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 50 
 51 

ATP per CO2: the ratio of adenosine triphosphate consumption flux to net carbon dioxide 52 

assimilation flux.  53 

CA: carbonic anhydrase enzyme.  54 

CCM: carbon-concentrating mechanism. 55 

DNN: Deep Neural Network.  56 

FPLC: Fast protein liquid chromatography.  57 

GP: Gaussian Process 58 

laGP: Local approximate Gaussian Process. 59 

NN: single-layer Neural Network.  60 

NRMSE: normalized root-mean-square error.  61 

ODE: ordinary differential equation.  62 

PD plot: partial dependence plot. 63 

Q10 (or Q15): temperature response factor, representing the response of a parameter when 64 

temperature rises by 10 (or 15) degrees.  65 

RL: respiration in the light, a non-photorespiratory release of CO2 during photosynthesis. 66 

RMSE: root-mean-square error.  67 

SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 68 

SHAP: SHapley Additive exPlanations.  69 

Stromal CO2: the steady-state carbon dioxide concentration in the chloroplast stroma.  70 

vo/vc: the ratio of oxygen-fixation flux to carbon-fixation flux.  71 

XGBoost: eXtreme Gradient Boosting (a machine-learning model).  72 

ΓCO2: carbon dioxide compensation point, the carbon dioxide concentration at which net carbon 73 

assimilation is zero. 74 

Other model parameter definitions are listed in Table S1. 75 

 76 

Abstract77 

 78 
The thermoacidophilic red alga Cyanidioschyzon merolae survives its challenging environment 79 

likely in part by operating a carbon-concentrating mechanism (CCM). Here, we demonstrated 80 

that C. merolae’s cellular affinity for CO2 is stronger than its rubisco affinity for CO2. This 81 

provided further evidence that C. merolae operates a CCM while lacking structures and functions 82 

characteristic of CCMs in other organisms. To test how such a CCM could function, we created a 83 

mathematical compartmental model of a simple CCM distinct from those we have seen 84 

previously described in detail. The results supported the feasibility of this proposed minimal and 85 

non-canonical CCM in C. merolae. To facilitate robust modeling of this process, we incorporated 86 

new physiological and enzymatic data into the model, and we additionally trained a surrogate 87 

machine-learning model to emulate the mechanistic model and characterized the effects of model 88 

parameters on key outputs. This parameter exploration enabled us to identify model features that 89 

influenced whether the model met experimentally-derived criteria for functional carbon-90 

concentration and efficient energy usage. Such parameters included cytosolic pH, bicarbonate 91 

pumping cost and kinetics, cell radius, carboxylation velocity, number of thylakoid membranes, 92 
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and CO2 membrane permeability. Our exploration thus suggested that a non-canonical CCM 93 

could exist in C. merolae and illuminated essential features necessary for CCMs to function 94 

generally. 95 

 96 

Introduction97 
98 

Cyanidioschyzon merolae is a red microalga found in moist environments surrounding 99 

geothermal sulfur springs. This species is extremophilic, with optimal laboratory growth 100 

conditions including low pH (~ 2) and high temperatures (~ 42 C) (Miyagishima and Wei, 101 

2017; Miyagishima et al., 2017). C. merolae and other thermo-acidophilic red algae draw 102 

interest for their unique biology and simple characteristics, which position them as useful model 103 

organisms and as candidates for biotechnology applications (Rahman et al., 2017; Miyagishima 104 

and Tanaka, 2021; Seger et al., 2023; Villegas-Valencia et al., 2023). For example, C. merolae is 105 

of interest because it is one of few organisms which relies on photosynthesis in geothermal 106 

spring environments, where hot and acidic conditions restrict the availability of inorganic carbon 107 

and challenge biological carbon fixation (Gross, 2000; Miyagishima et al., 2017). Notably, 108 

organisms of acid waters can only access approximately 10 micromolar inorganic carbon, as the 109 

inorganic carbon pool at acid pH is primarily the volatile species CO2. In comparison, organisms 110 

of near-neutral and alkaline waters may have access to several millimolar of inorganic carbon, 111 

due to accumulation of the involatile bicarbonate (Oesterhelt et al., 2007). 112 

 C. merolae is thought to survive in its challenging environment in part by operating a 113 

carbon-concentrating mechanism (CCM) (Zenvirth, Volokita and Kaplan, 1985; Rademacher et 114 

al., 2017; Steensma, Shachar-Hill and Walker, 2023). CCMs boost carbon-fixation efficiency by 115 

concentrating CO2 around rubisco, providing ample substrate for carbon-fixation and inhibiting a 116 

competing oxygen-fixation reaction of rubisco. Evidence supporting a CCM in C. merolae 117 

includes measured accumulation of radiolabeled carbon in the cell, 
13

C consistent with a CCM, 118 

transcriptional response of potential CCM genes to CO2 fluctuations, and substantial CO2 119 

assimilation at low environmental CO2 concentrations (Zenvirth, Volokita and Kaplan, 1985; 120 

Rademacher et al., 2017; Steensma, Shachar-Hill and Walker, 2023). However, many of these 121 

indications of the CCM are not definitive: in particular, it is not known how much of C. 122 

merolae’s ability to assimilate CO2 efficiently could be explained by the affinity of C. merolae 123 

rubisco for CO2. Thus, we here provide further evidence for the CCM in C. merolae by 124 

demonstrating that the affinity of C. merolae cells for CO2 is better than could be explained by 125 

the affinity of C. merolae rubisco for CO2. 126 

 C. merolae’s CCM may be described as a “non-canonical” CCM, since the C. merolae 127 

CCM must operate differently from the few CCM types which are well-characterized.  128 

For example, unlike algae and cyanobacteria with well-characterized CCMs, C. merolae is not 129 

able to take up external bicarbonate, and C. merolae lacks anatomy associated with the pyrenoid 130 

CCM organelle (Zenvirth, Volokita and Kaplan, 1985; Badger et al., 1998; Misumi et al., 2005; 131 

Steensma, Shachar-Hill and Walker, 2023). The absence of these CCM features in C. merolae 132 

challenges our understanding of what components are required for a functional CCM, and 133 

presents the opportunity to define essential CCM components. While previous work has 134 

discussed CO2 as a source of carbon for the CCM (Fridlyand, Kaplan and Reinhold, 1996; Price, 135 

2011), there has been little quantitative exploration of whether a CCM could function while 136 

lacking both facilitated carbon uptake and specialized compartments such as the pyrenoid or 137 

carboxysome. We thus used mathematical modeling, informed by new experimental 138 

measurements, to explore how the C. merolae CCM may function.  139 
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Research on CCMs has long employed mathematical models to understand the 140 

components of functional CCMs in model cyanobacteria and algae, with a particular area of 141 

interest in CCM modeling being the possibility of boosting crop productivity by engineering 142 

CCMs into crops which lack CCMs (Price et al., 2013; McGrath and Long, 2014; Fei et al., 143 

2022; Kaste, Walker and Shachar-Hill, 2024). By developing modeling approaches to robustly 144 

describe CCMs in organisms where biochemical data is limited, such as extremophile algae, we 145 

can better understand how organisms survive environmental challenges. Here we add to these 146 

engineering efforts by modeling a heat-tolerant CCM with minimal components which offers 147 

unique possibilities for plant synthetic biology (Misumi, Kuroiwa and Hirooka, 2017). To draw 148 

robust conclusions about cellular characteristics which can support a CCM, we used state-of-the-149 

art statistical methods to define the effects of model parameters on the predicted photosynthetic 150 

phenotype while limiting unwarranted a priori assumptions. We demonstrate an interdisciplinary 151 

modeling approach which efficiently sampled from large parameter spaces and identified 152 

features (e.g., compartment permeability, pH, enzyme characteristics) that determine the function 153 

and energy cost of a simple CCM. This approach is to our knowledge new to compartmental 154 

photosynthetic modeling, and could facilitate effective use of models to inform experiments and 155 

rational engineering.  156 

Some sets of model input parameters produced model outputs which met empirically-157 

based criteria for functional carbon concentration and efficient energy usage, and we identified 158 

input parameters which have substantial impacts on the model outputs. Overall, our model of a 159 

hypothetical biophysical CCM which requires minimal enzymes and anatomical features (Figure 160 

1) appears to represent a feasible CCM structure in C. merolae, which invites further research 161 

into the sources of environmental resilience in extremophile algae. 162 

 163 

Methods 164 

 165 
Experimental data collection: gas-exchange measurements 166 

Cyanidioschyzon merolae 10D was grown as cultures in Erlenmeyer flasks in 50 mL of medium 167 

containing 40 mM (NH4)2SO4, 4 mM MgSO4  7H2O, 8 mM KH2PO4, 0.75 mM CaCl2  2H2O, 1 168 

mL L
-1

 Hutner’s Trace Elements solution, and H2SO4 to pH 2.7 (recipe modified from MA2 169 

medium recipe of (Fujiwara and Ohnuma, 2017)). Cultures were maintained at 40 °C under 100 170 

µmol m
-2

 s
-1

 white light, with aeration by shaking at 100 rpm. For gas-exchange measurements, 171 

cultures of OD750 1.0 – 1.2 were resuspended in growth medium to OD750 0.6 (1.60x10
7
 – 172 

3.68x10
7 
cells/mL). Gas-exchange parameters were measured in a LI-6800-18 Aquatic Chamber 173 

(LI-COR Biosciences) at 45 °C and with normalization to cell count data from a hemocytometer 174 

slide, following the procedures of (Steensma, Shachar-Hill and Walker, 2023) and with a 175 

protocol similar to (Davey and Lawson, 2024). 176 

 177 

Experimental data collection: rubisco kinetics measurements 178 

We purified rubisco from C. merolae biomass with a protocol adapted from (Miyagishima and 179 

Wei, 2017; Orr and Carmo-Silva, 2018). Approximately 60 grams of biomass were lysed by 180 

freeze-thawing followed by mechanical homogenization. Crude rubisco was polyethylene-181 

glycol-precipitated from clarified homogenate and purified by fast protein liquid chromatography 182 

(FPLC). FPLC fractions eluting under the major UV trace peak were assayed by SDS-PAGE and 183 

by spectrophotometric rubisco activity assay (procedures adapted from (Kubien, Brown and 184 

Kane, 2010; Carter et al., 2013)) (Figure S3). Fractions containing active semi-pure rubisco 185 
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were pooled, concentrated with a 100 kDa centrifugal concentration filter, and snap-frozen for 186 

use in rubisco assays. 187 

Purified rubisco was used to determine catalytic properties as described previously in 188 

detail (Prins et al., 2016), with some alterations to protein desalting and activation: concentrated 189 

protein aliquots were first diluted with activation mix containing 100 mM Bicine-NaOH pH 8.0, 190 

20 mM MgCl2, 10 mM NaHCO3, and 1 % (v/v) Plant Protease Inhibitor cocktail (Sigma-Aldrich, 191 

UK). Rubisco was then activated at 45 °C for 15 min before being used in 
14

CO2 consumption 192 

assays at either 25 °C or 45 °C with CO2 concentrations of 8, 16, 24, 36, 68, and 100 µM. To 193 

determine KO, these CO2 concentrations were combined with concentrations of either 0, 21, 40, 194 

or 70 % (v/v) O2. kcatC was determined using measurements with 0% O2. An aliquot of the 195 

activated protein was used for determination of Rubisco active sites via 
14

C-CABP binding using 196 

the method of (Sharwood, Ghannoum and Whitney, 2016). For 
14

C-CABP binding, protein 197 

aliquots were incubated at 45°C for 15 mins with 
14

C-CABP to maximize binding, prior to 198 

application to Sephadex columns as previously described (Loganathan, Tsai and Mueller-Cajar, 199 

2016). Aliquots were also analyzed via SDS-PAGE alongside known concentrations of plant 200 

type Rubisco to strengthen estimates of Rubisco content.  201 

 202 

Model details 203 

The hypothetical CCM described in this study (Figure 1) was modeled as a set of well-mixed 204 

compartments and represented as a system of ordinary differential equations (ODEs). In this 205 

minimal biophysical CCM, carbon diffuses into the cell as CO2, is trapped in the cytosol as 206 

bicarbonate by action of carbonic anhydrase, and is pumped into the chloroplast, where a second 207 

carbonic anhydrase provides CO2 around rubisco. No pyrenoid diffusion barrier is present, as 208 

neither a starch sheath nor a clear organized subcompartment for rubisco have been described in 209 

C. merolae. However, we accounted for potential effects of the concentric thylakoids which are 210 

present in C. merolae and many other aquatic photosynthetic organisms (Ichinose and Iwane, 211 

2017). Carbonic anhydrases (CAs) and bicarbonate transporters are essential components of 212 

known biophysical CCMs and thus essential components of a CCM model (Beardall and Raven, 213 

2020). These components (V4, V11, V8) are discussed in more detail below. 214 

 215 

 216 
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Figure 1. Cross-section of model structure. This model describes fluxes (indicated by arrows) 217 

and pools (indicated by molecular formulas) of a simplified dissolved inorganic carbon system 218 

(CO2, HCO3
-
) and of oxygen (O2). Molecule pools can be present in several well-mixed 219 

compartments: the bulk external medium surrounding the cell, an unstirred boundary layer of 220 

medium around the cell, the cytosol, or a central stromal space of the chloroplast. Circles mark 221 

enzymatically-catalyzed fluxes. Compartments are not drawn to scale. PR = photorespiratory 222 

CO2 release, RL = respiration in the light. All fluxes are reversible and are assigned an arbitrary 223 

direction, except those fluxes which represent producing or consuming material. 224 

 225 

The model geometry is based on the cellular structure of C. merolae as apparent in 226 

published micrographs of this alga (Kuroiwa, 1998; Miyagishima et al., 1998; Toda et al., 1998; 227 

Itoh et al., 1999; Yagisawa et al., 2012, 2016; Ichinose and Iwane, 2017; Reimer et al., 2017; 228 

Sato et al., 2017; Moriyama et al., 2018). The modeled cell and its boundary layer form a series 229 

of concentric spherical well-mixed compartments. The cell is enclosed by a lipid bilayer of 230 

radius 𝑅𝑎𝑑𝑖𝑢𝑠𝑐𝑒𝑙𝑙. The cell contains a cytosol of radius  𝑅𝑎𝑑𝑖𝑢𝑠𝑐𝑒𝑙𝑙 and a chloroplast stroma 231 

space of radius 0.25 ∗ 𝑅𝑎𝑑𝑖𝑢𝑠𝑐𝑒𝑙𝑙. The cell is surrounded by a medium boundary layer of radius 232 

2 ∗ 𝑅𝑎𝑑𝑖𝑢𝑠𝑐𝑒𝑙𝑙, beyond which lies an infinite external medium. Though varying fluid dynamic 233 

conditions strongly impact the size of boundary layers such as gas surface films or phycospheres, 234 

these layers are reported to be on the order of magnitude of 1 cell radius (Guterman and Ben-235 

Yaakov, 1987; Seymour et al., 2017). 236 

 Molecules cross the boundary of the stroma space according to diffusion or transport 237 

equations. For flux calculations, the boundary consists of 1 to 7 lipid bilayers of negligible 238 

thickness that are evenly spaced from 0.5 ∗ 𝑅𝑎𝑑𝑖𝑢𝑠𝑐𝑒𝑙𝑙 to 0.25 ∗ 𝑅𝑎𝑑𝑖𝑢𝑠𝑐𝑒𝑙𝑙. This boundary 239 

structure represents the fact that the C. merolae chloroplast is surrounded by a chloroplast 240 

envelope and by approximately 4 to 6 thylakoids which appear as concentric circles or spirals in 241 

microscopy examinations (Ichinose and Iwane, 2017). A range of possible transport scenarios 242 

(how many membranes molecules must cross when crossing between the cytosol and stroma, and 243 

how much energy this crossing costs) are captured by varying parameters Membranes and 244 

Pumpcost.  245 

Diffusion through lipid membranes (V1, V6, V5, V7, V15) was described using estimates 246 

of conductivity of lipid membranes to the chemical species in question: 247 
𝐽𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑋 ∗ ([𝑋]𝐴 − [𝑋]𝐵) #(𝑬𝟏)  

Where Conductivityx is the conductivity –  in units of µm
3
/s – of chemical species X through a 248 

lipid bilayer, and [X]A and [X]B are the concentrations of that species on the two sides of that 249 

lipid bilayer. Diffusion between the medium boundary layer and bulk medium (V18, V19) was 250 

described as an analogous simple diffusion flux, with conductivity determined according to 251 

diffusion coefficients through water at the boundary layer thickness. Lipid permeability 252 

coefficients for CO2 and HCO3
- 
and the water diffusion coefficient for O2 were sourced from the 253 

literature (Table S1), and other necessary gas permeability and diffusion coefficients were 254 

determined from the literature values by Graham’s law of diffusion: 255 

𝑟1

𝑟2
=  √

𝑀1

𝑀2
#(𝑬𝟐)  

Where the rates of diffusion r1 and r2 for two different ideal gases, here CO2 and O2, are related 256 

according to their two molar masses M1 and M2.  257 



 

 7 

To describe diffusion of CO2 (V5), HCO3
- 
(V7), and O2 (V15) through variable numbers 258 

of stacked thylakoid membranes, an overall conductivity through all of the layers was calculated 259 

as: 260 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = (∑(4𝜋𝑟𝑛
2 ∗ 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑋)−1

𝑛

𝑖=1

)

−1

#(𝑬𝟑)  

Where rn is the radius of the sphere formed by the nth thylakoid membrane. This overall 261 

conductivity value is then used in (E1) to describe the movement of a chemical species from the 262 

outer stroma into the inner stroma space, as shown in Figure 1. We assume that small gas 263 

molecules diffuse easily around membrane proteins, so that the diffusion of CO2 and O2 through 264 

any modeled membrane is potentially impeded by increased path length, but is not impeded by 265 

CO2 and O2 passing through high-resistance protein material. 266 

Spontaneous interconversion of CO2 and HCO3
-
 , as in V2, V3, V9, and V10 (E4-5), was 267 

described using simple first-order kinetics, accordring to the rate constant of the dehydration 268 

(slower) step of the interconversion: 269 
𝐽𝐶𝑂2 ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑘2[𝐶𝑂2] #(𝑬𝟒)  

𝐽𝐻𝐶𝑂3
− 𝑑𝑒ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑘−2[𝐻𝐶𝑂3

−][𝐻+] #(𝑬𝟓)  

Note that CO2 must first be hydrated to H2CO3, which is then deprotonated to yield the HCO3
-
 270 

ion. However, because the interconversion of HCO3
-
 and H2CO3 is essentially instantaneous 271 

relative to the hydration-dehydration reaction, here we ignore the H2CO3 species and 272 

approximate the spontaneous interconversion as the hydration-dehydration reaction. It was 273 

observed in (Mangan et al., 2016) that the significantly higher permeability of H2CO3 relative to 274 

HCO3
-
, coupled with the rapid interconversion of these species, results in a greater permeability 275 

through lipid membranes of this joint H2CO3/HCO3
-
 pool than would be expected from HCO3

-
 276 

permeability alone. To account for this while accommodating the simplification of not including 277 

the H2CO3 species, we explored a range of possible lipid permeabilities to HCO3
-
 and CO2 that 278 

substantially overlaps with the range of inorganic carbon permeability values from (Mangan et 279 

al., 2016).  280 

The interconversion of CO2 and HCO3
-
 by carbonic anhydrase (V4, V11) was described 281 

as in (McGrath and Long, 2014): 282 

𝐽𝐶𝐴 =
[𝐶𝐴] ∗ 𝐶𝐴𝑘𝑐𝑎𝑡 ∗ ([𝐶𝑂2] −  

[𝐻𝐶𝑂3
−][𝐻+]

𝐾𝑎
)

𝐾𝑚
𝐶𝑂2 + [𝐻𝐶𝑂3

−] (
𝐾𝑚

𝐶𝑂2

𝐾𝑚
𝐻𝐶𝑂3

−) + [𝐶𝑂2]

#(𝑬𝟔)  

Where the Ka value is the overall Ka for the CO2/HCO3
-
 system. This value is temperature-283 

sensitive and was calculated using the R package seacarb package (Lavigne, Proye and Gattuso, 284 

2019). Other potentially temperature-sensitive parameters receive temperature adjustments 285 

according to Q10 or Q15 factors as in (von Caemmerer, 2000). In C. merolae, CA inhibitors have 286 

not been shown to affect oxygen evolution, but it remains plausible that CAs are involved in 287 

photosynthesis, since genes homologous to CCM CAs show transcript increases in response to 288 

lowered CO2 availability (Rademacher et al., 2017; Parys et al., 2021). Of the two putative CAs 289 

with the most dramatic transcriptional response to CO2, one protein has a computationally-290 

predicted chloroplast targeting sequence and has been fluorescence-localized between the 291 

mitochondrion and chloroplast, while the other protein has no predicted targeting sequence and 292 

has been fluorescence-localized in the cytosol (Rademacher et al., 2017; Steensma, Shachar-Hill 293 

and Walker, 2023). 294 
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Carboxylation by rubisco (V12) was described as with the assumption that CO2 is 295 

limiting, as in (Farquhar, von Caemmerer and Berry, 1980): 296 

𝑣𝑐 =
𝑉𝑚𝑎𝑥𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑎𝑡𝑖𝑜𝑛[𝐶𝑂2]

([𝐶𝑂2] + 𝐾𝑚
𝐶𝑂2 (1 +

[𝑂2]

𝐾𝑚
𝑂2

))

#(𝑬𝟕)

 

To estimate oxygenation (V13), we estimate vc/vo (carboxylation flux over oxygenation flux) 297 

from the CO2/O2 specificity (Sc/o) of rubisco and chloroplast CO2 and O2 concentrations (E8), 298 

and then use this to arrive at vo.  299 

𝑣𝑐

𝑣𝑜
= 𝑆𝑐𝑜 (

[𝐶𝑂2]

[𝑂2]
) #(𝑬𝟖)  

The pumping of HCO3
-
 across the stack of thylakoid membranes by a bicarbonate pump (V8) 300 

was described by simple Michaelis-Menten kinetics: 301 

𝐽𝐻𝐶𝑂3
− 𝑝𝑢𝑚𝑝 = (

𝑉𝑚𝑎𝑥[𝐻𝐶𝑂3
−]

𝐾𝑚 + [𝐻𝐶𝑂3
−]

) (𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎)#(𝑬𝟗)  

Concerning what is known about bicarbonate transport in C. merolae, it is difficult to identify 302 

bicarbonate transporters by homology (Price and Howitt, 2011; Steensma, Shachar-Hill and 303 

Walker, 2023). C. merolae would have minimal access to extracellular bicarbonate even if 304 

bicarbonate were substantially available in its acidic environment, as is evident from 305 

radiolabelling and from gas-exchange conducted at varying pH (Zenvirth, Volokita and Kaplan, 306 

1985; Steensma, Shachar-Hill and Walker, 2023). Bicarbonate transport at the chloroplast or 307 

thylakoids is an key feature of biophysical CCMs (Price et al., 2008; Spalding, 2008). 308 

Photorespiratory CO2 release (V14) and photosynthetic oxygen evolution (V16) were 309 

determined by the stoichiometry described in S1 Supporting Information. Non-310 

photorespiratory CO2 release occurring during photosynthesis, known as respiration in the light 311 

(RL) (Xu et al., 2021), was estimated from gas-exchange data according to a modified Kok 312 

method (V17). Assimilation was measured under sub-saturating light intensities and extrapolated 313 

to estimate CO2 release in the absence of light (Figure 2B). The resulting mean measured value 314 

of RL was normalized to cell size for use in the model: we assume that the empirical 315 

measurement of RL we obtained was, on a per cell basis, characteristic of a C. merolae cell of a 316 

radius of 1 µm. Under the assumption that RL should vary proportionally with cell volume, we 317 

normalized RL as follows: 318 

 319 

𝑅𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
= 𝑅𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑉𝑜𝑙𝑢𝑚𝑒

𝑉𝑜𝑙𝑢𝑚𝑒1𝑢𝑚
#(𝑬𝟏𝟎)  320 

 321 



 

 9 

 322 
Figure 2. Experimental data incorporated into the model. (A, B). Response of net assimilation in 323 

C. merolae to (A) CO2 availability and (B) light availability. Points are mean ± SE (n = 3), and 324 

parameters calculated from the data are indicated in the upper left corner of each plot as mean 325 

± SE. Dashed lines indicate trend fits used to determine Michaelis-Menten constant of CO2 326 

fixation (KC) and respiration in the light (RL). The linear fit used to determine CO2 327 

compensation point (ΓCO2) is not pictured but is described in Methods. (C) Kinetic properties of 328 

C. merolae rubisco. Rubisco turnover rate for CO2 fixation (kcatC), Michaelis-Menten constant 329 

of CO2 fixation (KC), and Michaelis-Menten constant of O2 fixation (KO) were measured at 25 330 

and 45 °C. Data is mean ± SE, n = 4. 331 

 332 

ATP costs for the cell were estimated as:  333 

𝐴𝑇𝑃𝑡𝑜𝑡𝑎𝑙 = 3𝑣𝑐 + 3.5𝑣𝑜 + (𝐽𝐻𝐶𝑂3
− 𝑝𝑢𝑚𝑝 ∗ 𝑀𝑒𝑚𝑏𝑟𝑎𝑛𝑒𝑠 ∗ 𝑃𝑢𝑚𝑝𝑐𝑜𝑠𝑡)#(𝑬𝟏𝟏)  

Where Membranes is the number of thylakoid stacks and Pumpcost is the assumed cost, in ATP, 334 

of pumping a single HCO3
-
 ion across a lipid bilayer by the hypothesized pump. 335 

A full list of all flux equations and the system of ODEs used to describe the system can 336 

be found in S1 Supporting Information. 337 

 338 

Definition of reasonable model output values 339 

To ensure the model reproduced experimental results, we used newly measured and published 340 

experimental data to set acceptable bounds for the following model outputs: CO2 compensation 341 

point (ΓCO2), the ratio of ATP consumption flux to net CO2 assimilation flux (ATP per CO2), the 342 
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steady-state CO2 concentration in the chloroplast stroma (stromal CO2), and the ratio of oxygen-343 

fixation flux to carbon-fixation flux (vo/vc).  344 

 345 

CO2 compensation point (ΓCO2) 346 

We accepted ΓCO2 values less than or equal to 2.70 µM, corresponding to no more than twice the 347 

mean measured value (Figure 2). 348 

 349 

Ratio of ATP consumption flux to net CO2 assimilation flux (ATP per CO2) 350 

We accepted ATP per CO2 values which were less than or equal to 25 and greater than 0. These 351 

bounds are supported by measured light response curves which indicated how much additional 352 

light absorption drives a certain amount of additional CO2 assimilation (Figure 2). We used this 353 

data to estimate how much additional ATP production drives an additional CO2 assimilation, 354 

using the photon per ATP values for various light-reaction pathways (Walker et al., 2020), the 355 

cylindrical geometry of the gas-exchange sample chamber, and the measured density of cells in 356 

the sample. The resulting estimated values were: 13.8 ± 2.19 ATP produced/CO2 assimilated 357 

(mean ± SE, assuming cyclic and linear electron flow operating equally) or 17.4 ± 2.76 ATP 358 

produced/CO2 assimilated (mean ± SE, assuming linear electron flow only operating). This 359 

suggests that ATP per CO2 values of up to ~25 are supported by photosynthetic electron flow. 360 

The lower bound of the acceptable range excludes a few parameter sets outputting negative ATP 361 

per CO2, since these parameter sets represented particularly non-functional CCM scenarios with 362 

negative net assimilation values under ambient CO2 conditions. 363 

 364 

Steady-state CO2 concentration in the chloroplast stroma (stromal CO2)  365 

We accepted chloroplast CO2 concentration values of greater than or equal to the CO2 366 

concentration in the medium under 400 ppm CO2 atmosphere, by the logic that a functional CCM 367 

should result in rubisco accessing a greater CO2 concentration than is available from ambient 368 

medium.  369 

 370 

Ratio of oxygen fixation flux to carbon fixation flux (vo/vc) 371 

We accepted vo/vc values less than or equal to 0.3, based on data and models indicating that 372 

plants without CCMs are unlikely to achieve vo/vc less than approximately 0.3 (Bellasio et al., 373 

2014). 374 

 375 

Model optimization and estimation of simulated compensation point 376 

Steady-state fluxes and metabolite concentrations were solved using odeint() from Python’s 377 

SciPy library (Virtanen et al., 2020) with error control handled by maintaining the following 378 

inequality: 379 

max (
𝑒𝑟𝑟𝑜𝑟𝑠(𝑦)

𝑒𝑟𝑟𝑜𝑟𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑦)
) ≤ 1 

Where errors is a vector of local errors against computed outputs y and errorweights is a vector of 380 

weights: 381 

𝑒𝑟𝑟𝑜𝑟𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ∗ |𝑦| + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 

Where tolerancerelative and toleranceabsolute are the relative and absolute tolerance values set in the 382 

odeint() solver. We use the default value of for these tolerances from SciPy version 1.10.0. All 383 

simulations were verified to reach steady-state (metabolite concentration solutions changing 384 

0.01% or less from previous value). An end time of sufficient length was chosen to ensure that 385 
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simulations successfully reached steady-state. The maximum number of step sizes allowed for 386 

each time point was manually set to 5,000 as this was found to allow our simulations to reach 387 

steady-state without optimization difficulties. Other optimization parameters, such as the 388 

maximum and minimum step sizes, were left at their default settings as well and controlled by 389 

the optimizer. Using these settings, 100% (240,000/240,000) of all simulations successfully 390 

reached a steady-state solution in all model architectures. 391 

In order to characterize the response of key outputs and robustness of conclusions to a 392 

wide range of possible parameterizations of the model, we used Latin Hypercube Sampling 393 

(McKay, Beckman and Conover, 1979) to explore 240,000 parameter combinations according to 394 

the bounds specified in (Table S1). These simulations were run on Michigan State University’s 395 

High Performance Computing Cluster. CO2 compensation point estimates were generated for 396 

every parameter set by running the model at external CO2 concentrations ranging from 0.0001 to 397 

1000 µM, constructing a cubic spline from the resulting curve of net CO2 assimilation vs. 398 

external CO2 concentration, and identifying the root of this spline to find the compensation point. 399 

 400 

Parameter exploration and surrogate model selection 401 

In order to thoroughly explore the 19-dimensional parameter space in a computationally-feasible 402 

way, we trained a surrogate machine-learning model on the mechanistic CCM model. By 403 

emulating the intricacies of the mechanistic model, surrogate modeling faithfully captures 404 

dynamics of complex systems while alleviating the substantial computational costs associated 405 

with obtaining additional results from a mechanistic model. Surrogate modeling additionally 406 

gave us access to powerful statistical tools for machine-learning model analysis, including 407 

SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) and partial dependence (PD) 408 

plots (Friedman, 2001).  409 

To identify the optimal surrogate model for parameter exploration, we compared four 410 

popular machine-learning models: eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin, 411 

2016), Local approximate Gaussian Process (laGP) (Gramacy and Apley, 2015), single-layer 412 

Neural Network (NN) (James et al., 2013), and Deep Neural Network (DNN) (Chen and 413 

Guestrin, 2016). We collected a 240,000-sized dataset, where the outputs were simulated from 414 

the mechanistic CCM model at space-filling input locations. 90% of the data was used for 415 

training the surrogate, and the remaining 10% was used as the test dataset to validate the model 416 

performance. The dataset was divided into training and test sets using a random sampling 417 

approach. Specifically, we used the sample() function in R with a fixed seed. The evaluation of 418 

prediction performance was based on the root-mean-square error (RMSE): 419 

𝑅𝑀𝑆𝐸 = √ ∑
(𝑦𝑖 − 𝑦̂𝑖)2

𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑒𝑠𝑡

𝑖=1

, 

where 𝑦𝑖 is the 𝑖-th test output and 𝑦̂𝑖 is the 𝑖-th predicted model output.  420 

Model outputs had varying scales and degrees of skew, so to effectively compare 421 

prediction performance on different model outputs, a normalized RMSE (NRMSE) was 422 

calculated. The NRMSE was calculated as the RMSE divided by 𝑦𝑚𝑎𝑥 −  𝑦𝑚𝑖𝑛, where 𝑦𝑚𝑎𝑥 is 423 

the highest test output and 𝑦𝑚𝑖𝑛 is the lowest test output.  424 

From the model evaluation (Table S2), it appears that XGBoost outperformed other 425 

models for vo/vc and ATP per CO2, and remained comparable for ΓCO2 and stromal CO2. As such, 426 

XGBoost was used as the surrogate model for further analyses. 427 



 

 12 

The XGBoost model was trained using a max number of boosting iterations of 1000 with 428 

the evaluation metric of the root-mean-square error. The laGP model used the nearest neighbor 429 

method for prediction. The NN model is a simple feedforward neural network with a logistic 430 

activation function 
1

1+𝑒−𝑥 for regression tasks. The error function used for the calculation of the 431 

error was the sum of squared errors. The threshold parameter for the partial derivatives of the 432 

error function as stopping criteria for the NN model was set to half the range of the target 433 

variable. 434 

The DNN model consists of two hidden layers containing 64 and 32 units respectively, 435 

both using rectified linear unit (ReLU) activation functions max(x, 0). The DNN model was 436 

trained using the adaptive moment estimation (Adam) optimizer and mean squared error (MSE) 437 

as the loss function. The model was trained for 40 epochs, with the learning algorithm processing 438 

the entire training dataset 40 times. A batch size of 240 was used, indicating the number of 439 

samples processed before updating the model's internal parameters. Moreover, 20% of the 440 

training data was set aside for validation purposes during the training process. 441 

Results and Discussion 442 

 443 
Rubisco kinetics demonstrated that C. merolae operates a CCM 444 

 445 

In previous work, we determine that if C. merolae has rubisco kinetics similar to other red algae, 446 

then this alga must operate a CCM to maintain its measured photosynthetic efficiency. 447 

Alternatively, its measured photosynthetic efficiency could be explained by unprecedented 448 

rubisco kinetics, meaning enzyme properties favoring carbon-fixation over oxygen-fixation to an 449 

unprecedented degree (Steensma, Shachar-Hill and Walker, 2023). Here we confirmed that C. 450 

merolae rubisco kinetics are similar to those of other red-type (Form 1D) rubiscos (Read and 451 

Tabita, 1994; Uemura et al., 1997; Whitney et al., 2001). C. merolae rubisco had a strong 452 

affinity for CO2 (low KC), a poor affinity for O2 (high KO), and a slow carboxylation rate (low 453 

kcatC) (Figure 2). Consistent with other studies, kcatC and KC were higher when measured at 454 

increased temperature, while KO was lower. Although KO is in the denominator of rubisco 455 

specificity (Sc/o) and Sc/o decreases with increased temperature, in vitro KO is observed to 456 

decrease with increased assay temperature in some species (Jordan and Ogren, 1984; Uemura et 457 

al., 1997; Prins et al., 2016). 458 

These kinetics findings indicated C. merolae does operate a CCM, as C. merolae cells 459 

had higher affinity for CO2 than C. merolae rubisco (8.71 ± 1.7 µM cell KC vs. 24.9 ± 3.2 µM 460 

rubisco KC at 45 C, p = 0.008 by two-sample t-test) (Figure 2). This result adds to the evidence 461 

of a CCM in C. merolae (Zenvirth, Volokita and Kaplan, 1985; Rademacher et al., 2017; 462 

Steensma, Shachar-Hill and Walker, 2023).  463 

 464 

Quantitative modeling showed that a hypothesized CCM can explain C. merolae’s carbon-465 

concentrating behavior  466 

 467 

To explore how the C. merolae CCM may operate, we constructed a functional model of a CCM 468 

(Figure 1). This model demonstrated that there were parameter sets consistent with the empirical 469 

literature that result in a functional CCM, despite the minimal model structure lacking structures 470 

like a pyrenoid or carboxysome (Figure 3). Cyanobacterial CCM models have also supported 471 
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reduction to a simple model with only two compartments from the cell membrane inwards 472 

(Mangan and Brenner, 2014). 473 

Our results provided quantitative support for a CCM taking inorganic carbon from the 474 

environment solely through CO2 diffusion into the cell without specialized compartments, which 475 

we term a “non-canonical” CCM due to its differences in structure and function from CCMs that 476 

have been characterized in detail. C. merolae has a different structure and environment than the 477 

“canonical” CCMs of Chlamydomonas reinhardtii and of model cyanobacteria, which allowed 478 

us to explore a biology and a parameter space which are different from those in previous CCM 479 

models.  480 

Though there is speculation that extremophilic red algae may use a C4-like CCM, it has 481 

been previously proposed that acidophile algae may accumulate carbon by a “bicarbonate-trap” 482 

or “acid-loading” mechanism similar to our modeled CCM (Gehl and Colman, 1985; Fridlyand, 483 

1997; Gross, 2000; Rademacher et al., 2016; Curien et al., 2021; Fei et al., 2022). Briefly, this 484 

mechanism would involve bicarbonate being concentrated for enzymatic action by bringing 485 

inorganic carbon speciation near equilibrium in near-neutral cellular compartments, since the 486 

predominant inorganic carbon species from pH ~6 to ~10 is the poorly-membrane-permeable 487 

bicarbonate. 488 

Various facilitated CO2 uptake mechanisms exist in CCM-containing organisms, such as 489 

the NDH-I complexes in cyanobacteria and the periplasmic CA system in algae (Fridlyand, 490 

Kaplan and Reinhold, 1996; Moroney et al., 2011; Price, 2011). We here test a different model 491 

where inorganic carbon enters the cell solely by passive CO2 diffusion into the cytosol, followed 492 

by the action of non-vectorial cytosolic carbonic anhydrase. In contrast to the well-studied 493 

cyanobacterial and algal systems, where growth under limiting CO2 is supported by active 494 

bicarbonate uptake and the accumulation of cytosolic bicarbonate above equilibrium levels 495 

(Price and Badger, 1989; Price et al., 2004; Duanmu et al., 2009), our model functions as a CCM 496 

without taking any bicarbonate from the environment.  497 

Another unique feature of our model is the nature of the diffusion barrier surrounding 498 

rubisco. Cyanobacteria encapsulate rubisco in a proteinaceous shell called the carboxysome, 499 

which is thought to provide a diffusion barrier to CO2 (Price et al., 2008). The model alga C. 500 

reinhardtii aggregates rubisco into an organelle called the pyrenoid, which in wild-type cells is 501 

surrounded by a starch sheath that may serve as a diffusion barrier. In contrast to the well-studied 502 

system of C. reinhardtii, there has been comparatively less investigation into algae which lack 503 

starch sheaths or lack pyrenoids entirely (Morita et al., 1999; Barrett, Girr and Mackinder, 2021). 504 

Thus, to broaden our knowledge of CCM anatomy, we modeled an arrangement where rubisco is 505 

diffuse within a series of concentric thylakoid membranes. This allowed us to further investigate 506 

whether membranes, which are thought to be highly permeable to CO2 (Gutknecht, Bisson and 507 

Tosteson, 1977; Missner et al., 2008), could impact carbon-concentration, and how carbon-508 

concentration could function without a carboxysome or pyrenoid. 509 

 510 



 

 14 

 511 
Figure 3. Values of key model outputs. (A) Parameter sets are organized into a 2-dimensional 512 

histogram according to their output values of ΓCO2 and ATP per CO2, with dashed lines 513 

indicating bounds for acceptable values of these outputs. 80 parameter sets (0.03% of total) are 514 

not pictured on the figure, as they produced negative ATP per CO2 values and could not be log-515 

transformed. (B) Percentages of parameter sets meeting various combinations of output criteria. 516 

 517 

To investigate these and other features of interest, we used two strategies to deeply 518 

explore the model parameter space and ensure that our conclusions were robust. First, the model 519 

included new experimental data on gas-exchange and rubisco parameters central to 520 

photosynthetic efficiency (Figure 2). Second, we developed a method for thoroughly assessing 521 

the model’s sensitivity to the value of model parameters of interest. Specifically, we were 522 

interested in 19 of the 43 model parameters which were biologically interesting in relation to the 523 

function of a hypothetical C. merolae CCM and which were not well-characterized physical 524 

constants (Table S1). We thus sampled input parameter sets with varying numbers for these 525 

parameters of interest. We sampled parameter sets through a Latin hypercube design (McKay, 526 

Beckman and Conover, 1979) which enhanced analysis accuracy by mitigating sampling bias, as 527 

it produced parameter sets distributed throughout the 19-dimensional parameter space of interest. 528 

Then, each input parameter set was used to parameterize the model and to generate a set of 529 

outputs for analysis. 530 

 Some of the input parameter sets produced outputs consistent with a functional CCM 531 

with reasonable energy cost. Of particular interest were the parameter sets which met all the 532 

empirically-based criteria for a realistic and functional CCM (criteria selection described in S1 533 

Supporting Information). 13,998 of 240,000 (6%) of parameter sets fulfilled the two competing 534 

objectives of functional carbon concentration (corresponding to outputs of low ΓCO2, high 535 

stromal CO2, and low vo/vc) and efficient energy usage (corresponding to output of low ATP per 536 

CO2) (Figure 2).  537 

The generated parameter sets allowed us to explore the trade-offs associated with various 538 

features related to the CCM. For example, adding additional concentric thylakoids slightly 539 

improved carbon concentration by presenting barriers to CO2 leakage out of the chloroplast, but 540 

incurred additional energy costs of carbon transport (Figures 4, S1 – S2). This is consistent with 541 

other modeling studies indicating that thylakoid membranes could affect inorganic carbon 542 
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diffusion, and with observations of pyrenoids surrounded by layers of thylakoids in hornworts 543 

(Thoms, Pahlow and Wolf-Gladrow, 2001; Fei et al., 2022; Robison et al., 2024).  544 

 545 

 546 
Figure 4. Effect of select input parameters on key model outputs. (A, B) Effect of model input 547 

parameter Membranes (x-axis) on key model outputs. Distribution of parameter set outputs for 548 

each value of Membranes is represented by a box plot overlaid on a violin plot. Shaded areas 549 

represent unacceptable values of outputs. (A) Effect of Membranes on model output ΓCO2. (B) 550 

Effect of Membranes on model output ATP per CO2. 80 parameter sets (0.03% of total) are not 551 

pictured in this panel, as they produced negative ATP per CO2 values and could not be log-552 

transformed. (C, D) Effect on key model outputs when bicarbonate transport or carbonic 553 

anhydrases (CAs) are removed from the model. Distribution of parameter set outputs for each 554 

scenario is represented by a box plot overlaid on a violin plot. Shaded areas represent out-of-555 

bounds values of outputs. The same sampling of input parameter sets was run through models 556 

representing each scenario. (C) ΓCO2 in model scenarios where various model features removed, 557 

with indication of how many parameter sets met output criteria in each scenario. (D) ATP per 558 

CO2 in model scenarios where bicarbonate transport activity at the chloroplast boundary is 559 

removed. 6,991 parameter sets producing negative ATP per CO2 values (0.6% of total) are not 560 

pictured in this panel. 561 

 562 

Machine-learning-based surrogate models identified the parameters that most influence 563 

CCM efficiency 564 

 565 

Like most mathematical models of photosynthetic systems, this model faced the challenge of 566 

drawing robust conclusions while using parameters which, although bounded by their 567 

relationship to physical processes, have substantial uncertainty (Table S1). To model a system 568 
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with limited biochemical data while not constraining input parameters to a greater degree than 569 

was supported by the literature, it was important to assess uncertainties which seemed likely to 570 

have substantial and interdependent effects on the model. For example, the input parameter 571 

describing permeability of a lipid bilayer to CO2 (PlipCO2) has reported values ranging over 572 

several orders of magnitude (Table S1). Furthermore, the effect of PlipCO2 in the model 573 

depended on the value of other parameters, such as the number of lipid bilayers which pose a 574 

barrier to carbon moving between the stroma and cytosol (Membranes). Various sensitivity 575 

analyses are available for ODE models, but PlipCO2 and similar parameters were unlikely to be 576 

satisfactorily explored by classical local sensitivity analyses, which involve tracking model 577 

outputs when individual parameters are varied by a set fraction of the parameter’s original value. 578 

Therefore, to reveal which model conditions were necessary for the modeled CCM to function 579 

biologically, and to identify interesting directions for future investigation, we used statistical 580 

methods to identify impactful parameters and to identify which input spaces corresponded to 581 

target output ranges. These statistical methods involved training a surrogate machine-learning 582 

model on our CCM model inputs and outputs. Interpretations of this surrogate model identified 583 

which zones in the input parameter space contained the most combinations fulfilling output 584 

criteria (Figure 5 lower left), quantified how much each input parameter affected the prediction 585 

of outputs by the surrogate model (Figure 5 upper right), and visualized the response of model 586 

outputs to inputs (Figures S4 – S7).  587 

 588 
Figure 5. Statistical investigation of parameters affecting model output. (upper right bar plots) 589 

Mean absolute SHapley Additive exPlanations (SHAP) plots for each output criterion. (lower left 590 

density plots) Density plots of parameter sets meeting all output criteria, organized by selected 591 

pairwise input parameter (input parameters pictured are those input parameters with high SHAP 592 
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values for all output criteria). Darker areas indicate areas where more parameter sets meeting 593 

criteria occur. Scales of color vary for each plot). 594 

 595 

Some input parameters had little impact on model outputs with the tested input ranges. 596 

For these parameters, values from across the input range were evenly represented in the 597 

parameter sets meeting all output criteria. The parameters with relatively little impact on outputs 598 

included values related to carbonic anhydrase concentration and kinetics ([CA], CAkcat, KmCO2 599 

and KmHCO3- for carbonic anhydrases), chloroplast pH, and values related to bicarbonate 600 

membrane permeability (PlipHCO3-, Q10PlipHCO3-, Figures 5, S4 – S8). While it is possible that 601 

these aspects of the CCM may become impactful if varied beyond the tested range (e.g., if 602 

engineering efforts produce carbonic anhydrase concentrations falling outside the range of 603 

literature values we used), these parameters did not emerge as particularly impactful in our 604 

exploration. Due to how fast the interconversion of inorganic carbon species by carbonic 605 

anhydrase is, the enzyme is likely capable of keeping inorganic carbon species close to their 606 

equilibrium concentrations across the range of values we explored for its kinetics. Given this, it 607 

is unsurprising that model outputs varied little with respect to carbonic-anhydrase-related 608 

parameters, even though the complete absence of these enzymes was deleterious (Figure 4). 609 

Other parameters were more constraining in the model, indicating their importance in 610 

producing a functional CCM. For example, six parameters appeared to impact all four of the 611 

target model outputs in the mean absolute SHAP plots: Vc, Vmaxpump, Kmpump, pH in the cytosol, 612 

PlipCO2, and Membranes (Figure 5). Sobolʹ analysis (Sobol′, 2001) of the surrogate model 613 

produced similar results (Figure S9). As might be expected in a model relying on a cytosolic 614 

bicarbonate trap followed by bicarbonate pumping, parameter sets that successfully and 615 

efficiently concentrated carbon tended to have cytosolic pH at or above the pH where 616 

bicarbonate predominates (cytosol pH above 6), and tended to have a lower ATP cost of 617 

pumping bicarbonate (low Pumpcost), as well as faster and higher-affinity bicarbonate pumps 618 

(high Vmaxpump, low Kmpump) (Figure 5).    619 

Other features enriched in parameter sets meeting output criteria were a cell radius in the 620 

middle of the input range (moderate Radiuscell), and a lower CO2 membrane permeability (low 621 

PlipCO2, Figure 5, Figure S4 – S9). This suggested an important relationship between the 622 

volumes where metabolism occurs and the surface areas which present diffusion barriers 623 

between compartments.  As the radius of the cell increases, CO2 loss from RL may overcome the 624 

ability of the cell to acquire carbon through passive diffusion into the cell. Conversely, as the 625 

radius of the cell decreases, less absolute bicarbonate pumping would be necessary to achieve 626 

high rubisco saturation, especially when rubisco is slow (low Vc). In low-radius scenarios, “over-627 

pumping” bicarbonate could reduce energy efficiency. 628 

 629 

In silico knockouts identified experimental targets for further characterization of the C. 630 

merolae CCM 631 

 632 

The modeling also suggested interesting directions for investigating enzymatic components of 633 

the CCM. Alternative models with CCM enzymes removed (carbonic anhydrases or bicarbonate 634 

pumping not functional) were less likely to meet the criterion of a ΓCO2 indicative of functional 635 

carbon concentration, but tended to have lower ATP per CO2 cost than the model with all 636 

enzymes present (Figure 4, Figure S1 – S2). 637 
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The modeled CCM functioned without fine details of cellular structure that support 638 

photosynthesis in other organisms, such as rubisco aggregation into an area smaller than the 639 

stroma, carbonic anhydrases with restricted distributions and directions (i.e., lumenal and 640 

vectorial carbonic anhydrases), recapture of mitochondrially-respired CO2, and perforations or 641 

interconnections in concentric thylakoids (Nevo et al., 2007; Rademacher et al., 2017; Barrett, 642 

Girr and Mackinder, 2021). Our work thus expands on previous models with detailed chloroplast 643 

geometry (Fei et al., 2022) by demonstrating that efficient carbon capture may occur in a simple 644 

case when rubisco and carbonic anhydrase are diffuse within a series of concentric thylakoid 645 

spheres. It may still be of interest to explore what chloroplast ultrastructures structures support 646 

photosynthesis in C. merolae, and to investigate the biochemical and molecular basis for this 647 

non-canonical CCM. 648 

 649 

Further applications of surrogate modeling and uncertainty quantification 650 

 651 

More broadly, the statistical approach adopted in this paper represents an advance in metabolic 652 

and biochemical modeling. By training a surrogate model on the parameter space of mechanistic 653 

biological models, we can understand and account for high-dimensional uncertainty in model 654 

parameters.  Metabolic modeling in general, especially complex metabolic modelling, has been 655 

highlighted as a particularly promising application of surrogate modeling, as metabolic modeling 656 

has biotechnological potential but is challenged by the complexity of metabolism and by the 657 

“trial and error” process which is often required to produce a working metabolic model 658 

(Gherman et al., 2023). Surrogate modeling has found uses in dynamic flux balance analysis and 659 

process modeling for bioprocesses (Mountraki, Benjelloun-Mlayah and Kokossis, 2020; de 660 

Oliveira et al., 2021). Our work expands on these investigations by demonstrating what is to our 661 

knowledge the first application of surrogate modeling to ODE-based compartmental modeling of 662 

biological systems. Our methods may be particularly valuable for models that have poorly-663 

defined parameters or are extremely computationally expensive. For example, the 664 

implementation of surrogate modeling described here could alleviate current limitations in 665 

interpreting reaction-diffusion models and genome-scale metabolic models (Gherman et al., 666 

2023). Even for our relatively-simple model, the run time for 240,000 simulations was several 667 

hours and required use of a computing cluster. In contrast, surrogate modelling could be run 668 

locally on a laptop computer, and was able to generate 240,000 predictions for all four outputs of 669 

interest in less than 10 seconds, easily creating a large dataset for analysis and allowing for 670 

precise sensitivity estimation. We compared this with a Sobolʹ sensitivity analysis (Sobol′, 2001) 671 

performed with the original model with a sample size of n = 163,840, comparable to the number 672 

of parameter sets and outputs used to train the surrogate model. Despite the generation of these 673 

samples taking several hours of computation time, this approach yielded extremely imprecise 674 

and uninterpretable results, suggesting that substantially more computational investment would 675 

be necessary to achieve acceptably precise sensitivity estimates (Figure S10). With NRMSE 676 

below 1.5% in our validation (Table S2), the computational gains associated with the surrogate 677 

modeling approach outweighed the near-negligible potential error introduced by an inexact 678 

surrogate.  679 

Important considerations in any surrogate modelling application include the sample size 680 

required to train the model, and limitations of surrogate models for out-of-sample predictions. 681 

Surrogates should be used cautiously for out-of-sample predictions, particularly in high-682 

dimensional settings where training data is limited (Forrester, Sóbester and Keane, 2008). 683 
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Regarding the sample size, early studies (Chapman et al., 1994; Jones, Schonlau and Welch, 684 

1998; Loeppky, Sacks and Welch, 2009) suggested using around 10d samples, where d is the 685 

input dimension, for building an accurate Gaussian Process (GP) surrogate model. GP surrogates 686 

are particularly effective for small datasets and provide uncertainty quantification, which is 687 

valuable for assessing the confidence of out-of-sample predictions (Gramacy, 2020). If the 688 

desired accuracy is not achieved, one can improve the model by increasing the sample size 689 

through adaptive strategies such as active learning (MacKay, 1992), which allows for more 690 

efficient use of additional data to further enhance accuracy. Recent studies have also provided 691 

guidance on determining the run size required for a GP surrogate to achieve a pre-specified level 692 

of out-of-sample prediction accuracy (Harari et al., 2017). In scenarios where high extrapolation 693 

performance is critical, one may consider using physics-informed surrogates, which tend to be 694 

more reliable in out-of-sample contexts. These surrogate models incorporate physical laws into 695 

their training process and offer improved performance for out-of-sample predictions, especially 696 

when physical dynamics play a significant role. Examples of physics-informed surrogates 697 

include  a manifold-constrained GP surrogate that adheres to an underlying ODE system (Yang, 698 

Wong and Kou, 2021), or Physics-Informed Neural Networks (PINNs) (Raissi, Perdikaris and 699 

Karniadakis, 2019).  700 

Effective parameter exploration and analysis may generally be useful in confronting 701 

global challenges. Here, we used statistical sampling, surrogate modeling, and uncertainty 702 

quantification methods to investigate how a particular aquatic organism achieve the high 703 

photosynthetic efficiency that enables them collectively to be responsible for approximately half 704 

of global photosynthetic CO2 consumption (Field et al., 1998). Similar modeling techniques may 705 

be applied effectively to any system: for example, as part of engineering efforts for 706 

bioproduction, crop resilience, and other goals, it may be useful to in silico determine which 707 

features of a system are essential or inflexible throughout ranges of interest before devoting 708 

resources to in vivo experimentation.  709 

 710 

Conclusions 711 
712 

The extremophilic red microalga C. merolae operates a CCM, as evidenced by this alga having 713 

gas-exchange behavior which was not explained by its rubisco properties. Mathematical 714 

modeling suggested that this CCM could consist of a minimal mechanism. Robust parameter 715 

exploration and statistical analysis, aided by the use of a surrogate model, allowed us to quantify 716 

the sensitivity of our model to parameter uncertainties, identify important parameter interactions, 717 

and identify key determinants of CCM efficiency. Therefore, in addition to supporting the 718 

presence of a non-canonical CCM in C. merolae, our results shed light on what conditions must 719 

be met for this CCM to function and the essential elements of biophysical CCMs in general. 720 
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1+ � −� for regression tasks. The error function used for the calculation of the error was the sum of squared errors. The
threshold parameter for the partial derivatives of the error function as stopping criteria for the NN model was set to half the
range of the target variable. The DNN model consists of two hidden layers containing 64 and 32 units respectively, both using
rectified linear unit (ReLU) activation functions max(x, 0). The DNN model was trained using the adaptive moment estimation
(Adam) optimizer and mean squared error (MSE) as the loss function. The model was trained for 40 epochs, with the learning
algorithm processing the entire training dataset 40 times. A batch size of 240 was used, indicating the number of samples
processed before updating the model's internal parameters. Moreover, 20% of the training data was set aside for validation
purposes during the training process. Results and Discussion ​ Rubisco kinetics demonstrated that C. merolae operates a CCM
In previous work, we determine that if C. merolae has rubisco kinetics similar to other red algae, then this alga must operate a
CCM to maintain its measured photosynthetic efficiency. Alternatively, its measured photosynthetic efficiency could be explained
by unprecedented rubisco kinetics, meaning enzyme properties favoring carbon-fixation over oxygen-fixation to an
unprecedented degree (Steensma, Shachar-Hill and Walker, 2023). Here we confirmed that C. merolae rubisco kinetics are
similar to those of other red-type (Form 1D) rubiscos (Read and Tabita, 1994; Uemura et al., 1997; Whitney et al., 2001). C. merolae
rubisco had a strong affinity for CO2 (low KC), a poor affinity for O2 (high KO), and a slow carboxylation rate (low kcatC) (Figure
2). Consistent with other studies, kcatC and KC were higher when measured at increased temperature, while KO was lower.
Although KO is in the denominator of rubisco specificity (Sc/o) and Sc/o decreases with increased temperature, in vitro KO is
observed to decrease with increased assay temperature in some species (Jordan and Ogren, 1984; Uemura et al., 1997; Prins et
al., 2016). These kinetics findings indicated C. merolae does operate a CCM, as C. merolae cells had higher affinity for CO2 than
C. merolae rubisco (8.71 ± 1.7 µM cell KC vs. 24.9 ± 3.2 µM rubisco KC at 45 �C, p = 0.008 by two-sample t-test) (Figure 2). This
result adds to the evidence of a CCM in C. merolae (Zenvirth, Volokita and Kaplan, 1985; Rademacher et al., 2017; Steensma,
Shachar-Hill and Walker, 2023). Quantitative modeling showed that a hypothesized CCM can explain C. merolae’s carbon-
concentrating behavior To explore how the C. merolae CCM may operate, we constructed a functional model of a CCM (Figure
1). This model demonstrated that there were parameter sets consistent with the empirical literature that result in a functional
CCM, despite the minimal model structure lacking structures like a pyrenoid or carboxysome (Figure 3). Cyanobacterial CCM
models have also supported reduction to a simple model with only two compartments from the cell membrane inwards (Mangan
and Brenner, 2014). Our results provided quantitative support for a CCM taking inorganic carbon from the environment solely
through CO2 diffusion into the cell without specialized compartments, which we term a “non-canonical” CCM due to its
differences in structure and function from CCMs that have been characterized in detail. C. merolae has a different structure and
environment than the “canonical” CCMs of Chlamydomonas reinhardtii and of model cyanobacteria, which allowed us to explore
a biology and a parameter space which are different from those in previous CCM models. Though there is speculation that
extremophilic red algae may use a C4-like CCM, it has been previously proposed that acidophile algae may accumulate carbon by
a “bicarbonate-trap” or “acid-loading” mechanism similar to our modeled CCM (Gehl and Colman, 1985; Fridlyand, 1997; Gross,
2000; Rademacher et al., 2016; Curien et al., 2021; Fei et al., 2022). Briefly, this mechanism would involve bicarbonate being
concentrated for enzymatic action by bringing inorganic carbon speciation near equilibrium in near-neutral cellular
compartments, since the predominant inorganic carbon species from pH ~6 to ~10 is the poorly-membrane-permeable
bicarbonate. Various facilitated CO2 uptake mechanisms exist in CCM-containing organisms, such as the NDH-I complexes in
cyanobacteria and the periplasmic CA system in algae (Fridlyand, Kaplan and Reinhold, 1996; Moroney et al., 2011; Price, 2011).
We here test a different model where inorganic carbon enters the cell solely by passive CO2 diffusion into the cytosol, followed
by the action of non-vectorial cytosolic carbonic anhydrase. In contrast to the well-studied cyanobacterial and algal systems,
where growth under limiting CO2 is supported by active bicarbonate uptake and the accumulation of cytosolic bicarbonate above
equilibrium levels (Price and Badger, 1989; Price et al., 2004; Duanmu et al., 2009), our model functions as a CCM without taking
any bicarbonate from the environment. Another unique feature of our model is the nature of the diffusion barrier surrounding
rubisco. Cyanobacteria encapsulate rubisco in a proteinaceous shell called the carboxysome, which is thought to provide a
diffusion barrier to CO2 (Price et al., 2008). The model alga C. reinhardtii aggregates rubisco into an organelle called the
pyrenoid, which in wild-type cells is surrounded by a starch sheath that may serve as a diffusion barrier. In contrast to the well-
studied system of C. reinhardtii, there has been comparatively less investigation into algae which lack starch sheaths or lack
pyrenoids entirely (Morita et al., 1999; Barrett, Girr and Mackinder, 2021). Thus, to broaden our knowledge of CCM anatomy, we
modeled an arrangement where rubisco is diffuse within a series of concentric thylakoid membranes. This allowed us to further
investigate whether membranes, which are thought to be highly permeable to CO2 (Gutknecht, Bisson and Tosteson, 1977;
Missner et al., 2008), could impact carbon-concentration, and how carbon-concentration could function without a carboxysome or
pyrenoid. /
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