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Abstract

We characterize a rich class of valuated matroids, called R-minor valuated matroids that
includes the indicator functions of matroids, and is closed under operations such as taking
minors, duality, and induction by network. We exhibit a family of valuated matroids that are
not R-minor based on sparse paving matroids.

Valuated matroids are inherently related to gross substitute valuations in mathematical
economics. By the same token we refute the Matroid Based Valuation Conjecture by Ostrovsky
and Paes Leme (Theoretical Economics 2015) asserting that every gross substitute valuation
arises from weighted matroid rank functions by repeated applications of merge and endowment
operations. Our result also has implications in the context of Lorentzian polynomials: it reveals
the limitations of known construction operations.

*An extended abstract of this work was published in the proceedings of the ACM-SIAM Symposium on Discrete
Algorithms in 2022 (SODA2022).This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement ScaleOpt–757481).
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1 Introduction

Valuated (generalized) matroids capture a quantitative version of the exchange axiom(s) for ma-
troids, first introduced by Dress and Wenzel [16]. Later, Murota [40] identified them as a fun-
damental concept in discrete convex analysis. They play important roles across different areas of
mathematics and computer science, with several applications in algorithmic game theory.

Valuated matroids and valuated generalized matroids can be defined in many equivalent ways:
in tropical geometry [20, Theorem 4.1.3], via the interplay of price and demands in economics [33], or
with various exchange properties [43]. We follow [21, 45], and say that a function f : 2V → R∪{−∞}
is a valuated generalized matroid if two properties hold:

∀X,Y ⊆ V with |X| < |Y | :
f(X) + f(Y ) ≤ max

j∈Y \X
{f(X + j) + f(Y − j)} (1a)

∀X,Y ⊆ V with |X| = |Y | and ∀i ∈ X \ Y :

f(X) + f(Y ) ≤ max
j∈Y \X

{f(X − i+ j) + f(Y + i− j)}. (1b)

For fixed r ≤ |V |, those set functions
(
V
r

)
→ R ∪ {−∞} fulfilling (1b) are valuated matroids. This

means that each layer of a valuated generalized matroid is a valuated matroid. Conversely, one can
represent all valuated generalized matroids by valuated matroids, see Appendix C.

The axiom (1b) can be seen as a quantitative version of the strong basis exchange property
of matroids. Valuated matroids with codomain {0,−∞} correspond to matroids: the sets taking
value 0 form the bases of a matroid, and conversely, every matroid gives rise to such a valuated
matroid. We call these trivially valuated matroids.
R-minor valuated matroids We are interested in the following classes of valuated matroids
arising from independent matchings in bipartite graphs. The term pays tribute to Richard Rado,
who introduced the induction of matroids through bipartite graphs in [51].

Definition 1.1 (R-minor, R-induced). Let G = (V ∪W,U ;E) be a bipartite graph with disjoint
vertex sets V ∪W and U , edges E with edge weights c ∈ RE , and let M be a matroid on U of rank
d + |W | for some d ∈ N. Such a graph is displayed in Figure 1. We define an R-minor valuated
matroid f :

(
V
d

)
→ R for X ∈

(
V
d

)
as follows.

The value f(X) is the maximum weight of a matching in G whose endpoints in V ∪W are
X ∪ W , and the endpoints in U form a basis in M. For W = ∅, the function f is called an
R-induced valuated matroid.

Observe that every R-minor function f on V arises as a (valuated) contraction of an R-induced
function g on V ∪W , i.e. f(X) = g(X ∪W ).

This concept naturally extends to valuated generalized matroids: the endpoints in U should
not form a basis but a set in a generalized matroid.1 In 2003, Frank [41, 42] asked if all valuated
matroids arise as R-induced valuated matroids. The corresponding version of this conjecture for
valuated generalized matroids has been recently disproved by Garg et al. [22, 23], in which they
observed that valuated (generalized) matroids are closed under contraction, whereas R-induced
valuated (generalized) matroids are not.

Noting that R-minor valuated matroids are precisely the contractions of R-induced valuated
matroids, this suggests a natural refinement of the original conjecture:

1These are defined as the effective domain of a {0,−∞}-valued valuated generalized matroid, see Section 7. The
canonical examples are independent sets of matroids.
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Figure 1: A bipartite graph G = (V ∪W,U ;E) with edge weights c ∈ RE and matroid M on vertex
set U . This gives rise to an R-minor valuated matroid on V , as described in Definition 1.1.

Do all valuated matroids arise as R-minor valuated matroids?

A variant of this conjecture on valuated generalized matroids was proposed in [22]. The main
contributions of this paper are (i) showing that R-minor valuated matroids form a complete class
of valuated matroids, a family closed under several fundamental operations, yet (ii) not all valuated
matroids arise in this form, disproving the above conjecture. We then derive implications for gross
substitute valuations and for Lorentzian polynomials.
Complete classes of matroids Let us consider R-induced and R-minor valuated matroids where
M is the free matroid, the matroid all of whose subsets are independent, and c is weight zero on
all edges. The trivially valuated matroids arising this way are transversal matroids and gammoids,
respectively. In 1977, Ingleton [28] studied representations of transversal matroids and gammoids.
He observed that gammoids arise via this simple construction yet form a rich class closed under
several fundamental matroid operations. This motivated the definition of a complete class of
matroids by requiring closure under the operations restriction, dual, direct sum, principal extension,
four key operations that gammoids are closed under. Ingleton showed that gammoids arise as
the smallest complete class by taking the closure of the matroid on a single element under these
four operations. Moreover, complete classes are closed under a number of other natural matroid
operations, including contraction, matroid union and truncation. An important example of such an
operation is induction by bipartite graph, given by fixing a matroid on one node set of a bipartite
graph and inducing a matroid structure on the other node set via matchings to independent sets.
Induction encompasses many other natural matroid operations, and closure under this operation is
what creates the rich structure of complete classes.

The theory of complete classes was further developed in Bonin and Savitsky [10] who also
collected the necessary properties to define a complete class. Brualdi [13] revealed that if a matroid
is base orderable2, then so is each matroid induced from it. As gammoids are base orderable but
the graphical matroid of K4 is not, one can see that not all matroids are gammoids and that there
are larger complete classes strictly containing gammoids.
Gross substitutes A somewhat surprising application of valuated generalized matroids arises in
mathematical economics. Gross substitutability captures the following type of interaction between
prices and demands for goods. At given prices, an agent would like to buy a certain amount of
goods. If the price of a single good increases then we expect that demand for this good decreases.
Gross substitutability dictates that previously desirable goods whose price is unaffected should
remain desirable. This concept is crucial for equilibrium existence and computation [5, 6, 15],

2A matroid is base orderable, if, for any two bases B1 and B2, there is a bijection σ : B1 → B2 such that
B1 − x+ σ(x) and B2 − σ(x) + x are bases for every x ∈ B1.
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auction algorithms [24, 25, 32], and mechanism design [7, 27].
In the case of discrete (indivisible) goods, an agent determines her demand by maximizing

a valuation function: a monotone set function taking value 0 on the empty set. Hence, gross
substitutability is a property of a function. It turns out that the functions with the gross substitute
property (GS functions) are exactly valuated generalized matroids [45].

For indivisible goods, the property was first formalized by Kelso and Crawford [29] to show that
a natural auction-like price adjustment process converges to an equilibrium. We also point out that
Gul and Stacchetti [25] showed that the so-called Walrasian equilibrium exists whenever agents’
valuations satisfy the gross substitute property and that, in a sense, the converse also holds. For
further results on gross substitutability, we refer to [46, Chapter 11] and a survey by Paes Leme [33].

A classical example of GS functions (= valuated generalized matroids) are assignment (OXS)
valuations introduced by Shapley [53]. For a graph G = (V,U ;E) with edge-weights c ∈ RE

≥0, the

value v(X) for X ⊆ V is defined as the maximum weight matching with endpoints in X.3

Constructions of substitutes By the equivalence with valuated generalized matroids, functions
with the gross substitute property can be described in many different ways. Balkanski and Paes
Leme [8] mention eight characterizations of GS functions. Nevertheless, finding a constructive
description of all GS functions/valuations remained elusive.

The first attempt to “construct” all GS valuations was by Hatfield and Milgrom [27]. After
observing that most examples of GS valuations arising in applications are built from assignment
valuations and the endowment operation, they asked if this is true for all GS valuations. Ostrovsky
and Paes Leme [47] showed that this is not the case: some matroid rank functions cannot be
constructed as endowed assignment valuations while all (weighted) matroid rank functions are
GS valuations. Instead, Ostrovsky and Paes Leme proposed the matroid based valuations (MBV)
conjecture. Matroid based valuations are those that arise from weighted matroid rank functions
by repeatedly applying the operations of merge and endowment. Tran [55] showed that using only
merge but no endowment operations does not suffice, but the conjecture remained open.

Originally, interest for such conjectures stemmed from auction design. They are an attempt
at designing a language in which agents can represent their valuations in a compact and express-
ible way [33]. Moreover, valuations with a constructive description facilitate more algorithmic
techniques, especially linear programming (see Section 5 and e.g., [23]). The quest for succinct rep-
resentations (of matroids) is also intimately connected to questions in parametrized complexity, see
e.g. [31]. In this paper, we analyze and disprove the MBV conjecture through the lens of complete
classes.

Sparse paving matroids A crucial tool for our counterexamples to the conjectures are valuated
matroids arising from the well-known class of sparse paving matroids. A matroid of rank d is paving
if all circuits are of size d or d + 1, and sparse paving if in addition the intersection of any two
d-element circuits is of size at most d − 2. Knuth [30] gave an elegant construction of a doubly
exponentially large family of sparse paving matroids; this is essentially the strongest lower bound on
the number of matroids on n elements. In fact, it was conjectured in [37] that asymptotically almost
all matroids are sparse paving; weaker versions were proved in [9] and [50]. Our main valuated
matroid construction is based on sparse paving matroids that arise from Knuth’s construction.

Lorentzian polynomials Brändén and Huh [12] recently introduced Lorentzian polynomials gen-
eralizing stable polynomials in optimization theory and volume polynomials in algebraic geometry.

3Shapley introduces the valuations as follows. Assume that V are workers and U is the set of jobs within a
company. The edge set represents the possibilities (willingness) of assigning workers to jobs, and the weight cij is the
value the company gets by assigning worker i to job j. Then the value of a subset X ⊆ V of workers for the company
is the maximum possible value the company gets by assigning workers X to jobs U .
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They act as a bridge between discrete and continuous convexity. In particular, their domains form
discrete convex sets, generalizing earlier work connecting matroids and polynomials, e.g., by Choe
et al. [14]. Their connection to continuous convexity is via their equivalence to strongly log-concave
polynomials discovered by Gurvits [26] and completely log-concave polynomials which were used
by Anari et al. [1] in their breakthrough work for efficiently sampling bases of matroids. This
connection has lead to applications in numerous areas such as combinatorial optimization [2, 3].
Furthermore, they are intimately connected to valuated matroids via tropical geometry: Brändén
and Huh showed that the space of valuated matroids arises as the tropicalization of squarefree
Lorentzian polynomials.

There is on-going research regarding the space of Lorentzian polynomials [11]. They are closed
under many natural operations analogous to valuated matroids, therefore a natural question is
whether one can construct the space of Lorentzian polynomials from certain “building block”
functions closed under these operations. We use our techniques to deduce limitations of such
constructions.

1.1 Our contributions

Complete classes of valuated matroids We introduce the notion of complete classes of valuated
matroids. These are classes of valuated matroids closed under the valuated generalizations of the
fundamental operations restriction, dual, direct sum, and principal extension. The crucial ingredient
going beyond the basic operations already introduced in [16] is (valuated) principal extension. This
is a special case of transformation by networks [40, Theorem 9.27]. These operations appeared
as ‘linear maps’ and ‘linear extensions’ in tropical geometry [20, 38]. Right from the definition,
valuated gammoids are seen to form the smallest complete class of valuated matroids (Theorem 3.6).

The valuated matroids arising as building blocks in both Frank’s question and the MBV con-
jecture arise as R-minor valuated matroids. As both discuss closure under fundamental operations,
the study of their complete classes gives rise to a common framework. We can also consider existing
results from different fields in a unified manner: The proof of Ostrovsky and Paes Leme [47] that
endowed assignment valuations do not exhaust all GS functions is based on a valuated analogue
of (strongly) base orderable matroids. Also the work on Stiefel tropical linear spaces in tropical
geometry [17, 18] can be considered as the study of representations in the complete class of valuated
gammoids.
Complete class containing trivially valuated matroids After introducing complete classes,
an immediate question arises: does the smallest complete class that contains all trivially valuated
matroids cover all valuated matroids? Or in other words, does the smallest class that contains all
trivially valuated matroids and is closed for deletion, contraction, duality, truncation, and principal
extension exhaust all valuated matroids?

We show that the smallest class of valuated matroids that contains all trivially valuated ma-
troids and is closed for the above operations is exactly the class of R-minor valuated matroids.
Thus, the above question asks if every valuated matroid is an R-minor valuated matroid. We can
use an information-theoretic argument to show that not all valuated matroids are R-induced by
constructing valuated matroids with many independent values (Appendix D). However, such an
argument does not seem extend to R-minor valuated matroids, since the size of the contracted set
W may be arbitrarily large. Thus, the construction disproving the more general claim relies on a
well-chosen family of valuated matroids.
Non-R-minor valuated matroids The most challenging part of our paper is proving that there
are valuated matroids that are not R-minor valuated matroids. In particular, we show that none
of the valuated matroids in the following family is R-minor.
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Definition 1.2. For n ≥ 3, we define Fn as the following family of functions
(
[2n]
4

)
→ R. Let

V = [2n], Pi = {2i− 1, 2i} for i ∈ [n], and let

H = {Pi ∪ Pj | ij ≡ 0 mod 2} (H-def)

i.e. we take pairs such that at least one of i and j are even. Let X∗ = P1 ∪ P2 = {1, 2, 3, 4}. A
function h :

(
V
4

)
→ R ∪ {−∞} is in the family Fn if and only if the following hold:

� h(X) = 0 if X ∈
(
V
4

)
\ H,

� h(X) < 0 if X ∈ H, and

� h(X∗) is the unique largest nonzero value of the function.

Theorem 1.3 (Main). If n ≥ 3, then all functions in Fn are valuated matroids. If n ≥ 16, then
no function in Fn arises as an R-minor function.

The functions in Fn are derived from sparse paving matroids; our construction was inspired by
Knuth’s [30] work. The construction also resembles the Vámos matroid which is an example of a
matroid that is not representable over any field, see [48, Proposition 2.2.26]. We note that if B is
the family of bases of a sparse paving matroid of rank d, then any function h :

(
V
d

)
→ R ∪ {−∞}

with h(X) = 0 if X ∈ B and h(X) < 0 otherwise gives a valuated matroid, see Appendix A. This
implies in particular that all functions in Fn are valuated matroids.

As our family allows still for quite some flexibility and it is conjectured that almost all matroids
are sparse paving [37], one could guess that even almost all valuated matroids might not be R-
minor. But the development of the framework for making such a statement goes beyond the scope
of this paper.
Refuting the Matroid Based Valuation Conjecture Building on Theorem 1.3, we also refute
the MBV conjecture by Ostrovsky and Paes Leme [47]. This is done by considering valuated
generalized matroids corresponding to R-minor valuated matroids and reduce to Theorem 1.3 by
considering their layers.

First, we show that every function that can be obtained from weighted matroid rank functions by
repeatedly applying merge and endowment is an R♮-minor valuated generalized matroid—the class
of valuated generalized matroids arising by contraction and induction from generalized matroids.
Garg et al. [22] proposed the conjecture that all valuated generalized matroids have an R♮-minor
representation.

Then, we show that the function h♮ : 2V → R≥0 defined as follows is a valuated generalized
matroid but not R♮-minor (Theorem 7.14). This disproves the conjecture in [22], as well as the
MBV conjecture. For an arbitrary valuated matroid h ∈ Fn taking values only in (−1, 0], we define

h♮(X) :=


|X| for |X| ≤ 3,

4 + h(X) for |X| = 4,

4 for |X| ≥ 5.

We achieve this by focusing on the function restricted to all 4-subsets of V . This is an R-minor
valuated matroid and therefore allows us to apply Theorem 1.3. Note that the function h♮ has the
additional structure of being monotone and only taking non-negative finite values, as the MBV
conjecture refers to valuations. Finally, we note that while matroid based valuations form a subset
of R♮-minor valuated generalized matroids f that are monotone and f(∅) = 0, it is unclear whether
the containment is strict or if these two classes coincide.
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Lorentzian polynomials A fundamental operation which preserves Lorentzian polynomials is by
the multiplicative action of non-negative matrices in the argument [12, Theorem 2.10]. This means
that, given a Lorentzian polynomial p in n variables, a non-negative matrix A ∈ Rn×k and a variable
vector (y1, . . . , yk), the polynomial given by p(A · y) ∈ R[y1, . . . , yk] is also Lorentzian.

We demonstrate that several basic operations for Lorentzian polynomials translate to the basic
operations considered for valuated matroids via tropicalization, where one replaces the polynomial
by a map from the exponents to the respective coefficients. Most notably, the multiplicative action
of non-negative matrices on Lorentzian polynomials translates to induction via bipartite graphs for
valuated matroids (Theorem 8.10).

Taking polynomials which correspond to our family of counterexamples given in Definition 1.2
via tropicalization, we can deduce limitations on constructions of Lorentzian polynomials. Explic-
itly, we show that not all Lorentzian polynomials over the Puiseux series can be realized by the
action of non-negative matrices on generating functions of matroids (Theorem 8.13). We then show
a weaker restriction for Lorentzian polynomials over the reals, namely that there exist Lorentzian
polynomials that would require arbitrarily large matroids to be realized by this construction. The
proof is based on the relation between polynomials over real-closed fields via Tarski’s principle.

1.2 Organization of the paper

In Section 2, we define the operations on valuated matroids: restriction (deletion), contraction, dual,
principal extension, induction by network, and induction by bipartite graph. Complete classes of
valuated matroids are introduced in Section 3, where we also prove that R-minor valuated matroids
form a complete class.

Theorem 1.3 is proved in two parts. The proof that functions in Fn are valuated matroids
follows from simple case analysis given in Appendix A. We prove that no function in Fn arises as
an R-induced minor function in Section 6; the proof uses several lemmas on Rado representations
of matroids given in Section 4, and lemmas on the LP representation of R-minor valuated matroids
given in Section 5. A roadmap to the main proof is given in Section 6.1.

Valuated generalized matroids and the MBV conjecture are treated in Section 7. Section 8
presents implications of our work for constructions of Lorentzian polynomials.

1.3 Notation

We denote a matroid M by M = (U, r) where U is the ground set of the matroid and r = rM is
the rank function of the matroid. We assume familiarity with the basic concepts in matroid theory;
we refer the reader to Oxley’s book [48] for an introduction to matroids. Our notation of the major
operations on matroids follows the notation of valuated matroids introduced in Section 2, as these
are special cases of the valuated operations.

A function ρ : 2V → R is submodular if for every A,B ∈ 2V it holds ρ(A) + ρ(B) ≥ ρ(A∩B) +
ρ(A ∪B). The rank function of a matroid is well-known to be submodular.

Given a set V , we denote its set of subsets of cardinality d by
(
V
d

)
. Given two sets X,Y , we

denote their disjoint union by X∪̇Y .
We denote a bipartite graph G by G = (V,U ;E), where V and U are the two parts of the node

set and E is the edge set. For a subset of nodes Y ⊆ U ∪ V , we denote the set of neighbours of
Y by ΓG(Y ) or ΓE(Y ). When the graph is clear from the context, we drop the subscript. Given a
set of edges µ ⊆ E and a subset of nodes Y , we let ∂Y (µ) denote the nodes in Y incident to the
subgraph induced by µ. For a cost function c ∈ RE , we let c(µ) :=

∑
e∈µ ce denote the cost of the

edge set µ. By a network or directed network, we will refer to directed graphs.
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2 Operations on valuated matroids

For a valuated matroid f , its (effective) domain dom(f) is formed by those sets X on which
f(X) > −∞. The exchange property implies that it forms the set of bases of a matroid. The rank
rk(f) of a valuated matroid f is the rank of the underlying matroid dom(f).

Definition 2.1. Let f :
(
V
d

)
→ R∪ {−∞} be a valuated matroid with d = rk(f), and Y ⊂ V some

subset of V .

(i) If V \ Y has full rank in dom(f) then the deletion of f by Y is the function f \ Y :
(V \Y

d

)
→

R ∪ {−∞} defined as

(f \ Y )(X) = f(X), ∀X ∈
(
V \ Y
d

)
.

This is also called the restriction to V \ Y and denoted by f |(V \ Y ). If V \ Y does not have
full rank in dom(f), the deletion is the function attaining only −∞.

(ii) If Y is independent in dom(f), then the contraction of f by Y is the function f/Y :
( V \Y
d−|Y |

)
→

R ∪ {−∞} defined as

(f/Y )(X) = f(X ∪ Y ), ∀X ∈
(
V \ Y
d− |Y |

)
.

If Y is not independent in dom(f), the contraction is the function attaining only −∞.

(iii) The dual of f is the function f∗ :
(

V
|V |−d

)
→ R ∪ {−∞} defined as

f∗(X) = f(V \X), ∀X ∈
(

V

|V | − d

)
.

(iv) The truncation of f is the function f (1) :
(

V
d−1

)
→ R ∪ {−∞} defined as

f (1)(X) = max
v∈V \X

f(X ∪ v), ∀X ∈
(

V

d− 1

)
.

The iterated truncation for 1 ≤ r ≤ d− 1 is given by f (r+1) = (f (r))(1).

(v) For a weight function w ∈ (R ∪ {−∞})V , the principal extension fw of f with respect to w
is the valuated matroid on V ∪ p of rank d, for an additional element p, with fw|V = f and

fw(X ∪ p) = max
v∈V \X

(f(X ∪ v) + wv) for all X ∈
(

V

d− 1

)
.

Remark 2.2. Our definition of deletion and contraction differs from the usual definition, e.g.
in [16], in that we impose these rank conditions. The usual definition of deletion (and dually con-
traction) for matroids could equally be formulated by first performing a truncation (to the rank of
the remaining set) and then a deletion. While for unvaluated matroids this is the same, for valu-
ated matroids the naive deletion, where the remaining set does not have full rank, would result in a
function only taking −∞ as value. Our reason to be more restrictive with deletion and contraction
is that these definitions allow for simple ‘layer-wise’ extensions to valuated generalized matroids
in Section 7 and they tie in more naturally with operations on polynomials as we demonstrate in
Section 8.
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Figure 2: The bipartite graph realising the transversally valuated matroid from Example 2.4. The
dashed edges have weight zero and the solid edges have weight one.

Example 2.3. The most basic examples of valuated matroids are those with trivial valuation,
where only the values 0 and −∞ are attained (following naming as in [17]). Such valuated matroids
can be identified with the underlying matroid. Each of the operations listed in Definition 2.1 are
valuated analogues of matroid operations, see [48] for formal definitions. These operations can also
be recovered by restricting the valuated operations to trivially valuated matroids.

Example 2.4. Valuated matroids corresponding to the layers of the assignment valuations are
transversally valuated matroids. For a bipartite graph G = (V,U ;E) with edge weights c ∈ RE ,
we define a transversally valuated matroid f :

(
V
|U |

)
→ R∪ {−∞} by setting f(X) to the maximum

weight of a matching whose endpoints in V are exactly X, for X ∈
(
V
|U |

)
; if no such matching exists

then we set f(X) = −∞.
Let V = [4] and consider the valuated matroid f :

(
V
2

)
→ R ∪ {−∞} defined as

f(12) = −∞ , f(13) = 0 , f(14) = 0 , f(23) = 1 , f(24) = 1 , f(34) = 1 .

This valuated matroid is transversally valuated as it can be realized via the weighted bipartite
graph shown in Figure 2.

Example 2.5. One source of valuated matroids arises from matrices with polynomial entries. Let
A be a matrix with d rows and columns labelled by V , whose entries are univariate polynomials
over a field. For J ⊆ V , we denote by A[J ] the submatrix formed by the columns labelled by J .
The valuated matroid induced by A is defined to be

f(J) = deg detA[J ] ,

where f(J) = −∞ if detA[J ] = 0 or A[J ] is non-square, see [40, Section 2.4.2] for further details.
Recall the valuated matroid from Example 2.4. Observe that we can also represent this matrix

via the polynomial matrix

A =

[
1 t t 0
0 0 1 1

]
e.g. f(23) = deg(t) = 1.

Recall the following matroid operations for combining matroids. Consider two matroids M1

and M2 on not-necessarily disjoint ground sets U1, U2 with sets of independent sets I1, I2. Their
matroid union is the matroid M1 ∨M2 on the ground set U1 ∪U2 with independent sets given by
I = {I1 ∪ I2 : ii ∈ Ii}. If U1, U2 are disjoint, then we call M1 ⊕M2 := M1 ∨M2 their direct sum.
These operations also have valuated analogues.
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Definition 2.6 (Valuated matroid union). Let f1 and f2 be valuated matroids on ground sets V1
and V2 with ranks d1 and d2, and let V = V1 ∪ V2. The (valuated) matroid union of f1 and f2 is
(f1 ∨ f2) :

(
V

d1+d2

)
→ R ∪ {−∞}, where

(f1 ∨ f2)(X) = max

{
f1(Y ) + f2(X \ Y )

∣∣∣∣ Y ⊆ X , Y ∈
(
V1
d1

)
, X \ Y ∈

(
V2
d2

)}
.

Undefined sets get the value −∞.

Note that for the special case when V1 and V2 are disjoint, the only sets with finite value are X
such that |X ∩V1| = d1 and |X ∩V2| = d2. For this case, we can write a simpler formula. This will
also be called the direct sum of f1 and f2 and denoted as (f1 ⊕ f2) :

(
V

d1+d2

)
→ R ∪ {−∞}. Thus,

(f1 ⊕ f2)(X) = f1(X ∩ V1) + f2(X ∩ V2)

with value −∞ unless |X ∩ V1| = d1 and |X ∩ V2| = d2.

Example 2.7. Given a matroid on some ground set, it is often useful to extend that ground set
to a larger ground set by adding coloops, elements contained in all bases. The same construction
can be generalized to valuated matroids in the following way.

Let f be a valuated matroid on ground set V , and W a disjoint set from V . We define the free
valuated matroid frW on W to take the value 0 on W (and all sets of smaller size get value −∞);
so the ground set itself is the only basis of the underlying matroid. Then the direct sum of f with
frW is given by

(f ⊕ frW )(X) =

{
f(Y ) X = Y ∪W
−∞ otherwise

.

In particular, note that f = (f ⊕ frW )/W . This construction of adding coloops to a valuated
matroid will be useful throughout.

2.1 Induction by networks

The next operation is very powerful and can be seen as a vast generalization of Rado’s theorem
(Theorem 4.2). Somewhat surprisingly, we show that it can be modelled by the basic operations
defined so far. This can be seen as a generalization of transversal valuated matroids (Example 2.4).
Instead of finding a maximum weight matching in a bipartite graph, we embed V and U into a
directed network, with a valuated matroid g on U . For a subset X of V , we consider the maximum
weight set of node-disjoint paths from X to a subset Y ⊆ U , plus g(Y ). As a special case when
g is the 0/−∞ indicator function of a matroid, this means that the we need to find node-disjoint
paths to an independent set.

Definition 2.8. Let N = (T,A) be a directed network with a weight function c ∈ RA. Let V,U ⊆ T
be two non-empty subsets of nodes of N . Let g be a valuated matroid on U of rank d. Then the
induction of g by N is a function ΦV (N, g, c) :

(
V
d

)
→ R ∪ {−∞}. For X ∈

(
V
d

)
, one sets

ΦV (N, g, c)(X) = max

{∑
a∈P

c(a) + g(Y )

∣∣∣∣∣ node-disjoint paths P in N :

∂V (P) = X ∧ ∂U (P) = Y

}
.

Note that the maximization can also result in −∞ if no node-disjoint paths exist from X to a set
with finite value. It is even possible that dom(ΦV (N, g, c)) = ∅.

In the special case that the directed network is bipartite with the edges directed from V to U ,
we can also consider this as an undirected weighted bipartite graph G and call the corresponding
operation induction by bipartite graphs. In this case, we drop the dependence on V and just use
the notation Φ(G, g, c).
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U

U ′p

Figure 3: Given a valuated matroid g on U and w ∈ (R ∪ {−∞})U , the principal extension gw is
realized as the induction of g via the above bipartite graph, as given in Remark 2.10. The dashed
edges are weighted zero, while the solid edges (p, u) are weighted wu.

Theorem 2.9 ([40, Theorem 9.27]). Let N, g, c and V as in Definition 2.8. If dom(ΦV (N, g, c)) is
non-empty, the induced function is a valuated matroid.

While it is a special case of induction by networks, induction by bipartite graphs is an extremely
powerful operation. Many of the operations introduced so far can be modelled using induction by
bipartite graphs, which is a key observation in the proof of Theorem 2.12.

Remark 2.10. Recall from Definition 2.1 the principal extension gw of a valuated matroid g on
ground set U with respect to a weight vector w ∈ R ∪ {−∞}U . We write the ground set of gw as
U ′ ∪ {p} where p is a new element and U ′ a copy of U , with a copy u′ ∈ U ′ for each u ∈ U . Let
G = (V,U ;E) be the bipartite graph with V = U ′ ∪ {p} where the edge set E consists of (u′, u)
and (p, u) for all u ∈ U , and the weight function c takes the value zero on (u′, u) and wu on (p, u);
this graph is displayed in Figure 3. Then the principal extension gw is precisely Φ(G, g, c), the
induction of g through G onto U ′ ∪ {p}. More details why this holds are provided in Lemma B.3.

Furthermore, the following lemma shows we can realize induction by a network as induction by
a bipartite graph followed by a contraction. Given the power of this operation, it shall be a key
construction throughout.

Lemma 2.11. Let N be a directed network with weight function d and g a valuated matroid on
U such that f = ΦV (N, g, d) is again a valuated matroid. Then there is a bipartite graph G =
(V ∪W,U ∪W ′;E) with weight function c ∈ RV ∪W and a valuated matroid h on U ∪W ′ such that
f = (Φ(G, h, c))/W .

We end this section by stating that valuated matroids are closed under all the operations
introduced so far. We defer the proof of this and the previous lemma to Appendix B.

Theorem 2.12. The class of valuated matroids is closed under the operations deletion, contraction,
dualization, truncation, principal extension, direct sum, matroid union.

3 Classes of valuated matroids

In the following, we consider certain classes of valuated matroids that arise naturally in combina-
torial optimization.

(i) The class of transversally valuated matroids are those valuated matroids arising from trivially
valuated free matroids by induction via a bipartite graph.
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Figure 4: The inclusion relationship between classes of valuated matroids.

1 2 3 4 5 6 1 2 3 4 5 67

U2,3

Figure 5: Two representations of the Snowflake, defined in Example 3.1. The left is a valuated
gammoid representation, where the element 7 is contracted. The right is an R-induced representa-
tion with induced matroid U2,3. All edges are weighted zero.

(ii) The class of valuated gammoids are contractions of those valuated matroids arising from
trivially valuated free matroids by induction via a bipartite graph.

(iii) The class of R-induced valuated matroids are those valuated matroids arising from trivially
valuated matroids by induction via a bipartite graph.

(iv) The class of N-induced valuated matroids are those valuated matroids arising from trivially
valuated matroids by induction via a network.

(v) The class of R-minor valuated matroids are those valuated matroids arising as contractions
of R-induced valuated matroids.

Transversally valuated matroids are essentially the layers of assignment valuations, see also
Example 2.4. They were extensively studied in [17], which also considered the class of valuated
strict gammoids, a subclass of valuated gammoids, from the perspective of tropical geometry.

The inclusion relationship between these classes is shown in Figure 4. These are laid out in the
following example and lemmas.

Example 3.1. Consider the valuated matroid on six elements of rank two that takes the value
−∞ on {12, 34, 56}, and 0 on all other pairs of elements. This valuated matroid, referred to as the
“Snowflake”, has been studied in tropical geometry: in particular it is not a transversally valuated
matroid as shown in [17, Example 3.10]. However, it is both a valuated gammoid and an R-induced
valuated matroid, as given by the representations in Figure 5.

Lemma 3.2. The class of valuated gammoids forms a strict subclass of R-minor valuated matroids.
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Proof. Containment is given by Theorem 3.6. By [47, Lemma 1], valuated gammoids are (strongly)
base orderable. However, any trivially valuated matroid that is not base orderable is an R-induced
valuated matroid, giving strict containment.

Lemma 3.3. The class of R-induced valuated matroids forms a subclass of N-induced valuated
matroids and a subclass of R-minor valuated matroids. Furthermore, N-induced valuated matroids
form a subclass of R-minor valuated matroids.

Proof. The inclusion of R-induced within N-induced and R-minor are immediate from definition.
Furthermore, Lemma 2.11 shows how to represent an N-induced valuated matroid as an R-minor
valuated matroid.

The strictness of the inclusion between N-induced valuated matroids and R-minor valuated
matroids remains unresolved. From an algorithmic point of view, it would be desirable for N-
induced valuated matroids to exhibit concise representations in the spirit of the small representation
of gammoids in [31]; see [52, Section 39.4a] for more on transversal matroids and their contractions,
the gammoids.

Conjecture 3.4. Let N = (T,A) be a directed network with a weight function c ∈ RA. Let
V,U ⊆ T be two non-empty subsets of nodes of N . Let g be a valuated matroid on U of rank d.

Then there is a directed network N ′ = (T ′, A′) with U, V ⊆ T ′, and arc weights c′ ∈ RA′
such

that ΦV (N, g, c) = ΦV (N
′, g, c′) and such that |T ′| is polynomial in |V | and |U |.

As we show in Appendix D, R-induced valuated matroids have a polynomial size representation.
However, the information-theoretic argument given does not extend to N-induced and R-minor
valuated matroids as it cannot control the size of the contracted set. This suggests that several of
the inclusions in Figure 4 should indeed be strict.

3.1 Complete classes

Definition 3.5 (Complete class). Let V be a subset of the set of valuated matroids. We call V a
complete class if it is closed under taking restriction, duals, direct sum and principal extension.

The original definition of a complete class of matroids included many other operations includ-
ing contraction, truncation and induction. We extend [10, Theorem 6.1] stating that these four
operations suffice to define a complete class for valuated matroids.

Theorem 3.6. A complete class of valuated matroids is closed under taking contraction, truncation,
induction by bipartite graphs, induction by directed graph and valuated union.

Furthermore, valuated gammoids forms the smallest complete class. Hence, they are contained
in all complete classes.

Proof. The points follow from Lemma B.1, Lemma B.2, Lemma B.3, Lemma B.4 and Lemma 2.11.
A non-empty complete class must contain the free matroid on one element. By taking iterated

direct sum, this yields all free matroids. Then closure under induction by bipartite graphs and
minors yields valuated gammoids.

3.2 R-minor valuated matroids

The classes of valuated matroids discussed in the beginning of this section arising from induction
through a network may only be induced by trivially valuated matroids. As discussed in Example 2.3,
a trivially valuated matroid g can be identified with its underlying matroid M, where g(X) takes
the value zero on bases of M and −∞ otherwise. Working with this underlying matroid shall be
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Figure 6: The network N constructed from a graph G inducing the principal extension of an R-
minor valuated matroid, as described before and within Lemma 3.8.

more convenient much of the time, therefore we extend the notation of Definition 2.8 to define
ΦV (N,M, c) := ΦV (N, g, c) and .

Let f be an R-minor valuated matroid on V . By definition, there exists an R-induced valuated
matroid f̃ on V ∪W such that f = f̃/W . By definition, there exists some bipartite graph G =
(V ∪W,U ;E) with edge weights c ∈ RE and matroid M = (U, r) such that f̃ = Φ(G,M, c); we
say f̃ has an R-induced representation (G,M, c). As f = Φ(G,M, c)/W , we extend this notation
to say that f has an R-minor representation (G,M, c,W ), where W is the set to be contracted.

In the following, we show that R-minor valuated matroids are closed under deletion, principal
extension, duality and direct sum, making them a complete class. In the following we shall assume
f is an R-minor matroid with representation (G,M, c,W ) as above.

Lemma 3.7. For a subset X ⊆ V , let G \X be the graph obtained from G by deleting the nodes
X and all edges adjacent. The deletion f \X is represented by (G \X,M, c,W ).

Proof. This follows by the definition of deletion.

Let w ∈ (R∪{−∞})V and consider fw. Let V ′,W ′ denote copies of V,W , and define a network
N = (T,A) on the node set T = (V ′ ∪W ′ ∪ {p}) ∪ (V ∪W ) ∪ U , where p is a new node. We
write V̂ = V ′ ∪W ′ ∪ {p} to ease notation. The arc set A weighted by c′ ∈ RA consists of arcs
(v′, v) with weight 0, where v′ ∈ V ′ ∪W ′ denotes the copy of v ∈ V ∪W . We also add arcs (p, v)
with weight wv for all v ∈ V , and arcs (v, u) for all edges E of G with weight inherited by c. The
constructed network N is displayed in Figure 6. This network can intuitively be thought of as the
“concatenation” of G with the graph from Remark 2.10.

Lemma 3.8. The principal extension fw arises as the contraction of Φ
V̂
(N,M, c) by W ′. In

particular, it can be represented as an R-minor valuated matroid.

Proof. Consider a subset X ⊆ V ∪ {p}, the principal extension fw is defined as

fw(X) = (f̃/W )w(X) =

{
maxv∈V \Y

(
f̃(Y ∪ v ∪W ) + wv

)
X = Y ∪ {p}

f̃(X ∪W ) p /∈ X
.

We claim that Φ
V̂
(N,M, c)(X ′ ∪W ′) = fw(X) for X ′ ⊆ V ′ ∪ {p}.

If p /∈ X ′, then the value of Φ
V̂
(N,M, c)(X ′∪W ′) is simply the maximal independent matching

in G to X ∪W with no contribution from the zero edges, i.e. Φ
V̂
(N,M, c)(X ′) = f̃(X ∪W ). If
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Figure 7: Construction of R-minor representation for f∗.

X ′ = Y ′ ∪ {p}, then the value of Φ
V̂
(N,M, c)(X ′ ∪W ′) is the maximal independent matching in

G to Y ∪ v ∪W for some v ∈ V \ Y , plus wv picked up from the arc (p, v), i.e.

Φ
V̂
(N,M, c)(X ′ ∪W ′) = max

v∈V \Y

(
f̃(Y ∪ v ∪W ) + wv

)
,

which is precisely the value of fw. Therefore fw = Φ
V̂
(N,M, c)/W ′. Applying Lemma 2.11, we

can represent Φ
V̂
(N,M, c) as an R-minor valuated matroid, and therefore also fw.

Consider the dual valuated matroid f∗, we claim it can be represented in the following way. Let
U ′, V ′,W ′ be copies of U, V,W respectively. Let G′ = (U ∪V ∪W,U ′ ∪V ′ ∪W ′, E′) whose edge set
E′ consists of edges

E′ =
{
(v, v′)

∣∣ v ∈ U ∪ V ∪W
}
∪
{
(u, v′)

∣∣ (v, u) ∈ E
}
.

The edge weights are given by c′ ∈ RE′
where c′(v, v′) = 0 and c′(u, v′) = c(v, u). This graph is

displayed in Figure 7. We also use in our representation the matroid M′ = M∗ ⊕ frV ′∪W ′ , the
direct sum of the dual matroid M∗ = (U ′, r∗) and the free matroid on V ′ ∪W ′.

Lemma 3.9. The dual f∗ is an R-minor valuated matroid.

Proof. Let f = f̃/W , then its dual is f∗ = (f̃/W )∗ = (f̃)∗ \ W by Lemma B.1. As R-minor
valuated matroids are closed under deletion by Lemma 3.7, we are done if we can show (f̃)∗ is an
R-minor valuated matroid. We claim that (f̃)∗ is represented by (G′,M′, c′, U).

Fix some X ⊆ V , we shall compute Φ(G′,M′, c′)(X ∪ U). First observe that v ∈ X can only
be matched to v′ ∈ X ′ with weight zero, and that there are no matroid constraints on these edges.
Therefore the rest of the matching is an independent matching from U to (U ′ ∪ V ′ ∪W ′) \X ′. For
any independent matching, Y ⊆ U matches to (V ′∪W ′)\X ′ if and only if U ′ \Y ′ is independent in
M∗, which by matroid duality only occurs when Y is independent in M. Therefore all independent
matchings are of the form{

(u, v′)
∣∣ (v, u) ∈ µ

}
∪
{
(v, v′)

∣∣ v ∈ X ∪ (U \ Y )
}

where µ is an independent matching in G from (V ∪W ) \ X to Y ⊆ U . As the weights of these
edges are either 0 or inherited from G, we have

Φ(G′,M′, c′)(X ∪ U) = f̃((V ∪W ) \X) = (f̃)∗(X) ,

implying that (f̃)∗ = Φ(G′,M′, c′)/U as claimed. As U,W are disjoint, contracting and/or deleting
them commute and so f∗ has the representation (G′\W,M′, c′, U); the same representation as (f̃)∗,
but with W deleted from G′.
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Lemma 3.10. Let f1 and f2 be two R-minor valuated matroids represented by (G1,M1, c1,W1)
and (G2,M2, c2,W2). Then f1 ⊕ f2 is represented by (G′,M1 ⊕ M2, c

′,W1 ∪W2), where G
′ and

its weight function c′ arises by taking the union of the weighted graphs G1 and G2.

Proof. This follows from the definitions.

Theorem 3.11. The set of R-minor valuated matroids forms a complete class of valuated matroids.

Proof. This follows directly from Lemmas 3.7, 3.8, 3.9 and 3.10.

4 Rado representation of matroids

Our proof of Theorem 1.3 relies heavily on the properties of (unvaluated) matroids arising from the
valuated matroids in Fn. More precisely, the proof relies on the properties of the R-induced and
R-minor representations of the underlying matroids. In this section, we specialize R-representations
to matroids (without valuation) and give several lemmas that will be used later in Section 6. For a
representation of a matroid, we do not care about the weights of the edges in the bipartite graph but
only the existence of the independent matchings. Then the representation boils down to well-known
results in matroid theory. This allows us to deduce useful structural statements and uncrossing
properties.

Definition 4.1 (Rado representation). Let G = (V,U ;E) be a bipartite graph and M = (U, rM)
be a matroid. We define a matroid N on V as follows. A set X ⊆ V is independent in N if there
exists S ⊆ U such that there is a perfect matching in the subgraph induced by (X,S) and S is
independent in M. We say that (G,M) is a Rado representation of N .

The following theorem verifies that this construction indeed defines a matroid, and characterizes
its rank function.

Theorem 4.2 (Rado’s theorem [48, 51]). Let N be as in Definition 4.1. Then N is a matroid.
Moreover, a set X ⊆ V is independent in N if and only if rM(Γ(Y )) ≥ |Y | for all Y ⊆ X. If a set
X ⊆ V is a circuit in N , then rM(Γ(X)) = |X| − 1.

A more general representation can be obtained as minors of the above.

Definition 4.3 (Rado-minor representation). Let G = (V ∪W,U ;E) be a bipartite graph and
M = (U, rM) be a matroid. We define a matroid N on V as follows. A set X ⊆ V is independent
in N if there exists S ⊆ U such that there is a perfect matching in the subgraph induced by
(X ∪W,S) and S is independent in M. We say that (G,M,W ) is a Rado-minor representation
of N .

Proposition 4.4. Let N be as in Definition 4.3. Then N is a matroid. Moreover, X ⊆ V is
independent in N if and only if for all Z ⊆ X ∪W it holds that rM(Γ(Z)) ≥ |Z|. If a set X ⊆ V
is a circuit in N , then there exists Z ′ ⊆ X ∪W with X = Z ′ ∩ V such that rM(Γ(Z ′)) = |Z ′| − 1.

Proof. Consider G,W and M as in Definition 4.3. Then, let N ′ be the matroid on V ∪W with
Rado representation (G,M). By definition of contraction, N can be obtained by contracting W
in N ′. The first two parts of the proposition follow immediately from Theorem 4.2.

For the final statement, note that if X is a circuit of N , there exists a circuit Z ′ of N ′ such
that X = Z ′ ∩ V [48, Proposition 3.1.10]. Applying Theorem 4.2 gives the final part of the
proposition.
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Any matroid that has no independent sets other than the empty set is said to be an empty
matroid. We next introduce some basic matroidal notions, and present their properties in the
context of Rado representations. Recall the notions of matroid union and direct sum motivating
Definition 2.6. We restate them here for clarity, along with some additional related notions for
decomposing matroids.

Definition 4.5 (Direct sum, Disconnected). Let U1, . . . , Uk be disjoint sets. For i ∈ [k] let Bi be

the bases of matroid Mi on Ui. The direct sum M1 ⊕ · · · ⊕Mk is a matroid M on U = ∪̇k
i=1Ui

with bases B = {∪̇k
i=1Bi : Bi ∈ Bi}. We say that a matroid M is disconnected if it is a direct sum

of at least two non-empty matroids. A matroid is connected if it is not disconnected.

Definition 4.6 (Matroid union, Fully reducible). For i ∈ [k], let Ii be the set of independent sets
of the matroid Mi on U . The matroid union M1∨· · ·∨Mk is a matroid M on U with independent
sets given by I = {∪k

i=1Ii : Ii ∈ Ii}. If additionally r(M) =
∑k

i=1 r(Mi), then M is the full-rank
matroid union of M1, . . . ,Mk (see [14]).

We say that a matroidM is reducible if it is amatroid union of at least two non-empty matroids.
Further, M is fully reducible if it is a full-rank matroid union of at least two non-empty matroids.

We will use the rank formula of matroid union, see e.g. [19, Theorem 13.3.1].

Theorem 4.7 (Edmonds and Fulkerson, 1965). Consider the matroid union M = M1 ∨ · · · ∨Mk

for matroids M1, . . . ,Mk, k ≥ 2 on the ground set U , and let ri denote the rank function of the
i-th matroid. Then for any X ⊆ U , the rank r(X) in M equals

r(X) = min

{
k∑

i=1

ri(Z) + |X \ Z| : Z ⊆ X

}
.

Consequently, if X is a circuit in M then
∑k

i=1 ri(X) = |X| − 1.

Lemma 4.8. Let N be a matroid with a Rado representation (G,M), where G = (V,U ;E) and
M = (U, r). Assume that M = M1 ⊕ · · · ⊕ Mk, with k ≥ 2, for matroids Mi = (Ui, ri), and
Γ(V )∩Ui ̸= ∅ for every component of M. Then, N is reducible. Furthermore, if rN (V ) = rM(U),
then N is fully reducible.

Proof. Let Ni be the matroid with Rado representation (Gi,Mi), where Gi = (V,Ui;Ei) and Ei is
the set of edges between V and Ui. Then each independent set in N arises from a matching that is
composed of matchings on the Gi. Hence, the definition of matroid union yields N = N1∨ . . .∨Nk.
By the assumption, Γ(V ) ∩ Ui ̸= ∅ for each i ∈ [k], hence each Ni is a non-empty matroid. Using
k ≥ 2, then N is reducible. The second part follows from

rN (V ) ≤ rN1(V ) + · · ·+ rNk
(V ) ≤ rM1(U1) + · · ·+ rMk

(Uk) = rM(U) .

4.1 Uncrossing properties for Rado-minor representation

We now present some technical statements for Rado-minor representations that will be used in the
proof of Theorem 1.3. Consider a matroid N on ground set V with Rado-minor representation
(G,M,W ) where G = (V ∪W,U ;E) and M = (U, r).

For a subset X of the ground set V of N , we say that Z ⊆ V ∪W is an X-set if Z ∩ V = X.
For Z ⊆ V ∪W , let

ρ(Z) := r(Γ(Z))− |Z| .
For an X-set Z, we give lower bounds on ρ(Z) depending on the independence of X in N . Through-
out, we will use X,Y for subsets of V ; and Z, I, J for subsets of V ∪W , i.e., X-sets for some X ⊆ V
are denoted with letters Z, I, J .
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Lemma 4.9. The function ρ : 2V ∪W → Z defined above is submodular. Let X ⊆ V and consider
any X-set Z.

(ind) If X is independent in N , then ρ(Z) ≥ 0.

(cir) If X is a circuit in N , then ρ(Z) ≥ −1. Moreover, in this case there is an X-set Z such that
ρ(Z) = −1.

(span) If X contains a basis of N , then ρ(Z) ≥ r(N )− |X|.

Proof. The function ρ is the difference of a submodular function r(Γ(.)) and a modular function |.|,
and thus it is submodular. (For the submodularity of r(Γ(.)), see [48, Lemma 11.2.13].)

(ind) follows immediately from Proposition 4.4. Let us show (cir). Using again Proposition 4.4,
we have ρ(Z \ {i}) ≥ 0 for an arbitrary i ∈ Z ∩ V = X. By adding an element to Z \ {i}, the
ρ-value decreases by at most 1 (the rank function is monotonic so cannot decrease, while the size
increases by one). It follows that ρ(Z) ≥ −1. Moreover, Proposition 4.4 implies there exists an
X-set where equality is attained.

For (span), let B ⊆ X = Z ∩ V be a basis. Then, using the monotonicity of r(Γ(.)) we have

ρ(Z) = r(Γ(Z))− |Z| = r(Γ(Z))− |B ∪ (Z ∩W )| − |X \B|
≥ r(Γ(B ∪ (Z ∩W )))− |B ∪ (Z ∩W )|+ |B| − |X|
= ρ(B ∪ (Z ∩W )) + r(N )− |X|
≥ r(N )− |X| .

Where the last inequality follows by applying (ind) for the basis B and B-set B ∪ (Z ∩W ).

Recall that for a matroid M = (U, r) and a subset X ⊆ U , the closure clM[X] of X is the
maximal set containing X whose rank equals the rank of X, i.e.

clM[X] := {x ∈ U : r(X ∪ {x}) = r(X)} .

If M is clear from the context, we simply denote as cl[X]. A set X with cl[X] = X is called a
closed set or flat.

Lemma 4.10. If ρ(I) + ρ(J) = ρ(I ∪ J) + ρ(I ∩ J), then cl[Γ(I)] ∩ cl[Γ(J)] = cl[Γ(I ∩ J)].

Proof. As ρ(I)+ρ(J) = ρ(I∪J)+ρ(I∩J), we have r( Γ(I) )+r( Γ(J) ) = r( Γ(I∪J) )+r( Γ(I∩J) ).
Then trivially,

r( cl[Γ(I)] ) + r( cl[Γ(J)] ) = r( cl[Γ(I ∪ J)] ) + r( cl[Γ(I ∩ J)] ) . (2)

On the other hand, we have

r( cl[Γ(I)] ) + r( cl[Γ(J)] ) ≥ r( cl[Γ(I)] ∪ cl[Γ(J)] ) + r( cl[Γ(I)] ∩ cl[Γ(J)] )

≥ r( cl[Γ(I) ∪ Γ(J)] ) + r( cl[Γ(I) ∩ Γ(J)] )

≥ r( cl[Γ(I ∪ J)] ) + r( cl[Γ(I ∩ J)] ) .

The first inequality follows by submodularity of r. The second inequality follows from the properties
of the closure operator cl[Γ(I) ∩ Γ(J)] ⊆ cl[Γ(I)] ∩ cl[Γ(J)] and since r( cl[Γ(I)] ∪ cl[Γ(J)] ) =
r( cl[Γ(I)∪Γ(J)] ) (here we used cl[ cl[Γ(I)]∪cl[Γ(J)] ] = cl[Γ(I)∪Γ(J)] ). The third inequality follows
from the properties of the neighbourhood function Γ(I)∪Γ(J) = Γ(I∪J) and Γ(I∩J) ⊆ Γ(I)∩Γ(J).

Thus, by (2), we have r( cl[Γ(I)] ∩ cl[Γ(J)] ) = r( cl[Γ(I ∩ J)] ). Hence, cl[Γ(I ∩ J)] is a closed
set that is a subset of the closed set cl[Γ(I)]∩ cl[Γ(J)], and both cl[Γ(I ∩ J)] and cl[Γ(I)]∩ cl[Γ(J)]
have the same rank. Thus, cl[Γ(I)] ∩ cl[Γ(J)] = cl[Γ(I ∩ J)].
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We will also use the following simple consequence of the definition of ρ.

Lemma 4.11. Let Z ⊆ V ∪ W such that ρ(Z) = 0. Let µ be any matching in G such that
∂U (µ) is independent in M, and Z ⊆ ∂V ∪W (µ). Then, for every (i, j) ∈ µ, i ∈ Z if and only if
j ∈ clM[Γ(Z)].

Proof. It is immediate that if i ∈ Z for (i, j) ∈ µ, then j ∈ Γ(Z) ⊆ clM[Γ(Z)]. For the other
direction, note that there are |Z| edges in µ between Z and Γ(Z). Since 0 = ρ(Z) = r(Γ(Z))− |Z|,
these endpoints already have full rank r(Γ(Z)). Using that ∂µ(U) is independent in M, there may
not be any edges (i, j) ∈ µ with i ∈ (V ∪W ) \ Z and j ∈ clM[Γ(Z)], completing the proof.

Throughout we shall refer to the following uncrossing lemmas liberally. The first statement is
the standard uncrossing argument for tight sets prevalent in combinatorial optimization. However,
in our case one needs to require that X ∪ Y is also independent.

Lemma 4.12 (Uncrossing I). For X,Y ⊆ V let I, J ⊆ V ∪ W be any X-set and any Y -set
respectively, and assume ρ(I) = ρ(J) = 0. If X ∪ Y is independent in N then,

ρ(I ∩ J), ρ(I ∪ J) = 0 .

In particular, if X = Y for an independent set X in N , and ρ(I) = 0 for some X-set I, then there
exists a unique largest maximal X-set I with ρ(I) = 0.

Proof. By submodularity, we have 0 = ρ(I)+ ρ(J) ≥ ρ(I ∩ J)+ ρ(I ∪ J) . By definition, I ∩ J is an
(X ∩ Y )-set and I ∪ J is an (X ∪ Y )-set. Since both X ∩ Y and X ∪ Y are independent, we have
ρ(I ∩ J), ρ(I ∪ J) ≥ 0 by Lemma 4.10. The first part follows.

By the first part, the family of sets I that are X-sets with ρ(I) = 0 is closed under intersection
and union. If this family is non-empty then there exists a unique largest X-set I with ρ(I) = 0.

In other words, the above lemma states that the set of X-sets I where X is independent in N
and with ρ-value 0 is a lattice over V ∪W with respect to union and intersection (as are minimizers
of a submodular function).

Using ρ(∅) = 0, we apply the uncrossing lemma to X = Y = ∅. This yields the following
corollary.

Corollary 4.13. There exists a unique largest set Q ⊆W such that ρ(Q) = 0.

Lemma 4.14 (Uncrossing II). Let X,Y ⊆ V be two different circuits in the matroid N such
that |X ∪ Y | = r(N ) + 2 and X ∪ Y contains a basis. Consider an X-set I and a Y -set J with
ρ(I) = ρ(J) = −1. Then, we have ρ(I ∩ J) = 0 and ρ(I ∪ J) = −2.

Proof. Since I ∩ J is an (X ∩ Y )-set and X ∩ Y is an independent set, we have ρ(I ∩ J) ≥ 0.
Since I ∪ J is an (X ∪ Y )-set and X ∪ Y contains a basis, applying (span) gives us ρ(I ∪ J) ≥ −2.
By submodularity we get −2 = ρ(I) + ρ(J) ≥ ρ(I ∩ J) + ρ(I ∪ J) ≥ 0 − 2 . Hence, the equalities
ρ(I ∩ J) = 0 and ρ(I ∪ J) = −2 hold.

4.2 Lovász extension and the matroid of maximum weight bases

We close this section by recalling some results on Lovász extension and maximum weight bases of
a matroid that will be useful when dealing with R-minor valuated matroids.
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Definition 4.15 (Lovász extension). Let M = (U, r) be a matroid. The Lovász extension r̂ :
RU → R of the rank function r is defined for τ ∈ RU as the maximum τ -weight of a basis of M,
i.e.

r̂(τ) := max

{∑
i∈B

τi

∣∣∣∣∣ B ∈ B(M)

}
.

For a given τ ∈ RU , the value r̂(τ) can be calculated by the following well-known characteriza-
tion, see e.g., [19, Theorem 5.5.5].

Lemma 4.16. Let M = (U, r) be a matroid. For τ ∈ RU , the Lovász extension r̂(τ) equals

r̂(τ) = r(U)τum +
m−1∑
i=1

r(Ui)(τui − τui+1) ,

where we reordered U = {u1, u2, . . . , um} such that τu1 ≥ τu2 ≥ . . . ≥ τum, and Ui = {u1, . . . , ui}
for all i ∈ [m].

In this context, we say that S ⊆ U is a level set of τ if S = ∅, S = U , or S = Ui for some i ∈ [m]
with τui > τui+1 . Thus, the level sets of τ form a chain. Using these level sets we can nicely capture
all maximum weight bases in a matroid. The following lemma follows from the greedy algorithm
for finding maximum weight bases in a matroid.

Lemma 4.17. [4, Proposition 2] For a matroid M = (U, r) and τ ∈ RU , let ∅ = S0 ⊊ S1 ⊊ S2 ⊊
. . . St ⊊ St+1 = U denote the level sets of τ . Let us define the matroid

Mτ :=
t+1⊕
ℓ=1

(
M

∣∣
Sℓ

)
/Sℓ−1 .

This is the matroid formed by the maximum τ -weight bases of M. That is, a basis B in M
maximizes

∑
i∈B τi if and only if B is a basis in Mτ .

5 Linear programming representation of R-minor functions

R-induced valuated matroids are defined via independent matchings. Thus, the function value of
a set can be naturally captured by a linear program. Similarly, the set of all maximizers of an
R-induced valuated matroid corresponds to the integral solutions of a linear program. Below, we
obtain a description of all such integral solutions using the dual linear program and complementary
slackness.

Throughout this section, unless stated otherwise, f is an R-minor valuated matroid with rep-
resentation (G,M, c,W ) given by a bipartite graph G = (V ∪W,U ;E), edge weights c ∈ RE and
a matroid M = (U, r).

Lemma 5.1. For X ⊆ V , f(X) is the objective value of the linear program

max
∑

(i,j)∈E cijxij

s.t.:
∑

j∈U xij = 1i∈X∪W ∀i ∈ V ∪W∑
i∈V ∪W,j∈S xij ≤ r(S) ∀S ⊂ U∑
i∈V ∪W,j∈U xij = r(U)

xij ≥ 0 ∀i ∈ V ∪W, ∀j ∈ U .

(3)

Here, 1i∈Z is the indicator function of the set Z, taking value 1 if i ∈ Z and 0 otherwise.
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Proof. The formulation clearly gives a relaxation of the integer program defining the value of
f(X). Using the total-dual integrality of polymatroid intersection, see [52, Theorem 46.1 and
Corollary 41.12b], the existence of an integer optimal solution x ∈ ZE is guaranteed; see the proof
of Lemma 5.2 for more details. By the first set of constraints and since

∑
i∈V xij ≤ r({j}) ≤ 1 for

all j ∈ U , it is clear that x = χµ for a matching µ. Moreover, it holds ∂V ∪W (µ) = X ∪W and
∂U (µ) is a basis in M. The lemma follows.

We next characterize the set of maximizers of an R-minor valuated matroid.

Lemma 5.2 (Dual LP). Let B be the set of maximizers of f . Then B corresponds to the set of
integral optimal solutions of

max
∑

(i,j)∈E cijxij

s.t.:
∑

j∈U xij ≤ 1 ∀i ∈ V∑
j∈U xij = 1 ∀i ∈W∑

i∈V ∪W,j∈S xij ≤ r(S) ∀S ⊂ U∑
i∈V ∪W,j∈U xij = r(U)

xij ≥ 0 ∀i ∈ V ∪W, ∀j ∈ U .

(4)

The dual of (4) is then
min π(V ) + π(W ) + r̂(τ)

s.t.: πi + τj ≥ cij ∀(i, j) ∈ E

πi ≥ 0 ∀i ∈ V

πi − free ∀i ∈W

τ − free.

(5)

Above, r̂ is the Lovász extension of the matroid rank function r. Let (π, τ) ∈ RV ∪W∪U be an optimal
dual solution. Let E0 = {(i, j) ∈ E : πi+τj = cij} be the set of tight edges, and G0 = (V ∪W,U ;E0)
the tight subgraph. Let ∅ = S0 ⊊ S1 ⊊ S2 ⊊ . . . St ⊊ St+1 = U be the level sets of τ in U , and
denote with Mτ the matroid of maximum weight bases. Let N be the matroid on V ∪W with bases
{B ∪W : B ∈ B}. Then, (G0,Mτ ) is a Rado representation of N . We have πi = 0 for all i ∈ V
for which there is a maximizer set X ∈ B with i ̸∈ X.

Further, the optimal solution (π, τ) can be chosen with the following additional properties:

� Every level set Sℓ, ℓ ∈ [t+ 1] is a flat in M.

� For every ℓ ∈ [t+ 1], (Sℓ \ Sℓ−1) ∩ ΓE0(V ) ̸= ∅.

Proof. Observe that the problem is a special case of matroid intersection. We can define two
matroids on the edge set E: a partition matroid enforcing that only one edge can be selected
incident to every node in V ∪W , and a second matroid enforcing that the set of endpoints in U
must be independent in M; this can be obtained from M by replacing every node u ∈ U by parallel
copies corresponding to the edges incident to u. By the integrality of polymatroid intersection [52,
Theorem 46.1 and Corollary 41.12b], the set argmax{f(X) : X ⊆ V } corresponds to the set of
integral solutions of (4).

The dual LP formulation can be easily derived from Frank’s weight splitting theorem [19,
Theorem 13.2.4], interpreted in this bipartite setting. The Rado representation of N and the
condition on the πi = 0 values follow by complementary slackness.
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Let us now show that the additional properties can be ensured. Consider the smallest level set
Sℓ that is not a flat. Thus, Sℓ = {i ∈ U : τi ≥ λ} for some λ ∈ R. Let us increase τj to λ for every
j ∈ cl[Sℓ] \Sℓ. By definition of the Lovász extension, this does not change the value r̂(τ); and since
we only increase τ , the solution remains feasible. After the change, cl[Sℓ] replaces Sℓ as a level set.
Thus, after at most |U | such changes, we can guarantee that all level sets are flats.

We show that this also implies the final property, i.e., that for every i ∈ [t + 1], there exists a
tight edge (i, j) ∈ E0 with j ∈ Sℓ \ Sℓ−1. Indeed, if no such edge exists, then we can decrease τk
by some positive ε > 0 for every k ∈ Sℓ \ Sℓ−1 such that (π, τ) remains feasible, and Sℓ remains a
level set, i.e. τk > τk′ for any k ∈ Sℓ, k

′ ∈ Sℓ+1. This decreases r̂(τ) by ε (r(Sℓ)− r(Sℓ−1)) > 0, a
contradiction to optimality.

Note that as an immediate corollary, the set of maximizers B is a matroid with Rado-minor
representation (G0,Mτ ,W ).

Lemma 5.3. Let f be an R-induced valuated matroid represented by (G,M, c) and B be the set
of maximizers of f . Consider a dual optimal solution (π, τ) as in Lemma 5.2. If τi ̸= τj for some
i, j ∈ U , then the matroid on V defined by the bases B is fully reducible.

Proof. By Lemma 5.2, (V,U ;E0) and Mτ gives a Rado representation of the matroid with bases B
(sinceW = ∅). For the flats Sℓ, Mτ is the direct sum of the matroids

(
M

∣∣
Sℓ

)
/Sℓ−1 (Lemma 4.17).

Since all level sets Sℓ are flats, each matroid
(
M

∣∣
Sℓ

)
/Sℓ−1 is non-empty. If there are more than

two terms, then Lemma 4.8 implies that B corresponds to a fully reducible matroid. Otherwise,
the only flats can be S0 = ∅ and S1 = U ; consequently, τi is the same for all i ∈ U .

6 R-minor functions do not cover valuated matroids

In this section we prove that no function in Fn arises as an R-minor valuated matroid. Together
with Appendix A this proves Theorem 1.3. The proof will be by contradiction, considering a
carefully chosen minimal counterexample. We start by giving some definitions and the selection
criteria for the minimal counterexample. We then outline a roadmap to the proof in Section 6.1.

Recall that Fn (Definition 1.2) is a family of valuated matroids defined over the ground set
V = [2n], using pairs Pi = {2i− 1, 2i} for i ∈ [n]. We let H be the set of Pi ∪ Pj such that at least
one of i, j is even and we let X∗ = P1 ∪ P2 = {1, 2, 3, 4} ∈ H. A function h :

(
V
4

)
→ R ∪ {−∞} is

in Fn if and only if the following hold:

� h(X) = 0 if X ∈
(
V
4

)
\ H,

� h(X) < 0 if X ∈ H, and

� h(X∗) is the unique largest nonzero value of the function.

First, we introduce some notation and choose an appropriate minimal counterexample. Let us
fix a value n ≥ 16. For a contradiction, let us assume there exists a valuated matroid h ∈ Fn that
is R-minor arising via a bipartite graph G = (V ∪W,U ;E), a matroid M = (U, r), and weights
c ∈ RE . Define

B0 := argmax(h) =

(
V

4

)
\ H , B1 := dom(h) .

By Lemma A.1 both B0 and B1 are (sparse) paving matroids. From the definition of Fn, we have
B0 ∪ {X∗} ⊆ B1.
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Maximum weight matchings For everyX ∈ B1, (arbitrarily) fix a maximum weight independent
matching µX with ∂V ∪W (µX) = X ∪W ; let L be the set of all these matchings. Thus, c(µX) = 0
if X ∈ B0 and c(µX) < 0 if X ∈ B1 \ B0. Define

E∗ := {(i, j) : (i, j) ∈ µX for some X ∈ B0}

as the union of all maximal independent matchings in G of maximum weight.
Selection criteria for h As we assume that the set of valuated matroids in Fn with an R-minor
representation (G,M, c,W ) is not empty, we can select an extremal one h among them according
to the following criteria:

(S1) The function h has minimal effective domain, that is, |B1| is minimal.

(S2) Subject to this, |W | is minimal.

(S3) Subject to this, |E \ E∗| is minimal.

Note that (S1) only depends on h, whereas (S2) and (S3) also depend on the representation.
We will refer to this choice as the minimal counterexample. This choice is well-defined, since all

criteria minimize over non-negative integers. For (S1), note that the extreme case is B1 = B0∪{X∗};
a key step in the proof is to show that this must always be the case.

Remark 6.1. To show that not all valuated matroids arise as R-minor valuated matroids, it would
suffice to show Theorem 1.3 in a weaker form, only for functions h ∈ Fn such that h(X) = −∞
for X ∈ H \ {X∗}. This would already postulate B1 = B0 ∪ {X∗}, enabling a slightly simpler
proof. However, we need Theorem 1.3 for the entire class Fn, because in order to refute the MBV
conjecture in Theorem 7.14, we require a function in Fn with finite values that is not R-minor.

Dual solutions We will also select an optimal dual solution (π, τ) to (5) in Lemma 5.2. Let us
introduce some notation; the choice of the particular solution will be specified in Lemma 6.3.

Let E0 = {(i, j) ∈ E : πi+τj = cij} denote the set of tight edges. By complementarity, E∗ ⊆ E0

must hold for any optimal dual (π, τ). Note that πi = 0 for every i ∈ V by Lemma 5.2, since for
every i ∈ V there is an optimal primal solution to (4) matching a set X ∈

(
V
4

)
\ H with i /∈ X.

Recall that Mτ denotes the matroid of the maximum τ -weight bases as in Lemma 4.17; we let
rτ denote its rank function. The bipartite graph G = (V ∪W,U ;E) and matroid M = (U, r) and
W give a Rado-minor representation of B1. As B0 is the set of maximizers of h, it follows from
Lemma 5.2 that G0 = (V ∪W,U ;E0) and Mτ = (U, rτ ) and W give a Rado-minor representation
of B0.

For Z ⊆ V ∪W , we let Γ(Z) and Γ0(Z) denote the set of neighbours of Z in U in the edge sets
E and E0, respectively. Furthermore, for Z ⊆ V ∪W we define

ρ0(Z) := rτ (Γ0(Z))− |Z| ,
ρ1(Z) := r(Γ(Z))− |Z| .

Note that ρ1(Z) ≥ ρ0(Z) for every Z ⊆ V ∪W . Finally, let Q0 denote the unique largest subset of
W with ρ0(Q0) = 0 as guaranteed by Corollary 4.13. Analogously, one could also define Q1 as the
unique largest subset of W with ρ1(Q1) = 0. However, using selection criterion (S2), it turns out
that Q1 = ∅. The following lemma will be proved in Section 6.2.

Lemma 6.2. In the minimal representation, we have ρ1(Z) > 0 for each non-empty Z ⊆W .
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6.1 Roadmap to the proof

We derive a contradiction by a thorough combinatorial analysis of the structure and Rado repre-
sentations of the matroids B0 and B1. Our first key lemma shows that the primal and dual optimal
solutions must be in either of two restricted configurations.

Lemma 6.3. The minimal counterexample can be selected to satisfy one of the following properties:

(CI) We can choose a dual optimal solution (π, τ) such that E = E0 ∪ {(i′, j′)} for an edge (i′, j′)
where i′ ∈ X∗ ∪W , Mτ = M, and B1 = B0 ∪ {X∗}.

(CII) E = E0 = E∗ and Mτ ̸= M for any dual optimal (π, τ).

Intuitively, the above lemma states that the difference between Rado-minor representations of
B0 and B1 is either in the edge set only, or in the matroid on U only. In case (CI), all bases in M
have the same τ -weight, and there is a single non-tight edge. Further, h(X∗) is the only finite value
outside B0. In contrast, in case (CII), all edges are tight, but we need to work with two different
matroids on U .

The proof in Section 6.2 exploits the selection criteria. First, using (S3), we argue that E =
E∗ ∪ µX

∗
, i.e., all edges are used in one of the optimal matchings or in the maximum weight

independent matching on X∗. If E = E∗, we get a contradiction to case (CII) immediately. If
E ̸= E⋆, we can get (CI) by constructing another dual solution.
The base case W = ∅ We first exclude the case thatW = ∅, that is, the case when h is R-induced.
We tackle this case in Section 6.3. First, in case (CII), Mτ ̸= M implies, using Lemma 4.8, that
B0 is fully reducible, that is, it can be written as a full-rank matroid union of smaller matroids. An
elementary argument in Lemma 6.4 shows that B0 is not fully reducible for n ≥ 10, leading to a
contradiction. The proof exploits the low rank of the matroid (4), and the combinatorics of the
pairs Pi in the construction.

Hence, (CI) must be the case. We note that the set X∗ = P1∪P2 does not have an independent
matching in E0 but has one in E = E0 ∪ {(i′, j′)}. The edge (i′, j′) is incident to X∗; say, i′ ∈ P1.
With an uncrossing argument using the submodularity of the rank of the neighbourhood function,
we show that (i′, j′) should create an independent matching also for another set X = P1 ∪Pk /∈ B0.
Since M = Mτ and this is the single non-tight edge, it follows that 0 > h(Z) ≥ h(X∗), a
contradiction that h(X∗) is the unique largest negative function value.
Robust matroids If W ̸= ∅, we get a contradiction by showing the existence of a counterexample
with smaller W . Towards this goal, in Section 6.4, we define a common abstraction of B0 and B1.
We call them robust matroids (Definition 6.8), and analyze their Rado representations. These are
a class of sparse paving matroids of rank 4 with elements arranged in pairs Pi. All circuits are
formed by the union of two pairs (D1).

We call these matroids ‘robust’ because the structure is robust against the ‘perturbation’ from
the set of bases B0 to B1 = B0 ∪ X∗. This is due to the fact that the non-bases of B0 have been
carefully selected, ensuring that they are neither too sparse nor too uniform. We define a robust
matroid B by a similar selection process, ensuring that the set of non-bases H have the correct
density. The crucial ingredients to this selection process are the properties (D2a) and (D2b). They
allow us to control the excess functions ρ0 and ρ1 (see Lemma 6.12).

We consider the Rado representation of such a robust matroid B and analyze the excess function
ρ(X) = r(Γ(X))− |X|; statements derived in Section 6.4 will be valid for ρ1 in the representation
G = (V ∪W,U ;E) with M = (U, r) as well as for ρ0 in G0 = (V ∪W,U ;E0) with Mτ = (U, rτ )
(Lemma 6.9).

23



The difficulty in the proof is to control the freedom in the set W . While we are ultimately
interested in the matroid on V , we also have to deal with its ‘preimage’ before contraction in the
bigger matroid in V ∪W . As B is robust, the structure of the non-bases H is sufficiently rigid
that their ‘preimages’ in V ∪W also exhibit a similar structure. As such, the analysis reveals that
the structure of the pairs Pi ‘forces itself’ on the full representation. This can be quantified with
the excess function ρ. Let Q ⊆ W be the unique largest set with ρ(Q) = 0 (Corollary 4.13). In
Lemma 6.10, we show that for each pair Pi there exists a unique largest ‘extension set’ Zi ⊆ V ∪W
with ρ(Zi) = 0 and Zi ∩ V = Pi. Moreover, for every i ̸= j, we have Zi ∩ Zj = Q, as well as
ρ(Zi ∪ Zj) = 0 if Pi ∪ Pj ∈ B and ρ(Zi ∪ Zj) = −1 otherwise (Lemma 6.11). The last property
asserts that Zi ∪ Zj certifies Pi ∪ Pj /∈ B whenever this set is a circuit.

Let Z0
i and Z1

i denote the respective sets in the representations of the two matroids B0 and B1.
For the rest, we argue that these two representations must be near-identical, while still correspond-
ing to two different matroids.

In Section 6.5, we first show that supp(h) = B1 = B0 ∪ {X∗} always holds (Lemma 6.14).
This is already known in (CI); however, it is significantly more difficult to show in (CII). We then
argue that the Z1

i sets partition the ground set V ∪W (Lemma 6.16). Further, for each i ∈ [n],
Z0
i = Z1

i ∪Q0 must hold; that is, the two extension sets may only differ in Q0, the largest subset
of W with ρ0(Q0) = 0.
Completing the proof It remains to complete the analysis for the two cases (CI) and (CII). In
case (CI) (Section 6.6), the set Q0 plays a key role. First, assume Q0 = ∅, i.e. Zi := Z0

i = Z1
i .

Then, for each set Zi, the neighbourhoods using edges in E0 and the entire set E should have the
same rank; this basically leaves no room for the edge (i′, j′) ∈ E \E0. Hence, Q0 ̸= ∅, and we must
have Q0 ⊆ Z1

q for a unique q ∈ {3, 4, . . . , n}. The final contradiction is reached by a submodular
uncrossing argument.

Finally, in case (CII) (Section 6.7), we can show Q0 = ∅ (Lemma 6.13), and therefore Zi :=
Z0
i = Z1

i for all i ∈ [n]. While the edge sets E and E0 are the same, the functions ρ1 and ρ0 may
be still different as they correspond to different matroids, M and Mτ . We derive a contradiction
to (S2) by showing that for some Zi with |Zi| > 2, deleting an element of W ∩ Zi and contracting
a node in the matroid M leads to a smaller representation of h.

6.2 Proofs of Lemma 6.2 and Lemma 6.3

We now present two proofs deferred from the previous section.

Proof of Lemma 6.2. By (ind), we must have ρ1(Z) ≥ 0 for all Z ⊆ W . For a contradiction, let
Z ⊆ W be a non-empty set with ρ1(Z) = 0. Let T = cl[Γ(Z)], then r(T ) = |Z|. By Lemma 4.11,
for every edge (i, j) in some maximal independent matching µ, we have i ∈ Z if and only if j ∈ T .
That is, the nodes in Z can only be matched to nodes of T and vice versa in maximal independent
matchings. Moreover, the weight of the edges covering Z must be the same value δ for any maximal
independent matching. This follows since for any two maximal independent matchings µ, µ′, we
can replace the set of edges covering Z in µ by the set of edges covering Z in µ′ and obtain another
independent matching covering Z ∪X. Let M′ := M/T denote the matroid obtained from M by
contracting T , and let U ′ := U \ T . Then, we obtain a smaller R-minor representation of h by
restricting to W ′ := W \ Z, and using M′ on U ′. Moreover, we define the new weight function on
the edges as c′(i, j) := c(i, j) + δ/r(M′) for each edge (i, j) with i ∈ V ∪W ′ and j ∈ U ′ to obtain
the same h(X) values. This contradicts criterion (S2) whenever Z ̸= ∅.

Proof of Lemma 6.3. Let µX
∗ ∈ L denote a maximum weight independent matching covering

X∗∪W . First, we show that E = E∗ ∪ µX∗
. Indeed, removing an edge in E \ (E∗ ∪ µX∗

) does not
affect h(X) for X ∈ B0 ∪ {X∗} as all matchings µX for X ∈ B0 lie in E∗. For any other set, h(X)
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may decrease (possibly to −∞); but this would yield another function in Fn that is the same or
better on criterion (S1), the same on (S2), and strictly better on (S3). Hence, E = E∗ ∪ µX∗

.
First, assume E = E∗. Then, µX

∗ ⊆ E∗ ⊆ E0. Thus, ∂U (µ
X∗

) cannot be independent in
Mτ , as otherwise h(X∗) = 0 would follow by complementary slackness. Hence, M ≠ Mτ , giving
case (CII).

Next, assume that E \ E∗ = µX
∗ \ E∗ ̸= ∅. Let (i′, j′) be an arbitrary edge in µX

∗ \ E∗, i.e.,
i′ ∈ X∗ ∪W . We start increasing c to c′ for ε ≥ 0 as follows

c′ij :=

{
cij + ε for (i, j) = (i′, j′)

cij otherwise.

Pick the largest ε ≥ 0 such that the maximum weight of an independent matching in G, M, c
remains 0, i.e., such that the optimum value of the LP (4) does not change.

Claim 6.3.1. ε = −h(X∗).

Proof. Suppose that ε < −h(X∗). By definition of E∗, we have stopped increasing ε as the edge
(i′, j′) has now entered E∗ and increasing the value further would increase the optimal value via a
set X ∈ B0. However, we still have h(X∗) < 0, which contradicts (S3).

Next, we note that B0 ∪ {X∗} is the set of maximizers of LP (4) under the increased weights
c′. Indeed, by the choice of ε all previous maximizers B0 remain maximizers and now µX

∗
achieves

the same value thereby becoming a maximizer as well. Moreover, for X ∈ H \ {X∗}, we have
c′(µX) ≤ c(µX) + ε < c(µX

∗
) + ε = 0.

Let us pick an optimal dual solution (π, τ) to (5) under c′. Recall that E = E∗ ∪ µX
∗
and

therefore all edges E are tight with respect to c′. Since c′ ≥ c and the optimum value is the same
for the two cost functions, it follows that (π, τ) is also optimal to (5) with the original weights c.

Since c and c′ differ only on (i′, j′), all edges E \ {(i′, j′)} are tight under (π, τ) for c; thus,
E0 = E \ {(i′, j′)}.

As ∂U (µ
X∗

) is a maximum τ -weight basis in M, it follows that we can replace M by Mτ . This
is because all µX ∈ L for X ∈ B0 ∪ {X∗} remain independent matchings. The function value h(X)
might decrease for X ̸∈ B0 ∪ {X∗}, but this may only lead to improvement in (S1), or otherwise
we get another solution that is equally good on the selection criteria.

It is left to show B1 = B0∪{X∗}. Take anyX ∈ B1. As we replacedM byMτ and every basis in
Mτ has maximum τ -weight, the value of c(µ) is the optimum minus the sum of the slack values on
the edges as given in the dual LP of Lemma 5.2, that is, h(X) = c(µX) = −

∑
(i,j)∈µ(πi + τj − cij).

Since (i′, j′) is the only edge with positive slack, this means that h(X) = 0 if (i′, j′) /∈ µX and
h(X) = h(X∗) if (i′, j′) ∈ µX . Since X∗ is the unique set with the largest negative function value,
this implies B1 = B0 ∪ {X∗}. This completes the analysis of the case E \ E∗ ̸= ∅, showing (CI)
holds.

6.3 h is not R-induced (W = ∅)
We start by showing that W = ∅ is not possible; in other words, h cannot have an R-induced
representation. We start with a structural claim on B0.

Lemma 6.4. The matroid on [2n] defined by bases B0 is not fully reducible for n ≥ 10.

Proof. Let r0 denote the rank function of the matroid with bases B0. For a contradiction, assume
this matroid is obtained as the union of two non-empty matroidsM1 andM2 on V = [2n] with rank
functions r1 and r2, such that r1(V )+r2(V ) = 4. Recall that r0(X) = min{r1(Z)+r2(Z)+ |X \Z| :
Z ⊆ X} by Theorem 4.7. W.l.o.g. r1(V ) ≤ r2(V ). We distinguish two cases.
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Case I: r1(V ) = 1, r2(V ) = 3. Let T := {v ∈ V : r1({v}) = 0} denote the set of loops in M1.
We observe that T may intersect at most three different pairs Pi. To see this, suppose T intersects
four distinct pairs Pi, Pj , Pk, Pℓ and let X = {vi, vj , vk, vℓ} ⊆ T be a subset of T consisting of one
element from each pair respectively. Then X ∈ B0 but r0(X) ≤ 3 as each element of X is a loop in
M1, giving a contradiction.

Let us select four pairs Pi, Pj , Pk, Pℓ that do not intersect T such that i and j are odd and k
and ℓ are even; such selection is possible for n ≥ 10 as the most restrictive scenario is when all three
pairs intersecting T have even index, requiring five pairs of even index in total. Since Pi ∪Pj ∈ B0,
we must have r2(Pi ∪ Pj) = 3; w.l.o.g. assume r2(Pi) = 2.

Consider Pi ∪ Pk and recall that it forms a circuit in B0. By Theorem 4.7, r1(Pi ∪ Pk) +
r2(Pi ∪ Pk) = 3, implying r2(Pi ∪ Pk) = 2. Similarly, r2(Pi ∪ Pℓ) = 2. By submodularity, we have
r2(Pi ∪ Pk ∪ Pℓ) = 2, and thus r0(Pi ∪ Pk ∪ Pℓ) = 3, a contradiction as the union of any three pairs
contains a basis.
Case II: r1(V ) = r2(V ) = 2. Note that there can be at most one pair Pt such that r1(Pt) = 0, and at
most one pair Pt′ with r2(Pt′) = 0. Otherwise, if there existed Pa, Pb such that r1(Pa) = r1(Pb) = 0,
then r1(Pa ∪ Pb) = 0, contradicting that the union of any two pairs has rank at least 3 in B0.

Let us select Pi, Pj , Pk, Pℓ such that i is even, and j, k, and ℓ are odd, and all these pairs have
rank ≥ 1 in both matroids; again such sets can be selected for n ≥ 10 as we require at most four
pairs of odd index and two pairs of even index. Since Pi ∪Pj is a circuit in B0, Theorem 4.7 yields
r1(Pi∪Pj)+r2(Pi∪Pj) = 3. Similarly, r1(Pi∪Pk)+r2(Pi∪Pk) = 3 and r1(Pi∪Pℓ)+r2(Pi∪Pℓ) = 3.
W.l.o.g. r1(Pi ∪ Pj) = r1(Pi ∪ Pk) = 1. By the assumption r1(Pi) ≥ 1, submodularity gives
r1(Pi ∪ Pj ∪ Pk) = 1. This again contradicts the fact that r0(Pi ∪ Pj ∪ Pk) = 4.

Lemma 6.5. If W = ∅, then we must have π ≡ 0 and τ ≡ 0 for the optimal dual (π, τ) in (5).

Proof. By definition of h ∈ Fn, the optimum value of the LP (4) is 0. Recall that πi = 0 for all
i ∈ V . From Lemma 5.3, it follows that τi has the same value for all i ∈ U ; let α be this common
value. Then, the objective value of the dual program (5) is 0 = α · r(M). Consequently, α = 0,
and therefore τ = 0.

Therefore Mτ = M, implying case (CI) of Lemma 6.3: E = E0∪{(i∗, j∗)} and B1 = B0∪{X∗}.
The rest of the analysis is covered by the argument in Section 6.6 for (CI). We include a simpler
direct proof that also illustrates some key ideas of the more complex subsequent arguments.

Let ℓ ∈ {1, 2} such that i∗ ∈ Pℓ. We note that the cases ℓ = 1 and ℓ = 2 are not symmetric,
because of different parity.

Claim 6.6. We have r(Γ(Pℓ)) = 3.

Proof. We first show that j∗ ̸∈ cl[Γ0(X
∗)]. Indeed, since X∗ is a circuit in B0, r(Γ0(X

∗)) = 3 by
Theorem 4.2. If j∗ ∈ cl[Γ0(X

∗)], then r(Γ(X∗)) = 3 since Γ(X∗) = Γ0(X
∗) ∪ {j∗}; thus, X∗ /∈ B1,

a contradiction.
As Pℓ ⊂ X∗, it follows that j∗ ̸∈ cl[Γ0(Pℓ)]. Since Pℓ is a subset of a basis in B0 we have

r(cl[Γ0(Pℓ))]) ≥ 2. Thus, r(Γ(Pℓ)) = r(Γ0(Pℓ) ∪ {j∗}) = r(cl[Γ0(Pℓ))] ∪ {j∗}) ≥ 3.
Let us show r(Γ(Pℓ)) ≤ 3. Recall that Pℓ ∪ P4 ∈ H \ {X∗}, i.e., Pℓ ∪ P4 ̸∈ B1 = B0 ∪ {X∗}.

Moreover, Pℓ ∪ P4 is a circuit in matroid B1. Consequently, r(Γ(Pℓ)) ≤ r(Γ(Pℓ ∪ P4)) = 3 by
Theorem 4.2. ■

Proposition 6.7. h is not an R-induced valuated matroid.
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Figure 8: The graph H of a robust matroid defined in (D2).

Proof. Let X,Y ∈ H \ {X∗} be two sets whose intersection is Pℓ. If ℓ = 1, we can select X =
P1 ∪ P4 = {1, 2, 7, 8} and Y = P1 ∪ P6 = {1, 2, 11, 12}, and if ℓ = 2, we can select X,Y ∈ H \ {X∗}
intersecting in P2, such as X = P2 ∪ P3 = {3, 4, 5, 6} and Y = P2 ∪ P4 = {3, 4, 7, 8}.

Since h(X), h(Y ) = −∞ by B1 = B0∪{X∗}, there is no independent matching in E coveringX or
Y , andX and Y are circuits in B1. By Theorem 4.2, we have r(Γ(X)) = r(Γ(Y )) = 3. By Claim 6.6,
it follows that Γ(X),Γ(Y ) ⊆ cl[Γ(Pℓ)]. This further implies that r(Γ(X ∪ Y )) ≤ r(Γ(Pℓ)) = 3, a
contradiction since X ∪Y contains a set in B. (For ℓ = 1, one such set is {1, 2, 7, 11}, and for ℓ = 2,
we can select {3, 4, 5, 7}.)

6.4 Robust matroids and their Rado-minor representations

In this section we study some additional properties of Rado-minor representations of the matroid B0.
We formulate the properties more generally, so that we can also use them whenever B1 = B0∪{X∗}.
This always holds in case (CI), and we will later show that it must also be true in case (CII).

Definition 6.8 (Robust matroid). Let V = [2n], and let Pi = {2i − 1, 2i} for i ∈ [n]; these are
called pairs. We define a matroid by its set of bases B ⊆

(
V
4

)
and let H :=

(
V
4

)
\ B. We say that B

forms the bases of a robust matroid if

(D1) Every circuit in H is the union of two pairs Pi ∪ Pj ,

(D2) Consider a graph ([n], H) where {i, j} ∈ H if and only if Pi∪Pj ∈ H. Then, we can partition
[n] into two sets S and K such that |S| ≥ 3, K is a clique in H with |K| ≥ 3, and every node
in S is adjacent to every node in K. (A schematic view of H is given in Figure 8.) Moreover,
for each i ∈ S

(D2a) there is j ∈ S such that i is non-adjacent to j in H, and

(D2b) S \ {i} is not a clique.

Note that this defines a sparse paving matroid of rank 4.

Lemma 6.9. Both B0 and B0 ∪ {X∗} are robust matroids for n ≥ 8.

Proof. The first property is immediate. For (D2), in B0 (respectively B0 ∪ {X∗}), it suffices to
choose K as the set of even indices (respectively the set of even indices different from 2). In both
cases, S = [n] \K. Note that S is a stable set for B0. For B0 ∪ {X∗}, H[S] is disjoint union of a
star with center in node 2 and isolated node 1.

Let B be a robust matroid on V . Consider a Rado-minor representation (G,M) with bipartite
graph G = (V ∪W,U ;E) and M = (U, r). Recall that for Z ⊆ V ∪W , we define ρ(Z) := r(Γ(Z))−
|Z|, and that there is a unique maximal subset Q of W such that ρ(Q) = 0 by Corollary 4.13. We
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now derive strong structural properties for such a representation of the matroid B by making heavy
use of the results in Section 4.1. In particular, we note that if {i, j}, {i, k} ∈ H then the circuits
Pi ∪ Pj , Pi ∪ Pk ∈ H satisfy the conditions of Lemma 4.14: their union has cardinality 6, i.e., the
rank of the matroid plus 2, and contains a basis, e.g., Pi ∪ {2j, 2k}.

Lemma 6.10. For each pair Pk, there exists a unique largest Pk-set Zk with ρ(Zk) = 0; and
Q ⊆ Zk.

Proof. By (D2), there exist different indices i, j ∈ [n]\{k} such that Pi∪Pj and Pi∪Pk are circuits
in H. By (cir), there exists a (Pi ∪ Pk)-set I and a (Pj ∪ Pk)-set J with ρ(I) = ρ(J) = −1. By the
second uncrossing Lemma 4.14, the intersection I ∩ J is a Pk-set with ρ(I ∩ J) = 0. This shows
the existence of a Pk-set with ρ-value 0. The existence of a unique largest such set follows by the
first uncrossing Lemma 4.12 by choosing X = Y = Pk there.

To see that Q ⊆ Zk, we apply the first uncrossing Lemma 4.12 for X = ∅, I = Q and Y =
Pk, J = Zk. Namely, Q∩Zk is an ∅-set and Q∪Zk is a Pk-set. Thus, ρ(Q∪Zk) = 0 and Q ⊆ Zk.

Let us interpret the above lemma. It states that for any pair Pk there exists a unique largest
set Zk containing exactly Pk in V with ρ(Zk) = 0. Having ρ(Zk) = 0 means that any independent
matching µ in the Rado-minor representation with ∂V ∪W (µ) = Pk ∪W , must match the nodes in
Zk to cl[Γ(Zk)] and no other node is matched to a node in cl[Γ(Zi)] (Lemma 4.11).

Next we describe how the sets Zk, given by Lemma 6.10, interact with each other.

Lemma 6.11. For any i, j ∈ [n], i ̸= j, we have

� If Pi ∪ Pj ∈ B then ρ(Zi ∪ Zj) = 0;

� if Pi ∪ Pj ∈ H then ρ(Zi ∪ Zj) = −1.

� For all i, j ∈ [n], i ̸= j we have Zi ∩ Zj = Q and cl[Γ(Zi)] ∩ cl[Γ(Zj)] = cl[Γ(Q)].

Proof. First, we show the lemma for pairs Pi and Pj such that Pi∪Pj is a basis in B. We have that
Zi ∩ Zj is an ∅-set and Zi ∪ Zj is a (Pi ∪ Pj)-set. By the first uncrossing Lemma 4.12, as Pi ∪ Pj

is an independent set, we have ρ(Zi ∩ Zj) = ρ(Zi ∪ Zj) = 0. By the maximality of Q and since
Q ⊆ Zi, Zj , we have Zi ∩ Zj = Q. Finally, Lemma 4.10 implies cl[Γ(Zi)] ∩ cl[Γ(Zj)] = cl[Γ(Q)].
This proves the lemma for i, j ∈ [n] with Pi ∪ Pj ∈ B.

For the rest of the proof, consider pairs Pi and Pj such that Pi ∪ Pj is a circuit in H. We show
that ρ(Zi∪Zj) = −1. By (cir), there is a (Pi∪Pj)-set A with ρ(A) = −1. Let k ∈ K \{i, j} be such
that Pi ∪ Pk and Pj ∪ Pk are circuits H; such k is guaranteed by (D2). Again by (cir), there exists
a (Pi ∪ Pk)-set I and a (Pj ∪ Pk)-set J such that ρ(I) = ρ(J) = −1. Further, |Pi ∪ Pj ∪ Pk| = 6.
By the second uncrossing Lemma 4.14, we have ρ(I ∪ J) = −2.

Let us show that A ∩ I ⊆ Zi and A ∩ J ⊆ Zj . By symmetry, it suffices to show the first claim.
Uncrossing gives

−2 = ρ(A) + ρ(I) ≥ ρ(A ∩ I) + ρ(A ∪ I) ≥ 0− 2 ,

where the second inequality follows by (ind) and (span), since A ∩ I is a Pi-set and A ∪ I is a
Pi ∪ Pj ∪ Pk-set. Consequently, ρ(A ∩ I) = 0, and therefore A ∩ I ⊆ Zi by maximality of Zi.

Next, we uncross A and I ∪ J , using ρ(A) = −1 and ρ(I ∪ J) = −2:

−3 = ρ(A) + ρ(I ∪ J) ≥ ρ(A ∩ (I ∪ J)) + ρ(A ∪ I ∪ J) ≥ −1− 2 ,

by (cir) and (span), since C := A ∩ (I ∪ J) is a (Pi ∪ Pj)-set and A ∪ I ∪ J is a (Pi ∪ Pj ∪ Pk)-set.
Thus, ρ(C) = −1. We can rewrite C = (A∩ I)∪ (A∩ J). As noted above, A∩ I ⊆ Zi, A∩ J ⊆ Zj ,
and consequently, C ⊆ Zi ∪ Zj .
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Uncrossing C with Zi gives

−1 = ρ(C) + ρ(Zi) ≥ ρ(C ∩ Zi) + ρ(C ∪ Zi) ≥ −1 ,

that is, ρ(C ∪ Zi) = −1. Similarly, ρ(C ∪ Zj) = −1. Finally, we uncross C ∪ Zi and C ∪ Zj :

−2 = ρ(C ∪ Zi) + ρ(C ∪ Zj) ≥ ρ(C ∪ Zi ∪ Zj) + ρ((C ∪ Zi) ∩ (C ∪ Zj)) ≥ −2 .

Recalling that C ⊆ Zi ∪ Zj , it follows that ρ(Zi ∪ Zj) = −1.

Next, we show that Zi∩Zj = Q. For a contradiction, assume there exists w ∈ (Zi∩Zj)\Q ⊆W .
Consider k ∈ K\{i, j} as before, i.e., k ∈ K\{i, j} such that {i, j, k} is a triangle in the graphH. By
the second uncrossing Lemma 4.14 for I = Zi∪Zk and J = Zj ∪Zk, we see that ρ(I ∩J) = 0. Since
Zk ⊆ I ∩ J and Zk is the largest Pk-set with ρ(Zk) = 0, it follows that I ∩ J = Zk. Consequently,
Zi ∩ Zj ⊆ Zk and w ∈ Zk for all k ∈ K.

Let k, k′ ∈ K, and consider any ℓ ∈ S. These three indices again form a triangle in the graph
([n], H). By the same argument as in the previous paragraph, we conclude w ∈ Zℓ for all ℓ ∈ S.
Hence, w ∈ Zℓ for all ℓ ∈ [n]. This is a contradiction as we have already shown that Za ∩ Zb = Q
whenever Pa ∪ Pb is a basis in B.

Finally, we show that cl[Γ(Zi)] ∩ cl[Γ(Zj)] = cl[Γ(Q)]. Similarly to the previous argument,
we assume for the contradiction that there exists u ∈ (cl[Γ(Zi)] ∩ cl[Γ(Zj)]) \ cl[Γ(Q)]. Again,
by the second uncrossing Lemma 4.14 for I = Zi ∪ Zk and J = Zj ∪ Zk, we have ρ(I ∩ J) = 0
and I ∩ J = Zk. Moreover, it holds ρ(I) + ρ(J) = ρ(I ∩ J) + ρ(I ∪ J). Lemma 4.10 implies
that cl[Γ(I)] ∩ cl[Γ(J)] = cl[Γ(Zk)]; consequently, cl[Γ(Zi)] ∩ cl[Γ(Zj)] ⊆ cl[Γ(Zk)]. As before, this
implies that u ∈ cl[Γ(Zℓ)] for all ℓ ∈ [n]. This is a contradiction as we have already shown that
cl[Γ(Za)] ∩ cl[Γ(Zb)] = cl[Γ(Q)] whenever Pa ∪ Pb is a basis in B.

Lemma 6.12. We have ρ(∪n
i=1Zi) = 4− 2n and ρ(∪i∈[n]\{j}Zi) = 2− 2n for every j ∈ [n].

Proof. We rely on the following two claims.

Claim 6.12.1. Consider three different indices i, j, k ∈ [n] such that at least two out of {i, j}, {i, k},
and {j, k} are edges in H. Then, ρ(Zi ∪ Zj ∪ Zk) = −2.

Proof. Consider the pairs Pi, Pj , and Pk with indices as in the claim. Without loss of generality
assume that {i, k}, {j, k} are edges in H. Thus, Pi ∪ Pk and Pj ∪ Pk are circuits in H. Then, we
have ρ(Zi ∪ Zk) = ρ(Zj ∪ Zk) = −1 by the second part of Lemma 6.11. Let us uncross these two
sets. By submodularity and Lemma 4.9, we have

−2 = ρ(Zi ∪ Zk) + ρ(Zj ∪ Zk) ≥ ρ(Zk) + ρ(Zi ∪ Zj ∪ Zk) ≥ 0− 2 .

Hence, ρ(Zi ∪ Zj ∪ Zk) = −2. ■

Claim 6.12.2. Let L ⊆ [n] such that |L ∩K| ≥ 3 and L ∩ S contains two non-adjacent indices i
and j. (Recall that K and S are the sets given by (D2).) Then, ρ(∪i∈LZi) = 4− 2|L|.

Proof. As {i, j} ̸∈ H then Pi ∪ Pj ∈ B and thus ρ(Zi ∪ Zj) = 0 by the first part of Lemma 6.11.
Consider any index k ∈ K. By Claim 6.12.1, ρ(Zk∪Zi∪Zj) = −2. Therefore, adding Zk to Zi∪Zj

decreases the ρ value by 2. In other words, for any k ∈ K we have

∆ρ(Zk|Zi ∪ Zj) := ρ(Zk ∪ Zi ∪ Zj)− ρ(Zi ∪ Zj) = −2− 0 = −2 . (6)
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As the intersection of any pair Za∩Zb = Q by Lemma 6.11, submodularity implies that adding
ℓ different sets Zk with k ∈ K to Zi ∪Zj decreases ρ by at least 2ℓ. We proceed to prove a similar
statement for sets Zk with k ∈ S.

Consider three different indices a, b, c ∈ K ∩ L. Let Y = Za ∪ Zb ∪ Zc. We then have, ρ(Y ∪
Zi ∪ Zj) ≤ 0 − 2 · 3 = 4 − 2 · 5. Since a, b, c ∈ K, by Claim 6.12.1, we have ρ(Y ) = −2. By
Lemma 4.9 (span), we also have ρ(Y ∪Zi∪Zj) ≥ 4−2 ·5 and consequently ρ(Y ∪Zi∪Zj) = 4−2 ·5.
(Which proves the claim if L = {a, b, c, i, j}.)

Rearranging the above we conclude that whenever {i, j} ̸∈ H, we have

∆ρ(Zi ∪ Zj |Y ) = −4 . (7)

In other words, adding Zi ∪ Zj to Y leads to a decrease of 4 in the ρ value. By Lemma 4.9 (span)
we also have ρ(Y ∪ Zi) ≥ 4 − 2 · 4 = −4, and ρ(Y ∪ Zi ∪ Zj) ≥ 4 − 2 · 5 = −6. Combining it
with the previous paragraph, we have ∆ρ(Zi|Y ) ≥ −2, and ∆ρ(Zj |Y ∪ Zi) ≥ −2. Using (7) and
submodularity we conclude that the inequalities hold with equality. That is, we have

∆ρ(Zi|Y ) = −2 (8)

for every i such that {i, j} ̸∈ H for some j ∈ S, i.e., by (D2a), for every i ∈ S. By submodularity,
adding ℓ different sets Zi with i ∈ S to Y decreases the ρ value by at least 2 · ℓ.

Thus, for our set L, by submodularity and combining (6) and (8) we have ρ(∪i∈LZi) ≤ 4−2 · |L|.
The equality holds by Lemma 4.9 (span). ■

The lemma follows by (D2b) and the last claim for L = [n] and L = [n] \ {j}.

6.5 Bounding the support of h

Since B0 is always a robust matroid, we can use the results in the previous section for B = B0. Let
Z0
i denote the Pi-set Zi for B = B0, and Q0 the unique largest subset of W with ρ0(Q0) = 0.
Our first goal is to show Lemma 6.14 below, namely, that in both case (CI) and (CII), we have

that dom(h) = B1 = B0 ∪ {X∗}. Thus, we get the smallest possible size according to the main
selection criterion (S1). This will enable us to also use the robust matroid analysis on B = B1. The
proof will rely on the following ‘reduction’ of the matroid M.
Reducing M We replace M on U by the following matroid M: a set T ∈

(
U

|W |+4

)
is a basis in M

if and only if there is a matching in E between T and a basis in

B := {X ∪W : X ∈ B0 ∪ {X∗}} .

These sets T form the bases of a matroid by Rado’s theorem. Since h(X) is finite for all X ∈
B0 ∪ {X∗}, this will be a ‘submatroid’ (weak map) of M, i.e., all bases of M are bases in M.
Let h̄(X) be the function corresponding to the modified representation (G,M, c,W ). Clearly,
h̄(X) = h(X) for every X ∈ B0 ∪ {X∗} and h̄(X) ≤ h(X) otherwise. As h̄ has the same or better
criteria (S1)–(S3) than h, for the rest of the proof we shall assume h = h̄ and M = M.

Using this construction, we first show that Q0 = ∅ in (CII). However, Q0 ̸= ∅ may still be
possible in case (CI).

Lemma 6.13. In case (CII), i.e., if E = E∗, then Q0 = ∅ must hold. Thus, ρ1(S) ≥ ρ0(S) ≥ 1
for all S ⊆W,S ̸= ∅ in this case.

Proof. Denote with T0 = Γ(Q0). By definition of ρ0, rτ (T0) = |Q0|. We claim that also r(T0) = |Q0|.
The next claim will be needed for this proof.
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Claim 6.13.1. There is no edge (i, j) ∈ E with i ∈ (V ∪W ) \Q0 and j ∈ T0.

Proof. Suppose there is such an edge. By definition of E∗ (= E), there exists an independent
matching µ containing (i, j) with weight 0 such that the endpoints ∂U (µ) are independent in Mτ .
Trivially, this matching also covers Q0 as Q0 ⊆W . This leads to a contradiction with Lemma 4.11.

■

Suppose that r(T0) > |Q0|. Then there is a basis S of M such that |S∩T0| > |Q0|. As M = M
there is an independent matching that matches S ∩ T0 to a subset of size > |Q0| in V ∪W . This
is impossible as the neighbourhood of T0 in V is Q0 by Claim 6.13.1. Hence, r(T0) = |Q0|. This
contradicts Lemma 6.2.

Lemma 6.14. B1 = B0 ∪ {X∗} must hold.

Proof. There is nothing to prove in (CI), so let us assume we are in case (CII); thus, E = E∗.
According to the previous lemma, we also have Q0 = ∅. Let Z∗ = ∪n

i=1Z
0
i ; in particular V ⊆ Z∗.

Claim 6.14.1. There are no edges between W \ Z∗ and Γ(Z∗).

Proof. Let F denote the edge set in the claim. Let T ∗ := Γ(Z∗) = Γ0(Z
∗). By Lemma 6.12 and

Lemma 6.13, we have that ρ0(Z
∗) = 4 − 2n. As ρ0(Z

∗) = rτ (Γ0(Z
∗)) − |Z∗| = rτ (T

∗) − |Z∗| we
have rτ (T

∗) = 4+ |Z∗ ∩W |. Consequently, an independent matching µ of weight 0 cannot use any
of the edges in F , since |∂Z∗(µX)| = 4+ |Z∗∩W | and thus ∂Z∗(µX) must be matched to a maximal
independent set in T ∗. Hence, E∗ ∩ F = ∅. Then F = ∅ as E = E∗. ■

Consider any X ∈ B1 \ (B0 ∪ {X∗}). We have X = Pi ∪Pj for some i, j ∈ [n], {i, j} ≠ {1, 2} by
the definition of Fn. Thus, there is a matching in E between X ∪W and a basis R of M. Since
M = M, there is in turn another matching µ between R and a set Y ∈ B0 ∪ {X∗}.

Let S := Z0
i ∪ Z0

j and T := Γ(S). Thus, |R ∩ T | = |S|. Therefore, the matching µ must match
R ∩ T to an independent subset Y ′ ⊆ Y with |Y ′| = |S|. Note that Y ′ ̸= S, since S is not a subset
of any basis in B0 ∪ {X∗}. Therefore, µ must contain an edge between T and (V ∪W ) \ S. The
following claim shows that this is not possible, giving rise to a contradiction.

Claim 6.14.2. Γ(T ) = S.

Proof. In case (CII), Lemma 6.13 shows Q0 = ∅. Thus, Lemma 6.11 implies that T = Γ(Z0
i )∪Γ(Z0

j )

is disjoint from Γ(Z0
k) for all k /∈ {i, j}. Thus, Γ(T ) ∩Z∗ = S. Further, Γ(T ) ∩ ((V ∪W ) \Z∗) = ∅

according to Claim 6.14.1. The claim follows. ■

In light of the above Lemma, we can apply the techniques in Section 6.4 to the robust matroid
B1 = B0 ∪ {X∗}. Let Z1

i denote the corresponding sets in Lemma 6.11, and recall that ρ1(Z) =
r(Γ(Z)) − |Z|. By Lemma 6.2, the largest subset Q1 of W with ρ1(Q1) = 0 is Q1 = ∅. Applying
Lemma 6.11 then immediately gives:

Lemma 6.15. For any i, j ∈ [n], i ̸= j, we have Z1
i ∩ Z1

j = ∅ and clM[Γ(Z1
i )] ∩ clM[Γ(Z1

j )] = ∅.

Lemma 6.16. ∪n
i=1Z

1
i = V ∪W .

Proof. We use the following claim stating that, in the minimal counterexample, for any V -set Z
with sufficiently large ρ1-value it holds V ∪W = Z.
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Claim 6.16.1. Let Z = V ∪W ′ for W ′ ⊆ W such that ρ1(Z) = 4 − |V |. Then, we must have
W ′ =W or equivalently, Z = V ∪W .

Proof. For a contradiction assume that W ′ ̸= W . Let T = cl[Γ(V ∪W ′)]. By definition of ρ1,
having ρ1(V ∪W ′) = 4− |V | means r(T ) = |V ∪W ′|+ 4− |V | = |W ′|+ 4. Thus, for any X ∈ B1

(|X| = 4) the corresponding matching µX ∈ L matches exactly r(T ) nodes in T to the nodes in
X ∪W ′. In other words, any matching µX ∈ L matches nodes W \W ′ to |W \W ′| nodes in U \ T .

Similarly to the proof of Lemma 6.2, it follows that in any µX ∈ L, the cost of the edges covering
W \W ′ is the same. Hence, we can get a smaller representation by restricting W to W ′ and U to
U ′. This contradicts the selection criterion (S2). ■

Lemma 6.12 for B1 gives ρ1(∪n
i=1Z

1
i ) = 4 − 2n. Also noting that V ⊆ ∪n

i=1Z
1
i , the statement

follows by Claim 6.16.1.

Lemma 6.17. We have Z0
i = Z1

i ∪Q0 for i ∈ [n]. In particular, in case (CII) we have Z0
i = Z1

i .

Proof. Let us first show Z1
i ∪Q0 ⊆ Z0

i . By Lemma 6.10, Q0 ⊆ Z0
i . Let us show Z1

i ⊆ Z0
i . We have

ρ0(Z
1
i ) ≥ 0 by (ind) since Z1

i is a Pi-set, and also ρ0(Z
1
i ) ≤ ρ1(Z

1
i ) = 0. Thus, ρ0(Z

1
i ) = 0. By the

maximality of Z0
i (Lemma 6.10), it follows that Z1

i ⊆ Z0
i .

We next show that equality holds. For the sake of contradiction, assume that we have w ∈
Z0
i \ (Z1

i ∪Q0) for some i ∈ [n]. Lemma 6.16 shows that ∪n
i=1Z

1
i = V ∪W , and hence we must have

w ∈ (Z0
i ∩ Z1

j ) \Q0 for some j ̸= i. Thus, we get a contradiction by

w ∈ Z0
i ∩ Z1

j ⊆ Z0
i ∩ Z0

j = Q0 ,

where the last inequality follows by the third part of Lemma 6.11.

6.6 The case (CI)

We are ready to show that case (CI) cannot occur. In this case, we have Mτ = M, E = E0 ∪
{(i∗, j∗)}, and B1 = B0 ∪ {X∗}.

Lemma 6.18. Either Q0 = ∅ or there exists a unique q ∈ [n] such that Q0 ⊆ Z1
q .

Proof. Suppose Q0 ∩ Z1
q ̸= ∅ for some q ∈ [n]. By definition, ρ1(Z

1
q ) = 0. By Lemma 6.2, we have

ρ1(Q0) ≥ 1 and ρ1(Z
1
q ∩ Q0) ≥ 1. By (ind), ρ1(Z

1
q ∪ Q0) ≥ 0 holds since Z1

q ∪ Q0 is a Pq-set. By
submodularity,

0 + 1 = ρ1(Z
1
q ) + ρ1(Q0) ≥ ρ1(Z

1
q ∩Q0) + ρ1(Z

1
q ∪Q0) ≥ 1 + 0 ,

implying ρ1(Z
1
q ∪ Q0) = 0. By maximality of Z1

q , we have Q0 ⊆ Z1
q . The uniqueness of such a q

follows since the sets Z1
i are pairwise disjoint (Lemma 6.15).

Lemma 6.19. We have ρ0(Z
0
1 ∪ Z0

2 ) = −1 and ρ0(Z
1
1 ∪ Z1

2 ) = 0. Consequently, Q0 ̸= ∅ and
q /∈ {1, 2} for q as in Lemma 6.18.

Proof. Recall that ρ0(Z
0
1 ∪ Z0

2 ) = −1 by Lemma 6.11 as X∗ ∈ H. We claim that ρ0(Z
1
1 ∪ Z1

2 ) = 0.
First, note that ρ0(Z

1
1 ∪Z1

2 ) ≤ 0 since ρ0(Z
1
1 ∪Z1

2 ) ≤ ρ1(Z
1
1 ∪Z1

2 ) = 0. For a contradiction, assume
that ρ0(Z

1
1 ∪ Z1

2 ) < 0.
Thus, ρ0(Z

1
1 ∪Z1

2 ) < ρ1(Z
1
1 ∪Z1

2 ) = 0, implying r(Γ(Z1
1 ∪Z1

2 )) > rτ (Γ0(Z
1
1 ∪Z1

2 )). Noting that
M = Mτ and therefore r = rτ , this means that Γ(Z1

1 ∪ Z1
2 ) ⊋ cl[Γ0(Z

1
1 ∪ Z1

2 )]. Thus, the single
edge (i∗, j∗) ∈ E \E0 is incident to Z1

1 ∪ Z1
2 . Let ℓ ∈ {1, 2} such that i∗ ∈ Z1

ℓ . Now, we must have
0 ≤ ρ0(Z

1
ℓ ) < ρ1(Z

1
ℓ ) = 0, a contradiction.

The last statements follow since if Q0 = ∅ or q ∈ {1, 2}, then Z0
1 ∪Z0

2 = Z1
1 ∪Z1

2 by Lemma 6.17.
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For the rest of the proof, let us fix q ∈ [n] such that Q0 ⊆ Z1
q , and let Y := ∪i∈[n]\{q}Z

1
i .

Lemma 6.20. ρ0(Y ) = 2− 2n.

Proof. By the second part of Lemma 6.12 for ρ1, we have ρ1(Y ) = 2− 2n. We show that the same
holds for ρ0.

As all Z1
i are disjoint (Lemma 6.15), we have Q0 ∩ Z1

i = ∅ for all i ∈ [n] \ {q}. Then by
Lemma 6.17 we have that Z1

i = Z0
i \Q0. Thus,

ρ0(Y ) = ρ0(∪i∈[n]\{q}Z
1
i )

= ρ0(∪i∈[n]\{q}(Z
0
i \Q0))

= ρ0
(
(∪i∈[n]\{q}Z

0
i ) \Q0

)
+ ρ0(Q0) (ρ0(Q0) = 0)

≥ ρ0(∪i∈[n]\{q}Z
0
i ) + ρ0(∅) (submodularity)

= 2− 2n . (Lemma 6.12 for ρ0)

Since ρ0(Y ) ≤ ρ1(Y ), we conclude ρ0(Y ) = 2− 2n.

Let us now derive the final contradiction for (CI). As Q0 ⊆ Z1
q ⊆ (V ∪W )\Y , by submodularity

we get
ρ0(Z

1
1 ∪ Z1

2 ∪Q0) + ρ0(Y ) ≥ ρ0(Y ∪Q0) + ρ0(Z
1
1 ∪ Z1

2 ) .

Then, by Lemma 6.19, and using Z1
1 ∪ Z1

2 ∪Q0 = Z0
1 ∪ Z0

2 , we further have

ρ0(Y ∪Q0)− ρ0(Y ) ≤ ρ0(Z
1
1 ∪ Z1

2 ∪Q0)− ρ0(Z
1
1 ∪ Z1

2 )

= ρ0(Z
0
1 ∪ Z0

2 )− ρ0(Z
1
1 ∪ Z1

2 ) = −1 .

From Lemma 6.20, ρ0(Y ∪Q0) ≤ 1− 2n. On the other hand, ρ0(Y ∪Q0) = ρ0(∪i∈[n]\{q}Z
1
i ∪Q0) =

ρ0(∪i∈[n]\{q}Z
0
i ) = 2− 2n. A contradiction.

6.7 The case (CII)

In the remaining case (CII), we have E = E0 = E∗ but Mτ ̸= M. In Section 6.5, we have already
showed some strong properties for this case: Q0 = ∅ (Lemma 6.13), B1 = B0∪{X∗} (Lemma 6.14),
and Z0

i = Z1
i for all i ∈ [n] (Lemma 6.17). In light of this, we can simplify the notation to

Zi = Z0
i = Z1

i . Recall also that the sets Zi are disjoint by Lemma 6.15.
Let Di := cl[ΓE(Zi)]; see Figure 9. By Lemma 6.11, there are no edges with one end point in

Zi and the other in Dj whenever i ̸= j.
Let us additionally modify the bipartite graph in the representations: we may assume that

E = E0 = E∗ is a complete bipartite graph between Zk and Dk for any k ∈ [n]. For this, we
need to check that after adding such new edges between Zk and Dk, (G,M, c,W ) still represents a
function in Fn and is equally good on the selection criteria (S1), (S2), and (S3). Since we add these
new edges to be tight, the criteria (S2) and (S3) remain the same. To show that we still represent a
function in Fn and that B1 does not increase, we use that ρ1(Zi∪Zj) = −1 by Lemma 6.11 for any
X = Pi ∪Pj ∈ H, and this will hold after adding new edges between the Zk and Dk sets. Similarly,
ρ0(Z1 ∪ Z2) = −1 will be maintained, and thus we still have h(X∗) < 0, even though the value of
h(X∗) might increase.

Introducing these new edges allows us to describe the representations of B0 and B1 in purely
set-theoretic and matroidal terms. The following definition captures this representation.

Definition 6.21. For a set X ∈
(
V
4

)
, we say that a set S ⊆ U , |S| = |W | + 4 conforms X if

|S ∩Di| = |X ∩ Pi|+ |Zi| − 2 for all i ∈ [n].
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cl[Γ(Za)]

Za Zb Zc Zd

Pa Pb Pc
Pd

cl[Γ(Zb)] cl[Γ(Zc)] cl[Γ(Zd)]

Figure 9: Case (CII): Schematic example of matroid B1 with its Rado-minor representation
(G,M,W ). Here, the neighbourhood is taken in the edge set E, and the closure in the ma-
troid M. The black dots represent set V and the white dots represent W . Similarly, a Rado-minor
representation holds for B0 once we replace M (and closure) by Mτ .

The requirements on our matroids M and Mτ can be stated as follows:

� For any X ∈
(
V
4

)
, there exists a basis S in M conforming X if and only if X ∈ B1.

� For any X ∈
(
V
4

)
, there exists a basis S in Mτ conforming X if and only if X ∈ B0.

The next lemma concludes the proof of Theorem 1.3, by showing that W = ∅ is a minimal
representation. Thus, the existence of an R-minor representation would imply the existence of an
R-induced representation, which we have already shown cannot exist.

Recall from Lemma 6.12 (applied to both ρ0 and ρ1) that ρ0(∪n
i=1Zi) = ρ1(∪n

i=1Zi) = 4 − 2n
and and ρ0(∪i∈[n]\{j}Zi) = ρ1(∪i∈[n]\{j}Zi) = 2− 2n for every j ∈ [n].

Lemma 6.22. In a minimal representation we must have W = ∅.

Proof. For a contradiction, assume W ̸= ∅; pick i ∈ [n] such that |Zi| > 2. Now, every basis in M
(and thus in Mτ ) must intersect Di in at least |W ∩ Zi| = |Zi| − 2 > 0 elements. Here, we use
that M = M as in Section 6.5: thus, every basis in M must have a matching to a set W ∪ X,
X ∈ B0 ∪ {X∗} = B1. Since |Zi| > 2, every basis in Mτ has a non-empty intersection with Di,
implying that Di ̸⊆ clMτ [U \ Di]; let us pick u ∈ Di \ clMτ [U \ Di]. We claim that a smaller
representation can be obtained by contracting u in the matroid M and deleting an arbitrary node
from W ∩ Zi.

To see this, it suffices to prove that for every X ∈ B0, there exists a basis S in Mτ conforming X
with u ∈ S, and there exists a basis S∗ in M conforming X∗ with u ∈ S∗. Then, the requirements
listed above remain true in the smaller instance. Note that we do not require that S∗ has the
largest possible τ -weight; as long as we can guarantee the existence of a basis in M but not in
Mτ that conforms X∗, we get a function in Fn that is the same on (S1), but better on (S2) (with
possibly different negative value h(X∗)).

Consider any X ∈ B0 and a basis S in Mτ conforming X. We are done if u ∈ S. If u /∈ S,
then let C ⊆ S ∪ {u} be the fundamental circuit of u with respect to S. Then, (C \ u) ∩Di ̸= ∅:
otherwise, C \ u ⊆ U \Di would yield u ∈ clMτ [U \Di], a contradiction to the choice of u. Hence,
we can exchange u with an element of S ∩Di and thereby obtain another basis S′ conforming X
with u ∈ S′.

The same argument applies for the basis S∗ in M conforming X∗, noting that clM[U \Di] ⊆
clMτ [U \Di].
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7 Valuated generalized matroids

In this section, we build on Theorem 1.3 to refute the matroid based valuation conjecture. To do
this, we extend the class of R-minor valuated matroids to R♮-minor valuated generalized matroids,
and show this contains matroid based valuations as a subclass. Furthermore, we extend our main
counterexample to a monotone valuated generalized matroid that is not R♮-minor and therefore
not a matroid based valuation, refuting the MBV conjecture.

Recall from (1a) and (1b) the properties of valuated generalized matroids. In Appendix C, we
demonstrate a construction which allows one to consider valuated generalized matroids as special
cases of valuated matroids on a larger ground set. On the other hand, we already saw valuated
matroids as a special class of valuated generalized matroids.

An important class are the trivially valuated generalized matroids, those taking only values 0
and −∞. This includes the characteristic functions of the family of independent sets of a matroid.
Indeed, if g(∅) > −∞ for a valuated generalized matroid, then dom(g) is the family of independent
sets of a matroid [45, Corollary 1.4].

Given a valuated generalized matroid g on V , we define its k-th layer ℓk (g) to be the restriction
of g to

(
V
k

)
. It is immediate from the definition that ℓk (g) is a valuated matroid. We defined

several constructions for valuated matroids in Section 2. It turns out that these operations extend
essentially layer-wise to valuated generalized matroids.

Definition 7.1. Let f : 2V → R ∪ {−∞} be a valuated generalized matroid and Y ⊂ V some
subset of V . The operations deletion (restriction), contraction, dualization, truncation, principal
extension are defined by the respective operations on the layers from Definition 2.1.

Note that direct sum and valuated matroid union do not extend layerwise to valuated generalized
matroids. Intuitively, this is because the k-th layer of the union must take information from multiple
layers of the constituent valuated generalized matroids, all i-th and j-th layers such that k = i+ j.
The analogue of direct sum and valuated matroid union for valuated generalized matroids is the
following operation.

Definition 7.2. Let f, g : 2V → R ∪ {−∞}. The merge of f and g is the function f ∗ g : 2V →
R ∪ {−∞} defined as

(f ∗ g)(X) = max {f(Y ) + g(X \ Y ) | Y ⊆ X} , ∀X ⊆ V.

We now extend induction by network to valuated generalized matroids.

Definition 7.3. Let N = (T,A) be a directed network with a weight function c ∈ RA. Let V,U ⊆ T
be two non-empty subsets of nodes of N . Let g be a valuated generalized matroid on U . Then the
induction of g by N is the function Φ(N, g, c) : 2V → R ∪ {−∞} such that

ℓk (Φ(N, g, c)) = Φ(N, ℓk (g) , c),

where Φ(N, g, c)(∅) = g(∅).
In the special case that the directed network is bipartite with the edges directed from V to

U , we can also consider this as an undirected weighted bipartite graph and call the corresponding
operation induction by bipartite graphs.

Note that the formula defining Φ(N, g, c)(X) remains identical to the one in Definition 2.8,
namely,

Φ(N, g, c)(X) = max

{∑
a∈P

c(a) + g(Y )

∣∣∣∣∣ node-disjoint paths P in N :

∂V (P) = X ∧ ∂U (P) = Y

}
.

Analogous to Theorem 2.9 this is just a special case of transformation by networks.
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Theorem 7.4 ([40, Theorem 9.27]). Let N, g, c as in Definition 7.3. Then if Φ(N, g, c) ̸≡ −∞ the
induced function is a valuated generalized matroid.

With this operation, we get an analogue of Theorem 2.12.

Theorem 7.5. The class of valuated generalized matroids is closed under the operations deletion,
contraction, dualization, truncation, principal extension, merge.

Proof. Deletion, dualization and merge are covered by [40, Theorem 6.15]; the latter is integer
infimal convolution restricted to the interval [0, 1], parts (8) and (5) respectively. Lemma B.1
implies layerwise closure under contraction and therefore globally closed contraction. Remark 2.10
shows principal extension are special cases of induction by networks, which valuated generalized
matroids are closed under via Theorem 7.4. Finally, Lemma B.2 implies layerwise closure under
truncation and therefore globally closed under truncation.

As with induction of valuated matroids, we shall often be most interested in the induction of
trivially valuated generalized matroids. A trivially valuated generalized matroid g can be identified
with its underlying domain I, where g(I) = 0 if I ∈ I and −∞ otherwise. As stated previously, if
∅ ∈ I then I forms the set of independent sets of a matroid; however this does not have to be the
case, I only has to satisfy the independent set exchange axiom (the unvaluated equivalent of (1a)).
We call such an I a generalized matroid. As working with I directly will be convenient in some
situations, we extend the notation of Definition 7.3 to define Φ(N, I, c) := Φ(N, g, c).

The following example demonstrates how weighted rank functions arise by this operation.

Example 7.6. Let I be the independent sets of a matroid M on ground set V . A weighted rank
function rw : 2V → R≥0 with weight w ∈ Rn

≥0 is

rw(X) = max

{∑
i∈I

wi

∣∣∣∣∣ I ⊆ X , I ∈ I

}
.

Note that if w is the vector of all ones, then rw is precisely the rank function of M.
We now show how the function rw arises via induction by network from a trivially valuated

generalized matroid. Let V ′ and V ′′ be copies of V and let I be the independent sets of the matroid
M = M⊕ frV ′′ on V ′ ∪ V ′′. Furthermore, we define the bipartite graph G = (V, V ′ ∪ V ′′;E) where
E consists of the edges (v, v′) and (v, v′′) connected each node in V its copies in V ′ and V ′′. We
attach weights c ∈ RE where the edge (v, v′) gets the weight wv and the edge (v, v′′) gets the weight
0. This bipartite graph is depicted in Figure 10.

Let I ⊆ X be the max weight independent set contained in X. The value of Φ(G, I, c)(X)
is obtained by connecting elements of I to I ′ ⊆ V ′ via edges of weight wi, and then connecting
elements of X \ I to their copy in V ′′ by edges of weight zero. In this way rw = Φ(G, I, c) arises
from a trivially valuated generalized matroid by induction via a bipartite graph.

It was shown in [8] that valuated generalized matroids are not covered by the cone of ma-
troid rank functions; note that not even all non-negative combinations of matroid rank functions
are valuated generalized matroids. In particular, not every valuated generalized matroid can be
represented as a weighted matroid rank function [54, Theorem 4].

However, it was conjectured that allowing two operations, merge and endowment, would suffice
to construct all. Here, the endowment by T ⊆ V of a function f : 2V → R ∪ {−∞} is the function
∆T (f) : 2

V \T → R ∪ {−∞} with ∆T (f)(X) = f(X ∪ T ) − f(T ) for all X ⊆ V \ T . Note that
endowment is equivalent to the contraction of f by T , along with a normalization to ensure f(∅) = 0.

With this, the class of matroid based valuations are those functions arising from the class of
weighted matroid rank functions by arbitrary application of merge and endowment.
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Figure 10: The graph G = (V, V ′ ∪ V ′′;E) realising the weighted matroid rank function from
Example 7.6. Edges of weight wv are solid while edges of weight zero are dashed.

Conjecture 7.7 (MBV conjecture [47]). The class of matroid based valuations is equal to the class
of monotone valuated generalized matroids taking value zero on the empty set and not attaining the
value −∞.

We study a subclass of valuated generalized matroids which is an extension of the class of
R-minor valuated matroids. This allows us to use the results from Section 6.

Definition 7.8. The class of R♮-induced functions are valuated generalized matroids arising from
trivially valuated generalized matroids via induction by bipartite graph.

The class of R♮-minor functions are valuated generalized matroids arising from contractions of
R♮-induced functions.

Throughout the proofs in this section, we use the same notation as introduced in Section 3.2.
Let f be an R♮-minor function on V ; by definition, there exists an R♮-induced function f̃ on V ∪W
such that f = f̃/W . By definition, there exists some bipartite graph G = (V ∪ W,U ;E) with
edge weights c ∈ RE and generalized matroid I on U such that f̃ = Φ(G, I, c); we say f̃ has an
R♮-induced representation (G, I, c). As f = Φ(G, I, c)/W , we extend this notation to say that f
has an R♮-minor representation (G, I, c,W ), where W is the set to be contracted.

Lemma 7.9. The class of R♮-minor functions is closed under endowment.

Proof. Given f as above, we show we can represent ∆T (f) as an R♮-minor function for some
∅ ≠ T ⊆ V . As f is a contraction of f̃ by W , the endowment by T can be written as

∆T (f) = f(X ∪ T )− f(T ) = f̃(X ∪ T ∪W )− f̃(T ∪W ) = ∆T∪W (f̃) .

Let δ = f̃(T ∪W )/|T ∪W | and consider a new edge weight function c′(e) that takes the value
c(e)− δ on all edges adjacent to T ∪W , and c(e) otherwise. Then the induction of I through the
graph G with altered weight function c′ is

(Φ(G, I, c′))(Z) = f̃(Z)− δ · |Z ∩ (T ∪W )| .

Taking the contraction of Φ(G, I, c′) by T ∪W yields

(Φ(G, I, c′)/(T ∪W ))(X) = f̃(X ∪ T ∪W )− δ · |T ∪W | = ∆T (f)(X) .

Lemma 7.10. The class of R♮-minor functions is closed under merge.
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Figure 11: The graph G′ constructed in the proof of Lemma 7.10, obtained by gluing G1 and G2

at their common node set V .

Proof. Let f1, f2 be R
♮-minor functions on a common ground set V with representation (Gi, Ii, ci,Wi)

where Gi = (V ∪Wi, Ui, Ei) for i = 1, 2 such that f1 = f̃1/W and f2 = f̃2/W . In particular, we
can choose the contracted sets to be disjoint i.e., W1 ∩W2 = ∅. This last assertion is particularly
important as it allows merge and contraction to commute. By extending f̃1 and f̃2 to the ground
set V ∪W1 ∪W2, taking the value −∞ where previously undefined, we see that for any X ⊆ V ,

(f1 ∗ f2)(X) = (f̃1/W1 ∗ f̃2/W2)(X)

= max
{
f̃1(Y ∪W1) + f̃2((X \ Y ) ∪W2)

∣∣∣ Y ⊆ X
}

= max
{
f̃1(Z) + f̃2((X ∪W1 ∪W2) \ Z)

∣∣∣ Z ⊆ X ∪W1 ∪W2

}
= (f̃1 ∗ f̃2)(X ∪W1 ∪W2)

= ((f̃1 ∗ f̃2)/(W1 ∪W2))(X) .

Therefore if we can represent (f̃1 ∗ f̃2) via induction by bipartite graph, contracting W1 ∪ W2

completes the proof.
Let G′ be a graph obtained by “gluing” G1 and G2 along their common ground set. Explicitly,

G′ = (V ∪W1 ∪W2, U1 ∪ U2;E1 ∪ E2) whose weight function c′ inherits the same weights from c1
and c2. The graph is given in Figure 11. We consider the trivially valuated generalized matroid
I ′ = I1 ⊕ I2. Then the value of Φ(G′, I ′, c′)(Z) is the maximum over all matchings from Y ⊂ Z
to U1 and matchings Z \ Y to U2, ranging over subsets Y ⊂ Z, precisely realizing (f̃1 ∗ f̃2) as an
R♮-induced function.

Example 7.6 showed that weighted matroid rank functions are special cases of R♮-induced func-
tions. Combining this with Lemmas 7.9 and 7.10, we see that matroid based valuations are a
subclass of R♮-minor functions.

Corollary 7.11. Matroid based valuations form a subclass of R♮-minor functions with the properties
that they are monotone, real-valued and have value 0 on the empty set.

7.1 A valuated generalized matroid extending a robust matroid

Let h be an arbitrary function in the class Fn in Definition 1.2 which takes only values in (−1, 0].
We define a function h♮ : 2V → R by

h♮(X) :=


|X| for |X| ≤ 3

4 + h(X) for |X| = 4

4 for |X| ≥ 5
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Thus, h♮ arises as a ‘perturbation’ of the rank function of the uniform matroid on V of rank 4.

Lemma 7.12. The function h♮ is a valuated generalized matroid.

Proof. We first show h♮ satisfies (1b), where |X| = |Y | = k. When k ̸= 4, all sets of that cardinality
k have the same value and so h♮ satisfies (1b). The case when k = 4 follows from Lemma A.2 and
all sets being shifted by the same value.

We next show h♮ satisfies (1a), where without loss of generality |X| < |Y |.

� If |X| ≥ 5, then all sets involved in (1a) take the value 4, and therefore (1a) is trivially
satisfied.

� If |X| = 4, then h♮(X) + h♮(Y ) ≤ 8. If we can pick i ∈ Y \ X such that Y − i /∈ H, then
h♮(X+ i)+h♮(Y − i) = 8 and thus (1a) holds. If no such i exists, then |Y | = 5. Furthermore,
there cannot be two distinct elements i, j ∈ Y \X, else Y − i, Y − j ∈ H intersect in three
elements, which no two sets in H do. Therefore Y = X + i, and so (1a) holds with equality.

� If |Y | = 4, then h♮(X)+h♮(Y ) ≤ |X|+4. If we can pick i ∈ Y \X such that X + i /∈ H, then
h♮(X + i) + h♮(Y − i) = |X| + 4 and this case holds. By a similar argument as above, if no
such i exists then Y = X + i, and so (1a) holds with equality.

� If |Y | ≤ 3, then all sets take the value of their cardinality, and therefore trivially satisfy (1a).

Lemma 7.13. For n ≥ 16, the function h♮ is not an R♮-minor function.

Proof. Suppose h♮ is R♮-minor, therefore it has representation (G, I, c,W ) for some graph G =
(V ∪W,U ;E). From this, we derive an R-minor representation for h.

First note that

h(X) = ℓ4
(
h♮
)
(X)− 4

= ℓ|W |+4 (Φ(G, I, c)) (X ∪W )− 4

= Φ(G, ℓ|W |+4 (I) , c)(X ∪W )− 4 .

By introducing the altered weight function c′(e) = c(e)− 4/(|W |+ 4), we get

Φ(G, ℓ|W |+4 (I) , c′)(X ∪W ) = Φ(G, ℓ|W |+4 (I) , c)(X ∪W ))− 4|X ∪W |
|W |+ 4

= h(X) .

Therefore, h has the R-minor representation (G, ℓ|W |+4 (I) , c′,W ), contradicting Theorem 1.3.

Theorem 7.14. The class of R♮-minor functions is not equal to the class of valuated generalized
matroids. In particular, Conjecture 7.7 is false.

Proof. The first claim follows immediately from Lemmas 7.12 and 7.13. For the second claim, we
observe that h♮ is a monotone and only takes finite values. However, by Corollary 7.11 it is not a
matroid based valuation, providing a counterexample to Conjecture 7.7.
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8 Lorentzian polynomials

In this section, we recall basic concepts of Lorentzian polynomials and their connection to valu-
ated matroids, and more generally M-concave functions, via tropicalization. We strengthen this
connection by reframing operations on Lorentzian polynomials as natural operations on valuated
matroids. In particular, we show the multiplicative action of non-negative matrices on Lorentzian
polynomials translates to induction by networks for valuated matroids. As an application of our
main counterexample, we demonstrate the limitation of this operation. We show this operation
does not suffice to generate the space of Lorentzian polynomials over Puiseux series from generating
functions of matroids, and that other real closed fields require arbitrarily large matroids.

8.1 Background

We recall the basic properties of M-concave functions; see [40] for further details. A function
f : Zn → R ∪ {−∞} is M-concave if and only if

∀x, y ∈ Zn and all i ∈ supp+(x− y) :

f(x) + f(y) ≤ max
j∈supp−(x−y)

{f(x− ei + ej) + f(y + ei − ej)}, (9)

where supp+(z) = {i ∈ [n] : zi > 0} and supp−(z) = {i ∈ V : zi < 0} for z ∈ Zn, and eℓ is the
ℓ-th unit vector. This extends (1b) from points in {0, 1}n to Zn. An M-concave function has∑n

i=1 zi = d for some fixed d ∈ Z for all z ∈ dom(f); we call d the rank of f . Observe that an
M-concave function with dom(f) ⊆ {0, 1}n is a valuated matroid.

A set B ⊂ Zn is M-convex if its characteristic function, taking value 0 on elements of B and
−∞ otherwise, is an M-concave function.

Let K be an arbitrary ordered field. Furthermore, let ∆d
n be the set of lattice points {x ∈

Zn
≥0 :

∑n
i=1 xi = d}. Given a multivariate polynomial p(w) =

∑
α∈∆d

n
cαw

α ∈ K[w1, . . . , wn], its

support supp(p) is the set {α ∈ ∆d
n : cα ̸= 0}.

Several characterizations of Lorentzian polynomials were given in [12]; we follow their exposition.
Let Md

n(K) denote the homogeneous polynomials over K of degree d on n variables with non-negative
coefficients whose support is an M-convex set. The set of Lorentzian polynomials over K of degree
d on n variables is denoted by Ld

n(K) and is defined recursively.

Definition 8.1 ([12, Definition 3.18]). L0
n(K) = M0

n(K) and L1
n(K) = M1

n(K),

L2
n(K) = {p ∈ M2

n(K) : Hessian of p has at most one eigenvalue in K>0}.

For d ≥ 3
Ld
n(K) = {p ∈ Md

n(K) : ∂αp ∈ L2
n(K) for all α ∈ ∆d−2

n } ,

where ∂α = ∂α1
1 · · · ∂αn

n denotes the composition of αi-th partial derivative with respect to wi.

Brändén and Huh give several other characterizations of Lorentzian polynomials when K = R,
see [12, Definitions 2.1 & 2.6]. These definitions require taking limits, while the Hessian of a
polynomial can be defined independently of a limit process, hence we only need to require K to be
ordered.

We also note that while this definition holds for arbitrary ordered fields, many key results
concerning Lorentzian polynomials were only proved over the real numbers. We can extend these
results to the larger class of real closed fields via Tarski’s principle; this states that first-order
sentences of ordered fields hold over a real closed field K if and only if they hold over R. We
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therefore will restrict to working with real closed fields from now, and construct explicit fields from
Section 8.2 onwards. For further model theoretic details, see [34, Section 3.3].

A polynomial is multi-affine if it has degree at most one in each variable. For a general polyno-
mial p, its multi-affine part MAP(p) is the polynomial obtained by taking only terms with degree
at most one in each variable. These polynomials are of particular interest to us as the support of
a multi-affine polynomial in Md

n forms the bases of a matroid, as (9) becomes the basis exchange
axiom. This will be a key connection to results from previous sections.

Lorentzian polynomials are closed under several basic operations, see [14, 12]

Proposition 8.2. Let K be a real closed field, and let p ∈ Ld
n(K), q ∈ Le

m(K) and A ∈ Kn×k
≥0 . Then

the following polynomials are also Lorentzian:

(i) the deletion p \ i ∈ Ld−1
n (K) obtained from p(u) by setting ui = 0,

(ii) the contraction p/i := ∂ip ∈ Ld−1
n (K),

(iii) the multi-affine part MAP(p) ∈ Ld
n(K),

(iv) the matrix action (A↷p)(w) := p(Aw) ∈ Ld
k(K) where w = (w1, . . . , wk).

Proof. Deletion and contraction follow essentially from the definition of Lorentzian polynomials.
The multi-affine part and matrix action are shown in [12, Corollary 3.5, Theorem 2.10] for K = R
respectively. As both are first-order sentence, Tarski’s principle implies they hold over arbitrary
real closed fields.

8.2 Tropicalization

In this section, we focus on Lorentzian polynomials over K = R{{t}}, the field of (generalized)
Puiseux series, see [35] for further details. The field R{{t}} consists of formal series of the form

c(t) =
∑
k∈A

akt
k , ak ∈ R

where A ⊂ R has no accumulation point and a well defined maximal element. The leading term of
a Puiseux series is the term with largest exponent. We say a Puiseux series is positive if its leading
term has a positive coefficient, and denote the semiring of positive Puiseux series (with zero) by
R{{t}}≥0. We can extend this to make R{{t}} an ordered field by defining c > d if and only if c− d
is a positive Puiseux series. Crucially, R{{t}} is also real closed and therefore we can invoke Tarski’s
principle.

This ordered field is equipped with a non-archimedean valuation deg (an extension of the de-
gree map) which maps all non-zero elements to their leading exponent and zero to −∞. The
valuation deg extends entry-wise to vectors and matrices. It is enough to think of Puiseux series
as polynomials in t with arbitrary exponents and coefficients in R.

Observation 8.3. For x, y ∈ R{{t}}≥0 the map deg is a semiring homomorphism, this means
deg(x + y) = max(deg(x), deg(y)) and deg(x · y) = deg(x) + deg(y). Note that this does not hold
for general Puiseux series, as the sum of a positive and negative series may cause the leading terms
to cancel.

Recall that by definition, Lorentzian polynomials have non-negative coefficients. As deg is a
semiring homomorphism on these coefficients, this motivates the study of Lorentzian polynomials
under the degree map.
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Definition 8.4. For a polynomial p(w) =
∑

α∈∆d
n
cα(t)w

α ∈ R{{t}}[w] over Puiseux series, its

tropicalization is the function trop(p) : ∆d
n → R ∪ {−∞} with trop(p)(α) = deg(cα(t)).

Theorem 8.5 ([12, Theorem 3.20]). For f : ∆d
n → R ∪ {−∞}, the following are equivalent:

(i) the function f is M-concave,

(ii) there is a Lorentzian polynomial p ∈ R{{t}}[w1, . . . , wn] with trop(p) = f .

Remark 8.6. Lorentzian polynomials are usually associated with M-convex functions, which are
the negatives of M-concave functions. However, this is merely a matter of how we choose the
tropicalization as highest or lowest term, or actually its negative. It translates to the choice
of convention between max and min and one can easily switch between them via the relation
max(x, y) = min(−x,−y).

As a corollary of Theorem 8.5, if p is a multi-affine Lorentzian polynomial then trop(p) is a
valuated matroid. This relation is strengthened in the following propositions, where many of the
constructions in Section 2 and the constructions in Proposition 8.2 are shown to commute.

Proposition 8.7. Let p be a multi-affine Lorentzian polynomial over R{{t}}.

(i) trop(p \ i) = trop(p) \ i,

(ii) trop(p/i) = trop(p)/i.

Proof. Let p =
∑

α∈∆d
n
cα(t)w

α be multi-affine, we can view α as a subset of [n].
For (i), note that α ∈ supp(p \ i) if and only if i /∈ α, therefore

(trop(p \ i))(α) =

{
deg(cα(t)) i /∈ α

−∞ i ∈ α
,

precisely the value of (trop(p) \ i)(α).
For (ii), note that β ∈ supp(p/i) if and only if β ∪ i ∈ supp(p), therefore

(trop(p/i))(β) = deg(cβ∪i(t)) = (trop(p)/i)(β) .

Proposition 8.8. Let p be a Lorentzian polynomial over R{{t}}. The tropicalization of its multi-
affine part trop(MAP(p)) is the restriction of trop(p) to {0, 1}n.

Proof. Note that the claim trivially holds if p is multi-affine. If p is not multi-affine, then its multi-
affine part MAP(p) has zero as the coefficient for any terms containing squares. Under the degree
map, we get

trop(MAP(p))(α) =

{
deg(cα(t)) α ∈ {0, 1}n

−∞ α ∈ {0, 1}n
.

which is precisely trop(p)(α) restricted to {0, 1}n.

We give a more general version of induction by bipartite graph than introduced in Definition 2.8
and Lemma B.3, allowing for M-concave functions and more general subgraphs than matchings.
Note this is still a special case of transformation by networks derived from [40, Theorem 9.27].
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Proposition 8.9. Let G = (V,U ;E) be a bipartite graph with weight function c ∈ RE. Let g
be an M-concave function on ZU

≥0 of rank d. Then the transformation of g by G is the function

Ψ(G, g, c) : ZV
≥0 → R ∪ {−∞} with

Ψ(G, g, c)(x) = max

{∑
e∈µ

c(e) + g(y)

∣∣∣∣∣ µ subgraph of G with

δV (µ) = x and δU (µ) = y

}
,

where δV (µ) and δU (µ) are the degree vectors of µ on V and U . Furthermore, Ψ(G, g, c)(x) is an
M-concave function.

For consistency of notation with Lorentzian polynomials, we will use the node sets V = [n] and
U = [k].

Theorem 8.10. Let q ∈ Ld
n(R{{t}}) and let A ∈ R{{t}}n×k

≥0 . Let G = ([n], [k];E) be the bipartite

graph with weight function deg(A) ∈ RE that weights (i, j) by deg(aij). Then trop(A↷ q) is the
M-concave function Ψ(G, trop(q), deg(A)) arising from trop(q) by transformation via G.

Proof. Assume first that q consists of a single monomial dα · wα1
1 wα2

2 · · ·wαn
n . Reordering yields

q(Av) = dα ·

 k∑
j=1

a1jvj

α1

· · ·

 k∑
j=1

anjvj

αn

= dα ·
∑
β∈∆d

k


∑

µ∈[n]×[k]
δ[n]µ=α
δ[k]µ=β

∏
e∈µ

ae

 vβ, (10)

where the coefficient of each vβ is the sum of weights of subgraphs satisfying δ[n]µ = α and δ[k]µ = β.

Therefore, the value trop(A↷q)(β) for β ∈ ∆d
k is

deg

dα ·
∑

µ∈[n]×[k]
δ[n]µ=α
δ[k]µ=β

∏
e∈µ

ae

 = max

{
deg(dα) +

∑
e∈µ

deg(ae)

∣∣∣∣∣ µ ∈ [n]× [k] : δ[n]µ = α ∧ δ[k]µ = β

}
,

where we use that degree is a semiring homomorphism from Observation 8.3. The claim now follows
by ranging over all α ∈ ∆d

n in the support of q.

If g is a valuated matroid, recall from Theorem 2.9 that Φ(G, g, c) is also a valuated matroid. In
comparison, Ψ(G, g, c) may be an arbitrary M-concave function. The difference is that the former
only allows us to take matchings in the induction process, while the latter allows us to take arbitrary
subgraphs. Restricting Ψ(G, g, c) to its multi-affine part recovers the valuated matroid Φ(G, g, c).

Corollary 8.11. Let q ∈ Ld
n(R{{t}}) be multi-affine and let A ∈ R{{t}}n×k

≥0 . Furthermore, let

G = (V,U ;E) be the bipartite graph with weight function deg(A) ∈ RE.
Then Φ(G, trop(q), deg(A)) = trop(MAP(A↷q)).
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8.3 Limitations of basic constructions

In this section, we let K be any real closed field unless explicitly stated.
For an M-convex set B ⊂ Zn

≥0, its generating function is the Lorentzian polynomial

qB :=
∑
α∈B

1

α!
wα ,where α! :=

n∏
i=1

αi! .

Of particular interest for us is when B ⊆ {0, 1}n i.e., B forms the set of bases of a matroid. Let
Gd
n ⊂ Ld

n(K) be the set of all generating functions corresponding to rank d matroids on n elements.
For each k ∈ Z≥0, the set Kn×k

≥0 acts on Gd
n by A↷q(w) = q(Av) ∈ Ld

k(K) where A ∈ Kn×k
≥0 , q ∈ Gd

n.

We denote the orbit of this action by Kn×k
≥0 ↷Gd

n ⊆ Ld
k(K).

Definition 8.12. We say a Lorentzian polynomial is matroid induced if it is contained in the orbit
Kn×k

≥0 ↷Gd
n for some n ≥ d.

Our main theorem of this section is that over the Puiseux series, the class of matroid induced
Lorentzian polynomials is a strict subclass of Lorentzian polynomials.

Theorem 8.13. For k ≥ 10, we have⋃
n≥d

(R{{t}}n×2k
≥0 ↷Gd

n) ⊊ Ld
2k(R{{t}}) .

Proof. Containment is given by Proposition 8.2. For strict containment, we assume the converse,
that every Lorentzian polynomial is matroid induced. Let h ∈ Fk be a valuated matroid on the
ground set [2k] defined in Definition 1.2 such that it takes only finite values. Let f : ∆d

2k → R∪{−∞}
be an M-concave function such that f restricted to {0, 1}2k is h. By Theorem 8.5, there exists some
p ∈ Ld

2k(R{{t}}) such that trop(p) = f ; furthermore trop(MAP(p)) = h by Proposition 8.7. By the
assumption that p is matroid induced, there exists a matrix A ∈ R{{t}}n×2k

≥0 and some q ∈ Gd
n such

that p = A↷q. By Corollary 8.11 we have

h = trop(MAP(p)) = trop(MAP(A↷q)) = Φ(G, trop(q),deg(A)) .

contradicting Proposition 6.7 that h is not an R-induced valuated matroid.

We would like to extend Theorem 8.13 to R and other real closed fields via Tarski’s principle.
However, the statement of the theorem is an infinite union of first-order statements and so cannot
be extended immediately. Instead, we show the weaker statement that for any finite integer N ,
there exists some Lorentzian polynomial over R that cannot be induced by a matroid on a ground
set of size n ≤ N .

Proposition 8.14. Let K be a real closed field and k ≥ 10. For each N ∈ N, there exists some
Lorentzian polynomial p ∈ Ld

2k(K) such that

p /∈
N⋃

n≥d

(Kn×2k
≥0 ↷Gd

n) .

Proof. The containment
⋃N

n≥d(K
n×2k
≥0 ↷Gd

n) ⊆ Ld
2k(K) is given by Proposition 8.2. We claim that

the sentence

p ∈ Ld
k(K) → p ∈

N⋃
n≥d

(Kn×k
≥0 ↷Gd

n) , (11)
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is a first-order sentence of ordered fields for arbitrary N ∈ N. Theorem 8.13 shows this statement
is false over Puiseux series for large enough even k, and so by Tarski’s principle is false over the
reals as well.

We write p as shorthand for (pβ : β ∈ ∆d
k), where p is a degree d polynomial in k variables and

pβ is the coefficient of wβ in p. The sentence ϕ(p) that verifies whether p is Lorentzian is first-order
by [12].

Fix some generating function qB for some rank d matroid B on n elements; recall its coefficients
cα are one if α ∈ B and zero otherwise. We write Kn×k

≥0 ↷ qB for its orbit in this action. By a

similar reordering as (10), the sentence ψB
n (p) that verifies whether p ∈ Kn×k

≥0 ↷qB is given by

ψB
n (p) = (∃aij : i ∈ [n], j ∈ [k]) :

∧
β

(
pβ =

∑
µ∈[n]×[k]
δ[n]µ=α
δ[k]µ=β

cα
∏

(i,j)∈µ

aij

)
.

In particular, it is a first-order sentence in the language of ordered fields. The sentence ψn(f)
verifying whether p ∈ Kn×k

≥0 ↷ Gd
n is given by taking the finite union of sentences ψB

n (p) over all
rank d matroids on n elements; as this union is finite, it is also a first-order sentence. Finally, we
can take arbitrary finite unions of this sentence to reach the first-order sentence

ϕ(p) →

 N∨
n≥d

ψn(p)

 ,

proving the claim.

While Proposition 8.14 gives restrictions on constructing Lorentzian polynomials over R and
other real closed fields, it remains an open question whether Theorem 8.13 holds over R or not.

Question 8.15. Is the class of matroid induced Lorentzian polynomials over R a strict subclass of
Lorentzian polynomials over R?

We note that R{{t}} is a non-archimedean field, and so its topological properties behave quite
differently to over the reals; see [36, 6.3 (iii)] for a discussion and an example. As Lorentzian
polynomials over R have an equivalent definition in terms of topological closures [12, Definition 2.1],
it is reasonable to believe that the spaces of Lorentzian polynomials over R and R{{t}} could behave
very differently.
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A All functions in Fn are valuated matroids

For convenience, we restate the definition of the family Fn, and then show that each of the functions
in the family is a valuated matroid.

Definition 1.2. For n ≥ 3, we define Fn as the following family of functions
(
[2n]
4

)
→ R. Let

V = [2n], Pi = {2i− 1, 2i} for i ∈ [n], and let

H = {Pi ∪ Pj | ij ≡ 0 mod 2} (H-def)
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i.e. we take pairs such that at least one of i and j are even. Let X∗ = P1 ∪ P2 = {1, 2, 3, 4}. A
function h :

(
V
4

)
→ R ∪ {−∞} is in the family Fn if and only if the following hold:

� h(X) = 0 if X ∈
(
V
4

)
\ H,

� h(X) < 0 if X ∈ H, and

� h(X∗) is the unique largest nonzero value of the function.

The proof of the following lemma is an adaptation of [9, Lemma 8] that we include for intuition.

Lemma A.1. Let B0 =
(
V
4

)
\ H and B1 = dom(h). Then B0 and B1 are sparse paving matroids.

Proof. We first show that B0 =
(
V
4

)
\H forms the bases of a matroid. Suppose this is not the case,

then there exists B,B′ ∈ B0 and e ∈ B \B′ such that B− e+ f /∈ B0 for all f ∈ B′ \B. We observe
that |B′ \B| > 1, else B′ = B − e+ f ∈ B0. Hence, we let f, f ′ be distinct elements of B′ \B and
consider N = B − e+ f and N ′ = B − e+ f ′. As the basis exchange axiom does not hold, we have
N,N ′ ∈ H. However, we also have N ∩N ′ = B − e has cardinality three, while elements of H can
intersect in at most two elements. This gives a contradiction and it follows that B0 form the bases
of a matroid.

We next show the circuits of B0 are of cardinality four or more. Let X be any set with |X| = 3.
If X intersects three distinct pairs Pi, Pj , Pk, then added any element x ∈ V \ X gives a basis
X + x ∈ B0. If X intersects two distinct pairs Pi, Pj , as n ≥ 3 there exists a pair Pk that X does
not intersect. Hence for any element x ∈ Pk, the set X+x ∈ B0 is a basis. As all sets of cardinality
three are independent, B0 is a paving matroid with H as the circuits of size four. As sets in H can
intersect in at most two elements, it is also sparse paving. As B1 is obtained by removing elements
of H, it is also a sparse paving matroid.

Lemma A.2. For every n ≥ 3, all functions in Fn are valuated matroids.

Proof. We need to show each h ∈ Fn satisfies (1b). We consider three cases:

� Let X,Y ∈ B0 and i ∈ X \ Y . By Lemma A.1, the basis exchange axiom holds within B0.
Therefore we can find j ∈ Y − i such that X− i+ j, Y + i− j are both in B0, taking the value
zero and satisfying (1b).

� LetX ∈ B0, Y ∈ H without loss of generality. If there exists j ∈ Y \X such thatX−i+j ∈ B0,
then Y + i − j is also in B0 and we satisfy (1b). If such a j does not exist, there cannot be
distinct j1, j2 ∈ Y \X, else X− i+ j1, X− i+ j2 are both elements of H and have intersection
of cardinality 3, something elements of H cannot have. Therefore Y = X − i+ j and so (1b)
is satisfied with equality.

� Let X,Y ∈ H and i ∈ X \Y . As elements of H can intersect in at most two elements, picking
any j ∈ Y \X to exchange yields two sets in B0 with value zero, satisfying (1b).

Remark A.3. We can extend the above construction of the valuated matroid h to any sparse
paving matroid B, where H =

(
V
4

)
\ B is the set of circuits of rank 4. The proof of Lemma A.2

generalizes as it only uses the property that elements of H cannot intersect in three elements, as
stated in [49, Lemma 19].
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B Valuated matroid operations

We prove in this section that valuated matroids are closed under the operations introduced in
Section 2.

Theorem 2.12. The class of valuated matroids is closed under the operations deletion, contraction,
dualization, truncation, principal extension, direct sum, matroid union.

Lemma B.1. f/Y = (f∗ \ Y )∗

Proof. At first, observe that the independence of Y in dom(f) implies that it is contained in a
basis. Hence, V − Y has full rank in dom(f∗) = dom(f)∗ and we can actually apply the deletion
operation.

Let X ∈
(
V−Y
d−|Y |

)
. Then, as the codomain of (f∗\Y ) is V −Y , we get (f∗\Y )∗(X) = (f∗\Y )(V −

(Y ∪X)). Note that X and Y are disjoint by definition. Furthermore, from V − (Y ∪X) ⊆ V − Y
we obtain (f∗ \ Y )(V − (Y ∪X)) = f∗(V − (Y ∪X)). Since the codomain of f∗ is V , this yields
f∗(V − (Y ∪X)) = f(X ∪ Y ).

Lemma B.2. f (1) = f0/{p}, where 0 is the zero vector and p is the element added in the principal
extension.

Proof. As p is not a loop of dom(f0) one can form this contraction and rk({p}) = 1. Now the claim
follows directly from the definition of contraction and truncation.

The valuated truncation is further studied in [39]. It is shown that this actually gives rise to a
valuation on all independent sets such that this forms a generalized valuated matroid.

Lemma B.3. Let G = (V,U ;E) be a bipartite graph with weight function c ∈ RE and g be a
valuated matroid on U . Then Φ(G, g, c) = ((. . . (gc1) . . . )c|V |) \ U , the iterated principal extension
of g by {c1, . . . , c|V |} ⊂ (R ∪ {−∞})U , where ci is the function c restricted to the edges incident
with i ∈ V extended with value −∞ where it is not defined. Furthermore, these principal extensions
commute.

Proof. The claim follows by induction. We start with the bipartite graph G0 = (U ′, U ;E0) where
U ′ is a copy of U , and E0 consists of edges (u′, u) between copies of elements. Furthermore the
weight function d0 takes the value zero on all elements of E0.

We inductively define Gi = (Vi, U ;Ei) where Vi = U ′ ∪ {1, . . . , i} by adding the node i ∈ V to
Gi−1 with edges (i, u) for all u ∈ U . Furthermore the weight function di takes the value of di−1 for
all edges in Ei−1, and the value ciu on the new edges (i, u). These graphs are displayed in Figure 12.
We claim that Φ(Gi, g, di) = (. . . (gc1) . . . )ci .

Note that for the base case, we have that Φ(G0, g, d0) = g, as all edges in G0 have weight zero.
For the general case, consider Φ(Gi, g, di) and let X be a d-subset of Vi = U ∪ {1, . . . , i}. If

i /∈ X, then Φ(Gi, g, di) = Φ(Gi−1, g, di−1) as the graphs Gi and Gi−1 are the same outside of node
i. If X = i ∪ Y , then

Φ(Gi, g, di)(X) = max

 ∑
(k,v)∈P

di(k, v) + g(Z)

∣∣∣∣∣∣ ∂Vi(P) = X , ∂U (P) = Z


= max

c(i, u) + ∑
(k,v)∈P ′

di(k, v) + g(Z ′ ∪ u)

∣∣∣∣∣∣ ∂Vi(P ′) = Y , ∂U (P) = Z ′


= max

u∈Vi\Y
(ciu +Φ(Gi−1, g, di)(Y ∪ u)) .
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Figure 12: The inductive construction of graphs corresponding to principal extension from
Lemma B.3.

V1 V2

V = V1 ∪ V2

v

vv

Figure 13: The graph G that induces the union f1 ∨ f2, as described before Lemma B.4.

Note that for u /∈ U , we define ciu = −∞, therefore this maximum will only be achieved for some
u ∈ U unless no matching P exists. This is precisely the principal extension of Φ(Gi−1, g, di−1)
with respect to ci. By the inductive hypothesis, this implies Φ(Gi, g, di) = (. . . (gc1) . . . )ci .

The final observation is that G is obtained from the graph GV by deleting the copy of U that
shares no edges with V . As they share no edges, deleting these nodes is equivalent to deletion on
the level of valuated matroids, therefore Φ(G, g, c) = Φ(GV , g, dV ) \ U .

Finally, we note that as elements of V share no edges, we can inductively build the graph GV by
adding nodes in any order. On the level of valuated matroids, this implies the principal extensions
commute.

Let V1 and V2 be the respective (not necessarily disjoint) ground sets for the valuated matroids
f1 and f2 with ranks d1 and d2 and let V = V1∪V2. We define a bipartite graph G = (V, V1∪̇V2;E)
where one colour class is V and the other colour class is the disjoint union of copies of V1 and V2.
The edge set E consists of edges (v, v) connecting a node to any of its copies, all weighted zero by
weight function c; in particular, a node of V has degree two if and only if it represents an element
in V1 ∩ V2. This graph is displayed in Figure 13.

Lemma B.4. The union f1 ∨ f2 can be written as an induction Φ(G, f1 ⊕ f2, c).

Proof. Any matchingM such that ∂V (M) = X corresponds to a decomposition X = X1∪̇X2 where
Xi ⊆ Vi. Therefore

Φ(G, f1 ⊕ f2, c)(X) = max

{
(f1 ⊕ f2)(X)

∣∣∣∣ X1 ∈
(
V1
d1

)
, X2 = X \X1 ∈

(
V2
d2

)}
,

which is precisely the definition of f1 ∨ f2.
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Proof of Theorem 2.12. Deletion, dualization and direct sum are all covered by [40, Theorem 6.13],
parts (6), (2) and (8) respectively. Lemma B.1 implies closure under contraction. Lemma B.4
and Remark 2.10 show matroid union and principal extension are special cases of induction by
networks, which valuated matroids are closed under via Theorem 2.9. Finally, Lemma B.2 implies
closure under truncation.

Finally, we show that induction by networks is a special case of induction by bipartite graphs
with contraction.

Lemma 2.11. Let N be a directed network with weight function d and g a valuated matroid on
U such that f = ΦV (N, g, d) is again a valuated matroid. Then there is a bipartite graph G =
(V ∪W,U ∪W ′;E) with weight function c ∈ RV ∪W and a valuated matroid h on U ∪W ′ such that
f = (Φ(G, h, c))/W .

Proof. Let N = (T,A) be the weighted directed network such that the valuated matroid f on the
subset V of T is the induction of the valuated matroid g on the subset U of T through N . Let
W = T \(V ∪U) andW ′ a disjoint copy ofW . We define the bipartite graph G = (V ∪W,U∪W ′;E)
with weight function c ∈ RE where for each arc (a, b) ∈ A, we add the edge (a, b) if b ∈ U or (a, b′)
if b ∈W to E with weight d(a, b). Furthermore, we add the zero weight edges (w,w′) for all w ∈W
with copy w′. An example of this construction is displayed in Figure 14.

Let X ⊆ V and Y ⊆ U be subsets of equal cardinality. We observe that node disjoint paths
from X to Y in N are in bijection with matchings from X ∪W to Y ∪W ′ in G, and furthermore
preserve weights. Let P be a set of node disjoint paths in N , the edges of G corresponding to arcs of
P form a matching of equal weight on a subset of the nodes from X ∪W to Y ∪W ′. For any nodes
w ∈W that are not used in P, we add the corresponding zero weight edge (w,w′) to the matching:
this gives a perfect matching from X ∪W to Y ∪W ′ of the same weight at P. Conversely, any
perfect matching µ from X ∪W to Y ∪W ′ gives rise to a set of node disjoint paths by contracting
the (w,w′) in G for all w ∈ W . This precisely recovers the network N from G, and the matching
µ becomes a set of node disjoint paths from X to Y in N .

We let h be the valuated matroid g ⊕ frW ′ as defined in Example 2.7. Consider f(X) for some
X ⊆ V . As node disjoint paths from X in N are in bijection with matchings on X ∪W in G, we
can replace N with G in the definition of f :

f(X) = max

{∑
e∈µ

c(e) + g(Y )

∣∣∣∣∣ matching µ in G : ∂V ∪W (µ) = X ∪W ∧ ∂U∪W ′(µ) = Y ∪W ′

}
.

Furthermore, by definition of h we can replace g(Y ) with h(Y ∪ W ′) in the above equation.
This implies that f(X) = Φ(G, h, c)(X ∪ W ); furthermore this holds for arbitrary X and so
f = Φ(G, h, c)/W .

C From valuated generalized matroids to valuated matroids

By definition, valuated matroids are defined only on a layer of the ground set, but it is easy to
check that each valuated matroid is also a valuated generalized matroid if we set the function value
to −∞ outside of the layer. Another way to obtain a valuated generalized matroid from a valuated
matroid is by truncation (introduced in Section 2) and elongation. The interested reader is referred
to [39], in particular Theorem 3.2.

Here, we demonstrate how to go in the other direction, i.e., how to represent a valuated gener-
alized matroid as a valuated matroid. This construction also appears in [33, Lemma 8.5] and [44,
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Figure 14: An example of the construction from Lemma 2.11: a network N and the corresponding
bipartite graph G. A set of node-disjoint paths in N correspond to a matching in G, both displayed
in bold.

Proposition 3]. Then we show an explicit construction for the case of R♮-minor valuated generalized
matroids.

Let f : 2V1 → R ∪ {−∞} be a valuated generalized matroid. Denote with n the size of V1 and
let V2 be a copy of V1. We define a function gf :

(
V1∪V2

n

)
→ R ∪ {−∞} for X ∈

(
V1∪V2

n

)
as

gf (X) := f(X ∩ V1) .

Then, it is a straightforward check via the valuated (generalized) matroid axioms that the function
gf is a valuated matroid. Note that given such a function gf , we can recover f as f(X) = gf (X∪Y )
for any Y ⊆ V2 of size n− |X|.

Starting with an R♮-induced or an R♮-minor valuated generalized matroid, a similar construction
gives rise to an R-minor valuated matroid. Let f : 2V1 → R ∪ {−∞} be an R♮-minor valuated
generalized matroid represented by (G1,M1, c,W ) where G1 = (V1 ∪ W,U1;E). For n = |V1|,
let V2, U2 be two disjoint sets, each with n elements, and disjoint from V1 ∪W ∪ U1. Let M2 be
the free matroid on U2. Consider the R-minor valuated matroid g defined by the bipartite graph
G = ( (V1 ∪ V2) ∪W, U1 ∪ U2; E

′), matroid M on U1 ∪ U2, c
′ ∈ RE′

, and W ; where

� M is obtained by truncating M1 ⊕M2 to the size |W |+ n,

� E′ is obtained from E by adding all possible edges (i, j), for i ∈ V2, j ∈ U1 ∪ U2,

� c′ extends c to E′ by weighting all edges in E′ \ E0 by zero.

Then, a maximal independent matching in G on X ∪W must come from a maximal independent
matching in G1 with additional zero weight edges adjacent to all nodes in X ∩ V2, verifying that g
is the same valuated matroid as gf defined in the previous paragraph.

D The size of R-induced representations

We show that any R-induced valuated matroid has an R-induced representation where the bipartite
graph has size O(|V | · d), where d is its rank. A corollary is that not all valuated matroids are
R-induced.

Lemma D.1. Let f :
(
V
d

)
→ R ∪ {−∞} be an R-induced valuated matroid with representation

G = (V,U ;E), M = (U, r) and c ∈ RE. Then, there is an R-induced representation of f with
G′ = (V,U ′;E′), M′ = (U ′, r′) and c′ ∈ RE′

such that |ΓG′(v)| ≤ d for all v ∈ V . In particular,
|E′|+ |U ′|+ |V | ∈ O(|V | · d).
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Proof. Consider an arbitrary node v ∈ V , and the set of its neighbours ΓG(v) in U . Let us define
a weight function ω over ΓG(v) as ω(u) = cvu for u ∈ ΓG(v). Let S be a maximum weight basis in
the matroid M restricted to ΓG(v) with respect to the weights ω. As M has rank d it follows that
|S| := s ≤ d.

To prove the lemma, it suffices to show that for any set X ∈ dom(f) with v ∈ X, in any
maximum weight independent matching µX defining f(X) the edge incident to v can be switched
to have the other end point in S.

Let µX be an independent matching covering X where X ∈ dom(f) and v ∈ X. Denote with
u the node in U matched to v by µX . If u ∈ S, there is nothing to show. So, assume u ̸∈ S. Let
T be the set of all other endpoints of µX in U . That is, the set of endpoints of µX in U is exactly
T ∪ {u}, where u ̸∈ T and |T | = |X| − 1. We show that we can swap (v, u) by an edge (v, u′) for
u′ ∈ S without decreasing the weight of the matching.

Denote the elements of the neighbourhood ΓG(v) by u1, . . . , us such that ω(u1) ≥ · · · ≥ ω(us).
Since S is a maximum weight basis, there is a k ∈ [s] such that ω(u1) = cvu1 ≥ · · · ≥ ω(uk) =
cvuk

≥ ω(u) = cvu and u ∈ cl[{u1, . . . , uk}] (by the greedy algorithm for finding a maximum weight
basis in a matroid).

If we can replace (v, u) by an edge (v, ut) for t ∈ [k] in µX , we get a new independent matching
with weight at least as much as the weight of µX . On the other hand, suppose that for any t ∈ [k]
the set µX ∪ {(v, ut)} \ {(v, u)} is not an independent matching. Then, it must be the case that
{u1, . . . , uk} ⊆ cl[T ]. Since, u ∈ cl[{u1, . . . , uk}] it follows that u ∈ cl[T ]. A contradiction. It follows
that we can always swap (v, u) ∈ µX for an edge (v, u′) where u′ ∈ S, to obtain a matching with
weight at least the weight of µX . The lemma follows.

Information-theoretic separation We use the above lemma to give an alternative proof that
not all valuated matroids are R-induced. Note that this is also proved in Proposition 6.7.

Let f :
(
V
4

)
→ R∪{−∞} be an R-induced valuated matroid and consider its R-induced represen-

tation (G,M, c) given by Lemma D.1; in particular, G = (V,U ;E) where |E| ≤ |V | · rk(f) = 4|V |.
Let C = {cij : (i, j) ∈ E} be the set of weights appearing on the edges; note that we trivially have
|C| ≤ 4|V |. For any set X ∈

(
V
4

)
, the value f(X) is either −∞ or a sum of precisely four numbers

in C. This implies that the set of function values is contained in the Q-vector space generated
by C. In particular, the dimension of this vector space is bounded above by |C|.

We now exhibit a family of valuated matroids for which the Q-vector space generated by its
attained values has dimension greater than 4|V |. Recall from Definition 1.2 and Appendix A the
sparse paving matroid with bases

(
V
4

)
\H, where H is the set of pairs Pi ∪Pj where at least one of

i, j are even. We define a valuated matroid by

h(X) =

{
0 X ∈

(
V
4

)
\ H

αX X ∈ H
, αX < 0 .

In particular, the values αX for X ∈ H can be assigned freely. Consider such a function for which
the set A = {αX : X ∈ H} is a set of linearly independent real numbers over Q. Therefore the
Q-vector space generated by values of h has dimension at least |A|. By definition of H, we have
|A| =

(
n
2

)
−

(⌊n/2⌋
2

)
; in particular, this grows quadratically as opposed to |C| which grows linearly.

For n ≥ 23, we have that |A| > 4 ·2n = 4|V |. Hence, such a function h is not an R-induced valuated
matroid.

Finally we mention that with a similar proof, it is easy to show an analogous lemma for R♮-
induced valuated generalized matroids.
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Lemma D.2. Let f : 2V → R ∪ {−∞} be an R♮-induced valuated matroid with representation
G = (V,U ;E), M = (U, r) and c ∈ RE. Then, there is an R♮-induced representation of f with
G′ = (V,U ′;E′), M′ = (U ′, r′) and c′ ∈ RE′

such that |ΓG′(v)| ≤ min{n, r(M)} for all v ∈ V . In
particular, |E′|+ |U ′|+ |V | ∈ O(|V |2).
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[23] J. Garg, E. Husić, and L. A. Végh. Approximating Nash Social Welfare under Rado Valuations.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2021. Association for Computing Machinery, 2021.
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