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Abstract—In connected and automated vehicles (CAVs), vari-
ous applications have recently been exposed to security threats
and attacks. Zero Trust provides a new network security strategy
that can enhance the security of wireless network environments.
Therefore, the Zero Trust model is considered to be effectively
applicable to edge caching. However, considering the massive
influx of application requests, achieving low-delay service re-
sponses requires ultra-dense deployments of edge servers, which
increases the complexity of the wireless network. Therefore, it
is challenging to achieve efficient cooperative caching between
edge servers in Zero Trust-enabled CAVs. In this paper, a
Distributed Edge Caching method with Multi-Agent reinforce-
ment learning for Zero Trust-enabled CAVs, named D-ECMA,
is proposed. Specifically, a collaboration graph construction
method is designed to obtain efficient collaborative relationships.
Then a prediction method for the demand of services based
on Spatial-Temporal Fusion Graph Neural Networks (STFGNN)
is proposed to help edge servers adjust their caching policies.
Following, a distributed edge caching method based on multi-
agent deep deterministic policy gradient (MADDPG) for Zero
Trust-enabled CAVs is designed. Finally, the effectiveness of D-
ECMA is demonstrated through comparative experiments.

Index Terms—Zero Trust, Connected and Automated Vehicles,
Edge Caching, Multi-Agent Reinforcement Learning

I. INTRODUCTION

With the development of artificial intelligence, communica-
tion networks, smart sensors and other technologies, vehicles
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are gradually transforming into connected and automated
vehicles (CAVs). CAVs enable vehicles to do more than
just drive, and provide various intelligent in-vehicle services
such as accident detection and driver assistance to enhance
traffic intelligence [1]. Thus, CAVs are gradually becoming
the cornerstone of future intelligent transportation systems.

In the realm of connected and automated vehicles (CAVs),
wireless networks play a pivotal role in facilitating intelligent
vehicular services. However, while providing communication
and data transmission for smart vehicles, these wireless net-
works also confront security threats and attacks from various
angles. Risks such as malicious intrusions, data leaks, identity
spoofing, and network interference loom large, potentially
resulting in diminished vehicle system performance, passenger
privacy breaches, and even traffic accidents [2]. To ensure the
safety and reliability of CAVs, there is an urgent need to de-
velop new models and technologies to effectively address these
security challenges. Traditional network security methods are
no longer sufficient, particularly considering the specific and
real-time requirements of CAVs. Hence, novel security models
and technologies are becoming increasingly crucial [3].

Zero Trust model has emerged as a pivotal strategy that
challenges conventional assumptions of trust within networks.
This model necessitates the continuous validation of users,
devices, applications, and data, irrespective of their internal
or external origins [4]. The strategy shifts the focus of net-
work security from perimeter defenses to internal controls,
in response to the escalating complexity of network threats.
Zero Trust model is considered to be a comprehensive network
security strategy for the CAVs, contributing to the preservation
of the integrity, privacy, and availability of vehicular systems.
By integrating the principles of the Zero Trust model, CAVs
can effectively address multifaceted security challenges and
ensure the security of wireless networks within intelligent
vehicular applications. Zero Trust-enabled CAVs (Z-CAVs)
can effectively address security concerns, but rapid response
to requests remains a challenge.

To address the delay in Z-CAVs, edge caching could
be taken into consideration. By caching popular content in
advance on edge servers (ESs), edge caching enables fast
response to service requests and is therefore seen as a key
technology to solve the delay problem in Z-CAVs. However,
due to the limited storage resources of the ESs in Z-CAVs,
how to determine an efficient caching strategy is an important
issue. Achieving the coverage of caching services requires
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ultra-dense deployments, which inevitably entails significant
costs and also increases the complexity of the network. As a
result, it remains a challenge to achieve efficient cooperative
caching across a limited number of ESs in Z-CAVs.

In order to solve the above problems, in this paper, a dis-
tributed edge caching method with multi-agent reinforcement
learning in Z-CAVs is proposed. Specifically, for reducing the
complexity of the communication network, a collaboration
graph construction method is designed, which extracts the
relationships between nodes to obtain the best collaborative
relationships. Considering that future demand of services helps
adjust the current caching strategy, an demand prediction
method based on Spatial-Temporal Fusion Graph Neural Net-
works (STFGNN) is then proposed to maximise long-term
benefits. Finally, a distributed edge caching method based on
multi-agent deep deterministic policy gradient (MADDPG)
is designed to determine the optimal caching strategy. In
particular, we arrange both the demand prediction network
and the networks of MADDPG (i.e. actor networks and critic
networks) to be trained in the cloud, then the cloud return
the parameters of the actor networks to be executed by
ESs, resulting in a collaborative edge-cloud framework with
centralised training in the cloud and distributed execution at
the edge. The main contributions are as follows.

• Design a collaboration graph construction method, which
reduces the complexity of the communication network
in Z-CAVs and achieves an efficient cooperation mecha-
nism.

• Propose a prediction method for the demand of services
based on STFGNN, which helps adjust the caching policy
to maximise long-term returns.

• Design a distributed edge caching approach based on
MADDPG in Z-CAVs, which minimizes the total system
delay by cooperative caching between ESs.

• Verify the superiority of D-ECMA through comparative
experiments.

The remaining parts of this paper are organised as fol-
lows. Section II illustrates the related work. In Section III,
a framework for multi-agent edge caching in Z-CAVs is
presented. Section IV introduces the implementation details of
D-ECMA. Comparative experiments are evaluated in Section
V. In Section VI, we conduct the paper.

II. RELATED WORK

The Zero Trust model introduces a novel approach to
network security. By emphasizing distrust, continuous vali-
dation, and the principle of least privilege, it infuses fresh
vitality into security defense strategies. The Zero Trust model
posits that all users, devices, applications, and data should
be regarded as untrusted, necessitating rigorous validation and
authorization in every interaction. This data-centric, boundary-
agnostic security philosophy positions the Zero Trust model
as an ideal choice for addressing the complexities of modern
network environments. Zayed et al. introduced a Zero Trust
Architecture-based methodology for verifying vehicle owner
identity through license plate recognition, enhancing security
and trust in inter-vehicle communication within the Internet

of Connected Vehicles [5]. Liu et al. presented a novel
blockchain-enabled solution within a zero-trust framework for
secure and trustworthy information sharing in IoT environ-
ments, addressing challenges of compromised devices, data
privacy, and participant integrity [6].

In multi-agent reinforcement learning (MARL), each agent
considers its own behaviour and that of other agents to
maximise the total system reward. Compared to using rein-
forcement learning for each agent individually, MARL can
learn the cooperative relationship between the agents and
therefore has better performance. There is already a large
body of research applying MARL to edge caching. Jiang et
al. [7] first proposed a hierarchical edge caching architecture
for CAVs, then extended the traditional reinforcement learn-
ing method Q-Learning to a multi-agent system and used a
MARL-based algorithm to reduce system delay. Chen et al. [8]
formulated the edge caching problem as a multi-agent decision
problem based on a partially observable Markov decision
process, and designed a multi-agent critic-actor framework in
which a communication module is designed to aggregate the
states of individual BSs. However, most studies learnt global
information, resulting in a state dimension that is too high for
reinforcement learning methods to converge.

Achieving service coverage requires a highly dense de-
ployment of edge devices, which incurs significant costs and
increases the complexity of network. As a result, efficient
resource sharing is an important issue for edge caching in
Z-CAVs. However, to our knowledge, few studies have con-
sidered the use of MARL to solve the edge caching problem
in Z-CAVs. Since MARL makes optimal decisions based on
the current state of the environment, it is suitable for Z-
CAVs where the flow of traffic changes dynamically and user
demands are random. Therefore, we propose a MADDPG-
based collaborative multi-agent edge caching approach in Z-
CAVs. A collaborative graph construction method is added
in order to efficiently aggregate information from other edge
nodes and not to introduce too high dimensional state spaces.
In addition, considering the impact of future demand on
caching performance in Z-CAVs, a demand prediction network
is designed to optimise caching decision.

III. MULTI-AGENT EDGE CACHING FRAMEWORK FOR
Z-CAVS

The system framework of multi-agent edge caching in
Z-CAVs is shown in Fig. 1, which consists three layers:
Cloud layer, Edge layer and End layer. The Z-CAVs could
offer services such as route recommendation, video streaming,
virtual companion and so on.

• Cloud layer: The Cloud layer consists of a central cloud,
assuming that the cloud server has sufficient storage space
to cache all content. The Cloud layer and Edge layer are
linked via backbone links.

• Edge layer: The Edge layer consists of BSs distributed in
different areas of the Z-CAVs, each equipped with a ES.
Considering that the storage space of ESs is limited, only
some of the content can be cached. BSs are linked to each
other via a wireless link and have a specific cooperation
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Fig. 1. The architecture of multi-agent cooperative edge caching in Z-CAVs.

relationship with each other to maximise the sharing of
caching resources.

• End layer: The End layer consists of different regions in
IoV, each with a different content demand and content
popularity. Vehicles in each region will send content
requests over a wireless link.

Next, we will describe the components of delay in multi-agent
cooperative edge caching in Z-CAVs from the following three
ways: Local response, Content delivery and Cache replace-
ment.

A. Local Response

When vehicle requests for a certain content, the request will
be received by the BS in this region. The BS will first search
the local ES to check if the content has been cached and, if so,
send the content directly to the vehicle. Due to the proximity
of the BS to the vehicle and the extremely fast transmission
rate of wireless network, the delay of local response is usually
ignored.

B. Content Delivery

If local ES does not cache the requested content, then
it needs to request content from other ESs or the central
cloud. The BS will first send a content request to its own
collaborators based on the collaboration graph, and if the
requested content is cached by any of the collaborators’ ESs, it
will be returned via wireless communication between the BSs.
The delay incurred in this process is influenced by the state

of the channel and the proximity of communication distance.
If none of the collaborators’ ESs cache the requested content,
BS has to request the content from the central cloud via the
backbone link, which must be able to fulfil BS’s request as the
central cloud has cached all the content. However, considering
the distance of the central cloud from the BS, a large delay
is incurred in the process, which is usually considered as a
constant.

C. Cache Replacement
In addition to the delay of responding to requests, the system

should also include the delay of cache replacement. At the
beginning of each period, each ES develops a caching policy
for the period based on content demand. For content that
has been cached in the previous period but is not needed
in the current period, the ES can simply discard the content,
which does not incur delay. For content that was not cached
in the previous period but is needed in the current period,
the BS needs to request them from the central cloud. It is
assumed that all requests can be sent to the central cloud
at the same time and the largest delay is taken as the delay
for one cache replacement. This may seem like a different
number of requests for cache replacement would not create a
large gap in delay, but the backbone link will receive requests
from all regions at the same time, and this huge amount of
data may cause congestion on the backbone link, so the cache
replacement strategy should also be efficient.

In summary, we can calculate the delay for each period in
each region. In this paper, our goal is to minimise the total
delay of the system, i.e. the sum of the delay of all periods in
all regions.

IV. DESIGN OF D-ECMA
In this section, the implementation of D-ECMA is de-

scribed. Fig. 2 shows the framework of D-ECMA. Firstly, we
design a method for the construction of collaboration graph.
Then, STFGNN is employed to predict the demand. Finally,
D-ECMA for Z-CAVs is proposed.

A. Construction of Collaboration Graph
In order to make cooperative caching between edge nodes

more efficient, we have devised a method for collaboration
graph construction. Firstly, considering the effect of commu-
nication distance on delay, we take the inverse of the distance
between any two edge nodes to obtain ASG. Secondly, two
nodes with similar demand variation may have a higher
likelihood of cooperation, so we used FastDTW from [9] to
calculate the temporal correlation of demand between two
nodes to obtain ATG. Then, since two nodes with similar
request content are more likely to need cooperative caching,
we use the calculation in [10] to calculate the content similarity
between nodes to obtain ACG. Finally, we average these
three matrices and set a threshold. The edges that are smaller
than the threshold are cropped and the remaining edges form
the collaboration graph. In particular, in order to maintain a
stable training environment, we will use the same collaboration
graph for several adjacent periods, rather than updating the
collaboration graph at the beginning of each period.
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Fig. 2. The framework of D-ECMA.

B. Demand Prediction based on STFGNN

Considering the impact of future demand on the current
caching strategy, a prediction method for the demand of ser-
vices based on STFGNN is proposed [11]. First, we combine
ASG, ATG and ACG into ASTFG to extract the spatio-
temporal correlation of demand. Then, we introduce STFGN
Layer, the main component of STFGNN. STFGN Layer
consists of two modules: STFGN Modules and Gated GNN.
STFGN Modules extract the implied spatio-temporal corre-
lations through matrix multiplication of inputs and ASTFG,
skip connect, maximum pooling and other operations. In par-
ticular, we stack multiple STFGN Modules to aggregate more
complex spatio-temporal correlations. The STFGN Modules
integrate spatio-temporal dependencies via ASTFG. However,
the spatio-temporal correlations of the nodes themselves are
also important, so we introduce the Gated GNN, which uses
two independent dilated convolution operations and activates
the convolution results via tanh and sigmoid activation, then
multiplies them together. Finally, we sum the outputs of the
STFGN Modules and the Gated GNN as the input into the
next STFGN Layer. After processing through multiple STFGN
Layers, the computed results will be passed through two fully
connected layers to obtain the final predicted demand.

C. Distributed Edge Caching Method with MADDPG

MARL is a machine learning method in which multiple
agents continuously interact with the environment to obtain
rewards and thus maximise the overall reward. In this part,
we combine the MARL medthod MADDPG [12] with the pre-
viously proposed collaboration graph and demand prediction
based on STFGNN to obtain D-ECMA. First, we introduce
the Markov decision process model:

• State space. Unlike single-agent reinforcement learning
which only considers its own state, multi-agent reinforce-
ment learning also considers the state of other agents
to maximise the overall reward. Therefore, based on the
collaboration graph, we add the state of the collaborators
to the state space as well. In addition, as future demand
will have an impact on the caching policy, we also add the
predicted demand to help the agent consider longer-term
rewards. Thus, the state space is designed as: the content

requests received by itself and collaborators, the caching
policies of itself and collaborators, and the predicted
demand.

• Action space. Since different ESs have different storage
capacities, using binary encoding (i.e. 1 for caching this
content and 0 vice versa) would result in inconsistent
dimension of the action space per agent, which is not
conducive to convergence. The action space is therefore
designed to be the probability that each content will
be cached. Suppose an ES can cache up to K content,
and after it has obtained the caching probability of each
content through the actor network, it selects the largest
K content to cache.

• Reward. The goal of this paper is to minimize the total
system delay, so we set the reward to the opposite of the
delay.

MADDPG will train an actor network and a critic network
independently for each edge node, where the actor network
outputs a caching policy based on the local state and the critic
network evaluates how good it is to adopt a caching policy
in a certain state. Noteworthy, the input of the actor network
is the local state, whereas that of the critic network is the
aggregated state. All networks are updated using deterministic
policy gradients. In addition, the target network is added to
improve the stability of the training and it will be updated
using soft updates.

Next we describe the framework of D-ECMA in general
terms. The collaboration graph construction and demand pre-
diction network will be deployed in the cloud. Once the
collaboration graph is constructed and the predicted demand is
available, the central cloud will send this information over the
backbone link to the BSs of the Z-CAVs. Then BSs will send
the demand of the current moment to the central cloud for
subsequent collaboration graph construction and prediction.
Each ES will deploy a local actor network and since the
input of the actor network is the local state, only the local
BS needs to collect the state information and transmit it to the
ES for decision making, instead of uploading it to the cloud for
decision making, which saves a lot of time. After a fixed period
of time, the BSs will send the history experience to the cloud,
where the state information will be aggregated according to the
collaboration graph. The central cloud will train all networks,
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Fig. 3. The convergence performance of reward under different methods.

and send the parameters of the trained actor networks to ESs
for execution. Therefore, D-ECMA has the characteristics of
centralized training and distributed execution, and is a edge-
cloud collaboration framework in Z-CAVs.

V. PERFORMANCE EVALUATION

In this section, comparative experiments are carried out
to verify the effectiveness of D-ECMA. The dataset used in
this paper is the in-vehicle user service demand information
collected from Nanjing, China, which is used to simulate the
services in Z-CAVs. To prove the superiority of our proposed
method, Deep Deterministic Policy Gradient (DDPG) [13] and
MADDPG, were used for comparison, and delay was chosen
as the evaluation criterion. We compared the delay of the three
methods over the course of a day, and in addition, comparative
experiments were conducted on delay under different numbers
of content and different numbers of ESs.

We first set the number of edge nodes to 15, the maximum
caching capacity of each ES to 5, and the total number of
content to 20. As shown in Fig. 3, we compare convergence
performance of reward under different methods. All three
methods eventually converged. Since the DDPG only considers
its own state and cannot cache cooperatively with other agents,
it eventually converges to a worst-case state. Both MADDPG
and our D-ECMA take the states of other agents into account,
and since D-ECMA aggregates only the agents most likely to
cooperate, it eventually converges to the best performance.

We also compare the delay of the three methods for different
numbers of content. As shown in Fig. 4, the delay increases
with the number of content rises. It is due to the fact that
ESs do not have enough storage space to cope with the added
content and therefore have to request the service from other
ESs or the central cloud, which introduces additional delay.
When the amount of content is small, both MADDPG and
D-ECMA have low delay through the cooperation of multiple
ESs. When the number of content is 15, MADDPG and D-
ECMA reduce delay by 1.8% and 2.5% respectively compared
to DDPG. However, when the number of content is 30, the
state space dimensions of MADDPG explode, so this method
struggles to converge to an optimal solution, yielding results

Fig. 4. Comparison of delay under different numbers of content.

Fig. 5. Comparison of delay under different numbers of ESs.

that differ from DDPG by only 1.6%. Our proposed D-ECMA
not only maintains the best performance consistently, but also
reduces the delay by 3.2%-3.8% in the face of a larger amount
of content, better solving the problem of exploding state space
dimensions.

In addition, we compare the delay under different numbers
of ESs. As shown in Fig. 5, With the number of ESs on the
rise, ESs can cooperate with more other ESs for edge caching,
thus reducing the delay of the system. When the number of
ESs is small, MADDPG can learn the cooperation between
ESs very well and thus can reduce the delay significantly
compared to DDPG. However, as the number of ESs grows, the
advantage of MADDPG in reducing delay gradually decreases
from 5.47% to 0.91%, which is obviously caused by the explo-
sion of state space dimensions. Our proposed D-ECMA, based
on efficient collaboration graph, can still maintain an effective
cooperative caching in complex network relations, reducing
the delay by 8.14%-3.96% and 2.13%-3.43% compared to
DDPG and MADDPG respectively.

VI. CONCLUSION

In this paper, we proposed D-ECMA, a distributed edge
caching approach with multi-agent reinforcement learning
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in Z-CAVs. Specifically, a collaboration graph construction
method to obtain collaborative relationships was first pro-
posed. Then, an STFGNN-based prediction method for the
demand of services was designed to help ESs adjust their
caching strategies to maximise long-term benefits. Following,
we proposed an MADDPG-based distributed edge caching
method for optimal caching policy. Finally, a collaborative
edge-cloud framework with centralised training on the cloud
and distributed execution at the edge was introduced. The
superiority of D-ECMA was verified through comparative
experiments on real datasets.
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