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Abstract

We study the geometry of tropical extensions of hyperfields, including the ordinary, signed and com-
plex tropical hyperfields. We introduce the framework of ‘enriched valuations’ as hyperfield homomor-
phisms to tropical extensions, and show that a notable family of them are relatively algebraically closed.
Our main results are hyperfield analogues of Kapranov’s theorem and the Fundamental theorem of tropi-
cal geometry. Utilising these theorems, we introduce fine tropical varieties and prove a structure theorem
for them in terms of their initial ideals.

1 Introduction

Tropical geometry is a branch of combinatorial algebraic geometry that offers two approaches to studying
algebraic varieties over valued fields p𝔽, valq. Given an ideal 𝐼 � 𝔽r𝑋1, . . . , 𝑋𝑛s, one approach is to study the
variety 𝑉p𝐼q by considering its coordinate-wise image valp𝑉p𝐼qq � ℝ𝑛 in the valuation map. An alternative
approach is to consider val�p𝐼q, the collection of polynomials over the tropical semiring pℝ,max,�q obtained
by valuating the coefficients of all polynomials in 𝐼. Given this tropicalised ideal, one can obtain its corre-
sponding tropical variety 𝑉pval�p𝐼qq in a more combinatorial manner. The Fundamental theorem of tropical
geometry [42] states that valp𝑉p𝐼qq and 𝑉pval�p𝐼qq are equal, and so these two approaches are equivalent.

Hyperfields are structures that generalise fields by allowing the addition operation to be multivalued, i.e.
the sum 𝑎 ` 𝑏 may be a set rather than a singleton. Introduced by Krasner in the 50s [32, 33], they rose
to prominence within tropical geometry via the articles of Viro [52, 53] and the introduction of matroids
over hyperfields [10]. Viro noted that enriching the tropical semiring with a hyperfield structure allowed
tropical varieties to be defined as genuine algebraic varieties over the tropical hyperfield 𝕋. This approach
via hyperfields gives a number of other advantages. For example, hyperfields offer a very flexible framework
for constructing ‘tropical-like’ spaces known as tropical extensions. Moreover, valuations can be rephrased
as hyperfield homomorphisms to the tropical hyperfield. This perspective allows one to define a wider family
of ‘valuation-like’ maps as homomorphisms to tropical extensions, that we refer to as enriched valuations.
Our goal in this article is to effectively layout the framework of tropical extensions and enriched valuations,
and to extend a number of key theorems of tropical geometry to this setting.

1.1 Our results

Given a hyperfield ℍ and an ordered abelian group Γ, one can define a new hyperfield ℍ�Γ called the tropical
extension of ℍ by Γ. This can be viewed as a tropical hyperfield with ‘coefficients’ in ℍ: see Definition 2.6
for a precise definition. Key examples of this construction include the tropical hyperfield 𝕋 � 𝕂 � ℝ,
the tropical extension of the Krasner hyperfield 𝕂 by pℝ,�q, and the signed tropical hyperfield 𝕊 � ℝ, the
tropical extension of the hyperfield of signs 𝕊 by pℝ,�q. Tropical extensions of semirings were pioneered in the
articles of Akian, Gaubert and Gutermann [2, 3] but have proved useful tools for studying hyperfields, such
as proving classification results [14]. Moreover, they provide a framework for defining enriched valuations,
which we lay out in Section 2.1. These enriched valuations are hyperfield homomorphisms from a field 𝔽 to
a tropical extension ℍ� Γ where ℍ records additional information about an element beyond its order. The
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prototypical example of an enriched valuation is the signed valuation sval : 𝔽Ñ 𝕊� Γ that also records the
sign of an element.

A key property of a valuation map val : 𝔽 Ñ 𝕋 is that it is relatively algebraically closed : for each
polynomial 𝑝 P 𝔽r𝑋s such that the induced tropical polynomial val�p𝑝q P 𝕋r𝑋s has a tropical root 𝑏 P 𝕋,
there exists a lift 𝑎 P val�1p𝑏q that is a root of 𝑝. This property gives rise to a proof of Kapranov’s theorem:
for any polynomial 𝑝 P 𝔽r𝑋1, . . . , 𝑋𝑛s, the tropical hypersurface 𝑉pval�p𝑝qq and the image valp𝑉p𝑝qq of the
algebraic hypersurface 𝑉p𝑝q coincide. It has also been well studied in commutative algebra and 𝑝-adic
analysis as Hensel’s Lemma. It was formulated for hyperfields in [44] as a tool for generalising Kapranov’s
theorem to all relatively algebraically closed maps 𝑓 : ℍ Ñ 𝕋. Our first main theorem is showing that one
can extend Kapranov’s theorem to relatively algebraically closed maps between arbitrary hyperfields, not
just those onto 𝕋.

To effectively state this, we briefly introduce some necessary concepts of algebraic geometry over hyper-
fields: see Section 2 for full details. Given a polynomial 𝑝 P ℍr𝑋1, . . . , 𝑋𝑛s over a hyperfield, its evaluation
at a point is a subset of ℍ as sums are multivalued. We define its associated hypersurface 𝑉p𝑝q to be the
set of points a P ℍ𝑛 such that 𝟘 P 𝑝paq. If 𝑝 P ℍr𝑋s is a univariate polynomial, then we refer to 𝑉p𝑝q as
the roots of 𝑝. Given a homomorphism of hyperfields 𝑓 : ℍ1 Ñ ℍ2, a polynomial 𝑝 P ℍ1r𝑋1, . . . , 𝑋𝑛s induces
a polynomial 𝑓�p𝑝q P ℍ2r𝑋1, . . . , 𝑋𝑛s called the push-forward of 𝑝. We say a homomorphism is relatively
algebraically closed (RAC) if for all univariate polynomials 𝑝 P ℍr𝑋s, the roots of its push-forward 𝑓�p𝑝q
pull-back to roots of 𝑝 (Definition 3.5).

Theorem (4.1). Let ℍ1,ℍ2 be arbitrary hyperfields and 𝑓 : ℍ1 Ñ ℍ2 a relatively algebraically closed homo-
morphism. Then, for any polynomial 𝑝 P ℍ1r𝑋1, . . . , 𝑋𝑛s,

𝑉p 𝑓�p𝑝qq � tp 𝑓 p𝑎1q, . . . , 𝑓 p𝑎𝑛qq P ℍ𝑛
2 | a P 𝑉p𝑝qu .

Prior to this work, all examples of RAC maps were either of the form ℍ Ñ 𝕋 or ℍ Ñ 𝕂. To motivate
generalising Kapranov’s theorem, we exhibit a number of new RAC maps. We first show that any homo-
morphism from an algebraically closed field to a stringent hyperfield, i.e. addition is multivalued only when
summing additive inverses, is necessarily RAC (Corollary 3.13). Coupled with Bowler and Su’s classification
of stringent hyperfields [14], this covers all valuations and a new family of maps that we call fine valuations,
one class of enriched valuations. We also show that RAC maps are closed under two operations, tropical
extension and quotient (Propositions 3.15 and 3.19). In particular, the former generalises the non-trivial
RAC map in [44] from the tropical complex hyperfield to 𝕋.

One might hope to extend Kapranov’s theorem to the Fundamental theorem for all RAC maps directly
by considering ideals rather than single polynomials. However, this is rather more subtle for hyperfields than
over fields. Attempting to imbue the set of polynomials ℍr𝑋1, . . . , 𝑋𝑛s over a hyperfield ℍ with additional
algebraic structure results in a lot of pathological behaviour. In particular, it is not immediately clear
what the correct definition of a polynomial ideal over ℍ should be. As such, we restrict ourselves to RAC
homomorphisms from fields where we have a well-defined notion of polynomial ideals.

Theorem (4.4). Let 𝑓 : 𝔽 Ñ ℍ be a relatively algebraically closed homomorphism from an algebraically
closed field 𝔽 to a hyperfield ℍ. Then, for any ideal 𝐼 � 𝔽r𝑋1 . . . 𝑋𝑛s,

𝑉p 𝑓�p𝐼qq � tp 𝑓 p𝑎1q, . . . , 𝑓 p𝑎𝑛qq P ℍ𝑛 | a P 𝑉p𝐼qu .

Specialising ℍ � 𝕋 and 𝑓 a valuation recovers the Fundamental theorem of tropical geometry. We
can also consider this theorem for our new family of RAC maps, namely fine valuations. The prototypical
example of such a map is an extension of the valuation map on the field of Puiseux series that records the
entire leading term rather than just the leading exponent:

fval : ℂtt𝑡uu Ñ pℂ� � ℚq Y t8u ,
8̧

𝑖�0

𝑐𝑖𝑡
𝑎𝑖 ÞÑ 𝑐0𝑡

𝑎0 , 𝑎0   𝑎1   𝑎2   � � � P ℚ .

With the fundamental theorem in hand, this motivates the definition of fine tropical varieties (Definition 5.1)
as a refinement of tropical varieties. These are initially defined as the images of algebraic varieties in the fine
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valuation map, but the previous theorem allows us to view them also as the solution set of polynomials over
the ‘fine tropical hyperfield’. Utilising this perspective, we give a structure theorem for fine tropical varieties,
describing them as tropical varieties with algebraic varieties associated to each polyhedral cell determined
by their initial ideals (Theorem 5.2). We end by motivating their study further by exhibiting applications
to stable intersection of tropical varieties, as well as links to polyhedral homotopy continuation where they
have already been studied under another guise.

1.2 Related work

Hyperfields are related to many other algebraic objects, and many applicable results may be stated in these
terms. Baker and Bowler’s work developing matroids over hyperfields [10] was quickly generalised to other
‘partial hyperstructures’ including partial fields, pastures and tracts [11]. These also encompass the fuzzy
rings introduced by Dress [17], whose link with hyperfields was explicitly given in [22]. All of these objects
belong to a larger category of algebraic objects called blueprints [38, 39], fundamental objects within 𝔽1-
geometry. Hyperfields are also closely related to semirings in a number of ways. The tropical hyperfield
𝕋 (and other tropical extensions) was first studied as (extensions of) the tropical semifield. Moreover, we
can ‘lift’ the tropical hyperfield to a power semiring whose elements are subsets of 𝕋, making hyperaddition
a singlevalued operation: this object is isomorphic to Izhakian’s extended tropical arithmetic [26]. Lifting
more general hyperfields to semirings leads to the notion of semiring systems [49, 4, 5].

Alternative hyperfields have been considered for the study of tropical geometry, although often in the
language of semirings. The most studied is the signed tropical hyperfield, first introduced to enrich pmax,�q-
linear algebra [47, 20]. It has proved useful for studying semialgebraic sets over real valued fields [6, 28], where
the valuation map is enriched to record the sign of an element. Moreover, it has close ties to real algebraic
geometry via Mazlov dequantization and Viro’s patchworking method [51]. Applications in enumerative
tropical geometry motivated the introduction of a complexified valuation map, which records both the
valuation and the phase of an element. This was used by Mikhalkin to enumerate curves in toric surfaces [45],
and motivated a complex analogue of Mazlov dequantization introduction by Viro [53]. Other tropical
extensions of semirings have been studied with regards to tropical linear algebra [2, 3]. Moreover, non-
tropical hyperfields also arise naturally: one can view the theory of amoebas and coamoebas through the
hyperfield lens [48, 18, 46, 16, 19], as images of varieties in the triangle and phase hyperfields respectively.

Our approach to geometry of hyperfields requires studying roots of polynomials over hyperfields. First
discussed by Viro with respect to tropical geometry [53], the first systematic study was by Baker and
Lorscheid [12] who introduced the notion of the multiplicity of a root, and unified Descartes’ rule of signs
and Newton’s polygon rule in the framework of hyperfields. This inspired a flurry of progress in the study
of roots and factorizations of polynomials over hyperfields [1, 24, 23, 5]. An alternative scheme-theoretic
approach to geometry over hyperfields was developed in [30, 31].

1.3 Structure of the paper

The structure of the paper is as follows. In Section 2, we recall the necessary preliminaries of hyperfields.
We give a number of key examples and constructions, including factor hyperfields and tropical extensions
of hyperfields. We then recall homomorphisms of hyperfields and introduce enriched valuations, framed as
homomorphisms from fields to tropical extensions. We finally recall the necessary details to define affine and
projective (pre)varieties over hyperfields, including polynomials and the deficiencies with polynomial sets.

Section 3 is dedicated to studying relatively algebraically closed maps. We first motivate their study by
observing deficiencies with algebraically closed hyperfields that do not arise for fields. We then deduce that
homomorphisms from algebraically closed fields to stringent hyperfields are necessarily RAC, giving rise to
a new family of RAC maps, namely fine valuations. We also show that RAC maps are closed under taking
tropical extensions and certain quotients.

Section 4 is where we prove our main theorems, the generalisations of Kapranov’s theorem and the
Fundamental theorem (Theorems 4.1 and 4.4). As an application of these theorems, we define fine tropical
varieties in Section 5 and prove a structure theorem for them (Theorem 5.2). We then demonstrate two
potential applications of fine tropical varieties, namely stable intersection and polyhedral homotopies. We
end with some unresolved questions and avenues for further study in Section 6.
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2 Hyperfields

In this section, we recall the necessary preliminaries of hyperfields. This includes key definitions, examples
and constructions of hyperfields and the maps between them. We also discuss how to understand polynomials
over hyperfields and establish a framework for their varieties. For an alternative treatment of hyperfields,
see the articles of Viro [52, 53].

Given a set ℍ, we denote the set of non-empty subsets of ℍ by P�pℍq. A hyperoperation on ℍ is a map
` : ℍ�ℍ Ñ P�pℍq that sends two elements 𝑎, 𝑏 P ℍ to a non-empty subset 𝑎 ` 𝑏 of ℍ. This map can be
extended to strings of elements, or sums of subsets, via:

𝑎1 ` 𝑎2 ` � � �` 𝑎𝑘 :�
¤

𝑎1P𝑎2`���`𝑎𝑘

𝑎1 ` 𝑎1 , 𝑎𝑖 P ℍ ,

𝐴 ` 𝐵 :�
¤

𝑎P𝐴,𝑏P𝐵

𝑎 ` 𝑏 , 𝐴, 𝐵 � ℍ .

For ease of notation, we shall refrain from using set brackets for singleton sets. The hyperoperation ` is
called associative if it satisfies

p𝑎 ` 𝑏q` 𝑐 � 𝑎 ` p𝑏 ` 𝑐q , @𝑎, 𝑏, 𝑐 P ℍ ,

and is called commutative if it satisfies

𝑎 ` 𝑏 � 𝑏 ` 𝑎 @𝑎, 𝑏 P ℍ .

Definition 2.1. A (canonical) hypergroup is a tuple pℍ,`, 𝟘q where ` is an associative and commutative
hyperoperation satisfying:

� (Identity) 𝟘` 𝑎 � 𝑎 for all 𝑎 P ℍ,

� (Inverses) For all 𝑎 P ℍ, there exists a unique p�𝑎q P ℍ such that 𝟘 P 𝑎 `�𝑎,

� (Reversibility) 𝑎 P 𝑏 ` 𝑐 if and only if 𝑐 P 𝑎 ` p�𝑏q.
A hyperring is a tuple pℍ,`,d, 𝟘, 𝟙q, where ` is hyperaddition and d is multiplication, satisfying,

� pℍ,`, 𝟘q is a canonical hypergroup,

� pℍ�,d, 𝟙q is a commutative monoid, where ℍ� :� ℍz𝟘 ,

� 𝑎 d p𝑏 ` 𝑐q � 𝑎 d 𝑏 ` 𝑎 d 𝑐 for all 𝑎, 𝑏, 𝑐 P ℍ (where 𝑎 d p𝑏 ` 𝑐q � �
𝑑P𝑏`𝑐 𝑎 d 𝑑 )

� 𝟘d 𝑎 � 𝟘 for all 𝑎 P ℍ.

A hyperfield is a hyperring such that pℍ,d, 𝟙q is an abelian group, i.e. for every 𝑎 P ℍ�, there exists a
unique element 𝑎�1 such that 𝑎 d 𝑎�1 � 𝟙.

Example 2.2. We briefly recall some natural examples of hyperfields. Many of these examples are linked as
we shall see later; for a diagram and description of their relations, see [9].

� 𝔽 - An ordinary field 𝔽 can be trivially viewed as a hyperfield, where the hyperaddition is defined as
𝑎 ` 𝑏 � 𝑎 � 𝑏.
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� 𝕂 - The Krasner hyperfield is the set 𝕂 :� t𝟘, 𝟙u with the standard multiplication and hyperaddition
defined as

𝟘` 𝟘 � 𝟘 , 𝟘` 𝟙 � 𝟙` 𝟘 � 𝟙 , 𝟙` 𝟙 � t𝟘, 𝟙u .

� 𝕊 - The sign hyperfield is the set 𝕊 :� t�𝟙, 𝟘, 𝟙u with standard multiplication and hyperaddition defined
as

𝟘` 𝑎 � 𝑎 , 𝑎 ` 𝑎 � 𝑎 , 𝟙`�𝟙 � t�𝟙, 𝟘, 𝟙u @𝑎 P 𝕊.

� 𝕋 - The (min-)tropical hyperfield is the set 𝕋 :� ℝY t8u with hyperfield operations

𝑔 ` ℎ �
#

minp𝑔, ℎq if 𝑔 � ℎ

t𝑔1 P 𝕋 | 𝑔1 ¥ 𝑔u if 𝑔 � ℎ
,

𝑔 d ℎ � 𝑔 � ℎ .

The additive and multiplicative identity elements are 𝟘 � 8 and 𝟙 � 0.

The max-tropical hyperfield is the isomorphic hyperfield obtained by replacing min with max and 8
with �8. As the min convention is consistent with the theory of valuations, we will use this throughout
unless stated otherwise.

� ℙ - The phase hyperfield ℙ � t 𝑧 P ℂ | |𝑧| � 1u Y t0u is the hyperfield with operations

𝑧1 d 𝑧2 � 𝑧1 � 𝑧2

𝑧1 ` 𝑧2 �

$'&
'%
𝑧1 𝑧1 � 𝑧2

t𝑧1, 0,�𝑧1u 𝑧2 � �𝑧1

shortest open arc between 𝑧1, 𝑧2 otherwise

� Φ - The tropical phase hyperfield Φ � t 𝑧 P ℂ | |𝑧| � 1u Y t0u is the hyperfield with operations

𝑧1 d 𝑧2 � 𝑧1 � 𝑧2

𝑧1 ` 𝑧2 �

$'&
'%
𝑧1 𝑧1 � 𝑧2

t 𝑧 P ℂ | |𝑧| � 1u Y t0u 𝑧2 � �𝑧1

shortest closed arc between 𝑧1, 𝑧2 otherwise

� 𝕋ℝ - The signed tropical hyperfield is the set 𝕋ℝ :� pt�1u �ℝq Y t8u, where t�1u �ℝ is a ‘negative’
copy of the tropical numbers. Its hyperfield operations are

p𝑠1, 𝑔1q` p𝑠2, 𝑔2q �

$'''&
'''%
p𝑠1, 𝑔1q, if 𝑔1   𝑔2,

p𝑠2, 𝑔2q, if 𝑔2   𝑔1,

p𝑠1, 𝑔1q, if 𝑠1 � 𝑠2, and 𝑔1 � 𝑔2,

tp�1, ℎq | ℎ ¥ 𝑔1u Y t8u, if 𝑠1 � �𝑠2, and 𝑔1 � 𝑔2,

p𝑠1, 𝑔1q d p𝑠2, 𝑔2q � p𝑠1 � 𝑠2, 𝑔1 � 𝑔2q .

The additive and multiplicative identity elements are 𝟘 � 8 and 𝟙 � p1, 0q. As with 𝕋, we can obtain
an isomorphic hyperfield by replacing min with max and 8 with �8.

Note that there is an alternative description of 𝕋ℝ as the real tropical hyperfield with underlying set
ℝ. The isomorphism between these spaces is given by

𝕋ℝÑ ℝ , p𝑠, 𝑔q ÞÑ 𝑠 � expp�𝑔q ,

where the sign change switches between the min and max convention.

5



� 𝕋ℂ - The tropical complex hyperfield 𝕋ℂ has the complex numbers ℂ as its underlying set, with
multiplication given by standard complex multiplication and hyperaddition defined as:

𝑧 ` 𝑤 �

$'''&
'''%
𝑧 if |𝑧| ¡ |𝑤|,
𝑤 if |𝑤| ¡ |𝑧|,
Shortest closed arc connecting 𝑧 and 𝑤 with radius |𝑧|, if |𝑧| � |𝑤|, 𝑧 � �𝑤,
t𝑐 P ℂ | |𝑐| ¤ |𝑧|u, if 𝑧 � �𝑤.

A very general method for constructing hyperfields is to quotient a field by a subgroup of its units.

Definition 2.3. A factor hyperfield is a hyperfield ℍ � 𝔽{𝑈 arising as the quotient of a field p𝔽,�, �q by a
multiplicative subgroup 𝑈 � 𝔽�. The elements of ℍ are cosets 𝑎 :� 𝑎 �𝑈 � t𝑎 �𝑢 | 𝑢 P 𝑈u, and the operations
are inherited from the field operations:

𝑎 ` 𝑏 � t𝑐 | 𝑐 P 𝑎 � 𝑏u ,
𝑎 d 𝑏 � 𝑎 � 𝑏

Example 2.4. Many of the examples we have seen can be realised as factor hyperfields. For instance, we can
realise the following as the quotients

𝔽 � 𝔽{𝟙 , 𝕂 � 𝔽{𝔽� , 𝕊 � ℝ{ℝ¡0 , ℙ � ℂ{ℝ¡0

where 𝔽 � 𝔽2 is any field.

Remark 2.5. Given some arbitrary hyperfield ℍ and multiplicative subgroup 𝑈 � ℍ�, we can define the
quotient ℍ{𝑈 analogously as in Definition 2.3. The proof that this construction gives a hyperfield is identical
to the field case given in [33].

Next we will present the definition of a tropical extension of a hyperfield.

Definition 2.6. Let ℍ be a hyperfield and pΓ,�q an (additive) ordered abelian group. The tropical extension
of ℍ by Γ is the set

ℍ� Γ � tp𝑐, 𝑔q | 𝑐 P ℍ� , 𝑔 P Γu Y t𝟘u
where multiplication is given by p𝑐1, 𝑔1q d p𝑐2, 𝑔2q � p𝑐1 dℍ 𝑐2, 𝑔1 � 𝑔2q and addition given by

p𝑐1, 𝑔1q`p𝑐2, 𝑔2q �

$'''&
'''%
p𝑐1, 𝑔1q 𝑔1   𝑔2

p𝑐2, 𝑔2q 𝑔2   𝑔1

tp𝑐, 𝑔q | 𝑐 P 𝑐1 `ℍ 𝑐2u 𝑔1 � 𝑔2 � 𝑔 , 𝟘ℍ R 𝑐1 ` 𝑐2

tp𝑐, 𝑔q | 𝑐 P p𝑐1 `ℍ 𝑐2qz𝟘ℍu Y tp𝑏, ℎq | ℎ ¡ 𝑔 , 𝑏 P ℍ�u Y t𝟘u 𝑔1 � 𝑔2 � 𝑔 , 𝟘ℍ P 𝑐1 ` 𝑐2

Example 2.7. The tropical hyperfield can be realised as the tropical extension 𝕋 � 𝕂 � ℝ where pℝ,�q is
viewed as an ordered abelian group. We can extend this correspondence to the rank k tropical hyperfield
𝕋p𝑘q � 𝕂�ℝp𝑘q where pℝp𝑘q,�q is 𝑘-tuples of reals ordered lexicographically.

Example 2.8. The signed tropical hyperfield can be viewed as the tropical extension 𝕋ℝ� 𝕊�ℝ.

Example 2.9. The tropical complex hyperfield can be viewed as the tropical extension 𝕋ℂ � Φ�ℝ. As the
underlying set of 𝕋ℂ is the complex numbers, this isomorphism can be explicitly written as

𝕋ℂÑ Φ�ℝ

𝑧 ÞÑ
#
pphp𝑧q,� logp|𝑧|qq 𝑧 � 0

𝟘 𝑧 � 0
,

where php𝑧q � 𝑧{|𝑧| is the phase map.

As a brief application of this construction, we recall Bowler and Su’s classification of stringent hyperfields.
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Definition 2.10. A hyperfield ℍ is stringent if 𝑎 ` 𝑏 is a (non-singleton) set if and only if 𝑎 � �𝑏.

Theorem 2.11. [14] Let ℍ be a stringent hyperfield. Then ℍ is isomorphic to either 𝕂� Γ, 𝕊� Γ or 𝔽� Γ

for some ordered abelian group Γ.

Example 2.12. Observe that 𝔽,𝕂, 𝕊,𝕋 and 𝕋ℝ are all stringent. This can be seen directly, as the only sets
we can obtain in each case are those coming from the sum of an element with its inverse:

𝕂 : 𝟙` 𝟙 � t𝟘, 𝟙u 𝕊 : 𝟙`�𝟙 � t�𝟙, 𝟘, 𝟙u
𝕋 : 𝑔 ` 𝑔 � tℎ P 𝕋 | ℎ ¥ 𝑔u 𝕋ℝ: p1, 𝑔q` p�1, 𝑔q � tp�1, ℎq | ℎ ¥ 𝑔u Y t8u

However, this can also be seen from Theorem 2.11: 𝕂, 𝕊 and 𝔽 can be trivially written as a tropical extension
by the trivial group, and 𝕋 and 𝕋ℝ are tropical extensions of 𝕂 and 𝕊 by ℝ respectively.

Remark 2.13. Outside of hyperfields, the tropical extension construction has been defined and studied for
a number of algebraic structures with both single and multivalued addition. For single-valued structures, it
has been used to study idempotent semirings [2, 3, 27] and more recently for semiring systems as a bridge
between semirings and hyperstructures [49, 4, 5]. For multivalued structures, it can be defined for a number
of generalisations of hyperfields including idylls, which were investigated as a way to study multiplicities of
roots of polynomials [24].

We note that this construction is also sometimes refereed to as layering rather than extension in the
literature.

2.1 Homomorphisms and enriched valuations

We will now recall the definition of a hyperfield homomorphism, connecting this with tropical extensions
and valuations, and construct several key examples.

Definition 2.14. A map 𝑓 : ℍ1 Ñ ℍ2 is a hyperfield homomorphism if it satisfies

𝑓 p𝑎 `1 𝑏q � 𝑓 p𝑎q`2 𝑓 p𝑏q , 𝑓 p𝑎 d1 𝑏q � 𝑓 p𝑎q d2 𝑓 p𝑏q ,
𝑓 p𝟘1q � 𝟘2 , 𝑓 p𝟙1q � 𝟙2 .

An isomorphism of hyperfields is a bijective homomorphism whose inverse map is also a homomorphism.

As with field homomorphisms, it is also straightforward to show that 𝟘1 is the unique element that gets
sent to 𝟘2 by 𝑓 . We can also similarly deduce that 𝑓 p𝑎q�1 � 𝑓 p𝑎�1q and � 𝑓 p𝑎q � 𝑓 p�𝑎q for all 𝑎 P ℍ1.

Remark 2.15. We will often extend 𝑓 to a map between spaces 𝑓 : ℍ𝑛
1 Ñ ℍ𝑛

2 , obtained by applying 𝑓

coordinatewise. Similarly, if 𝑆 � ℍ𝑛
1 is a subset, then we let 𝑓 p𝑆q � ℍ𝑛

2 be the set obtained by applying 𝑓 to
each element of 𝑆.

Example 2.16. Every hyperfield has a trivial homomorphism to the Krasner hyperfield, given by

𝜔 : ℍÑ 𝕂 , 𝜔p𝑎q �
#
𝟙, if 𝑎 � 𝟘ℍ.

𝟘, if 𝑎 � 𝟘ℍ.

Example 2.17. Given a factor hyperfield ℍ � 𝔽{𝑈, there is a natural hyperfield homomorphism

𝜏 : 𝔽Ñ ℍ , 𝑎 ÞÑ 𝑎 .

Given that all the hyperfields we have see are factor hyperfields, this gives many examples of hyperfield
homomorphisms, e.g.

sgn : ℝÑ 𝕊 � ℝ{ℝ¡0 , ph : ℂÑ ℙ � ℂ{ℝ¡0 ,

𝑎 ÞÑ

$'&
'%
𝟙 if 𝑎 P ℝ¡0

�𝟙 if 𝑎 P ℝ 0

𝟘 if 𝑎 � 0

𝑧 ÞÑ
#

𝑧
|𝑧|

if 𝑧 P ℂzt0u
0 if 𝑧 � 0
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As with tropical extensions of hyperfields, one can consider tropical extensions of homomorphisms.

Definition 2.18. Let 𝑓 : ℍ1 Ñ ℍ2 be a map between two hyperfields. Given an ordered abelian group Γ,
the tropical extension of 𝑓 by Γ is the map

𝑓 Γ : ℍ1 � Γ Ñ ℍ2 � Γ

p𝑐, 𝑔q ÞÑ p 𝑓 p𝑐q, 𝑔q .

It is easy to see that if 𝑓 is a homomorphism, then so is 𝑓 Γ.

Example 2.19. Consider the homomorphism from the tropical complex hyperfield 𝕋ℂ to the tropical hyper-
field:

𝜂 : 𝕋ℂÑ 𝕋

𝑧 ÞÑ � logp|𝑧|q .

This is the key example studied in [44], as it ‘preserves’ roots of polynomials; we shall discuss this in detail
in Section 3. We can give an alternative description of this map in the language of tropical extensions. As
both 𝕋ℂ � Φ�ℝ and 𝕋 � 𝕂�ℝ are tropical extensions, the map can be rephrased as

𝜔Γ : Φ�ℝÑ 𝕂�ℝ

p𝜃, 𝑔q ÞÑ p𝟙, 𝑔q ,

where 𝜃 � php𝑧q and 𝑔 � � logp|𝑧|q given by the isomorphism in Example 2.9. In particular, 𝜂 is the extension
of the trivial homomorphism 𝜔 : ΦÑ 𝕂 by ℝ.

A crucial example of a hyperfield homomorphism will be those coming from valued fields. As this
motivates many of the applications of our theory, we recall the definition.

Definition 2.20. A valuation on a field 𝔽 is a surjective map val : 𝔽Ñ ΓYt8u to an ordered abelian group
pΓ,�q satisfying

� valp𝑎q � 8 ô 𝑎 � 0,

� valp𝑎𝑏q � valp𝑎q � valp𝑏q,
� valp𝑎 � 𝑏q ¥ minpvalp𝑎q, valp𝑏qq, with equality if and only if valp𝑎q � valp𝑏q.

The pair p𝔽, valq is called a valued field. The group Γ is called the value group of 𝔽.

Note that we can demand that valuations are surjective by restricting the range of non-surjective valu-
ations to the value group. This will be beneficial later, allowing us to sidestep certain topological concerns
we would have to deal with otherwise.

Example 2.21. A natural example of a valued field is the field of Puiseux series over a field 𝔽. These are
formal power series whose exponents are rational with a common denominator

𝔽tt𝑡uu �
¤
𝑛¥1

𝔽pp𝑡 1
𝑛 qq �

$&
%

8̧

𝑖�0

𝑐𝑖𝑡
𝑔𝑖

������
𝑐𝑖 P 𝔽 , 𝑐0 � 0

𝑔𝑖 P ℚ with common denominator
𝑔0   𝑔1   � � �   𝑔𝑖   . . .

,.
- ,

along with the zero element. If 𝔽 is an algebraically closed field, then 𝔽tt𝑡uu is also algebraically closed: in
fact, it is the algebraic closure of the field of Laurent series 𝔽pp𝑡qq.

The ‘first’ term 𝑐0𝑡
𝑔0 is referred to as the leading term, where 𝑐0 is the leading coefficient and 𝑔0 is the

leading exponent. The valuation on 𝔽tt𝑡uu maps zero to 8, and a non-zero series to its leading exponent:

val : 𝔽tt𝑡uu Ñ ℚY t8u
8̧

𝑖�0

𝑐𝑖𝑡
𝑔𝑖 ÞÑ 𝑔0 .
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Example 2.22. A more general example of a valued field is the field of Hahn series with value group Γ over
a field 𝔽. These are formal power series whose exponents are elements of the ordered abelian group Γ

𝔽⟦𝑡Γ⟧ �
# ¸

𝑔P𝐺

𝑐𝑔𝑡
𝑔

����� 𝑐𝑔 P 𝔽� , 𝐺 � Γ well-ordered

+
,

along with the zero element. The field 𝔽⟦𝑡Γ⟧ is algebraically closed if 𝔽 is algebraically closed and Γ is
divisible i.e. for all 𝑔 P Γ and 𝑛 P ℕ, there exists ℎ P Γ such that 𝑔 � 𝑛 � ℎ.

We use the same terminology for leading term/coefficient/exponent as with Puiseux series: the condition
that 𝐺 is well-ordered ensures it exists. The valuation on 𝔽⟦𝑡Γ⟧ behaves identically to the valuation on
𝔽tt𝑡uu, mapping zero to 8 and a non-zero series to its leading exponent:

val : 𝔽⟦𝑡Γ⟧Ñ Γ Y t8u (1)¸
𝑔P𝐺

𝑐𝑔𝑡
𝑔 ÞÑ 𝛾 � minp𝑔 | 𝑔 P 𝐺q .

Valuations can be considered hyperfield homomorphisms in the following way. By identifying Γ Y t8u
with 𝕂� Γ, where 𝟘 � 8, we can instead consider val as a map to 𝕂� Γ. The following proposition is easy
to verify.

Proposition 2.23. p𝔽, valq is a valued field if and only if val : 𝔽Ñ 𝕂� Γ is a hyperfield homomorphism.

Proof. It is clear the first two conditions of a valuation are hyperfield homomorphism properties. Moreover,
it is straightforward to check valp1q � 0. For the final condition, recall that

valp𝑎q` valp𝑏q �
#

minpvalp𝑎q, valp𝑏qq valp𝑎q � valp𝑏q
t ℎ P Γ Y t8u | ℎ ¥ valp𝑎qu valp𝑎q � valp𝑏q .

This implies that valp𝑎 � 𝑏q P valp𝑎q` valp𝑏q is equivalent to the final valuation condition. □

Proposition 2.23 shows that valuations are equivalent to homomorphisms from a field to the tropical
extension 𝕂� Γ. This motivates the study of enriched valuations: homomorphisms 𝔽Ñ ℍ� Γ from a field
to a tropical extension, where ℍ records additional information about elements over 𝔽.

Example 2.24. For an ordered field 𝔽 and ordered abelian group Γ, the valuation map (1) can be enriched
to the signed valuation, which records the sign of a Hahn series:

sval : 𝔽⟦𝑡Γ⟧Ñ 𝕊� Γ,¸
𝑔P𝐺

𝑐𝑔𝑡
𝑔 ÞÑ psgnp𝑐𝛾q, 𝛾q , 𝛾 � minp𝑔 | 𝑔 P 𝐺q ,

where sgn defined as in Example 2.17. Setting the value group Γ to ℝ recovers the signed valuation to the
signed tropical hyperfield 𝕊�ℝ� 𝕋ℝ.

Example 2.25. Consider the field of Hahn series 𝔽⟦𝑡Γ⟧ over an arbitrary field. We can enrich the usual
valuation map (1) on 𝔽⟦𝑡Γ⟧ by defining the fine valuation fval that remembers the coefficient of its leading
term, i.e.

fval : 𝔽⟦𝑡Γ⟧Ñ 𝔽� Γ¸
𝑔P𝐺

𝑐𝑔𝑡
𝑔 ÞÑ p𝑐𝛾 , 𝛾q , 𝛾 � minp𝑔 | 𝑔 P 𝐺q .

As an application of our results, the tropical geometry of this valuation is discussed in Section 5.

Example 2.26. Fixing 𝔽 � ℂ, the valuation map (1) can be enriched to the phased valuation, which records
the phase or argument of a Hahn series:

phval : ℂ⟦𝑡ℝ⟧Ñ ℙ� Γ,¸
𝑔P𝐺

𝑐𝑔𝑡
𝑔 ÞÑ pphp𝑐𝛾q, 𝛾q , 𝛾 � minp𝑔 | 𝑔 P 𝐺q ,

where ph is the phase map as defined as in Example 2.17.
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We note that all of these examples also hold over Puiseux series, where the value group is Γ � ℚ. However,
we also note that 𝔽tt𝑡uu � 𝔽⟦𝑡ℚ⟧ as the latter has no common denominator condition.

We end this section by noting that enriched valuations allow us to construct these hyperfields as factor
hyperfields. Explicitly, in each case we can realise each hyperfield as the domain of the enriched valuation
modulo the preimage of 𝟙 in the hyperfield:

𝕋 � 𝔽⟦𝑡ℝ⟧{ val�1p0q 𝕋ℝ� 𝔽⟦𝑡ℝ⟧{ sval�1pp𝟙𝕊, 0qq
𝔽� Γ � 𝔽⟦𝑡Γ⟧{ fval�1pp𝟙𝔽, 0qq ℙ� Γ � ℂ⟦𝑡Γ⟧{phval�1pp𝟙ℙ, 0qq

The proof of these isomorphisms follows from the following lemma.

Lemma 2.27. Let 𝑓 : 𝔽Ñ ℍ be a surjective homomorphism from a field 𝔽 to a hyperfield ℍ satisfying

@𝛼, 𝛽 P ℍ , 𝛾 P 𝛼 ` 𝛽 , D𝑎 P 𝑓�1p𝛼q , 𝑏 P 𝑓�1p𝛽q such that 𝑎 � 𝑏 P 𝑓�1p𝛾q . (2)

Then ℍ � 𝔽{ 𝑓�1p𝟙ℍq.
Proof. Denote 𝑈 � 𝑓�1p𝟙ℍq and consider the map 𝑓𝑈 : 𝔽{𝑈 Ñ ℍ that maps 𝑎 ÞÑ 𝑓 p𝑎q. To see this map is

well-defined, consider 𝑎, 𝑏 P 𝔽 such that 𝑎 � 𝑏 , i.e. there exists 𝑢 P 𝑈 such that 𝑎 � 𝑏 � 𝑢. Then

𝑓𝑈p𝑎q � 𝑓 p𝑎q � 𝑓 p𝑏 � 𝑢q � 𝑓 p𝑏q d 𝑓 p𝑢q � 𝑓 p𝑏q d 𝟙ℍ � 𝑓 p𝑏q � 𝑓𝑈p𝑏q ,

hence the map 𝑓𝑈 is independent of the choice of representative for the cosets.
We claim that 𝑓𝑈 defines an isomorphism. It is straightforward to check that 𝑓𝑈 is a surjective homo-

morphism given that 𝑓 is. To see that 𝑓𝑈 is injective, suppose that 𝑓 p𝑎q � 𝑓 p𝑏q. Then

𝑓 p𝑎q � 𝑓 p𝑏q�1 � 𝑓 p𝑎 � 𝑏�1q � 𝟙ℍ ñ 𝑎 � 𝑏�1 P 𝑈

Hence there exists 𝑢 P 𝑈 such that 𝑎 � 𝑏 � 𝑢, and so 𝑎 � 𝑏 .

As 𝑓𝑈 is a bijective morphism, there exists an inverse map 𝑓�1
𝑈

: ℍ Ñ 𝔽{𝑈 given by 𝛼 ÞÑ 𝑓�1p𝛼q. It
remains to show this is also a homomorphism. The only non-trivial condition is that it preserves sums.

Consider some 𝛾 P 𝛼 ` 𝛽, then 𝑓�1
𝑈
p𝛾q � 𝑓�1p𝛾q. By the condition (2), there exists 𝑎 P 𝑓�1p𝛼q and

𝑏 P 𝑓�1p𝛽q such that 𝑎 � 𝑏 P 𝑓�1p𝛾q. Coupled with the injectivity of 𝑓�1
𝑈

, this implies

𝑓�1p𝛾q � 𝑎 � 𝑏 � 𝑎 � 𝑏 � 𝑓�1
𝑈
p𝛼q` 𝑓�1

𝑈
p𝛽q .

Ranging over all 𝛾 P 𝛼 ` 𝛽 gives 𝑓�1
𝑈
p𝛼 ` 𝛽q � 𝑓�1

𝑈
p𝛼q` 𝑓�1

𝑈
p𝛽q. □

Remark 2.28. Without condition (2), Lemma 2.27 gives a bijective homomorphism from 𝔽{ 𝑓�1p𝟙ℍq to ℍ. It
is important to stress that this is not sufficient for an isomorphism of hyperfields, as the following example
highlights.

Let 𝕎 � t𝟙, 𝟘,�𝟙u be the weak hyperfield of signs, with the same multiplication and addition as 𝕊 aside
from

𝟙` 𝟙 � �𝟙`�𝟙 � t𝟙,�𝟙u .
One can check that the sign map sgn: ℝÑ𝕎 is also a surjective homomorphism, but ℝ{ sgn�1p𝟙q � 𝕊 �𝕎.
This is because sgn: ℝÑ𝕎 does not satisfy (2): we have �𝟙 P 𝟙` 𝟙 but we cannot find positive reals 𝑎, 𝑏

such that 𝑎 � 𝑏 is negative.

2.2 Polynomials over hyperfields

We review some key notions of polynomials over hyperfields. Some care is needed, as we shall see that
polynomials behave much worse over hyperfields than over fields.
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Definition 2.29. The set of polynomials in 𝑛 variables over a hyperfield ℍ will be denoted ℍr𝑋1 , . . . , 𝑋𝑛s,
where elements of this set are defined as

𝑝p𝑋1 , . . . , 𝑋𝑛q :� ð
dP𝐷

𝑐d d 𝑋
𝑑1

1 d � � � d 𝑋𝑑𝑛
𝑛 ,

where 𝐷 � ℤ𝑛
¥0 finite and 𝑐d P ℍ�. Each polynomial defines a function from ℍ𝑛 to P�pℍq given by

evaluation.
The set of Laurent polynomials over ℍ will be denoted ℍr𝑋�1 , . . . , 𝑋�

𝑑
s, whose elements are polynomials

whose exponents 𝐷 � ℤ𝑛 may take negative values. Each Laurent polynomial defines a function from pℍ�q𝑛
to P�pℍq, as 𝟘𝑘 is undefined for negative values of 𝑘.

We will use multi-index notation Xd � 𝑋
𝑑1

1 d � � � d 𝑋
𝑑𝑛
𝑛 to denote (Laurent) monomials.

Definition 2.30. Let 𝑝 � Ð
dP𝐷 𝑐d dXd P ℍr𝑋1, . . . , 𝑋𝑛s. An element a � p𝑎1 , . . . , 𝑎𝑛q is a root of the

polynomial if 𝟘 P 𝑝paq �Ð
dP𝐷 𝑐d d ad. We denote the set of roots of 𝑝 as

𝑉p𝑝q :� ta P ℍ𝑛 | 𝟘 P 𝑝paqu .
Note that 𝑉p𝑝q can also be considered as the (affine) hypersurface defined by 𝑝. We will expand on this in
Section 2.3.

Let 𝑓 : ℍ1 Ñ ℍ2 be a hyperfield homomorphism. This induces a map of polynomials 𝑓� : ℍ1r𝑋1, . . . , 𝑋𝑛s Ñ
ℍ2r𝑋1, . . . , 𝑋𝑛s defined as

𝑝 �ð
1
𝑐d d1 X

d ÞÝÑ 𝑓�p𝑝q �
ð

2
𝑓 p𝑐dq d2 X

d .

We call 𝑓�p𝑝q the push-forward of 𝑝. By properties of hyperfield homomorphisms, we observe that

𝑓 p𝑝paqq � 𝑓

�ð
1
𝑐d d1 a

d
	
�ð

2
𝑓 p𝑐dq d2 p 𝑓 paqqd � 𝑓�p𝑝qp 𝑓 paqq .

This gives the following result as a direct consequence.

Lemma 2.31. [44] Let 𝑓 : ℍ1 Ñ ℍ2 be a hyperfield homomorphism. For 𝑝 P ℍ1r𝑋1 , . . . , 𝑋𝑛s,
𝑓 p𝑉p𝑝qq � 𝑉p 𝑓�p𝑝qq .

For general hyperfield homomorphisms, this containment is strict. However, for a particularly nice class
of homomorphisms we will be able to deduce an equality in Lemma 2.31. These will be the class of relatively
algebraically closed homomorphisms and will be the focus of Section 3.

2.3 Hyperfield varieties

We briefly touched on the notion of an affine hypersurface over ℍ in the previous section. More general
varieties are trickier as polynomial ideals over hyperfields have a number of pitfalls that we document at the
end of this section. As such, we must restrict ourselves to images of polynomial ideals over fields. It will be
useful for us to consider various notions of varieties over a hyperfield.

Affine varieties Given a polynomial 𝑝 P ℍr𝑋1, . . . , 𝑋𝑛s, its associated affine hypersurface is

𝑉p𝑝q :� ta P ℍ𝑛 | 𝟘 P 𝑝paqu .

Given a set of polynomials 𝐽 � ℍr𝑋1, . . . , 𝑋𝑛s, its associated affine prevariety is

𝑉p𝐽q :� ta P ℍ𝑛 | a P 𝑉p𝑝q for all 𝑝 P 𝐽u �
£
𝑝P𝐽

𝑉p𝑝q .

If there exists some ideal 𝐼 � 𝔽r𝑋1, . . . , 𝑋𝑛s over a field 𝔽 and homomorphism 𝑓 : 𝔽 Ñ ℍ such that 𝐽 �
𝑓�p𝐼q :� t 𝑓�p𝑝q | 𝑝 P 𝐼u, we will call 𝑉p𝐽q an affine variety.

Remark 2.32. We briefly note that there is a well-defined notion of a tropical variety that does not depend
on any underlying ideal over a field. This differs from the notion above, where the varieties 𝑉p𝐽q such that
𝐽 � val�p𝐼q for some ideal 𝐼 over a field 𝔽 would be known as realisable tropical varieties. For general
hyperfields, we do not have such intrinsic notions of varieties yet and so restrict ourselves to those that are
‘realisable’.
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Projective varieties As multiplication is single-valued, projective space and projective varieties over a
hyperfield are defined much the same as over fields. As such, we shall skip over proofs of standard facts and
refer to [15], where proofs can be easily adapted to hyperfields. We define 𝑛-dimensional projective space
over ℍ as

ℙ𝑛pℍq � ℍ𝑛�1zt𝟘uä� ,

where � identifies scalar multiples, i.e. a � 𝜆 d a for all 𝜆 P ℍ�.
A polynomial 𝑝 P ℍr𝑋0, . . . , 𝑋𝑛s is homogeneous if each monomial has the same degree. If 𝑝 is homoge-

neous, then a P ℍ𝑛�1 is a root if and only if 𝜆da is a root. As such, we can consider roots of homogeneous
polynomials as hypersurfaces in projective space. Given a homogeneous polynomial 𝑝 P ℍr𝑋0, 𝑋1, . . . , 𝑋𝑛s,
its associated projective hypersurface is

𝑃𝑉p𝑝q :�ta P ℙ𝑛pℍq | 𝟘 P 𝑝paqu � 𝑉p𝑝qzt𝟘uä� . (3)

Given a set of homogeneous polynomials 𝐽 � ℍr𝑋0, 𝑋1, . . . , 𝑋𝑛s, its associated projective prevariety is

𝑃𝑉p𝐽q :�
£
𝑝P𝐽

𝑃𝑉p𝑝q � 𝑉p𝐽qzt𝟘uä� .

If there exists an ideal 𝐼 � 𝔽r𝑋0, 𝑋1, . . . , 𝑋𝑛s over a field 𝔽 and homomorphism 𝑓 : 𝔽Ñ ℍ such that 𝐽 � 𝑓�p𝐼q,
we will call 𝑃𝑉p𝐽q a projective variety.

Torus subvarieties Tropical geometry generally focuses on subvarieties of the torus, as these give rise to
polyhedral complexes in ℝ𝑛. As such, we briefly recall the setup for this family of varieties also. Recall the
𝑛-dimensional torus over ℍ is pℍ�q𝑛. Given a Laurent polynomial 𝑝 P ℍr𝑋�1 , . . . , 𝑋�𝑛 s, its associated torus
hypersurface is

𝑉�p𝑝q :�  
a P pℍ�q𝑛 �� 𝟘 P 𝑝paq( .

Given a set of Laurent polynomials 𝐽 � ℍr𝑋�1 , . . . , 𝑋�𝑛 s, its associated torus prevariety is

𝑉�p𝐽q :�  
a P pℍ�q𝑛 �� a P 𝑉�p𝑝q for all 𝑝 P 𝐽

( � £
𝑝P𝐽

𝑉�p𝑝q .

If 𝐽 � 𝑓�p𝐼q for some Laurent ideal 𝐼 � 𝔽r𝑋�1 , . . . , 𝑋�𝑛 s over a field 𝔽 and homomorphism 𝑓 : 𝔽Ñ ℍ, we will
call 𝑉�p𝐽q a torus subvariety.

We will generally prove results for one of these three families of varieties and then deduce the analogous
result for the other families. This requires a dictionary for how to move between these families. This is very
similar to the situation over fields, therefore we shall state results without proof.

Affine space, projective space and the torus are related by the following inclusions

pℍ�q𝑛 𝑖
ãÑ ℍ𝑛 𝑗

ãÑ ℙ𝑛pℍq
p𝑎1, . . . 𝑎𝑛q ÞÑ p𝑎1, . . . 𝑎𝑛q ÞÑ r𝟙 : 𝑎1 : � � � : 𝑎𝑛s

.

The first inclusion is canonical, and so we will drop the 𝑖. We denote 𝑈 � 𝑗pℍ𝑛q and 𝑈� � 𝑗ppℍ�q𝑛q as the
affine and torus chart in ℙ𝑛pℍq respectively.

Lemma 2.33. Let 𝐽 � ℍr𝑋1, . . . , 𝑋𝑛s be a collection of polynomials. The affine prevariety 𝑉p𝐽q � ℍ𝑛 can
be identified with the projective prevariety 𝑃𝑉p𝐽 q � ℙ𝑛pℍq restricted to the affine chart 𝑈, where 𝐽 is the
homogenization of 𝐽:

𝐽 :�
#ð

𝑑P𝐷

𝑐𝑑 d 𝑋
degp𝑝q�

°𝑛
𝑖�1 𝑑𝑖

0 d 𝑋
𝑑1

1 d � � � d 𝑋𝑑𝑛
𝑛

����� 𝑝 � ð
dP𝐷

𝑐d dXd P 𝐽

+
� ℍr𝑋0, 𝑋1, . . . , 𝑋𝑛s .

Lemma 2.34. Let 𝐽 � ℍr𝑋�1 , . . . , 𝑋�𝑛 s be a collection of Laurent polynomials. Then 𝑉�p𝐽q � 𝑉p𝐽affqXpℍ�q𝑛
where 𝐽aff is the affinization of 𝐽:

𝐽aff :�
#ð

dP𝐷

𝑐d d 𝑋
𝑑1�𝑒1
1 d � � � d 𝑋𝑑𝑛�𝑒𝑛

𝑛

����� ð
dP𝐷

𝑐d dXd P 𝐽 , 𝑒𝑖 � min
𝑑P𝐷

p𝑑𝑖 , 0q
+
� ℍr𝑋1, . . . , 𝑋𝑛s .
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Moreover, the torus prevariety 𝑉�p𝐽q � pℍ�q𝑛 can be identified with the projective prevariety 𝑃𝑉p𝐽affq
restricted to the torus chart 𝑈�.

We end this section with a compilation of issues with polynomial rings and ideals over hyperfields for
algebraic geometry, and why we restrict ourselves to polynomial ideals coming from fields. This is not an
exhaustive list: see [30, Section 4.1] for additional subtleties, as well as an alternative approach to hyperfield
geometry.

Remark 2.35 (Polynomial multiplication is multi-valued). The set of polynomials over a field 𝔽r𝑋1, . . . , 𝑋𝑛s
has the structure of a ring. However, the set of polynomials over a general hyperfield ℍr𝑋1, . . . , 𝑋𝑛s is not a
hyperring, as multiplication is not single-valued. Instead, both addition and multiplication are multi-valued,
defined as �ð

dP𝐷

𝑎d dXd

�
`

� ð
d1P𝐷1

𝑏d1 dXd1

�
�

# ð
eP𝐷Y𝐷1

𝑐e d 𝑋e

����� 𝑐e P 𝑎e ` 𝑏e

+
,

�ð
dP𝐷

𝑎d dXd

�
d

� ð
d1P𝐷1

𝑏d1 dXd1

�
�

# ð
eP𝐷�𝐷1

𝑐e d 𝑋e

����� 𝑐e P
ð

e�d�d1
𝑎d d 𝑏d1

+
.

In the univariate case, it has the structure of a superring [7]. However even in the univariate case, this
structure has a lot of discrepancies such as not being distributive [7], multiplication not being associative,
and ℍr𝑋1, . . . , 𝑋𝑛s not being free in the sense of universal algebra [12].

Remark 2.36 (Roots of polynomials not closed under taking ideals). If we allow for multi-valued multiplica-
tion, we can still attempt to define an ideal as we usually would for polynomial rings. We define a hyperfield
polynomial ideal 𝐼 � ℍr𝑋1, . . . , 𝑋𝑛s to be a subset satisfying

(I1) 𝟘 P 𝐼,

(I2) If 𝑓 P 𝐼, then 𝜆 d 𝑓 � 𝐼 for all 𝜆 P ℍr𝑋1, . . . , 𝑋𝑛s,
(I3) If 𝑓 , 𝑔 P 𝐼, then 𝑓 ` 𝑔 � 𝐼.

It becomes quickly apparent that such a definition is too coarse for defining varieties over hyperfields.
Over a field, the common roots of a set of polynomials are also roots of all polynomials in the ideal they

generate. This is not true for hyperfield polynomial ideals. Considering the additive closure in (I3), we may
have two polynomials 𝑓 , 𝑔 P 𝐼 with a common root a P 𝑉p 𝑓 qX𝑉p𝑔q, but there exists some ℎ P 𝑓 ` 𝑔 � 𝐼 such
that a R 𝑉pℎq. This already occurs in simple examples: consider the univariate affine polynomials over 𝕊:

𝑓 � 𝑋 ` 𝟙 , 𝑔 � �𝑋 `�𝟙 , ℎ � 𝑋 `�𝟙 P 𝑓 ` 𝑔 .

Both 𝑓 and 𝑔 have a unique root 𝑋 � �𝟙, but the unique root of ℎ is 𝑋 � 𝟙, despite ℎ P 𝑓 ` 𝑔. A similar
phenomenon holds for the multiplicative action in (I2), where 𝑓 P 𝐼 has a root a P 𝑉p 𝑓 q, but there exists
some 𝜆 P ℍr𝑋1, . . . , 𝑋𝑛s and ℎ P 𝜆d 𝑓 such that a R 𝑉pℎq. For example, consider the univariate polynomials
over 𝕊:

𝑓 � 𝑋2 `�𝑋 ` 𝟙 , ℎ � 𝑋3 ` 𝑋2 ` 𝑋 ` 𝟙 P p𝑋 ` 𝟙qd 𝑓 .

While 𝑓 has the unique root 𝑋 � 𝟙, the unique root of ℎ is 𝑋 � �𝟙. Similar examples can easily be
constructed for other hyperfields including 𝕋.

Remark 2.37 (Hyperfield polynomial ideals are too restrictive). In the case where ℍ � 𝕋, we have a good
notion of what tropical varieties and tropical ideals should be [40]. We show that the only possible hyperfield
polynomial ideals of 𝕋r𝑋1, . . . , 𝑋𝑛s are those generated by monomials, and hence are far too restrictive.

Let 𝑓 �Ð
𝐷 𝑐d dXd be a generator for the polynomial ideal 𝐼 � 𝕋r𝑋1, . . . , 𝑋𝑛s. Then (I3) implies that

𝑓 ` 𝑓 �
#ð

dP𝐷

𝑎d dXd

����� 𝑎d P r8, 𝑐ds
+
� 𝐼 .

In particular, the monomial Xd is contained in 𝐼 for all d P 𝐷. As we can write 𝑓 as a linear combination
of these monomials, we can replace 𝑓 in the generating set by the monomials tXd | d P 𝐷u. Repeating
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this over all generators, we obtain that 𝐼 is generated by monomials. In particular, its associated variety
𝑉p𝐼q � 𝕋𝑛 can only be a collection of coordinate subspaces.

The situation is even worse when considering hyperfield Laurent polynomial ideals 𝐼 � 𝕋r𝑋�1 , . . . , 𝑋�𝑛 s, a
common setup in tropical geometry. In this case, each of the generating monomials of 𝐼 can be inverted and
so 𝐼 is either the zero ideal or all of 𝕋r𝑋�1 , . . . , 𝑋�𝑛 s.

These examples demonstrate that hyperfield polynomial ideals are too large to be compatible with alge-
braic varieties. In contrast, collections of polynomials 𝑓�p𝐽q coming from an ideal 𝐽 over a field are smaller
as they are not closed under addition and the multiplicative action of ℍr𝑋1, . . . , 𝑋𝑛s, but their varieties are
better behaved as we shall see in Section 4.2. It remains unclear what ‘ideal-like’ structure should be used
for defining varieties over general hyperfields: we will briefly discuss this in Section 6.

3 Relatively algebraically closed homomorphisms

In this section, we recall the definition of a relatively algebraically closed (RAC) homomorphism between
hyperfields, first proposed in [44]. We then exhibit a number of new families of RAC homomorphisms,
including ways of constructing new maps from previously known RAC maps.

To first motivate the definition, we recall the notion of an algebraically closed hyperfield.

Definition 3.1. A hyperfield ℍ is called algebraically closed if every univariate polynomial has a root in ℍ.

Lemma 3.2. Let 𝑓 : ℍ1 Ñ ℍ2 be a surjective hyperfield homomorphism. If ℍ1 is algebraically closed, then
ℍ2 is also algebraically closed.

Proof. Consider an arbitrary 𝑝 P ℍ2r𝑋s. As 𝑓 is surjective, there exists 𝑞 P ℍ1r𝑋s such that 𝑓�p𝑞q � 𝑝. As
ℍ1r𝑋s is algebraically closed, there exists some 𝑎 P 𝑉p𝑞q. By Lemma 2.31, 𝑓 p𝑎q P 𝑉p 𝑓�p𝑞qq � 𝑉p𝑝q. □

Example 3.3. Given a factor hyperfield ℍ � 𝔽{𝑈, the quotient map 𝜏 : 𝔽 Ñ ℍ is surjective. Hence, if 𝔽 an
algebraically closed field, ℍ is also algebraically closed. This immediately tells us that many of our examples
of hyperfields are algebraically closed, including 𝕂,𝕋 and ℙ.

We can extend this further to other hyperfields via Lemma 3.2. For example, the identity map id : ℙÑ Φ

is a surjective hyperfield homomorphism and hence Φ is also algebraically closed.

Let us briefly consider Lemma 3.2 for fields. Let 𝑓 : 𝔽1 Ñ 𝔽2 be a surjective homomorphism where 𝔽1 is
algebraically closed and 𝑝 P 𝔽1r𝑋s an arbitrary polynomial of degree 𝑑. As 𝑝 splits into linear factors over
𝔽1, homomorphism properties show 𝑓�p𝑝q also splits into linear factors over 𝔽2,

𝑝 �
𝑑¹

𝑖�1

p𝑋 � 𝑎𝑖q ñ 𝑓�p𝑝q �
𝑑¹

𝑖�1

p𝑋 � 𝑓 p𝑎𝑖qq .

This gives a much stronger property than simply that 𝔽2 is algebraically closed, 𝑓 gives a bijection be-
tween the roots of 𝑝 and 𝑓�p𝑝q counted with multiplicity. In particular, we have 𝑓 p𝑉p𝑝qq � 𝑉p 𝑓�p𝑝qq, a
strengthening of Lemma 2.31.

One key property that makes this work is that polynomials over algebraically closed fields have exactly
degree many roots. As the following example from [12] demonstrates, polynomials over hyperfields may have
many more roots than their degree.

Example 3.4. Consider the degree two polynomial 𝑃p𝑋q � 𝑋2 ` 𝑋 ` 𝟙 P ℙr𝑋s over the phase hyperfield.
Despite being a degree two polynomial, we show that it has infinitely many roots. Consider the phase
homomorphism ph : ℂÑ ℙ, and the family of polynomials 𝑝𝑘 P ℂr𝑋s with root sets

𝑝𝑘p𝑋q � 𝑋2 � 𝑋 � 𝑘 P ℂr𝑋s , 𝑘 P
�

1

4
,�8



, 𝑉p𝑝𝑘q �

"�1� 𝑖
?

4𝑘 � 1

2

*
.

Observe that the pushforward of each polynomial in the phase map is ph�p𝑝𝑘q � 𝑃, and so does not depend
on the choice of 𝑘. However, the image of the roots do depend on 𝑘, as

php𝑉p𝑝𝑘qq �
"
𝑒𝑖 𝜃 P ℙ

���� 𝜃 P tan�1
�
�
?

4𝑘 � 1
	
X
�
𝜋

2
,
3𝜋

2


*
.
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As each of these are roots of 𝑃, as we vary 𝑘 we see that 𝟘 P 𝑃p𝑒𝑖 𝜃q for all 𝜋{2   𝜃   3𝜋{2. As such, 𝑃 has
infinitely many roots, all coming from different polynomials in the pre-image of the phase map. In particular,
there are many roots of 𝑃 that we cannot lift to a root of 𝑝𝑘 , despite both ℂ and ℙ being algebraically closed.

Motivated by this example, we would like to restrict to maps between hyperfields that give a bijection
between roots of univariate polynomials. This motivates the definition of a relatively algebraically closed
homomorphism.

Definition 3.5. Let 𝑓 : ℍ1 Ñ ℍ2 be a surjective hyperfield homomorphism. We say that 𝑓 is relatively
algebraically closed (RAC) if for all univariate polynomials 𝑝 P ℍ1r𝑋s and every root 𝛽 P 𝑉p 𝑓�p𝑝qq, there
exists 𝛼 P 𝑓�1p𝛽q such that 𝛼 P 𝑉p𝑝q.

Note that the RAC property gives the opposite inclusion of Lemma 2.31 for univariate polynomials, i.e.
𝑉p 𝑓�p𝑝qq � 𝑓 p𝑉p𝑝qq. We will show in Section 4.1 that this extends to multivariate polynomials, giving a
hyperfield analogue of Kapranov’s theorem.

Example 3.6. Recall that every hyperfield ℍ has a trivial homomorphism to 𝕂, and that every univariate
polynomial 𝑝 P 𝕂r𝑋s has a root. This gives an alternative characterisation of algebraically closed: a hyper-
field ℍ is algebraically closed if and only if the trivial homomorphism 𝜔 : ℍ Ñ 𝕂 is relatively algebraically
closed.

Example 3.7. Given an algebraically closed valued field p𝔽, valq, the valuation map val : 𝔽Ñ 𝕂� Γ is RAC.
Proofs of this are given in [13, Lemma 3.14] and [42, Proposition 3.1.5], and in both cases this property is
used to prove Kapranov’s theorem.

Example 3.8. The homomorphism � logp| � |q : 𝕋ℂÑ 𝕋 introduced in Example 2.19 is RAC. This was proved
in [44] as a new non-trivial example of a RAC map, however we shall reprove this as a corollary in Section 3.2.

Example 3.9. Many natural homomorphisms between hyperfields are not RAC, as the following examples
demonstrate.

� The sign homomorphism sgn : ℝ Ñ 𝕊 is not RAC. Consider the irreducible polynomial 𝑝p𝑋q �
𝑋2 � 𝑋 � 1 P ℝr𝑋s. Its pushforward sgn�p𝑝q � 𝑋2 ` �𝑋 ` 𝟙 P 𝕊r𝑋s has a root at 𝟙 despite 𝑝 having
no roots.

� The phase homomorphism ph : ℂÑ ℙ is not RAC as Example 3.4 demonstrates.

3.1 Relatively algebraically closed maps from fields

In the following, we observe that if 𝑓 : 𝔽 Ñ ℍ is a surjective homomorphism from an algebraically closed
field to a stringent hyperfield, it is necessarily relatively algebraically closed. This result is deduced from a
number of existing results in the literature.

We briefly recall the notion of multiplicity for roots of univariate polynomials over hyperfields. Recall
from Remark 2.35 that univariate polynomials have a hypermultiplication d defined on them, giving ℍr𝑋s
the structure of a superring. Let 𝑝 P ℍr𝑋s, the multiplicity mult𝑎p𝑝q of an element 𝑎 P ℍ is defined as,

mult𝑎p𝑝q �
#

0 𝑎 R 𝑉p𝑝q
1�max tmult𝑎p𝑞q | 𝑝p𝑋q P p𝑋 `�𝑎qd 𝑞p𝑋qu 𝑎 P 𝑉p𝑝q (4)

Due to multiplication of polynomials over ℍ being multivalued, the polynomial 𝑞p𝑋q in (4) is not necessarily
unique. As such, the definition of multiplicity is necessarily recursive; see [12] for details on the original
definition and examples of the non-uniqueness.

Definition 3.10. A hyperfield ℍ satisfies the multiplicity bound if for all univariate polynomials 𝑝 P ℍr𝑋s,¸
𝑎Pℍ

mult𝑎p𝑝q ¤ degp𝑝q .

If this inequality is an equality, we say ℍ satisfies the multiplicity equality.
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With this definition in hand, we make use of the following theorem that gives sufficient conditions for a
map to be RAC.

Theorem 3.11. [44, Theorem 4.10] Let 𝑓 : 𝔽 Ñ ℍ be a surjective homomorphism. If 𝔽 is algebraically
closed and ℍ satisfies the multiplicity bound, then 𝑓 is relatively algebraically closed.

This theorem is a special case of a more general statement given in [44], where one replaces algebraically
closed field with a hyperfield that satisfies the multiplicity equality and the inheritance property. Informally,
the inheritance property guarantees one can write a polynomial as a product of linear factors given by
its roots with some other lower degree polynomial. Currently, this property is not well understood over
hyperfields, but is trivially satisfied by fields.

In comparison, multiplicities and the multiplicity bound have been much more studied for natural classes
of hyperfields [37, 23, 5]. In particular, we note the following result of Gunn:

Theorem 3.12. [24, Corollary E] All stringent hyperfields satisfy the multiplicity bound.

Combining Theorem 3.11 and Theorem 3.12 yields the following.

Corollary 3.13. Let 𝑓 : 𝔽Ñ ℍ be a surjective homomorphism from an algebraically closed field to a stringent
hyperfield. Then 𝑓 is relatively algebraically closed.

Example 3.14. This gives an alternative proof that the valuation map val : 𝔽 Ñ 𝕂 � Γ on an algebraically
closed valued field is RAC. However, we can extend this result to fine valuations introduced in Example 2.25 to
give a new family of RAC maps. The field of Hahn series 𝔽⟦𝑡Γ⟧ is algebraically closed when 𝔽 is algebraically
closed and Γ is a divisible group, hence fval : 𝔽⟦𝑡Γ⟧Ñ 𝔽� Γ is RAC. The same holds for the fine valuation
on the field of Puiseux series 𝔽tt𝑡uu when 𝔽 is algebraically closed.

3.2 Tropical extensions of relatively algebraically closed maps

Given a homomorphism 𝑓 : ℍ1 Ñ ℍ2, recall its tropical extension 𝑓 Γ : ℍ1 � Γ Ñ ℍ2 � Γ introduced in
Definition 2.18. In this section, we prove that RAC maps are closed under taking tropical extensions.

Proposition 3.15. Let 𝑓 : ℍ1 Ñ ℍ2 be a relatively algebraically closed homomorphism. Then for any
ordered abelian group Γ, the induced homomorphism 𝑓 Γ : ℍ1 � Γ Ñ ℍ2 � Γ is relatively algebraically closed.

To do so, we first note the following lemma that determines when an element is a root of a polynomial
over a tropical extension.

Lemma 3.16. Let 𝑝 P pℍ� Γqr𝑋s and 𝑎 P ℍ� Γ with 𝑝p𝑎q �Ð𝑛
𝑖�0p𝑐𝑖 , 𝑔𝑖q, where p𝑐𝑖 , 𝑔𝑖q is the evaluation

of the monomial of degree 𝑖 at 𝑎. Then 𝑎 is a root of 𝑝 if and only if there exists 𝐽 � t0, 1, . . . , 𝑛u such that

𝑔 𝑗   𝑔𝑖 , 𝑔 𝑗 � 𝑔 𝑗1 @ 𝑗 , 𝑗 1 P 𝐽, 𝑖 R 𝐽 , and 𝟘ℍ Pð
𝑗P𝐽

ℍ 𝑐 𝑗 .

Proof. Let 𝐽 be the index set of monomials with 𝑔 𝑗 minimal: any other monomials are dominated and so
do not contribute to the summation. The sum of these monomials contains 𝟘 if and only if their sum in ℍ

contains 𝟘ℍ. □

Proof of Proposition 3.15. We will liberally use the conditions of Lemma 3.16 throughout. Consider the
polynomials

𝑝 �
𝑛ð

𝑖�0

p𝜆𝑖 , 𝑔𝑖q d 𝑋 𝑖 P pℍ1 � Γqr𝑋s , 𝑓 Γ� p𝑝q �
𝑛ð

𝑖�0

p 𝑓 p𝜆𝑖q, 𝑔𝑖q d 𝑋 𝑖 P pℍ2 � Γqr𝑋s .

Let p𝑏, ℎq P 𝑉p 𝑓 Γ� p𝑝qq be a root of 𝑓 Γ� p𝑝q, and let 𝐽 � t0, 1, . . . , 𝑛u be the indices of the monomials at which
the minimum is attained in Γ, i.e.

𝑔 𝑗 d ℎ 𝑗 � 𝑔 𝑗 � 𝑗 � ℎ   𝑔𝑖 � 𝑖 � ℎ � 𝑔𝑖 d ℎ𝑖 , 𝑔 𝑗 d ℎ 𝑗 � 𝑔 𝑗1 d ℎ 𝑗1 , @ 𝑗 , 𝑗 1 P 𝐽 , 𝑖 R 𝐽 .

Then 𝑏 must be a non-zero root of the polynomial
Ð

𝑗P𝐽 𝑓 p𝜆 𝑗q d 𝑋 𝑗 P ℍ2r𝑋s. As 𝑓 is RAC, there exists a

non-zero root 𝑎 P 𝑓�1p𝑏q of the polynomial
Ð

𝑗P𝐽 𝜆 𝑗d𝑋 𝑗 P ℍ1r𝑋s. As p𝑎, ℎq P ℍ1�Γ satisfies the conditions
of Lemma 3.16, it is a root of 𝑝 in the preimage of p𝑏, ℎq. □
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Recall from Example 3.6 that a hyperfield is algebraically closed if the trivial homomorphism 𝜔 : ℍÑ 𝕂

is relatively algebraically closed. Applying Proposition 3.15 gives us the following corollary.

Corollary 3.17. Let ℍ be an algebraically closed hyperfield. The homomorphism 𝜔Γ : ℍ � Γ Ñ 𝕂 � Γ is
relatively algebraically closed.

Example 3.18. Recall the map 𝜂p𝑧q � � logp|𝑧|q from 𝕋ℂ to 𝕋 introduced in Example 2.19. It was shown
in [44] that this map is RAC, and was the only ‘non-trivial’ example known. Proposition 3.15 gives us a new
perspective on this map via tropical extensions. Recall that we can view the map 𝜂 as the tropical extension

𝜔Γ : Φ�ℝÑ 𝕂�ℝ

p𝜃, 𝑔q ÞÑ p𝟙, 𝑔q .

Example 3.3 shows that the tropical phase hyperfield is algebraically closed, hence Corollary 3.17 shows 𝜂

must also be RAC.

3.3 Quotients of relatively algebraically closed maps

In the following, we show that RAC maps are closed under ‘compatible’ quotients of the domain and target
hyperfields.

Proposition 3.19. Let 𝑓 : ℍ1 Ñ ℍ2 be a relatively algebraically closed homomorphism. If 𝑈1 � ℍ�
1 and

𝑈2 � ℍ�
2 such that 𝑓 p𝑈1q � 𝑈2, then the map

𝑓 : ℍ1{𝑈1 Ñ ℍ2{𝑈2

𝑎 ÞÑ 𝑓 p𝑎q

is relatively algebraically closed.

Proof. Let 𝜏 : ℍ1 Ñ ℍ1{𝑈1 and 𝜎 : ℍ2 Ñ ℍ2{𝑈2 denote the corresponding quotient maps. Observe that 𝑓

is defined such that the following diagram commutes,

ℍ1 ℍ2

ℍ1{𝑈1 ℍ2{𝑈2

𝑓

𝜏 𝜎

𝑓

i.e. we have 𝑓 p𝜏p𝑎qq � 𝜎p 𝑓 p𝑎qq for all 𝑎 P ℍ1. We show that 𝑓 is well-defined similarly to the proof of
Lemma 2.27. Let 𝑎, 𝑏 P ℍ1 such that 𝜏p𝑎q � 𝜏p𝑏q, i.e. there exists 𝑢1 P 𝑈1 such that 𝑎 � 𝑏 d1 𝑢1. Then,

𝑓 p𝜏p𝑎qq � 𝜎p 𝑓 p𝑎qq � 𝜎p 𝑓 p𝑏 d1 𝑢1qq � 𝜎p 𝑓 p𝑏q d2 𝑓 p𝑢1qq
� 𝜎p 𝑓 p𝑏qq d2 𝜎p 𝑓 p𝑢1qq � 𝜎p 𝑓 p𝑏qq d2 𝟙2 � 𝜎p 𝑓 p𝑏qq � 𝑓 p𝜏p𝑏qq,

as 𝑓 p𝑢1q P 𝑈2. Thus, 𝑓 is independent of the choice of representative for the coset. Moreover, it is straight-
forward to verify that 𝑓 is also a surjective homomorphism.

To show it is RAC, let 𝑄 P pℍ1{𝑈1qr𝑋s and 𝑃 � 𝑓�p𝑄q P pℍ2{𝑈2qr𝑋s. We show that for some arbitrary
root 𝑧 P 𝑉p𝑃q, there exists 𝑥 P 𝑉p𝑄q such that 𝑓 p𝑥q � 𝑧. By [43, Corollary 6.3.4], we can decompose the root
set 𝑉p𝑃q as follows

𝑉p𝑃q �
¤

𝜎�p𝑝q�𝑃

𝜎p𝑉p𝑝qq , 𝑝 P ℍ2r𝑋s .

This implies that there exists a polynomial 𝑝 P 𝜎�1
� p𝑃q with root 𝑤 P 𝑉p𝑝q � ℍ2 such that 𝜎p𝑤q � 𝑧. We

now claim there exists a polynomial 𝑞 P 𝜏�1
� p𝑄q � ℍ1r𝑋s such that 𝑓�p𝑞q � 𝑝. To justify this, note that

𝜎�p𝑝q � 𝑃 � 𝑓�p𝑄q � 𝑓�p𝜏�p𝑞1qq � 𝜎�p 𝑓�p𝑞1qq ,
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for all 𝑞1 P 𝜏�1
� p𝑄q. Fixing some 𝑞1, this implies that each coefficient of 𝑝 differs from the corresponding

coefficient of 𝑓�p𝑞1q by a scalar belonging to 𝑈2. As 𝑓 p𝑈1q � 𝑈2, there exists 𝑞 P ℍ1r𝑋s such that 𝑓�p𝑞q � 𝑝

and has coefficients that differ from 𝑞1 by scalars in 𝑈1. Hence 𝜏�p𝑞1q � 𝜏�p𝑞q, and so 𝑞 satisfies the claim.
As 𝑓 is RAC, for 𝑤 P 𝑉p𝑝q there exists 𝑦 P 𝑓�1p𝑤q such that 𝑦 P 𝑉p𝑞q. Applying Lemma 2.31, we have

𝜏p𝑦q P 𝜏p𝑉p𝑞qq � 𝑉p𝜏�p𝑞qq � 𝑉p𝑄q .
Setting 𝑥 � 𝜏p𝑦q, we see that

𝑓 p𝑥q � 𝑓 p𝜏p𝑦qq � 𝜎p 𝑓 p𝑦qq � 𝜎p𝑤q � 𝑧 ,

which concludes the proof. □

Example 3.20. As the complex numbers are algebraically closed, the trivial homomorphism 𝜔 : ℂ Ñ 𝕂 is
RAC. By applying Proposition 3.19 when 𝑈1 � ℝ¡0 and 𝑈2 � 𝟙𝕂, we get that ℙ � ℂ{ℝ¡0 Ñ 𝕂 is also a
RAC map and an alternative proof that ℙ is algebraically closed.

The compatible quotient condition, i.e. 𝑓 p𝑈1q � 𝑈2, cannot be relaxed and still preserve the RAC
property, as the following example demonstrates. The identity map id: ℂ Ñ ℂ is trivially RAC. However,
if we try to quotient by 𝑈1 � 𝟙ℂ and 𝑈2 � ℝ¡0, we get the phase map ph : ℂ Ñ ℙ, which is not RAC as
shown in Example 3.9.

Example 3.21. A number of authors [32, 34, 36] have investigated valuations on hyperfields. Similar to the
discussion in Section 2.1, these can also be viewed as homomorphisms ℍÑ 𝕂�Γ where Γ is the value group.
If ℍ � 𝔽{𝑈 is a factor hyperfield where p𝔽, valq a valued field and 𝑈 � val�1p0q then it is straightforward
to verify induced map val𝑈 on ℍ is also a valuation. Moreover, as val is RAC, applying Proposition 3.19 in
the case 𝑈1 � 𝑈 and 𝑈2 � 𝟙2 implies that val𝑈 must also be RAC.

4 Tropical geometry for hyperfields

In this section, we prove our main theorems: hyperfield generalisations of Kapranov’s theorem and the
Fundamental theorem of tropical geometry.

4.1 Kapranov’s theorem

In this section we prove a generalisation of Kapranov’s theorem for RAC homomorphisms between hyper-
fields. We first prove it for affine hypersurfaces, and show the projective and torus cases as corollaries.

Theorem 4.1. Let 𝑓 : ℍ1 Ñ ℍ2 be a relatively algebraically closed homomorphism and 𝑝 P ℍ1r𝑋1, . . . , 𝑋𝑛s
a polynomial. Then

𝑉p 𝑓�p𝑝qq � 𝑓 p𝑉p𝑝qq .
The proof of this statement is very similar to the case where ℍ2 � 𝕋 given in [44], as we do not require

ℍ2 to have any additional properties. However, we include a proof for completeness.

Proof. Let 𝑝 �Ð
𝐼Pℤ𝑛

¥0
𝑐𝐼dX 𝐼 P ℍr𝑋1, . . . , 𝑋𝑛s and pick some root b P 𝑉p 𝑓�p𝑝qq of the push-forward. Given

Lemma 2.31, it suffices to show there exists a P 𝑉p𝑝q such that 𝑓 paq � b.
Fix some 𝜆𝑖 P 𝑓�1p𝑏𝑖q: note that such values exist as 𝑓 is surjective. For any 𝐷 � p𝑑1, . . . , 𝑑𝑛q P ℤ𝑛

¥0, we
define the maps

𝜙𝐷 : ℍ1 Ñ ℍ𝑛
1 𝜓𝐷 : ℍ2 Ñ ℍ𝑛

2

𝑥 ÞÑ p𝜆1 d1 𝑥
𝑑1 , . . . , 𝜆𝑛 d1 𝑥

𝑑𝑛q 𝑦 ÞÑ p 𝑓 p𝜆1q d2 𝑦
𝑑1 , . . . , 𝑓 p𝜆𝑛q d2 𝑦

𝑑𝑛q .
It is easy to verify by hyperfield homomorphism properties that the following diagram commutes.

ℍ1 ℍ2

ℍ𝑛
1 ℍ𝑛

2

𝑓

𝜙𝐷 𝜓𝐷

𝑓
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Rather than pulling b back through the bottom row to find a root, we will instead traverse the other way
around the square.

First note that 𝜓𝐷p𝟙2q � b. Consider 𝜙�
𝐷
p𝑝q � 𝑝 � 𝜙𝐷, the pullback of the polynomial 𝑝 through 𝜙𝐷, i.e.

𝜙�𝐷p𝑝q �
ð

𝐼Pℤ𝑛
¥0

𝑐𝐼 d1 p𝜆1 d1 𝑋𝑑1q𝑖1 d1 � � � d1 p𝜆𝑛 d1 𝑋𝑑𝑛q𝑖𝑛 � ð
𝐼Pℤ𝑛

¥0

𝑐𝐼 d1 λ
𝐼 d1 𝑋𝐷�𝐼 .

Note that 𝜙�
𝐷
p𝑝q may not be a polynomial in ℍ1r𝑋s, as we require coefficients to be elements rather than

sets. There may exist two support vectors 𝐼, 𝐼 1 of 𝑝 such that 𝐷 � 𝐼 � 𝐷 � 𝐼 1, hence the hypersum of their
coefficients may give a set. However, as 𝑝 has finite support we can choose 𝐷 sufficiently generically such
that 𝐷 � 𝐼 � 𝐷 � 𝐼 1 for all 𝐼, 𝐼 1 in the support of 𝑝. This ensures 𝜙�

𝐷
p𝑝q P ℍ1r𝑋s, as well as ensuring we cannot

get any cancellation of terms.
By expanding out and using properties of homomorphisms, we see that

𝑓�p𝑝qp𝜓𝐷p𝑋qq � 𝑓�p𝜙�𝐷p𝑝qqp𝑋q ñ 𝟘2 P 𝑓�p𝑝qpbq � 𝑓�p𝜙�𝐷p𝑝qqp𝟙2q .

As 𝑓 is a RAC homomorphism, there exists an element 𝑎 P ℍ1 such that 𝟘1 P 𝜙�
𝐷
p𝑝qp𝑎q and 𝑓 p𝑎q � 𝟙2.

Define a � 𝜙𝐷p𝑎q, we then see that:

𝑝paq � 𝜙�𝐷p𝑝qp𝑎q Q 𝟘1 ,

𝑓 paq � p 𝑓 p𝜆1q d2 𝑓 p𝑎q𝑑1 , . . . , 𝑓 p𝜆𝑛q d2 𝑓 p𝑎q𝑑𝑛q � b .

□

We can deduce a projective version of Kapranov’s theorem that follows immediately from Theorem 4.1
and (3).

Corollary 4.2. Let 𝑓 : ℍ1 Ñ ℍ2 be a relatively algebraically closed homomorphism and 𝑝 P ℍ1r𝑋0, 𝑋1, . . . , 𝑋𝑛s
a homogeneous polynomial. Then

𝑃𝑉p 𝑓�p𝑝qq � 𝑓 p𝑃𝑉p𝑝qq .
We can also deduce a torus version of Kapranov’s theorem as a fairly immediate corollary.

Corollary 4.3. Let 𝑓 : ℍ1 Ñ ℍ2 be a relatively algebraically closed homomorphism and 𝑝 P ℍ1r𝑋�1 , . . . , 𝑋�𝑛 s
a Laurent polynomial. Then

𝑉�p 𝑓�p𝑝qq � 𝑓 p𝑉�p𝑝qq .
Proof. We will utilise the projective case from Corollary 4.2, restricted to the torus charts 𝑈�

ℍ1
and 𝑈�

ℍ2

using Lemma 2.34. From this, we obtain

𝑓 p𝑉�p𝑝qq � 𝑓 p𝑃𝑉p𝑝aff q X𝑈�
ℍ1
q � 𝑓 p𝑃𝑉p𝑝aff qq X𝑈�

ℍ2
� 𝑃𝑉p 𝑓�p𝑝aff qq X𝑈�

ℍ2
� 𝑉�p 𝑓�p𝑝qq .

□

4.2 Extending the fundamental theorem of tropical geometry to hyperfields

In tropical geometry, Kapranov’s theorem can be extended to the fundamental theorem by considering
varieties defined by polynomial ideals, rather than hypersurfaces defined by a single polynomial. The aim of
this section is to present a parallel picture for RAC hyperfield homomorphisms. However, there are major
deficiencies with polynomial ideals in the hyperfield setting as laid out in Remarks 2.35, 2.36 and 2.37. As
such, we restrict our setting to RAC maps from fields where polynomial ideals are well behaved with respect
to algebraic varieties.

Theorem 4.4. Let 𝑓 : 𝔽Ñ ℍ be a relatively algebraically closed homomorphism from an algebraically closed
field 𝔽 to a hyperfield ℍ. Then, for any homogeneous ideal 𝐼 � 𝔽r𝑋0, 𝑋1 . . . 𝑋𝑛s,

𝑓 p𝑃𝑉p𝐼qq � 𝑃𝑉p 𝑓�p𝐼qq .
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As with Kapranov’s theorem, one containment follows directly from hyperfield homomorphism properties,
and doesn’t require any (relatively) algebraically closed assumptions. Moreover, we will show the affine case,
as the projective and torus versions of the statement follow immediately.

Lemma 4.5. Let 𝑓 : 𝔽 Ñ ℍ be a homomorphism from a field 𝔽 to a hyperfield ℍ. For any ideal 𝐼 �
𝔽r𝑋1, . . . 𝑋𝑛s,

𝑓 p𝑉p𝐼qq � 𝑉p 𝑓�p𝐼qq .
Proof. Consider b P 𝑓 p𝑉p𝐼qq, and pick some a P 𝑓�1pbq such that a P 𝑉p𝐼q. In particular, we have a P 𝑉p𝑝q for
all 𝑝 P 𝐼. Lemma 2.31 implies that 𝑓 paq P 𝑓 p𝑉p𝑝qq � 𝑉p 𝑓�p𝑝qq for all 𝑝 P 𝐼, and hence b P �𝑝P𝐼 𝑉p 𝑓�p𝑝qq �
𝑉p 𝑓�p𝐼qq. □

The other containment is more involved. We will use multiple facts from elementary algebraic geometry
without proof: we refer to [15] for further details. We will also make liberal use of Lemma 2.31 and
Theorem 4.1.

Proof. The inclusion 𝑓 p𝑃𝑉p𝐼qq � 𝑃𝑉p 𝑓�p𝐼qq follows from the affine case in Lemma 4.5 and quotienting by
scalars. We prove the reverse inclusion via induction on the dimension of the variety 𝑃𝑉p𝐼q.

Let dimp𝑃𝑉p𝐼qq � 0, then 𝑃𝑉p𝐼q � tap1q, . . .ap𝑙qu � ℙ𝑛p𝔽q is a finite set of 𝑙 points. Consider any
y P ℙ𝑛pℍqz 𝑓 p𝑃𝑉p𝐼qq, we construct a polynomial in 𝑓�p𝐼q that vanishes on t 𝑓 pap1qq, . . . , 𝑓 pap𝑙qqu but not on
y. For each a P 𝑃𝑉p𝐼q, fix 𝑗 P t0, . . . , 𝑛u such that 𝑓 p𝑎 𝑗q � 𝟘. Then there exists 𝑘 P t0, . . . , 𝑛uz 𝑗 such that

𝑓 p𝑎𝑘q
𝑓 p𝑎 𝑗q �

𝑦𝑘

𝑦 𝑗

ñ 𝑎𝑘

𝑎 𝑗

� 𝑤𝑘

𝑤 𝑗

@w P 𝑓�1pyq � ℙ𝑛p𝔽q .

Note that these quantities are well defined in projective space. Define the linear polynomial 𝑃a � 𝑎 𝑗 � 𝑋𝑘 �
𝑎𝑘 � 𝑋 𝑗 and let 𝑃 � ±

aP𝑃𝑉p𝐼q 𝑃a P 𝔽r𝑋0, . . . , 𝑋𝑛s. This is defined such that 𝑃paq � 0 for all a P 𝑃𝑉p𝐼q, but

𝑃pwq � 0 for all w P 𝑓�1pyq. By the Nullstellensatz, there exists 𝑚 P ℕ such that 𝑃𝑚 P 𝐼, but still does not
vanish on 𝑓�1pyq. Applying Theorem 4.1, we see that

y � 𝑓 pwq R 𝑓 p𝑃𝑉p𝑃𝑚qq � 𝑃𝑉p 𝑓�p𝑃𝑚qq ñ y R
£
𝑝P𝐼

𝑃𝑉p 𝑓�p𝑝qq � 𝑃𝑉p 𝑓�p𝐼qq .

This completes the base case of dimp𝑃𝑉p𝐼qq � 0.
We now assume that the claim holds for all varieties of dimension less than 𝑘, and let dimp𝑃𝑉p𝐼qq � 𝑘.

We will first prove the case where 𝑃𝑉p𝐼q is irreducible i.e. 𝐼 is prime, and consider the reducible case after.
Consider an arbitrary y P ℙ𝑛pℍqz 𝑓 p𝑃𝑉p𝐼qq and fix some element w P 𝑓�1pyq in the preimage with

corresponding maximal ideal 𝔪w � 𝔽r𝑋0, 𝑋1, . . . , 𝑋𝑛s. As 𝔪w is maximal and dimp𝑃𝑉p𝐼qq ¡ 0, there exists
some 𝑞 P 𝔪wz𝐼. Geometrically, this is equivalent to 𝑞pwq � 0 but 𝑞 does not vanish on all of 𝑃𝑉p𝐼q. By [15,
Proposition 9.4.10], we have

dimp𝑃𝑉p𝐼q X 𝑃𝑉p𝑞qq � dimp𝑃𝑉p𝐼 � x𝑞yq � 𝑘 � 1 .

Applying the inductive hypothesis gives us

y � 𝑓 pwq R 𝑓 p𝑃𝑉p𝐼qq � 𝑓 p𝑃𝑉p𝐼 � x𝑞yqq �
£

𝑝P𝐼�x𝑞y

𝑃𝑉p 𝑓�p𝑝qq .

Hence, there exists 𝑝 P 𝐼 � x𝑞y such that 𝟘 R 𝑓�p𝑝qpyq, and therefore that 𝑝pwq � 0 for all w P 𝑓�1pyq. By
expressing 𝑝 as a certain combination, we note

𝑝 � 𝑝 � 𝜆𝑞𝑚 , 𝑝 P 𝐼 , 𝜆 P 𝔽r𝑋0, . . . , 𝑋𝑛s , 𝑚 P ℕ

ñ 𝑝pwq � 𝑝pwq � 𝜆pwq𝑞𝑚pwq � 𝑝pwq � 0 .

Hence, there exists a polynomial 𝑝 P 𝐼 such that w R 𝑃𝑉p𝑝q for all w P 𝑓�1pyq. Applying Theorem 4.1 gives
us

y � 𝑓 pwq R 𝑓 p𝑃𝑉p𝑝qq � 𝑃𝑉p 𝑓�p𝑝qq ñ y R 𝑃𝑉p 𝑓�p𝑝qq �
£
𝑝P𝐼

𝑃𝑉p 𝑓�p𝑝qq � 𝑃𝑉p 𝑓�p𝐼qq .
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Finally, suppose that 𝑃𝑉p𝐼q � �𝑟
𝑠�1 𝑃𝑉p𝐼𝑠q is reducible into irreducible components 𝑃𝑉p𝐼𝑠q. On each

irreducible component, we have 𝑓 p𝑃𝑉p𝐼𝑠qq � 𝑃𝑉p 𝑓�p𝐼𝑠qq. Therefore, applying Lemma 4.6 gives us

𝑓 p𝑃𝑉p𝐼qq �
𝑟¤

𝑠�1

𝑓 p𝑃𝑉p𝐼𝑠qq �
𝑟¤

𝑠�1

𝑃𝑉p 𝑓�p𝐼𝑠qq � 𝑃𝑉p 𝑓�p𝐼qq .

□

Lemma 4.6. Let 𝑓 : 𝔽 Ñ ℍ be a relatively closed hyperfield homomorphism from an algebraically closed
field 𝔽 to a hyperfield ℍ. Let 𝑃𝑉p𝐼q be a projective variety with decomposition into irreducible components
𝑃𝑉p𝐼q � 𝑃𝑉p𝐼1q Y � � � Y 𝑃𝑉p𝐼𝑟 q. Then

𝑃𝑉p 𝑓�p𝐼qq � 𝑃𝑉p 𝑓�p𝐼1qq Y � � � Y 𝑃𝑉p 𝑓�p𝐼𝑟 qq .

Proof. Assume y P 𝑃𝑉p 𝑓�p𝐼𝑠qq for some 𝑠 P r𝑟s, then 𝑓�p𝑝qpyq Q 𝟘 for all 𝑝 P 𝐼𝑠. As 𝐼 � 𝐼𝑠, it immediately
follows y P 𝑃𝑉p 𝑓�p𝐼qq.

Conversely, if y R �𝑟
𝑠�1 𝑃𝑉p 𝑓�p𝐼𝑠qq, then for each 𝑠 P r𝑟s there exists some 𝑝𝑠 P 𝐼𝑠 such that 𝑓�p𝑝𝑠qpyq S 𝟘.

This implies that 𝑝𝑠pwq � 0 for all w P 𝑓�1pyq. Let 𝑝 � ±𝑟
𝑖�1 𝑝𝑠 P

�𝑟
𝑠�1 𝐼𝑠: this implies 𝑝 is contained in

the radical of 𝐼, and therefore, there exists 𝑚 P ℕ such that 𝑝𝑚 P 𝐼. Moreover, 𝑝𝑚pwq � 0 for all preimages
w, and so applying Kapranov’s Theorem gives

y � 𝑓 pwq R 𝑓 p𝑃𝑉p𝑝𝑚qq � 𝑃𝑉p 𝑓�p𝑝𝑚qq � 𝑃𝑉p 𝑓�p𝐼qq .

□

We get analogous statements for affine varieties and torus subvarieties by applying Lemmas 2.33 and 2.34
respectively.

Corollary 4.7. Let 𝑓 : 𝔽 Ñ ℍ be a relatively algebraically closed homomorphism from an algebraically
closed field 𝔽 to a hyperfield ℍ. Then, for any ideal 𝐼 � 𝔽r𝑋1 . . . 𝑋𝑛s,

𝑓 p𝑉p𝐼qq � 𝑉p 𝑓�p𝐼qq .

Moreover, for any Laurent ideal 𝐽 � 𝔽r𝑋�1 , . . . , 𝑋�𝑛 s,

𝑓 p𝑉�p𝐽qq � 𝑉�p 𝑓�p𝐽qq .

Proof. We denote the affine chart over 𝔽 and ℍ as 𝑈𝔽 and 𝑈ℍ respectively. By analogous arguments to
those from Corollary 4.3, observe that

𝑓 p𝑃𝑉p𝐼 q X𝑈𝔽q � 𝑓 p𝑃𝑉p𝐼 qq X𝑈ℍ , 𝑓 p𝑃𝑉p𝐽aff q X𝑈�
𝔽
q � 𝑓 p𝑃𝑉p𝐽aff qq X𝑈�

ℍ
.

Combining Lemma 2.33 and Theorem 4.4 with this observation, we see

𝑓 p𝑉p𝐼qq � 𝑓 p𝑃𝑉p𝐼 q X𝑈𝔽q � 𝑓 p𝑃𝑉p𝐼 qq X𝑈ℍ � 𝑃𝑉p 𝑓�p𝐼 qq X𝑈ℍ � 𝑉p 𝑓�p𝐼qq .

Similarly, combining Lemma 2.34 and Theorem 4.4 with the above observation gives the analogous statement
for torus subvarieties,

𝑓 p𝑉�p𝐽qq � 𝑓 p𝑃𝑉p𝐽aff q X𝑈�
𝔽
q � 𝑓 p𝑃𝑉p𝐽aff qq X𝑈�

ℍ
� 𝑃𝑉p 𝑓�p𝐽aff qq X𝑈�

ℍ
� 𝑉�p 𝑓�p𝐽qq .

□
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5 Fine tropical varieties

Let p𝔽, valq be an algebraically closed valued field and 𝐼 � 𝔽r𝑋1, . . . , 𝑋𝑛s an ideal. The fundamental theorem
of tropical geometry states we can define the corresponding tropical variety tropp𝑉p𝐼qq as either valp𝑉p𝐼qq,
the image of the algebraic variety in the valuation map, or as 𝑉pval�p𝐼qq, the hyperfield variety determined
by the induced ideal over 𝕋. For certain valued fields, we can consider a fine valuation map that recalls
more information and is relatively algebraically closed by Corollary 3.13. Moreover, Theorem 4.4 gives us a
natural notion of a fine tropical variety derived from this fine valuation. In this section, we introduce fine
tropical varieties and motivate them as an avenue of further study.

Recall from Examples 2.22 and 2.25 the field of Hahn series 𝔽⟦𝑡Γ⟧. We will restrict ourselves to ℂ⟦𝑡ℝ⟧
from now on as this is the most natural setting for tropical geometry, but the following will hold for any
algebraically closed field 𝔽 and divisible ordered abelian group Γ. Recall that ℂ⟦𝑡ℝ⟧ comes with the fine
valuation map

fval : ℂ⟦𝑡ℝ⟧Ñ ℂ�ℝ

𝜌 :�
¸
𝑔P𝐺

𝑐𝑔𝑡
𝑔 ÞÑ p𝑐𝛾 , 𝛾q , 𝛾 � minp𝑔 | 𝑔 P 𝐺q ,

that forgets everything except the leading term of a Hahn series. We denote the leading coefficient of
𝜌 by lcp𝜌q :� 𝑐𝛾. We will utilise that the fine valuation of a non-zero Hahn series 𝜌 can be written as
fvalp𝜌q � plcp𝜌q, valp𝜌qq.
Definition 5.1. Let 𝐼 � ℂ⟦𝑡ℝ⟧r𝑋1, . . . , 𝑋𝑛s be an ideal. The associated (affine) fine tropical variety is

ftropp𝑉p𝐼qq � fvalp𝑉p𝐼qq � 𝑉pfval�p𝐼qq � pℂ�ℝq𝑛 .

The projective and torus analogues are defined similarly.

The Fundamental theorem of tropical geometry [42, Theorem 3.2.5] gives a third description of a tropical
variety via Gröbner theory. While this is not possible for enriched valuations in general, we can give a
description of a fine tropical variety this way. We shall restrict ourselves to subvarieties of the torus for the
remainder of this section to simplify exposition and highlight the parallels with ordinary tropical geometry.

We very briefly recall some Gröbner theory over the valued field ℂ⟦𝑡ℝ⟧, see [42] for derivations of defini-
tions over general valued fields. The residue field of ℂ⟦𝑡ℝ⟧ is ℂ, where the representative of the Hahn series 𝜌

is its leading coefficient lcp𝜌q. As such, given some Laurent polynomial 𝑝 � °
𝜌d �Xd P ℂ⟦𝑡ℝ⟧r𝑋�1 , . . . , 𝑋�𝑛 s,

we define its initial form with respect to u P ℝ𝑛 to be the Laurent polynomial

inup𝑝q �
¸

dP𝐷min

lcp𝜌dq �Xd P ℂr𝑋�1 , . . . , 𝑋�𝑛 s , 𝐷min :� td P ℤ𝑛 | valp𝜌dq � d � u minimal u .

Given an ideal 𝐼 � ℂ⟦𝑡ℝ⟧r𝑋�1 , . . . , 𝑋�𝑛 s, its initial ideal inup𝐼q with respect to u P ℝ𝑛 is

inup𝐼q � xinup𝑝q | 𝑝 P 𝐼y � ℂr𝑋�1 , . . . , 𝑋�𝑛 s ,

the ideal generated by all initial forms of polynomials in 𝐼.

Theorem 5.2. Let 𝐼 � ℂ⟦𝑡ℝ⟧r𝑋�1 , � � � , 𝑋�𝑛 s be an ideal. The fine tropical variety associated to 𝐼 is

ftropp𝑉�p𝐼qq �
¤

uPℝ𝑛

�
𝑉�pinup𝐼qq � tuu

� � pℂ� �ℝq𝑛 .

Proof. Throughout we will only make use of the definition ftropp𝑉�p𝐼qq :� 𝑉�pfval�p𝐼qq of a fine tropical
variety, and so write this everywhere.

We first show that for a single polynomial 𝑝 � °
dP𝐷 𝜌d �Xd, we have

𝑉�pfval�p𝑝qq �
¤

uPℝ𝑛

�
𝑉�pinup𝑝qq � tuu

�
(5)
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Consider some pz,uq P pℂ�q𝑛 �ℝ𝑛 � pℂ�ℝq𝑛. Utilising the hyperfield operations of ℂ�ℝ, we have

pz,uq P 𝑉�pfval�p𝑝qq ô 8 P ð
dP𝐷

fvalp𝜌dq d pz,uqdd ô 8 P ð
dP𝐷min

fvalp𝜌dq d pzd,d � uq

where we can restrict the summation to 𝐷min as other terms will not contribute. Restricting to the ℂ-part
of this sum, we obtain that

8 P ð
dP𝐷min

fvalp𝜌dq d pzd,d � uq ô
¸

dP𝐷min

lcp𝜌dq � zd � 0 ô z P 𝑉�pinup𝑝qq ,

giving the equivalence in (5).
We now consider the general case for an ideal 𝐼. Using (5), we have

𝑉�pfval�p𝐼qq �
£
𝑝P𝐼

𝑉�pfval�p𝑝qq �
¤

uPℝ𝑛

�£
𝑝P𝐼

𝑉�pinup𝑝qq � tuu
�

.

Hence suffices to show that 𝑉�pinup𝐼qq �
�

𝑝P𝐼 𝑉
�pinup𝑝qq. This follows from the fact that tinup𝑝q | 𝑝 P 𝐼u

generates inup𝐼q. □

Remark 5.3. Consider the homomorphism 𝜔ℝ : ℂ � ℝ Ñ 𝕂 � ℝ � 𝕋, the tropical extension of the trivial
homomorphism 𝜔 by ℝ. We can view this as a forgetful morphism that forgets the ℂ-data. Moreover, it
relates fval and val in the following commutative diagram:

ℂ⟦𝑡ℝ⟧ ℂ�ℝ

𝕂�ℝ

fval

val
𝜔ℝ

Utilising Definition 5.1, the image of a fine tropical variety in 𝜔ℝ is the underlying tropical variety, i.e.

𝜔ℝpftropp𝑉�p𝐼qq � 𝜔ℝpfvalp𝑉�p𝐼qq � valp𝑉�p𝐼qq � tropp𝑉�p𝐼qq .

As such, Theorem 5.2 recovers the description of a tropical variety in terms of initial ideals from the Funda-
mental theorem [42, Theorem 3.2.5], namely

tropp𝑉�p𝐼qq � tu P ℝ𝑛 | inup𝐼q � x1yu .

This follows as the variety 𝑉�pinup𝐼qq is non-empty if and only if inup𝐼q � x1y.
Remark 5.4. It seems at first that Theorem 5.2 implies that to compute a fine tropical variety we would have
to compute infinitely many initial ideals. However, there are only finitely many initial ideals of 𝐼 that can
occur and they are related by a polyhedral complex structure called the Gröbner complex of 𝐼. Furthermore,
the tropical variety tropp𝑉�p𝐼qq is a subcomplex of the Gröbner complex of 𝐼, and hence inherits a polyhedral
complex structure from it; see [42] for full details. In particular, for any polyhedral cell 𝜎 P tropp𝑉�p𝐼qq
and u, v in the relative interior of 𝜎, we have inup𝐼q � invp𝐼q. As such, the complex variety 𝑉�pinup𝐼qq is
invariant as we range over the relative interior of the polyhedral cell 𝜎. Coupled with Theorem 5.2, we can
view a fine tropical variety as a tropical variety with a complex variety attached to the relative interior of
each polyhedral cell.

Example 5.5. Consider the polynomial 𝑃 � 𝑋 � 𝑌 � 1 P ℂ⟦𝑡ℝ⟧r𝑋�, 𝑌�s. This defines the line in the plane

𝑉�p𝑃q �  p𝜌, 1� 𝜌q �� 𝜌 P ℂ⟦𝑡ℝ⟧�zt1u( � pℂ⟦𝑡ℝ⟧�q2 .

We will construct its fine tropical variety ftropp𝑉�p𝑃qq in two different ways, following Theorem 4.4. A
schematic of ftropp𝑉�p𝑃qq is given in Figure 1.
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Let 𝜌 � 𝑐𝛾𝑡
𝛾 � 𝑐𝛽𝑡

𝛽 � � � � where 𝛾   𝛽   𝑔 for all 𝑔 P 𝐺zt𝛾, 𝛽u. The fine valuation of the point
p𝜌, 1� 𝜌q P 𝑉p𝑃q depends entirely on these leading terms, and can be considered a first order approximation
of the point:

p𝜌, 1� 𝜌q �

$'''&
'''%
p𝑐𝛾𝑡𝛾 �𝑂p𝑡𝛽q , 1�𝑂p𝑡𝛾qq 𝛾 ¡ 0

p𝑐𝛾 �𝑂p𝑡𝛽q , 1� 𝑐𝛾 �𝑂p𝑡𝛽qq 𝛾 � 0, 𝑐𝛾 � 1

p1�𝑂p𝑡𝛽q , �𝑐𝛽𝑡𝛽 �𝑂p𝑡𝑔qq 𝛾 � 0, 𝑐𝛾 � 1

p𝑐𝛾𝑡𝛾 �𝑂p𝑡𝛽q , �𝑐𝛾𝑡𝛾 �𝑂p𝑡minp𝛽,0qqq 𝛾   0

ñ fval p𝜌, 1� 𝜌q �

$''&
''%

�p𝑐𝛾 , 𝛾q , p1, 0q� 𝛾 ¡ 0 p𝐴q�p𝑐𝛾 , 0q , p1� 𝑐𝛾 , 0q
�

𝛾 � 0, 𝑐𝛾 � 1 p𝐵q�p1, 0q , p𝑐𝛽 , 𝛽q� 𝛾 � 0, 𝑐𝛾 � 1 p𝐶q�p𝑐𝛾 , 𝛾q , p�𝑐𝛾 , 𝛾q� 𝛾   0 p𝐷q
(6)

Ranging over all points in 𝑉�p𝑃q gives the fine tropical variety ftropp𝑉�p𝑃qq � fvalp𝑉�p𝑃qq. Equation (6) is
labelled to identify cases with Figure 1 and the components of 𝑉�pfval�p𝑃qq given in (7).

Alternatively, we can consider the ‘fine tropical polynomial’ fval�p𝑃q � 𝑋`𝑌`p�1, 0q P pℂ�ℝqr𝑋�, 𝑌�s.
The solutions to this polynomial are those where the ‘complex’ component gives a solution when restricted
to monomials where the ‘tropical’ component attains the minimum, i.e.

𝟘 P fval�p𝑃q
�p𝑐𝑋, 𝑔𝑋q , p𝑐𝑌 , 𝑔𝑌 q�

� p𝑐𝑋, 𝑔𝑋q` p𝑐𝑌 , 𝑔𝑌 q` p�1, 0q ðñ

$'''&
'''%
𝑔𝑋 ¡ 𝑔𝑌 � 0 , 𝑐𝑌 � 1 � 0 p𝐴q
𝑔𝑋 � 𝑔𝑌 � 0 , 𝑐𝑋 � 𝑐𝑌 � 1 � 0 p𝐵q
𝑔𝑌 ¡ 𝑔𝑋 � 0 , 𝑐𝑋 � 1 � 0 p𝐶q
𝑔𝑋 � 𝑔𝑌   0 , 𝑐𝑋 � 𝑐𝑌 � 0 p𝐷q

(7)

The set of all points
�p𝑐𝑋, 𝑔𝑋q , p𝑐𝑌 , 𝑔𝑌 q� P pℂ � ℝq2 that satisfy one of these conditions also gives the fine

tropical variety ftropp𝑉�p𝑃qq � 𝑉�pfval�p𝑃qq. Equation (7) is labelled to identify cases with Figure 1 and
the components of fvalp𝑉p𝑃qq given in (6).

Finally, we note that as described in Theorem 5.2, the complex hypersurface attached to the point u P ℝ2

is the variety 𝑉�pinup𝑃qq cut out by the initial form inup𝑃q. Moreover, these initial forms and complex
hypersurfaces are constant on the relative interior of the polyhedral cells of tropp𝑉�p𝑃qq as described in
Remark 5.4.

Remark 5.6. Recall that the field of Puiseux series ℂtt𝑡uu also carries a fine valuation whose image is ℂ�ℚ.
Hence we can define fine tropical varieties for ideals over the Puiseux series in the space pℂ � ℚq𝑛. For
ordinary tropical varieties, one could take the closure in the Euclidean topology to view the variety in ℝ𝑛

rather than ℚ𝑛. However, there are a number of topological concerns when doing this, especially outside of
the setting of ordinary tropical geometry: see [29] for a discussion of pitfalls in the higher rank setting as an
example. As such, we will only view fine tropical varieties over the Puiseux series in the space pℂ� ℚq𝑛.

Remark 5.7. In the last decade, there have been advances in viewing tropical geometry through a scheme-
theoretic lens. The Giansiracusa approach to tropical scheme theory [21] defines tropical schemes via con-
gruences of the semiring of tropical polynomials, namely the bend relations. Such congruences give rise to
tropical ideals, a special family of ideals of the semiring of tropical polynomials, as detailed in [40]. Alter-
native approaches to tropical scheme theory include Lorscheid’s theory of ordered blueprints, of which the
Giansiracusa tropicalization can be seen as a special case of; see [39] for details.

Currently, our definition of a fine tropical variety has no scheme-theoretic analogue. A natural first
approach is to try and generalise the Giansiracusa bend relations to ℂ � ℝ and its set of polynomials.
However, the immediate issue is that the bend relations are a semring congruence, and unlike the tropical
hyperfield, it is not clear that one can associate a semiring to the hyperfield ℂ�ℝ. For example, the tropical
semiring is obtained from the tropical hyperfield by defining the single-valued addition

𝑎 ` 𝑏 �
#
𝑎 ` 𝑏 𝑎 � 𝑏

𝑎 𝑎 � 𝑏 .
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Figure 1: The fine tropical line ftropp𝑉�p𝑃qq from Example 5.5. We view the ambient space pℂ � ℝq2 as
ℝ2 with a copy of pℂ�q2 at each point. As such, ftropp𝑉�p𝑃qq can be viewed as the usual tropical line in
ℝ2 with the subvariety of the complex torus 𝑉�pinup𝑃qq attached at each point u P ℝ2. The labels allow
identification with the components given in (6) and (7).

Note that the only multi-valued sum we have to alter is the sum of inverses 𝑎 ` 𝑎 � r𝑎,8s, where 𝑎 is the
canonical choice of element as the minimal element. This construction does not work for ℂ�ℝ: the sum of
additive inverses

p𝑐, 𝑔q` p�𝑐, 𝑔q � tp𝑏, ℎq | 𝑏 P ℂ� , ℎ P ℝ , ℎ ¡ 𝑔u Y t𝟘u
contains no ‘minimal’ or canonical element to set p𝑐, 𝑔q ` p�𝑐, 𝑔q to.

One may be able to recast the Giansiracusa approach in the language of hyperfields to avoid this transition.
A positive result towards this is that there is a one-to-one correspondence between congruences and ideals
over a hyperring [31, Theorem A]. However, as described in Remark 2.35, the set of polynomials over a
hyperfield is not a hyperring, and so its congruences may have many of the same issues as its ideals do; see
Remarks 2.36 and 2.37. Alternatively, one may be able realise fine tropical schemes in the framework of
ordered blueprints and Lorscheid tropical scheme theory, though this remains unclear.

The remainder of this section will discuss some possible applications of fine tropical varieties as motivation
for their further study.

Stable intersections A fundamental aspect of tropical geometry is that the intersection of two tropical
varieties may not be a tropical variety. Stable intersection turns out to be the correct notion of intersection,
where one perturbs the tropical varieties before intersecting them. Formally, it is defined as

tropp𝑉p𝐼qq ^ tropp𝑉p𝐽qq � lim
𝜖Ñ0

ptropp𝑉p𝐼qq X ptropp𝑉p𝐽qq � 𝜖vqq

for some generic vector v P ℝ𝑛.
In [29], a novel approach to stable intersection was introduced, where perturbation was performed in a

higher rank tropical semiring, intersected set-theoretically and then projected to the usual rank one tropical
semiring. In the following, we provide evidence that a similar paradigm holds by passing to a generic fine
tropical variety.
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trop(V(P))trop(V(Q))

(0, 0)

(−1, 0)

ftrop(V(P))ftrop(V(Q))

(2,−1)

(C×)2

(C×)2

Figure 2: Left: The tropical hypersurfaces tropp𝑉p𝑃qq and tropp𝑉p𝑄qq from Example 5.8. Note that they
intersect in a 1-dim ray, but they intersect stably at a single point.
Right: The fine tropical hypersurfaces ftropp𝑉p𝑃qq and ftropp𝑉p𝑄qq from the same example. These do
intersect transversally, and so they intersect at a single point.

Example 5.8. Consider the bivariate polynomials

𝑃 � 𝑋 � 𝑌 � 1 , 𝑄 � 𝑡𝑋 � p1� 𝑡2q𝑌 � 1 , 𝑃, 𝑄 P ℂ⟦𝑡ℝ⟧r𝑋,𝑌 s .
Their corresponding hypersurfaces 𝑉p𝑃q, 𝑉p𝑄q are lines in the plane, and so their intersection is a single
point, namely

𝑉p𝑃q X𝑉p𝑄q �
�

2� 𝑡2

1� 𝑡 � 𝑡2
,
�1� 𝑡

1� 𝑡 � 𝑡2



� �

2� 2𝑡 � 𝑡2 �𝑂p𝑡3q,�1� 2𝑡 � 𝑡2 �𝑂p𝑡3q� P ℂ⟦𝑡ℝ⟧2 .

Naively, we would expect the intersection of their tropical hypersurfaces to be the single point p0, 0q. However,
this is not the case as Figure 2 demonstrates: their intersection is a one-dimensional ray, but their stable
intersection is the correct point,

tropp𝑉p𝑃qq X tropp𝑉p𝑄qq � tp𝑔, 0q | 𝑔 ¥ 0u , tropp𝑉p𝑃qq ^ tropp𝑉p𝑄qq � tp0, 0qu .
Instead let us consider their fine tropical hypersurfaces: ftropp𝑉p𝑃qq was computed in Example 5.5, and

ftropp𝑉p𝑄qq is computed analogously:

ftropp𝑉p𝑃qq �

$''&
''%
�p𝑐𝑋, 𝑔𝑋q , p𝑐𝑌 , 𝑔𝑌 q� P pℂ�ℝq2

��������
𝑔𝑋 ¡ 𝑔𝑌 � 0 , 𝑐𝑌 � 1 � 0
𝑔𝑌 ¡ 𝑔𝑋 � 0 , 𝑐𝑋 � 1 � 0
𝑔𝑋 � 𝑔𝑌   0 , 𝑐𝑋 � 𝑐𝑌 � 0
𝑔𝑋 � 𝑔𝑌 � 0 , 𝑐𝑋 � 𝑐𝑌 � 1 � 0

,//.
//-

ftropp𝑉p𝑄qq �

$''&
''%
�p𝑐𝑋, 𝑔𝑋q , p𝑐𝑌 , 𝑔𝑌 q� P pℂ�ℝq2

��������
𝑔𝑋 ¡ �1 , 𝑔𝑌 � 0 , 𝑐𝑌 � 1 � 0
𝑔𝑋 � �1 , 𝑔𝑌 ¡ 0 , 𝑐𝑋 � 1 � 0
𝑔𝑋 � 1 � 𝑔𝑌   0 , 𝑐𝑋 � 𝑐𝑌 � 0
𝑔𝑋 � 1 � 𝑔𝑌 � 0 , 𝑐𝑋 � 𝑐𝑌 � 1 � 0

,//.
//-

It is not hard to check that these two hypersurfaces intersect at a single point
�p2, 0q , p�1, 0q�. Moreover,

this point is precisely fvalp𝑉p𝑃q X𝑉p𝑄qq, and hence its image under the projection 𝜔ℝ : ℂ�ℝÑ 𝕂�ℝ� 𝕋

is the stable intersection of tropp𝑉p𝑃qq and tropp𝑉p𝑄qq, i.e.

tropp𝑉p𝑃qq ^ tropp𝑉p𝑄qq � 𝜔ℝ pftropp𝑉p𝑃qq X ftropp𝑉p𝑄qqq .
Observe from Figure 2 that the two rays that intersected in infinitely many points in 𝕋 no longer intersect
at all.
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We note that moving to the fine tropical variety does not sidestep the need to perturb from all cases, as
we may still encounter non-generic intersections. However, we do gain two advantages from this perspective,
Firstly, non-generic intersections happen less frequently for fine tropical varieties as ℂ�ℝ is in some sense a
‘bigger’ space than 𝕋. Secondly, if we do need to perturb the fine tropical varieties, we expect it suffices to
only perturb in ℂ by sufficiently generic complex numbers, and leave the ‘tropical’ part as is. On the level
of Hahn series, this corresponds to perturbing the leading coefficient while leaving the leading exponent be.

We can make this perturbation precise as follows. Let 𝑃 � °
dP𝐷 𝜌d �Xd P ℂ⟦𝑡ℝ⟧r𝑋�1 , . . . , 𝑋�𝑛 s be a

Laurent polynomial with support 𝐷 � ℤ𝑛, i.e. 𝜌d � 0 if and only if d P 𝐷. Given some 𝛼 P pℂ�q𝐷, we
define the perturbed polynomial 𝑃𝛼 � °

dP𝐷 𝛼d � 𝜌d �Xd. Note that 𝜌d and 𝛼d � 𝜌d have the same leading
exponents despite being different Hahn series. As such, the tropical varieties tropp𝑉p𝑃qq and tropp𝑉p𝑃𝛼qq
are equal, while their fine tropical varieties are distinct.

Conjecture 5.9. Let 𝑃,𝑄 P ℂ⟦𝑡ℝ⟧r𝑋�1 , . . . , 𝑋�𝑛 s where 𝑃 has support 𝐷 � ℤ𝑛. Then there exists a Zariski
open subset 𝐴 � pℂ�q𝐷 such that

tropp𝑉p𝑃qq ^ tropp𝑉p𝑄qq � 𝜔ℝpftropp𝑉p𝑃𝛼qq X ftropp𝑉p𝑄qqq

for all 𝛼 P 𝐴.

Example 5.10. Consider the polynomial 𝑃1 � 𝑋 � 𝑌 � 1, and recall the polynomial 𝑄 � 𝑡𝑋 � p1 � 𝑡2q𝑌 � 1
from Example 5.8. Despite 𝑃 and 𝑃1 having the same tropical variety, they give rise to different fine
tropical varieties. In particular, the fine tropical variety ftropp𝑉p𝑃1qq associated to 𝑃1 does not have generic
intersection with ftropp𝑉p𝑄qq:

ftropp𝑉p𝑃1qq X ftropp𝑉p𝑄qq �  �p𝑐𝑋, 𝑔𝑋q , p�1, 0q� �� 𝑔𝑋 ¡ 0 , 𝑐𝑋 P ℂ�
(
.

Moreover, the image of their intersection under 𝜔ℝ is not equal to the stable intersection tropp𝑉p𝑃1qq ^
tropp𝑉p𝑄qq.

By picking 𝛼 � p1, 1,�1q P pℂ�q3, we can perturb 𝑃1 to p𝑃1q𝛼 � 𝑃. It follows from Example 5.8 that
the intersection ftropp𝑉pp𝑃1q𝛼qq X ftropp𝑉p𝑄qq is generic, and that its image under 𝜔ℝ is equal to the stable
intersection tropp𝑉p𝑃1qq ^ tropp𝑉p𝑄qq. However, Conjecture 5.9 claims that almost any 𝛼 P pℂ�q3 should
suffice for this perturbation. Indeed, it can be checked that any 𝛼 P 𝐴 gives the desired (stable) intersection,
where

𝐴 �  p𝛼𝑋, 𝛼𝑌 , 𝛼1q P pℂ�q3
�� 𝛼𝑌 � 𝛼1

(
.

Polyhedral homotopies Polyhedral homotopy continuation is a method for finding solutions to systems
of polynomial equations introduced by Huber and Sturmfels [25]: we follow the tropical description in [35].
Given a polynomial system 𝑃 � p𝑝1, . . . , 𝑝𝑛q � ℂr𝑋1, . . . , 𝑋𝑛s with finitely many solutions, we wish to
numerically approximate 𝑉p𝑃q. This is done by perturbing the coefficients of 𝑃 by multiplying through
by 𝑡𝛾 for various generic 𝛾 P ℚ. This gives a perturbed system of equations over the Puiseux series 𝑃𝑡 �
p𝑝1p𝑡q, . . . , 𝑝𝑛p𝑡qq � ℂtt𝑡uur𝑋1, . . . , 𝑋𝑛s. If one can understand the solutions of 𝑃𝑡 around 0   𝑡 ! 1, then we
can ‘track’ these solutions to an approximate solution of the original system 𝑃 � 𝑃1 via homotopy methods.
We note that the method given in [35] is more general than this, allowing us to find the solutions on a fixed
algebraic variety, but we restrict to ordinary case for simplicity.

The method for finding an initial solution of 𝑃𝑡 for small 𝑡 is roughly as follows. By calculating the
tropical variety tropp𝑉p𝑃𝑡qq, we obtain the leading exponents of the Puiseux series solutions. Moreover, for
each u P tropp𝑉p𝑃𝑡qq one can also recover the leading coefficient of the solution by computing the initial ideal
inupx𝑃𝑡yq. Generically, the initial ideal should be zero-dimensional, and so the unique point c P 𝑉�pinupx𝑃𝑡yqq
gives us a first-order approximation p𝑐1𝑡𝑢1 , . . . , 𝑐𝑛𝑡

𝑢𝑛q of a solution in 𝑉p𝑃𝑡q. Ranging over all u P tropp𝑉p𝑃𝑡qq
gives us a first-order approximation of our solution set 𝑉p𝑃𝑡q for 𝑡 close to zero, which in general should be
sufficient information to begin homotopy continuation.

By the characterisation given in Theorem 5.2, we can reframe this initial solution computation as com-
puting the fine tropical variety ftropp𝑉p𝑃𝑡qq. This motivates fine tropical varieties as a natural object of
study when computing initial solutions for polyhedral homotopy continuation, and there are two avenues we
hope this perspective will be useful. Firstly, computing the initial solution is a fairly expensive computa-
tion, requiring at least a mixed volume computation which is #𝑃-hard, if not a Gröbner basis computation
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which is worse-case doubly exponential. As such, any algorithmic advantages we can gain from the struc-
ture of fine tropical varieties, even in specific instances, would be welcome. Secondly, Theorem 5.2 allows
us to compute and encode initial solutions of polynomial systems with a positive dimensional solution set
in only finite information. Explicitly, even if tropp𝑉p𝑃𝑡qq has positive dimension, Remark 5.4 shows that
the initial ideal associated to each point are constant on cells. As such, we can describe the fine tropical
variety ftropp𝑉p𝑃𝑡qq in finitely many polyhedral cells, each with a single initial ideal associated. We hope
that this can be utilised alongside higher-dimensional continuation methods [50] to numerically approximate
positive-dimensional varieties.

6 Further questions

We end with some further questions and directions for study.
Theorem 4.4 gives a fundamental theorem for RAC maps from fields to hyperfields. As laid out in

Remarks 2.35, 2.36 and 2.37, extending this statement to RAC maps between hyperfields is currently not
possible due to no coherent notion of a polynomial ideal that is compatible with algebraic varieties for
general hyperfields. As such, the following question would have to be addressed before on could extend the
fundamental theorem further:

Question 6.1. Can one formulate a natural notion of a polynomial ideal 𝐼 � ℍr𝑋1, . . . , 𝑋𝑛s that is compatible
with algebraic varieties over certain well-behaved ℍ?

Over 𝕋, Maclagan and Rincón [40, 41] introduced the notion of a tropical ideal, an ideal of the semiring
of tropical polynomials which has an additional monomial elimination axiom, similar to vector elimination
axioms for matroids that occur for polynomial ideals over 𝔽. This axiom allows one to consider tropical
ideals as compatible ‘layers’ of matroids over 𝕋. One possible approach is to generalise this notion to a wider
family of hyperfields, where ℍ-ideals are compatible layers of matroids over ℍ, in the sense of [11]. There
are two issues that would have to be overcome for this approach. Firstly, not all hyperfields satisfy vector
elimination axioms [8], so this technique will not hold in full generality, but perhaps work for natural families
of hyperfields. Secondly, semiring ideals differ quite dramatically from hyperfield ideals: [40, Example 5.14]
demonstrates that arbitrary ideals of the semiring of tropical polynomials are not restrictive enough and can
give rise to non-polyhedral tropical varieties. This is the opposite problem to hyperfield polynomial ideals,
where Remark 2.37 shows the naive definition is far too restrictive to be useful.

As another direction of generalisation, we use the relatively algebraically closed property to prove Kapra-
nov’s theorem (Theorem 4.1). However, this is a stronger property than we may actually require. As an
example, consider the absolute value map from the complex numbers to the triangle hyperfield :

| � | : ℂÑ Δ � pℝ¥0,`,dq 𝑎 ` 𝑏 � t𝑐 | |𝑎 � 𝑏| ¤ 𝑐 ¤ 𝑎 � 𝑏u
𝑧 ÞÑ |𝑧| 𝑎 d 𝑏 � 𝑎 � 𝑏

This is a hyperfield homomorphism that is not RAC. However, it was shown in [48] that Kapranov’s theorem
does hold in this setting. The difference is one cannot just consider the polynomial 𝑝, but rather the whole
principal ideal x𝑝y, as there are many ‘higher polynomials’ that contain information that 𝑝 does not. This
motivates the following:

Question 6.2. For which maps 𝑓 : 𝔽Ñ ℍ do we have 𝑓 p𝑉px𝑝yqq � 𝑉p 𝑓�x𝑝yq?
As with Theorem 4.4, this restricts us to maps from fields until we have a good handle on which hyperfields

have well-defined notions of (principal) ideals.
Finally, note that in Theorem 4.4 we do not give any conditions on ℍ aside from it is the target of a RAC

map from an algebraically closed field. In practice, all examples of such hyperfields that we know about are
stringent.

Question 6.3. Classify all hyperfields ℍ that are the target of a relatively algebraically closed map from a
field. Is ℍ necessarily stringent?

The connection between RAC maps and the multiplicity bound (Definition 3.10) was investigated in [44],
in particular to derive some sufficient conditions for a map to be RAC. However, if the RAC map is from
a field, it may be necessary that the target hyperfield satisfies the multiplicity bound. Key examples of
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non-stringent hyperfields, such as ℙ and Δ, are known to exceed the multiplicity bound. As such, one avenue
to investigate this question is to verify whether non-stringent hyperfields exceed the multiplicity bound in
general.
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