.16. Training performance curves: (a) Accumulated reward versus training
episodes for the visual servoing RL agent. (b) Entropy coefficient loss versus training
episodes for the SAC algorithm.

Table 4.4. Results of comparison of the image matching.
Algorithm Time (s) Match rate (%)

SIFT 0.12 88.1
ORB 0.03 80.3
CNN 0.13 90.7

To answer the second question, this experiment conducted a comparison between
the CNN-based template matching module and two traditional image matching
techniques, namely SIFT and ORB. For this experiment, a fixed template image
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generated during the initialisation of the algorithm in the simulator is used, and
compared with a map image taken by the robot in a random position while keeping
all objects within the FoV. As the ground truth value is in the image domain, while
only the world frame coordination of the object can be accessed via the simulator, a
quick segmentation algorithm is designed to extract the target object from the image.
Specifically, the simulator’s capability of taking segmentation images is is used to
create a mask of the template object and then applied a connected component labelling
algorithm to find the target object in the segmented binary image. The results are
presented in Table 4.4. This research did not take into account the initialisation time
and training time of the CNN. The findings suggest that the CNN-based template
matching method has a higher match rate and is more robust to deformation and
occlusion compared to SIFT and ORB.

In order to train the model, this research tested 16 different 3D daily objects
from [233] and 1000 randomly generated objects in the simulation. The simulation
environment is built on the Bullet physics engine[234], with a simulated UR5e robot
arm with a gripper and a wrist camera looking at the object on a table. The simulator
is used for the data generation and the training of the estimator and the reinforcement
learning agent. Domain randomisation (DR) is used for training and testing the
method to boost the sim-to-real generalisation capability, where the scene background
and table texture were selected randomly from the Describable Textures Data (DTD)
set [235] and a randomly generated pure colour texture set. The camera is mounted
on the end-effector of the robot, which provides RGB images (256 × 256 × 3) to the
estimator. Camera-related parameters, such as light source direction, distance and
intensities, the brightness of the reflection, and diffuse coefficient, are also randomised
to train a more robust system. Fig. 4.8 shows example pictures of the randomised
simulation environment with different task objects and textures taken from the goal
position and other random positions.

In addition to the simulation environment, the method in a real-world scenario is
tested at the same time. A 6-DoF UR10e robot with OnRobot force-torque sensor
and an RG2 gripper mounted on the wrist is used. A Microsoft HD3000 camera
is attached to the gripper to capture RGB images. Images taken from the camera
have 640× 480 resolution and are cropped and resized to 224× 224× 3 to fit in the
estimator’s network. The maximum output of the reinforcement learning algorithm is
scaled and mapped down to 0.01 m/s. For example, an output action 1 in the x-axis
means a 0.01 m/s velocity motion in the x-axis. A smaller maximum velocity leads to
a smoother and better motion but takes more steps to interact with the environment.
The reinforcement learning agent and control are deployed on a PC connected to the
robot with a cable connection. When interacting with the environment, the PC will
send a command to the camera to capture images and pass them to the estimator
module. The distance estimation is then passed to the reinforcement learning agent
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and predicts an output, which will be converted to the robot motor command.
The training profile of the estimator module is shown in Fig. 4.17. To test the RL

module, the output of the estimator is replaced with an accurate position difference
observation, which is assessed by the simulator, and compare the average episode
reward to the method and a replacement of the RL agent of the method to the DDPG
algorithm [236]. The result is demonstrated on the left of Fig. 4.9. All algorithms
have been trained in the simulation environment with 50,000 steps. The algorithm
with the estimator module shows a similar performance to the case where an accurate
position difference has been given. To further validate the effect of the estimator
and HER technique on the method, a thorough ablation study is conducted on the
method and the results are shown in the middle of Fig. 4.9. To compare the learning
curves of the method without the estimator, the estimator module is replaced with an
end-to-end image input to the reinforcement learning algorithm. It can be observed
that it is hard for the RL algorithm to figure out how to reach the target place with
an end-to-end observation. The massive state dimension might impede the algorithm
to dig out the relationship between motions in two figures and the output action.

Table 4.5. Performance comparison of different methods in both simulation and the
real world. The numbers represent the success rate.

Method Success (Sim) Success (Real)

The method 0.96 0.87
The method (with
accurate position)

1.00 N/A

DDPG + HER 0.93 0.40
SAC 0.70 0

In addition, the method to different RL algorithms with the same input from the
estimator is compared. It can be observed that the method is able to reach a higher
average episode reward with much fewer time steps. A higher average reward means
fewer redundant moves performed by the robot. The right part of Fig. 4.17 depicts
the critic loss of different RL algorithms in log scale, with the x-axis being the number
of training steps the agent experiences, where the method and an alternative version
with DDPG with HER replay buffer have a relatively small and convergent critic loss.

Table 4.5 provides a comprehensive overview of the performance of various
methods, both in simulation and on a physical robot. Due to the inherent difficulty
in accessing accurate relative position information, it is unable to conduct real-
world experiments for the proposed method with precise position input. It is
worth mentioning that the DDPG algorithm with the HER replay buffer exhibited
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Figure 4.17. Left: the learning curve of the estimator module. Right: critic loss
through iterations of training with different RL algorithms and techniques.

a noticeable decrease in performance during real-world experiments compared to
simulation. Furthermore, the algorithm, initially trained on a UR5e robot arm,
demonstrated transferability to a UR10e robot arm with distinct reach capabilities
and maximum speeds, while maintaining consistent policy output.

4.5 Summary

In summary, this chapter presents two algorithms with the goal to develop a
category-agnostic visual servoing method that leverages object images as queries to
enable robots to grasp arbitrary unknown objects in unstructured environments. By
combining object segmentation and transformation prediction, this research aims
to overcome the limitations of fixed-class approaches and eliminate the need for
extensive training datasets or manual labelling. The proposed method has the
potential to enhance robotic perception and manipulation capabilities, enabling
robots to perform a wide range of tasks in diverse real-world scenarios. In the first
investigation of visual servoing methods for advancing robot perception and autonomy,
a thorough evaluation and comparison of three distinct approaches were conducted: a
feature-based approach, a hybrid approach, and a machine-learning-based approach.
The empirical results unveil the machine-learning-based approach as the standout
performer in terms of precision and resilience. It demonstrates the ability to detect
and pinpoint objects within complex scenes, even amidst distractions and fluctuating
lighting conditions. The hybrid approach displays promise but exhibits a lower
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tolerance to variations in lighting and object appearances. Meanwhile, the feature-
based approach excels in straightforward scenarios but grapples when confronted with
intricacies in more complex settings. The study underscores the supremacy of a hybrid
algorithm that integrates a deep neural network into a feature detector for IBVS. This
combination amplifies robustness in object detection and localisation, particularly in
the presence of distractions and challenging lighting conditions.

Subsequently, based on the findings, a pioneering hybrid approach that amalga-
mates deep learning and feature-based methodologies is presented to tackle category-
agnostic object detection and localisation using image queries, a pivotal capability for
enabling robots to comprehend and engage with their surroundings. By capitalising
on the strengths of both techniques, the approach achieves superior performance in
the precise localisation and segmentation of objects, surpassing conventional feature-
based template matching methods and the widely-adopted YoLov3. The proposed
approach employs a category-agnostic semantic segmentation framework, segmenting
objects based on their presence rather than specific categories. Rigorous quantitative
assessments conducted on both synthetic and real-world datasets underscore the
approach’s exceptional accuracy and robustness across diverse scenarios, including
objects with arbitrary shapes. These results collectively underscore the efficacy of the
approach in bolstering object detection and localisation within the realm of visual
servoing augmentation.

The investigation into computer vision methods has significantly elevated the
robot’s environmental sensing capabilities. Building upon this technological ad-
vancement, the research then seamlessly integrate the progress in visual servoing
into a sophisticated learning-based robot control framework. The establishment and
elucidation of a simulation framework for experimentation serve to provide readers
with a nuanced comprehension of the platform where RL algorithms undergo testing
and refinement. Additionally, the section outlines the process of simulation data
generation, offering insights into the systematic collection of data crucial for training
and evaluating RL algorithms within the simulated environment. Subsequently, a
pioneering data-driven closed-loop robot control method is introduced that leverages
both RL algorithms and insights gained from prior visual servoing exploration. This
novel framework empowers the robot to operate without prior knowledge of the task
object or the intrinsic camera parameters. A distinctive feature of this approach is
its ability to servo the robot using only a single template image of the task object,
showcasing the efficiency and adaptability of the reinforcement learning-based control
strategy in dynamic and unpredictable scenarios.

The contribution of this chapter are:

• Providing a comprehensive comparison of three categories of robot arm visual
servoing using only RGB information.
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• Evaluating the methods on a dataset of rendered synthetic images captured by
an RGB camera mounted on a robot arm in simulation.

• Analysing the strengths and weaknesses of each method and providing sugges-
tions for future work.

• The development of a category-agnostic visual servoing approach utilising object
images as queries.

• A two-stage methodology for segmenting target objects and predicting transfor-
mations between query and real-time images.

• Automatic dataset generation, negating the need for pre-existing datasets.

• Validation of the proposed algorithm across unforeseen objects in both simulated
and real-world settings.

• Introducing an algorithm that showcases superior performance compared to
both pure RL-controlled methods and traditional hand-designed feature extrac-
tion approaches.

Future work includes refining the segmentation process to improve the localisation
accuracy and addressing the challenge of predicting multiple object segments on the
same object. Additionally, exploring techniques for handling occlusions and improving
the generalisation capabilities of the method to handle a wider range of real-world
objects would be valuable directions to pursue.
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Chapter 5

Human Intention-Aware
Collaboration

5.1 Introduction

The previous chapter explored algorithms enabling robots to autonomously interact
with their environment without learning the targets’ category. While these systems
demonstrate the viability of robots learning without human programming, they
face limitations in environmental awareness and handling uncertainties, particularly
regarding human factors. In addition, many manufacturing tasks, such as brazing and
welding, require dynamic or complex trajectories that challenge current autonomous
systems. This is to say that certain processes remain difficult to automate due to
their dependence on human experience or operation, rendering automation potentially
time-consuming, cost-ineffective, or technically challenging.

To address these limitations, integrating human expertise into autonomous
systems has emerged as a promising approach. This paradigm explores human-
robot interaction through physical collaboration and teleoperation, presenting both
opportunities and challenges. This chapter examines human-robot co-activity,
emphasising human intention recognition through human hand gestures. An
innovative human robot co-activity framework that seamlessly integrates hand gesture
and dynamic movement recognition, voice recognition, and a switchable control
adaptation strategy is proposed. These modules provide a user-friendly approach
that enables the robot to deliver the tools as per user need, especially when the user
is working with both hands. Therefore, users can focus on their task execution without
additional training in the use of HRI, while the robot interprets their commands. The
proposed multimodal interaction framework is executed in the UR5e robot platform
equipped with a RealSense D435i camera, and the effectiveness is assessed through
a soldering circuit board task. The experiment results have demonstrated superior
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Figure 5.1. A practical validation platform designed to assess multi-modal interaction
during the electrical circuit repair handover task.

performance in hand gesture recognition, where the static hand gesture recognition
module achieves an accuracy of 94.3%, while the dynamic motion recognition module
reaches 97.6% accuracy. Compared with human solo manipulation, the proposed
approach facilitates higher efficiency tool delivery, without significantly distracting
from human intents.

5.2 Method

Hand-gesture-based HRC presents a range of distinct advantages in HRC. Firstly, it
capitalises on a mode of communication that comes instinctively to humans. Hand ges-
tures constitute an integral part of everyday interactions, necessitating no specialised
equipment or training, thereby reducing barriers to entry for users. Secondly, hand
gestures facilitate non-verbal communication, which can be particularly advantageous
in noisy or crowded environments where voice commands might prove less effective.
They can also provide an additional layer of communication, allowing users to convey
nuanced instructions and preferences beyond what can be expressed through words
alone.

However, existing hand gesture-based HRC systems predominantly revolve around
task-based processes [175, 190, 237], often overlooking the human factors. While
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these systems excel at deciphering specific gestures to trigger predefined actions, they
frequently fall short of comprehending the broader context and the nuanced needs of
the human user. Moreover, many of these systems rely on overt and exaggerated hand
gestures [238, 239, 240], which can be unnatural and fatiguing for users, especially
over extended periods. Such gestures may also lack the subtlety required for conveying
intricate instructions or preferences effectively.

Motivated by the aforementioned challenges, this section presents a novel HRC
framework that demonstrates exceptional utility when both hands of users are engaged
in tasks, rendering the capacity to issue commands without concern for the robot’s
method of execution of paramount importance. This interaction paradigm aligns with
the concept of the supernumerary limb, which allows users to extend their control
through extra limbs or tools to manipulate the environment or interact with objects
[241]. In this context, users can focus on their task execution, with the robot adeptly
interpreting their intuitive gestures.

To this end, the framework leverages the visual information embedded in human
hand gestures. By scrutinising both the form and motion of hand gestures, the
system not only discerns the intended action but also gauges the urgency and
precision required by the user. This approach empowers the robot to dynamically
adapt to user needs, enabling the precise delivery of tools and objects, a feat
previously challenging to achieve. Furthermore, the framework seamlessly integrate
voice command capabilities into the interaction system. This enables users to instruct
the robot effortlessly and naturally, eliminating the need for extensive training or
adherence to predefined gestures. In this way, users can interact with the robot
without additional interfaces such as screens or controllers.

• Problem Formulation

The primary objective revolves around the dynamic delivery of human-specified
tools by the robot, along with the ability to adapt its delivery strategy in real-
time based on the movements of the human hand gestures. This task surpasses the
challenges posed by mere hand gesture recognition, as it demands the estimation of
the 3D human hand pose and real-time adjustments to meet the user’s requirements,
ultimately minimising any distractions for the human user. To accomplish this, the
robot relies on visual feedback, continuously recognising the presence of the human
hand, estimating its 3D pose, and discerning the user’s intention to alter the delivery
strategy. This multifaceted process aims to maintain a seamless interaction with the
human user while ensuring that the robot meets the user’s specific needs.

The human-robot collaborated tool delivery framework is structured into two
stages: the robot fetching and the tool delivering, each playing a crucial role in the
overall process. Fig. 5.2 provides a visual representation of this framework. In
the initial phase, the primary aim is to establish a seamless and intuitive mode of
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Figure 5.2. Schematic representation of the comprehensive framework for HRC in
dynamic tool delivery. The framework encompasses two fundamental stages: robot
fetching and tool delivery. In the robot-fetching stage, voice command recognition
enables users to specify desired tools verbally. The robot employs visual feedback
to recognise and track the user’s hand, estimating its 3D pose and discerning the
user’s intention. In the tool-delivering stage, real-time hand pose estimation through
a depth camera ensures precise tool delivery.

communication between the human user and the robot. To this end, this research
deploys voice command recognition, enabling users to verbally specify their desired
tool. Google’s Speech Recognition [242] technology is used to convert spoken
commands into actionable instructions for the robot. Following command processing,
the robot initiates the tool retrieval process and proceeds to fetch the requested item.
Subsequently, it awaits further directives from the human user. In the subsequent tool-
delivering stage, the emphasis shifts to the robot’s capacity to perceive and respond to
the user’s intentions. To begin, whether the human hand is within the robot’s field of
view is assessed. Upon detection, it is proceed to extract key human hand landmarks
and subsequently pass this information to a hand gesture recognition network. This
network determines if the human hand’s gesture indicates readiness to receive an
object. This estimation operates seamlessly, ensuring uninterrupted tracking and
following of the human hand, thus enabling confident and precise tool delivery without
the need for the human user to divert their attention from the process. Moreover,
the system exhibits the flexibility to dynamically adjust its delivery strategy in real-
time, responding to user-defined requirements. This adaptability enhances the overall
efficiency of the user-robot interaction process, further emphasising its human-centric
nature.

• Hand Pose Estimation
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Figure 5.3. Sample results from gesture and hand movement recognition frames,
illustrating various scenarios. To enhance clarity, depth and RGB images have been
combined, with pixels corresponding to point cloud data beyond the defined range
omitted. (a) No hand. (b) Open hand gesture. (c) Closed hand gesture. (d) Occupied
hand gesture. (e) Low urgency hand movement. (f) Medium-urgency hand movement.
(g) High-urgency hand movement. (h) ‘Go away’ hand movement.

A real-time hand pose estimation is implemented through a depth camera. This
technology precisely identifies the exact position of the human hand’s palm centre
within the robot’s base frame. Transforming pixel coordinates into the robot’s base
frame involves a series of crucial steps. Firstly, pixel coordinates (u and v) are
deprojectd to 3D Cartesian coordinates (X, Y , and Z) in the camera frame using
intrinsic parameters:

Pc =

XY
Z

 = D ·

u−uc

fx
v−vc
fy

1

 , (5.1)

where Pc represents the 3D point in the camera frame, fx and fy represent the camera’s
focal lengths, uc and vc represent the camera’s principal points, and D is the depth
value obtained from the camera. Following this pixel-to-3D point conversion, precise
calibration between the camera’s reference frame and the robot’s end-effector frame
is established. This calibration, known as “eye-to-hand calibration,” accounts for any
misalignment or offsets between the two frames. The transformation matrix Teye-to-hand

is computed to convert the 3D points from the camera frame to the robot’s end-effector
frame. Lastly, the 3D point is translated from the robot’s end-effector frame to its
base frame, which is represented by Tend-effector-to-base. The overall transformation from
pixel coordinates to the 3D point in the robot’s base frame Pbase is defined as:

Pbase = Tend-effector-to-base · Teye-to-hand · Pc. (5.2)
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• Learn to Collaborate from Hand Gesture

The collaborative learning process is initiated by leveraging the highly efficient
Mediapipe pose detector, a tool developed by Google [243]. Renowned for its
proficiency, this framework employs cutting-edge machine learning techniques to
precisely identify and locate specific landmarks on the human hand. By integrating the
Mediapipe pose detector into the framework, the method not only enhance interaction
efficiency but also simplify the approach significantly. This streamlined approach
not only improves training efficiency but also reduces computational demands.
Additionally, it lessens the need for extensive training data, a common requirement
when working directly with raw images.

Figure 5.4. Example of hand keypoints.

One notable benefit is the reduction in input complexity. Unlike the challenges
posed by using raw images as inputs, the Mediapipe pose detector simplifies the
process. This streamlined approach not only improves training efficiency but also
reduces computational demands. Additionally, it lessens the need for extensive
training data, a common requirement when working directly with raw images. These
advantages greatly contribute to the effectiveness of the collaborative learning process.

• Gesture and Movement Recognition Network
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Figure 5.5. (a) Dual-camera images captured by the head-mounted PupilLabs Core
eye-tracker. (b) Temporal evolution of gaze positions. (c) Heatmap representing gaze
distribution based on eye tracking data.

Precise gesture recognition is paramount to facilitate seamless human-robot
interaction within the HRC framework. It not only enables the identification of specific
hand gestures but also provides insights into the user’s status, such as hand occupation
or openness for tool delivery. To accomplish this, this research employs a specialised
neural network tailored explicitly for gesture recognition. This network, structured as
a fully connected feedforward neural network, takes as input the 21 landmark points
representing the user’s hand pose. These landmarks undergo meticulous processing to
yield precise classifications, enabling us to discern the specific gesture being executed.
This gesture recognition network serves as a cornerstone of the framework, enhancing
the interpretation of user commands and overall interaction quality.

In addition to static hand gestures, recognising human hand movements is
crucial for achieving responsive human-robot collaboration, as it conveys dynamic
information about the user’s interaction preferences and other information. To address
this need, this research introduces a neural network architecture that combines Long
Short-Term Memory (LSTM) and Fully Convolutional Network (FCN) layers for
movement recognition. This network operates on sequences of 30 frames, adeptly
capturing temporal dependencies and spatial features within the hand movement data.
The network’s output provides precise movement classifications, serving as a pivotal
criterion for mode switching within the HRC framework. These specialised neural
networks, governing both gesture and movement recognition, empower the system
to comprehensively interpret and respond to user actions, ensuring a natural and
intuitive collaborative experience.

• Dynamic Control Strategy Adaptation

The approach involves switching between the Linear Quadratic Regulator (LQR)
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and the Proportional-Integral-Derivative (PID) controller based on real-time recogni-
tion of specific human hand movements using the Mediapipe framework and a trained
neural network.

1. Linear Quadratic Regulator (LQR): Linear Quadratic Regulator (LQR)
control method is a fundamental component of the control strategy for precision
target point tracking. It is particularly well-suited for applications where the
system dynamics are modelled linearly, offering an effective means of optimising
control effort while ensuring accurate tracking performance. The core objective
of LQR is to determine an optimal control law that minimises a quadratic cost
function, striking a balance between control effort and system performance. The
cost function, denoted as J , is defined as follows:

This choice aligns seamlessly with the inherent characteristics of the UR5e,
which exhibits a stable linear time-invariant behaviour in the absence of external
control inputs.

J =

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt, (5.3)

where x(t) represents the state vector of the robot, Q is a positive semidefinite
weighting matrix that penalises state deviations, u(t) denotes the control input,
and R is a positive definite weighting matrix that penalises control effort.

The integral spans from 0 to ∞ in a continuous-time formulation. The
system’s dynamics are typically described by the linear time-invariant state-
space representation:

ẋ(t) = Ax(t) +Bu(t), (5.4)

where A represents the state matrix, and B is the control input matrix.
Crucially, the approach simplifies the system dynamics modelling, as it is
recognised that the robot arm can be effectively considered as a linear time-
invariant system. In this context, A matrix is set to all zeros and B as an
identity matrix.

The optimal control law u∗(t) can be derived by solving the Riccati differential
equation:

Ṗ(t) = −P(t)A−ATP(t) +P(t)BR−1BTP(t)−Q, (5.5)

Once the state cost-to-go matrix P(t) is determined, the state feedback gain
matrixK can be calculated through the solution of the continuous-time algebraic
Riccati equation (CARE):
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ATP+PA− (PB)R−1(BTP) +Q = 0. (5.6)

Incorporating LQR into the control strategy allows us to achieve precise target
point tracking while optimising control effort and ensuring stable operation,
making it a fundamental element of the robotic control architecture.

2. Proportional-Integral-Derivative (PID): Proportional-Integral-Derivative
(PID) control is another crucial pillar of the strategy for precision target point
tracking with the UR5e robot arm. Renowned for its simplicity, robustness, and
adaptability, PID control excels in a multitude of domains.

PID control calculates the control input u(t) based on a combination of three
fundamental components:

u(t) = Kp · e(t) +Ki ·
∫ t

0

e(τ) dτ +Kd ·
d

dt
e(t) (5.7)

where u(t) is the control input, e(t) represents the error between the desired
setpoint r(t) and the system’s current state y(t), and Kp, Ki, and Kd are the
proportional, integral, and derivative gains, respectively.

PID control’s versatility has rendered it indispensable in numerous domains,
including industrial automation, robotics, temperature regulation, and motor
control, among others. Its simplicity and adaptability empower it to address a
wide spectrum of control challenges, solidifying its role as a pivotal element in
the control strategy for precise target point tracking.

Specifically, this research pay attention to gestures that indicate a request for
a tool. When the user’s hand assumes this specific gesture mode, the robot
proceeds to initiate the tool delivery process.

This structured approach to human-robot tool delivery ensures a seamless and
efficient interaction between the user and the robot, with a clear division
of labour between the robot fetching and delivering stages, all guided by
voice commands and hand gestures to prioritise user intuitiveness and minimal
distractions.

Following the identification of processes advantageous for the brazing domain,
this research extends its exploration into how robots can autonomously acquire
task capabilities through visual feedback through the literature review. Unlike
previous automation scenarios characterised by predefined steps and processes, this
study emphasises a more intricate challenge. It targets scenarios where small to
medium batch production stands to gain the most, requiring robots to operate
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within unstructured or unfamiliar environments. In these settings, objects are
not meticulously defined by engineers instructing the robot with specific movement
commands. The literature review is entered on robot learning, seeking insights into
the latest advancements in academia.

The incorporation of this dynamic control strategy mode switch module is vital due
to the distinct strengths and weaknesses of LQR and PID control algorithms. LQR
excels in delivering precise, optimal control but struggles with dynamic changes and
nonlinearities, while PID offers versatility and robustness but may lack the precision of
LQR. By integrating both controllers and leveraging the control strategy mode switch
module, the framework ensures seamless adaptation. The robot can switch between
LQR for tasks demanding precision and PID for scenarios requiring adaptability,
thereby maximising performance across diverse HRC environments.

Dynamic control strategy adaptation relies on the real-time recognition of human
hand movements, which serve as pivotal indicators for mode switching. The
recognition process involves two key steps: utilising the Mediapipe framework for
extracting landmarks from real-time visual input, thereby capturing the nuances of
hand movements, and employing a trained neural network for urgency classification.
This neural network classifies observed hand movements, designating certain gestures,
such as the “give it to me” motion, as high urgency, necessitating a rapid transition
to the more responsive PID control mode, while categorising other gestures as low
urgency, allowing the system to maintain precision in LQR mode for routine tracking
tasks. Fig. 5.6 showcases three distinct controllers applied to a robotic system. These
controllers represent different strategies for regulating the system’s trajectory, each
with its own set of tuning parameters.

Figure 5.6. (a) LQR controller. (b) PID controller (Parameters: Kp=0.1, Ki=0.0,
Kd=0.2). (c) PID controller (Parameters: Kp=0.1, Ki=0.02, Kd=0.25).

The criteria for switching between control strategies are intricately linked to the
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recognition of human hand movements:
High Urgency Gesture: When the neural network classifies a hand movement as

high urgency (e.g., “give it to me” gesture), the system transitions from LQR to faster
and more responsive PID control. This ensures rapid and accurate response to urgent
requests.

Low Urgency or Medium Urgency Gesture: When low or medium urgency gestures
are detected, the system operates in LQR mode with different velocities. LQR
provides precision and stability for routine tracking tasks.

5.3 Experiment

This section provides an overview of the experimental setup designed to evaluate the
proposed framework’s performance. The primary aim of this experiment is to assess
how effectively the framework facilitates seamless and intuitive interactions between
humans and robots within a practical context.

The experiment was structured around a circuit repair task, carefully designed to
comprehensively evaluate the capabilities of the HRC framework 1. The experiments
were approved by the Ethics Committee of Imperial College London (21IC7042). Each
participant was informed about the experiment’s purpose and protocol and signed a
consent form before the experiment. They began by using a soldering iron to heat
a designated pad on the circuit, emulating a common electronics repair scenario.
Subsequently, participants instructed the robot to deliver a desoldering pump, which
they skillfully use to gently desolder a malfunctioning electronic component. Following
the desoldering process, participants requested the robot to provide a soldering wire,
which they employed to solder a new electronic component onto the circuit. Finally,
participants asked for a wire cutter from the robot to trim the excess length of the
components’ legs, thereby completing the circuit repair task.

To gauge the performance of the HRC framework comprehensively, a set of
performance metrics was collected. This includes the performance of each recognition
network and robot positional error, which is used to assess the accuracy of the robot’s
movements, quantifying deviations along the x, y, and z-axes between the intended
target positions and the actual positions of the robot’s end-effector. In addition,
human gaze analysis was conducted using the PupilLabs eye tracker to examine
whether participant attention is diverted or distracted by the robot during the task.
Fig. 5.7 showcases the PupilLab Core eye tracker utilised in the experiment along
with exemplar images captured during the analysis.

1The multimedia material is available at https://sites.google.com/view/dhgfhma/home
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Figure 5.8. Robot positional error relative to the target position over time: (a) LQR
control with the state matrix to all zeros and the control input matrix as an identity
matrix. (b) PID control with proportional gains set to 0.1, integral gains set to 0,
and derivative gains set to 0.2 for all x, y, and z axes.

Figure 5.7. (a) PupilLab Core eye tracker. (b) Dual-camera images captured during
eye tracking.

In the experimental setup, a 6 Degrees of Freedom (DoF) UR5e robot is employed
for human interaction, facilitated by the RealSense D435i camera, which captured
640 × 480 RGB image frames for subsequent processing through the MediaPipe
framework to collect landmark data. To ensure robust recognition, this research
curated a diverse dataset of pre-defined hand gestures and movements, encompassing
variations in angles, camera positions, and lighting conditions. This dataset was
diligently preprocessed, involving trimming and normalisation, before training the
recognition networks using PyTorch. Remarkably, the comprehensive framework
operates seamlessly on an Intel i7-10510U CPU at a stable rate of 15Hz, ensuring
an efficient and reliable interaction experience.

To ensure the safety of the experiment, several measures were implemented.
A “virtual wall” was established as a virtual boundary, confining the robot to a
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Figure 5.9. Trained recognition neural network heatmap: (a) Gesture recognition
network heatmap. (b) Movement recognition network heatmap.

predefined workspace, preventing it from entering restricted or hazardous areas, and
enhancing participant safety. A force / torque sensor was also mounted on the
robot’s end-effector, serving as an immediate stop mechanism, swiftly halting the
robot’s motion upon any unexpected collisions, further bolstering participant safety.
Furthermore, stringent limits on joint velocity and acceleration were enforced to
mitigate the risk of abrupt or erratic robot movements.

To attain the intended system response of PID control, meticulous adjustment of
the parameters Kp, Ki, and Kd is required. Kp is set to 0.1, Ki to 0, and Kd to 0.2
in the experiment, which was fine-tuned to strike a balance between swift response,
precision in steady-state conditions, and overall system stability. It is worth noting
that the PID control module serves as an alternative means for regulating the robot
behaviour, offering rapid response characteristics that are distinct from the LQR
control module used in the system. The robot’s response to the control strategies is
illustrated in Fig. 5.8. It can be observed that although LQR is smoother and more
stable at the steady state, the fine-tuned PID is faster.

5.4 Results

The outputs of the Gesture Recognition Network and Movement Recognition Network
are presented in the form of heatmaps in Fig. 5.9. The Gesture Recognition
Network heatmap illustrates the model proficiency in classifying hand gestures
into three distinct categories: “open,” “closed,” and “occupied.” Each category is
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represented by a unique heatmap, showcasing the network’s ability to discern and
accurately categorise these gestures based on the provided hand landmark data. The
Movement Recognition Network heatmap, on the other hand, highlights the network’s
effectiveness in classifying hand movements into four distinct urgency categories:
representing low, medium, and high urgency, and one movement “go away” that forces
the robot back to the initial pose. These heatmaps provide insights into the network’s
capacity to interpret and classify dynamic hand movements, which is essential for real-
time human intention recognition and mode switching within the HRC framework.
The Gesture Recognition Network achieves an accuracy of 94.3%, while the Movement
Recognition Network reaches an impressive accuracy of 97.6%.

The experiment evaluated mean pupil diameter, blink frequency, and fixation
frequency to assess human workload, as established in [244]. Minor changes were
observed in blink frequency, indicating that the robot intervention did not significantly
distract from human intentions. However, changes in pupil diameter were observed,
which increased from 2.54mm to 3.09mm, and blink frequency, which increased from
0.198 to 0.343 per second. These alterations suggest a moderate increase in human
mental load due to the robot intervention, but overall, the impact on human intention
and workload remained relatively low during the task.

Fig. 5.5 (a) depicts the temporal evolution of gaze positions over the course
of the study. Each data point corresponds to the normalised gaze position of a
participant, with the X-axis representing horizontal gaze coordinates and the Y-axis
representing vertical gaze coordinates. Fig. 5.5(b) is the heatmap generated from
eye tracking data. The figure utilised colormap to illustrate the participant’s gaze
behaviour throughout the experimental session and the density of gaze points across
the screen. The heatmap provides valuable insights into the areas of interest and
gaze distribution throughout the experimental task, shedding light on participant
visual attention patterns. Analysis of gaze position trajectories enables a deeper
understanding of how visual attention evolves in response to the robot movement and
tasks.

To assess the performance of the framework, experiments under three primary
conditions were conducted: with robot delivery (where the robot follows human
hands and delivers objects), without robot delivery (the robot delivers objects to
a fixed location upon voice command), and the framework without hand following
and voice recognition (requiring users to fetch objects themselves), as shown in
Table. 6.1. Notably, when hand following was incorporated, allowing the robot
to adapt its movements based on the user’s hand position and gestures, led to a
significant reduction in the average task completion time. This result underscores
the significance of hand following in streamlining interactions. Conversely, when both
hand following and voice recognition were removed, placing the onus on users to fetch
tools themselves, the completion time slightly increased. These findings indicate that
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the framework’s adaptability and intuitiveness contribute to more efficient HRC. To
gain a more comprehensive understanding of its performance, future experiments will
explore additional metrics user satisfaction, and a comprehensive mental load analysis.

It is important to acknowledge that this study was conducted with a relatively
small number of participants, and while the results are promising, further validation
on a larger and more diverse sample is required to ensure the generalisability and
feasibility of the system. However, it’s essential to highlight that the experiment
required a certain level of expertise in normal task execution. Consequently,
considerable time and effort were invested in training the operators to perform the
tasks effectively. This level of specialisation could pose challenges when recruiting
subjects for similar experiments.

Additionally, the choice of objects used in the experiment was somewhat
constrained to match the experimental setup, which may not fully represent the
diversity of real-world scenarios. The primary focus of this work was to demonstrate
the feasibility of the system through a demonstration-based approach. When
considering tasks that require more generic applicability, such as object grasping,
it becomes necessary to tailor the system to different gripper shapes and object
recognition strategies, which extends beyond the scope of this study.

5.5 Summary

This chapter have identified that most collaborative approaches rely on intricate
human-robot collaboration, which may lack the desired intuitiveness compared to
natural limb control. Building upon this observation, an innovative HRC framework
that seamlessly integrates hand gesture and dynamic movement recognition, voice
recognition, and a switchable control adaptation strategy have been proposed. These
modules present a user-friendly approach, empowering robots to provide tools as per
user requirements, especially when users are engaged in tasks involving both hands.
Consequently, users can focus on task execution without requiring additional training
in human-machine interface operation, while the robot interprets their intuitive
gestures.

In summary, the principal contributions of this work encompass:

• Introduction of an intuitive HRC system harnessing hand gesture-based infor-
mation to discern human intents, allowing dynamic control strategy adaptation
by the robot. This emphasises understanding human intents and preferences,
yielding a natural, user-friendly approach without necessitating additional
human-machine interface training.

• Utilisation of hand gesture pose information in conjunction with voice com-
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mands, enabling robots to adapt dynamically to user requirements and confi-
dently deliver tools and objects, regardless of variations in hand position.

• Development of a multimodal validation platform that involves soldered circuit
board tasks, offering real-time monitoring of user workload throughout the
interaction.
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Chapter 6

Human Interaction-Oriented
Teleoperation

6.1 Introduction

Human-robot interfaces (HRI) stands at the forefront of technological advancement,
offering a compelling synergy between humans and machine. The advantages of HRI
are multifaceted, encompassing improved efficiency and productivity, enhanced safety
in hazardous environments, accessibility for individuals with disabilities, and the
potential for profound social and emotional connections with robotic companions[102,
245, 246]. It has gained significant attention in recent years due to its potential to
enhance manufacturing processes by leveraging the combined strengths of humans
and robots. Transitioning from automation through robot learning, the deeper
integration of human involvement in these autonomous systems holds a new paradigm
for incorporating human experience and knowledge. By establishing an intuitive
and friendly interface for humans, human can operate robot for more complex tasks,
preserving the experience of humans, while humans benefit from the efficiency brought
about by the robots.

HRI has benefited users with higher efficiency towards interactive tasks. Never-
theless, most collaborative schemes rely on complicated human-machine interfaces,
which might lack the requisite intuitiveness compared with natural limb control. It
is also expected to understand human intent with low training data requirements.
In response to these challenges, this chapter first introduces a Touch-Based Interface
(TbI) design that is able to derive both direction and human forces exerted while
considering human error by introducing a ball-shaped dead-zone. In addition, this
research further explore TbI free teleoperation, which utilises hand gestures to enable
remote interaction with hazardous environments, overcoming spatial constraints on
human perception and manipulation. Most teleoperation systems rely on task-
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Figure 6.1. Teleoperation control scheme.

dependent interfaces to generate human instructions. This can lead to barriers
in familiarising the robot’s workspace and thus increase the training time for less
experienced users. In order to address these problems, this research introduce a novel
hand gestures based robot teleoperation method, eliminating the need for specialised
controlling devices. Leveraging hand landmark detection and a neural network-based
decoding algorithm, the system interprets hand movements to control robot velocity,
offering a user-friendly solution to communicating with the robot. The trained model
achieves a F2 score of 0.994 and outperforms algorithms in the collected dataset.
Furthermore, the proposed method has been validated on a real-world Franka robot,
achieving success rates of 100%, 80% and 86.7% across three manipulation tasks.

6.2 Methods

6.2.1 Physical Controller-Based Interface

To enhance the ease of use, this research have developed a haptic control mechanism,
as shown in Fig. 6.1. The controller employs a velocity-based control scheme, which
can be represented by the following equation:

Vi,robot = kv · di,hand, (6.1)

where i ∈ {x, y, z}, Vi,robot is the velocity of the end effector of the robot arm, di,hand
is the displacement of the tip on the pen of the haptic device, and kv is the hand
controller-to-robot velocity gain. The red ball in Fig. 6.1 represents the virtual
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origin point whose displacement is zero in each direction. The user can feel the force
feedback when the pen tip moves out of the virtual blue ball, which is within the
physical maximum extension of the controller, represented by the virtual green ball.
The feedback force is given by:

Fi,Feedback = kf · di,hand + Finitial, (6.2)

where Finitial is the initial force that allows the user to feel a sense of boundaries.
Fi,Feedback is the feedback force on the user, which is equal in magnitude but opposite
in direction to the force applied by the human on the haptic device, i.e., FFeedback =
−FHuman. This feedback force creates a sense of resistance when the user tries to
move further. The combination of these two equations allows the user to experience
greater resistance when expecting a larger robot arm moving speed.

In addition to the force feedback, the haptic device features two physical buttons
on the pen. The grey button resets the current position as the virtual origin point,
while the white button toggles the gripper between open and closed states. When
both buttons are pressed simultaneously, the robot control mode switches between
end-effector position control mode and orientation mode.

6.2.2 Hand-Gesture Based Interface

To address the challenges of a cost-effective, intuitive teleoperation approach that
bridges the gap between human intent and robot action, this research propose a novel
depth image information-based approach for the intuitive teleoperation of robots using
human hands. This paradigm shift eliminates the need for specialised hand controllers
by directly interpreting human hand gestures through a camera, reducing hardware
costs and simplifying the user interface. By leveraging the inherent intuitiveness of
hand gestures, the approach enables users to directly show the robot what to do,
mimicking the ease and immediacy of real-world object manipulation. This opens up
exciting possibilities for broader adoption of teleoperation technology, particularly in
settings where simpler robot movements predominate.

The proposed system comprises three modules, as shown in Fig. 6.3. The raw
images coming from an RGB camera are fed into the hand landmark detection module
for hand landmark extraction. Then, landmark is scaled to image size and passed to
the gesture to hand motion module. x-axis related gestures (Fig. 6.4 (a), (b)), y-z
plane related gestures (Fig. 6.4 (c-f)) are recorded and fed into two different modules
for direction and velocity decoding. X-axis related gestures are decoded based on the
switching frequency between a hand open gesture and a half closed gesture. Then the
calculated frequency is scaled and added to a moving window, which calculates the
average value of the recent velocity to filter the velocity. Both handedness and the
hand orientation are used to determine the direction of along x-axis. Similarly, y-z
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Figure 6.2. Key components of the proposed hand gesture-based velocity control
teleoperation system. A monitor positioned in front of the user facilitates observation
of the remote robot. An RGB camera facing the user captures hand gesture
information, which is transmitted to a PC for processing, decoding, and command
transmission. The remote robot, equipped with an RGB camera placed on the positive
x-axis and facing towards it, receives the commands and moves accordingly.

axis related gestures decoded based on the index finger orientation. The aim of the
method is to establish an intuitive way for human to control the robot. Therefore,
this research would like to map the human’s intention directly effect same way as the
movement of the robot in the image, i.e. in a ”what you see is what you get” manner.
For example, robot moves to the right side of in the image from the remote side
camera when human points to the right. Different from the x-axis velocity decoding,
the velocity of the y-z plane is based on the finger’s back and forth speed, which
ensures human to vary the velocity while giving the direction command at the same
time. Similarly, a moving average window is used to get a smooth velocity.

The following notations describe the data stream procedure from data collection
to the NN-based classification model training. One RGB camera is used at the local
side to capture image containing the hand gesture from the operator, namely Ift ,
where t is the time and f is the number of frame in one second. This image is being
resized to a smaller size for higher frame rate. Then, the image is feed in the hand
landmark detection network, which is back-boned by mediapipe [243]. The output of
the network will produce a set of landmarks of the hand in image frame:

Lf
t = {(x1, y1)..., (xN , yN)}ft , (6.3)
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Figure 6.3. The data stream of hand gesture based robot teleoperation system.

where n is the index of the landmark, xn, yn are the image frame coordinate of
key point n, and N = 21 is total number of key points on human hand. This set
represented in a percentage form, which needs to be re-scaled with the shape of
the image. The proposed gesture and movement algorithm detector will process Lf

t

in a sliding window and map the corresponding robot moving direction in 6-axes
{+x,−x,+y,−y,+z,−z}, speed in these 6-axes {v+x, v−x, v+y, v−y, v+z, v−z}, and the
opening of the gripper dopen.

To guide the robot’s velocity using human hand gestures, a crucial step involves
establishing a mapping between the nuances of human hand motions and the
corresponding robot velocity commands. This section elucidates the mechanism
through which human hand gestures are translated into robot movement, aiming
for an intuitively controlled trajectory in all spatial directions. To achieve this, the
designed gesture set must encompass six distinct states, ensuring the versatility of
the final robot movement. It is essential to note that enhancing gesture recognition
accuracy necessitates careful consideration of the cumulative impact of various two-
dimensional projections of gestures. Cumulativity refers to the potential loss and
confusion of information resulting from projecting the length information of gestures
onto a single point in one dimension. Consequently, the gesture control of robot
movement is partitioned into two modes: y-z axis control and x-axis control.

For y-z plane control, a singular gesture—specifically, the pointing gesture—is
employed to manipulate velocity in {v+y, v−y, v+z, v−z}. The pointing direction of the
index finger determines the velocity’s direction, with the intuitive mapping from the
human operator’s viewpoint. Here, pointing upwards corresponds to v+z, downwards
corresponds to v−z, and pointing to the left corresponds to v−y. This ensures that
the remote robot displayed on the monitor moves in alignment with the human’s
perspective. For robot movement in x axis, this research introduce another set of
hand movements labelled as ”come” and ”go.” As the remote side camera is placing
in front of the robot (i.e. placing on the positive x-axis and facing at the base of the
robot), the positive x-axis robot motion is represented by a waving movement. On the
other hand, a ”drive away” movement represents negative x-axis motion. This two
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Figure 6.4. Gesture-based robot velocity control.

Figure 6.5. Illustration of three diverse manipulation tasks validating the effectiveness
of the hand-gesture-based remote programming framework.

motions contains only two gestures and the interpretation of the motion is determined
by the combination of handedness and palm facing orientation. If the palm is facing
towards human, which normally means ”come” in human body language, the robot
will moving towards human. Conversely, the ”drive away” movement would drive the
robot away along x-axis. A standardised representation of hand gestures, depicting
these movements, is illustrated in Fig. 6.4.

In addition to the velocity control mode, this research also incorporates gripper
control through human gestures. The initiation of the gripper control mode is signalled
by the gesture of opening the thumb and index finger. For direct gripper manipulation,
this research establishes a mapping between the distance dopening—measured between
the thumb tip and index finger tip—and the gripper width. This allows users
to effortlessly convey the gripper width by replicating the opening width of their
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own fingers. Several considerations are paramount in this context. Firstly, this
research addresses the inherent physical differences among operators. Recognising
that individuals possess varying finger opening widths, a direct mapping from
physical opening to the gripper’s width is deemed impractical. To ensure algorithmic
robustness and adaptability across diverse individuals, the relative value of the index
finger’s length dindex in relation to the distance between the finger tips dopening is
employed. When dopening equals dindex, the gripper achieves its maximum open width
of 100%. Conversely, when the index finger tip contacts the thumb tip, the gripper
width is set to the minimum open width:

dgripper =
dopening
dindex

× 100%. (6.4)

Secondly, to enhance stability and filter out potential jittering in measured values,
a confirmation mechanism is introduced. Gripper movement only occurs when the
hand maintains a relatively stable width. Additionally, a moving average algorithm is
implemented to ensure smoother gripper control. This combined approach contributes
to a more stable and reliable gripper control experience. It is worth noting that the
method is designed to develop a generalised approach without additional constraints
on the diversity of human operators, facilitated by a learning-based model. This
ensures adaptability across various users and operational scenarios, promoting broader
applicability and usability in real-world teleoperation tasks.

6.3 Experiment

6.3.1 Robot Hardware Setup

This research employs Onrobot RG2, ROBOTIQ 2F-85, and Onrobot 3FG15 grippers,
each serving specific purposes. The Onrobot RG2 and ROBOTIQ 2F-85 grippers,
widely embraced within the robotics community, offer robust parallel gripping
capabilities. In contrast, the Onrobot 3FG15 gripper, illustrated in Fig. 6.6 (a), excels
in securely grasping various cylindrical objects and irregular shapes, despite limited
available documentation for control methods. A notable feature of the 3FG15 gripper
is its automatic workpiece centring, ensuring rapid deployment with a stable grip,
ideal for achieving precise placements. However, it’s crucial to highlight the absence
of an existing driver for direct PC control, and the gripper cannot be manipulated
directly by the robot. Consequently, this thesis elaborates on the controlling methods
developed, presenting a custom driver that empowers users to leverage Python scripts
and ROS for efficient gripper control.

While the gripper’s manual does suggest the availability of URScript, a script that
facilitates communication between the UR robot and a PC, it is important to note that
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Figure 6.6. Illustration of the experimental setup featuring the gripper (a) and the
robot (b).

this script cannot be executed through a TCP/IP socket. This limitation has been
confirmed by technical support from Universal Robots, who have clarified that the
command is not an inherent function and, consequently, will not be executed in this
manner. As a result, there are essentially two viable options for controlling the robot:
the first involves utilising the teach pendant in conjunction with the manufacturer-
provided functions, which is suitable when the objective is solely to control the robot
and the gripper via the teach pendant. Although this option allows the controlling
the robot and the gripper at the same time, it is not applicable when there is a need to
command the robot through TCP/IP or require greater access to its functionalities.
The second option is to control the gripper separately through the compute box
controller, which is designed to read and configure sensors via Ethernet interface.
This requires the gripper to connect directly to the compute box, then connect the
compute box to the robot. However, this still does not allow the direct control to the
gripper.

To simultaneously control the gripper and the robot, the hardware configuration
process needs to be initiated, as depicted in Fig. 6.8. The setup entailed connecting
the Tool data cable between the HEX-E/H QC (Quick Changer) and the Compute
Box. The HEX-E/H QC serves as the intermediary interface linking the compute
box with the gripper while furnishing 6-axis force and torque data across all six axes.
Then, the connections are established using Ethernet cables: one between the robot
controller and the compute box, and another between the compute box and a PC.
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To configure the system, the DIP switch to position three needs to be adjusted,
which activates static IP/DHCP Client mode in accordance with the datasheet
guidelines. This configuration permitted access to the compute box’s webclient
through a web browser, using the assigned static IP address. It’s essential to note
that while the gripper can be controlled and monitored via the web client, direct
script-based control through socket communication was not feasible. Nevertheless,
the webclient offers the capability to control the gripper through WebLogic programs
and utilise the readout GPIO (General-Purpose Input/Output) values as input. Then,
it is able to transmit commands to the compute box through GPIO and leverage the
compute box’s internal program to regulate gripper operations.

Figure 6.7. (a) Schematic illustrating the circuit connection enabling remote control
of the robot and gripper through the compute box. (b) GPIO connections of the
compute box.

Controlling the gripper involves sending a command script to set the robot’s GPIO
port output, which is then connected to the Compute Box’s digital input. To detect
grasping, the robot’s digital input needs to be connected to the Compute Box’s digital
output, as illustrated in Fig. 6.7. The configuration process for gripper control logic
is accomplished through the web client interface, and the logic structure is depicted
in Fig. 2.4.

6.3.2 Hand-Gesture Experiment Setup

Data was collected with 5 different gestures and collected 6000 of total images.
The actual input of the classifier is the landmark which is irrelevant to the image.
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Figure 6.8. Demonstration of compute box connection to the robot.

Therefore, to make the algorithm more robust, dataset with different hand sizes and
captured from different angles are collected. The hand gesture that belongs to the
same category is first collected. The human hand stay the same gesture but with
different angles. Meanwhile, the data collection program samples randomly until it
reaches the set number of data. Then the next category is collected until the all
categories data are collected.

This research conducted network exploration using 6036 sets of data across four
different network structures or models. NN-S utilises a feedforward neural network
architecture with two linear layers, two dropout layers, and Rectified Linear Unit
(ReLU) activation functions. The input dimension is set to 21 by 2, representing
the 21 key points of the hand. In NN-M, two additional hidden layers with
ReLU activation functions are introduced. The optimal number of neurons and
activation function in each model and layer have been determined through grid
search. Additionally, K-nearest neighbour (KNN), Random forests, and Support
Vector Machines (SVM), which are among the most common models for classification
and have proven effective in mapping between landmarks and categories [247, 248],
are tested. A grid search for the best pair of hyperparameters is conducted, given its
sensitivity to hyperparameters. The grid search involved exploring parameter values,
specifically C in 0.1, 1, 10, gamma in 0.1, 1, 10, kernel in linear, radial basis function
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Figure 6.9. The confusion matrix of different models.

(rbf), polynomial, and epsilon in 0.1, 0.2, 0.5. The optimal hyperparameter pair is
determined to be C equal to 1, gamma equal to 1, and utilising a polynomial kernel.

To validate the system, a real-world experiment with three manipulation tasks
has been conducted. Experiments are conducted in an indoor environment. A 7
DoFs Franka Emika 3 robot with gripper is teleoperated by the human operator. A
RealSense D435i camera is fixed and placed remotely, facing towards the robot so that
it can provide the human operator with information of the working environment and
the robot simultaneously. Another RGB camera is placed locally, with camera facing
the human operator. Human operator is able to give commands while observing the
robot’s movement on the remote through a monitor. Fig. 6.2 displays the control
scenario of human teleoperated the robot with hand gesture. The remote camera
sent image information at a rate of 30 Hz, the image is being processed and output a
human gesture command which sent from local PC via ROS node at a rate of 20 Hz
to the remote robot. The local PC has an i7-12700k CPU.

6.4 Results

Table 6.1. Experimental results: average task completion time(s) under different
conditions

Conditions Avg Time (s)

w/o robot delivery 367
w robot delivery 289

w/o robot delivery and voice recognition 392

To determine the optimal number of training iterations for each neural network, a
learning curve analysis has been conducted. This research examined the curves and
identified the training iterations at which the model’s performance exhibited the best
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results. Subsequently, the learning effectiveness of each network is evaluated at its
respective optimal number of training iterations using confusion matrix.

Table 6.2. F2 scores and inference time of different model structures.

Models F2 Score Time (ms)

NN-S 0.948 1.00
NN-M 0.994 1.04
KNN 0.985 372
RF 0.992 3.10
SVM 0.953 64.7

Based on the confusion matrix presented in Fig. 6.9, it was observed that
a considerable number of instances of Gesture 0 were erroneously identified as
Gesture 1 in NN-S. The reason for the inability of the classification task accuracy
to meet expectations is caused by insufficient adaptability to the complexity of the
classification task. In addition to considering the accuracy of the model, for a
comprehensive reflection of both recall and precision, the F2 score is computed for
each model individually:

Fscore =
(1 + β2) · precision · recall
(β2 · precision) + recall

. (6.5)

In the context of robot control, the aim is to minimise the likelihood of
missing control commands (false negatives) and to execute correct control commands
promptly. Prioritising both safety and efficiency, this research emphasise capturing
as many correct control commands as possible to mitigate the risk of critical actions
being overlooked. Therefore, this research opts for the F2 score, setting β to 2.
This priorities recall, ensuring the robot consistently executes necessary actions and
minimising delays or errors caused by missed commands. The results of F2 scores of
each model is presented in Table 6.1. This allowed us to assess the extent to which
the models prioritise the important positive class.

Within the predefined set of four gestures, the inherent cumulative nature of
gesture projections and the overlapping of key hand points for different gestures
inevitably introduce complexity to the classification task. This complexity may
lead to challenges in accurately identifying these gestures using the current depth
of the neural network models. Consequently, this research considered augmenting
the depth of the neural network to address this limitation. Specifically, NN-M
has been expanded from the framework of NN-S by integrating additional Rectified
Linear Unit (ReLU) activation functions between the hidden layers. The inclusion of
activation functions between the hidden layers of a neural network introduces non-
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linear mappings. Analysis of the confusion matrix indicates that increasing the depth
of the neural network results in a discernible improvement in prediction accuracy.
Moreover, KNN exhibits significant proficiency in accomplishing the classification
task. However, it is noteworthy that the inference time of KNN is considerably longer
than that of neural network-based methods, rendering it unsuitable for continuous
robot control. Although the F2 score of the RF algorithm is comparable to that of
the feed-forward neural network, it requires more processing time. The accuracy of
SVM is relatively lower compared to KNN and RF, and its processing time does not
meet the time requirements of the task.

Table 6.3. Success rate on three designed tasks.

Task Success Rate

Blob placing 100%
Strawberry transfer 80%

Fork lifting 86.7%

To validate the effectiveness of the hand-gesture-based remote programming
framework, this research conducted three manipulation tasks as depicted in Fig. 6.5.
The first task involved grasping a blob and precisely dropping it into a designated
bottle. In the second task, the objective was to grasp a fake foam strawberry with the
appropriate force, transfer it, and place it inside a cup. Lastly, the third task required
affixing a fork to the robot’s end-effector and using it to lift a foam object off the
table. The success rate of each task was measured, and the results are presented in
Table 6.2. For consistency, each task was required to be completed within a 2-minute
time frame, with only one trial allowed. In the blob-placing task, failure occurred if
the green blob was dropped on the table or not positioned atop the red blob. For the
strawberry transfer task, failure was indicated if the strawberry was not successfully
grasped on the first attempt or if it was not placed inside the plastic cup. In the
fork-lifting task, failure was recorded if the fork failed to lift the foam object in a
single trial. Based on the experiment results, a notable limitation of the system is its
remote spatial sensing capability, as users can only receive feedback from the camera,
which can pose challenges when the task is self-occluded.

6.5 Summary

In conclusion, this chapter has introduced a TbI and a TbI-free system, dedicated to
create ease-of-use human robot interfaces for reduced training time. The proposed
interface has the potential to revolutionise the brazing process, reducing the reliance
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on skilled labour and improving the safety and quality of brazed joints. This research
is highly relevant to the manufacturing industry, where the integration of cobots
has become an increasingly popular trend in recent years. The proposed framework
can serve as a starting point for future research in robot teleoperation, and could
potentially be applied to other industrial processes beyond brazing.

In addition, this chapter introduced a novel approach for intuitive robot tele-
operation using human hand gestures. By employing a neural network model to
interpret hand movements into robot end-effector velocities, the system provides an
intuitive and accessible solution, obviating the requirement for specialised controllers.
Through experimentation with three manipulation tasks on an actual Franka robot,
this research showcased the efficacy of the approach, attaining high success rates
across tasks.

In summary, the principal contributions of this work encompass:

• A haptic control mechanism with force feedback and the ability to switch
between velocity control and position control, providing users with enhanced
flexibility during interaction.

• Development of a neural network-based hand landmark mapping algorithm
that accurately translates human hand movements into corresponding robot
commands, enabling precise control over the robot’s velocity and direction
simultaneously.
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Chapter 7

Conclusion

7.1 Summary

This research starts with an examination of challenges within the brazing process,
pinpointing the braze pasting phase as a critical area requiring enhanced flexibility
and efficiency, especially in small/medium batch manufacturing. The inadequacies of
existing robot frameworks in addressing this issue prompt a focus on robot vision,
specifically the need for robots to navigate unseen, irregularly shaped objects. The
exploration begins with the investigation of category-agnostic object detection and
localisation algorithms, enabling the robot to swiftly extract pertinent information
from complex backgrounds. Subsequently, the research delves into robot learning
algorithms, with a specific emphasis on visual servoing. This endeavour aims to
empower the robot to operate autonomously in unstructured environments, ensuring
rapid deployment. Building on the foundation of improved robot perception and
environmental sensing capabilities, the research incorporates human factors. This
integration involves harnessing human intelligence and decision-making capabilities,
culminating in the introduction of an intuitive Human-Robot Collaboration (HRC)
framework. These interconnected domains contributing to the advancement of robotic
intelligence and fostering seamless collaboration between humans and robots. The
overarching objective is to propel robotics into practical applications within real-world
manufacturing tasks, bridging the divide between theoretical advancements and their
tangible implementation.

A comprehensive study of various feature extraction and matching algorithms
are given for image-based visual servoing applications. The experimental results
demonstrate that the hybrid approach, which combines deep neural networks with
traditional feature detectors, achieves the highest accuracy and efficiency among the
tested algorithms. Some of the limitations and failure cases of each algorithm have
been also identified, which can guide future research in this area. While the proposed
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approach was developed specifically for visual servoing tasks, it has the potential
to be applied to other tasks and scenarios as well. For instance, the utilisation
of RGB-based robot arm visual servoing algorithms can demonstrate significance
in the operations of unmanned aerial or autonomous underwater vehicles within
diverse contexts. However, it is important to consider that the effectiveness of
these algorithms may vary depending on the environment and specific task at hand.
Variations in lighting conditions, and camera placement may impact the efficacy of
object recognition and detection. It has also shown that semantic segmentation
can be used to segment unseen objects with relatively low cost, and the output of
the segmentation can be used as region of interests to limit the search space for
feature matching, leading to a promising hybrid solution that reduces computational
complexity while improving accuracy. The findings have implications for robotic
systems that rely on IBVS, especially in situations where computational resources
are limited. A hybrid approach is then presented that combines deep learning
with feature-based methods for object detection and localisation. The method has
demonstrated superior performance in accurately localising and segmenting objects,
surpassing pure feature-based template matching methods and Yolov3, particularly
in scenarios involving objects of arbitrary shapes. The evaluation results have not
only highlighted the accuracy and robustness of the approach but also showcased
its potential for enhancing human-robot interaction. By providing reliable and
efficient object detection and localisation, the method empowers robots to effectively
interact with unknown objects in dynamic and unpredictable environments, making
it well-suited for applications in robotics, autonomous systems, and human-robot
collaborations.

Building on enhanced perception capabilities, two distinct visual servoing ap-
proaches were developed. The image-based framework, utilizing deep feature
extraction and reinforcement learning, achieved a 96% success rate in simulation
and 87% in real-world scenarios. The position-based approach introduced an
innovative estimator-policy network architecture, demonstrating superior adaptability
to environmental variations while reducing the reliance on camera calibration.

In addressing human-robot collaboration, the research introduced a novel mul-
timodal interaction framework integrating hand gesture recognition and voice com-
mands. The framework’s gesture recognition module achieved 97.6% accuracy for
dynamic movements and 94.3% for static gestures, while maintaining real-time
performance at 15 Hz on standard computing hardware. Analysis of human workload
through eye-tracking metrics revealed only minimal increases in cognitive load (pupil
diameter increase from 2.54 mm to 3.09 mm) during collaborative tasks.

The development of intuitive teleoperation interfaces culminated in two comple-
mentary systems: a haptic controller-based interface and a vision-based hand gesture
system. The gesture-based system achieved F2 scores of 0.994 in controlled testing,
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with successful implementation demonstrated across three manipulation tasks (100%
success in blob placing, 80% in object transfer, and 86.7% in precision manipulation),
all while maintaining sub-millisecond latency (1.04 ms) in gesture recognition.

These technological advancements collectively establish a comprehensive frame-
work for flexible manufacturing automation, particularly beneficial for small-batch
production scenarios where traditional automation approaches prove impractical.
The research not only addresses immediate challenges in brazing processes but also
provides foundational methodologies applicable across various manufacturing domains
requiring adaptive automation and human-robot collaboration.

7.2 Future Directions

Future research directions should focus on several key areas that could further enhance
the capability and applicability of the developed framework.

• Visual servoing: Future research in the field of visual servoing should focus
on enhancing the efficiency and robustness of these algorithms. Additionally,
there is potential for exploring their applicability in other computer vision
applications. Furthermore, future work will focus on further refining the
segmentation process to address challenges such as predicting multiple object
segments on the same object and handling occlusion. One promising direction
is the integration of recent large models such as the Segment Anything Model
(SAM), which can segment objects from input prompts like points or boxes,
to generate masks for all objects in an image, offers exciting possibilities for
robot systems. This integration should consider factors such as model size and
computational resource requirements, as well as the identification of specific
application scenarios. This will enable robots to benefit from more advanced
vision capabilities and the continual advancement of the method holds promise
for enabling more sophisticated and seamless HRIs in various domains.

• Human-Robot Co-Activity: The evolution of human-robot collaboration
frameworks should advance toward predictive interaction models that anticipate
human intentions before explicit gestures occur. This necessitates the devel-
opment of context-aware systems that understand not just immediate actions
but entire task sequences. Future research should explore the integration of
hierarchical task planning with human behaviour modelling, enabling robots
to proactively assist in complex manufacturing processes. Particular attention
should be given to developing adaptive safety protocols that dynamically adjust
based on task complexity and human cognitive load, moving beyond simple
proximity-based safety measures to more nuanced, context-sensitive interaction
paradigms.
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• Human robot collaboration and teleoperation: A more intuitive, less
cost and less sensor-dependent framework to make it more practical and more
affordable to cope different scenarios. In addition to design a generalised
framework, future work includes focusing on scenarios that are with more
specific customised demands such as elderly care and medical scenarios. Future
teleoperation systems should evolve toward reduced latency and enhanced haptic
feedback while minimising hardware dependencies. Research should focus
on developing novel compression algorithms specifically designed for robotic
control signals, enabling high-fidelity teleoperation over standard network
infrastructure. The integration of shared autonomy frameworks, where robots
can intelligently assist remote operators while maintaining human oversight,
presents a promising direction for enhancing operational efficiency. Addition-
ally, the development of cross-modal feedback systems that can effectively
communicate robot state through multiple sensory channels could significantly
improve operator situational awareness without increasing cognitive load.
Furthermore, the methods of HRC are expected to become more immersive
and intuitive. Virtual reality (VR) and augmented reality (AR) technologies
will be integrated into robot teaching methodologies, providing an even more
natural and interactive way for humans to impart skills and knowledge to robotic
systems. The synergy between AI, robotics, and human expertise will reach
new heights, with a focus on user-friendly interfaces and expanded capabilities.
Collaborative decision-making, where machines and humans work in tandem,
each complementing the strengths of the other, will also be a promising future
research focus. This collaborative intelligence will drive unprecedented levels of
efficiency and innovation.
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[56] Fahad Alaieri and André Vellino. “Ethical Decision Making in Robots:
Autonomy, Trust and Responsibility: Autonomy Trust and Responsibility”.
In: Social Robotics: 8th International Conference, ICSR 2016, Kansas City,
MO, USA, November 1-3, 2016 Proceedings 8. Springer. 2016, pp. 159–168.

[57] Tengteng Zhang and Hongwei Mo. “Reinforcement learning for robot research:
A comprehensive review and open issues”. In: International Journal of
Advanced Robotic Systems 18.3 (2021), p. 17298814211007305.

[58] Matteo Leonetti, Luca Iocchi, and Peter Stone. “A synthesis of automated
planning and reinforcement learning for efficient, robust decision-making”. In:
Artificial Intelligence 241 (2016), pp. 103–130.

[59] Michael Everett, Yu Fan Chen, and Jonathan P How. “Motion planning
among dynamic, decision-making agents with deep reinforcement learning”. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2018, pp. 3052–3059.

[60] Mai Xu et al. “Predicting head movement in panoramic video: A deep
reinforcement learning approach”. In: IEEE transactions on pattern analysis
and machine intelligence 41.11 (2018), pp. 2693–2708.

[61] Artemij Amiranashvili et al. “Motion perception in reinforcement learning with
dynamic objects”. In: Conference on Robot Learning. PMLR. 2018, pp. 156–
168.

[62] Sean Chen et al. “ASHA: Assistive teleoperation via human-in-the-loop
reinforcement learning”. In: 2022 International Conference on Robotics and
Automation (ICRA). IEEE. 2022, pp. 7505–7512.

[63] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. “Sim-to-real
transfer in deep reinforcement learning for robotics: a survey”. In: 2020
IEEE symposium series on computational intelligence (SSCI). IEEE. 2020,
pp. 737–744.

[64] Erica Salvato et al. “Crossing the reality gap: A survey on sim-to-real
transferability of robot controllers in reinforcement learning”. In: IEEE Access
9 (2021), pp. 153171–153187.

[65] Jinna Li et al. “Nonzero-Sum Game Reinforcement Learning for Performance
Optimization in Large-Scale Industrial Processes”. In: IEEE Transactions on
Cybernetics 50.9 (2020), pp. 4132–4145. issn: 21682275. doi: 10.1109/TCYB.
2019.2950262.

[66] Gabriella Rossi and Paul Nicholas. “Haptic Learning Towards Neural-Network-
based adaptive Cobot Path-Planning for unstructured spaces”. In: (2020),
pp. 201–210. doi: 10.5151/proceedings-ecaadesigradi2019_280.

137

https://doi.org/10.1109/TCYB.2019.2950262
https://doi.org/10.1109/TCYB.2019.2950262
https://doi.org/10.5151/proceedings-ecaadesigradi2019_280


References References

[67] Lingwei Zhu, Yunduan Cui, and Takamitsu Matsubara. “Dynamic Actor-
Advisor Programming for Scalable Safe Reinforcement Learning”. In: Proceed-
ings - IEEE International Conference on Robotics and Automation (2020),
pp. 10681–10687. issn: 10504729. doi: 10.1109/ICRA40945.2020.9197200.

[68] Yi Jiang et al. “Data-Driven Flotation Industrial Process Operational Optimal
Control Based on Reinforcement Learning”. In: IEEE Transactions on Indus-
trial Informatics 14.5 (2018), pp. 1974–1989. issn: 15513203. doi: 10.1109/
TII.2017.2761852.

[69] Nourma Khader and Sang Won Yoon. “Online control of stencil printing pa-
rameters using reinforcement learning approach”. In: Procedia Manufacturing
17 (2018), pp. 94–101. issn: 23519789. doi: 10.1016/j.promfg.2018.10.018.
url: https://doi.org/10.1016/j.promfg.2018.10.018.

[70] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://pybullet.org.
2016.

[71] G. Flandin, F. Chaumette, and E. Marchand. “Eye-in-hand/eye-to-hand
cooperation for visual servoing”. In: Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065). Vol. 3. 2000, 2741–2746 vol.3.
doi: 10.1109/ROBOT.2000.846442.

[72] Josh Tobin et al. “Domain randomization for transferring deep neural net-
works from simulation to the real world”. In: 2017 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE. 2017, pp. 23–30.

[73] Mircea Cimpoi et al. “Describing textures in the wild”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2014, pp. 3606–
3613.

[74] Wenzhen Yuan, Siyuan Dong, and Edward H Adelson. “Gelsight: High-
resolution robot tactile sensors for estimating geometry and force”. In: Sensors
17.12 (2017), p. 2762.

[75] Andrea Cirillo et al. “A distributed tactile sensor for intuitive human-robot
interfacing”. In: Journal of Sensors 2017 (2017).

[76] Qing Shi et al. “Design and implementation of an omnidirectional vision system
for robot perception”. In: Mechatronics 41 (2017), pp. 58–66.

[77] Hong Qiao, Jiahao Chen, and Xiao Huang. “A Survey of Brain-Inspired
Intelligent Robots: Integration of Vision, Decision, Motion Control, and
Musculoskeletal Systems”. In: IEEE Transactions on Cybernetics 52.10 (2022),
pp. 11267–11280.

138

https://doi.org/10.1109/ICRA40945.2020.9197200
https://doi.org/10.1109/TII.2017.2761852
https://doi.org/10.1109/TII.2017.2761852
https://doi.org/10.1016/j.promfg.2018.10.018
https://doi.org/10.1016/j.promfg.2018.10.018
http://pybullet.org
https://doi.org/10.1109/ROBOT.2000.846442


References References

[78] Runqing Miao, Qingxuan Jia, and Fuchun Sun. “Long-term robot manipu-
lation task planning with scene graph and semantic knowledge”. In: Robotic
Intelligence and Automation 43.1 (2023), pp. 12–22.

[79] Shifeng Lin and Ning Wang. “Cloud robotic grasping of Gaussian mixture
model based on point cloud projection under occlusion”. In: Assembly Au-
tomation 41.3 (2021), pp. 312–323.

[80] Guoyang Wan et al. “A novel robotic 6DOF pose measurement strategy for
large-size casts based on stereo vision”. In: Assembly Automation 42.4 (2022),
pp. 458–473.

[81] Chao Zeng et al. “Robot learning human stiffness regulation for hybrid
manufacture”. In: Assembly Automation 38.5 (2018), pp. 539–547.

[82] Yu Qiu et al. “Concurrent-learning-based visual servo tracking and scene
identification of mobile robots”. In: Assembly Automation (2019).

[83] Richard Bloss. “Automation meets logistics at the Promat Show and demon-
strates faster packing and order filling”. In: Assembly Automation 31.4 (2011),
pp. 315–318.

[84] Weibang Bai et al. “Dual-arm Coordinated Manipulation for Object Twisting
with Human Intelligence”. In: 2021 IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC). 2021, pp. 902–908.

[85] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In:
International Journal of Computer Vision 60 (2004), pp. 91–110.

[86] Duy-Nguyen Ta et al. “Surftrac: Efficient tracking and continuous object
recognition using local feature descriptors”. In: 2009 IEEE conference on
computer vision and pattern recognition. IEEE. 2009, pp. 2937–2944.

[87] Deepak Geetha Viswanathan. “Features from accelerated segment test (fast)”.
In: Proceedings of the 10th workshop on image analysis for multimedia
interactive services, London, UK. 2009, pp. 6–8.

[88] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In:
2011 International conference on computer vision. Ieee. 2011, pp. 2564–2571.

[89] Reagan L Galvez et al. “Object detection using convolutional neural networks”.
In: TENCON 2018-2018 IEEE Region 10 Conference. IEEE. 2018, pp. 2023–
2027.

[90] Kai Kang et al. “Object detection from video tubelets with convolutional
neural networks”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 817–825.

139



References References

[91] Ming Liang and Xiaolin Hu. “Recurrent convolutional neural network for
object recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 3367–3375.

[92] Courtney J Spoerer, Patrick McClure, and Nikolaus Kriegeskorte. “Recurrent
convolutional neural networks: a better model of biological object recognition”.
In: Frontiers in psychology 8 (2017), p. 1551.

[93] Naiyan Wang and Dit-Yan Yeung. “Learning a deep compact image repre-
sentation for visual tracking”. In: Advances in neural information processing
systems 26 (2013).

[94] Guanghan Ning et al. “Spatially supervised recurrent convolutional neural
networks for visual object tracking”. In: 2017 IEEE international symposium
on circuits and systems (ISCAS). IEEE. 2017, pp. 1–4.

[95] Bo Gao and Michael W Spratling. “Robust template matching via hierarchical
convolutional features from a shape biased CNN”. In: The International
Conference on Image, Vision and Intelligent Systems (ICIVIS 2021). Springer.
2022, pp. 333–344.

[96] Jordi Pages et al. “An approach to visual servoing based on coded light”. In:
Proceedings 2006 IEEE International Conference on Robotics and Automation,
2006. ICRA 2006. IEEE. 2006, pp. 4118–4123.

[97] Alessandro De Luca, Giuseppe Oriolo, and Paolo Robuffo Giordano. “Feature
depth observation for image-based visual servoing: Theory and experiments”.
In: The International Journal of Robotics Research 27.10 (2008), pp. 1093–
1116.

[98] Tao Xue et al. “A New Delayless Adaptive Oscillator for Gait Assistance”. In:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2020, pp. 3459–3464. doi: 10.1109/IROS45743.2020.9341375.

[99] Yanan Li et al. “A review on interaction control for contact robots through
intent detection”. In: Progress in Biomedical Engineering 4.3 (2022), p. 032004.

[100] Zhang Chen et al. “Virtual-joint based motion similarity criteria for hu-
man–robot kinematics mapping”. In: Robotics and Autonomous Systems 125
(2020), p. 103412. issn: 0921-8890. doi: https://doi.org/10.1016/j.
robot.2019.103412.

[101] Darong Huang et al. “Cooperative Manipulation of Deformable Objects
by Single-Leader–Dual-Follower Teleoperation”. In: IEEE Transactions on
Industrial Electronics 69.12 (2022), pp. 13162–13170. doi: 10 . 1109 / TIE .
2021.3139228.

140

https://doi.org/10.1109/IROS45743.2020.9341375
https://doi.org/https://doi.org/10.1016/j.robot.2019.103412
https://doi.org/https://doi.org/10.1016/j.robot.2019.103412
https://doi.org/10.1109/TIE.2021.3139228
https://doi.org/10.1109/TIE.2021.3139228


References References

[102] Sarah Chams Bacha et al. “Deep Reinforcement Learning-Based Control
Framework for Multilateral Telesurgery”. In: IEEE Transactions on Medical
Robotics and Bionics 4.2 (2022), pp. 352–355. doi: 10.1109/TMRB.2022.
3170786.

[103] Ziwei Wang et al. “Finite-time output-feedback control for teleoperation
systems subject to mismatched term and state constraints”. In: Journal of
the Franklin Institute 357.16 (2020), pp. 11421–11447.

[104] Darong Huang et al. “Motion Regulation Solutions to Holding & Moving an
Object for Single-Leader-Dual-Follower Teleoperation”. In: IEEE Transactions
on Industrial Informatics (2023), pp. 1–12. doi: 10.1109/TII.2022.3229149.

[105] Ziwei Wang et al. “Learning to Assist Bimanual Teleoperation using Interval
Type-2 Polynomial Fuzzy Inference”. In: IEEE Transactions on Cognitive and
Developmental Systems (2023), pp. 1–1. doi: 10.1109/TCDS.2023.3272730.

[106] Zebin Huang et al. “A novel training and collaboration integrated framework
for human–agent teleoperation”. In: Sensors 21.24 (2021), p. 8341.

[107] Yanan Li et al. “A review on interaction control for contact robots through
intent detection”. In: Progress in Biomedical Engineering 4.3 (2022), p. 032004.

[108] Sarah Chams Bacha et al. “Deep Reinforcement Learning-Based Control
Framework for Multilateral Telesurgery”. In: IEEE Transactions on Medical
Robotics and Bionics 4.2 (2022), pp. 352–355. doi: 10.1109/TMRB.2022.
3170786.

[109] Weibang Bai et al. “Anthropomorphic Dual-Arm Coordinated Control for
a Single-Port Surgical Robot Based on Dual-Step Optimization”. In: IEEE
Transactions on Medical Robotics and Bionics 4.1 (2022), pp. 72–84. doi:
10.1109/TMRB.2022.3145673.

[110] Zhaoyang Jacopo Hu et al. “Towards Human-Robot Collaborative Surgery:
Trajectory and Strategy Learning in Bimanual Peg Transfer”. In: IEEE
Robotics and Automation Letters 8.8 (2023), pp. 4553–4560. doi: 10.1109/
LRA.2023.3285478.

[111] Joseph Redmon et al. “You only look once: Unified, real-time object detection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, pp. 779–788.

[112] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 3431–3440.

141

https://doi.org/10.1109/TMRB.2022.3170786
https://doi.org/10.1109/TMRB.2022.3170786
https://doi.org/10.1109/TII.2022.3229149
https://doi.org/10.1109/TCDS.2023.3272730
https://doi.org/10.1109/TMRB.2022.3170786
https://doi.org/10.1109/TMRB.2022.3170786
https://doi.org/10.1109/TMRB.2022.3145673
https://doi.org/10.1109/LRA.2023.3285478
https://doi.org/10.1109/LRA.2023.3285478


References References

[113] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. “Learning deconvolution
network for semantic segmentation”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1520–1528.

[114] Andres Milioto, Philipp Lottes, and Cyrill Stachniss. “Real-time semantic
segmentation of crop and weed for precision agriculture robots leveraging
background knowledge in CNNs”. In: 2018 IEEE international conference on
robotics and automation (ICRA). IEEE. 2018, pp. 2229–2235.

[115] Mulham Fawakherji et al. “Crop and weeds classification for precision agri-
culture using context-independent pixel-wise segmentation”. In: 2019 Third
IEEE International Conference on Robotic Computing (IRC). IEEE. 2019,
pp. 146–152.

[116] Di Feng et al. “Deep multi-modal object detection and semantic segmentation
for autonomous driving: Datasets, methods, and challenges”. In: IEEE Trans-
actions on Intelligent Transportation Systems 22.3 (2020), pp. 1341–1360.

[117] Mennatullah Siam et al. “Deep semantic segmentation for automated driving:
Taxonomy, roadmap and challenges”. In: 2017 IEEE 20th international
conference on intelligent transportation systems (ITSC). IEEE. 2017, pp. 1–8.

[118] Wonsuk Kim and Junhee Seok. “Indoor semantic segmentation for robot
navigating on mobile”. In: 2018 Tenth International Conference on Ubiquitous
and Future Networks (ICUFN). IEEE. 2018, pp. 22–25.

[119] Daniel Seichter et al. “Efficient rgb-d semantic segmentation for indoor
scene analysis”. In: 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2021, pp. 13525–13531.

[120] Bowen Pan et al. “Cross-view semantic segmentation for sensing surroundings”.
In: IEEE Robotics and Automation Letters 5.3 (2020), pp. 4867–4873.

[121] Stefan Ainetter and Friedrich Fraundorfer. “End-to-end trainable deep neural
network for robotic grasp detection and semantic segmentation from rgb”. In:
2021 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2021, pp. 13452–13458.

[122] Alwaseela Abdalla et al. “Fine-tuning convolutional neural network with
transfer learning for semantic segmentation of ground-level oilseed rape images
in a field with high weed pressure”. In: Computers and electronics in agriculture
167 (2019), p. 105091.

[123] Yi Zhu et al. “Improving semantic segmentation via efficient self-training”. In:
IEEE transactions on pattern analysis and machine intelligence (2021).

142



References References

[124] Pedro O Pinheiro et al. “Learning to refine object segments”. In: Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part I 14. Springer. 2016, pp. 75–91.
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