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Abstract—Collaborative Intrusion Detection System (CIDS) is
an essential technology that enables vehicular ad hoc networks
(VANET) to protect against malicious intrusions. CIDS, however,
is unable to prevent accidents if an anomalous vehicle is detected.
Detecting anomalies and notifying vehicles in the VANET rapidly
is thus essential, considering technical challenges such as commu-
nication efficiency, vehicle velocity and privacy. In this paper, we
propose a novel two-layer privacy-aware trust evaluation CIDS
framework, termed 2PT-CIDS, tailored to VANET. In 2PT-CIDS,
vehicles and roadside units (RSUs) cooperate communication-
efficient to enhance anomalous vehicle detection and notification.
Considering its potential privacy leakage, we then present two
types of game-theoretic information incentive mechanisms. In the
case of traffic congestion, the privacy-aware incentive mechanism
is presented based on the Stackelberg game. A Barycentric
Lagrange interpolation (BLI) based algorithm is then proposed
to speedy achieve the Nash equilibrium (NE). In the case of traffic
smooth, the varying high velocities of vehicles are involved and a
noncooperative game-based mechanism is proposed. The optimal
NE decision selection is reconstructed as a Markov decision pro-
cess (MDP) and the NE point is obtained via the designed novel
reward-shaping double duelling deep Q network (D3QN) learning
algorithm. Simulation results highlight the superiority of 2PT-
CIDS over existing CIDS and potential application algorithms for
VANET, effectively enhancing anomaly detection and notification
considering communication cost and vehicle privacy.

Index Terms—privacy, trust evaluation, information incentive
mechanism, Nash equilibrium.

I. INTRODUCTION

A. Background

RAPID advances in communications techniques are pro-
gressively making autonomous driving a reality, which

could provide a better driving experience. To improve the
driving efficiency of autonomous vehicles, they need to com-
municate with other vehicles or roadside units (RSUs) to share
and collect various travel-related information. In particular,
communication with RSUs, not only allows vehicles to per-
ceive road accidents, traffic conditions, navigation and other
information but also enables vehicles to use strong computing
and storage resources. This is because the RSUs are generally
fitted with edge cloud servers that provide similar services to
vehicles as cloud [1].
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The increasing exchange of vehicle information simulta-
neously presents growing avenues for attackers to penetrate
the vehicular ad hoc network (VANET). This poses an ever-
increasing challenge for VANETs to detect malicious attacks
and attackers (e.g., malicious vehicles). It is necessary to
improve the capability of vehicles’ intrusion detection systems
(IDSs). The collaborative IDS (CIDS) is an effective technique
for VANETs to tackle this security challenge [2]. It enables
the IDS of an individual vehicle to work collaboratively by
exchanging the required information with other vehicles. The
intrusion detection of the individual vehicle is thus collabora-
tively strengthened and improves IDS accuracy and scalability.

B. Challenges

If a vehicle deploying CIDS detects an anomalous vehicle
and fails promptly to notify other vehicles on the road, anoma-
lous vehicles still seriously impact the driving experience of
other vehicle users. For instance, in the case of a malicious
vehicle and other vehicles training together on the same task
within an RSU’s edge server, it leads to misinformation that
greatly hampers training efficiency [3]. Moreover, anomalous
vehicles should give wrong vehicle control commands signif-
icantly compromise traffic security [4]. Thus, ensuring timely
notification among vehicles in CIDS-based VANETs when
an anomalous vehicle is detected has emerged as a critical
challenge to be addressed.

Nevertheless, vehicles possess variable velocities as well as
limited communication distances. This enables communication
between vehicles is inefficient, and information cannot be
delivered promptly through vehicle-to-vehicle communication
[5]. It is thus necessary to design a communication-efficient
and rapidly anomalous vehicle notification mechanism. Fur-
thermore, the privacy of the vehicles needs to be considered.
Vehicles are not always willing to share their information in
case an anomalous vehicle is detected due to concern for
their privacy. Even if the information is shared, persuading
other vehicles of the detection result poses a challenge for the
vehicle. Appropriate incentives for information sharing and
detection confirmation are hence crucial.

Building upon the above considerations, the primary chal-
lenge associated with CIDS-based VANET is to devise a
communication-efficient and privacy-considering scheme. This
scheme requires swift detection and confirmation of anoma-
lous vehicles, along with prompt alerting of vehicles with
varying velocities in the VANET.



C. Related works

T. Nandy et. al [6] proposed a trust-based CIDS for VANET.
They employed a k-nearest approach to improve the vehicle’s
local intrusion detection capability. G. Raja et. al [7] intro-
duced an SP-CIDS for VANETs that used distributed learning
to enhance the accuracy of CIDS. In [8], the graph node
attention network was utilized to extract context-dependent
features and thus improve the accuracy of vehicles’ CIDS
modules. In addition, R. Liu et. al [9] presented a privacy-
preserving two-layered distributed machine learning frame-
work. It can be used to train the machine learning model
of CIDS. Nevertheless, these studies are all concerned with
upgrading the intrusion detection accuracy via collaboration
rather than rapidly alerting detected anomalous vehicles in the
VANET.

To the best of our knowledge, there is no previous CIDS-
based framework for VANET that effectively detects, confirms
anomalous vehicles, and notifies all vehicles rapidly.

Several searching anomalous vehicle techniques for the
VANET, blockchain and trust management, show promise for
addressing these challenges. The decentralisation, anonymity
and security properties of blockchain ensure that both parties
are trustworthy when a transaction is generated [10]. A series
of works have studied leveraging blockchain in VANETs to
secure information exchange and uncover anomalous vehicles
[11]–[13]. Nevertheless, blockchains become useless in case
more than half of the vehicles in the environment are mali-
cious. The high latency of blockchain also makes it difficult
or even impractical for deployment in high-mobility VANETs.

An alternative promising technique is trust management. A
decentralized trust management system was proposed in [15]
for VANET. This approach is based on blockchain and hence
encounters the same problem as blockchain in VANET. S. A.
Siddiqui et. al [14] proposed a weight quantification scheme
for VNAET to find the anomalous vehicle. Furthermore, A.
Mahmood et. al [16] presented a trust management system for
the identification and eviction of misbehaving vehicles. These
two approaches, however, neglected the privacy of the vehicle.

To address the aforementioned privacy issue in trust com-
puting, Xing et. al [17] proposed a two-layer intrusion de-
tection framework with trust computing. It secures vehicles
via intrusion detection systems while allowing a privacy-
considering method for fast identification of anomalous ve-
hicles and notification to the whole VANET. Nevertheless, the
characterisations of vehicles and the VANET are disregarded,
e.g., traffic conditions, vehicle velocity, and time variations.
Moreover, these conventional trust management approaches
require unique information defined by themselves to determine
vehicle anomalies. Vehicles do not notify and confirm the at-
tacker/anomalous vehicle at the same time when it is detected
via the CIDS module. This requires an additional number
of communications (i.e., communication cost), increases the
detection time and the anomalous vehicle does not always
respond accordingly.

D. Motivation and contributions
Given the above, we contend that there is an urgent need

for a framework and algorithm facilitating anomalous vehicle
detection and notification in CIDS-based VANET, with a
specific focus on communication efficiency and privacy.

Consequently, to bridge the gap identified above, this paper
proposes a novel two-layer privacy-aware trust evaluation
framework for VANET, i.e., 2PT-CIDS, which integrates CIDS
and trust computing. The detection of anomalous vehicles
is simultaneous with the enhancement of intrusion detection
capabilities. It allows vehicles to perform anomalous vehicle
detection and to improve their real-time intrusion detection
capability simultaneously via the CIDS module. Untrustwor-
thy vehicle information is provided to the RSU for further
identification and communication-efficient speedy notification.
Considering privacy data-sharing issues in trust computing,
we further propose new privacy-aware information incentive
mechanisms for the 2PT-CIDS. They are based on game
theories and take into account the vehicle velocity. We also
propose different algorithms to find the Nash equilibrium (NE)
points for these games.

The main contributions of this paper are summarized as
follows:

• We design a 2PT-CIDS framework for VANET anomaly
detection. Vehicles can enhance intrusion detection capa-
bilities while detecting anomalous vehicles and notifying
other vehicles considering communication efficiency, ve-
locity and privacy.

• We present a new privacy-aware incentive mechanism
based on the Stackelberg game for congested traffic
scenarios. Moreover, a barycentric Lagrange interpolation
(BLI) based algorithm is proposed to expedite the game
to achieve the Nash equilibrium (NE) point.

• We propose a novel privacy-aware incentive mechanism
based on the non-cooperative game for high-speed vehicle
mobility scenarios. Furthermore, a reward-shaping double
duelling deep Q network (D3QN) algorithm is presented
to enable the vehicle to achieve the optimal decision
quickly at varying times and velocities.

The rest of the paper is organised as follows. The traffic
model and CIDS are introduced in Section II and the proposed
2PT-CIDS framework is presented in Section III. Section
IV and Section V present the detailed design of our game-
theoretic incentive mechanisms and the solutions for searching
NE for traffic congestion and traffic smoothness, separately.
Section V illustrates the simulation results to demonstrate the
effectiveness of our algorithms. Finally, we conclude the paper
in Section VI.

For easy reference, the main parameters and their descrip-
tion used throughout this paper are presented in Table I.

II. SYSTEM MODEL

In this section, we first present the traffic model and then
describe the CIDS.

A. Traffic model
A set of RSUs {1, 2, ..., p, ..., P} are equipped with

edge cloud servers beside the road and a set of vehicles



TABLE I: NOTATION DEFINITION

Symbol Definition
P Set of RSUs
Q Set of vehicles
v Vehicle velocity
ςp Number of vehicles arriving at the RSU p’s range
np Number of vehicles in RSU p’s coverage
T Trust value
Up Utility of RSU p
Uq Utility of vehicle q
lq,p Size of report from q to p
µq,p RSU p’s reward factor
R Incentivise reward
Φ Privacy loss cost
A Report revenue
W Bits of total report
Uq Utility of vehicle q
Ω Maximum long-term utility
V Value-state function

{1, 2, ..., q, ..., Q} are driving on the road. Each vehicle com-
municates with at least one nearby RSU. We assume the width
of the road is uniform in each area. According to [19], the
vehicles follow a Poisson distribution when they reach the
coverage of each RSU. The number of vehicles arriving at the
RSU p communication range can be expressed by

ςp = vp
np

Lp
, (1)

where np is the number of vehicles in RSU p’s coverage, Lp

is the width of the road unit in meters where RSU p is located.
Further, vp is the average velocity (km/h) of vehicles in the
coverage of RSU p, which is related to the extent of traffic
congestion and can be denoted by

vp = max{vp max(1−
np

np max
), vp min}, (2)

where vp max is the velocity of the vehicle when the traffic
is smoothest so that the vehicle is moving unimpeded on that
road at maximum speed, and np max is the number of vehicles
in such circumstances. Similarly, vp min is the speed when the
traffic is congested where the vehicles move slowly. Moreover,
the same as [20], we suppose the speed of an arbitrary vehicle
in the service range of an RSU is a normally distributed
random variable.

B. CIDS

In CIDS, there are two types of information transmission
required to implement intrusion detection enhancements, i.e.,
challenges and requests. They are defined as follows:

1) Challenges: are sets of alarms sent to test vehicles,
which the sending vehicle knows in advance the severity of
these. The challenges is similar to the question that knows
answers in advance.

2) Requests: are similar to the challenges, but the sending
vehicle does not know the severity in advance. The feedbacks
of requests are used to ”alarm aggregation” to improve the
intrusion detection performance of the sending vehicle, which
is the most unique characteristic of CIDS.

The challenges and requests are sent in a random manner
so that tested vehicles are difficult to distinguish between

challenges and normal requests. The vehicle first evaluates the
trust value of the tested vehicle through judging satisfaction of
the feedback of challenges. Upon determining that the vehicle
is trusted, the ”alarm aggregation” is executed. We assume
vehicle j transmitting these two types of information vehicle
i via CIDS modules. The trust value of the vehicle i can be
denoted by

T j
i = (

ωs

∑n
k=0 F

k
j,iλ

tkj,i∑n
k=0 λ

tkj,i
− Ts)(1− x)d + Ts, (3)

where F k
j,i ∈ [0, 1] is vehicle j’s satisfaction of the received

feedback k from vehicle i and n is the total number of
feedbacks. Further, tkj,i is the time period that vehicle j
received the replies from vehicle i. Here, λ is a forgetting
factor that assigns less weight to older feedback responses.
Further, ωs is a significant weight related to the total number
of received feedbacks. If there are only a few feedbacks under

minimum number m, then ωs =
∑n

k=0 λ
tkj,i

m , otherwise ωs = 1.
Thus, T ∈ (0, 1].

In addition, vehicle i is sometimes reluctant to send back
unknown answers to guarantee its trust value. To encourage
vehicle i to provide satisfactory feedback responses whenever
possible, a “don’t know” answer is set. It also can decrease
their trust value. Hence, in Eq. (3), x is the percentage of
“don’t know” answer during a time period and d is a positive
incentive parameter to control the punishment of ”don’t know”
replies. Further, Ts is the default trust value of a stranger.

III. 2PT-CIDS

Our 2P-CIDS is based on a combination of direct and
indirect trust. The overall process is shown in Fig. 1.

It consists of two layers: vehicles fitted with CIDS compo-
nents form the first layer and RSUs form the second layer.
As with pervasive CIDS communication, in the first layer,
vehicles perform direct trust computing and enhance their
intrusion detection capabilities through exchange requests and
challenges

Nevertheless, in the VANET, it is challenging for a vehicle
to notify an anomalous vehicle situation to other normal
vehicles on a large scale in a short period of time. That is
because of the high-speed mobility and limited communication
distance ranges of vehicles. In addition, the judgment of a
single vehicle is not always very credible, and it also needs
to be judged again by others to confirm. In order to save
communication resources and quickly notify all vehicles in
the VANET, RSUs with a wider communication range and
stronger detection and computing capabilities will be formed
as a second layer. Vehicles are encouraged to transmit vehicle
anomaly alerts to RSUs for information aggregation for trust
computing verification.

In the second layer, RSUs are also fitted with CIDS modules
and constantly interact with vehicles. We employ RSUs as
judges and advocates. The reporting vehicle j needs to report
challenges to RSU p that were sent to the suspicious vehicle
i before. Further, vehicle j also needs to report its own
corresponding answer and feedback from vehicle i. The RSU



p first uses Eq. (3) to verify the trustworthiness of vehicle j.
We have the trust Tp,i as:

Tp,i =
∑
i=1

T j
i . (4)

Only if vehicle j is sufficiently trustworthy, the RSU p will
proceed to verify the trust value of the reported anomalous
vehicle i. After receiving the first anomaly report about vehicle
i in a period of time T , RSU p performs a weighted summation
of vehicle i’s trust values obtained from all reporting vehicles
and derive the RSU p’s local trust value for vehicle i.

1. A send normal request and challenges to B at same time

A B

Request/Challenges

2. Trust value calculation by A for B

Feedback

Higher than threshold

Lower than threshold A transmits its challenges, own answers 
and B feedback to all nearby RSUs.

A accepts alerts and use it to enhance its 
own intrusion detection capability.

3. Trust value calculation by RSUs for A, C ,D and B

A

C

D

4. Trust value calculation by RSUs for A and B

B anomaly B normal

B is kept in the AVN
Report B anomaly in whole RSUs 

range and reward A, C and D

B is malicious B’s global 
trust value

Fig. 1: Overall process of 2PT-CIDS.

The RSU p then communicates with other RSUs who may
also receive the intrusion report about vehicle i and share
their local trust value evaluation about vehicle i. RSU p
therefore can get the trust evaluation of vehicle i from the
RSUs network. We define this evaluation value as vehicle i’s
network trust value, which can be denoted by

Tn,p,i =

∑P
h=1,h̸=p Tp,iγ

t
p,h

maxh∈P,h̸=p γt
p,h(I − 1)

, (5)

where I is the number of RSUs in the networks, Tp,i is the
local trust value of vehicle i calculated by RSU p before it
shares with other RSUs. Further, γt

p,h = |Λt
p ∪ Λt

h| is the
similarity of intrusion reports detected by RSU p and other
RSU h by the time slot t. Further, Λ denotes the set of
challenges answers detected differently by RSUs. Moreover,
| · | is the number of challenging answers in a set. Therefore,
the total global trust of vehicle i as assessed by RSU p can
be expressed by

Tg,p,i = αTn,p,i + βTp.i, (6)

where weights parameters α + β = 1, and they are utilized
as weight parameters to trade off the preference of final trust
value towards direct or indirect trust. Higher α than β means
the device prefers its own trust assessing result. i.e., direct
trust value, while higher β than α means the device prefers the
trust value from other devices, i.e., indirect trust value. It can
adaptively adjust based on evaluation time, vehicle velocities,
devices’ confidence in their intrusion detection capabilities,
number of devices participating in indirect trust, etc. In case
Tglobal,p,i is below the predefined trustworthiness threshold,
RSU p will inform all vehicles in its coverage about vehicle
i anomaly and its trust value to protect the VANET.

IV. INCENTIVE MECHANISM: TRAFFIC CONGESTION

A. Motivation of the game

From the previous section, in the first layer, if vehicle i
refuses to answer requests or challenges, vehicle j will treat
it as having the answer “don’t know”. It can decrease the trust
value of vehicle i according to CIDS. Vehicles can also interact
via V2V links to enhance intrusion detection capabilities. Thus
they have a sufficient basis to implement trust computing.
However, vehicle j hasn’t got the reason/benefit to report
anomaly situations to RSUs, because it can leak part of vehicle
j’s privacy. This makes it difficult for 2PT-CIDS to detect
anomalous vehicles efficiently and accurately.

Therefore, we first propose a privacy-aware congestion sce-
nario incentive mechanism based on Stackelberg game theory
to encourage vehicles to give more ratio of the anomalous
vehicle’s information. We assume each report has the same
degree of privacy and the BLI-based algorithm is presented
to achieve the NE. RSUs will reward a vehicle by increasing
its initial trust value when it reports and successfully detects
anomalies. Because vehicles with a higher initial trust value
can get faster responses about it requests and challenges
when multiple vehicles are communicating with one vehicle
according to CIDS [21].

B. Game at vehicles

The utility Uq,p of the vehicle q in the service range of RSU
p after reporting the trust computing information to RSU p at a
fixed time slot can be expressed as received reward Rp,q minus
privacy leak Φq,p. According to the conventional vehicle to
RSU incentive scheme [5], we have

Uq,p(lq,p) = Rq,p(lq,p)− Φq,p(lq,p), (7)

where lq,p is the size of reports from vehicle q, and Wq,p is a
total bits of reports. Further, Rq,p(lq,p)is the incentive reward
obtained from RSU p, which can be denoted by

Rq,p(lq,p) =
µp(1− Tq,p)lq,p
δp(1 +Wq,p)

, (8)

where δp is the number of vehicles reporting anomaly alert
information RSU p about the same anomalous vehicle, Tq,p is
the trust value of vehicle q for RSU p and µp is the reward
factor. Further, Φq,p(lq,p) is the privacy loss cost of vehicle q,
which we can be expressed as [22]:



Φq,p(lq,p) = χ log2(1 + e
1−Wq,p+1

lq,p ), (9)

where χ is the weighting parameter to convert the loss into a
monetary consumption. The log function represents the privacy
leakage versus the number of providing documents.

However, it is flawed to divide µp directly and equally
in a proportional way to δp. vehicle q does not know how
many other vehicles in the vicinity will transmit similar vehicle
anomalies report in advance. It should be made in conjunction
with RSUs who know this information. vehicles can only
calculate by using the parameters they know. In addition,
the conventional approach does not consider the reported
revenue of RSUs, which makes it impossible for the VANET
to formulate µp according to real-time. We therefore assume
the utility as monetary gain. The ϕ is redefined as a monetary
benefit parameter and Eq. (8) is rewritten as:

Rq,p(µp, lq,p) = zµp(1− Tq,p)
lq,p

Wq,p + 1
, (10)

where z represents the monetary benefit parameter. The cal-
culation of µp is related to RSU p’s utility, which will be
mentioned later.

We can thus define the vehicle q’s utility function as:

Uq,p(µp, lq,p) = zµp(1−Tq,p)
lq,p

Wq,p + 1
−χ log2(1+e

1−Wq,p+1

lq,p ),

(11)
Problem 1:

max
lq,p

µp(1− Tq,p)
lq,p

Wq,p + 1
− χ log2(1 + e

1−Wq,p+1

lq,p )

(12a)
s.t. 0 < lq,p < Wq,p. (12b)

C. Game at the RSU

In this subsection, we define the RSU p’s utility and present
the game at the RSU p. Without loss of generality, we define
the RSU p’s utility function as revenue minus cost and denoted
by

Up(µp, lq,p) ≜ Ap(µp, lq,p)−Rp(µp, lq,p), (13)

where lp is the total size of RSU received reports, Ap(µp, lq,p)
is the reporting revenue (e.g., the accuracy of trust evaluation)
gained from vehicles’ reporting data and Rp(µp, lq,p) is the
cost incurred due to reward to vehicles.

Here, we model the RSU p’s benefit as:

Ap(µp, lq,p) = λfp(lq,p), (14)

where fp(lq,p) is the reporting revenue function (RRF), and
λ is a monetary benefit parameter to convert RRF into a
monetary benefit. We use a log function to model the RRF
as:

fp(lq,p) ≜ log2(1 +
∑
q∈δp

Tq,plq,p
(Wq,p + 1)

). (15)

Though other functions can also be used to model fp(lq,p),
the logarithmic function is shown in the literature to be more

suitable to represent the relationship between the file number
and computing value compliance [24], [25]. It is also obvious
that when the sum of the reporting file is 0, the benefit is
0. Further, the accuracy of calculating trust values (benefit)
increases with the number of reports and vehicles with higher
trust values are likely to provide more valuable reports. These
indicate that Eq. (15) can perfectly model the RRF.

The cost function Cp(µp, lq,p) consists of total reward paid
to vehicles. We have

Rp(µp, lq,p) =
∑
q∈δp

Rq,p(µp, lq,p). (16)

The utility function of RSU p thus can be expressed as:

Up(µp, lq,p) = λ log2(1+
∑
q∈δp

Tq,plq,p
(Wq,p + 1)

)−
∑
q∈δp

Rq,p(µp, lq,p).

(17)
Problem 2:

max
µp

λ log2(1 +
∑
q∈δp

Tq,plq,p
(Wq,p + 1)

)−
∑
q∈δp

Rq,p(µp, lq,p),

(18a)
s.t. µp > 0. (18b)

D. Equilibrium analysis and optimal solutions

NE existence: Problem 1 and Problem 2 together form a
Stackelberg game. The key to this game is to find the NE
point(s) between RSU p (leader) and vehicles (followers). It
is observed from Problem 1 that the vehicles’ strategy set
is compact and convex and lq,p is continuous. Therefore, a
pure strategy NE exists in this game according to the Debreu-
Glicksberg-Fan theorem [26].

The aim of finding the NE is to get the best µ∗
p and l∗q,p.

Therefore, the NE of this model needs to satisfy the following
conditions:

Up(µ
∗
p, l

∗
q,p) ≥ Up(µp, l

∗
q,p), (19)

Uq,p(µ
∗
p, l

∗
q,p) ≥ Uq,p(µp, lq,p), ∀q. (20)

When congestion occurs, vehicles have enough time to
communicate with one RSU p. The RSU can calculate vehicles
that wish to report the trust computing information and their
trust value. For this situation, we use the backward induction
method. That is, followers, obtain optimal strategies first and
subsequently, the leader develops its own strategy based on
the followers’ optimal strategy.

E. Optimal strategies for traffic congestion

To find the NE, we first find the first derivative of the
strategy space lq,p of vehicle q, that is

U
′

q,p =
zµp(1− Tq,p)

Wq,p + 1
− (Wq,p + 1)χe

1−Wq,p+1

lq,p

l2q,p(e
1−Wq,p+1

lq,p + 1) ln 2
. (21)



In the case of Eq. (24) equals zero, Uq,p can reach its
maximum value. Hence, when U

′

q,p = 0, we have the optimal
lq,p as:

lq,p = fq,p(µp), (22)

where fq,p(·) denote lq,p as the function of µp correlation,
but due to the complexity of Eq. (24), we cannot specifically
represent. We then substitute the optimal lq,p into Eq. (20) to
find the optimal µq,p. We have

Up(µp)

= λ log2(1 +
∑
q∈δp

Tq,pfq,p(µp)

(Wq,p + 1)
)−

∑
q∈δp

Rq,p(µp, fq,p(µp)),

(23)

where fq,p(µp) denotes lq,p and we thus can achieve the
NE by obtaining the maximum Up. Nonetheless, similar to
Eq. (22), the maximum Up is also difficult to be obtained.
The relationship between µp and lq,p thus is difficult to find
and mathematically intractable. In general, the grid search
method [27] (Algorithm 1) can solve this problem. Nev-
ertheless, the numerical iterative method results in a huge
amount of computation and requires long execution delays
even at edge servers. We thus propose a BLI-based algorithm
to estimate the optimal µp and lq,p. The BLI [28] can construct
a polynomial function similar to the original complex function
by substituting some values of the independent variables and
the corresponding dependent variables. This function enables
the analytical solution of the optimal NE instead of the original
numerical iteration solution. Hence, the approximate optimal
value of the function can be obtained simply, quickly and
efficiently. The new Up, i.e., Up,new can be denoted by [28]

Up,new(µp) =

∑E
e=0

ωe

µp−µe
Up,e∑E

e=0
ωe

µp−µe

, (24)

where E is the number of substituting (interpolation) values,
and µp,e and Up,e denote the value of the e-th substituting the
value of µp and Up. Furthermore, ωe is the barycentric weight,
which can be expressed by

ωe =
1∏E

e′=0,e′ ̸=e(µp,e − µp,e′ )
, (25)

where µp,e′ is the substituting values except µp,e.
In addition, in this paper, we choose Chebyshev nodes as

the interpolation values. Because the distribution of values is
denser at the two ends of the interval, sparse in the middle
makes the polynomial interpolation vehicle good numerical
stability [28]. Chebyshev nodes satisfy exactly this require-
ment. The selected µe can be thus denoted by

µp,e = X − Y cos
eπ

n
, (26)

where n is the polynomial degree, [X,Y ] represents the
selected interval.

Since Eq. (24) is a polynomial function, it is straightforward
to obtain the maximum value. We thus approximate the NE

by obtaining the optimal µp, and the optimal lq,p after integer
variable recovery. The process of the BLI-based algorithm
is shown in Algorithm 2. It can be seen that Algorithm 1
undergoes two N rounds of iteration and the complexity thus
is O(N2). Further, the complexity of our proposed approach
(Algorithm 2) is O(E2). However, E is often much smaller
than N , which we will prove in simulations.

V. INCENTIVE MECHANISM: TRAFFIC SMOOTH

A. Noncooperative game design

Due to the high mobility, vehicles can switch RSU services
frequently in a short period of time when the traffic is smooth.
This not only makes it difficult for a single RSU to determine
the number of vehicles in the game but also makes it prone to
fluctuations in global trust value. Therefore, we change the
Stackelberg game in traffic congestion to a noncooperative
game for smooth traffic. vehicles estimate the number of likely
reporting vehicles on the road based on their own average
speed over a period of time and judge which mechanism to
use based on such speed. Note that the time period we use
to estimate the average velocity of vehicles is much less than
the traffic condition change time in an RSU service range, and
therefore the traffic condition change can be ignored.

As we mentioned from Eq. (2), i.e., vp = vp max(1 −
np

np max
) in case of traffic smoothly. We assume that vehicle

q approximates the average vehicle’s velocity and trust value
in an RSU service range by its own velocity and trust value.
Thus, the number of vehicle n in an RSU coverage can be
denoted by

n = np max − vqnp max

vp max
. (27)

We then can derive the number of vehicles in this RSU
communication range from Eq. (1) as:

ς =
vqvp maxnp max − vq

2np max

Lpvp max
. (28)

The reporting vehicle number δ therefore can be estimated in

δ = φς, (29)

where φ ∈ (0, 1] is the weighting parameter, which denotes
the possibility of detecting anomalous vehicles when vehicles
communicate with each other.

We assume that vehicle q is unaware of the situations of
other vehicles and estimate these via vehicle q ’s velocity. The
noncooperative utility function of RSU p thus can be estimated
by vehicle q as:

U t
p,q(µ

t
p, l

t
q) = λ log2(1+

ltq
Wq + 1

δq)−zµt
p(1−T t−1

q )
ltq

Wq + 1
δq,

(30)
where T t−1

q is the trust value of the vehicle q in the previous
sending, which will change by increasing the trust reward
value. It can be updated by:

T t
q =


T t−1
q +R(µt

p, l
t
q)/z, T t−1

q < 1
Tq, t = 0
0. else

(31)



Algorithm 1 Grid search

Initialize: reward factor µp, number of iterations N , total
report set Wq .

1: for n in N
2: Substitute µp and get lq,p(q = 1, .., δp) by Eq. (17)
3: Count the value of Up

4: end for
5: for each µp in N
6: Find maximum Up(n)
7: end for
8: Output the optimal value of µp and lq,p

Algorithm 2 BLI-based algorithm

Initialize: the set of substituting values µp,e(e = 1, . . . , E),
Up,e(e = 1, . . . , E), set ωe = 1, Up,new = 0 ,set Wq(q =
1, .., δp), R and Di.

1: for each e in E
2: for each e

′
in E

3: if e
′
= e

4: continue
5: else
6: ωe =

ωe

µp,e−µ
p,e

′

7: end if
8: end for
9: Up,new = Up,new +

ωe
µp,e−µp,e

Up,e

ωe
µp,e−µp,e

10: end for
11: Maximize Up,new and obtain corresponding µp

12: Each vehicles obtain optimal lq,p based on µp

13: if rounding lq,p satisfies constraint (12b) then
14: Output the optimal value of µp and rounding lq,p
15: else
16: break
17: end if

B. Optimal strategies for traffic smooth

In case of traffic is congested, the number of participants
in each game is different but determinable. Therefore, the
vehicle aims to get the maximum utility on this determined
occasion. However, as traffic is smooth, the environment is
variable. The aim of vehicles can be represented as finding
the optimal vehicle decisions in each time period game to
obtain the maximum long-term utility (reward). It is defined as
the weighted sum of the instantaneous utilities (rewards) over
finite reporting time RT in the time slot T . We can denote it
by

Ω =

RT−1∑
t=0

γtU t
q,p, (32)

where γ ∈ [0, 1) is the discount rate to discern the impact of
future rewards and the smaller γ means the smaller the impact

of subsequent rewards. We can only focus on the immediate
reward when γ = 0. At any reporting time instant t, each
vehicle’s reward relies on its action and new state at the
next reporting time. Here, a finite-state MDP is appropriate
to be introduced to describe this game. We thus model this
optimal decision issue as an MDP with states, actions, reward
functions, and the state transition probability.

We define the state s(t) to indicate the average velocity and
trust value of the vehicle at the reporting time t. The action
of each vehicle indicates how much information it needs to
report, and the number is at most W which can be defined as
a(t). The corresponding µ of this action to maximise the U t

q,p

can be derived by Eq. (21). Further, we use r(t) to denote the
reward function and this reward is the utility function U t

p,q of
RSU q in reaching Nash equilibrium. Generally, we should
use the utility U t

q,p of vehicle q to denote the reward function.
However, due to the existence of the game, we set r(t) to U t

p,q

to ensure that the result obtained by Eq. (21) reaches NE at
each time period. This is because there exists a unique U t

q,p

reaching NE when U t
p,q reaches NE. This constructed reward

aims to enable the vehicle to find the most suitable amount
of data provided and improves the efficiency of anomaly
detection and notification. In addition, the information on state
transition probability is unknown for vehicles in each episode.
It makes the integer programming method approach difficult
to use to obtain the optimal policy π∗, i.e., the optimal number
of report information at state s(t).

Reinforcement learning is a promising method to obtain
the optimal policy π∗ to maximize the long-term reward
[29]. It sets an agent to exchange actions and states with the
environment to get the optimal policy. The optimal policy π∗

in each state can be derived by the value-state function, we
have

V (s, π) = E[

RT−1∑
t=0

γtU t
p,q|s(0) = s], (33)

where E[·] is the expectation operator. Hence, we have the
following inequalities to get optimal decision:

V (s, π∗) ≥ V (s, π), (34)

where π∗ is the optimal decision. At the optimal decision, the
value-state function is greater than taking other decisions

According to the Bellman optimal equation, we obtain the
optimal V (s, π∗) as:

V ∗(s, π) = V (s, π∗) = loga[U
t,a
p,q + γ

∑
s Pss′V (s

′
, π∗)].

(35)
To deal with this MDP problem, Q-learning, one of the

reinforcement learning approaches is an effective method [30].
According to Q-learning, we can obtain optimal policy π∗

from optimal Q-value function Q∗(s, a) as:

V ∗(s, π) = loga Q
∗(s, a). (36)

However, the training time for Q-learning rapidly grows as
the status or action value grows. It is difficult for vehicles
to handle such a large number of data. To deal with such



huge states and action spaces MDP problem, deep Q network
(DQN) is one of the popular reinforcement learning methods
[30]. It uses deep neural networks (DNN) to approximate
action value Q(s, a; θ) that helps the agent to find the optimal
approximate action. However, as the same values are used to
select and evaluate an action in the DQN method, the Q-value
function may be over-optimised for estimation. Thus, double
DQN (DDQN) [31] is used to mitigate the above problem
by decoupling the selection of the target Q-action and the
calculation of the target Q-value to eliminate the problem of
overestimation. The target value y of DDQN be defined as:

y = r(s, a) + γQ(s
′
, argmaxa′Q(s

′
, a

′
; θ); θ

′
), (37)

where r(s, a) is the current reward, θ is the weight of the
online network and θ

′
represent the weight of target network.

Specifically, both the online network and target network are
used to compute the optimal Q(s

′
, a

′
; θ) by using the next

state s
′
. Then, the target value y is obtained. Finally, the error

is calculated by subtracting the target value with the optimal
action value function Q(s, a; θ) predicted by the online net-
work. The weights are then updated by backpropagation.

Environment

State 𝑠(𝑡)

Action 𝑎(𝑡)

Reward 𝑟(𝑡)

D3QN Agent

Expert PoolAction Range

Policy

Fig. 2: Reward shaping D3QN process.

Moreover, noting that the Q-value function can describe
how profitable an action a is taken at a state s. Another
improvement called duelling DQN [32] is used to estimate
value function V (s, π) and advantage function A(s, a) =
Q(s, a; θ) − V (s, π) respectively. The advantage function
A(s, a) is used to characterise the advantage of the action over
other possible actions. Thus, the duelling architecture enables
us to split the last layer of the DQN into two subnetworks
to estimate value function V (s, π) and advantage function
A(s, a) = Q(s, a; θ)− V (s, π) respectively. The action value
function Q(s, a; θ) can be estimated by combining V (s, π)
and A(s, a).

In addition, learning efficiency can be improved if the
optimal action ranges in certain situations are known in
advance. It is named expert knowledge and used to guide the
action selection process. Fortunately, we can get the results for
different numbers of vehicles (i.e., different vehicle velocities)
with γ = 0 by using Algorithm 2. It can be employed as
an expert to assess the approximate range of results for γ at
different values. However, expert knowledge cannot be used
directly for algorithm training. Therefore, inspired by [31] and
[32], in this paper, we propose a reward-shaping D3QN to
obtain the optimal strategy. It combines DNN-based DDQN
and duelling DQN as the training model. In particular, it

Algorithm 3 Reward-shaping D3QN for trust computing
information reporting

Input: List of allowed actions to be taken by vehicle q.
Output: Optimal actions are required to achieve the maximum
long-term utility, if feasible.
Initialize: parameters θ and θ

′
in online network Q and

target network Q
′

respectively and assign the Q net-
work parameters to the Q

′
network, θ −→ θ

′
. Target

Q network parameter update frequency p. Replay memory
D.

1: Offline perform Algorithm 2 and obtain expert guidance
pool.

2: for episode=1, M do
3: Reset environment and state s0
4: for t = 1, T do
5: Selecting a range of action A∗ from the expert guidance

pool based on state st
6: With probability ε select a random action at
7: Otherwise select at = maxat Q

∗(st, a; θ)
8: Choose action at and observe immediate reward rt
9: if at ∈ A∗

10: r∗ = rt + η1
11: else
12: r∗ = rt
13: end if
14: Update st+1 according to P
15: Store (st, at, r

∗
t , st+1) in memory D

16: Sample random minibatch of (st, at, r∗t , st+1) from D
and calculate the y

17: Calculate the loss by (y −Q(s, a; θ))2

18: if t%p == 0 : θ −→ θ
′

19: end for
20: end for

utilises expert knowledge as an extra reward in reward value
to improve training speed and accuracy (Fig 4). We employ
the original reward function to synthesise expert knowledge
rewards to obtain new reward values and feed them to the
experience pool in the D3QN agent, completing the update of
the weights for the network.

The range of possible optimal value ltq can be estimated in
some special cases of speed and Wq advance by Algorithm 2
and get the optimal report ratios τ t, which can be denoted by

τ t =
ltq

Wq + 1
. (38)

We can use the τ t to estimate the result of ltq in other W
cases. The expert bootstrap values previously calculated can
provide an approximate range of optimal action A∗. When the
action a(ltq) falls within this range when training, the agent
will receive an additional reward η1. The detailed procedure
of reward shaping D3QN is presented in Algorithm 3.



VI. NUMERICAL EVALUATION

A. Simulation settings

We simulate an autonomous driving scenario in which
several vehicles driving on the road assisted with RSUs.
We compare our proposed framework with several types
of state-of-the-art anomalous vehicle detection frameworks
to demonstrate the communication efficiency of our 2PT-
CIDS. They are pure trust-based framework [14], blockchain-
based framework [15] and two-layer based framework [5]. In
terms of the privacy-aware information incentive mechanism
for vehicles to RSUs, as the related work is limited, we
compare our work with the conventional method, i.e., [5],
[17]. Simulation settings are the same as [17], we assume
different roads have different vehicle speed limits with the
road’s width L = 20m. The congestion velocity is 20 km/h
and the maximum number of vehicles, np max, on all roads
is 20. The possibility of detecting anomalous vehicles when
vehicles communicate with each other ϕ is set as 1. In addition,
we assume all vehicles are ready to report the anomaly to the
nearest RSU p with the total available reports W = 9999. The
trust values of vehicles on the road are different and normally
distributed with the expectation of 0.8 to show the advantages
of our proposed mechanism and algorithms in a more intuitive
and simplified manner. The game parameters are selected as
ϕ = 2, λ = 3 and monetary benefit parameter z = 3.

B. Performance evaluation
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Fig. 3: Communication costs of various frameworks.

In Fig. 3, the minimum communication cost of different
types of trust frameworks is shown. Since each framework
transmits different content, we approximate the communica-
tion cost in terms of the number of communication hops. It
can be seen that the communication cost of our proposed
framework grows with the increase in the number of vehicles
detecting abnormalities. This is due to the rise in the number
of vehicles finding abnormalities and the rise in the number
of vehicles reporting to the RSU. The number of increases
depends on the number of vehicles reported to RSUs. In
addition, 2PT-CIDS increases much less than the trust-based
framework. Because it transfers the trust-based mechanisms’
indirect trust evaluation requiring vehicles’ multiple com-
munications to RSUs performing. Our proposed two-layer-
based framework also achieves lower communication costs

relative to the conventional two-layer framework. Because of
the deployment of CIDS and designed incentives, additional
notification of other unreported vehicle participation in trust
computing is not required.

Fig. 4 shows the relationship between the number of single-
vehicle documents reported and the number of vehicles. We
first assume all vehicles’ trust values are fixed at 0.8 and 0.9
respectively. Moreover, µ in the conventional method [14]
is the same as our proposed mechanism in case δ = 1.
In addition, to demonstrate the performance benefit of our
mechanism, we assume that the vehicle in the conventional
approach knows the number of vehicles sent to report even
if it is not available to know it. It can be found that as the
number of vehicles rises, the number of single vehicles re-
porting documents falls. Nevertheless, the proposed incentive
mechanism declines more slowly at both trust values. Further,
in contrast to the conventional approach, vehicles with a higher
trust value transmit a higher number of reports. This is due to
the presence of optimal dynamic incentives for variations in
trust value and the number of vehicles in our scheme compared
to the conventional method. This enables the RSU to get
more valuable reports when the same number of vehicles are
engaged in gaming. Our mechanism thus can improve anomaly
detection accuracy.
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different numbers of vehicles.
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Fig. 5 illustrates the relationship between the number of
reports received by the RSU and the number of vehicles



TABLE II: Accuracy of BLI-based algorithm

polynomial degree l
′
, estimated value l, search result accuracy

3 1493 1600 93.31%
5 1619 1600 98.81%

10 1599 1600 99.94%

in the same situation as Fig. 3. It is observed that the
number of documents received by the RSU increases with the
number of vehicles. The proposed mechanism always obtains
more amount and more valuable reported data at different
trust values. This is also due to the existence of dynamic
adaptations in our incentives and adapting to the environment
to search for optimal decisions. This enables the RSU to assess
vehicles more quickly and accurately. Furthermore, in Fig. 6,
we randomly generate different trust values for the vehicles
involved in the evaluation. The results are averaged over 20
experiments. As shown in Fig. 6, the same results as in Fig.
4 are still obtained in case the trust value is not fixed. Our
mechanism always outperforms. These further demonstrate
that our mechanism enables the VANET to improve anomaly
detection accuracy.
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Fig. 7 presents how monetary parameters influence the num-
ber of submitted reports. We set the trust value as 0.8. From
Fig. 7, the number of vehicles submitting reports gradually
decreases as χ increases. Furthermore, a larger λ provides
an incentive for vehicles to submit more reports. Hence, the
proposed mechanism’s monetary parameters can be adjusted
depending on the various deployment environments.
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Fig. 7: Effect of different χ and λ on submitting reports.

In Table I, the effectiveness of the proposed BLI-based
algorithm is demonstrated. We define the accuracy as the
difference between the algorithm result l

′
and the iteration

result l divided by l. Furthermore, the vehicle’s trust value is
set as 0.8, submitting reports the vehicle’s number is set as 1
and X = Y = 5 and the result is rounded to the integer. It
can be observed that as the polynomial degree (interpolation
number) increases, the estimated value becomes increasingly
close to the value derived from ten thousand searches. It is
almost the same as the actual value in case the polynomial
degree equals 10. Nevertheless, the computational number of
our proposed BLI-based algorithm (complexity: O(E2)) is
much less than tens of thousands of searches (complexity:
O(N2)). Thus, our proposed solution is fast, accurate and
efficient.
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Fig. 8: Velocity versus reporting ratio.

In Fig. 8, we evaluate the relationship between the velocity
of vehicles and the number of reports they submitted in case
of vehicle’s trust value is 0.8. Moreover, the congestion speed
is set as 20 km/h. As shown in Fig. 8, although at different
traffic speed limits, the number of documents reported tends
to fall and then rise as the speed of the vehicle increases. This
is due to the change in the number of vehicles on the road
as their speed increases, resulting in changes in the chance of
contact between vehicles. The number of documents reported
thus changes as velocity and traffic conditions change.

Fig. 9 illustrates the advantages of our proposed reward-
shaping D3QN with various baseline reinforcement learning
methods (DQN, DDQN and D3QN) convergence speed. We
set the γ = 0.1, t = 3 and the batch size is set as 128.
For easy comparison, we count the total reward value every
100 episodes and calculate the average reward value for each
step. Furthermore, to facilitate the comparison of convergence
speeds between different algorithms, the average reward of the
proposed algorithm has minus the additional reward value η1
and normalised. It can be found that after a period of searching,
all approaches eventually stabilise and converge. As a result
of penalties given more than the expected range, the negative
reward value occurs in our algorithm. It is worth noting that,
our proposed reward-shaping D3QN algorithm reaches stabil-
ity more quickly compared with typical reinforcement learning
methods. Furthermore, after normalization and training, our
proposed algorithm has the highest reward value, i.e., the
highest utility of the vehicle. This is due to the presence of



reward-shaping, which encourages the vehicle to search within
the optimal appropriate range. Therefore, our proposed method
can obtain the optimal strategy more efficiently and rapidly.
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Fig. 9: Convergence speed and accuracy of different
frameworks.

VII. CONCLUSIONS

In this paper, we proposed a novel privacy-aware 2PT-
CIDS framework to improve anomaly detection. The 2PT-
CIDS utilised the CIDS components to enhance vehicles’
intrusion detection capabilities and compute vehicles’ trust
value by sending and verifying requests and challenges. It
reduced the communication cost for trust computing. To enable
the 2PT-CIDS to detect anomalous vehicles more accurately
and efficiently, two types of game theories based incentive
mechanism was proposed to encourage vehicles to report more
messages to RSUs according to various traffic conditions,
vehicle velocity, and time variations. A BLI-based algorithm
and a reward-shaping D3QN algorithm are also presented
to solve the different gaming problems. Numerical results
demonstrated that our 2PT-CIDS and incentive mechanisms
are highly effective. The proposed BLI and reward-shaping
D3QN algorithms are also efficient and outperform the other
baseline methods to achieve NE in various scenarios.
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