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Abstract

We consider the rigidity and global rigidity of bar-joint frameworks in Euclidean d-
space under additional dilation constraints in specified coordinate directions. In this setting
we obtain a complete characterisation of generic rigidity. We then consider generic global
rigidity. In particular, we provide an algebraic sufficient condition and a weak necessary
condition. We also construct a large family of globally rigid frameworks and conjecture a
combinatorial characterisation when most coordinate directions have dilation constraints.
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1 Introduction

A bar-joint framework (G, p) is the combination of a (finite, simple) graph G = (V,E) and a
map p : V → Rd that assigns points in Euclidean d-space to the vertices of G (and hence straight
line segments of given length to the edges). These points represent the joints and the straight
line segments the bars or the framework. That is, bars do not stretch, compress or bend, and are
connected to other bars at the joints, which act as ball joints. Informally, the framework is rigid
if its lengths locally determine the shape. That is, if every edge-length preserving continuous
motion of the vertices arises from a Euclidean isometry.

Determining the rigidity or flexibility (non-rigidity) of a framework is a crucial problem in a
variety of practical applications from wireless sensor networks [2] to control of robotic formations
[25], and rigidity theoretic tools have recently been used to impact on diverse mathematical
problems such as the lower bound theorem for manifolds [7, 18]. However, it is computationally
challenging to determine the rigidity of a given framework when d > 1 [1]. To get around
this issue we sometimes have to focus on generic frameworks; (G, p) is generic if the set of
coordinates of the points p(v), v ∈ V , are distinct and form an algebraically independent set
over Q. (Much weaker variants of genericity are possible but a distraction from the main topic
of this paper.) However, it is worth noting here that some of our key results will apply to
frameworks with no genericity assumption.

For generic frameworks, rigidity depends only on the underlying graph. That is, if one
generic framework (G, q) in Rd is rigid then every generic framework (G, p) in Rd is rigid [3].
The cornerstone problem of rigidity theory is to determine precisely the class of graphs that are
rigid. As far back as Maxwell [20] necessary conditions were known but these are insufficient
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for all d ≥ 3. When d = 1 it is easy to see that a graph is rigid if and only if it is connected.
When d = 2, a celebrated theorem first obtained by Polaczek-Geiringer [22], and often referred
to as Laman’s theorem [19], characterises rigid graphs. However for all d ≥ 3, characterising
rigid graphs remains a challenging open problem of key applied and theoretical importance.

Motivated by this, the present article considers the rigidity of bar-joint frameworks in Eu-
clidean space under additional “coordinate dilation” constraints. These frameworks first arose
in the context of frameworks on surfaces [17] where characterising rigidity with these dilation
constraints was important in understanding stress matrices and global rigidity (defined shortly).
This kind of constraint is previously unstudied in the Euclidean context. A somewhat related
setting occurred recently in the study of unmanned aerial vehicles [6]. We will describe this at
the end of Section 4. Another related setting is the study of frameworks on surfaces [21].

We give precise descriptions of rigidity in d-dimensions under dilation constraints linking
them to “ordinary” rigidity in lower dimensions, and hence giving purely combinatorial char-
acterisations in arbitrary dimension provided there are sufficiently many coordinate dilation
constraints. As a consequence (Corollary 4.6) we establish that the underlying rigidity matroid
of our dilation constraint setting is the union of a smaller dimensional rigidity matroid and
the uniform matroid of a specified rank. In this sense our results are similar to recent results
obtained in [8] for cylindrical normed spaces and [23] for coordinated edge length motions.

We then investigate variants for global rigidity building on standard results for bar-joint
frameworks. Global rigidity of bar-joint frameworks asks, more strongly than rigidity, for the
given framework to be unique up to isometries of the space. It follows from a deep result of
Gortler, Healy and Thurston [11] that, generically, global rigidity depends only on the underlying
graph and the combinatorial difficulty in dimension greater than 2 mirrors the situation for
rigidity. In dimension 1 a graph is generically globally rigid if and only if it is 2-connected
(see, e.g., [14] for a proof of this folklore fact), in dimension 2 a combination of results due
to Hendrickson [13], Connelly [4] and Jackson and Jordán [15] give a complete combinatorial
characterisation, whereas when d ≥ 3 only some partial results are known (see, e.g., [7]).

In Section 5 we give an augmented definition of equilibrium stress and stress matrix and use
them to give an analogue of Connelly’s sufficient condition [4] that applies to global rigidity in
Rd with dilation constraints. We deduce from this that a well known construction operation
(1-extension) preserves global rigidity and then discuss necessary conditions. We conclude the
paper, in Section 6, with two open problems on global rigidity.

2 Rigidity theoretic preliminaries

Let G = (V,E) be a graph. Two frameworks (G, p) and (G, q) are said to be equivalent if

∥p(v)− p(w)∥ = ∥q(v)− q(w)∥ for all vw ∈ E. (1)

More strongly, they are congruent if Equation (1) holds for any pair of vertices v, w ∈ V . The
framework (G, p) in Rd is d-rigid if every equivalent framework (G, q) in a neighbourhood of p,
considered as a vector in Rd|V |, is obtained from (G, p) by a composition of isometries of Rd.
Moreover, (G, p) in Rd is globally d-rigid if every equivalent framework (G, q) in Rd is obtained
from (G, p) by a composition of isometries of Rd. A framework is minimally d-rigid if it is
d-rigid, but any framework formed by removing edges is not d-rigid.

Differentiating the distance constraints given in Equation (1), we obtain the following. An
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infinitesimal motion of (G, p) is a map ṗ : V → Rd satisfying the system of linear equations:

(p(v)− p(w)) · (ṗ(v)− ṗ(w)) = 0 for all vw ∈ E.

The framework (G, p) is infinitesimally d-rigid if the only infinitesimal motions arise from isome-
tries of Rd. The rigidity matrix R(G, p) of the framework (G, p) is the matrix of coefficients of
this system of equations for the unknowns ṗ. Thus R(G, p) is a |E| × d|V | matrix, in which:
the row indexed by an edge vw ∈ E has p(v) − p(w) and p(w) − p(v) in the d columns in-
dexed by v and w respectively, and zeros elsewhere. It is straightforward to show that (G, p)
is infinitesimally d-rigid if and only if rankR(G, p) = d|V | −

(
d+1
2

)
whenever G has at least d

vertices.
Rigidity and infinitesimal rigidity are linked by the following theorem.

Theorem 2.1 (Asimow and Roth [3]). Let (G, p) be a framework in Rd. If (G, p) is infinitesi-
mally d-rigid then it is d-rigid. Conversely if (G, p) is generic and d-rigid, then it is infinitesi-
mally d-rigid.

Following from Theorem 2.1, we say that a graph G is d-rigid if there exists an infinitesimally
d-rigid framework (G, p) (or equivalently, a generic d-rigid framework (G, p)). Likewise, G is
minimally d-rigid if there exists a generic minimally d-rigid framework (G, p).

For the next result, we recall that a graph G = (V,E) is (d,
(
d+1
2

)
)-sparse if |E′| ≤ d|V ′| −(

d+1
2

)
for all subgraphs (V ′, E′) on at least d vertices. A (d,

(
d+1
2

)
)-sparse graph is (d,

(
d+1
2

)
)-tight

if |E| = d|V | −
(
d+1
2

)
.

Lemma 2.2 (Maxwell [20]). Let G be minimally d-rigid on at least d vertices. Then G is
(d,

(
d+1
2

)
)-tight.

The converse to Maxwell’s lemma holds when d ≤ 2 [22]. However it remains an open
problem to determine which (d,

(
d+1
2

)
)-tight graphs are d-rigid in all higher dimensions. One

motivation for this paper is that additional understanding of this problem may be developed
by exploring the problem with additional constraints.

An equilibrium stress of a framework (G, p) in Rd is a vector in the cokernel of R(G, p). In
other words, a vector ω ∈ R|E| is an equilibrium stress of (G, p) if, for all v ∈ V ,∑

u∈NG(v)

ωvu(p(v)− p(u)) = 0,

whereNG(v) denotes the neighbour set of v. Let n = |V |. The stress matrix Ω(ω) is a symmetric
n × n-matrix in which the rows and columns are indexed by the vertices and in which the off
diagonal entry in row v and column u is −ωvu, and the diagonal entry in row v is

∑
u∈V ωvu.

Here ωvu is taken to be equal to zero if vu ̸∈ E. Equivalently, the stress matrix Ω(ω) is the
Laplacian matrix of the weighted graph (G,ω).

3 Infinitesimal (d, k)-rigidity

We now introduce our dilation constrained rigidity context. Let (G, p) be a framework in Rd.
Fix some k ∈ {1, . . . , d−1}. For each coordinate i ∈ {1, . . . , d}, let pi : V → R be the restriction
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of p to the i-th coordinate. Using this notation, we see that p(v) = (p1(v), . . . pd(v)) for every
vertex v ∈ V . With this, we define the map

p̃ : V → Rd−k, v 7→ (p1(v), . . . , pd−k(v)).

Two frameworks (G, p) and (G, q) in Rd are (d, k)-equivalent if they are equivalent and for each
i ∈ {d−k+1, . . . , d} there exists a scalar αi ̸= 0 such that pi = αiqi. Without loss of generality
we may fix a vertex v0 ∈ V where pi(v0) ̸= 0 for each i ∈ {d − k + 1, . . . , d}. Then, under the
assumption that q is a realisation with qi(v0) ̸= 0 for i ∈ {d − k + 1, . . . , d}, (d, k)-equivalence
can be represented by the following constraint system:

∥p(v)− p(w)∥ = ∥q(v)− q(w)∥ for all vw ∈ E, (2)

pi(v)

pi(v0)
=

qi(v)

qi(v0)
for all v ∈ V \ {v0} and i ∈ {d− k + 1, . . . , d}. (3)

We note that the precise choice of constraints in Equation (3) was made for convenience.
For most frameworks, constraints corresponding to any connected graph would create precisely
the same constraint system as we show in the following simple lemma.

Lemma 3.1. Let G = (V,E), H = (V, F ) be two graphs with the same vertex set, and let
(G, p), (G, q) be frameworks in Rd where pi(v) ̸= 0 and qi(v) ̸= 0 for all v ∈ V and i ∈
{d− k + 1, . . . , d}. If H is connected, then Equation (3) holds if and only if

pi(v)

pi(w)
=

qi(v)

qi(w)
for all vw ∈ F and i ∈ {d− k + 1, . . . , d}. (4)

Proof. Suppose Equation (3) holds. Choose any vw ∈ F and any i ∈ {d− k + 1, . . . , d}. Then
we have

pi(v)

pi(w)
=

pi(v)

pi(v0)
· pi(v0)
pi(w)

=
qi(v)

qi(v0)
· qi(v0)
qi(w)

=
qi(v)

qi(w)
.

Hence, Equation (4) holds.
Suppose Equation (4) holds. Choose any v ∈ V \ {v0} and any i ∈ {d− k+ 1, . . . , d}. Then

since H is connected, there exists a path from v to v0 in H, say (v, v1, v2, . . . , vt, v0). We have

pi(v)

pi(v0)
=

pi(v)

pi(v1)

pi(v1)

pi(v2)
. . .

pi(vt)

pi(v0)
=

qi(v)

qi(v1)

qi(v1)

qi(v2)
. . .

qi(vt)

qi(v0)
=

qi(v)

qi(v0)
.

Hence, Equation (3) holds.

As in the standard theory of bar-joint rigidity, we define a framework to be (d, k)-rigid if
every sufficiently close (d, k)-equivalent framework is congruent. This is equivalent to q = p
being the locally unique solution of the system of constraints given by Equations (2) and (3),
modulo congruences. Similarly to the standard theory of bar-joint rigidity, solving such a system
of equations is computationally challenging. Because of this, we need to linearise the problem
by differentiating the constraint system. As is the case with Theorem 2.1, doing so will provide
us with a sufficient condition for (d, k)-rigidity that is easier to work with, fast to compute, and
also necessary for almost all realisations.
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The Jacobian derivative of the system of constraints given by Equations (2) and (3)1 is the
(|E|+ k(|V | − 1))× d|V | matrix

Jv0(G, p) =


R(G, p̃) R(G, pd−k+1) · · · R(G, pd)

0 Md−k+1 0
...

. . .

0 0 Md

 ,

where R(G, p̃) and R(G, pi), for d − k + 1 ≤ i ≤ d, are the rigidity matrices of the (d − k)-
dimensional framework (G, p̃) and the 1-dimensional frameworks (G, pi) respectively, and Mi is
the matrix with rows labelled by V \ {v0}, columns labelled by V and entries

Mi(v, w) =


1/pi(v0) if w = v,

−pi(v)/pi(v0)
2 if w = v0,

0 otherwise.

Example 3.2. Let d = 2, k = 1, G = K3 and V (K3) = {v0, v1, v2}. Then i = d − k + 1 = 2,
and for illustration we put p̃(vi) = xi, p2(vi) = yi, so that

Jv0(K3, p) =


x0 − x1 x1 − x0 0 y0 − y1 y1 − y0 0
x0 − x2 0 x2 − x0 y0 − y2 0 y2 − y0

0 x1 − x2 x2 − x1 0 y1 − y2 y2 − y1
0 0 0 − y1

y20

1
y0

0

0 0 0 − y2
y20

0 1
y0

 .

We now define (G, p) to be infinitesimally (d, k)-rigid if and only if either G is a complete
graph and the set {p(v) : v ∈ V } has affine dimension min{d, |V | − 1} or G is not complete and
rank Jv0(G, p) = d|V | −

(
d−k+1

2

)
.

Using the technique of Asimow and Roth [3], one can show that infinitesimal (d, k)-rigidity
implies (d, k)-rigidity, and that the two properties coincide for generic frameworks. Because
of this, we define a graph G to be (d, k)-rigid if there exists a realisation p : V → Rd where
(G, p) is infinitesimally (d, k)-rigid. Equivalently, G is (d, k)-rigid if every generic (G, p) in Rd

is infinitesimally (d, k)-rigid.
Suppose that, given (G, p) is a generic framework in Rd, the Jacobian Jv0(G, p) has linearly

independent rows and rank Jv0(G, p) = d|V | −
(
d−k+1

2

)
. Then

|E|+ k(|V | − 1) = d|V | −
(
d− k + 1

2

)
= (d− k)|V | −

(
d− k + 1

2

)
+ k + k(|V | − 1). (5)

Hence we say that a graph G is minimally (d, k)-rigid if it is (d, k)-rigid and |E| = (d− k)|V | −(
d−k+1

2

)
+ k.

Example 3.3. Suppose d = 2, k = 1 and G = C4 be the cycle with vertex set {v1, v2, v3, v4} and
edge set {v1v2, v2v3, v3v4, v1v4}. Then putting p(v1) = (1, 1), p(v2) = (2, 1), p(v3) = (2, 2) and
p(v4) = (1, 2) gives a framework (C4, p) such that rank Jv0(C4, p) = 7 = 2|V |−

(
2
2

)
(see Figure 1).

1Technically speaking, we are actually taking the derivative of the concatenation of the system of equations
given by Equation (2) after squaring then halving both sides, and the system of equations given by Equation (3).
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Since |E| = 4 = 1·4−
(
2
2

)
+1, (C4, p) is minimally (2, 1)-rigid. Since rank is maximised at generic

configurations, the same conclusion holds for any generic framework (C4, q). Suppose on the
other hand that d = 3, k = 2 and G = C4. Then Jv0(C4, p) has 10 rows and rank Jv0(C4, p) ≤
10 < 3|V | −

(
2
2

)
= 11 so (C4, p) is not (infinitesimally) (3, 2)-rigid for any p.

Figure 1: The 2-dimensional framework described in Example 3.3 is depicted on the left. This
framework is not 2-rigid since there is a non-trivial continuous deformation taking it to the
framework on the right. Nevertheless the framework is (2, 1)-rigid since the dilation constraints
in the y-coordinates prevent any nontrivial motion. The intuition behind this is to first note that
translation in the y-direction and rotation evidently break the dilation constraints. Consider
now the nontrivial motion depicted. The top left vertex follows the path θ 7→ (1+sin θ, 1+cos θ)
and the top right vertex follows the path θ 7→ (2 + sin θ, 1 + cos θ). As the bottom two vertices
have y-coordinate 1, the dilation constraints require that the y-coordinates of the top two
vertices – both of which are 1 + cos θ – are constant during the motion, a clear contradiction.

4 Characterising (d, k)-rigidity

To characterise (d, k)-rigidity we will first show that there is a more convenient matrix repre-
sentation. Recall that the usual d-dimensional (squared) rigidity map fG,d is the map

fG,d : Rd|V | → R|E|, p 7→
(
∥p(v)− p(w)∥2

)
vw∈E .

Given the 1-dimensional rigidity map fG,1, we define the |E| × (d− k)|V |+ k matrix

DRk(G, p) :=
(
R(G, p̃) fG,1(pd−k+1) · · · fG,1(pd)

)
.

Example 4.1. Let d = 2, k = 1, G = K3 and V (K3) = {v0, v1, v2}. Put p(vi) = (xi, yi) for
0 ≤ i ≤ 2. Then we have

DR1(K3, p) =

x0 − x1 x1 − x0 0 (y0 − y1)
2

x0 − x2 0 x2 − x0 (y0 − y2)
2

0 x1 − x2 x2 − x1 (y1 − y2)
2

 .

The matrix DRk(G, p) can be used to determine infinitesimal (d, k)-rigidity.

Theorem 4.2. Let (G, p) be a framework with a vertex v0 ∈ V where pi(v0) ̸= 0 for each
i ∈ {d− k + 1, . . . , d}. Then (G, p) is infinitesimally (d, k)-rigid if and only if

rankDRk(G, p) = (d− k)|V | −
(
d− k + 1

2

)
+ k,

or G is a complete graph and the set {p(v) : v ∈ V } has affine dimension min{d, |V | − 1}.
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Proof. We may suppose that G is not a complete graph. By multiplying each row of Jv0(G, p)
corresponding to the vertex v ∈ V \ {v0} and coordinate i ∈ {d − k + 1, . . . , d} by pi(v0), we
obtain the matrix

J ′ =


R(G, p̃) R(G, pd−k+1) · · · R(G, pd)

0 M ′
d−k+1 0

...
. . .

0 0 M ′
d

 ,

where

M ′
i(v, w) =


1 if w = v,

−pi(v)/pi(v0) if w = v0,

0 otherwise.

Let J ′
vw be the row corresponding to the edge vw ∈ E, and let J ′

v,i be the row corresponding to
the vertex v ∈ V \ {v0} and coordinate i ∈ {d− k + 1, . . . , d}. We will now form a new matrix
from J ′ by the following row operations:

• For each row vw with v, w ̸= v0, J
′
vw 7→ J ′

vw −
∑d

i=d−k+1(pi(v)− pi(w))(J
′
v,i − J ′

w,i).

• For each row vv0, J
′
vv0 7→ J ′

vv0 −
∑d

i=d−k+1(pi(v)− pi(v0))J
′
v,i.

• Shift each column corresponding to the vertex v0 and coordinate i ∈ {d− k+1, . . . , d} to
the right hand side of the matrix and multiply by pi(v0).

With this we obtain the following matrix:

J ′′ =


R(G, p̃) 0 · · · 0 fG,1(pd−k+1) · · · fG,1(pd)

0 I|V \{v0}| 0 bd−k+1 0
...

. . .
. . .

0 0 I|V \{v0}| 0 bd

 ,

where I|V \{v0}| is the |V \ {v0}| × |V \ {v0}| identity matrix, and each bi is the |V \ {v0}|-
dimensional column vector with coordinates bi(v) := −pi(v). We now note that

rankDRk(G, p) = rank J ′′ − k(|V | − 1) = rank Jv0(G, p)− k|V |+ k.

Since, by definition, (G, p) is infinitesimally (d, k)-rigid if and only if rankJv0(G, p) = d|V | −(
d−k+1

2

)
, this and Equation (5) give the desired result.

We next give a complete description of (d, k)-rigidity for arbitrary pairs d, k in terms of
the usual bar-joint rigidity. The characterisation leads to efficient combinatorial algorithms
whenever the resulting bar-joint rigidity problem can be solved in such terms; that is, when
d− k ≤ 2.

We will use an inductive argument to prove the following theorem. To this end it is con-
venient here, and only here, to allow k = 0 in our definitions. In this case, (d, 0)-rigidity is
precisely d-rigidity.
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Theorem 4.3. A graph G = (V,E) is (d, k)-rigid if and only if either G is a complete graph,
or G contains a spanning (d− k)-rigid subgraph and |E| ≥ (d− k)|V | −

(
d−k+1

2

)
+ k.

Proof. We may suppose that G is not a complete graph. If |E| < (d − k)|V | −
(
d−k+1

2

)
+ k,

then G is not (d, k)-rigid by Theorem 4.2. If G does not contain a spanning (d − k)-rigid
subgraph, then for every realisation p : V → Rd, the matrix R(G, p̃) has a rank strictly less
than (d − k)|V | −

(
d−k+1

2

)
. Since DRk(G, p) is formed from R(G, p̃) by adding k columns, it

then must have a rank strictly less than (d − k)|V | −
(
d−k+1

2

)
+ k. Hence G is not (d, k)-rigid

by Theorem 4.2.
Now suppose that G contains a spanning (d − k)-rigid subgraph and |E| ≥ (d − k)|V | −(

d−k+1
2

)
+ k. By deleting edges if necessary, we may suppose that G = H + {e1, . . . , ek}, where

H = (V, F ) is minimally (d − k)-rigid and e1, . . . , ek are edges in E \ F . Define E0 = F ,
Ei := F + {e1, . . . , ei}, G0 := (V,E0) and Gi := (V,Ei) for all 1 ≤ i ≤ k. It is immediate that
G0 = H is minimally (d− k, 0)-rigid. Suppose, for an inductive argument, that Gj is minimally
(d− k + j, j)-rigid for some j ∈ {0, . . . , k − 1}. By the induction hypothesis and Theorem 4.2,
there exists a realisation p : V → Rd−k+j such that

rankDRj(Gj , p) = (d− k)|V | −
(
d− k + 1

2

)
+ j.

As DRj(Gj , p) has the highest achievable rank, we have rankDRj(Gj+1, p) = rankDRj(Gj , p).
Since DRj(Gj+1, p) contains the rows of DRj(Gj , p)

T plus one additional row, it follows that
there exists a unique (up to scalar multiple) non-zero element of the left kernel of DRj(Gj+1, p).
This is equivalent to there existing a unique (up to scalar multiple) non-zero vector σ : Ej+1 → R
where σTR(G, p̃) = [0 . . . 0] and∑

vw∈Ej+1

σ(vw)(pi(v)− pi(w))
2 = pTi Ω(σ)pi = 0 (6)

for each i ∈ {d − k + 1, . . . , d − k + j}, where Ω(σ) is the stress matrix corresponding to σ.
Since σ is non-zero, there exists z ∈ RV such that zTΩ(σ)z ̸= 0. Fix p′ : V → Rd−k+j+1

to be the realisation where p′i := pi for all i ∈ {1, . . . , d − k + j}, and p′d−k+j+1 := z. As
the left kernel of DRj+1(Gj+1, p

′) is contained in the left kernel of DRj(Gj+1, p), we have

kerDRj+1(Gj+1, p
′)T = {0}. By counting edges we see that |Ej | = (d−k)|V |−

(
d−k+1

2

)
+ j+1,

hence Gj+1 is minimally (d− k + j + 1, j + 1)-rigid. By induction it now follows that G = Gk

is minimally (d, k)-rigid.

Example 4.4. Let us unpack Theorem 4.3 for some basic special cases. Combining with the
folklore 1-dimensional characterisation of rigidity, the theorem implies that a graph is (2, 1)-
rigid if and only if either it is complete on 1 or 2 vertices or it is a connected graph with at least
one cycle. Similarly, a graph G = (V,E) is (3, 2)-rigid if and only if either G is complete on at
most 3 vertices or G is connected with |E| ≥ |V |+ 1.

Next suppose the gap between d and k is 2 and recall that G = (V,E) is a Laman graph if
|E| = 2|V | − 3 and every edge-induced subgraph (V ′, E′) has |E′| ≤ 2|V ′| − 3. . Then we can
use Laman’s theorem [19, 22] to deduce that a graph is (3, 1)-rigid if and only if G is complete
or it is a Laman-plus-one graph (that is, it is obtained from a Laman graph by adding exactly
one edge).

When the gap is bigger than 2 we no longer have a combinatorial description of rigidity to
rely upon. For example, a graph G = (V,E) is (4, 1)-rigid if and only if either G is complete
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or G contains a spanning 3-rigid subgraph and |E| ≥ 3|V | − 5. Nevertheless some d-rigidity is
understood in some special cases which we can then apply. For example if G is obtained from
a triangulation of the sphere by adding some edges then, combining our result with a theorem
of Gluck [10], we have that G is (4, 1)-rigid.

Remark 4.5. A (d-dimensional) 0-extension adds a vertex of degree d to a graph. A (d-
dimensional) 1-extension deletes an edge xy and adds a vertex v of degree d + 1 adjacent to
x and y. It is well known that these operations preserve the rigidity of bar-joint frameworks
[24]. We note that it is possible to extend the standard ((d−k)-dimensional) 0- and 1-extension
arguments to show that (d, k)-rigidity is preserved by these operations. This gives a way to
construct large families of (d, k)-rigid graphs. It also gives a combinatorial proof of an interesting
special case of Theorem 4.3 when d = 3 and k = 1. Here one may use Polaczek-Geiringer’s
[22] characterisation of 2-rigidity to see that the characterisation of minimal (3, 1)-rigidity in
Theorem 4.3 is equivalent to the graph being a Laman-plus-one graph. Hence, to prove that such
graphs are (3, 1)-rigid we simply apply a well known recursive construction of Laman-plus-one
graphs due to Haas et al [12].

The (d, k)-rigidity matroid Rd,k(G, p) of a framework (G, p) is the row matroid of the Jaco-
bian matrix Jv0(G, p). If (G, p) and (G, q) are generic frameworks in Rd, then it is easy to see
that their matroids coincide, that is the (d, k)-rigidity matroid depends on d, k and G but, for
generic frameworks, it does not depend on the choice of generic realisation. Hence we drop the
p and use Rd,k(G) or even Rd,k when the context is clear. We will also use Rd for the usual
d-dimensional rigidity matroid of a graph and Uk(E) for the uniform matroid of rank k on the
base set E. When it is clear from the context, we will shorten Uk(E) to Uk.

Let M1 and M2 be two matroids with common ground set E. Then the matroid union
M1 ∨M2 is the matroid on E with the property that a subset F is independent in M1 ∨M2 if
and only if it has the form F = F1 ∪ F2, where Fi is independent in Mi for i = 1, 2.

Corollary 4.6. We have Rd,k = Rd−k ∨ Uk.

Proof. It suffices to show that F is a basis in Rd,k if and only if we can partition F into sets
F1 and F2 where F1 is a basis of Rd−k and F2 is a basis of Uk (equivalently F2 has size k).
This follows from Theorem 4.3, since F is a basis of Rd,k if and only if the graph induced by
F is minimally (d, k)-rigid and F1 is a basis of Rd−k if and only if the graph induced by F1 is
minimally (d− k)-rigid.

It follows from a well known algorithm of Edmond’s [9], see for example a similar discussion
in [8, Section 5.1], that generic (d, k)-rigidity can be checked efficiently whenever (d−k)-rigidity
can.

Remark 4.7. There are other types of graph rigidity where the associated rigidity matroid is
the matroid union of a rigidity matroid and some other matroid. In [6], Cros et al. investigated
the rigidity of unmanned aerial vehicles where there is a time lag between distance information
being sent between any two vehicles. They proved that the correct rigidity matroid in this
setting (with all vehicles moving in d-dimensional space) was the matroid union of the (d− 1)-
dimensional rigidity matroid and the graphical matroid. This type of rigidity matroid is identical
to that found by Dewar and Kitson in [8]. We also note that Schulze, Serocold and Theran [23]
considered rigidity in the context where classes of edges can change in a specific coordinated
way and also found a matroid union structure, there with the transversal matroid.
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5 Global (d, k)-rigidity

We next consider global (d, k)-rigidity. To do this we first recall the following well known result
for bar-joint frameworks.

Theorem 5.1 (Connelly [4]; Gortler, Healy and Thurston [11]). Let (G, p) be a generic frame-
work in Rd. Then (G, p) is globally d-rigid if and only if there exists an equilibrium stress ω of
(G, p) such that rankΩ(ω) = |V | − d− 1. Furthermore, if (G, q) is also a generic framework in
Rd, then (G, q) is globally d-rigid if and only if (G, p) is globally d-rigid.

This motivates us to work with equilibrium stresses. As noted in the proof of Theorem 4.3,
a map σ : E → R with corresponding stress matrix Ω(σ) is an element of kerDRk(G, p)T if and
only if it is an equilibrium stress of (G, p̃) and pTi Ω(σ)pi = 0 for each i ∈ {d− k + 1, . . . , d}.

Example 5.2. In Example 3.3 we showed that C4 is minimally (2, 1)-rigid. From this, it
is not hard to then determine that C4 + v1v3 = K4 − v2v4 is a circuit in the matroid R2,1.
Hence, any generic realisation of K4 − v2v4 has a unique equilibrium stress which is non-zero
on each edge. If we fix p to be the realisation of K4 − v2v4 with p(v1) = (0, 0), p(v2) = (1, 2),

p(v3) = (6, 8) and p(v4) = (16, 12), we have the unique element σ =
(
490 98 −8 5 −95

)T ∈
kerDR1(K4 − v2v4, p)

T with corresponding stress matrix

Ω(σ) =


400 −490 95 −5
−490 588 −98 0
95 −98 −5 8
−5 0 8 −3

 ,

In this case we have rankΩ(σ) = 2 = |V | − d+ k − 1, which is the maximum possible.

5.1 A sufficient condition

We next develop a sufficient condition for global (d, k)-rigidity (Theorem 5.6). This will gener-
alise one direction of Theorem 5.1. We first prove the following results on equilibrium stresses.

Lemma 5.3. For a graph G = (V,E) with fixed vertex v0, choose vectors σ ∈ RE and λ ∈
RV \{v0}. For any integers 1 ≤ k < d, let p : V → Rd be a realisation of G where pi(v0) ̸= 0 for
all i ∈ {d− k + 1, . . . , d}. Then (σ, λ) ∈ ker Jv0(G, p)T if and only if σ ∈ kerDRk(G, p) and

λ(v) = −pi(v0)

 ∑
w∈NG(v)

σ(vw)(pi(v)− pi(w))

 (7)

for each i ∈ {d− k + 1, . . . , d}.

Proof. We first note that in either direction of the implication we require that σ is an equilibrium
stress of (G, p̃), so we may suppose that this is so throughout the proof. Label the entry of
the vector Jv0(G, p)T (σ, λ) that corresponds to a vertex v ∈ V and coordinate i ∈ {1, . . . , d} by
a(v, i). As σ is an equilibrium stress of (G, p̃), it follows that for every i ∈ {1, . . . , d − k} and
for every v ∈ V we have

a(v, i) =
∑

w∈NG(v)

σ(vw)(pi(v)− pi(w)) = 0.
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Fix i ∈ {d− k + 1, . . . , d}. If v ̸= v0 then

a(v, i) =
λ(v)

pi(v0)
+

∑
w∈NG(v)

σ(vw)(pi(v)− pi(w))

and a(v, i) = 0 if and only if Equation (7) holds. Now suppose v = v0. Given Ω(σ) is the stress
matrix corresponding to σ, we have

a(v0, i) =
∑

w∈NG(v0)

σ(v0w)(pi(v0)− pi(w))−
∑
v ̸=v0

λ(v)pi(v)

pi(v0)2

=
1

pi(v0)

∑
v∈V

∑
w∈NG(v)

σ(v0w)pi(v)(pi(v)− pi(w))


=

pTi Ω(σ)pi
pi(v0)

.

Hence, a(v0, i) = 0 if and only if pTi Ω(σ)pi = 0. As noted in the proof of Theorem 4.3,
an equilibrium stress σ : E → R of (G, p̃) is an element of kerDRk(G, p)T if and only if
pTi Ω(σ)pi = 0 for each i ∈ {d−k+1, . . . , d}. Combining all of the above, we see that a(v, i) = 0
for all i ∈ {1, . . . , d} and all v ∈ V if and only if σ ∈ kerDRk(G, p)T and Equation (7) holds.
This now concludes the proof.

Lemma 5.4. Let (G, p) be a generic (d, k)-rigid framework in Rd and let (G, q) be a (d, k)-
equivalent framework. Then kerDRk(G, p)T = kerDRk(G, q)T and, for any choice of v0 ∈ V ,
ker Jv0(G, p)T = ker Jv0(G, q)T . Furthermore, if σ ∈ kerDRk(G, p)T , i ∈ {d− k+1, . . . , d} and
qi = αipi, then

(1− α2
i )

 ∑
w∈NG(v)

σ(vw)(pi(v)− pi(w))

 = 0. (8)

To prove Lemma 5.4 we will use a mild extension of a proposition from Connelly [4]. This
extension from Connelly’s statement for polynomial functions to rational functions can be proved
with the same technique as in [4].

Proposition 5.5. Suppose that f : Ra → Rb is a function, where each coordinate is a rational
function with integer coefficients, p ∈ Ra is generic with f(p) well-defined, and f(p) = f(q),
for some q ∈ Ra. Then there are (open) neighbourhoods Np of p and Nq of q in Ra and a
diffeomorphism g : Nq → Np such that for all x ∈ Nq, f(g(x)) = f(x), and g(q) = p.

We will use a dashed arrow to represent that a function is not well-defined at all points. Let
F : Rd|V | 99K R|E|+k(|V |−1) be the concatenation of the d-dimensional rigidity map fG,d and the
dilation map Ψ : Rd|V | 99K Rk(|V |−1) such that

Ψ(p) =

(
pd−k+1(v)

pd−k+1(v0)
, . . . ,

pd(v)

pd(v0)

)
v∈V \{v0}

.

Then Jv0(G, p) is the Jacobian of F evaluated at p ∈ Rd|V |.
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Proof of Lemma 5.4. As p is generic and q is equivalent to p, both F (p) and F (q) are well-
defined. By applying Proposition 5.5 to the map F , there exist open neighbourhoods Np of p
and Nq of q in Rd|V | and a diffeomorphism g : Nq → Np such that g(q) = p and, for all q′ ∈ Nq,
F (g(q′)) = F (q′). Taking differentials at q, we obtain Jv0(G, q) = Jv0(G, p)L where L is the
Jacobian matrix of g at q. If (σ, λ) ∈ ker Jv0(G, p)T we have

Jv0(G, q)T (σ, λ) = LTJv0(G, p)T (σ, λ) = LT0 = 0.

Hence (σ, λ) ∈ ker Jv0(G, q)T . It now follows by symmetry that ker Jv0(G, p)T = ker Jv0(G, q)T .
Hence, by Lemma 5.3, we have kerDRk(G, p)T = kerDRk(G, q)T . Furthermore, given our
previous choice of σ and any i ∈ {d− k + 1, . . . , d}, we have

pi(v0)

 ∑
w∈NG(v)

σ(vw)(pi(v)− pi(w))

 = qi(v0)

 ∑
w∈NG(v)

σ(vw)(qi(v)− qi(w))

 .

We now obtain Equation (8) from the above equation by substituting qi = αipi, dividing both
sides by pi(v0) and rearranging.

We now prove that a similar stress rank condition to Theorem 5.1 is sufficient for global
(d, k)-rigidity.

Theorem 5.6. Let (G, p) be a generic framework in Rd. If there exists σ ∈ kerDRk(G, p)T

such that rankΩ(σ) = |V | − d+ k − 1, then (G, p) is globally (d, k)-rigid.

Proof. Fix a vertex v0 ∈ V and choose any (d, k)-equivalent framework (G, q). By Lemma 5.4,
Equation (8) holds for each i ∈ {d − k + 1, . . . , d}. If

∑
w∈NG(v) σ(vw)(pi(v) − pi(w)) = 0 for

some i ∈ {d− k + 1, . . . , d} then rankΩ(σ) < |V | − d+ k − 1 (since its kernel already contains
the all 1’s vector and p1, . . . , pd−k), hence αi = ±1 for each i ∈ {d− k + 1, . . . , d}. By applying
reflections to q, we may suppose that αi = 1, and hence qi = pi, for all i ∈ {d − k + 1, . . . , d}.
Hence for each vw ∈ E we have

∥p(v)− p(w)∥2 − ∥q(v)− q(w)∥2 = ∥p̃(v)− p̃(w)∥2 − ∥q̃(v)− q̃(w)∥2

and thus (G, p̃) is equivalent to (G, q̃). Since σ is an equilibrium stress of (G, p̃), q̃ is congruent
to p̃ by Theorem 5.1. If we choose any two (possibly non-adjacent) vertices v, w ∈ V , then

∥q(v)− q(w)∥2 = ∥q̃(v)− q̃(w)∥2 +
d∑

i=d−k+1

(qi(v)− qi(w))
2

= ∥p̃(v)− p̃(w)∥2 +
d∑

i=d−k+1

(pi(v)− pi(w))
2

= ∥p(v)− p(w)∥2,

hence q is congruent to p.

We next show that we can use the theorem to recursively construct a large class of globally
(d, k)-rigid graphs. The proof techniques of the following two lemmas are sufficiently well used
in the literature that we provide only sketches.
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Lemma 5.7. Suppose (G, p) is a generic framework in Rd on at least d − k + 1 vertices.
Let G′ = (V ′, E′) be obtained from G by deleting an edge e = v1v2 and adding a new vertex
v0 and new edges v0v1, v0v2, . . . , v0vd−k+1. Then there exists a map q : V ′ → Rd such that
rank Jv0(G

′, q) = rank Jv0(G, p) + d. Furthermore, if σ is an equilibrium stress of (G, p) with
corresponding stress matrix Ω(σ) and σe ̸= 0, then there exists an equilibrium stress σ′ for
(G′, q) such that rankΩ(σ′) = rankΩ(σ) + 1.

Sketch of proof. Define (G′, q) by putting q(v) = p(v) for all v ∈ V and q(v0) =
1
2(p(v1)+p(v2)).

It is now straightforward to use the standard “collinear triangle” technique (see, for example,
[24]) to show that rank Jv0(G

′, q) = rank Jv0(G, p) + d.
Let σ′ be the equilibrium stress of (G′, q) defined by putting σ′

f = σf for all f ∈ E − e,
σ′
v0v1 = 2σe, σ

′
v0v2 = 2σe and σf = 0 otherwise. It is straightforward to verify that σ′ is an

equilibrium stress. We may now manipulate the stress matrix Ω(σ′) to see that rankΩ(σ′) =
rankΩ(σ) + 1.

To see the explicit matrix manipulations (in a different context) in the final part of the proof
see [16, Lemma 6.1].

Lemma 5.8. Suppose (G, p) is a (d, k)-rigid framework in Rd and rankΩ(σ) = |V |−d+k−1 for
some equilibrium stress σ of (G, p). Then (G, q) has an equilibrium stress σ′ with rankΩ(σ′) =
|V | − d + k − 1 for all generic q ∈ Rd|V |. In addition, σ′ can be chosen so that σ′

e ̸= 0 for all
e ∈ E.

Sketch of proof. The first conclusion uses the technique of Connelly and Whiteley [5, Theorem
5]. In essence, we can define a function f from the set of frameworks with maximal rank (d, k)-
rigidity matrix to the space RE such that f(q) is an equilibrium stress of (G, q), each entry of
f is a rational function, and f(p) = ω. By interpreting a stress matrix having full rank as an
algebraic condition regarding determinants one can see that every generic framework must also
have a full rank stress matrix.

The second conclusion follows from the same argument as in [16, Lemma 6.3]. Briefly,
suppose σ′

e = 0 for some e ∈ E. Then σ′ is an equilibrium stress of the (d, k)-rigid framework
(G− e, p). Hence there is another equilibrium stress σ∗ obtained by adding e which is non-zero
on e. Then for sufficiently small ε the matrix Ω(σ′+ εσ∗) will have the same rank as Ω(σ′).

Corollary 5.9. Let G = (V,E), let (G, p) be a generic framework in Rd and suppose there
exists σ ∈ kerDRk(G, p)T such that σe ̸= 0 for all e ∈ E and rankΩ(σ) = |V | − d + k − 1.
Let H be a graph obtained from G by a sequence of (d− k)-dimensional 1-extensions and edge
additions. Then any generic framework (H, q) is globally (d, k)-rigid.

Proof. By Theorem 5.6 it now suffices to show that a sequence of (d−k)-dimensional 1-extensions
and edge additions preserves a full rank stress matrix. This in turn follows from Lemma 5.7 and
the fact that we may simply choose σe = 0 for any edge addition e provided that we can show
that any edge f we perform a 1-extension on has σf ̸= 0. This was proved in Lemma 5.8.

5.2 A necessary condition

Hendrickson proved the following natural necessary conditions for global rigidity of bar-joint
frameworks.
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Theorem 5.10 (Hendrickson [13]). Let (G, p) generic framework in Rd. If (G, p) is globally
d-rigid then either |V (G)| ≤ d+1 and G is complete or |V (G)| ≥ d+2 and G is (d+1)-connected
and G− e is d-rigid for any edge e of G.

We can obtain a weak version of a similar result for arbitrary frameworks by linking global
(d, k)-rigidity to global (d−k)-rigidity. In the generic case we suspect a stronger statement may
be possible.

Proposition 5.11. Let (G, p) a framework in Rd and suppose (G, p) is globally (d, k)-rigid.
Then (G, p̃) is globally (d− k)-rigid.

Proof. Suppose that (G, p̃) is not globally (d− k)-rigid. Then there exists a realisation q̃ : V →
Rd−k of G where (G, q̃) is equivalent to, but not congruent to, (G, p̃). Define q : V → Rd to
be the realisation of G where q(v) = (q̃(v), pd−k+1(v), . . . , pd(v)) for each v ∈ V . For each pair
v, w ∈ E we have

∥p(v)− p(w)∥2 − ∥q(v)− q(w)∥2 = ∥p̃(v)− p̃(w)∥2 − ∥q̃(v)− q̃(w)∥2,

hence (G, q) is (d, k)-equivalent to, but not congruent to, (G, p), i.e., (G, p) is not globally
(d, k)-rigid.

Observe that the resulting necessary connectivity condition for global (d, k)-rigidity, by
depending on k, can be much lower than that needed for global d-rigidity. The following simple
lemma illustrates that globally (d, k)-rigid graphs need not be highly connected.

Lemma 5.12. Let G1 and G2 be graphs on at least d−k+2 vertices and with at least d−k+1
vertices in common. Let (G, p) be a generic realisation of G = G1 ∪ G2 and let pi = p|Gi.
Suppose that (Gi, p

i) is globally (d, k)-rigid for i = 1, 2. Then (G, p) is globally (d, k)-rigid.

Proof. Let (G, q) be a (d, k)-equivalent framework to (G, p). By applying a suitable isometry
to q we may assume that p(u) = q(u) for all u ∈ V (G1) ∩ V (G2). Since (G1, p

1) is globally
(d, k)-rigid, q|G1 = ι ◦ p1 for some isometry ι. Since (G2, p

2) is globally (d, k)-rigid, there is a
unique equivalent realisation of G2 which maps u to p(u) for all u ∈ V (G1) ∩ V (G2). Since
both (G2, q|G2) and (G2, ι ◦ p2) have this property, q|G2 = ι ◦ p2. Hence q = ι ◦ p and (G, p) is
congruent to (G, q).

6 Concluding remarks

We conclude the paper with two conjectures on generic global (d, k)-rigidity. The first is that a
full stress rank is necessary as well as sufficient, analogous to Theorem 5.1.

Conjecture 6.1. Let (G, p) be a generic framework in Rd. If (G, p) is globally (d, k)-rigid and
G is not complete, then there exists σ ∈ kerDRk(G, p)T such that rankΩ(σ) = |V | − d+ k − 1.
Moreover, if (G, q) is also a generic framework in Rd, then (G, q) is globally (d, k)-rigid if and
only if (G, p) is globally (d, k)-rigid.

We know from Proposition 5.11 and Theorem 5.1 that if (G, p) is globally (d, k)-rigid, then
there exists an equilibrium stress σ of (G, p̃) such that rankΩ(σ) = |V | − d + k − 1. For
σ ∈ kerDRk(G, p)T , we also require that pTi Ω(σ)pi = 0 for all i ∈ {d − k + 1, . . . , d}. It seems
non-trivial to prove this.



REFERENCES 15

We conclude the paper with an alternative conjectured characterisation motivated by the
characterisation in [15]. A framework (G, p) is redundantly (d−k)-rigid if it is still (d−k)-rigid
after deleting any one edge.

Conjecture 6.2. Suppose positive integers d, k are chosen so that d − k ≤ 2 and (G, p) is
generic. Then the following are equivalent:

(i) (G, p) is globally (d, k)-rigid;

(ii) there exists a set F of k edges such that (G−F, p̃) is (d−k+1)-connected and redundantly
(d− k)-rigid; and

(iii) there exists a set F of k edges such that (G− F, p̃) is globally (d− k)-rigid.

Since d − k ≤ 2, it follows from either a folklore result (when d − k = 1) or [15] (when
d− k = 2) that (ii) and (iii) are equivalent. We suspect that (i) implies (iii) could be proved by
a Hendrickson-type argument [13]. If this were true it would suffice to prove that (ii) implies
(i). We verify this in the case when d = 2 and k = 1.

Lemma 6.3. Let (G, p) be generic. Suppose G contains an edge e such that G−e is 2-connected.
Then (G, p) is globally (2, 1)-rigid.

Proof. Let H denote the graph obtained from K4 by deleting an edge. It is easy to see that
every graph G such that G−e is 2-connected can be obtained from H by subdividing edges and
adding new edges. In Example 5.2 we constructed a nowhere zero full rank stress of a specific
(d, k)-rigid realisation of H. Hence the result follows from Lemma 5.8 and Corollary 5.9 by
induction.
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