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Abstract

Particle-in-cell codes usually represent large groups of particles as a single macropar-
ticle. These codes are computationally efficient but lose information about the
internal structure of the macroparticle. To improve the accuracy of these codes,
this thesis presents a method in which, as well as tracking the macroparticle, the

moments of the macroparticle are also tracked.

One representation of moments uses integrals. In this representation of moments,
the moment tracking equations are known, but the coordinate transformations for
moments where the space and time coordinates are mixed cannot be calculated.
These coordinate transformations are important in astrophysical plasma, where
there is no preferred coordinate system. An alternative representation of moments
uses Schwartz distributions. By using the language of Schwartz distributions, the
equations to track the moments, and perform coordinate transformations of moments
are calculated. The moment tracking and coordinate transformation equations are
tested by modelling the motion of uncharged particles in a circular orbit around a
black hole. Numerical testing shows that the error in tracking moments is small,

and scales quadratically.

Two different methods to find the current distribution from a set of moments are
presented. The first reconstructs the original distribution function used to find the

moments, and derives the current distribution from the reconstructed distribution
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function. The second method uses the language of Schwartz distributions to directly
calculate the current from the set of moments. The current distribution construction
equations are tested for a variety of distribution functions, and show that using the
language of Schwartz distributions introduces errors, but is computationally faster.
The error in moment tracking, coordinate transformations, and in finding the current

can be improved by including higher order moments.

The considerations needed to create a full particle-in-cell code, and how this code

can be evaluated, are discussed.
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Chapter 1

Introduction

1.1 The numerical modelling of plasmas

A plasma is the de-localisation of electrons from their nuclei, causing the motion of
particles within a medium to be dominated by electromagnetic fields |2|. Despite
plasma being observed for millennia, in the form of lightning and fire, it was not
created in the laboratory until 1879 by Crookes [3]. Even after this laboratory
observation, it took until 1928 for Langmuir to make the first theoretical description
of a plasma [4]. Since then, plasma has become increasingly important within
modern physics, being used for nuclear fusion [5, 6], high gradient acceleration in
particle accelerators |7, 8, 9], and observed in space physics [10, |11}, |12} 13] and
extreme astrophysical environments [10, 14]. Plasma has also become ubiquitous
within modern society, appearing in plasma televisions, fluorescent lightbulbs, and
used in arc welding for metalwork, amongst others |15] [16]. There are many new
areas where plasma is being used to innovate within existing fields, including medical
applications |17, 18], creating carbon-neutral jet fuels |19, and purifying wastewater
[20]. Because of the vast variety of applications plasma has within modern physics
and society, it is important to accurately understand how plasma behaves, and to

be able to model this behaviour numerically.



Chapter 1. Introduction

An important property of a plasma is the ability to shield individual particles
from charges far away in the plasma. If a single ion is added to the plasma, the
nearby electrons are attracted to it, and the nearby ions are repelled from it. This
means an electron far away from the newly added ion will not see any additional
electromagnetic force [21]. This phenomena is called ‘Debye shielding’. The sphere
around an ion, beyond which the charge is shielded, is the ‘Debye sphere’ of a plasma.
The number of electrons within the Debye sphere shows how dominant collisions are
within a plasma. The larger the number of electrons within the Debye sphere, the
less importance collisions have within the plasma, and the more importance there

is on collective effects [2].

In many plasmas there are too many particles to model every particle at once.
Instead, some approximation of the motion within the plasma must be made.
There are a variety of different approximations that are used, which are each
valid for specific scenarios. The simplest method to model a plasma is to use
magnetohydrodynamics. In this case either the entire plasma is treated as a single
charged fluid, or each species (e.g. the electrons or the ions) is a separate charged
fluid. These charged fluids are solved alongside Maxwell’s equations to model
the plasma. This is the computationally fastest model, and is used for modelling
magnetic confinement fusion 22|, and in some models of solar plasma [23|, amongst
others. Magnetohydrodynamics gives large scale behaviour of a plasma, but fails to
model important properties within the plasma, such as wave breaking (part of the
plasma travelling faster than another area, and overtaking it) |24} [25], or Landau
damping (the damping of space charge effects as particles travelling at different
speeds to the bulk plasma are accelerated or decelerated to match the bulk flow of

the plasma) [2].

A more accurate, but computationally intensive method to model plasma is to use

kinetic models. There are two choices when developing a kinetic model. If the plasma
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being modelled can be approximated as collisionless, then the Vlasov equation
describes the system [26]. The situations in which collisions need to be considered
within a plasma include establishing thermodynamic equilibrium within a plasma,
or in the collisions required for nuclear fusion [27]. If the plasma needs to include
collisions, then the Fokker-Planck equation is used to describe the motion of the
particles |2} 27]. Both of these methods suffer from being incredibly computationally
intensive, as they require solving a seven-dimensional partial differential equation
(time, three spatial coordinates, and three velocity coordinates). This computational
intensity has restricted solving the Vlasov equation directly to a (141)D (one spatial
dimension and one velocity dimension) problem, and it has only become possible in

the last 20 years to simulate a basic (3+3)D Vlasov model |10, 28].

Rather than solving the full (34+3)D Vlasov equation, another option is to use a
particle-in-cell (PIC) code. These treat the plasma as a collection of particles,
which are updated in six-dimensional position and velocity phase space. It is
too computationally intensive to model the behaviour of every particle within the
plasma. PIC codes solve this issue by grouping large numbers of particles into a
single macroparticle. Macroparticles make these codes computationally feasible, at

the expense of losing information about the fine structure within the plasma.

Whilst PIC codes are predominantly used for modelling plasma, they can also
be used for modelling electrons travelling through a particle accelerator. This is
particularly useful for cases where the non-linear effects, such as space charge, and
complicated magnetic fields within the accelerator need to be modelled |29, 30].
They can also be used in the modelling of a klystron, used to generate high intensity

radio frequency (RF) waves used for accelerating particles |31, |32].
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Make macroparticles from
initial distribution function

J

[Update macroparticle’s

position and velocity

Update the Deposit current onto
electromagnetic fields the grid points

Figure 1.1: The algorithm for a standard particle-in-cell code.

The original algorithm for the PIC code was pioneered by Dawson [33]. A standard
PIC code consists of three parts: update the macroparticle’s positions and velocities,
deposit the current to a discretised grid, and solve Maxwell’s equations on this
discretised grid (figure [I.1)). Modern PIC codes contain extra features, with some
codes being able to work in arbitrary curvilinear coordinates [34], conserve energy
to within machine precision (in certain circumstances) [35], simulate quantum
electrodynamic effects |36, 37|, and model collisions [38, 139, |40]. Despite this, all
PIC codes suffer from the same fundamental issue: there is no information about

the structure within a macroparticle.

1.2 Using moments to improve macroparticles

In most PIC codes, accuracy is improved by increasing the number of macroparticles.
By contrast, this thesis presents a different method, in which a macroparticle
represents the moments of a group of particles [41, 42, 43| 44} |45] (figure |1.2)).
Such a model may be more efficient in cases where a large number of particles can

be accurately modelled by a small number of macroparticles and their moments, and

4
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- |

i X

Figure 1.2: Tracking several individual particles compared to a macroparticle with
moments. The five particles (the black lines) in the left diagram are replaced by a
single macroparticle (the orange line) in the right diagram. By tracking the moments,
quantities such as the difference between the centre of charge of the five particles
and the position of the macroparticle (the first order moment, represented by the
horizontal blue arrows), and the variance in position of the particles (the second

order moment, represented by the green error bars) can be tracked.

the electromagnetic field does not vary much across the extent of the macroparticle.
Additionally, when the dominating interactive force can be calculated from the
Liénard-Wiechert potential, the electromagnetic fields can be calculated directly

from the moments of the macroparticle [46].

There are several existing methods for tracking moments: the code MERLIN
implements a transition matrix approach for particle accelerators [44] and a
continuous model has been developed through a Hamiltonian approach [45]. Moment
tracking can also be done continuously by differentiating the definition of a moment
and using the Vlasov equation [43, 47]. In the literature of plasma physics, the
concept of moment tracking is often used when discussing magnetohydrodynamics
[10, |48] 49]. Moments in the context of magnetohydrodynamics are constructed by
integrating over velocity space only and can be interpreted as physical quantities
such as temperature and pressure, and shall be referred to as plasma moments.

In this work, moments shall be constructed by integrating over both velocity and
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initial distribution function

J

Update macroparticle’s
position, velocity, and moments

[Make macroparticles and take moments]

Update the Use moments to more accurately
electromagnetic fields deposit current onto the grid points

N

Figure 1.3: The algorithm for a particle-in-cell code with moment tracking. The

electromagnetic field solver is the same in both the standard particle-in-cell and

moment tracking models.

position space, giving related, but different quantities. The transport of moments is
used in wider fields where the Liouville equation holds, such as particle nucleation

[50], crystal growth [51], nuclear collisions 52|, and fluid dynamics [53].

To track moments, the PIC algorithm needs to be modified (figure[I.3). At each time
step, as well as updating a macroparticle’s position and velocity, the moments also
need to be updated. This creates additional computational overhead. In a standard
PIC code, the current of a macroparticle is deposited onto grid points by assuming
the macroparticle has a ‘shape function’, which weights how the current is placed
onto the grid points (this is known as the cloud-in-cell method) [54, 55]. By using
moments instead of a shape function, a more accurate current distribution function
within the macroparticle can be found. This in turn feeds into Maxwell’s equations
for updating the electromagnetic fields, which gives a more accurate electromagnetic
field with which to update the macroparticle’s position, velocity, and moments. Thus

by using macroparticles with moment tracking, the accuracy within a PIC code can
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be improved, at the expense of computational overhead.

Number of
Number of
Order of . differential equations
Information known differential equations
moments tracked to solve relative to
to solve
a standard macro-particle

Monopole (zeroth order) ', ut 6 1

Dipole (first order) ah, ut, Ve 12 2

Quadrupole (second order) ah, uk, Ve, vab 33 5.5
Octopole (third order) P TI VR VAL VC 89 14.83
Hexadecapole (fourth order) | o#, u#, Vo, Vab Jabe j abed 215 35.83

Table 1.1: The amount of information in a macroparticle that tracks moments
compared to a standard macroparticle. The increased information results in more
memory usage and a larger number of first order differential equations to solve.
Since there are siz differential equations per time step for a standard macroparticle,

the fourth column is the third column divided by siz.

Tracking more moments is more computationally expensive, as these moments
come with additional computational work (both more differential equations to solve
at each time step and more memory usage per macroparticle). This increased
computational work is balanced by reducing the total number of macroparticles
in the simulation. At the quadrupole (second) order there are 33 equations to
solve at each time step (21 quadrupole moments, 6 dipole (first order) moments,
3 components of velocity and 3 components of position). This increases to 215

equations if the expansion is carried out to the hexadecapole level (fourth order)

(table [1.1).

To perfectly track the moments, an infinite set of moments is required. This is
because, as is shown in this thesis, higher order moments generate lower order
moments. Since it is not possible to track an infinite set of moments, a truncation is

required. There are multiple possibilities for this truncation. One possible method

7
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is to directly track only a certain number of moments, and then approximate the
higher order moments using these lower order moments [43]. Another truncation
is to only consider a finite number of moments, neglecting the contribution from
moments of a higher order than the truncation. This is the truncation used in
this thesis. Care must be taken to ensure the truncation is of as low an order as
possible to minimise computational load, whilst also ensuring that neglecting the
higher order moments does not significantly impact accuracy. This thesis calculates
all moments to quadrupole order, although all results presented can be generalised

to arbitrary order.

1.3 Coordinate transformations of moments

Since the conception of black holes by Schwarzschild [56] as a consequence of
Einstein’s theory of general relativity, there has been a fascination with the concept
of black holes in both modern physics |14, 57| and modern culture [58|. Recently,
there has been a focus on using PIC codes to model the dynamics of plasma around
black holes |34} [59, |60, |61]. Such plasmas may be important in active galactic
nuclei, pulsars and gamma-ray bursts |61, |62, 63]. Reference [14] contains a full
review of these studies. In such systems, there is not a preferred coordinate system
i.e. when modelling a static uncharged black hole, there is a choice to work in
Schwarzschild coordinates, or Kruskal-Szekeres coordinates, amongst others. As
there is a choice, it is useful to be able to transform between different coordinate
systems, especially where the time and space coordinates are mixed together
(such as the coordinate transformation between Kruskal-Szekeres and Schwarzschild
coordinates, shown in figure . Coordinate transformations that mix space and
time coordinates also appear in particle accelerators. When simulating the motion
of a linearly accelerating bunch in a particle accelerator, the transformation into the
instantaneous rest frame of an accelerating bunch mixes space and time coordinates

(figure [1.4b]), so the spacetime coordinate transformations presented in this work

8
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are necessary.

.+ Event horizon

.
/.’ r = constant
*
.
*
*
.
.
*
*
.
.O

o t = constant

Q T = constant

R

(a) A spacetime diagram in Kruskal-
Szekeres coordinates of a particle trav-
elling at a constant r in Schwarzschild
coordinates (the orange hyperbola). The
diagonal blue lines are time slicings in
Schwarzschild coordinates (constant t),
and the horizontal purple lines are time
slicings in Kruskal-Szekeres coordinates
(constant T').  The dashed black line

represents the event horizon.

Light cone

/ 7 = constant

(b) A spacetime diagram in the lab frame

t = constant

T = constant

R

of an accelerating bunch showing parti-
cles that are accelerating according to a
lab observer (the orange hyperbola). The
diagonal blue lines are time slicings in
the instantaneous rest frame coordinates
(constant t), and the horizontal purple
lines are time slicings in the lab frame
(constant T'). The dashed yellow line

represents the light cone.

Figure 1.4: Spacetime diagrams showing the difference in time slicing between
Kruskal-Szekeres and Schwarzschild coordinates, and between the lab frame and
instantaneous rest frames of an accelerating bunch. The moments in a given
coordinate system have no components in the direction of the time slicing in that

coordinate system.

The moments of a macroparticle depend on the choice of time slicing (figure .
This time slicing is a foliation given by spatial hypersurfaces of constant coordinate
time. In all coordinate systems considered in this thesis, the global coordinate time
will be used as the time slicing. In general, different coordinate systems will give
different time slicings. This means when transforming between coordinate systems

that mix temporal and spatial coordinates, for example, transforming between
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_-t = constant

_____________________ t = constant

Figure 1.5: An example of two different time slicings. When taking moments, the
time slicing is the hypersurface the moments are integrated over. By using a different
time slicing (e.g. either the horizontal dashed purple lines t or the curved dashed
blue lines t), the distance between the centre of the macroparticle (the orange arrow)
and the nearby particles the macroparticle is representing (the green contours) is

different, so different moments will be found.

Schwarzschild and Kruskal-Szekeres coordinates, the time slicing will change (figure
1.4al). Additionally, it will be shown in chapter [4] that this time slicing is required

to allow alternative representations of moments to be defined uniquely.

There are several choices for the time slicing. One time slicing may be the global
Killing timelike vector in relativistic scenarios, the lab time in non-relativistic
models, or the parameter of the beamline in a particle accelerator. Another possible
time slicing is the backward light cone of an observer, which is the frame used
when making astrophysical observations. A choice of time slicing commonly used
in modelling plasma around black holes is found in the fiducial observer (FIDO)
scheme, where the time slicing is given relative to local moving observers |64, 65].
A fourth possible time slicing is to take all the vectors orthogonal to the velocity of
the world line. By using geodesics to propagate the vectors to the world line, they

can be used for the Dixon representation of a multipole [66]. The proper time of the

10



1.4. Finding the charge and current distribution from a set of moments

initial centre of charge of a bunch cannot be used as a time slicing, as this is not an

inertial frame [67].

One of the key results of this thesis is the formula for the coordinate transformation
of moments between coordinate systems that mix space and time coordinates. The
standard integral representation of moments cannot transform moments between
coordinate systems where the time slicing changes. Simply transforming the
moments into the new coordinate system does not take into account the change
in time slicing. In principle, if one were to use the standard representation of
moments, an ‘effective’ coordinate transformation could be performed. This is the
process of reconstructing the distribution function from the moments, transforming
the distribution function into the new coordinate system and retaking the moments
in the new coordinate system. This requires a model function, which is a function
that is used as a basis for reconstructing the distribution function. This process is

outlined in chapter [6]

In order to find the coordinate transformations that change the time slicing, a
different representation of moments must be used, in terms of Schwartz distributions
[68 69]. In this representation of moments, the moments are transformed into the
new coordinate system, then projected onto the new time slicing to find the full

coordinate transformation.

1.4 Finding the charge and current distribution

from a set of moments

Tracking the moments is only one step of the particle-in-cell algorithm. As shown
in figure the next step is to use the moments to find the current of each
macroparticle. In a standard PIC code, macroparticles are represented with a ‘shape

function’, which does not change over time [54, 55]. By using the moments, the

11
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distribution function of particles within a macroparticle can be approximated. This
creates a more accurate current distribution within a macroparticle. Additionally
by tracking the moments, this current distribution can change over time, in contrast

to the shape function approach, where the current distribution is constant.

In general, even with an infinite set of moments, it is not possible to exactly
reconstruct the original distribution used to create these moments |70]. This inability
to exactly reconstruct a distribution from a set of moments is known as the moment
problem. The most general of these problems assumes the original distribution
function is integrable from —oo to oo, and is known as the Hamburger problem
[70]. In the case that the distribution function is compact, i.e. the bounds of
integration are finite, then given an infinite set of moments, the function can be

exactly reconstructed |71].

Given only a finite set of moments, it is not possible to exactly reconstruct the
distribution used to generate the moments. Instead, some approximation to the
original distribution function must be made. There are several existing approaches
to approximating the reconstruction of a function given a set of moments. One
method is to reconstruct the distribution by approximating the initial distribution
as a set of splines, and give this set of splines the same moments as the initial
distribution |72, 73]. Another approach models the distribution function as a series
of orthogonal polynomials, which can in turn be related to the moments |74} 75|.
Machine learning has also been applied to this problem, using the moments of a
bunch to reconstruct the phase space distribution within a particle accelerator |76,

7.

The reconstruction of moments has a vast field of applications, including particle
crystallisation and nucleation [50, 72, 73|, 2D image reconstruction [78, 79|,

biophysics |80} 81|, aerosols [82], the analysis of phonons [83,|84], and in the study
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1.5. Thesis structure, conventions, and notation

of ferrofluids [85].

Most studies for reconstructing model functions have been limited to either one or
two dimensions. As far as the author is aware, there is little literature on how to
reconstruct a function in an arbitrary number of dimensions using analytic methods.
This thesis presents a method in which the original distribution function in an
arbitrary number of dimensions can be reconstructed by creating a new function
with the same moments as the original function. An alternative way of finding
the 4-current from a given distributional 7-current is presented. This is done by
integrating over the velocity space and using this reduced 7-current (a distributional

4-current) to reconstruct the source 4-current directly.

1.5 Thesis structure, conventions, and notation

This thesis is structured as follows: Chapter [2 introduces the seven-dimensional
time-phase space, and the Vlasov equation, which describes the dynamics of
collisionless charged particles. Chapter |3 introduces moments, and the existing
methods for modelling them. Chapter [4]introduces a distributional representation of
moments in terms of derivatives of Dirac delta functions and uses this representation
to show the time evolution of moments. Several tests are done analytically, showing
that the moment tracking equations agree with the transition matrix approach
for modelling a quadrupole magnet; that moment tracking conserves phase space
volume; and a limitation of the moment tracking model due to the truncation.
The coordinate transformations for the moments are also found in this chapter.
Chapter 5| numerically validates the moment tracking and coordinate transformation
equations, through a computational model of uncharged particles circling a black
hole. Chapter [6] shows how the moments can be used to find the charge and a
current of a macroparticle, and numerically tests two different methods for finding

this current. Chapter [7]discusses what further work needs to be taken to create a full
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Chapter 1. Introduction

PIC code, and considers the specific application of the moment tracking model for
simulating a klystron. Lastly, chapter [§| uses the language of differential geometry
and de Rham currents to present the Vlasov equation, the transport equations,
coordinate transformations, and current and charge reconstruction in this language.
Whilst this approach gives a more geometric approach to deriving these equations,
which may be considered philosophically nicer, there are no new results in this
chapter, and as such this chapter can be skipped by a reader not familiar with the
language of differential geometry. Alternatively, a reader familiar with the language
of differential geometry may prefer to read chapter [§ first, to gain a more geometric

interpretation of the mathematical results presented in this thesis.

Throughout the thesis, several complex proofs will be shown. These begin with

Proof. and end with the [J symbol. These proofs may be skipped at first reading.

The calculations necessary to study plasma are performed in seven-dimensional time-
phase space. Therefore, different summation conventions for indices are needed:
summations over time, space, and velocity; time and space but not velocity; space
and velocity but not time; just space, and just velocity. Because of this, the following

summation conventions will be used:

e Latin indices a, b, ¢ represent summations over 0, ..., 6.
e Greek indices p, v, p represent summations over 0, ..., 3.

e An underlined index means there is no summation over the 0 index, i.e. a =

L,...,6and p=1,2,3.

e Bold capital Latin indices I, K and Greek indices 3, A represent multi-
index lists, with capital Latin letters representing lists including spatial and
velocity coordinates and capital Greek letters representing lists over just spatial

coordinates. These lists are defined in section [6.2]

Additionally the following conventions and notations will be used:

14



1.5. Thesis structure, conventions, and notation

Dimensions are used such that ¢ = G = 1.
The metric signature of spacetime is (—, +, +, +).

The notation f|, represents the evaluation of a function at a point, i.e. f|, is

f evaluated at p.

After their introduction, the arguments of a function will not be written, unless

needed for emphasis.

An underlined variable represents a set of three components e.g. z represents

the set of a!, 2, 3.

A doubly underlined variable represents a set of six components e.g. &

represents the set of &4, £2, €3, ¢4, €3 ¢6.
A column vector will be denoted in bold font (e.g. a, E).
A tilde underneath a variable (e.g. w) represents a vector at a point.

A tensor density of weight one will be denoted in Fraktur (e.g. f,J) or
calligraphic (e.g. Z,J) font.

In chapter [, the evaluation of a vector field on a scalar field shall be denoted
using angled brackets, e.g. if W = W?0,, then W {f) = W®0, f represents the
vector field W acting on the scalar field f.
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Chapter 2

The Vlasov equation and the

transport equations

2.1 Seven-dimensional time-phase space

To model the complex dynamics of plasmas, it is necessary to work on a 7
dimensional time-phase space. These dimensions are time, three spatial dimensions
and three proper velocity (4-velocity) dimensions. The time-phase space will be
denoted by £. It is often necessary to integrate over a specific time slice of £. An
integral over a specific time slice will be denoted X for an arbitrary time ¢ or ¥, for
the evaluation at a specific time ¢y. The coordinates of this dimension are (¢, z%, ut)
where t is the global time, z£ is a space coordinate, and u% is a spatial coordinate

of 4-velocity, defined such that

ut = ulv*, (2.1.1)

where v# is the 3-velocity, and 1 is the positive solution to the quadratic equation

Juutu” = —1 (2.1.2)
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2.1. Seven-dimensional time-phase space

where g is the metric. In the specific example of Minkowski spacetime with Cartesian

coordinates, u° is the Lorentz factor in special relativity, given by

3 1
u’ = (1 + Zu&#) g (2.1.3)
E:l

The notation (£2) will be used to represent a general coordinate, such that
€=t =gt =yt (2.1.4)

ie. & =l ete.

This thesis exclusively works in frames where t is a global time coordinate. As
previously stated in the introduction, these frames are required to allow the moments
to be defined (figure . It is assumed a global time coordinate always exists, at
least near the world line. It will be shown in section B.2] that the natural induced
coordinates on £ when using a global time coordinate are actually the Newtonian
velocities v£, rather than the spatial component u£ of 4-velocity. For computational
purposes it is more convenient to work with 4-velocity as this moves the singularity
from ¢ = 1 to infinity, removing the numerical floating point rounding error from
particles travelling very close to the speed of light. The removal of this singularity is
particularly useful for modelling particle accelerators, where speeds are often close
to the speed of light. Using the 4-velocity does not affect any of the analytic results

in this thesis.

Any integral of a scalar field must contain a measure €2. The inclusion of the measure

ensures that the evaluation of an integral is coordinate independent. This measure

is given by
Q= Qo dt dx d*u. (2.1.5)
On &, () is given by
det(g)
Qg = 2.1.



Chapter 2. The Vlasov equation and the transport equations

where the lack of square root in the determinant is because the integrals are over
both position and velocity space, and the 1/(u°)%ug term comes from using 4-velocity
as the velocity coordinates instead of Newtonian velocity. When integrating over a

specific time slice, the measure becomes

det(g)

(u®)*uo |, .

Qo = Qs = (2.1.7)

This evaluation at specific time ¢ will be implicit, and will not be stated in the
integrals to enhance readability, as it does not affect any results in the thesis. In

the specific case of special relativity, the measure can be written as

~ —det(g)
Qp = —5 (2.1.8)

where ~ is the Lorentz factor. These measures are derived in section [8.2] by pulling

back the natural measure on the tangent bundle.

2.2 The Vlasov equation

As discussed in the introduction, one method to model the complicated dynamics of
plasmas is to treat the plasma as collisionless. This method was first pioneered by
Vlasov in 1938 to model the dispersion of waves in electron gases [86] (This paper

is translated in ref. [26]).

To formulate a fully relativistic Vlasov equation, consider a group of charged
particles, each with charge ¢ and mass m. The distribution function of this group
of particles is denoted f(t,z,u). Note that since f represents a group of particles,
the support of f is closed. Consider an arbitrary spacetime with metric g,, (¢, z),
Christoffel symbols I'} (¢,2) and electromagnetic 2-form F),,(t,z). Let C(t) be a
world line parameterised by ¢, the same parameter as the global time £°. Let 1 be
the prolongation of C| that is a curve on &£ such that

dC(t)
it

n'(t) = CO(t) =, ni(t) = Ch(t), () = (2.2.1)
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2.2. The Viasov equation

For a given value of ¢, n(t) is a point in seven-dimensional time-phase space. In

terms of coordinate functions (¢, z2, u), this can be represented as

dCh(t ukt
710 =0 =t 720 = O =y, 1= TEE =T (220
n

In general, n(t) is a curve in time-phase space. In this thesis 7(¢) will be the curve
moments are taken around. In particle accelerators, the ideal orbit is a natural
choice for n(t). This choice does not exist in plasmas; in these cases choices for 7(t)
could be the position of the macroparticle, or a trajectory based on the initial centre

of charge of the macroparticle.

The Vlasov vector field, W = W49, where 0, = 9/9£%, is defined such that 7 is an

integral curve of W,

a d a
Wy = 20" (t). (2.2.3)

Finding the derivatives of n gives 7 ordinary differential equations (ODEs),

dCO(t) dCh(t)  ut d?*CE(t)
WP = =1, Wi = = — , WPy =—F"
(2.2.4)

To find the acceleration, note that the parameterisation of 7(t), the global time
coordinate ¢, is not affine. This means this acceleration is calculated using the

pregeodesic equation combined with the (pre-)Lorentz force,

_ (/@ dCC;(t))

where both the first term on the right hand side, and the 1/u® term in the Lorentz

(2.2.5)

m ud vpd™ dt

+ (gi F Wde(t))

force arise from using coordinate time as the parameterisation, rather than proper

time. To find x(t), note C° = ¢, hence d>C°/dt* = 0, solving this gives

o MO ) g 1, ,dC()

v gt dt muw Y T

(2.2.6)
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Chapter 2. The Vlasov equation and the transport equations

From this, solving equation (2.2.4)) for all n gives

ut
W0:1,W&:_07
u (2.2.7)
Vo P P Vo P ot P gt e
s — _pewu” g L, ut o wuPul g 1 g uf et
- VP 010 4,0 olved= 5 T Lo 57070 otved 00
u-u mu u u-u” U mu u-u

Combining these terms together and acting on the particle distribution function f

gives the Vlasov equation,

We.f =0 (2.2.8)

where 0, = 0/0¢*. Rearranging this gives an important formulation of the Vlasov
equation for calculating the dynamics of moments in the integral representation of

moments in section [3.2]

ot~ g

OF _ _yyedf (2.2.9)

Since WH|, ;) and Wﬁ+3]n(t) correspond to the velocity and acceleration of a particle
with the world line C, rewriting the Vlasov equation defined through a prolongation
allows it to be compared to the more common formulation of the Vlasov equation

(e.g. the Vlasov equation presented in refs. |10} 87]),

8_f uﬁ u+38_f —
ot + Wﬁaxﬁ + WE E 0. (2.2.10)

In general, the Vlasov field is parameterisation dependent. This thesis will
work exclusively in the coordinate time frames. These are frames where the
parameterisation ¢ of 7n(t) is the same as the time coordinate. This is true for
the lab time in non-relativistic models, the Killing time in relativistic models, and
the parameterisation of the beamline in a model of a particle accelerator. In any
coordinate time frame, the Vlasov vector field will take the form of equation ([2.2.7]).
If proper time is used as the parameterisation, then a different Vlasov vector field
will be found [88, 89]. This formulation of the Vlasov vector field is also distinct
from the 3 + 1 formalism used in the fiducial observer (FIDO) scheme used when
modelling plasma around strongly gravitating objects |64} 65]. The moment tracking

and coordinate transformations found in this thesis will work in the FIDO scheme,
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2.8. The transport equations

but will not work in the proper time parameterisation.

The Vlasov equation does not model a full PIC code on its own, and needs to be
‘coupled’ together with other equations to get a complete system. One choice is to
couple the Vlasov equation to Maxwell’s equations. By coupling to the dynamical
Maxwell’s equations (both Faraday’s law and Ampére’s law) a full electrodynamic
PIC code can be developed. This will be the coupling for the full PIC code presented
in chapter 7] and is the coupling in most PIC codes [36, [37]. Alternatively in
cases where the magnetic force between particles is small compared to the external
forces, only Gauss’s law or Ampeére’s law is needed for the coupling, to allow an
electrostatic PIC code to be developed [87, 90]. Another option is to integrate the
Vlasov equation over velocity space to get equations for the plasma moments |35,
91]. This couples the Vlasov equation to the plasma moments, although it is stressed
that these moments are only integrated over velocity space, so are distinct from the

moments discussed in the rest of this thesis.

2.3 The transport equations

Rather than modelling the distribution function f, the 7-current J* can be studied.

This 7-current is related to the distribution function as
I = fQW* = W, (2.3.1)
where
f= 78 (2.3.2)

is the distribution function density. Whilst f can be used in the integral represen-
tation of moments in chapter [3} to use the Ellis and geometric representations of
moments in chapters [4] and [§ the distribution of particles needs to be represented

as the 7-current.
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Chapter 2. The Vlasov equation and the transport equations

To find the dynamics of the 7-current, there are two equations. Firstly, the
conservation of charge,

83" = 0. (2.3.3)

Secondly, the Vlasov equation,
JW - 3w =o. (2.3.4)

These two equations will be referred to as the transport equations, since they define
the transport of the 7-current over time. These equations follow from the Vlasov

equation and the condition

0. (W) = 0. (2.3.5)

Equation (2.3.5) will not be shown directly. In section it is shown that this
equation ([2.3.5)) corresponds to the conservation of charge. Equation ({2.3.5)) will
also be shown in chapter (8| This is done by showing the equivalent equation on the

tangent bundle is true, and pulling back this equation back onto £.

To show the conservation of charge from the 7-current (equation (2.3.3)), insert

equation ([2.3.1)) into equation (2.3.3)),
03" = O (FQW™) = QIVD,(f) + 8 (W) = 0 (2.3.6)

where the Vlasov equation is used on the first term of the final step. To show the

Vlasov equation for the 7-current (equation ([2.3.4])), insert equation ({2.3.1) into
equation ([2.3.4]),

JW — FPWe = FQWWE — QW Ve = 0. (2.3.7)

These transport equations will be used in chapter [] to give the dynamics for the

moments in a distributional representation.
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Chapter 3

The integral representation of

moments

3.1 Moments

One way of representing the bulk properties of a collection of particles are with their

moments. The zeroth order moment, called the monopole, is given by

= T, U 3[L‘ 3u .
q—/zf(t,,)d d (3.1.1)

and represents the total number of particles described by f. Note that, since charge
is conserved, whilst the monopole is integrated at a specific moment in time, it is

actually a constant, this will be proven when finding the dynamics of the moments

in section [3.2] and equivalently shown in sections [4.3] and [8.3.2]

The first order moment, called the dipole, is given by
VE(t) = / (xﬁ - nﬁ(t))f(t, r,u) dx du,
b

VETS () = /z (uﬁ - @(t))f(t, r,u) dx du.

These can be combined into a single equation,

(3.1.2)

Ve = [ (&= @)t o) (313)
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Chapter 3. The integral representation of moments

where €2 and n? are defined by (2.1.4) and (2.2.2) respectively, d%¢ = d®z d3u,

and recall that an underlined latin index represents a summation over 1...6. The
dipole moment corresponds to the deviation of the centre of charge from the centre
of the macroparticle. If the initial centre of the macroparticle is chosen such that
the dipole moments are initially zero, then whilst the centre of the macroparticle
will obey the Lorentz force equation, the centre of charge will not [67]. Hence, the
two paths will diverge. The dipole moment represents the difference between these.

The exact centre of charge, £, is given by
a 1 a a
§Coc = 5V* + (3.1.4)
The second order moment, called the quadrupole, is given by

v = [ (6= o) (€ = o) e, e (315)

The quadrupole moments are related to the variance of the macroparticle. The

covariance matrix of the macroparticle is given by
(Covariance)® = (V2 — yayh), (3.1.6)

Note in the case the dipole is negligible compared to the quadrupole, then the

quadrupole moments approximately represent the covariance of the macroparticle.

This formalism for the moments can be generalised to the nth order moment,

veren = [ (e =)o (& ) Jinenes e

where V' is totally symmetric. Moments represented in this way will be called the
integral representation of moments. Note the sums are only over space and velocity
coordinates, and there are no corresponding ‘time’ moments. The naming convention
for multipoles scales as 2¥, so the zeroth order moment is the monopole, then the
dipole, quadrupole, octopole etc. (table . The octopole moment corresponds

to the skew of the macroparticle, and the hexadecapole moment corresponds to
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3.2. Dynamics of moments

the kurtosis of the macroparticle. In contrast to this naming convention, moments
in the context of magnetic multipoles scales as 2k (dipole, quadrupole, sextupole,
octopole etc.). To avoid ambiguity, magnetic multipoles will always be explicitly
named as such e.g. a quadrupole magnet refers to a quadrupole magnetic field,

whilst a quadrupole refers to quadrupole moments.

As previously stated, the moments in this work are integrated over both position and
momentum space, in contrast to the conventional moment equations for plasmas,
which are just integrated over velocity space [10]. This definition of moments is
often used to give physical properties of the plasma, like the current, temperature
and pressure. It is possible to find the moments used in this work by integrating these
quantities over position space. To go from the integral representation of moments
back to the conventional moment equations for plasmas, you must reconstruct the
original distribution function, and then integrate this over velocity space. This is

done to find the current for solving Maxwell’s equations in chapter [6]

3.2 Dynamics of moments

Using the Vlasov equation, it is possible to calculate the dynamics of moments using
the integral representation. This was first done by Dymnikov and Perelshtein in 1978
[41]. It was also done through an equivalent but distinct method by Channell in
1983 [42], which was then implemented by Channell into the moment tracking code
BEDLAM [43].

Both of these methods give the differential equations for the moments as an infinite
series. As using an infinite series of moments is not practical, a truncation is required.
This truncation is the highest order of moments considered, where moments beyond
the truncation order are assumed to be zero. The choice of this truncation is one

the largest sources of error in a moment tracking code, as will be shown in chapter
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Chapter 3. The integral representation of moments

Bl In practical codes, the simplest choice is to perform the truncation and neglect
the higher order moments, however in certain moment tracking codes, for example
in BEDLAM |[43|, higher order moments are approximated using the lower order
moments, such as

1
Vabe ~ 5 (ngﬂ + Vhyee 4 VQVM) (3.2.1)

where V¢ is the octopole moment. This thesis will not take this approach, instead
performing the truncation and neglecting the higher moments. This is because
the focus of the computational results will be on how the truncation affects the

convergence of the moment tracking model.

As a starting example to demonstrate Dymnikov and Perelshtein’s method, the
constancy of the monopole will be shown. Begin by differentiating equation (3.1.1)

with respect to time

dt /f (t, 2, u) Qo d°¢ (3.2.2)

where the scalar distribution is used rather than the density distribution. Since the
domain of the integral is a time slice of the time-phase space £, the derivative with

respect to time can be passed inside the integral,

dgq df 6
B 0 2.
P | G (3.2.3)
Next, using equation (2 ,
well o @ 3.2.4
- [ Wt e (324)
Integrating by parts gives
W~ | o wen) e (3.2.5)
b

where the evaluation of f on the boundaries of ¥ vanishes since the support of f
is closed. This vanishes if and only if 9,(W%2) = 0. The rate of change of the
monopole must be zero as this corresponds to the conservation of charge. Thus,

as previously stated, the condition 0,(W%2) = 0 must be true for charge to be
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3.2. Dynamics of moments

conserved. A more formal proof that this term vanishes will be done in chapter

through pulling back the measure on the tangent bundle.

To replicate Dymnikov and Perelshtein’s result for the rate of change of the dipole,
begin by differentiating equation (3.1.3) with respect to time and use equation

2-2.9),

ave d
el (5 —n%) f Qo d’¢ (3.2.6)
/77 [ d65+/(5 - )ZJ; Qo d%¢ (3.2.7)
= —i* /fQod6£ / 4 WeO, f Qo d*¢ (3.2.8)

where 1%(t) are functions of ¢ only, so they can be pulled out the integral. Next,
integrate the last term by parts, using 0.(W<Qy) = 0, 0,£* = ¢y, and J.n* = 0 (since
n(t) is a function of time only), giving

ave
dt

= —ij%q + /2 De(EHWES Qo d°¢ (3.2.9)

— —ﬁ“q—i—/W“f Qo d%¢. (3.2.10)
b

Next, Taylor expand W about 7,

[e.9]

1
We=2 (€ =) (€ = 0")Dh, Oy, W (3.2.11)

m=0

Insert this expansion into dV%/dt,

dva - a = 1 a C C C C
=it Z—‘B%acl . ..acmwyn/z(gl )L (g8 — ) £ Qp dOE
(3.2.12)
- a . 1 Cq...C a
= —i%q+ ) Va0, W, (3.2.13)
m=0

The first term in the expansion contains no derivatives, and the moment correspond-

ing to m = 0 is the monopole ¢q. This means the first term in the expansion is n%¢q
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Chapter 3. The integral representation of moments

(since W¢|, = %), cancelling the first term on the right hand side. This gives the

differential equation for the dipole moment as

dva - C C a
) :Z Glnd, ... 0, WY, (3.2.14)

This has an important property: higher order moments generate lower order

moments.

Before showing the differential equations for a general moment, it is worth showing
the equation for the quadrupole first, to show how the process changes for higher

order moments. Begin by differentiating equation (3.1.5)),

ab
d‘(;t _ _Lﬁa (€2 — ) £ dO¢ — / @) f Qo d°¢ (3.2.15)
a Q_ df
+/2<5 —1) (€ )dt9d65
= v v = [ (e ) (€ ) W0 e (3:216)

eyt pye g / (€ — ) W p Qp do + / (62— o) Why Qy d°
> >
(3.2.17)

where equation ([2.2.9) is used, followed by integration by parts. Expanding W%

around 7,

aver
dt

_ﬁgvb_ﬁbvg

+/ii8 Oe, Wy (€ = nf1) . (€5 =) (€ = ) f Qo d
zmom! e, -+ O, n n=)... n n 0

/Z 0, W (€5 =) (€5 — ) (€% — ) f Qod®¢. (3.2.18)

The m = 0 terms of these sums cancel the first two terms of the right hand side,
and simplifying the remaining terms gives

= Z % (8§1 e 8ng2’nV@1...gm + 891 o angQ\nV@T”Qm) ‘ (3‘2‘19)

m=1

Ve
dt
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3.2. Dynamics of moments

To generalise this to the arbitrary order moment, begin by differentiating equation

(3.1.7) with respect to time,

wn Z / (0 ). (o — )

X (§oet — ) (g8 — ) fd¢
d
+ /2 (1 —n")... (&% —n*) d—J; 0o d¢. (3.2.20)

Using equation ,
dV“l fin _ _Znakval OOy,
_/E@al ) (€ — ) W, Qo . (3.2.21)
Integrating by parts,
dV“l G _ _Znakval U G0,

+ (€8 — ). (§%r — )
>

X (g — ) (g% — ) Wk f Qo d%€. (3.2.22)

Inserting the Taylor expansion for W, introducing the substitution (%(t) = £ —n%(t)
for brevity,

AV a1ty »
- = — Z 7'7% Véi@r—1%41--0n
dt —
n o 1
+ %/ fo L (e (e (O CQM(?QI .. 8§mW9k|n Qp d6§.
k=1m=0 /2

(3.2.23)

Separating out the m = 0 term, and pulling the differentials of W% outside the
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Chapter 3. The integral representation of moments

integral (since they are evaluated at 7, so are functions of time only),

_dv:;...an = =) Vet N7 / Co LB B (% Oy dOE
¢ k=1 k=1 z
n o 1
+ —‘851 .. .6CmW“k|n/ (9 (W1 (G (G f Q dBE.
m! = < 5
k=1 m=1

(3.2.24)

The remaining integrals are simply moments, so first and second sums cancel, giving
the remaining terms as

dVian 1

W Sy Lvessnng, g W, (3225)

m
k=1 m=1

This is the general equation of motion for an arbitrary order moment.

As stated before, it is not possible to track an infinite set of moments. As such, a
truncation is introduced, choosing the highest set of moments that will be considered.
In this thesis, this truncation will be at the quadrupole level. After the truncation

at the quadrupole level, the differential equations for the dipole and the quadrupole

become
dve 1
= VEO,We + EV@a@W@ (3.2.26)
dvab
= VLYW 4+ VL) W (3.2.27)

In these equations, the dipole generated by the quadrupole can clearly be seen. As
previously stated, the moments of order octopole and higher have been assumed to

be negligible as part of the truncation. The accuracy of this assumption is discussed

in chapter 5]

Dymnikov and Perelshtein’s method is not the only way to derive the differential
equations for the moments through the integral representation. Channell’s method

[42] uses a similar approach, but begins by multiplying the Vlasov equation by some
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3.8.  Coordinate transformations of moments where the time slicing is preserved

set of points (€2 — n2),

((e-mm0) . () )5 = (e -0 oo (62 -0)) ) w0
(3.2.28)

Multiplying by the measure and integrating across a time slice of time-phase space,
of

/zcal o Q% = — / ¢ W00, f) d (3.2.29)

where the substitution (%(t) = £%— n%(¢) is used for brevity. Next, pulling the 0/0t
out of the integral on the left hand side, noting that d¢%/dt = 7%, and integrating
by parts on the right hand side,

d n
= Qo de O Ch (1B (O f O S
Ty Cfod£+k§_1:/2n€“ Goumagmn G f Qo d'

:Z/EC“I---C“k—l...C“kﬂcanw%ffzo d°¢. (3.2.30)
k=1

The term on the left hand side and the first term on the right hand side are moments,

AV @r-a,

— 7‘721@ Véi@r—1%41-0n
m )

k=1

+Z/2Ca1~-éak1...Cak+1C“nWakaOd6§. (3.2.31)
k=1

At this point this is equivalent to equation (3.2.22) from the Dymnikov and
Perelshtein approach, and by Taylor expanding W%, equation (|3.2.25)) can be found.

3.3 Coordinate transformations of moments where
the time slicing is preserved

In general, the coordinate transformations for moments are complex [66, |68, 69].
As the integral representation of moments relies on integrals to define the moments,
they are highly coordinate dependent objects. For the specific case of coordinate

transformations where the time coordinate is unchanged, the integral representation
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Chapter 3. The integral representation of moments

of the moments can be used to find the coordinate transformation. In coordinate
transformations where the time and spatial coordinates are mixed together, then the
integral representation of moments cannot be used, and an alternative representation

of moments presented in chapter 4] must be used.

Consider two coordinate systems £* and f“. If a coordinate transformation does not
change the time slicing i.e. ¢ = ¢, it is possible to calculate the transformation of
moments through the integral representation of moments. Since there is no change
in time coordinate, the manifold ¥ being integrated over is the same, 3 = X. This

means that the bounds of integration are the same.

As previously stated, f transforms as a density, so

L d'¢ dS¢ dt d®¢
dr¢ o dbgdt  do¢
since t = t. From this, it is trivial to see that the monopole is invariant under a

coordinate transformation, since

g= | fdf¢= [ jd°c. (3.3.2)
Liee=

To find the coordinate transformation of the dipole and quadrupole, observe that
fg(fﬂ) gives £% as a function in the new coordinate system. Consider the expansion

of £2 in €2 about ne(t),

£ — i E (éél . ﬁél) . (één . ﬁ9n> 9 0 (3.3.3)

n!

n=0 aébl agbn

Inserting these expansions into the expression for the dipole,

ve— [ e ae (33.4)
b
= /E% (;% (ébl = nb> (5% - nb> a?bl ...%nga{n - nﬂ) d%. (3.3.5)
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3.8.  Coordinate transformations of moments where the time slicing is preserved

Pulling the derivatives of £ out of the integral give an expansion in terms of an

infinite series of moments,

ve- [ (fj% (e —it) . (& - ﬁbn)> dﬁé% . %5%
+/Z(ga|,7—na) d°¢. (3.3.6)

Evaluating this integral as the moments of ]E,

a _ - 1 7by...b, 9 0 a
1% _;n!v o '”ag@ng - (3.3.7)

As with the differential equations for the moments, the coordinate transformation
is also an infinite series of moments in the original coordinate system. This means
again a truncation must be performed. Performing the truncation at the quadrupole

level,
a R 2¢a
v&:vé%; Lrne aAgA
ogL . 2 ogeoct .

The coordinate transformation of the quadrupole is found through a similar

(3.3.8)

procedure,

= /z (59 N Tﬂ) <§Q N "%fdﬁf (3.3.9)
= /E (Z% (égl — ﬁ91> <é§n — ﬁ£n> 8?(21 N _%gah _ na)

n=0
=1 4. . 5 0 o
x (;O% (68 —q%) .. (& — i) s 85—%5%7 - nb> 3
(3.3.10)

Noting that the n = 0 and m = 0 terms of the sums cancel with the 7 and n® terms,

and pulling out the derivatives,

AR e [CROMCES
x (€=t ) (g i)

d
0 0 .. 0 0
X <8gcl . %f|n> (aAdl {9g—dm£b’n) . (3.3.11)




Chapter 3. The integral representation of moments

+%4< »

(a) The original coordinate system. (b) The transformed coordinate system.

Figure 3.1: An example of a coordinate transformation where the dipole moment
(the blue horizontal arrows) is zero in the original coordinate system, and non-zero
in the transformed coordinate system. This dipole is generated by the quadrupole

(the green error bars) when transforming coordinates.

Evaluating these integrals,

V(Lb - __V£1--~§n£ll~--dm < — ... < < ) (T e T b ) .
;mzl n!'m! dée 85%6 [y ¢ 85%5 Iy

(3.3.12)
This is the infinite sum of the coordinate transformation. Truncating this at the

quadrupole level gives only the n = 1,m = 1 term of the summation,

R a b
Ve = a§ 8—5; (3.3.13)
ogel, 01,

It is worth stressing that whilst the quadrupole appears to be tensorial, it is only
tensorial because of the truncation. If the truncation was at a higher order, the

transformation for the quadrupole would depend on the higher order moments.

Since the coordinate transformation of moments depends on higher order moments,

if a dipole moment is zero in one coordinate system it is not zero in all coordinate

systems (figure [3.1).

In the case where the time coordinate changes, ) =# 3. Because of this, it is no longer
possible to to relate the two manifolds together (figure [1.5)). This means it is not
possible to calculate the coordinate transformation where the time slicing changes

using the integral representation of moments. In chapter [ we will show a method
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3.8.  Coordinate transformations of moments where the time slicing is preserved

of calculating the coordinate transformation when the time slicing changes, by

introducing a projection to transfer the moments from one time slicing to another.
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Chapter 4

The Ellis representation of moments

4.1 Defining Ellis multipoles

Rather than defining moments explicitly through spatial integrals (equation (3.1.7)),
an alternative representation of moments is through derivatives of Dirac delta
functions. This means that rather than modelling a macroparticle as just a Dirac
delta function and using a shape function to deposit charge (the cloud-in-cell
approach), the macroparticle is represented as a set of derivatives of Dirac delta

functions.

By using the language of the Schwartz distributions presented in this section, any
coordinate transformation of the moments can be calculated, including those mixing
space and time coordinates, which, as previously stated in section [3.3] cannot be
done through equation . This coordinate transformation is done by projecting

the moments from the original time slicing to the new time slicing.

Representing a multipole expansion using derivatives of a Dirac delta function is
known as the FEllis representation of a multipole [46, 69, 92|. This thesis uses a
specific adapted Ellis representation where there is a foliation given by the global

time coordinate. In terms of Dirac delta functions the expansion to the second order
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4.1. Defining Ellis multipoles

(the quadrupole), J9, is

1

7o =5 [V @059 - w)dt — [ 6% (2.5 ~ ) a
R R

- / 0" VE (3,6 (€ — 1)) dt + / 0 X80 (¢ —m)dt + / 0" q8® (& —m)dt (4.1.1)
R R R

where we recall that 7 is a fixed curve along £ and that the differentiation is with

respect to € i.e. 9, = 0/, and
0O —n) =05 —n")...6¢" =n°) (4.1.2)
and
V() = b by (ge — e £ Voe(t) = b _ by g6 _ d°
0= [@-me-mice Vo= [@-mice a= [ s

X%(t) = Veg e, X4t) = Veo,We + %vbcabacwa.
(4.1.3)
Note g has no dependence on time due to the conservation of charge. In contrast
with the quadrupoles presented in [69], the coordinate system is not chosen such that
7 is always along the origin. This means that equation (4.1.1)) cannot be simplified

to remove the integrals.

The terms q, V2, X% V% and X2 are called the components of a multipole. As this
definition involves partial derivatives of Dirac delta functions, they are defined by
their action on test functions (¢, ..., ¢s) which are the components of a covector,

and have compact support. Equation (4.1.1) acting on ¢, gives

]' s a C al
[ Teudc =5 [ v @ad) de+ [ X7 @) d
& R R

+ [Vt @odw)dt+ [ Xeodwgde+ [ it aodde. (410
R R R

The evaluation of the test form at n will not be explicitly written in future

representations of J%, but is implicitly present.

An alternative representation of moments uses covariant derivatives, rather than

partial derivatives. This is known as the Dixon representation of a multipole [66],
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Chapter 4. The Ellis representation of moments

69, 93]. This is not possible here due to the lack of a natural covariant derivative

on £.

Recall that the components in (4.1.3)) are only over (1,...,6) (there are no terms
of the form V° or V). We shall see below that by writing a multipole in this
way the components of a multipole are unique. This is due to the adapted Ellis

representation used, with the specific time slicing.

The components of J¢ can be extracted using the following test forms:
: 1 a §0 7
q|m=1g%;/gj w( )Hw — ') d'
1 t—t ‘
bl — i a 50 Y b b i i\ g7
V|to_1£%€/£j 5a¢( - )(6 n)HMf n') '
1
b ) — lim — a sb 7
(X+qn)|m—ygg€/gj w( )Hw ) d'e

6

e i) =ty ¢ [ o () (@ ot) TLo € )

=1

where 1 : R — R is a test function such that ¢;(0) = 1, it is flat about zero and

fR Y1 (t)dt =1, to is the point at which the moments are evaluated.

Proof. Only the V% term and X% + V¢ term will be shown as the other terms can

be found similarly.

Consider J¢ acting on the V% equation of . The only non-zero derivatives
are the £2 and £¢ terms. There are three possibilities, each €2 or £¢ can either not be
differentiated, differentiated once, or differentiated twice. If it is not differentiated,
then the evaluation at n gives (2 —n?)|, = n2—n2 = 0. If it is differentiated exactly
once, then 9,(% —n?) = 62, a Kronecker delta. If this is differentiated twice, then
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4.1. Defining Ellis multipoles

the derivative of a Kronecker delta will vanish. Thus the only non zero term when
acting J¢ on the V% equation of ({4.1.5)) is the term where the number of derivatives
matches the number of £ terms. In this case this happens when there are exactly

two partial derivatives. This gives

iy 2 [ oot (S (@) (e ) TTv e -y e
= lim 1 /R Ovbw( )HM% )dt. (4.1.6)

Noting £%], = n%, n° = 1, V¥ = V¥%(¢) and introducing the substitution ¢ = ¢y + et/

gives

i 2 [0 () (¢ =) (e =) TTv 6 )
=lim [ V%(to + et')ap (t') (4(0))5dt’. (4.1.7)

e—0 R

Integrating and taking the limit, noting ¢(0) = 1 gives

i 2 [ (1) (=) () LT (€ =) s = v¥i (a0

as required. In the extension to a higher order multipole, this still works as the ¢°

term isolates only the V% term.

To isolate the X% + V¢ term of J¢, consider J* acting on the X+ V%)< equation

of (T3
.1 -a i
=gg3;/R v (2 )H@mn

tlim Xy ( ) Hw (€, — . (41.9)

e—0 € R
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Chapter 4. The Ellis representation of moments

Repeating the previous process gives

6

lim l ja 63 ”QU (t —etO) (gb_ nb) H,lvb (52 . 777,) d7€ _ (X@ + VQT'}Q) |t0‘

i=1

(4.1.10)
X% can be isolated after finding V2 using the appropriate test form. Since
the components V¢ V% X2 and X% can all be extracted using test forms, the

components of J® are unique. 0

If the VO terms etc. were included in the multipole, then there can be multiple
components which correspond to the same multipole (the components are not

unique). To see this, consider the integral

/ (U™ + k“°) (Opaly) dt (4.1.11)

where k% are constants. Noting that 7°0,¢,|, = dd./dt|,, this integral evaluates as

/UW+HWM&%wﬁ:/U@@%mw+/%%¢%mwﬁ (4.1.12)
R R R

_/U“b (Opbaly) dt+/k“ dda dt (4.1.13)
R R dt n

a d a
= [t @ealde— [ L@ od,a @
_ / U™ (Dyal,) dt. (4.1.15)
R

This shows that if the indices run over (0,...,6), there is a gauge-like invariance
that means it is impossible to uniquely define the moments. In the case k* are not
constants, this method can be used to project components into other components.
This will be used in section 4.4 when calculating the coordinate transformation, to

project the transformed multipole onto the new time slicing.
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4.2.  Relating the components of Ellis multipoles and moments

4.2 Relating the components of Ellis multipoles and
moments

To show the relationship between the components of and the moments of
f (equation ), the distribution function f is squeezed. This is the process of
representing a function using a Dirac delta function and the derivative of Dirac delta
functions . The moments of f are the coefficients of this expansion. By doing this,
it can be shown that the moments of the distribution function f naturally appear

in the components of the Ellis representation of a multipole.

Squeezing a distribution can be shown using the language of differential geometry.
Consider a smooth 6-form, J, that describes the flow of particles in a collisionless
plasma,

J=Ffiwd & =fW%h,d' ¢ =fde"° — fWedt N inde' " (4.2.1)

where A is the wedge product, iy is an internal contraction with respect to W, and

i, 1s an internal contraction with respect to g,
del 0 = det A dE? N dE3 N dEP N dEP N dES. (4.2.2)

The 6-form J is called the current 6-form, and is investigated in more detail in

chapter [§

A one parameter family of smooth 6-forms J. can be defined as

Js’ ‘ = %f t’ é__n dé‘l...ﬁ _ iﬁ f t) éi we dt/\igdgl..ﬁ
( ’Q 9 £ (t 5) c c

where § refers to the combination of all spatial coordinates. This is not the only

(+€)

(4.2.3)

choice of one parameter family for J. This particularly choice of one parameter
family is used as it corresponds to the time slicing, since the dependence of J. on

the global time coordinate is not affected by e.
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Chapter 4. The Ellis representation of moments

By expanding J. about ¢ = 0,
SN J. =T+ O(e?) (4.2.4)
where ¢ is a test form (a form with compact support) ¢.d€?, and
ge = [ 7= @05 € —m) i [ 65 (059 )
— /R 0 Ve (069 (€ —m)) dt + /R o X256 (& — m)dt
+ /R i g€ —ndt (4.2.5)
where
= [ viee [16g @
v et [F(0) (@ ) (@ o) (420
Xe= VYQWY), + S VE@AIY),, X = VE@WS),

where ¥ is the spatial part of £. Note X is inhomogeneous in ¢, since V% contains

an ¢ term whilst V2 contains an 2 term.

Proof. Begin by wedging J. against a test form ¢ = ¢,d&?,

1 é_ 'l 1...6
) ()
- 16 (t, - n) Wy, dEb A dt N igd€' "
9 9
()
_ ; (t, £ ; n) o dt A g (4.2.8)
(+¢)
+ iﬁf (t, 2 n) Wegy dt A dEb N igd€"
g g
()
£—n
- éf (t, = ) o (g) dt A g+ (4.2.9)
()

T <t, 2 n) Wiy dt A d™0

(o)
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4.2.  Relating the components of Ellis multipoles and moments

Making the substitution S ( n)/e, and making the evaluation at (¢, £ ) implicitly,

ON Tl (g = €—6f (1.€) 90 (1.1 + <€) <t 1 g™ (4.2.10)
42 (£€) We (4 2€) 6 (10 + <€) Pt 1 ™
=7 (t.€) do (t.0+ =€) dt A g™ (4.2.11)

5 0€) W e 8) 8
Taylor expanding ¢y, ¢, and W around 7, noting there are only spatial derivatives
as &, -’ =t—t=0,
6 Ty = F (1) ool i A €™ 15 (1) Welydul, dt 1 dE™*
+f (t§> e (€2 — nb) Dpgpoly dt A dEM5 + (t@ e (& = nP) By(Ga V)], dt A dE-°
457 (1.€) € (€ — 1) (€ — o) Adiduly e A g
+ %f (1.€) 2% (& — 1) (& — ) A0V, di A dE° 4 O). (42.12)

Next, integrate this over &, splitting £ into R x Y. The terms only depending on §

can be integrated out,

Lontlg = (L7 (ng)ae)aolyars [ ([5(2€) ae) welona
i /R (‘5 /Ef (18) @) dfl“'6> Onsol, dt
* /R (5 /Ef (1.€) (@) df?"‘ﬁ) (3 W), dt
i % /R (52 /E f(1.€) (€ =) (& — ) dfl'"ﬁ) DyDebol dt
* % /]R (52 /Ef () (& —n") (=) dﬁl""‘) 040.(SW )], dt + O(). (4.2.13)

Using the definitions of ¢, V2, and V2 from equation (4.2.6),

/¢AJ5| (1) :/qq§0|ndt—|—/qW‘L|n¢a|ndt+/Vb8b¢0|7,dt

1 1
/ V0, (W9, dt + = / V0,00, dt + = / V0,0 (0a W), dt + O(e%).

(4.2.14)
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Next, expand the partial derivatives, and note W¢|, = 7%,

Lonalg = [ avlsdi+ [ aita,ars [ Vo, a
w [ Vit de+ [ Vooul,@Vyde+ 5 [ V00,00l
. /R V80,0, baly dt + /R V(02| (D460)
e /R Vol (D402, i+ O(%). (4.2.15)

Recalling the definitions of X2 and X2 from equation (4.2.6)),

/¢AJ\ (ve) /q¢0\ndt+/qﬁa¢a\ndt+/Vbabcﬁo\ndt
R
_ 1 _
+ / Vo2 0yal, dt + / X%, dt + = / VD, Outholy dt
R R 2 R
1 [~ 1 [ -
+§/RV"%'7“8bac¢a|ndt+§/RX“C(80¢Q)|ndt+O(g3). (4.2.16)

Recalling 7° = 1, this can be further simplified,

/¢/\J‘ tf /q¢0‘ndt+/qna¢a‘ndt+/vb aab(ba‘ndt—F/Xa(ba‘ndt
1
+5/Vbcna(‘?bacﬁbahdt%—/X‘w(acqba)|ndt+(9(5 ) (4217)
R R

This is the same as J%¢,, as required. O

Thus there is a close relationship between the components of a multipole and the

moments of f.

4.3 Dynamics of moments

4.3.1 Time evolution of moments

Having defined the Ellis representation of the quadrupole, we are now in a position
to calculate the dynamics of the Ellis quadrupole. The transport equations for J¢

given by equation (4.1.1]) are found by considering the transport equations for J°.
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4.8.  Dynamics of moments

Since they are linear, they can be directly applied to distributions. The conservation
of charge is given by

0,J" =0, (4.3.1)
and the Vlasov equation is given by
T WP — J'We = 0. (4.3.2)

These can be used to find the dynamics of the moments. The transport equations

can also be defined by their actions on test forms A and ayy,
/ T O Nd"E =0, / T Whag, d'€ =0 (4.3.3)
£ £

where «y;, is antisymmetric, both A and ay;, have compact support, and recall that

£ is the time-phase space.

Proof. Acting 0,7 on a test function A and integrating by parts,
/ 0T NdE = — / T 0N d"E (4.3.4)
£ £
so these conditions are equivalent. For the Vlasov equation, consider
1 1
T Weow = 5 (T W+ TW*) aw + 5 (T W’ = T'W*) . (4.3.5)

Since aygy is antisymmetric, the contraction (J*W? + J°W®)ay, vanishes, leaving

1
T Wag, = 3 (T WP = T°W*) (4.3.6)
hence the second part of (4.3.3]). O

The transport equations for J* (equation (4.3.3])) can be used to find the dynamics

of the moments, which are given by

dvab ave dq
dt AT g odt (4.3.7a)
1
X% =yl e, Xe=Vho,Wwe + §V@898£WQ_ (4.3.7b)

45



Chapter 4. The Ellis representation of moments

Proof. Begin by considering the conservation of charge (equation (4.3.1])), and act

on a test form A,

1
/ TONE == / Ve3¢0, 0,0, \dt + / X29,0,\dt + / V0,0 \dt
£ 2 Jr - R o R B
+ / X9 \dt + / g0, dt = 0. (4.3.8)
R R

From here, note

O\ d\
7 = — 4.3.9
" oe = ) (4.3.9)
so integration by parts can be used to pass a derivative onto the V¢ and V% terms.
This gives
1 [dVve ave
/jaaamﬂg = ——/ —— 0,0\t + | X200, \dt — / —— O A\dt

d
+ / X9, \dt + / rdt = 0. (4.3.10)
R o dt

Collecting terms based on derivatives of A\ gives the first line of (4.3.7).

To consider the effects of the Vlasov equation (equation (4.3.2))), act J on Wlayy,

and expand the partial derivatives,

1
/jaWbOéabd7§ = 5 / chbﬁa (aadagﬁng + 8Qozad8£Wd
E R
+ 0£O./adabwd + Wdabﬁgaad) dt + / X@ (Wcﬁbagc + agcé?gWC) dt
R
+ / Ve (WeOytae + acOyW) dt + / X Wlagdt + / qWi ap.dt. (4.3.11)
R R R

Next, look at terms of the form

W’ ag, (4.3.12)
recalling the implicit evaluation at n, W/, = 0. Since a, is antisymmetric,
Wenbag, = 0. (4.3.13)

This is true for the derivatives of «g, as well, since the derivatives are also

antisymmetric. This means terms of the form W9)%9,0,a,4 etc. vanish. Rearrangin
Y 1" OpOc! gimg
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4.8.  Dynamics of moments

the remaining terms in derivatives of ay;, gives

/ T Wlagd ¢ = / (VLOWE — X D) 7 0p0rgq dt + / (VLOWO) 1) Oycrao dt
£ R R
1
+ / XLoW g dt + / (Vbabwa + év%bagvv@ - X“) 7o, dt
R R
1
+ / <§Vbcabacwo + v”abW0> nloge dt  (4.3.14)
R

where the minus sign in the X% and X% terms comes from flipping the oy, indices.
Next, note that calculations are in a frame where W% = 1, so derivatives of W?°

vanish. Two of the remaining terms give the required differential equations,

X% = yheg e, (4.3.15)

1
Xt = VEW® + JVEIIW®, (4.3.16)

Lastly, for the remaining integral, the third integral of equation (4.3.14)), taking the

antisymmetric part of X%9,W< gives

XLOWlage = (XLOWE — XLOHW?) 0tga (4.3.17)
= (VEQW0 W — VLI W20,W?) (4.3.18)
= 0. (4.3.19)

So the differential equations in the bottom line of (4.3.7) uniquely solve the system,
giving the equations of motion for the moments through the Ellis representation of

multipoles. [

As a corollary, inserting equation (4.3.7b|) into equation (4.3.7al) give equations
(3.2.26)) and (3.2.27)), so the Ellis representation can also be used to find the

differential equations for the moments. These differential equations are the same

as directly differentiating (3.1.7)).

Whilst the integral representation and Ellis representation find the same dynamics

of the moments, there is a different philosophy to each approach. The method

47



Chapter 4. The Ellis representation of moments

presented in section gives an infinite Taylor expansion, and picks the truncation
point at the end of the method. Alternatively, the Ellis representation makes the
choice of truncation when first performing the multipole expansion to a specific
order. This order of expansion is then kept throughout. Whilst this work only
carries out this expansion to quadrupole order, it is simple to extend this result to

higher orders.

4.3.2 Comparison with transition matrices for a beam pass-

ing through a quadrupole magnet

Before modelling the moments numerically, this section analyses the differential
equations to see if the models give the expected trends when comparing them to

existing, simpler methods.

In a particle accelerator, the dynamics of individual particles through an element of a
particle accelerator (drift space, dipole magnet, quadrupole magnet, RF cavity, etc.)
are calculated using transition matrices. Transition matrices approximate the final
position and velocity of a particle through an accelerator element. This formulation
can be done in (3+3)D position-velocity phase space, but for ease of reading, only
one spatial and one velocity dimension will be considered. This position and velocity
can be denoted as a column vector, with their final state being given after passing

through a transition matrix 7',

Lfin Linit
=T (4.3.20)
dxﬁn dwinit
ds ds

where s is a global parameter defining position along the beamline, and dx/ds gives
the rate of change of the particle’s position with respect to s along the beamline.
This quantity will be related to velocity later in this section. For more information
on how these matrices are formulated, the reader is directed to references [94] and

[95]. Transition matrices are different for each accelerator element.
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4.8.  Dynamics of moments

A focussing quadrupole magnet has the magnetic field

Bquad = (Gy Gz O) (4321)
where G > (. This has the transition matrix

T = cos(VKs) \/L? sin(vKs) (4.3.22)

—VKsin(vVKs)  cos(vVKs)

where K = ¢G/my, and s is the parameter of the beamline.

The quadrupole moments, =, of a bunch of n particles, each with individual position

x; and velocity dx;/ds, can be calculated as

T

_ n x; x; Ell 512

E= g = : (4.3.23)
, da; dx; =12 =22
i=1 ds ds = =

Thus the moments after the bunch has passed through an accelerator element can

be found using the transition matrices,

T
n x . .t x . .t
7,1n1 7,In1
Zan = T ’ T ’ 4.3.24
fin Z dx; init dz; init ( )
i=1 ds ds
T
n x . .t l‘ . .t
7,1n1 7,1N1 T
= T T 4.3.25
Z dx; init d; init ( )
=1 ds ds
=T S TT (4.3.26
- —init «J. )

so the dynamics of the moments of a bunch can also be found through the transition
matrices. These equations give the moments after an accelerator element of finite
thickness has been travelled through. This can be turned into an infinitesimal rate of
change by considering differentiation from first principles as an accelerator element
becomes infinitely thin,

dZ .. Zfin — Sinit

(4.3.27)

ds s—0 S

Using this equation allows the rates of change for the moments to be found through

the transition matrix approach. These should match, to leading order, those found
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through the differential equations ((3.2.26|) and (|3.2.27)).

For the quadrupole magnet,

d= 512 522 _ KEH
B . 4.3.28
ds 522 _ KEll —2K512 ( )

Proof. Using equation (4.3.26)) with the focussing quadrupole magnet transition

matrix gives

= cos? (VK s)Z" +sin (\/_S)H—% + \/—_COS(\/_S) sin(vVK )22 (4.3.29)

P = (COS (VKs) — sin (\/_s)> =12 sm(\/_s\)/%)s(\/_s)Em (4.3.30)

— VK sin(VKs) cos(VEKs)2H

=24, = Ksin?(VKs)E! + cos? (VK s)E? — 2V K sin(VK s) cos(V K s) ="
(4.3.31)

[I]

[1]

To find the rate of change of the moments, use equation (4.3.27)). To find the limits,
use the standard results that for small s, cos(vKs) = 1, sin(v/Ks) ~ v Ks, thus

Ell ’ 1 11 82H22 H14 Ell 19
=12 1 =12
T = lim— (B¥ - Ks?EP + 552 - KsE') - — =2® - K=" (4.3.33)
S s—0 S S
A= 1 =22
T = lim — (K?s*EM + 2 —2KsE7) — — = 2K E. (4.3.34)
S s—=0 S S

O

These are the leading order contributions to the transition matrices for the moments.

This can be compared to the rates of change found through tracking the moments
directly. There are two ways to calculate the dynamics of the moments from
equations and m Firstly, the Vlasov equation in Frenet-Serret
coordinates (a coordinate system defined relative to the ideal orbit) could be

found and the moment tracking equations could be calculated directly in the same
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4.8.  Dynamics of moments

coordinate system as the particle accelerator. Alternatively, since the ideal orbit
through a pure quadrupole magnet is a straight line, the Vlasov field calculated in
section [2.2] can be used, and the transformation for the moments between the two
coordinate systems calculated at the end. This latter approach is what will be done

here.

In the quadrupole magnetic field, the rates of change for the V1!, V14 and V4

moments are given by

dvi o (L ui 2V15uyux 2V 160, u,
A e e (4.3.35)
14 14 15 2
v VUK 4 Vv Kfumuz N Vv Kz;zuym PRTEL % (x_u; B f)
dt g g v
a1 u? V45uyux VA, u,
v v B R P
(4.3.36)
dv 4 oV, 4 VU Ku u,x N VB Ku,uyx T uwlr ny
dt 2 2 2
(4.3.37)

These expressions were found using the symbolic algebra software Maple.

To compare these expressions to those found using the transition matrices, recall
that the moments are taken along the ideal orbit, so x,u,, and u, are zero, and it

is assumed that u, ~ v i.e. the particles are ultra-relativistic. This gives

dvit oyt
— 4.3.38
dt v ( )
dv14 V44
T VI Ky (4.3.39)
44
dgt = 2V" K. (4.3.40)

To compare these two results, note that the velocities in the transition matrix

approach are dx/ds, rather than u,. To make comparisons between the different
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Chapter 4. The Ellis representation of moments

methods, introduce the following substitutions,

14 44
d d d dr dr  u, —11 11 :12_V :22_‘/
— =c— = — —, Z0 =V, Zv= , ==

ds dt — dt’ ds dt 7’ vy 42
(4.3.41)

These equalities hold for dV/ds since v is constant in magnetic fields. Inserting

these into d=/ds (equation (4.3.28))) gives

d=" avtt oyt
— = ozl TR (4.3.42)
—14 14 44 14 44
= _gu_ gz L2V Ve VTV ey (4343
ds v o dt ~? dt
=4l 1 dvH 2KV dv
——=—2K=" P Einder i 2KV (4.3.44)

which is equivalent to equations (4.3.35)), (4.3.36)), and (4.3.37)), thus the transition

matrix approach and moment tracking approach give the same results.

For dipole magnets (magnets that bend the trajectory radially) the coordinate
systems are too distinct for this approach to work. This is because the moment
tracking method uses Cartesian coordinates, so bending the trajectory in a dipole
magnet involves mixing z and x coordinates. In contrast, the transition matrix
approach uses Frenet-Serret coordinates, which are defined relative to the centre
of the bunch, so the bending from the dipole magnetic moment is not considered.
Whilst it may be possible to use this approach to compare the moment tracking with
other transition matrices, this is only useful as a test that the theory gives existing
results. It is instead more important to test this code numerically, to see if the extra
effects included through using more complex electromagnetic and gravitational fields

give new results.
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4.8.  Dynamics of moments

4.3.3 Conservation of non-relativistic emittance

The volume a bunch of particles occupies in phase space is known as the emittance.
This emittance, €, is the determinant of the quadrupole moments, and is defined in
the non-relativistic limit as

€ =det(V) (4.3.45)

where V is the 6 x 6 matrix of quadrupole moments given by V2. In a purely
conservative system in flat space, emittance is conserved. The conservation of
emittance follows from Liouville’s theorem [96]. In an arbitrary coordinate system,
emittance will not necessarily be conserved. Using the differential equations for the

moments, the rate of change of emittance is given by

d
d—‘; = 2det(V)a. W< (4.3.46)

Proof. The rate of change of emittance can be shown by differentiating e with respect

to time,
de d
= = —det(V) (4.3.47)
dV/ b
= det(V)(Vl)ab% (4.3.48)
= det(V)(V ") (VEOWE 4+ VO, W) (4.3.49)
— det(V) (5§agwb + 5@agwé> (4.3.50)
= 2det (V)0 W= (4.3.51)
as required. O

Recall equation ([2.3.5)), in the system of a linear particle accelerator where it is
assumed the system is non-relativistic, |det(g)| = 1, so equation becomes
0.W€ = 0, hence emittance is constant under these assumptions. For cases where
the effects of v are important, then the choice of coordinate system becomes more
important. Switching between the Frenet-Serret coordinate system, where this

definition of emittance is defined, and the lab time coordinate system used in the
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Chapter 4. The Ellis representation of moments

moment tracking, is not straightforward. In cases where curvature matters, i.e.
det(g) # 1, then in general emittance will not be conserved, since phase space

volume is not conserved in curved spacetimes.

4.3.4 Limitations of moment tracking

Moment tracking will not work well when the field around 7 is not accurately
modelled by a small number of derivatives (figure . This is due to the truncation
error. Specifically, when modelling only up to quadrupole moments, the dipole
moment will not be modelled well when the field cannot be accurately modelled by
only two derivatives. The quadrupole moments will not be modelled well when the
field cannot be modelled by only a single derivative. As an example of this, consider
a sextupole magnetic field (recalling that the naming convention for magnetic field

multipoles scales as 2k), given by

Bsextupole = (Sfﬁy, % (1'2 — y2) , O) (4352)

where S is the sextupole field strength. This field is quadratic, which means that,
when evaluated along the ideal orbit 7, where x = y = 0, the field and its first
derivatives vanish. This means there is no contribution to the quadrupole moments

from the sextupole magnetic field.

This effect will be studied in more detail in chapter 5| where the effects of the

truncation on the error convergence will be examined.
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4.4. Coordinate transformations of multipoles where the time slicing changes

0 MMM
¢ iy

(a) An electric field where moment (b) An electric field where moment

tracking will work well. tracking will not work well.

Figure 4.1: Ezamples of electric fields where the moment tracking method will work
well and will not work well. When the fields (the red curves) rapidly change across
the extent the macroparticle represents, (the support of f, indicated by the horizontal

blue line), the moment tracking method will not work well.

4.4 Coordinate transformations of multipoles where
the time slicing changes

Having introduced the Ellis representation of the quadrupole, we are now in a
position to calculate the coordinate transformations where the time slicing changes.
As previously stated, this cannot be done using the integral representation of
moments. This means that equations and , below, are a new result.
Consider a new coordinate system denoted by hatted coordinates (£, ég), where the
time coordinate is changed i.e. #(t,£2) is a function of both t and £2. Hatted indices
will be used to remind the reader that the quantity is in the new coordinate system.
To find the transformation rules of a multipole, it is assumed J¢ transforms as a

tensor density, i.e. )
2 08" d7E
08 dTe

(4.4.1)

such that
/ T had’€ = / T ad"€ (4.4.2)
& &

is an invariant quantity.
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Chapter 4. The Ellis representation of moments

Since 7% are functions on a world line, they transform as

. oghdt
¢ = — 4.4.
where
Lo dif()
“t) = —. 4.4.4
i) = (4.4.4)
Recall ¢, and 0, are tensorial, so the transformation rules for these are
A ot 0 ot 9
Pa = _éﬁbb, % (4.4.5)

ofn " 9éa 9gaOEY
Note that although a quantity may only have indices over (1,...,6) in the original
coordinate system, when it is transformed into the new new coordinate system its
indices will run over (0, ...,6). This means that the moments will have indices over
(0,...,6) in the transformed coordinate system, and, as such, the components will
not be unique (as shown in section . Since the components are not unique, they
will not be denoted with V¢ and X etc., and instead denoted with U® and Y*

respectively. Using these transformation rules gives
Aa A ~ 1 ca A A A A . NPT
/ T pad’ € = / Thad’ € = / N*UP0;0:(¢a)dt + / Y :padt
£ £ 2 Jr R
+/ﬁﬁ@@ﬁf/%@ﬁ+/ﬁ@ﬂf@4@
R R R
where 9, = 8/9€%, and the components of J% are given by
0% = vieAb AZ,

N | ;oo\ dt
ed ab A¢ Ad ef -a d Ac
yed = (XAbAa + Vi, (4 fAe)> o

. o ) (4.4.7)
Ut = VEAL + SVRAL,
Oré d A¢ b-a é ab Aé 1 de -a é dt
and the notation R R
a 256
ae = % o _ 0% (4.4.8)

c T gge’ e T Pebpge

is used. A hatted index is used to make the Ag notation distinct from Ag.
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4.4. Coordinate transformations of multipoles where the time slicing changes

Proof. Proceed term by term using the transformation rules for n* (equation (4.4.3))),
and 9, and ¢, (equation (4.4.5))). For the V term,

dt

. dt
/ V231 0,0,padt = / Vit Al —
R T R ddt

A2, (Ag”éf (A%)) i (4.4.9)

Performing these derivatives gives

dt soodt s oA~ dE oL

Vne9,0, adt:/vbCAdA“ dt—i—/VbcAqu—AAeAg 0s(y)—dt
/R " Op fb d abc¢gd n ddt b4 ac (¢g>dt
cAd adt é c A adt e Af A6A A /2 dt .
+ /R Vieilas @ azalp, (¢f) dt+ / VIS A AT AGD:0; by i

5o dt . N soodt ;oA A o dt .
berd pa f ah berd pa f .
—|—/RV Ul Add{Ad’AfAZh%_d{dt_'_/Rv n Ad_d{Ac—bAgaf(%)_d{dt' (4.4.10)

Simplifying these terms down

o\ 5 db . <o dt
/ VIR 0yDepadt = / VEid, (Aic) Pg—=dt +- / VEAG 0, (A2) Oe(dg) i
o - dt R - dt
/ VA d, (Af) 0 (qsf) dt+ / Vit A2 A 0,0 () di+ /R Vet AL 9 (b y)di
(4.4.11)
For the X% term,
ab ab AEAQ d} dt -
Xyt = | XLAD: (Aaqsd) < di (4.4.12)
R o dt
/ X“bAdbgbd Adt—l— / X“AgAféé(gﬁd);l—;df. (4.4.13)
A ba
For the V' term,
odt o\ di
Ve = [ fFAI—VPALD. (Alhs) — 4.4.14
[ irvionsue = [ itaGveal a(aqzse)dtdt (14.14)
= / iVEAS ¢e dt+ / HEALVEAL AL D sdedt (4.4.15)
A b
/ Ve, (A€)¢e dt+ / HVEALD, dedt. (4.4.16)
For the X% term,
L. di
/ Xpgdt = / X2ASh,—dt. (4.4.17)
R - R - dt
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Chapter 4. The Ellis representation of moments

Summing all these terms together gives the transformed quadrupole,

| cd e AFA A DN ap
/ja¢ad7€:/ja¢dd7£: §/VbcT]dAbA£aéaf(¢j)dt
£ P R
abacilefa.a d 1€fcz.a o) A dto-
T X7A9A2+ §V77A§77 8(1 (Af) + §V7*Af77 (9a (Ag) a@(¢j)d_£dt
R —, .
. 1 o\ A -
+ / U <VbA;f + 5VbCAgb) 0 ydadt
R
d gé b-a é ab pé Lo de-a B ~dt .
R

This gives equation (4.4.7)) as required, where the components of the quadrupole in

the new coordinate system are no longer unique. O]

As previously stated, U?, U Y? and Y% have indices ranging over (0,...,6), not
just (1,...,6). As shown in section , for the components of a multipole to
be unique, the components must only range over (1,...,6). The reason that the
multipole contains terms of the form U° etc. is because it is still adapted to the
time slicing ¢ from the original coordinate system. To adapt the components to the
new time slicing, and find the full coordinate transformation, they are projected

onto the new time coordinate ¢. Consider differentiating along a world line,
O = 10 = Op + 1*0a- (4.4.19)

By rearranging this for 0y, these terms are projected onto components along d,, and

components along the world line,
0o = 0y — %0y (4.4.20)

Since U* are functions along a world line,

au*
0,U* = 4.4.21

with similar relations for U%,Y* Y and ¢|,. By using this projection, terms like

U% get projected into terms in Ve, X2 Ve and Xe.
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4.4. Coordinate transformations of multipoles where the time slicing changes

Using this projection allows multipoles to be adapted to the time slicing £ in the

new coordinate system, i.e. adapted such that the components indices only range

over (1,...,6), giving the full coordinate transformation. The new moments are
Crab cd ga Ab -etred A0 adt
Ve =VELAZA, — VLA, A dAc— o (4.4.22)
. eVCdAaAOAZEZZ +77 anCdAOAOAaAb (Zz) ’
Cré b i, Lirbe 4a dbodt 1dch adi
Ve =V2A) + —V*AgC VA Addt 2 V= AbcAddt (4.4.23)
LAt d dt dvee . s
V bA“AOAO 7 AZ A0 A0
2 ddt( Cdt) 2T Ty e

A 16 dt
_ cb A2 A0 | Tyref e 0 g4
(X AQAQ—{—QV N0, <AA>) e

To calculate terms of the form dA% /dt, recall the implicit evaluation at 7, so

24 = 7P, AL, (4.4.24)

n

Additionally, note
dit ()
dt — dt?

(4.4.25)

which, in contrast to 77, does not transform as a vector.

Similar terms exist for X2 and X2 such that (4.3.7)) is still satisfied, and are given
by

X&B_ Xch&Aﬁ 1VefAd'ca Aé 1VefA§~ca A& dt

== *54—1-5 AN c(i>+§ A c(é) -

cd pa 20 1 e a,;c 0 1 e 0.-c a . b

- (XdAcAg +5VLALFD, (A}) +5VL Ao, (A2 ) 79 AL

a1 R . 1 . R
cd A0 2b ef A0,.c b ef pAb,-c 0
_ (X ALAY + SVeLAf o, (4}) +5VeL Yo, (A2

5 46 1 Leres 40 0 | 1 p di
+ (Xch‘C%gJr —veLAdro, (Ag) +§V§iA 7°0e (Ag )ngﬁhA;AZE
d di p (odt d Jdt
Ve ASADAE S (o 2 ) e qb A0 (e g2 S0 ) 1 (4.4.26
B ra\" v aegiaq \Teq ) (4420
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and
Xt = (X¢A§+ V0, (A} )+chAc,, +5 Ly e, (A )) Z;
(e hreed)
(875 i)t i)
- Fd ((X“AZA? + lvgif%ﬁcac (49) +1V9iA§ﬁca (A“)) jﬁ) - (4.27)

These terms can also be found using equation (4 in the new coordinate system.

Proof. Consider the non-unique quadrupole, where, as this is all in the new
coordinate system, hats have been removed from the indices temporarily to aid

readability,
1
/ Tpd’€ = = / U0, 0p0adt + / Y %yt
£ 2 Jr R o
+ / 0 U0y dadt + / Yehodt + / 0qpadt. (4.4.28)
R R R

Use the projection (equation (4.4.20))) and proceed term by term. Starting with the

U term, noting the symmetry of U,

/R U 0,0.0dt = /R N U0,0,¢,dt (4.4.29)
+ 2 /R 0 U® 0,00 adt + /R N*U 000 padt

= /R 1" U 0,0 Padt + 2 /R 0"UY 0,0, padt (4.4.30)
-2 /R 072U P 0, 0gdadt + /R 17 U000 P dt
— /R 1 U000y Padt.

Recalling that 0,¢, = d¢,/dt, and then integrating by parts gives
/ 0 U040, padt = / 0 (U = 20U 0y0cPadt
R R

_ i ha 7 b0 /i a7700
Q/Rdt (n*U™) Opadt + @ (n*U™) Bygadt

- / U 0,00 padt.  (4.4.31)
R
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Projecting the remaining J, terms gives

d
/ U 0y0podt = / 0 (U = 27U 0p0cpadt — 2 / — (*U™) Oppadt
R R o R dt a

.. d oo
+/R£ (n*U™) 8¢,¢adt+/ﬂ§% (7*U) 72 Opgadt

—/WWW%@%ﬁ+/nnﬁm%m%%
R

Integrating by parts and simplifying,

/ 0 U 0,0, padt = / ) (U = 20U + 02°U™) 9y0,c¢adt
R

/

2

U Oypadt + / L N*U”) ¢adt

dt2 (

For the Y% term,

/ Y0y podt = / Y %0y padt + / Y 0y padt
R R R
- / Y Ly padt + / Y0, ¢,dt — / Y 0y, dt
R R R

d
/ (Y — Y*RP) Oyadt — / —Y O, dt.
R - Rdt

For the U® term,

/WW&%ﬁ:/Ww%%ﬁ+/WW@%ﬁ
R R R

= / 17U 0y adt — / 1 U120y ¢ dt + / 0 U0y Padt
R R R
d
= _ / dt( 0*U°) ¢adt + / “ (UL = UP) Opgadt.
R
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d

- (i
d a OO b d ca -by700
— (°U™) P0ppadt — | — (1"nPU) Opadt.
d - R dt -

(4.4.32)

(4.4.33)

(4.4.34)
(4.4.35)

(4.4.36)

(4.4.37)
(4.4.38)

(4.4.39)
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Summing all these terms together,

[ aeeudis =3 [ i U = 20 4 itie0™) 20,0,
£ R
d ., 1 [,
- /R ym (7*U%) 3g¢adt—|—§ / e (1*U™) pqadt
1 [ d 1 [ d
+5 /R a(7‘7“U00) 2Oy padt — / dt( PUY) Oygadt
d d

+ /R (Y — Y% Oyadt — /R EY“%adt— /R E(ﬁ“Uo) Gadl

+ / 0" (U* = U?) Oyadt + / Y badt + / R qbadt.  (4.4.40)
R R R
Grouping terms together,

1
[ eonde=3 [ it (U - 20U 4 i U™) 00,0,
£ R
N / yeb _yoo— L ooy L L a0 6, ar
. dt 2dt -
1L 1 [ d d
S — dt — (n*U") dt—/—Y“O dt
w5 [ G Uy a5 [ L GrU) it~ [ Ly,
+/waﬁ_WW&mm+/(w-%ﬁﬂﬂ)%ﬁ+/wwwtMAM)
R R

R

Calculating some derivatives and symmetrising U gives

1 .a ¢ brre e .
/ T Gud'€ = 2 / i (U — UL — 52U + 52U ) 0p0cpadt
€ R
" / Yo -yt e () i () ) e
R dt 2 dt b%a
d 1 o0d
_qrb0 = (ra Lo00@ (a.p
+/R< v dt (7 >+2U dt (7777)> Oppadt
d . 00 ]- d . 00N\ b / d o
- a - o a b B _Ya
/ dt? ( U ) (badt + 9 /R dt (77 U ) n ag(badt ; 7 (badt

L
3

: . d o .
(U* = U°?) Bpadt + /R (Y - (1 UO)) Padt + /R 0qpadt. (4.4.42)

e
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Noting dU/dt = Y% + Y gives

1 a ¢ brre e e
/{S T pad" ¢ = 3 / 0 (U — UL — 52U + 95U 0p0cpadt
R

+ / (Yab . YGO’I?Q o ﬁaybo . ﬁayﬂb + ﬁaﬁbyoO) 6Q¢adt
R

L owd /. w d .
Syl (paphy _ 0L (pa dt
+/R<2U =7 (0°1°) = U* = (0°) | Opda
1 d? . a7700 1 d -a7700Y) -b
+§/R@(nU )¢adt+§/ﬂ§£(nU ) 1 Oypadt
_ / yaog.dr + / i (U = UP) Oypadt + / (Y“— a (ﬁ“UO)) Padt
Rdt R B R dt

+ / qdadt. (4.4.43)
R

Rearranging for clarity, and reinserting hats over quantities,

+/ (Y&é_y&()ﬁé ,f/aYOQ_f_ A&ﬁb)}OO) Abqudf
: b
R N
+ Uopt — ( ) — U= <A“ ) dit
R( T\ o\ AU
= [ (UB—U%M L2 (o _f/o) Sy dudi
R 2 dt bre
o d oy LR ey doao\ s
+ Y@——A<A“U°>+— : ( {700 ——AY“0> i (4444
/R( ai \ 272 \" gl ) dadt. (44.44)

By noting 7° = 1, the Y% Y9 Y% and Y° components cancel. Additionally,
transform the relevant ﬁ@ and d/ dt terms back into the original coordinate system,

noting

d dt\* & &Pt d
— == 5+ —== 4.4.45
di2 (dt) TR ( )
This is done so the full coordinate transformation is defined relative to the original
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coordinate system. Doing this transformation gives the projected moments,

Afa oaf dt dt dt
be _ prbe a e0 Ab _ a b0 A2 dy700 4b
V U UAadt UAadt—i-nT}U AA<dt)’

“dt “dt dt

d dt ~iadt d _dt
- C OOAb cAa - QO_A_ 5c e
AU A A ) U g 4% )

V=0t - “UOA’;ji ;jtjt (ﬁaUOOAQZ—f) -7®,

. dtd oo di dt\? 2 on o dE
Xe=—vye_ —— [ pbydas= - = L Ay [
Ji dt <” bdt) *3 (dt) 72 (77 cdt)

d_2t d (ﬁCUOGA&th) dt d }}@()

" N - df dt dt
X@ — Y(Lb cyaOAb N chbAa + 77 UdYOOAaAb ( >

(4.4.46)

dt dt
Combining this with (4.4.7) gives the full coordinate transformations for the

quadrupole. O

Equation and equation (4.4.23)) are a new result, and are numerically tested
in the next chapter to show their validity. In a coordinate transformation where
there is no change in the time coordinate, Ag = 0. This reduces equations
and equation to equations and respectively. This work has
transformed between two coordinate time frames, but can be generalised to any

frame, not just one where 1° = 1, with a more general projection
1 7

N
80 == E&, - ﬁa@ (4447)
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Chapter 5

Numerical validation of the moment
tracking and cooordinate

transformations around a black hole

5.1 Developing the simulation

To test the accuracy of the moment tracking and coordinate transformation
equations, a computational model was developed. The code tests whether the
truncation to quadrupole order is acceptable, or if a higher order multipole expansion
should be used for practical cases. The results presented here are an example of a
coordinate transformation that mixes time and space coordinates, focussing on the
particularly challenging case of black holes. It is important to stress that whilst
black holes are the focus of this numerical validation, the applications of this work
are not solely limited to plasma around black holes. In particular, the moment

tracking can be applied to any plasma, and to particle accelerators.

In all cases, only uncharged particles will be tracked. To calculate the inter-
macroparticle forces needed for a full PIC code, a method to use the moments

to deposit the charge from a macroparticle onto the grid must be developed. Two
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transformations around a black hole

different methods to do this are presented in chapter [6]

To develop the code, the derivatives of the Vlasov equation were calculated using
the symbolic algebra software Maple. The simulation itself was written in C++.
There are 36 first derivatives of the Vlasov equation and 126 second derivatives.
Each of these derivatives are very complex, hence the need to calculate them using
symbolic algebra software. To give an example of this complexity, in Schwarzschild

coordinates (t,r,0, ¢, u,, ug, uy), one derivative of the Vlasov field is

oWt 1 [ (r—r)rsug
r(—1+%)

Oug u?
(r—rs)rsu® s u% 2
2 < 2r3 2r(r—rs) rue

u’ (—1 — 11@ — r2uf — 12 (sin® (0)) u

T

2 ((=r+ry) ug — (r—rs) (sin® (0)) u3) r?ug

u’ ( 2u? — r2 (sin® (0)) u )
2

rrsu Ug
-0
(r—rs) <

ug — 2 (sin® (9)) ui) '

The model uses the forward Fuler method to integrate both the particle motion and

+2(—r+ry) u@)

(5.1.1)

the moment equations [97]. Particle positions are updated using the 3-velocities

ut/u®, and the 4-velocities are updated using the geodesic equation,

xﬁew = xgld + Old At (512&)
uold
b = Ul | — Thulqulyy At (5.1.2b)

where u” is defined by equation (2.1.2)) and At is the time step size. Moments are

updated using the equations

a
View

= V2 O, At + v COOWE AL, (5.1.3a)
vih, = (Vasomd, +V(§Z8bW&d) At. (5.1.3b)

new

Despite the high numerical error associated with the forward Euler method, it is

acceptable for use as a test to assess the validity of the equations, as the dominating
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error is not numerical.

5.2 The spacetimes modelled

To validate the model, tests were performed in both Schwarzschild and Kruskal-
Szekeres coordinates. The coordinates in Schwarzschild coordinates are denoted

with lowercase letters 5€st> = (t,r,0, ¢, u,, up, up), with metric

(SW):_<1_E> (Sw) _ 1
Yoo r y 911 1 — %’

Sw Sw .
A = = (),

(5.2.1)

where gff;w) is the metric in Schwarzschild coordinates.

Coordinates in Kruskal-Szekeres will be denoted with a capital letter, such that
the coordinates in Kruskal-Szekeres are 5&8) = (T,R,0,9,Ug,Ug,Us). The

transformation from Schwarzschild coordinates to Kruskal-Szekeres coordinates

(shown in figure [1.4a)) is given by

r r t

R=, /T—S -1 exp(zrs) COSh<2r5) , (5.2.2)
r r . t

T=, /7“_5 -1 exp(2rs) Slnh(%S) : (5.2.3)

s
Ut =" —E/KS)
05w

where the subscript (KS) indicates the coordinates in Kruskal-Szekeres. The metric

(5.2.4)

in Kruskal-Szekeres coordinates is given by

(KS) 47’3 —T (KS) 47“::’ —T
oo T ——_&XP\— |, 9u  — expl{— |,
T T T

S

(5.2.5)

gy =12 gy =rPsin’(0),

where r, the radial coordinate in Schwarzschild coordinates, can be found by the

=) 626
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transformations around a black hole

where W is the principal branch of the Lambert W function.

The numerical testing performed in this article uses moments on a scale that may be
considered small on astrophysical scales. This is because for numerical simulations in
Kruskal-Szekeres coordinates, it is impossible to run the model with large moments,
or for large amounts of time. As R is updated, the particle will eventually cross the
event horizon (the point 7% — R? = 1) due to numerical errors from updating the
position of the particle. This will happen with any numerical differential equation
solver that overestimates the true value. This is another reason it is important to
transform coordinates, so a full PIC simulation can be performed in Schwarzschild
coordinates, then transformed to Kruskal-Szekeres coordinates at the end, avoiding
these numerical issues. Although the variation in the metric over the domain
represented by the macroparticle and its moments may be small, this does not

mean the derivatives of the metric, which the moments couple to, are small.

5.3 Computational results

To test the model, the motion of 200 particles that began normally distributed at
r = 30000 in Schwarzschild coordinates with Schwarzschild radius r, = 3000, and a
time step size of At = 0.01 were modelled. These particles were also transformed
into Kruskal-Szekeres coordinates. In both spacetimes, the particles were tracked
using equation and the moments taken at ¢t = 10. Moments were also taken
at t = 0 and tracked using equation . When taking the moments, recall that
f is a density, so the effect of curved spacetime adding a measure to the integrals
is included in the definition of f. Running the simulation until ¢ = 10 corresponds
to 0.001% of an orbit around the black hole. Whilst this is small, it is required
because of the very small numerical time step required for stability in Kruskal-
Szekeres coordinates, and because of the relatively large number of particles being

tracked on a single core.
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5.8. Computational results

By modelling particles at a radius of 10r,, the accretion disc of the black hole
can be studied. Once the accuracy of the moment tracking model at this distance
from the black hole has been established, the accuracy of our model in the extreme

environments close to the Schwarzschild radius can be examined.

x107°

. Initial distribution R
X Centre of orbit

— Particle tracking °
2 Moment tracking e '. o T eee
Kruskal Particle tracking ¢ .’,':. oS * .'. .
Ugp ——  Kruskal Moment tracking ",.' .

29999.99998 30000.00000 30000.00002
r

(a) t =0, all ellipses overlap.
x107°

o Final distribution tracked in Schwarzschild I
— Particle tracking .l \
Moment tracking ° %
2 X Centre of orbit .%o

Ug

—2
29999.9995 30000.0000 30000.0005

(b) t = 10 showing particles and moments tracked in Schwarzschild

coordinates.
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x10~°

Final distribution tracked in Kruskal-Szekeres
Kruskal Particle tracking

——  Kruskal Moment tracking

2 X Centre of orbit

0

-2
30000.06 30000.08 30000.10
r

(c) t = 10 showing the same particles transformed to Kruskal-Szekeres
coordinates, then the moments and particles tracked, then transformed

back to Schwarzschild coordinates.

Figure 5.1: The (r,u,) phase space portraits in Schwarzschild coordinates for the
individual particles, the centre of orbit with the path n, and the ellipses used to
visualise the actual moments and tracked moments of these particles. Also shown
are the ellipses generated from tracking the same particles and their moments in
Kruskal-Szekeres coordinates, then the moments coordinate transformed back into
Schwarzschild coordinates. These ellipses show the range that 95% of particles
will be within, if the particles are normally distributed. The reason that 95%

of particles are not within the ellipses in [5.1d and [5.10 is because the data is

no longer normally distributed. Note that if just a standard macroparticle was
tracked, only the centre of orbit would be known. [Associated dataset available at

http://dx.doi.org/10.5281 /zenodo.8082181] (Ref. [98]).
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The results of the tracking are shown in figure [5.1) with the moments used to
calculate confidence ellipses in Schwarzschild spacetime. Figure [5.1] shows two
things: firstly, whilst there is some deviation between the moment tracking and
particle tracking ellipses, neither accurately reflect the underlying distribution of
particles. This is because the data develops a large skew, as the faster particles
orbits get thrown radially outwards. This means the particle distribution is no longer
normally distributed, and as such, cannot be modelled accurately with just the first
and second order moments. To improve this, higher order moments will also need
to be tracked. All models correctly predict the spread in the radial coordinate, such
that if the r and ug axes were equally scaled, all models would correctly predict
a long, horizontally thin ellipse. The second feature is that whilst the data is
initially uncoupled, the velocity and position very quickly develop a covariance (a
V1 moment), coupling the ugs and r motion together. This is an expected result,
as particles with a larger magnitude of u, than the one required for a circular orbit

are spiralling away from the event horizon.

There is a noticeable displacement in the radial coordinate in the Kruskal-Szekeres
coordinates tracking (figure from 30000 to 30000.08. This is because in
Kruskal-Szekeres coordinates, small errors from the numerical integration will
compound, and result in the ideal orbit drifting from its expected position. This
compounding of errors is because Kruskal-Szekeres coordinates involve exponential
functions, so small deviations can result in substantial offsets, which cannot be
reduced by decreasing step size. This effect is small, and can be avoided by
prescribing n beforehand, if it is known. If 7 is cannot be prescribed before the
simulation is run this is still only a minor issue, as the offset from these numerical

factors is likely to be small compared to the other effects within a plasma.

71



Chapter 5. Numerical validation of the moment tracking and cooordinate
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To quantify the error in the model, there are six different errors that are analysed:
€sp—sm) Esp—kp» €sp—km, €kp—km, €kp—sp, aNd €xp_sm. These errors are defined in table
.1l The subscript sp represents that particles were tracked, then the moments
taken at the end of the simulation, all in Schwarzschild coordinates. A subscript km
represents moments being tracked in Kruskal-Szekeres coordinates. These subscripts
are defined pictorially in figure[5.2] A hatted V' in table [5.1] represents a coordinate
transformation. As an example, €sp_gm represents the difference between tracking
the group of particles and taking their moments at the end (the black ellipse in
figure , compared to tracking the moments using equations and
(the blue ellipse in figure , all in Schwarzschild coordinates. These errors
assess either the error in the moment tracking model, the error in the coordinate
transformations, or the combined error of both. These six errors allow both the errors
in moment tracking and coordinate transformations to be quantified and measured

over time.

The error €xm_sm could also be calculated, to show the error in the coordinate
transformations between two different sets of tracked moments. The origin of this
error would not be discernible, as it would be impossible to distinguish between
errors caused by moment tracking in either coordinate system, or the error from the

coordinate transformation.

To examine the error, another simulation was performed, again around a black hole
with Schwarzschild radius ry, = 3000, and an ideal circular orbit at » = 30000
in Schwarzschild coordinates. For these simulations the number of particles was
decreased to 20, and the time step used was increased to At = 0.1, with 10°
total iterations. This adjustment was made to allow the simulation to run for
more iterations, to obtain information about the long term behaviour of the model.
Note the time step size is in the respective frame, so ¢ = 10000 in Schwarzschild

coordinates corresponds to T = 1200 in Kruskal-Szekeres coordinates. This amount
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Schwarzschild Transform coordinates Kruskal-
< Szekeres

\
spacetime Y ” <
p coordinates

Transport Take Take Transport
particles moments moments particles

Transport Transport
moments moments
Take Take
moments ‘/sm Vkm moments
€sp—k
~ °r - ekp—sp ~
‘/sp Vkp
€sp—kp
Figure 5.2: The model used to test the moment tracking and coordinate
transformation theories. The error in the moment tracking model 1is the

difference between transporting the moments and transporting the particles then
taking moments. The error in coordinate transforming is the difference between
transporting particles then taking moments in each frame. The combined error is
the difference between transporting the moments in one frame, compared to tracking

particle in the other. The errors are defined algebraically in table .

of time corresponds to 1.1% of a complete orbit. Whilst this is again small, it is
required due to the numerical instability of Kruskal-Szekeres coordinates. Figure
[5.3] shows the three different total errors as functions of time, where the particles

are normally distributed around the ideal orbit with variance 1072" in all dimensions.

In all cases the error rapidly grows, before stabilising. This is because, as shown in
figure [5.1D] there is a large radial dipole moment after only a small amount of time.
Because the V! moment is large, a small error then dominates compared to all other

errors. Despite this, the total error is still relatively small.

The error from the coordinate transformations is more substantial than the error

from the moment tracking. It is postulated that this increased error is because the
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104 J 1072 — - -
\r\/r /
| -5\

€ 107 . 10 ;

“ €sp—sm €kp—km

10-8 ‘} €sp—kp 1078 €kp-sp
| €sp—km €kp—sm
|

2000 4000 6000 8000 200 400 600 800 1000
Time Time

(a) Schwarzschild coordinates. (b) Kruskal-Szekeres coordinates. Note

both blue and pink lines overlap.

Figure 5.3: The total error as a function of time for the different

types of errors the theory can generate. [Associated dataset available at

http://dx.doi.org/10.5281 /zenodo.8082181] (Ref. [98]).

higher order moments affect the coordinate transformations twice: once during the
coordinate transformation (during equation (4.4.7))), and once during the projection
(during equation (4.4.20])). This suggests that for a moment tracking code that
also incorporates a coordinate transformation, a higher order of moments will be
needed. The bumps and discontinuities in the results are due to particles passing
the macroparticle centre. If a particle is travelling faster than the macroparticle
centre, the particle tracking moments (e.g. Vip) will decrease, then increase once
the particle passes the macroparticle centre. The moment tracking code will not see
this behaviour, and will track the moments as always either decreasing or increasing,
rather than the true mixture of both. These discontinuities are an intrinsic part
of modelling moments. They can be avoided by sorting the particles before the

modelling starts, so higher speed particles are ahead of the macroparticle centre,

but this is no longer realistic.
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10*
104 €sp—sm €kp—km =

€sp—kp €kp—sp
10!

€ 101 €sp—km € €kp—sm
02 1072

10°° 10°° 107 10°° 10°° 107
Hsp Hxp
(a) Schwarzschild coordinates. (b) Kruskal-Szekeres coordinates. Note

blue and pink lines overlap for pg, <

1075,

Figure 5.4: The total error as a function of u, the initial total moment, for
the different kinds of errors the model can create. The gradient of the lines is

approzimately linear in low u, and approximately 1.7 for larger p. [Associated

dataset available at http://dx.doi.org/10.5281/2zenodo.8082181] (Ref. [98]).

To study the magnitude of the error, rather than just the shape, three main sources of
error can be identified: floating point errors, numerical errors (the error arising from
finite step size in numerical integration), and truncation errors (the error arising from
truncating the multipole expansion at second order). These errors will dominate in

different ways depending on the size of the total initial moments p, where
2
= ‘V%ZO‘ + 3 Ve (5.3.1)
a ab

Floating point errors can arise from a sufficiently small time step and small number
of iterations in any numerical differential equation solver, but in the case of this
work they also dominate if the moments are very small i.e. u ~ 1071°. Numerical
errors arise from the choice of integrator used, and in the case of forward Euler, are
linear in At. The truncation errors arise from only running the moment tracking
code up to quadrupole order. There is an infinite expansion of moments, which is
truncated to quadrupole order in this thesis. Including more moments will decrease

the total error. At the quadrupole level, the truncation error is quadratic. This
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means total error e(u) &~ p?. This is verified in figure . The error is linear in the
low p regime, where numerical errors dominate, and as p increases, the total error
increases at about e(u) ~ p'7. This is a combination of the predicted quadratic
increase, and the numerical error. This quadratic behaviour suggests that if the

moments are half the size, the total error will be quartered.
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Error and description of the error

S \/za\v;;, VY,

The error between tracking particles then taking moments, compared to tracking

ab ab
Vep — Vom

moments, both in Schwarzschild coordinates.

2
€sp—kp — \/Za + Z@

The error between tracking particles and taking moments in Kruskal-Szekeres

a ra
VvSP o Vkp

ab rab
‘/sp - Vkp

coordinates then transforming these into moments in Schwarzschild coordinates,

compared to tracking particles and taking moments in Schwarzschild coordinates.

2
Esp—km = \/Za + 2@

The error between tracking moments in Kruskal-Szekeres coordinates then

ab ~rab
Vsp — Vi

km

a Cra
‘/;p - Vkm

transforming these into moments in Schwarzschild coordinates, compared to tracking

moments in Schwarzschild coordinates.

The error between tracking particles then taking moments, compared to tracking

ab ab

km

moments, both in Kruskal-Szekeres coordinates.

2
€kp—sp — \/Za + Z@

The error between tracking particles and taking moments in Schwarzschild

ab _ yrab
Vkp - ‘/SP

a ra
Vkp - ‘/SP

coordinates then transforming these into moments in Kruskal-Szekeres coordinates,

compared to tracking particles and taking moments in Kruskal-Szekeres coordinates.

2
€kp—sm — \/Za + Z@

The error between tracking moments in Schwarzschild coordinates then transforming

ab Crab
Vip — Vsm

a Cra
Vip — Vem

these into moments in Kruskal-Szekeres coordinates, compared to tracking moments

in Kruskal-Szekeres coordinates.

Table 5.1: The types of error the numerical testing generates. These errors show
the accuracy of both the moment tracking model and the coordinate transformations
by comparing the results to a particle tracking model. Figure|5.4 shows these errors

diagrammatically.

77



Chapter 6

Constructing a charge and current

from a set of moments

6.1 Introduction

The differential equations for the moments are only one step of a PIC code using
moment tracking. The next step is to use a set of moments to find the charge and
current distributions of a macroparticle (figure . In this chapter, two different
methods will be presented to do this. The first method approximates the original
distribution function used to find the moments, then integrates this to find the charge
and current. The second method integrates the Ellis representation of the 7-current
over velocity space, to find the Ellis representation of the 4-current. Finding the
4-current needed to create this distributional 4-current gives another method to find
the charge and current from the distributional 7-current. The chapter is concluded
by numerically testing both methods to assess their accuracy, then discussing the

advantages and disadvantages of each method.
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6.2. Multi-index notation

6.2 Multi-index notation

The reconstruction method presented here can be generalised to arbitrary dimen-
sions, and using arbitrarily large order of multipoles. This requires a notation that
collects a set of quantities into a single column vector. These column vectors will

be defined by a symbol, representing a dimension and a maximum order.

Capitalised boldface Latin characters I, K denote a column vector of dimension 6

and maximum order 2, such that &I is a column vector of length 28, given by
€267, €265, 6363, €364 €367, €365, et 17 €460, €565, €568, 65¢%) T . (6.2.1)
Capitalised boldface Greek characters 3, A denote denote a column vector of

dimension 3 and maximum order 2, such that £€* is a column vector of length

10, given by
€% = (1,¢1,6%,6,6'¢", €167, 663,628, £2¢%, 6%6%) . (6.2.2)

If the index is a superscript it represents a set of powers, as above. If the index is a

subscript this column vector is just a set of scalar fields, for example

©1 = (2, 01,2, - -+, 06, P11, P12, P13, - - - » Pes) (6.2.3)

Since the location of an index indicates whether it is a set of numbers or a list of
powers, summations over these indices are written explicitly. An example summation

over I is

Y &N = 0o+ pal® + puEL. (6.2.4)
I

By using this notation, multipoles can be collected into a single index, which is

useful for the reconstruction algorithms presented in this chapter.
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Chapter 6. Constructing a charge and current from a set of moments

6.3 The reconstruction algorithm

In this section, a method for reconstructing a distribution function from a set of
moments is proposed. This method was outlined in one dimension by Wright [99).
Consider a distribution function density f. This section shows how a distribution
function density f that has the same moments as the initial f can be constructed.

The reconstructed distribution function density is defined as

% (ﬁ) =D k¢ @ (6.3.1)

where @k are model densities, and ck are weighting coefficients. These model
densities are a set of scalar field densities that is used to approximate the original
distribution function f. Picking a model density is a choice, and will depend on the
situation. The simplest choice of model density is to use a top-hat function in every

dimension,

Pk (g) = %00 (6.3.2)

—_
—
[

m
A\

[l

A
o

= (6.3.3)
0 otherwise

where £ and &, give the width of the top-hat function. Appropriate values for £
and éi_will dep_end on the original § being reconstructed. A top-hat function is n&
the o_nly choice. If the original distribution function is known to be a Gaussian, it
may make more sense to choose , to be a Gaussian. The quadrupole moments can
be used to define the covariances needed for a multi-dimensional Gaussian. In this

thesis only top-hat model densities will be used.

Since f is defined to have the same moments as f,
— )t = —n)'§do¢ = — ) d° 6.3.4
Le-nride= [ie-wtiac=3 [-wtecats 3

denoting the column-vector of moments on the left hand side as aj, and pulling the
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ck coefficients out of the integral,

ar=> cx /E (& —m)tordie (6.3.5)

= kB (6.3.6)
K

where
Bra = [ (¢~ )’ (6:37)
b
so there is a linear system of equations which can be solved to find ck. This gives

the reconstructed f, which can then be used to find various physical quantities of

the plasma.

Physical quantities associated with the plasma (plasma moments) can be found by
integrating the reconstructed distribution function density over the velocity space,
the charge p and current T are given by
p=q | fdPu (6.3.8)
&p

I ut 3
T =g¢q . Vfd U (6.3.9)

P

where the charge and currents are scalar field densities, rather than just scalar fields,
and &, denotes the integration bounds of velocity space (formally this is the fibre
associated with point p). Higher order plasma moments can also be found from this.

The pressure tensor of a plasma, t#% is given by

BV
o — q/ s, (6.3.10)
£ Y

It does not make sense to construct a plasma moment of an order higher than the
moments used to reconstruct f This is because there is no control over the high
order moments when finding f, so there is no guarantee they will be similar to the
original moments of §. The approximation to a plasma moment of the same order
as the highest moment tracked may not be accurate, as it is likely the truncation
will affect the accuracy of this reconstruction. The accuracy of this reconstruction

algorithm for higher order moments has not been studied, and is future work.
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6.3.1 A 1D example

To explain the multi-index notation used in this section, it is worth doing a simple
one-dimensional example of the reconstruction algorithm, as this will allow an
understanding of the notation, and some properties of the reconstruction algorithm

to be seen.

Consider f(z), where f is now a function of € R only. Taking moments around

some point zy gives the moments

q fRfd:E
a= V| =] [i(@—x)fdr |- (6.3.11)
748 Jp(@ — x0)? fdx

The model function reconstructing this, f, is given by

Cy

~

f(l"):(s@o(x) x po(z) xQQOO(x)) a |- (6.3.12)

C11

To take the moments of this, premultiply both sides by (x — )T, recalling that ]E

has the same moments as f, and integrate,

1 Co
a= / (z — x0) (SOO ey ° 900> ¢ | dr. (6.3.13)
R
(ZL‘ — 5(70)2 C11

Multiplying the first terms together to give a matrix, and pulling the integral into

the matrix as c are constants,

fR podx fR T podx IR z* podx Co
a= | [o(x—z0)podr [p(x—x0)xpodr  [p(x — m0) 2 poda 1

Je(@ —x0)? podz [ (x —x0)* x podx [ (x — x0)* 2 odx | \ c1y
(6.3.14)

giving the equation

a = Bec. (6.3.15)
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Solving this linear system of equations gives c, in turn giving f

As a explicit example, consider the specific example of a parabola,

ar’ +br+c if - <ax<ax,
f= (6.3.16)

0 otherwise

where x_ and z, are the two roots of the parabola (it shall be assumed these are

not repeating and are real). Taking the moments of f about xy = 0 (for simplicity)

gives
q Je(az? + bz + c)dx
a= V| =1 [i(az®+ba® + cx)dzx |- (6.3.17)
Vi Je(az* + bz® 4 ca?)dx

Rearranging this into a matrix equation,

Jplde [pxdr [ 2*dx c
a=| [ode [j2*de [ 2°dx b (6.3.18)
fR 22 dx fR 23 dx fR xtdx a

where terms have been rearranged into this order to compare to the reconstruction

formula. Assuming the model top-hat function ¢ has the same width as the support

of §, then comparing this to equation ((6.3.14)) gives

Cyx C
Cc = c1 =19 (6319)
C11 a

so if the width of the model function matches the width of the parabola exactly,
then the reconstruction algorithm is exact for a parabola. This provides a useful

sanity check for verifying the model numerically in section [6.5
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6.4 Using the Ellis representation of moments to

deposit charge and current

The method discussed for finding the 4-current using moments reconstructs the
entire distribution function §, then integrates this over velocity space. An alternative
method directly finds the 4-current from the moments in a single step. This is done
by creating a distributional 4-current, and finding a current that when squeezed, is
related to that distribution. By doing this, the integrals over velocity space can be

avoided.

The 7-current can be reduced to a 4-current T# by integrating across velocity space,

‘Zﬂ|p:/ JrdPu. (6.4.1)
1

P

The choice to only take the spatial components of J* is because these correspond
to the components of the 4-current. In section [8.5 it is shown through differential
geometry that the velocity components of the 7-current vanish when the 7-current

is projected from & onto the base spatial manifold.

The 4-current T# is the source term in Maxwell’s equations, although care must be
taken to check if the electric and magnetic fields are densities of weight 1 or densities
of weight 0. In this thesis the electric and magnetic fields are densities of weight 0.
This means that the 4-current must be divided by the measure {2y to be used in the
continuous Maxwell’s equations. Alternatively, it can be integrated across a cell.
This gives a discretised current, used in the finite difference Maxwell’s equations

(this process is discussed in more detail in section [7.3.4)).
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Similarly, the Ellis representation of the 7-current can be reduced to the Ellis

representation of the 4-current, Z#, by integrating over velocity space,

" = / TrdPu. (6.4.2)
15

P

This gives

- / Cr e (ayap(s(?’)(:c - C)) dt
2 | v
. / g1 Xve (ap5<3>(g; - C)) dt — / Ve (9,69 (x — C)) dt
R a R

+/55X”5<3>(x—0) dt+/C“q5(3)(x—C) dt. (6.4.3)
R R

where

68z —C) = o(x — CY) o(x* — C?) 6(2® — C3). (6.4.4)

Proof. To calculate the integral over velocity space, note two properties of the Dirac

delta function, for some function of time only h(t),

/R h(t)d(z)dz = h(t), / h(t) dxa( x)dx i agf;)a(x)dx =0.  (6.4.5)

Using these properties,

// HV (9,061 (€ — n))d3udt—// 5 Xt (0,60 (¢ — 1)) du dt
& €
_// 7'7#1/9 895(6)@_77) dgudt—i—// 55XQ5(6)(§—77)d3udt
R JE, wJe,
+// 0 g8 9 (¢ —n)d*udt. (6.4.6)
R JE,

Splitting V¥ into VA2, 2V¥e+3) (the factor of two is due to symmetry), and
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Vwtdetd): and splitting X% into X% and Xb*%) gives

_1 / / TAE: ayap5<6>(5—n)) dPu dt
2 Jr Je, o
// ”VV 86 +35()(5 U))dBUdt
_|__// T']uvz+3)(g+3 (ay+3ap+35(6)(€_n)) A3 dt
2 Jr & -
— / / o X 835(6)(5—7;) d3udt— / / 5gX@<B+3> Op30 @ (€ — n)) du dt
// Ve (9,696 —n)) d3udt—// VTR (9300 (€ — ) dPudt
& &
+// oy X6 (§—n)d3udt+// W q 8O (€ —n)dPudt. (6.4.7)
R JE& R JEp

Performing all the integrals, using the Dirac delta function identities given in

equation (|6 , gives
1
no_ = N1 V77 B —
T Q/Rn v (azaga ( 0)) dt
- / o1 xte <8B(5(3)(x—0)) dt — / VY (9,00 (z — C)) dt
R R
+/5;;Xb5<3>(x—0) dt+/7'7“q6(3)(x—0) dt (6.4.8)
R R
since
(&' =n") 8(E3=n*) 6( =) = 0(a' =C") (2~ C?) 6(2* ~C®) = 6@ (2 —-C). (6.4.9)

Note that whilst terms of the form X#*3 are still present, it is impossible to extract
these components since the Kronecker delta upper index only ranges from 0 — 3.

Additionally, since n* = C*, this can also be rewritten. Combining these gives

equation ((6.4.3)). O

This acts on test functions ¢, (¢, z), to give

/ Th¢,d'z = / CH VY20, 0,y dt — / X%0,0,|c dt
y o

—/C“V”ﬁu%lcdtﬂL/ X”¢u|cdt+/0”q¢ufcdt- (6.4.10)
R R o R
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6.4. Using the Ellis representation of moments to deposit charge and current

This distributional 4-current is the distributional version of the 4-current T used
in Maxwell’s equations. This means that if there is a 4-current such that, when
squeezed, gives the same moments as Z, this 4-current is the 4-current associated
with the macroparticle. This avoids having to create model functions in velocity

space.

Using the language of differential forms, the 4-current 3-form is given by %(t, z),
where x are the spatial coordinates. Through a process analogous to the squeezing
in section [4.2] there exists a one parameter family of smooth 3-forms adapted to the

time slicing,

z—C

1 ‘ ,
Te= 5V <t, > i, dt A dx'P, (6.4.11)

This can be wedged this against a test form ¢,

1 — .
ONT = T (t, = . C) G (t, z)dt A dx' . (6.4.12)

Similarly to the squeezed distribution function f in section [4.2]
OAT. =T"¢, + O(c?) (6.4.13)

where

+ / oM XL (€ —n)dt + / CHq6® (¢ —n)dt. (6.4.14)
R R
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The components of Z* are given by

0= [ s
M
XE 4 qCt = / TH(t, 2)d>%
M
= e/ T(t, 2) (2% — O%) d*2
M
Xty CrVY = ¢ / TH(t, &) (2 — C) &2
M
Vi = ¢ / Tt &) (2 — C¥) (i — C2) &’
M
CLV™E = ¢ / TH(L, 1) (2% — C) (22 — C?) d*%.
M
where M represents an integration over the spatial components of M.
Proof. Begin by introducing the substitution
. z—=C
E =
€
gives
TNAG=Tt,2)u(t, ek + C)d'3.
Now Taylor expand this about ¢,
~ N A AV 1% a(b/l 4 A,
TNG=TH(t,2)p,|cd T + €TH(t, 2) (2% — C*) gL d*z
~lc
1 2t 5 (AL ANEY/ p 82(25/‘ 45
+26‘Z(t,£)(3§' C*) (22— C?) Gxﬁaxﬂcdx'
Integrating this, and splitting into the ¢ and ¢,, terms,
/ TNO= / T(t, 2)polod*® +/ TE(t, 2) byl od
M M M -
0
+ e/ T(t, 2) (2% — CY) % d*z + e/ Th(t, z) (2% — C%) O
M &Eﬂ C M 5$Z C
1 2 0 A A A a2¢0 A ~
- ¢ v ov) (32— ) — 0 | g
—|—26 /M‘I(,Q)(x C*) (z C)ﬁxﬁ&tkc Z
1, L+ 5 (4L v (4P P a2¢ﬁ 45
+ 5€ /M‘Z(t,g) (¥ — C*%) (22— C?) S BaL ) .

88

(6.4.15a)
(6.4.15b)
(6.4.15¢)
(6.4.15d)
(6.4.15¢)

(6.4.15¢)

(6.4.16)

(6.4.17)

(6.4.18)

d*z

(6.4.19)



6.4. Using the Ellis representation of moments to deposit charge and current

Splitting these integrals up into spatial and temporal terms

fuzono= [([ eaes)ateas [ f o002 o
0 A AV W 334 a¢0
—i—/R(e/MZ(t,g)(x C)dx) 8xﬂcdt
0p,
~ Ay w34 13
—l—/R(e/MT“(t,g)(x C’)dx) 8xﬁcdt
1 02
+5 /R (62 /M Tt &) (8% — C¥) (32 — C2) d%) angzv
1 (s i N\ 99
* 2 /R <€2 /M D (- 09 (E -8 d?’x) &L’Baiz

Comparing this to equation (6.4.10), noting C° = 1, gives equation (6.4.15), as

C

dt. (6.4.20)
C

required. O

This gives a method to find the 4-current, using each T+ as a different test density,

without needing reconstruct over the velocity coordinates.

Let € be the reconstructed 4-current, where, similarly to the previous section, it is

defined as
T = cudh (6.4.21)

»
Taking the moments of this gives

ay = Z (x — C’)E/ cxdhd’y = Z csBS\ (6.4.22)
2 M

b

where similarly to the previous section,
BL, = / (z — C) phdP, (6.4.23)
M
and a)y is defined from equations (/6.4.15)), i.e.

) = (q, V!, V2 V3 VI V2 ps y s )t (6.4.24)
ap = (X1 +qCh XM+ OV X 4 OV XE 4 OV, (6.4.25)

Clvll Crlvl2 Cvlvl3 Clv?? Crlv23 C«lv33>T
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Chapter 6. Constructing a charge and current from a set of moments

etc.

This gives 4 scalar fields that must be reconstructed to find the 4-current, in exchange
the lack of integration over the velocity space means the reconstruction requires half
the number of integrals. Additionally, by not integrating over velocity space, all
integrals can be calculated analytically. This is in contrast to the reconstruction
approach presented in section , where to find the current (equation (6.3.9))),
an integral had to be performed including a 1/ term, which can only be solved

numerically.

In section a more geometric approach to this deposition process will be shown,
where the current 3-form will be derived through a projection of the 7-current onto

the base spatial manifold.

6.5 Numerical validation of the moment reconstruc-

tion methods

To validate both methods of generating a 4-current from a set of moments, begin
with some distribution function density f. The moments of § can be taken, to give
J?. From here there are two possible ways to find the 4-current. Firstly, f can be
reconstructed using the method in section [6.3] and then the 4-current found using
equation . This will be referred to as the reconstruction method. Alternatively,
the projection method presented in section can be used, and then a 4-current
reconstructed from the distributional 4-current. This method will be referred to as
the projection method. Both of these methods can then be compared to the 4-current
found directly from using equation (|6.3.9)) with f, denoted as the direct method. This
testing procedure is explained pictorially in figure
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6.5. Numerical validation of the moment reconstruction methods

Take moments
f > J¢
Project down to M Reconstruct
Integrate f e
across velocity space v f

Reconstruct Integrate f
across velocity space
T ¢- . Error in S T .
direct D projection method projection reconstruction
S -y

Error in reconstruction method

Figure 6.1: The different ways to calculate the j-current from a set of moments
J?, which has moments generated by §. The error in the reconstruction method is the
difference between the J-current generated by reconstructing f, compared to finding
the 4-current directly from §. The error in the projection method is the difference
between the 4-current found through projecting J* onto M, compared to finding the

4-current directly from f.

To reconstruct the functions, the algorithm was written in C++, so that it can be
combined with the moment tracking code developed in chapter[5|as part of a full PIC
code. The matrices and column vectors required for the reconstruction algorithms
were implemented using the external library Eigen3 [100]. The linear system of
equations was solved numerically using the LU factorisation method [97]. This
algorithm is numerically slow, but highly accurate, so it the best choice for testing
the accuracy of the reconstruction process. This is because errors in the results
will be due to issues with the reconstruction or projection methods, rather than the
numerical process used. Integrals over position space are solved analytically, whilst

integrals over velocity space are solved numerically, using Gaussian quadrature [97].
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Chapter 6. Constructing a charge and current from a set of moments

In all cases, the choice of model function will be the function

Yo = QOO,x(m) QOO,y(y) 900,2(2) L0, g <Ux> Wo,uy (Uy) ©o,u. (uz>’ (651)

where

wor =1 if 0<2<10, O otherwise

oy =0(y)

wo.=1 i —=5<2<5H, 0 otherwise
(6.5.2)

Cou, =1 if —3<wu, <3, 0 otherwise

Po.u, = 0(uy)
You, =1 it 1 <u, <5, 0 otherwise,
where 6(y) and d(u,) represent Dirac delta functions. The projection method uses
the same model function without the velocity components. This corresponds to
a top-hat function in z,z,u,, and u,, and a Dirac delta function in y and wu,.
Additionally to calculate X#¥ X“ and C*, it shall be assumed the particle is
travelling in a straight line along * =y = 0, u, = u, = 0, and u, = 3. The particles
will be travelling in flat space, so u’ = v, the Lorentz factor. These assumptions
show how simple functions affect the accuracy of the projection and reconstruction

methods compared to the direct method.

First consider an f that has a support identical to the support of the top hat model
density. Figures and show the ¥, and ¥, components for a parabola and
a bump function respectively. The reconstruction method parabola matches the
direct method exactly. This is because when working up to quadrupole moments,
the reconstructed model function becomes a parabola. This was shown in section
in the 1D case. The bump function is modelled well by the reconstruction
method in the centre, and less well towards the edge. This is because a second
order Taylor expansion of an exponential function will accurately model the centre

of the bump function, but poorly model the edges of the bump function, when the
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6.5. Numerical validation of the moment reconstruction methods

importance of higher order terms is significant.

Reconstruction Projection Direct Reconstruction Projection Direct
method method method method method method
x10=%
0.0 5 —
T—0.5
—-1.0 \/

(a) T, the projection method and direct (b)) ¥, the reconstruction method and

method overlap. direct method overlap.

Figure 6.2: The T, and T, components from an initial distribution function
f = —(x)(x — 10) o through the direct method, the projection method, and the

reconstruction method.

Reconstruction Projection Direct Reconstruction Projection Direct
method method method method method method
x10=17
0 0.2 fmeeeeeeeeeeee—— e ]
T, 7? T. 0.0
—4
—0.2
2 4 6 8 10 0 2 4 6 8 10
x x
(a) T, the projection method and direct (b) %,

method overlap.

Figure 6.3: The T, and T, components from an initial distribution function
f = exp (1,2_—1100) wo through the direct method, the projection method, and the

reconstruction method.

In figures and [6.3a], the T, current found through both the direct method and
projection method vanish. The reconstruction method ¥, current is not zero, but
is incredibly small, so is only non-zero from numerical errors. This is the expected

result; the distribution function f is even in w,, so the integrand in the 4-current
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Reconstruction Projection Direct
method method method
5.0 —

2.5 \
SZ \
0.0

—2.5

0 2 4 6 8 10
x

Figure 6.4: The T, component of current from an initial distribution function
f=—(x+3)(x—T)pyif 0 < a <7, 0 otherwise, through the direct method, the

projection method, and the reconstruction method.

equation (fu,/7v) is odd, so the integral vanishes. The T, component of 4-current

will not be considered for the other symmetric distribution functions being tested.

Figure shows a function where the width of the parabola is less than the width
of the model function. In this case the reconstruction method fails to accurately
reconstruct the function. This is because the reconstruction and projection methods
assume the function they are approximating is spread across the whole width of the
model function. This means care must be taken to make sure that the width of the
model function is close to the width of the actual function. When choosing a model
function, consideration must be made about its width. This will be a significant issue
in a full PIC code, where the width of the original distribution function is unknown,
and will change over time. By assuming the original distribution is parabolic, it may
be possible to numerically approximate the width of the parabola. This is done by
using the moments to solve a non-linear system of equations to find the roots of the
quadratic equation used to create the parabola. By doing this, the top-hat model

function can always be guaranteed to be the correct width.

94



6.5. Numerical validation of the moment reconstruction methods

Reconstruction Projection Direct
method method method
0.5
T, 0.0
—0.5
0 2 4 6 8 10
x

Figure 6.5: The T, component of current from an initial distribution function
f=—(u, — 1)(uy — 5) o, through the direct method, the projection method, and the

reconstruction method. The direct and reconstruction methods overlap.

In the case that the original function is a top-hat function in position, but some non-
flat function in the velocity coordinates, then the current will be constant, scaled
by the integral of u#/vy. Figures and show this. Again the reconstruction
method correctly models this to within numerical precision, whilst the projection
method does not give an accurate current. In the case that the width of the original
distribution in velocity space is less than the width of the model function used in the
reconstruction method (figure [6.6), the reconstruction method is still accurate, at
least in the non-relativistic limit. This is because whilst the velocity function might
not be correctly reconstructed, the integral over velocity space is still the same (by

definition of the algorithm).

In all cases, the projection method is inaccurate compared to the reconstruction
method. The reason for this can be seen by considering the definition of the 4-

current,

1 u'o o
(Zdirect = / _fd u. (653>
&

95



Chapter 6. Constructing a charge and current from a set of moments

Reconstruction Projection Direct
method method method
0.000
T:-0.001
—0.002
0 2 4 6 8 10
x

Figure 6.6: The T, component of current from an initial distribution function § =
—(uy —0.1)(uz +0.1) o for —0.1 < u, < 0.1, 0 otherwise, through the direct method,
the projection method, and the reconstruction method. The direct and reconstruction

methods overlap.

Consider a case where v = 1, so that the factors of v can be ignored. Integrating

this function over position space M,

/ Tl 2 = / ufdPudis = V2 (6.5.4)
M =

Compare this to (6.4.15b), using Maple to find X in the case C* = 0,02 = 0,z =
0,y =0, and v =~ 1 gives

/ T dr=X"'=V*— V¥, (6.5.5)
M

projection

so there is a discrepancy between the two methods. Since the projection method
uses X!, this is an infinite series that has been truncated to the quadrupole level.
This means the effect of higher order moments will be significant. How higher order
moments affect the accuracy of the projection method is improved is outside the

scope of this thesis, and is future work.

It is important to stress that even though the projection method is less accurate, it

has significant computational benefits. As it does not involve any integrals over
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6.5. Numerical validation of the moment reconstruction methods

velocity space, there is no numerical integration required to integrate the uf/~y
terms. Additionally, because there are no velocity integrals, the projection method
involves solving a system of 10 equations 4 times, compared to the reconstruction
method, which requires solving 28 simultaneous equations. Whilst this difference in
computational time is small at the quadrupole level, when this algorithm is extended
to higher order moments the effect will be significant. Additionally, since the error
in the projection method is due to the truncation, it may be reduced by increasing

the number of moments.
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Chapter 7

Creating an axially symmetric full

PIC code

7.1 Introduction

Having developed and numerically verified the theory for tracking moments and
reconstructing charge and current from these moments, a full PIC code using
moments can now be developed. Rather than simulating a full (3+3)D PIC code
(3 spatial dimensions + 3 velocity dimensions), a simpler case is to simulate a
‘1.5D’ PIC code. This 1.5D code models an axially symmetric system in cylindrical
coordinates. This represents the motion of particles through a straight section of a
particle accelerator, or an RF cavity. One particular application that is interesting to
simulate is that of a klystron. These are used for generating RF signals, and consist
of an electron gun, an RF cavity (the ‘buncher cavity’) to focus the electrons, and
then a decelerating cavity (the ‘catcher cavity’), where the RF signal is boosted due
to the decelerating electrons (figure [7.1)).

This chapter presents an outline of the steps needed to implement, test, and optimise
a cylindrically symmetric 1.5D moment tracking PIC code. This chapter only

outlines the code and how it can be tested and improved. No numerical results
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7.2. The 1.5D coordinate system

Buncher Drift Catching
cavity space cavity

Electron
gun E } { E Collector

Figure 7.1: The design principle of a klystron. An electron beam (the blue line) is

emitted from an electron gun. This beam passes through a bunching cavity followed by
a drift space, which longitudinally focusses the particles. They are then decelerated in
the catcher cavity, emitting radiation of an amplitude greater than the initial signal

used to accelerate the beam.

from a full 1.5D PIC code are presented. The structure of this chapter as follows:
Section explains the 1.5D coordinate system used in the axially symmetric PIC
code, and explains how this reduces the amount of information in the PIC code.
Section reviews existing techniques for updating the electromagnetic field, and
interpolating fields in PIC codes. This section also introduces the algorithms that
can be used for modelling the axially symmetric 1.5D PIC code. Section[7.4]explains
how this PIC code will be tested, and how existing issues with PIC codes will be
examined. Section describes future work, outlining how features can be added
to the PIC code to allow more moments to be tracked; and how structure within a

macroparticle can be modelled.

7.2 The 1.5D coordinate system

The cylindrical coordinates will be denoted (r,¢,z). The 1.5D code models the
motion of a macroparticle restricted to the r = 0 axis, so the only parameters that
can be updated for the macroparticles motion are the z and u, components. As the

motion of the macroparticle is restricted to the z-direction, the value of the Lorentz
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Chapter 7. Creating an azially symmetric full PIC code

Number of
Number of
Order of . differential equations
Information known | differential equations
moments tracked to solve relative to
to solve
a standard macro-particle

Monopole (zeroth order) z, U, 2 1
Dipole (first order) 2z, uy, VO 6 3
Quadrupole (second order) 2, u,, VO, Ve 16 8
Octopole (third order) Zu,, Ve, Vb yabe 36 18
Hexadecapole (fourth order) | z, u,, V@, Vb Vabe /abed 71 35.5

Table 7.1: The amount of information in a macroparticle that also tracks moments
compared to a standard macroparticle in the 1.5D model. Note, whilst the number
of differential equations relative to a standard macroparticle (the fourth column) is
larger than in the 5D case (table [1.1), there are less equations overall (the third

column).

factor, ~ is given by
u =y =+/1+ul (7.2.1)

The moments of the macroparticle will include both longitudinal and radial
components. The system is axially symmetric, so these macroparticles with their
moments can be thought of as representing ‘rings’ of charge. By excluding the axial
moments, there is less information each at time step, as outlined in table Since
the angular components in sums can be ignored (due to the symmetry), they will
not be considered in sums in this chapter. This means that in this chapter, Latin

indices range over 1,2, 3,4 and Greek indices will range over 1, 2.

Since the beam being simulated is axially symmetric, the beam does not move in the
angular direction. This restriction means that only certain components of Maxwell’s
equations need to be considered. Since the beam cannot rotate in the angular plane,
there will not be an E4 component of the electric field. Similarly, because of the
symmetry, there cannot be a radial or longitudinal magnetic field unless one is added

externally. Since the radial magnetic field is generated by dE,/dz or dE,/d¢ terms,
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7.3. The numerical methods needed for a full PIC code

and the longitudinal magnetic field is generated by dE,/dr or dE,/d¢ terms; all of
these terms vanish due to the axial symmetry. The B, field will still be considered
in the model, as low energy RF accelerators often include a solenoid to stop the

beam diverging radially from space-charge effects.

There is a choice to be made in whether this 1.5D algorithm is constructed in 2
dimensions from the beginning, or if the axial coordinates are integrated out. These
formulations will only differ by a factor of 27 in the moments. Since densities are
used for all the integrations, this effect can be included. We shall choose to construct
the system in 2 dimensions initially, since integrating axial coordinates at » = 0 is

ill defined. This is due to the singularity axial coordinates have along the r = 0 axis.

7.3 The numerical methods needed for a full PIC

code

7.3.1 Taking the initial moments

The first step of a PIC code is to split the initial distribution of particles into
macroparticles (figures and[1.3). In the case of a klystron, this initial distribution
is the beam from the electron gun. This beam will provide a constant stream
of particles in the z direction, and a distribution of particles in r,u, and wu,.
It it will be assumed that these particles are distributed as a parabola, since,
as previously shown, this results in an accurate reconstruction of current. As
previously mentioned, splitting the beam longitudinally results in each macroparticle
representing a ‘ring’ of charge. An example of how these rings are shaped from the

moments is given in figure [7.2]

101



Chapter 7. Creating an azially symmetric full PIC code

A Uz Uy
T \ TV“’” T « 14 3
N vrr V Uty
Vus
VT zZz
\%
20 z 20 z
T U,
Ve >0 v zus
\/ / Vurus \/
4«/
20 z z

Figure 7.2: An example of a ring represented by its moments. To picture this in 3

dimensions, the ring should be rotated around the z axis.

7.3.2 The particle and moment updating algorithms

In a particle-in-cell code in Cartesian coordinates, particles position and velocity are

updated by solving the Lorentz force,

dx u

— == 7.3.1
da ¢ uxB
—=—E . 7.3.2
. m ( T ) (7:3.2)

Note, this is not the same as the W& terms in the Vlasov equation. This is because
the coordinate being updated is u, rather than v. As previously discussed, u is the
velocity coordinate as it moves the singularity from v = ¢ = 1 to infinity, removing
the machine precision rounding error that occurs as a particle moves very close to

C.

102



7.3. The numerical methods needed for a full PIC code

In most PIC codes, the position and velocity are solved using the Boris algorithm
[101]. This algorithm is a leapfrog algorithm, which means the position and velocity
are not updated at the same time. The position is updated, then the velocity, then
the position again. This improves the numerical stability. Whilst the PIC code
presented in this chapter will not use the standard leapfrog algorithm used in many
PIC codes, it is still possible to get the enhanced accuracy of the particle pusher
section of the PIC code.

Recall the cylindrical symmetry, and that the centre of the macroparticle will always
be along the r = 0 axis. This means only the z and u, components of the motion

need to be updated. Position is updated using the forward Euler algorithm,

2E = s A (7.3.3)
f)/

Note these are at half time step positions, to get the stability from the leapfrog
algorithm. As there are no B, or B, fields along the axis (they must vanish along
the r-axis to be continuous), there will be no contribution to the motion of the
particles due to the magnetic field. This means the velocities can be updated using

a forward Euler method for the electric field,
1
utt =y R (7.3.4)

z z

1
where E. 2 is the electric field found at the half time step position.

Moments are updated using the Forward Euler method,

dve
TLQ+1 = Vng—i_ dtn At?
N v (7.3.5)

Whilst this method is prone to numerical errors when using a large time step, chapter
showed the dominating error was the truncation error, rather than numerical finite

time step integration errors. In the case that the error from using the forward Euler
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method becomes significant, the integration can be improved by using algorithms
such as implicit Runge-Kutta, although these are very computationally expensive.
Alternatively, a multistep model such as Adams-Bashforth could be used. These
solve the differential equations using several previous time steps, and have less

computational complexity than Runge-Kutta, but require more memory [97].

Note that whilst the F, and magnetic fields do not contribution to the position and
velocity of the macroparticle, they do affect the motion of the moments, as well the

E. field itself, and hence must be included.

7.3.3 Updating the electromagnetic fields
7.3.3.1 Discretisation of space

In PIC codes, rather than a continuous electromagnetic (EM) field defined
everywhere, the EM field is defined at discrete grid points. By discretising the
electromagnetic field, the fields between particles are not defined by the Coulomb
and Biot-Savart laws. Instead the current from a macroparticle is deposited onto
nearby grid points. This current is used to solve discretised Maxwell’s equations,

which then are interpolated to the particle’s position, to solve the Lorentz force.

Rather than defining all the components of the EM field at the same point, modern
PIC codes use a staggered grid. This grid was first proposed by Yee [102], and has
the advantage of ensuring that the divergence of the curl vanishes. By working in
cylindrical coordinates with an axial symmetry, it is possible to reduce the 3D grid
down to a 2D grid. This thesis uses the grid proposed in ref. [103]. By using a
2D grid the number of grid points scales as O(n?), rather than O(n?). This reduces
both the computational time it takes to update the grid, and the amount of memory
needed to store the grid points, without reducing the amount of information about
the electromagnetic fields. The grid used is shown in figure [7.3] Note that only

By, B,, E,, and j, are defined along the r = 0 axis. As previously mentioned, due
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to the axial symmetry Ey, B,, and j, vanish everywhere.

A
Unit cell

(1,)

Unit cell
(0,1)

Figure 7.3: The grid used for discretising Mazxwell’s equations, figure inspired by
[103]. Since the grid is azially symmetric, this can be converted to a 3D grid by
rotating the grid around the z axis. A black cross denotes the centre of a cell (the
point radius is at evaluated at in the field updating equations). Due to the azial

symmetry, the E, and B, fields will always vanish.

7.3.3.2 Updating the fields

Fields are updated by solving the dynamical Maxwell’s equations

dE 1 1
— = — B-——j 7.3.6
=V X = (7.3.6)
dB
— = — E. 3.
o V X (7.3.7)
There is no need to consider Gauss’ law
vV.E=" (7.3.8)
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since differentiating both sides with respect to time,

d d (p

= (V-E) =" (5> (7.3.9)
dE  1dp
Lo Lap 3.1

Using Ampére’s Law (equation ([7.3.6)),

1 1 dp
V- (VxB—-—j]|=—— 7.3.11
< % €0J) o dt ( )

1 1 dp
V- (VxB)——V.j=—— 7.3.12
(VxB) - —V-j= (13,12

. dp

j=— 7.3.13
Vej=— ( )

so if the divergence of j vanishes, charge is conserved.

To solve the relevant Maxwell’s equations on a discretised grid, a finite-difference
time domain (FDTD) algorithm is used. These algorithms solve partial differential
equations that involve temporal and spatial derivatives by using the discretised
spatial coordinates. In cylindrical coordinates, it is possible to exploit the rotational
symmetry to simplify the FDTD equations, since the derivatives with respect to ¢
can be ignored. From [103|, the equations used to update the electric fields are

By(k, 1) — By(k,l = 1)

Az
riBy (k1) — r_1 B (k — 1,1)

rk_%Ar

1
B, 1) = (k1) — ( ) at-Lpenar (1)
0

B (k1) = EX (k1) + ( ) At — %Jf(k, I)At.
0
(7.3.15)

where (k, 1) is used to refer to the field component in the (k, 1) cell (as in figure[7.3).

The equations for updating the magnetic fields are

. . Er(k, 1+ 1) — E™k,1
Byt (k,1) = By (k1) — ( ( AL ( >) At (7.3.16)
N (EZ(kJr 1,1) — Ez(k:,l)) As
Ar
B! (k, 1) = B (k,1). (7.3.17)
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7.3.3.3 Boundary conditions

To solve the EM field equations, it is not sufficient to just use Maxwell’s equations:
boundary conditions to describe how the field behaves at the edges of the simulation
must also be designed. There are several different options, depending on the physics
described by the system. One possibility are periodic boundary conditions, where
the edge of the simulation matches the opposite edge of the simulation [104]. For a
simulation where electromagnetic fields can escape the system, absorbing boundary

conditions must be used [105].

For an RF cavity, the most appropriate boundary conditions are metallic boundary
conditions. This means that the electric field components tangent to the boundaries
and the magnetic field components normal to the boundary vanish. Additionally,
it shall be assumed that the electromagnetic fields within the walls vanish. It shall
be the convention of this thesis that the boundaries of the cavities line up with the
centre of the cells (the location of the B,, E,, and j, components). This choice gives

the boundary conditions as

E¢<k, Zmzn) = Er(k> me) = Bz(k7 Zmin) = O:
E¢<k, Zmaac) = Er(ka zmax) = Bz<ka Zmaac) = O, (7318>

B¢(l€, Zmaz) - Ez<ka Zmaz) - 07

where the last line is due to assuming fields are zero within the cavity walls, and

the use of the staggered grid.

There are no boundary conditions for the r,,,, boundary because the quantities
defined at 7,4, (and not at the halfway point between the cells) are not zero on
the boundary. These are instead corrected by using different differential equations
to solve the boundaries. The simplest way to do this is to set the E,(k + 1,1)
term in to zero. This is unstable, as this equates to using the backwards

difference formula to calculate derivatives, which is not accurate. This is in contrast

107



Chapter 7. Creating an azially symmetric full PIC code

to the FDTD equations for the bulk of the media, which use a more stable central
difference formula. To update B, on the r,,,, boundary, use five points to calculate

the derivative at the r,,,, boundary, using the formulae

By (Fmaws 1) = B (fmaz, 1) — (Er (k,l+1) — E}k, l)) Ar

Az

SAL 24\ x

21 5
_—Ez max 371 oA
40Ax (r )+ 56 Ax

35 35
- (_Ez(rmaz - 17 l) + —Ez(rmax - 2, l)

E.(rmaz — 4, l)) At. (7.3.19)
The numerical differentiation formula used to derive this is in appendix [A.T]

To solve the fields along the » = 0 axis, use the cylindrical symmetry to note that
for fields to be continuous, E,.(0,j) = 0, and By(0,j) = 0. The only non-zero
field defined at a grid point along the axis is B,. Since B, is constant due to the

cylindrical symmetry, this term does not need to be updated.

To test the field updater is working, an electric field with F, component

(7.3.20)

2.405
E. = EyJy ( T)

can be modelled, where Jy(r) is the zeroth Bessel function of the first kind, Ej is the
initial electromagnetic field strength and a is the radial width of the cavity. This
corresponds to the TMp;p mode of an accelerating cavity (see reference |95 for a
derivation of this). Figure shows the electric and magnetic fields for this cavity.
There is no gain in oscillation amplitude over time, and the fields are 90° out of
phase with each other, as is expected. This shows the electromagnetic field updater

works correctly without the addition of current sources.
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Figure 7.4: The maximum values of electric and magnetic fields of a TMy1g mode
i a cylindrical cavity over time. The initial electric field is defined by equation

(7.3.20) where Eqg =1, and a = 1. The grid size simulated s 10 X 10 with a uniform

spacing of 0.1, and a time step At = 0.001.

7.3.4 Depositing current onto the grid points

Chapter [6] showed how to reconstruct the 4-current from a set of moments. These
currents need to be deposited onto the grid points in order to solve the discretised
Maxwell’s equations. This is done by integrating T across the volume of the cell,

(k) = | Thd’x (7.3.21)

cell

where fcell represents integration over the area of the (k,[) cell, and the integration

is only over 2 dimensions since the grid is 2D.

The bounds of the cell used for integration are the nearest staggered grid points
adjacent to the grid point the current is defined at. These boundaries are shown
pictorially in figure [7.5] Special consideration needs to be taken for the bounds of
integration of the j, current component along all of the boundaries. For the r =0
axis, this is because the cell is only half as wide as the other cells at this point. For
the other boundaries, this is because there is no current inside the cavity walls, so

these regions should not be included in the integration.
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(a) The j, grid cell boundaries for
depositing current to the grid. Since
there is no current inside the cavity walls,

these boundaries are only half cells.

7

Jz

Jz

(b) The j, grid cell boundaries for
depositing current to the grid. Since
there are no j, grid cells along the axis,

there are only 2 X 2 grid points for the j,

to be evaluated on.

Figure 7.5: An example of the cell boundaries when integrating the current across
a 3 x 3 grid. The colours are used to distinguish cells. The diagonal striped region
represents the cavity walls, within which there is zero current. The leftmost grid

points represent the Zy, cell.

Is is important to deposit over multiple grid cells, as this allows the structure from
the charge distribution to be reflected across the extent of the macroparticle. The
number of cells deposited across is determined by the width of the model function
used to find the current through either the reconstruction or projection methods
(equation (/6.3.3))).
whole support of the model function (figure .

The number of cells the current is deposited over covers the
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ry M
r
A
r— W
C n}
\ 7
zZ_ Z4
S

z

Figure 7.6: The number of grid cells (highlighted in green) the current is deposited
across. The number of grid cells the current is deposited across is determined by the

width of the model function (equation (6.3.3))). The number of grid cells deposited

across needs to cover the whole support of the model function (the blue lines).

7.3.5 Interpolating the fields

As previously shown, the electromagnetic fields are calculated at points on the grid.
To update the macroparticle’s position, velocity, and moments; the EM fields and
their derivatives must be interpolated to the current position of the macroparticle.
There are several existing methods for interpolation. The simplest interpolation
method is to linearly weight the field across the closest grid points [106]. This method
can be improved be weighting over several grid points [36, [37]. An alternative
method is to use splines to find a continuous function across the whole grid [107, 108§].
Spline interpolation methods stitch together multiple low order polynomials to find
the field across the whole grid. This is more accurate, but is more computationally

intensive.

The linear weighting methods do not allow for the derivatives of the field to
be accurately calculated. One method to use linear weighting to calculate the
derivatives would be to find the derivatives at the grid points using numerical

differentiation, and linearly interpolate these to the macroparticles location. The
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spline methods use several polynomials, each of low order. This means that
derivatives above this order will not be accurately calculated by the splines. An
alternative method is to interpolate to the particles position by finding a polynomial
approximation to the field. Consider a function A(r, z), this can be approximated

as a polynomial

h(r,z) ~ i i 'z (7.3.22)

i=0 j=0

where n and m are the number of r and z points being used for finding the

interpolation polynomial. This allows a nm X nm square matrix of points,

0,0 1.0 n .0 0,1 1.1 n .1 n.m

hTo,Zo T0%0 ToRkg -+ ToRp T0%0 To%0 g%y --- ToRo ao,0
0,0 1.0 n .0 0,1 1.1 n 1 n.,m

hrl’zo TIZO TIZO .« 0. Tl ZO TIZO Tl ZO Tl ZO .« e 7”1 ZO a170
0.0 1.0 n .0 0.1 1.1 n .1 n.m

hrsz 20 20 .- ThZo %0 %0 W20 - ThZp Q0

Brgoy | = | 7929 w820 o0 w2 bzt wlzl orpal oo el ap,1

[ r020 el 0 0l ol e 1
0.0 1.0 n .0 0,1 1.1 n .1 n.,m

hTmZm Tnzm T’an Tnzm Tan T’an Tnzm rnzm anum

(7.3.23)

so by solving this system of equations, the coefficients a; ;, and the approximation
for h can be found. This also allows the derivatives of h to be found quickly, by
analytically differentiating the polynomial for A.

Replacing h with each component of the electromagnetic field gives a mechanism
for interpolating the electromagnetic field and its derivatives from the grid points

to the position of the macroparticle.

The number of points used for interpolating the function is something that will be
tested when the code is developed. Using too few points results in the derivatives

of the function being inaccurately calculated. Using too many points results in not
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only an increased computation time, but also less accurate results. This is because
the interpolation becomes overfitted to the number of points, no longer accurately
representing the fields between the grid points. This means there is an ideal number

of points to get the most accurate interpolation.

7.4 How to numerically validate the 1.5D PIC code

Once the simulation has been developed, initial testing will examine the basic
physical phenomena of a klystron, to ensure that the code works at a proof-of-
principle level. This will involve testing the accelerating cavities of the klystron,
to verify bunching occurs as expected. It is important to test the final cavity of
the klystron, where the particles are decelerated, to verify that they radiate the

electromagnetic radiation into the cavity as expected.

One aspect of the code that needs to be tested is how many macroparticles are
appropriate for modelling a bunch. For the moments to be accurately modelled, the
variation in the field across the extent the macroparticle represents (the width of the
model functions used for reconstructing charge and current) will need to be small
(figure[d.1). By increasing the number of macroparticles, each one will have a smaller
width in the z space, meaning the variation of the fields across each macroparticle
will be smaller. This will need to be balanced against the extra computational load
from tracking more macroparticles. Part of the initial testing will be to gain intuition
about the correct number of macroparticles. As the macroparticles represent rings
of charge, adding more macroparticles will not affect the accuracy of the moment
tracking in r space. This means that if there is a lot of variation in the radial fields,

the moment tracking method can only be improved by including more moments.
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It is difficult to check standard conserved quantities within the moment tracking
PIC code. In a standard PIC code, energy will be conserved. Whilst this PIC code
should conserve energy, it is difficult to verify this as it is unknown how to calculate
the energy of a set of moments. As previously shown, the moment tracking PIC
method should conserve emittance in the drift spaces of the klystron. It will not
conserve emittance whilst being accelerated and decelerated, as these forces are not

conservative, so Liouville’s theorem is not valid |94, 95].

No additional charge is added to a PIC code from tracking moments. This is
because when the charge and current is deposited to the grid, the reconstructed or
projected charge has the same monopole moment as the original distribution, which
corresponds to the same total charge. This does not mean charge is conserved in
total (in general PIC codes do not conserve charge), because of errors associated
with using a discretised grid. Whilst it is not known if the moment tracking
PIC code presented in this thesis will also suffer from this issue, it is suspected
it will. The extra charge created from the discretisation can be reduced through a
process called divergence cleaning [109]. In a standard PIC code using Cartesian
coordinates, it is possible to use shape functions devised by Villasenor and Buneman,
and later Esirkepov [110} [111] that conserve charge exactly. These do not exist in this
approach, since there are no shape functions for depositing charge. Despite this, for
modelling a PIC code in cylindrical coordinates, standard PIC codes cannot use these

charge conserving shape functions, since they do not work in curvilinear coordinates.

It is not known what the appropriate choice of grid size will be. The electromagnetic

field solver is limited by the Courant-Friedrichs-Lewy condition [112],

(A < ((A]%y + Alz)2)_ | (7.4.1)

This limits the maximum time step used in a moment tracking PIC code, as the

FDTD algorithm is still being used to update the fields. In a typical plasma, the
maximum spatial grid size is typically given by the Debye length of the plasma
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(the maximum width the electrons and ions oscillate from each other). It is not
known if the Debye length of the plasma will be the limiting factor for the spatial
resolution of a PIC code with moment tracking. The dominating source of error in
the moment tracking is when the field cannot be accurately modelled by a small
number of derivatives at the macroparticle centre. This means that one limit for
the cell size will be based on the density of grid points required to accurately find
the derivatives of the fields. Since the macroparticle has an internal structure, it
needs to span over several cells. This allows the extra structure from tracking the
moments to be reflected in the deposited charge and current. This is in contrast
to existing methods, which deposit over several cells to reduce numerical instability
[109, [113]. Tt may be that in cases where the fields can be approximated using a low
resolution grid (figure , that it is possible for a single macroparticle to be larger
than the Debye length of the plasma. By tracking the moments, information about
the structure within the macroparticle is known, and this affects how the charge and
current will be deposited onto the grid points. By tracking moments, it may be that
the effects of instabilities generated from using a finite grid (aliasing instabilities)

[54, |109) 114], 115] are not as significant.

7.5 Future features

7.5.1 Considerations to be made when scaling the moment

tracking approach to higher order moments

The multipoles in this thesis have all been truncated at the quadrupole level. As
previously discussed, this can cause significant issues due to the truncation error.
It is likely a practical PIC code using moment tracking will want to operate at at
least the hexadecapole (fourth order) level. As shown in tables and [7.1] this
creates substantially more ODE’s to solve each timestep for updating the moments,

as well as more variables to store in memory. These cannot be avoided, and are one
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of the expenses of using more moments in a PIC code. Optimisations can be made
however, by parallelising the code to allow multiple macroparticles to be updated

simultaneously.

To parallelise a standard PIC code, the grid is split between multiple CPU cores, with
each core updating the macroparticles within its section of the grid in parallel [37].
This approach might not work for the moment tracking PIC code method, since it is
required that each macroparticle spreads over several grid points. Instead, it might
be more practical to allocate different macroparticles to individual cores. In the
extreme case that there are only a small number of macroparticles, each with a very
large number of moments, then multiple cores can run on a single macroparticle. The
moment updating equations are all independent for each macroparticle, so can be run
in parallel. Additionally, depositing over each grid point can be run independently,
with different cores depositing the current onto different parts of the grid. Whilst the
updating and depositing can be parallelised, the linear system of equations needed
to solve both the projection and reconstruction methods have to be done on a single
core. It may be possible to optimise this step for certain model functions, such that

solving the linear system of equations can be avoided.

7.5.2 Modifying the transport equations to add internal

structure to a macroparticle

In a low velocity RF system, such as the early stages of a particle accelerator or
a klystron, space-charge effects within the bunch mean that the bunch blows itself
apart radially over time. In real systems, this is suppressed by surrounding the
system with a solenoid. This creates a constant B, field through the cavity. This
field, combined with the small u, component, creates a angular velocity, causing the
particles to move in small circles. The net effect of this results in the average radial
position of the whole bunch oscillating over time. The effect of a bunch radially

oscillating is known as scalloping [116, [117|. It is not possible to simulate scalloping
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with the 1.5D model presented in this chapter. This is because the 1.5D model
assumes there is no motion in the angular direction, so the us component of the
Lorentz force is not calculated, therefore no scalloping from the solenoid can occur.
A full 3+3D PIC code would not have this issue, since angular forces are calculated.
In order to include scalloping in the 1.5D code, a modification to the transport

equations must be made, to allow for forces within a macroparticle to be included.

Consider the transport equation 0,3 = 0, corresponding to the conservation of
charge. All that matters for the conservation of charge is the conservation of
the current across the spatial coordinates, rather than both spatial and velocity
coordinates. Therefore the 4-current T#(¢,x) needs to be conserved, rather than
the full 7-current. This means that it is possible to create a more general transport
equation that allows internal structure within a macroparticle to be modelled. This
internal structure has already been modelled in previous moment tracking methods,
for the specific cases of muon cooling (reduction of the emittance of a muon beam)
[42], and space-charge [45]. By finding a general formula for effects that can be added
to the multipoles, it will be possible to add other effects to the macroparticles,
including scalloping. This section outlines how the transport equations can be
modified to include an the arbitrary field to simulate internal structure, but it does

not give any examples of testing these internal structures, as this is future work.

Given that only 4-current matters for conservation of charge, then the conservation

of charge becomes

9,34 =0 (7.5.1)

where the sums are only over 0,...,3. This equation is the continuity equation in
electrodynamics, and follows from the definition of 4-current from the electromag-

netic field tensor §*,
TH = 9, (7.5.2)
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where §* is antisymmetric. This gives
0, = 0,0,8" =0 (7.5.3)

because of the antisymmetry [118§].

Using the definition of T from J* gives

o, | 3'dPu= [ 9,3'du=0 (7.5.4)
gp gp

since an integral over velocity space and differentiation over spatial coordinates
commute. For the velocity components, use Stoke’s theorem, and that the flux of

J#3 through &, is equal to J#* evaluated at the boundaries of £,. Since J* has

compact support from its definition (equation (2.3.1))), this vanishes, and, as such,

/ Dz LT3 = 0. (7.5.5)
&
Combining equations ([7.5.4)) and ([7.5.5)) gives the the modified transport equation,
0,3 =B, / B d*u =0, (7.5.6)
Ep

where B is some function chosen to add internal structure to the macroparticle.

By squeezing both sides, this can be promoted to the Ellis representation of a

distribution,

0,T" = B, /(S Bd*u =0, (7.5.7)
where B is a distribution found by squeezirig 8. This can equivalently be defined
through the action on a test form A,

/jaaaA dt = B, / Bd*u = 0. (7.5.8)
& 1

P

This means that by suggesting some scalar field 8 containing extra terms to add to
the transport equation, and squeezing this into the distributional B, it is possible to
add internal dynamics into the moment tracking equations. Alternatively it may be
possible to suggest some B that is not derived through squeezing 8, based on the

physical features one is aiming to simulate.
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A geometric interpretation of the

multipole transport equations

In this chapter, the measure, the Vlasov equation, the transport equations, and
the coordinate transformations of multipoles are presented, using the language of
differential geometry and de Rham currents |68, 69]. Whilst several results necessary
to prove the differential equations for the moments are shown in this chapter, they
can be justified physically through the conservation of charge. Because of this, if a
reader is unfamiliar with the language of differential geometry, this section is not

necessary to understand the content of the thesis.

The language of differential geometry allows the measure and the conservation of
charge to be calculated on the tangent bundle, then these results pulled back onto
£. This is advantageous as the calculations required on the tangent bundle are much
simpler than those on £. By working on the tangent bundle it provides results that

are easier to calculate, and easier for the reader to understand.

By using the language of de Rham currents there is a clearer split between the
Ve and X% components. This split makes it simpler to isolate each term when

performing complex calculations that mix both terms, such as during coordinate
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transformations. It also means the evolution of the moments can be described in a
coordinate free way. This is in contrast to the integral representation of moments
(e.g. equation (3.1.7)), which is highly dependent on the coordinate system, in
particular the choice of time slicing. The Ellis method also requires a coordinate

system to define the action on a test form.

Rather than integrating over the velocity space, the projection can be defined
through the creation of a map from £ to M. This map gives a geometric way
to explain the relationship between the 7-current and the 4-current. Additionally,
by working with differential forms instead of a set of scalar fields, it is clearer to see
why the velocity components of J* and J¢ are not considered when projecting to

the base manifold.

8.1 Operations on the tangent bundle

Before finding quantities on the seven-dimensional time-phase space, the Vlasov
equation and the measure shall be derived on the tangent bundle. By finding the
measure on the tangent bundle, the measure on £ can be derived. Additionally, in
order to prove the conservation of charge (equation (2.3.5))), it must be proven on

the tangent bundle first. This result is then pulled back onto £ in section

Consider a manifold M, with metric g and tangent bundle TM. The bundle of
p-forms on T'M is written APT'M such that a specific p-form (field) is denoted as
a € TAPTM. A vector field is denoted as A € I'T'T'M. The coordinates on the

tangent bundle will be denoted (z#, i").

A scalar lift is defined as
h e TANTM), hl, =w(h) foru € TM, heTAM (8.1.1)
where angled brackets represent the evaluation of a vector and a scalar field, and
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u € T'M is a vector at a point. In terms of coordinates, this is given by

- oh
h =it ——a-: 8.1.2

- (8.1.2)
Let Crpyy @ R — M, and be parameterised by 7, an affine parameter. The

prolongation of Crpy onto T'M, nray, gives a curve defined as

77MTM(7') = C;M(T) = mu|77T]M(T)7 77?;\21(7') = C;M(T) = a}u|7]T1\4(7')' (8.1.3)

Let Wrp be the Vlasov vector field on M. As on &, nrys is an integral curve of
WTM) S0

dCH() d*CH(T)
W¥M|"7TJW - 77 VVQAL]—&4 v — T (814)

To solve these derivatives, note that since 7 is affine, it solves the geodesic equation
with the Lorentz force,

O = —i,F 8.1.5
VC mZC ) ( )

where VC-C' represents a covariant derivative with respect to a vector field, and a

tilde over a quantity represents the metric dual. This means
. +4 Ly q U
WZL“LMlﬁTM = xu|77T]W7 WilfM |77TM == (Fﬁpx i’ + EFVPQM xp) . (816)

Combining these gives the Vlasov equation on T'M,

) B
Wiy = ' = (Fffp:ic”a'cp + %prg“”:tp) ot (8.1.7)

To find the natural measure on T'M, begin by considering the cotangent bundle
T*M. The cotangent bundle has coordinates (z*, p*) where p* are the conjugate

coordinates, and have the property

Pula = ay (8.1.8)

where a = a,dz* € TA'M. The canonical 1-form on the cotangent bundle is given
by
0 = p,dzt. (8.1.9)
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The symplectic 2-form is given by
w=df = dp, N dz". (8.1.10)

The measure on the cotangent bundle is given by the wedge product of the symplectic

2-form,
Qriv=w'=wAwAwAw=(=1)dpyA... Ndps Ad2® A ... A da® (8.1.11)

where the factor of —1 comes from a choice of orientation such that the final measure

Qry will be a positive quantity (since the determinant of the metric is negative).

Let 8 : TM — T*M. For differential forms the pullback of 3, 5*, is the metric dual.

The measure on T'M is given by pulling back the measure on the cotangent bundle,

Qrar = B (Qrenr). (8.1.12)

In terms of coordinates, the measure on T'M is given by
Qpar = —det(g)da® A ... Ada® Adi® ... A di® = daO823 A @023 (8.1.13)

where

dzl0123) = da0 A dat A da® A da®, (8.1.14)

Proof. To calculate the pullback 5%, let V € I'TM = p*(«), then

B*(pula) = B (ay) (8.1.15)
B p)lv =V g (8.1.16)

where the last step follows from the definition of the scalar lift. Since the pullback

commutes with the exterior derivative, the pullback of dp,, is

B*(dpy) = dB*p, = d(2" g) = gudi” + &70,(guw )dx’. (8.1.18)
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The pullback of dz* is simply f*(dx#*) = dx*. Using these pullbacks, the measure
on T'M can be found,

Qrar = B (Qpear) = B (=dpo A ... Adps Adax® A ... A da®) (8.1.19)
= —B*(dpo) A ... A B*(dps) A B*(dx°) A ... A B*(da®) (8.1.20)
= —gudi® A ... A guadi® Ndz® AN da? (8.1.21)
= —Guo - - Gusdi® N ANdEP Nda® NN da (8.1.22)

It is assumed that the order of the di terms is increasing (if this is not assumed this
approach is still valid, but the signature of the permutations needed to order the

terms needs to be considered). This means that

Guo - - - Guadi® A A diP = det(g)di® A ... A diP (8.1.23)

The last step is to permute the dz* terms to the end of the wedge product, each

term is moved through four terms, and this is done four times, so

Qrar = —det(g)di® A ... AdZ* Adz® A ... A da? (8.1.24)
=det(g9)(=1)(=1)"dz’ A ... Adz® ANdi® A ... A di? (8.1.25)

= —det(g)da® A ... Adx® Ndi® A .. A dEP. (8.1.26)

as required. O

Using this measure, it can be shown that on the tangent bundle,

LWTMQTM =0. (8127)
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Proof. Begin by considering Cartan’s identity, and that 27, is a top-form, so

LWTMQTM == diWTMQTM (8128)
= —diy,,,det(g)dz0123) A d3:0:1:23] (8.1.29)
= — dWh,det(g)i,dz®123 A 30123 (8.1.30)

_ dW¥L4det(g)d:c[0’1’2’3] A iu+4d:b[0’1’2’3]
= — 0 (Wiydet(g))dz™ 2% A dg0127 (8.1.31)
— Oura(Wiiyy det(g))da!® 23 A 0129
= — (8, (Why,det(9)) + det(g)Da (W) dal®123 A @301:2:3],
(8.1.32)

Since Wk, = @*,
0,(Wrydet(g)) = Wiy, 0,(det(g)) = 24#det(g)T,,. (8.1.33)

For the velocity components of the Vlasov equations, it is clearer to split the field

into the electromagnetic part and the gravity part,

+4 q v q v 4
8M+4W7lfM,EM = Eauﬂ (FF,a") = EFHV(SM = EFMM =0 (8.1.34)
since F'is antisymmetric. For the gravity part,
det(9)Dura Wi gray = —det(9)Opa (T4 i%i#) = —2det(g)T'%, 3" (8.1.35)
summing these together shows Ly, Qry = 0, as required. []

In this section the Vlasov field is parameterised by 7, an affine parameter, such
that the motion of the world line C' was described by the geodesic equation with
the Lorentz force (equation (8.1.5)). This is in contrast to the Vlasov equation
derived in section [2.2] which is parameterised by ¢, the global lab time coordinate.
A Vlasov equation parameterised by 7 is chosen to make the calculations easier
to read, as there are less terms in this parameterisation. To go from a Vlasov field

parameterised by 7 to one parameterised by ¢, there are two possibilities. The Vlasov
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8.2. Seven-dimensional time-phase space

field can be derived by considering the flow lines of 17, where the parameterisation
is changed to use t instead of 7. Alternatively, to make it clearer that the results
hold in both parameterisations, it is possible to calculate the Vlasov field between
two parameterisations directly, by considering it as a spray. Chapter 12 of reference
[119] explains this procedure. An explanation of this procedure is also available in

reference [120).

8.2 Seven-dimensional time-phase space

Consider a scalar field t € TAYM, which represents a global time. The coordinate

time hypersurface is defined by this scalar field, defined such that
E={ZeTM | Z{t)=1}. (8.2.1)

As previously discussed, different time slicings will give different hypersurfaces.
Using the definition of scalar lifts, equation (8.2.1) is equivalent to the condition
t = 1. The spatial coordinates (x*) are always chosen such that 2° = ¢. Equation
(8.2.1) means the natural choice of velocity coordinates on £ are (v£). This is

because in this choice of coordinates,

N dt
D= —| = —| =1 2.2
'l dt |, dt], ' (8.22)

as required.

To find the Vlasov equation on &, there are two possible ways to calculate it. The

first is to use the definition
ing* (Oé) = g*<iWT]\l (O‘))? (823)

and the second is to calculate the prolongation of C' directly on £. Both approaches
give the same result as the Vlasov equation calculated in section [2.2] with the second
option being identical to the approach in section 2.2
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Chapter 8. A geometric interpretation of the multipole transport equations

As stated in section [2.1] all integrals must contain a measure. The measure on £ is

found by pulling back the measure on T'M,
Qg = 8*(2VQTM)

where V is the vertical vector field
0
_ g Z
y=i OzH
and £ : & — T M. Equations (8.2.3) and (8.2.4]) imply
Ly, Qe =0.
Proof. The measure on £ is given by
Qe = E(ivQru)-
This means
LWEQg = ngg*(ZVQTM)

Using equation (8.2.3)),

LWgQg = g*(LWTMZ.VQTM)~

Now using the identity
[Lx,iy] =i[xy]

for all vector fields X and Y,

LWTMiV = iVLWT]\/I - 7;[VJ/VTM}'

(8.2.4)

(8.2.5)

(8.2.6)

(8.2.7)

(8.2.8)

(8.2.9)

(8.2.10)

(8.2.11)

To calculate this Lie bracket, consider [V, Wry] acting on the scalar fields z* and

" separately,

WV, Wrn(a") = V{Wrar (@) — Wrar(V(2"))

= V(i) - (0

Y
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8.2. Seven-dimensional time-phase space

and acting on z*,

[V, Wt () = V(W () — Wrag V() (8.2.15)
—y <1F“V:z:" — ¥ iR — Wi (& (8.2.16)
m

q 87 sV

= EF“,,V(x ) — 200 V(i) — Wra (2") (8.2.17)
¢ .

= EF“,,x — 210 @"i" — W (3") (8.2.18)

— Lpmiv —ore ivir — Lpr g 4 T8 3730 (8.2.19)
m m

— TV iV, (8.2.20)

Summing these together gives

V. Wrn] = x“a% o xpaiu = W1t |in absence of charges: (8.2.21)

This means
Lwras = W Lwras = iWrarlin absence of charges (8.2.22)

This gives

L. Qe = € (Lypy ivQrar) (8.2.23)
= & (ivLwra 20r) = € (IWrarlin absence of charges 1701) (8.2.24)
= (0) = iWelin absence of chargesE (£2701) (8.2.25)
—0 (8.2.26)

since Lyy,,, 27y = 0, and the pullback of a form of higher degree than the manifold

the pullback it maps onto vanishes. This shows Ly, Q¢ = 0, as required. m

Equation (8.2.6) is the geometric equivalent to the condition 0,(W?Qy) = 0
(equation ({2.3.5))) corresponding to the conservation of charge used in deriving the

transport equations (section [2.3), and in showing the constancy of the monopole

(section [3.2)).
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Chapter 8. A geometric interpretation of the multipole transport equations

In terms of coordinates, defining the measure through equation (8.2.4]) gives the

measure on £ as

Qe = —det(g)dt A dat A da® A da® A dot A da? A dv® = —det(g)dt A dzB33 A dplh23]
(8.2.27)

since

i = —det(g) (#°dal®V23 A dilb23 — 31 dg0123 A 3027

+i2dz 023 A dpOh — 32 dr 0028 A qp002) - (8.2.28)

and z° = t, and since, on &, 2 = 1, £*(di°) = 0, and #% = v~ Combining these
gives equation (8.2.27). From here, a coordinate transformation from 3-velocity v
to 4-velocity u£ must be performed, because, as previously discussed, u£ is a more

suitable choice of velocity coordinates to perform numerical simulations in.

Recall the definition of u# (equation (2.1.1))). Rearranging this gives

ut

ot = (8.2.29)

E.
This means that, in order to find the coordinate transformation from 3-velocity v£

to 4-velocity 12, du’ needs to be calculated. Consider the definition of u°, from

equation (2.1.2),

d(guut'u”) = u'u’dg,, + 2u” g, du” (8.2.30)
OGuw
= u“u”%daf;p + 2u” g dut + 2u go, du® (8.2.31)
. Iz
since g, uu” = —1, the exterior derivative of this should vanish, so equation (|8.2.31])

can be rearranged to find du®,

1 09w

0 _ P v n
du” = 2u”g0yu u dx u”ggyu Guvdu (8.2.32)
1 dg 1
- _ B v ZIHY g0 2
= 2uou U dx uou&du : (8.2.33)
Equations (8.2.27) and (8.2.33)) imply
1
Qg = mdet(g)dt VAN d$[1’2’3] A du[l’Q’?’}. (8234)
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8.2. Seven-dimensional time-phase space

Proof. Consider dvt = d(ut/u®), this gives

d (Z_g) = %‘W - (uﬁ)ﬂ“duo (8.2.35)
= Ediﬂ%— (u0)2UE (%mu”u”%dxp + u%wdu") (8.2.36)
= g T G ki (823
= (uo)%uo (u0u055 + ufu, ) du” + mu“u“u”%dﬂ (8.2.38)
N % (55 * ZZ—ZZ) du® + (uo;uouuuauu%dl’p- (8.2.39)

Wedging these together, considering only the velocity parts (the spatial parts will
cancel out when the full measure is considered since they will all be terms of the

form dz!' A dz' = 0), and writing out all the terms in the sums

ut u? 1 ulu 1 udu,
d{—=|A...nd|—=)=— (6, E)dut AL A — | 5 = | dut
(uo) (u0> u? ( ”+u0u0> " u? 3+u0u0 !

(8.2.40)
S 61+u1uz 53+u3uz du? A .. A du?
= oy e, ) et e uEA LA dul
(8.2.41)
= 3 e(w) (6L + uuy 5 ) (59.49)
= — v — ... = 2.
(u0)3 e v 0, v 0ug
x du' A du® A du?
1
= (oF det(A) du">? (8.2.43)
where Ay = 0y + uu, /(u®ug). To calculate this determinant, consider
p utuy,
Apuy = uy + uFuyuy, = (1 + uouo) Uy (8.2.44)

so u, is an eigenvalue of A. For all metrics considered in this thesis, the metric
is only defined along the diagonal, which means that A is symmetric. Since A is

symmetric, it must be diagonalisable, which means there is set of orthonormal basis
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Chapter 8. A geometric interpretation of the multipole transport equations

vectors (U, Ay - .. ay3) that are the eigenvectors of A. Consider

Aﬁa&l = ay,1 +utuya,1 = ay (8.2.45)

since ufa, 1 = 0 (they are part of an orthonormal basis). This means a, 1, and the

remaining basis vectors, are eigenvectors with eigenvalue 1. This means that

det(A) = 14 8.2.46
ct(A) = 1+t (8.2.46)
utu Oy
=1 £ 8.2.47
+ wug  uduyg ( )
1
S 8.2.48
o ( )
since u#u, = —1. Using this in equation (8.2.43) gives equation (8.2.34), as required.
m
To find the measure on an individual hypersurface 3, let ¥ : ¥ — &, then
Qs = 5" (g0 ) - (8.2.49)
In terms of coordinates this becomes
w [ 1 1,23 1,2,3
Q=% (za/atmdet(g)dt A dz!V23 A dult2) (8.2.50)
1
e 1,2,3] 1,2,3]
=¥ (—(u0)4u0det(g) dx A du ) (8.2.51)
1
= | ———det dz23 A dult2) 8.2.52
(tett@)| aa9 na (8.2.52)

matching equation (2.1.7)).

In this section the measure was calculated in four dimensions, however the
computational model discussed in chapter [7] is in three dimensions. This is not
an issue, as whenever an integration occurs (when first taking the moments, and
when depositing the current onto grid points), the integrand is a tensor density of
weight 1. This means by working with densities throughout this thesis, issues about

the correct measure when switching from four to three dimensions are avoided.
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8.2. Seven-dimensional time-phase space

8.2.1 The transport equations

By using the language of differential geometry, a more geometric approach to
understanding the origin of the transport equations can be found. The current

6-form J € TASE (where as J is a differential form, it is not a density) is given by
J = J%,d"¢ (8.2.53)
and conversely
JUd°E = J A de® (8.2.54)

where i, represents an internal contraction with respect to the vector field 9/0&®.

Using equation ([8.2.53)), the current 6-form is related to the distribution function f§

as

J = fW%%,d¢, (8.2.55)

and

fd'¢ = JAdt (8.2.56)

since W° = 1. Recall the current 6-form J was the 6-form that was squeezed in

section |4.2 to show the relationship between distributional multipoles and moments.

To find the dynamics of multipoles defined through differential forms, the equivalent

of equations (4.3.1) and (4.3.2)) for distributions are used,
dJ =0, iwJ =0, (8.2.57)

where W = W?3,. The dJ = 0 condition corresponds to the conservation of charge,

and the iy, J condition says that the flow lines of J are the integral curves of the
Vlasov field. These equations are the same as equations (4.3.1]) and (4.3.2)), i.e. it

is equivalent to the Ellis representation.
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Proof. Using equation (8.2.53|) and Cartan’s identity

dJ = d(J%,d"€) = d(J*) Nigd € + J*Lad"¢
= (Op3")dE" Nigd™€ + (0) = (0p3*)0d€
= 0,3%d"¢. (8.2.58)

This is zero if, and only if, 0,3* = 0, so dJ = 0 is equivalent to equation (4.3.1).

For the iy/J term,

iwd = i (3%,d7€) = J*WPiyiad"¢
1
2

(JWP + IW) ipiad € + % (WP = 3'W*) i d’€. (8.2.59)

Since i, is antisymmetric, the symmetric part of J*W?° contracting against it

vanishes, leaving

(J*W — JW) dpind'€. (8.2.60)

DO | —

iwd =

This is zero if, and only if, J*W® — J*W* = 0, so iyJ = 0 is equivalent to equation

(£.3.2). O

8.3 De Rham current representation of multipoles

8.3.1 Introducing de Rham current distributions

In this section we will work in 7-dimensional time-phase space, but all results
generalise to an arbitrary dimension space. A distributional p-form is defined by
its action on a test (7 — p)-form ¢ € TATPE, this is a (7 — p)-form with compact
support. Given n: R — & is a closed embedding parameterised by ¢, the de Rham
pushforward with respect to n of a p-form a € I'APR is given by the distribution

ne(a)[6] = / 7(6) A (8.3.1)
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8.83. De Rham current representation of multipoles

The definition of the wedge product, Lie derivatives, internal contractions and

exterior derivatives for an arbitrary distribution U are defined as
(W1 + W) [9] = Wa[g] + V5[],
(BAY)[g] = ¥o A B,
ip¥[g] = —(=1)**"Plipg], (8.3.2)
dW[¢] = —(~1)"=0[dg],
Lp¥[¢] = —V[Lpd]

where § € 'A€ and B € I'TE. These properties are defined such that they agree
with regular distributions |68, 69]. The space of all relevant distributions we are

considering in this thesis are those that can be constructed from equation (8.3.1)

and a finite number of applications of equation (8.3.2]).

The de Rham pushforward commutes with the exterior derivative,

dne(@) = ne(da). (8.3.3)

Proof. Consider dn.(«) acting on a test form ¢,

dn(@)d] = =(=1)n,(a)[dd]
=== [ (o) na = (1 [ d (o) Aa (834

since the exterior derivative commutes with the pullback. Using the properties of

the external derivative,
dn*(¢) A a = d(n*(¢) Aa) — (—1)%%¢p A da. (8.3.5)
Integrating d(n*(¢) A «), and using Stoke’s theorem

Aﬂmwwwo:/7mwAa=o (8.3.6)

OR

where O is the boundary of R, and the integral vanishes since ¢ has compact

support. This means

dn"(¢) Ao = (—1)*(=1)*% / 1 (¢) A da = ne(da)[d] (8.3.7)

R
as required. O
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Given two vector fields A € I'TR and B € I'TE, such that B = 1.(A), then

(@) = n,(iac). (8.3.8)

Proof. Consider ipn.(«) acting on a test form ¢,

ipne(a)[g] = —(=1)**nc()lip¢]

= —(—1)deg¢/R77*(z'Bd))/\a: —(—1)deg¢/RiA77*(¢)/\a. (8.3.9)

Consider

i (¢) A= ia(n*(9) Aa) = (=1)*n"(§) A iac. (8.3.10)
From the properties of the de Rham pushforward, the degree of i4n*(¢) Aav = 1, the
dimension of R. This means that the degree of n*(¢) A a = 2, so vanishes. Thus

inns(@)[¢] = (—1)2(—1)2deg¢/n*(¢) Aiac = n(iac)[g] (8.3.11)

R

as required. O

The integral curves of the Vlasov vector field are a specific example of this for the

case of 1, with

iwng(a) = ne(iac) (8.3.12)

dt

since W is tangent to 7.

Combining the rules for exterior derivatives and internal contractions, using Cartan’s

identity, gives the properties of Lie derivatives with the de Rham pushforward,
Lpn.(e) = dipne(a) + ipdnc(e) = no(diac) +nc(iada) = n(Lac).  (8.3.13)

The degree of the distribution 7. («) is 6 + deg(a)). Since R is a curve, the degree
of a is either 0 or 1, so the degree of n.(«) is either 6 or 7. Similarly to differential
forms, it can be shown that an internal contraction decreases the degree by one and
an exterior derivative increases the degree by one. Lie derivatives do not affect the

degree of a distribution.
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The order of a p-form distribution over 7 is defined as follows. If

WA HLg] = 0 for all ¢ € TAE with compact support and ( )
8.3.14

A € TA°E such that n*(\) =0
where n* is the pullback, then the order of ¥ is at most k. Note that a quadrupole
(a distribution of order two) also includes the dipole and the monopole terms. It
can be shown that, using this definition, Lie derivatives and exterior derivatives can
both increase order of a distribution by one. Internal contractions do not affect the

order of a distribution.

A distribution ¥ of degree 6 is a semi-multipole of order at most [ if
U\du] =0 for all A\, u € TA’E such that n*(\) = 7" (u) = 0. (8.3.15)

This work concerns the dynamics of a semi-quadrupole, which is a semi-multipole
J of order 2 and degree 6. In coordinates, this is denoted as

1 N a a . a
J = ELngnc(V@> - Zngnc(X*bdt) - Lgm(‘/*) + a7 (det) + 77<(‘]) (8-3'16)

where L, is the Lie derivative with respect to d,, and 4, is the internal contraction
with respect to 0,. It is trivial to show this satisfies the definition of quadrupole
(equation (8.3.14)) with k& = 2), and the definition of a semi-quadrupole (equation
with [ = 2). Note in this representation of the semi-quadrupole, the X and
V% terms are easier to distinguish by the additional internal contraction, as opposed
to the Ellis representation (equation (4.1.1])), in which the separation between the

terms was not as clear.

Similarly to the relationship between the 7-current and current 6-form, the de Rham
current representation of a multipole can be related to the Ellis representation

through the relationship
T = T%.d"€, (8.3.17)
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and conversely

J*=J Ndg”. (8.3.18)
In 7, there is no term of the form i,LyL.n (X%<dt) even though this contains two
Lie derivatives. Similarly, there is no X% term in the Ellis representation. This
term is included if 7 is a full quadrupole, as opposed to a semi-quadrupole. The
advantage of the coordinate free approach used in this section is that it can be shown
that the X% term vanishes in a coordinate system adapted to 7, and hence J is a
semi-quadrupole in this adapted coordinate system. Since the definition of a semi-
multipole is coordinate free, J is a semi-quadrupole in every coordinate system.
The coordinate free semi-multipoles written in this form correspond to the electric

multipoles of ref. [68], and the semi-multipoles of ref. [69)].

8.3.2 Dynamics of moments

Similarly to the Ellis representation, the dynamics for the de Rham current
representation of the quadrupole are found by considering the transport equations
for differential forms (equation (8.2.57))). Since they are linear, they can be directly

applied to the distributions. The equations are

dJ =0, (8.3.19)
iwd = 0. (8.3.20)
These are satisfied if, and only if,
dve ave dq
dat A T (8.3.21)
X% = yheg e, (8.3.22)
1
X =Vbo,We + 5va—"agabwe (8.3.23)
Proof. Assume equation (8.3.21])
1 dvae ave
= _L,L ——dt | — LyLyn (X%dt) — L —
dJ 5t b77c( di dt) alane( dt) am( dt dt)

d
4 Lo (X2dt) + 1, (d—‘i) . (8.3.24)
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Note that
1
Lo Lyn (X%dt) = iLgLQng((Xa—b + Xbqt). (8.3.25)

Inserting equation (8.3.21f) gives dJ = 0.

Working in reverse, from equation (8.3.24]), consider
dJ [N, (8.3.26)

where A € TyA°E. Evaluating this gives

47 = I, (dg;dt) 0,00\ — (XL 0,00] — 1, (%dt) 0.0 (83.27)
e+ ()
_ %ng ((d‘; _ X Xb“) dt) [0,0\] (8.3.28)

. ((% - X“) dt) 0,0] + . (%dt) 0

since A can be any value, the only way this can vanish for all X is if equation (8.3.21])

1s true.

Moving onto iy ¥ = 0, to calculate this proceed term by term through equation

(8.3.16)), and use the relations

iwn(a) = n(iga), [La,iw] = ija,w (8.3.29)
giving
iw Lo Lyne (V) = (Lyiw Ly — o w) Ly)nc (V) (8.3.30)
= (LaLviw — Laip,w) — Loija,w) + ifp,aw)) 1 (V) (8.3.31)
= (O) - Lgicnc(vibabwc) - Lbicnc(vibagwc) + icnc(vibagabwc)
(8.3.32)
= —Lyiy(2VEI W) + i (V2D 0,W°). (8.3.33)
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The sums over the W¢ terms range over 0,...,6. Since the coordinate time frame

has W = 1, the derivatives of this vanish, so
iy Lo Lyne (V) = — Lyiy(2VE0, W) + i 0 (VLI0,WE). (8.3.34)
For brevity, in the remaining terms the step
ifa, ] = 1c0aW° = 1.0,W* (8.3.35)

shall be done implicitly.

Moving onto the X% term,

iwiaLyn (X Ldt) = —igiw Lyn (X %dt) (8.3.36)
= —(iaLoiw — taiipw))ns (X dt) (8.3.37)
= i Lyiwn (X 9dt) — ig4i.n.(X20,Wedt) (8.3.38)
= i Lyn (X) — igin (XL, Wedt). (8.3.39)

The dipole terms,
—iw Lane (V) +iwian(X*dt) = —Laiwne (V) + iwne(V*) — taiwn (X *dt)
(8.3.40)

= (0) — i (X — V29,W*). (8.3.41)
Summing all these terms together gives

. 1. a Lo a : a L a

wJ = EZWLQLQm(V*b) - ZWZngnc(X*bdt) - ZWLQT/C(Vi) + 1WZQ77<(X7dt)
= Lty (X b V@agwb) + iyt (X @6gwgdt)

1

QV“—bagaQWQ + Ve, WE — X¢). (8.3.42)

+ e (
Lastly, note #i. is antisymmetric, so taking the antisymmetric part of X209, W<,

iwJ = Laipne (X — VEOW) + icipn, (% (X9 WE — X9, W) dt)

1
+ T (EV‘“’&&,WC + Ve, — XC) . (8.3.43)
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Assume equations (8.3.23)) and (8.3.22)) are true. Inserting X and X into equation

(18.3.43)) gives

twJ = Latypn (V%3£WQ - V%agwé)

1
+ iy (5 (Vedguweo,we — vedg,weo,wh) dt)

1 1
+1ene (5 VE9,0,WE + VEOW e — Ve, W€ — 5V“Cacwb) =0 (8.3.44)
since V% is symmetric.

For the reverse, it is trivial to see that the only solution where the terms with only

one internal contraction vanish is if equations and are true. As
shown in equation (8.3.44), if equation is true, then the term with two
internal contractions also vanishes, so equations and uniquely solve
wJ = 0. O

As previously discussed, since J is a semi-quadrupole, there is no term of the form
LoLyion (X %edt). If J was a full quadrupole, then the X2 term vanishes under
the iy J condition anyway. Consider passing the internal contraction through the

Lie derivatives, giving

iwiaLyLen (X %Cdt) = iuLyLon.(X%€) + terms with one or fewer Lie derivatives.
(8.3.45)
Compare this to equation (8.3.43)), where there are no terms containing two Lie
derivatives, this means that the X% term must vanish for the full quadrupole to
be subject to the transport equations. Hence, any full quadrupole subject to the

transport equations is a semi-quadrupole.
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8.3.3 Coordinate transformations of moments where the time

slicing is preserved
The coordinate transformations of the quadrupole can also be found using the
language of distributions. The coordinate transformations for internal contractions

are given by

ig = Abiyor = i (ALav). (8.3.46)
For Lie derivatives the coordinate transformations are
Loa = Al Lo = L;(Aba) — a A LAD = Li(Aba) — i (dAg A a> (8.3.47)

where the hat over the Lie derivatives and internal contractions is to make it
clear that these are taken with respect to d; in the new coordinate system.
Note that similarly to the transformation of J,, the indices in the transformed
coordinate system run from (0,...,6), whilst the original indices only ran from
(1,...,6). By using the coordinate transformation rules for Lie derivatives and
internal contractions, the coordinate transformations for the semi-quadrupole can
be found. This is equivalent to the coordinate transformations found through the

Ellis representation, and is given by
LaLin (U™) = iaLino(Vdf) = Lan(U%) + ian(Y*di) + n.(q) (8.3.48)
where U di’, Ydi’, U% and Y? are given by equation (4.4.7)).
Proof. Consider the de Rham representation of the semi-quadrupole,
T = SLaLunc (V™) = Ly (Xdt) = Lo (V) + i (X2dh) + (o). (8.3.49)

Using equations (8.3.46|) and (8.3.47) to calculate this coordinate transformation,

and proceed term by term. For the double Lie derivative term, use the standard

differential geometry result

Ly(fg) = fLug+gLuf Vf,g e TAE, U e TTE (8.3.50)
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8.83. De Rham current representation of multipoles

to find
LoLyo = L, (ﬁ JAT A Q) —ig(dAL A a)> (8.3.51)
= L. (Ag A (ﬁg(Ag Aa) —ig(dAd A a>)) (8.3.52)

i, (dAZA (ﬁd(AgA ) — ig(dAf A a)))

Leby (A58 na) = Le (34dAZ) 1 A A )
— Letg(AS N AT N a) —ieLy (dAg A AL a) +ie ((d%ddAg) A AL A a)

— ey (A A AT A Q) + s (a5 A dAE A o)

(8.3.53)
= Lok (ALA7 A o) = Leiy ( (A547) Aa) = Le (945 7 A8 o)
e (@ (945 A AD) A ) = el (dA A dAT A a).
(8.3.54)

Using 0{;/12 = A;A&, and noting that the i term vanishes (as the term inside the

brackets is symmetric), gives

Lol = Loy (4545 n o) = Leig (4 (4545) Aa) = La (A% A a) + i (442, A ).
(8.3.55)

This gives the coordinate transformation for the V% term,
LoLync(VL) = LeL e (A;Agv@) — Laigne (d (A;Ag) A va—b>
— Len (AL VD) +ian (dAS, A V) . (8.3.56)
For the X% term,

ioLyns(X2bdt) = igLenc(Af A X2dt) — igic (ng(dA; A X2dt)) (8.3.57)

— AT Lan (A A X2bdt) (8.3.58)

iaLenc(ATAZ A Xty — i, (ié(Ag) A AE A X“—bdt> (8.3.59)

igLenc(ATAL A Xty — i n, (AZ, A X2dt) (8.3.60)

. . dt .\ ; dt .
i Len, (Angg A X“bd—gdt) — i, (Agb A X“”d—gdt) (8.3.61)
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Chapter 8. A geometric interpretation of the multipole transport equations

where dAg A X%dt =0 is used. The V2 and X terms are more straightforward,
Lanc (V) = Lyne (A% AV2) =g, (aah nve) (8.3.62)
. P dt.
ian (Xdt) = yn; (AZX“d—tAdt) : (8.3.63)

Summing these together (noting that the monopole term is invariant under

transformation), gives

A 1 . a a - a
J=J= QLgLéng(V@) — ig Lpns (X*bdt) - Lﬂk(vf) + a7 (delf) + ng(Q)

A A

LaLyno(U™) — iaLync(Y*df) — Lan (U®) + ians(Y*df) + nc(g). (8.3.64)

DN | —

where U and U% are defined by equation (4.4.7), and

N oG dt .~ 1 s
Vo= ALALX P di 4 S (4z4f) ver (8.3.65)
N . . dt . . .
Ve = (ALX®+ A X) d—fdt + d(A)VE+ d(AS,) V2. (8.3.66)
By taking the external derivatives, these are equivalent to (4.4.7)). ]

As before, the transformed quadrupole is still based on the original time slicing. In
this case the projections to the new time slicing are based on the internal contraction

and Lie derivatives along 1. The projections are given by
io = 1y — N, Lo = Ly—n%L,. (8.3.67)
Using these projections give the full coordinate transformation for the quadrupole,

A AT

s L c7 cab ar\ T ray G TN
= S Lalgn(V) — iaLynd(X2di) — Lan (V) + ianc (X2dD) + ni(a).  (3.3.68)

where V&, V& X and X@ are defined by equations (#.4.22), (1.4.23), (.4.26),
and (4.4.27) respectively.

Proof. The non-unique semi-quadrupole, where hats have been temporarily removed

to aid readability, is given by

1 . a a : a
J = §LaLb77§(Uab) - ZaLbnc(Y bdt) - La77§(U ) + Za77<(Y dt) + UC(Q)' (8'3'69)
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8.83. De Rham current representation of multipoles

To find the projections, proceed term by term, beginning with the L,L; term,

LoLin (U™) = LoLyn (U®) + L, Lo(U) (8.3.70)
= Lo L0 (U™) + Lo Ly (U™) — Loy Lyn (U™ (8.3.71)

. dU® , :
= Lo Lyn (U2 — 72U“%) + Lo, (7) + Lipne (U“Odnb) . (8.3.72)

Projecting the L, term,
LaLbnc(Uab) = LQLQTIC(U@ - ﬁbU@O) + LbLﬁng(UOb - ﬁQUOO)
AU AU AU
— Ly*Lane (U = PU) + Lane (| —— | + Lime | —— ) — 7*Lans | ——
o11* Lais( PUT) + Lane | == ) + Lane | = Lot { —
+ Lyipne (U2Ldn?) + iy Line (UPdi®) — ign®Lane (UPdn?) . (8.3.73)
Simplifying this gives

LoLin(U™) = LoLyne (U2 — U2 — 72U + iotU™)

. . . AU JU™ 4,
+ Lyigne ((2U% — 202U di®) + Lan, (2 — - (12U °°))

dt dt
» dU90 » d » d2U00
+ taTls (TdﬂJr o (Uoodn)> + 1 <W>

+ dyiane (UPdn® A di?)  (8.3.74)

and note the last term vanishes as R is only 1-dimensional. For the L%, term,

Lyian.(Ydt) = Lyign (Y2dt) + Laign. (Y dt) — Lai%iyn (Ydt) (8.3.75)

= Lyign.(Ydt — n2Y%dt) + Lyn (Y'™). (8.3.76)
Splitting the L, term into Lo + Ly,

Lyian (Ydt) = Lyign. (Y2dt — 1Y %dt) + Lyign (Ydt — n2Y ®dt)

+ Lyne(Y®) + Lonc(Y*).  (8.3.77)

Projecting out the Ly term,

Lyignc(Ydt) = Lyign (Y2dt — Y dt) + Lyign.(Ydt — 52y dt)

— Ly (Y2dt — Y 0dt) + Ly (V") + Lo (Y) = Ly (YY), (83.78)
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Chapter 8. A geometric interpretation of the multipole transport equations

Simplifying,

Lyiane(Ydt) = Lyignc(Y*2dt — Y ®dt) + Lyignc(Y*°dt — 7*Ydt)
- Lb'fHaTk(Y“Odt aYOOdt) + Lka(YOb) + LTI77<(Y00) LgﬁQm(YOO)
+igne (YOdn®) + iyigne (di® A (Y0 — 7Y *®)dt) . (8.3.79)
Noting that the i,i, term vanishes since dn® A dt = 0 (since the wedge product is on

a one-dimensional manifold),

Lyign (Ydt) = Lyign.(Y%dt — n2Y%dt — 7Y 90dt 4 7%ty “dt)

Ay d A
Lyne (Y = i?Y) + igne | ——dt — — (1°Y*) dt + Y dij* :
+ Lyn.( Y™ + dgne ( yr 7 (1Y) dt YR ) + e | —
(8.3.80)
The U® term,
Lan(U®) = Ly (U2) + Lin(U°) — i# Ly, (U°) (8.3.81)
a 2ar70 ; 0.7, dUO

= Lan (U* = 0*U") + ians (U dn®) + n; “dt (8.3.82)

Lastly the Y* term,
ianc(Ydt) = ians(Y*dt) + iﬁnc(yodt) — ig71%n (Y'dt) (8.3.83)
= ign (Yt — 72Y°dt) + n (Y°). (8.3.84)

Summing these together,

1 ; a - a
J = 5 LaLn (U= —iPU2 — iU + P U™)

— Lyianc (Y“—bdt ey %t — Y eds 4 by ®ds — (U% — ﬁéUOO)dfyﬂ)

1 dUOO d dU0
— Lanc (U2 =20 + Y02 — oy — 21, a — (n*U) —2——
a7l nU® + NY) = SLane | 0=+ o (n*U™) %
+ g (Y adt — ot = Udn® + % (n*Y*) dt — Yoodﬁ“>
1. AU 0 d 00 eb
—|—§2an§< o dn® + — o (Udn ))

1/ 2U™ Ay
o\ g ) T\ ) T
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8.4. Reconstructing the current 3-form

To simplify this, recall equation (8.3.21]), and add hats back over quantities giving

1 d?

< (i) dt> g (83.56)

= VT Aarr0) _ gyrad -
+za77g(Ydt d(nU> ave 4o

Inserting equation (4.4.7) into this and transforming the 7% terms back into 7%
using equation (4.4.3) gives equations (4.4.22)), (4.4.23), (4.4.26), and (4.4.27), as

required. O

These coordinate transformations are the same as those found through the Ellis

representation.

8.4 Reconstructing the current 3-form

8.4.1 The reconstruction method

Rather than reconstructing a function using model densities, one can instead
reconstruct a function using model forms. Similarly to using densities, this avoids
any issues with choosing the correct measure in the choice of model form. For
the projection method, using the language of differential geometry provides a
clearer geometric approach to the problem, which may be considered clearer to
understand compared to the Ellis representation projection, where it is less clear

why components of J¢ vanish when integrated over the fibres.

Recall J (equation (8.2.55))), the current 6-form associated with a given f. In this
approach, the current 6-form is the quantity that is reconstructed using model

differential forms. Let Jy = ¥*(J) be the current 6-form at a timeslice ¢.

ar = /Z(g —n)Js. (8.4.1)
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Chapter 8. A geometric interpretation of the multipole transport equations

These moments are equivalent to those found by integrating f§.

Proof. To calculate the pullback ¥*(.J), consider equation (8.2.55), and note that
Y*(dt) =0, and X*(d€%) = d€%, so

Y (J) = S (FWh,d €) = f W %d €. (8.4.2)

Since W0 =1,
Y*(J) = fd*x d*u (8.4.3)

and thus the moments taken in equation (8.4.1]) are equivalent to those taken with

f. O

The reconstructed 6-form, Jy, is given by
Jo = exik (8.4.4)
K

where g € T'A®Y are model 6-forms. Similarly to working with densities, the

reconstructed form has the same moments,
o= [ (€=l (8.45)
b
= Z/(f — n)texyx (8.4.6)
K /=
=Y [ (6~ (8.4.7)
K )

K

where

By solving the linear system of equations, the model forms can be found.

In this case, the equivalent model 6-form to give the same result as using model

densities would be

) = poigd€, (8.4.10)
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8.4. Reconstructing the current 3-form

where (g is the model density from section (6.3} This definition follows from equation

and (5253

The charge can be found by integrating Jy, over a fibre,

P:/ BEEYERAY (8.4.11)
£

P
The components of the 4-current scalar field can be found as

ul
TH == —leglgjz. (8412)
&

A current 3-form, I, could be found from this, and would be given by
I =pda' Ada? A da® + Ty, (dE A da' A da? A da®) (8.4.13)

In the next subsection a method to directly retrieve the current 3-form from a

distribution is presented, using a projection operator.

8.4.2 The projection method

As with the Ellis representation, is it possible to reduce the de Rham representation
of 7-current to the 4-current on M. By doing this, the projection method for finding
the current from a set of moments can be found using the de Rham representation.
Additionally, by using differential geometry to define the projection through a de
Rham pushforward, is it clearer to see why the velocity components of the 7-current

vanish.
To find the distributional 4-current, a projection map, =, is introduced. The
projection 7 : £ — M can be written in terms of coordinates,
w(t,z,u) — (t,z). (8.4.14)
The pullback of this map, 7*, can be defined in terms of coordinates,
™) =t, 7*(z)==zx. (8.4.15)
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Chapter 8. A geometric interpretation of the multipole transport equations

The de Rham pushforward of w, 7. : TA"E — A" 3M is a map taking an n-form
on £ onto an (n — 3)-form on M. In terms of distributions, the projection 7. is

defined as
T ()[¢] = Y[ (9)]. (8.4.16)

For regular distributions, it can be shown that the projection can be written as

integrals over the fibre, for example

r(fdu' Adu? Adu?) = | fdu' A du® A du?, (8.4.17)
&

m(fdxt Ada® A dut A du® A du?) = dat A da? ( fdu* A du* A du3> , (8.4.18)

Ep

m(dat A du® A du®) =0 (8.4.19)

i.e. the pushforward integrates a form over the fibre if it contains all the du terms,

otherwise it vanishes.

The current 3-form, I € TA®M, is given by

I=mn.(J). (8.4.20)
The distributional 4-current, Z, can be found equivalently, as

Z=n(J). (8.4.21)
In terms of coordinates, Z is given by

1
T =7.J = SLaL,C(VE) = iy LC(X24dt) — L,Cy(VE) + i, C,(X2dD) + Ci(q).
(8.4.22)

Proof. To find 7.J, consider m.i,, where a subscript asterisk represents the

pushforward. These pushforwards, for the projection map, are
Tl =i, Taiyys =0. (8.4.23)

This means that

Teig(a) = dgi,mear. (8.4.24)
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8.4. Reconstructing the current 3-form

Using this gives 7.7,

1
g = 57r<LQLbng(va—b) — TeigLyn (X 2dt) (8.4.25)
- Wchng(Vg) + Wcigng(Xth) + Wgnc(Q)
1 124 N 14
= iLﬁLzﬂgng(Vﬁ*) — iy Lymen (XHdt) (8.4.26)

- Lgﬂqnc(vﬁ) + igﬂcnc(Xﬁdt) + mene(q).

A sequence of two de Rham pushforwards combine to give

T (a) = (nom)(a) = C(a) (8.4.27)

where, since 7 is a prolongation of C', the projection of n gives C'. These combine

to give equation (8.4.22)) as required. O

Hence by using the projection operator, it is clearer to see why the velocity
moments, corresponding to terms of the form VA'3 etc., vanish compared to the

Ellis representation of the moments.

The de Rham representation of the 4-current found from the projection can be used
to find the charge and current through the projection method. Consider Z acting
on a test form ¢ € TA'M,

Iig] = + /]R VIO (L, L) + /R XEC(Lyiy )t + /R VECH(L,0)

2
+ / XEC* (i,0)dt + / gC*(8). (8.4.28)

Comparing this to the squeezed current 3-form (equation ((6.4.20])) gives the same
relationship between the components (equation (6.4.15))) as that found through the

Ellis representation when integrating over the fibres.

Proof. Writing ¢ as ¢, dx",

1
TI[¢] = E/RV“”O*(LML,,@CZ:E")—I—/RX“”C*(LVZ'N%d:UP)dt—i—/RV“C’*(LMqﬁpda:p)

+ / XEC* (i,,6,dx?)dt + / gC*(d,da”). (8.4.29)
R - R
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Chapter 8. A geometric interpretation of the multipole transport equations

Performing the Lie derivatives and internal contractions,

Z[¢] = %/RV“”C*(@M(%%CZ:E’))+/RX“”C*((’),,%)dH—/RV“C*(@%CZ:U’))

+Axuc*(¢#)dt+4q0*(¢pdxp). (8.4.30)

Noting C*(dz*) = C*dt gives

Zl¢) = % /R VI CP0,0,¢,|cdt + /R XM, ,|cdt + /R VECP0,¢,|cdt

+ / XEep,|cdt + / qC* ¢, |cdt.  (8.4.31)
R - R

Splitting this into ¢o and ¢, terms,

1 : 1 :
Il¢] = = / VELC00,0, dolcdt + = / VELCL),0,0,| cdt
2 R - = 2 R - - =
+ / X0, ¢,|cdt + / VEC9, ¢l cdt + / VECLY,d,|cdt
R o R o R -

+/X“¢u|odt+/ch¢#\cdt+/qCO¢0|Cdt. (8.4.32)
R o R - R

Grouping terms together,

1 . 1 .
g =1 / VEZC09,0, 00| cdt + - / VELCRD,0,0,|cdt
2 R - 2 R - - =
+ / (XﬁerCﬁVZ) 0, lcdt + / VECOD, dolcdt
R - R -

+ / (Xﬁ+q(jﬁ) Sulcdt + / gCO%bolodt. (8.4.33)
R B R

Comparing this to equation (6.4.20) gives equations (|6.4.15), as with the Ellis

representation.
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8.5.  Future work: modifying the transport equations to add internal structure to a
macroparticle

8.5 Future work: modifying the transport equations
to add internal structure to a macroparticle

As discussed in section [7.5.2] it may be that charge only needs to be conserved on
M, rather than on £. As with the Ellis representation, this means it may be possible

to add internal dynamics to the transport equations in the de Rham representation.

If charge is only conserved on M, then the conservation of charge condition becomes

dr.J = 0. (8.5.1)

This means that internal structure can be added to the equations as a 7-form B €
I'A7E, such that
dJ=B, =n.B=0. (8.5.2)

These equations can be applied to distributions, with some distribution B represent-
ing the internal structure of the macroparticle. The modified transport equations,

in terms of de Rham currents, become
d7 =8B, iwJ =0, wn.B=0. (8.5.3)

]
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Chapter 9

Conclusion

This thesis investigated a new type of particle-in-cell code, in which the moments of a
macroparticle are used. The dynamics of the moments obeying the Vlasov equation
were calculated (equation (4.3.7))). Two different methods to calculate the current
from a set of moments were presented. Combining the moment tracking and current
construction equations allows a full PIC code using moments to be developed. A
potential 1.5D full PIC code implementation, and the algorithms required for this,

was discussed.

The dynamics of the moments depend on the Vlasov field and its derivatives. The
focus of this thesis was on how the number of moments taken affects the accuracy
of the moment tracking. For a full PIC code, the derivatives of the Vlasov field
would also be important. If the electromagnetic or gravitational fields quickly vary
in space (i.e. the higher order derivatives of the fields are large, as in figure [4.1b)),
then the moment tracking method will not work well. In this case, there are two
possible ways to improve it: use more moments, or use more macroparticles. By
using more moments, there are more derivatives to describe the electromagnetic
and gravitational fields, so the tracking will be more accurate. By using more
macroparticles, the extent each macroparticle represents in phase space will be

smaller; so the variation of the fields across this extent will also be smaller. Both
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increasing the number of moments and increasing the number of macroparticles
will increase the computational load of the model. Future work will need to
establish intuition about the correct balance of the number of macroparticles and

the maximum order of moments taken.

The moment tracking model is likely to work well in situations where both the
distribution of particles represented by a macroparticle can be described by only a
small number of moments, and the variation in electromagnetic and gravitational
fields across the volume the macroparticle represents is small (figure . This
corresponds to when the Vlasov field across the extent of the macroparticle can
be modelled by just the Vlasov field and a small number of its derivatives at
the macroparticle centre. Since numerically calculating the derivatives of the
electromagnetic field requires a high density grid, the moment tracking method may
also work in cases where a high resolution grid is already needed, such as laser-solid
interactions [121], [122]. In such cases, the moment tracking method will be able to
model much larger macroparticles, with less particles per cell, even if more cells are

needed to compensate for this.

By using the Ellis representation or the de Rham current representation of the
moments, coordinate transformations for the moments can be found between frames
that mix the space and time coordinates. This is an advantage of using the
distributional approach to define moments, as it cannot be done through the

standard integral approach.

Both the moment tracking and coordinate transformation results were validated
numerically for the case of particles orbiting a black hole. This was done by
transporting particles and moments in both Schwarzschild and Kruskal-Szekeres
coordinates and comparing results. The numerical results show that a large number

of particles can be successfully modelled by a single macroparticle with moments.
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This error scales with the order of moments, so for a full PIC code it is likely
moments will need to be calculated to an order larger than the quadrupole. The
modelling in this simulation was calculated at 10 Schwarzschild radii away from the
black hole. This was to model a stable accretion disc. In the development of the
theory, there were no assumptions that the macroparticle was far away from the
black hole. This means that there is nothing in the theory to stop a macroparticle
being close to the singularity. In practice, close to the Schwarzschild radius, the error
from only using a finite number of moments will become significant. There are two
reasons for this: firstly, the particles being represented by the macroparticle and its
moments will begin to undergo spaghettification, and this will cause the higher order
moments to become large. Secondly, close to the singularity, the Christoffel symbols
in Schwarzschild coordinates become very large, and their derivatives will become
even larger. This means the rate of change of the moments will be dominated by
the higher order moments which are being neglected in the code. Due to this, the
accuracy of the model is yet to be determined in the extreme environments close to

the Schwarzschild radius.

In addition to moment tracking, to create a full PIC code, it is necessary to use
the moments to find the current distribution, in order to solve Maxwell’s equations.
Two methods were presented for this. The reconstruction method approximates
the original distribution function in position+velocity time-phase space, and then
finds the current from this. The projection method uses the Ellis representation
of moments to find the charge and current directly. The reconstruction method is
more accurate than the projection method, but is more computationally intensive.
It is likely that including more moments will improve the accuracy of the projection

method.

Lastly, the algorithms needed to create a full 1.5D PIC code were discussed. The

main focus of future work will be on testing and evaluating this 1.5D code, to see
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if the moment tracking method works at a proof-of-principle level. Initial testing
will also be used to develop intuition about the correct balance of the number of

macroparticles and the maximum order of moments tracked.

9.1 Wider applications

The main focus of future work was discussed in chapter [7] in developing a full PIC
code. Other applications of the moment tracking and coordinate transformations

exist, and can also be investigated.

A potential application of the moment tracking method is to model inter-bunch
forces within particle accelerators. It is possible to calculate the Liénard-Wiechert
fields directly from the moments of a moving quadrupole [46]. By using this method
the electromagnetic field, and its derivatives, can be calculated without the need to
deposit the charge and current onto a grid. This is particularly useful for modelling
coherent synchrotron radiation in particle accelerators, where macroparticles are
close together compared to the radius of the beam pipe, such that the effects of

boundary conditions on the electromagnetic fields can be ignored.

The applications of the coordinate transformations in astrophysical scenarios are
wide. A particularly useful case is the transformation from the global time to the
backwards light cone frame. This is particularly useful in cases where black holes are
modelled in the fiducial observer (FIDO) frame, where the global time coordinate is
significantly different to the time coordinate in the backwards light cone frame. By
doing this the difficulty of calculating the backwards light cone through ray tracing
only needs to be done once, rather than at each time step. This transformation
would allow the moments seen by an observer, at a finite distance away from the

black hole, to be calculated.
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There are also applications of the coordinate transformation formulae in circular
particle accelerators. Results from accelerators are often calculated in Frenet-Serret
coordinates, where the parameter is the position along the beamline, rather than
time. By finding either the Vlasov equation in Frenet-Serret coordinates, or finding
the coordinate transformation between Cartesian and Frenet-Serret coordinate
systems for a given beamline, the moment tracking can be applied to circular
accelerators.  Additionally, by using the spacetime coordinate transformations
presented in this article, the coordinate transformation into the frame of an

accelerating bunch can be found (figure [1.4b)).

Lastly the use of the Vlasov equation to model the dynamics of moments may
be extended to modelling stress-energy-momentum quadrupoles as a source for
linearised gravity. In [66, 69| it was shown that the dynamics of stress-energy-
momentum quadrupoles contain a number of free components, known as constitutive
relations. In the case of a plasma, these constitutive relations may be determined
by the Vlasov equation. In this case, the dynamics will be governed by the
divergenceless of the stress-energy-momentum tensor combined, with the Vlasov

equation.
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Appendix A

Proofs

A.1 Deriving the equations for the field updater at

the boundaries

The formula for numerically differentiating a scalar field f(x) across n arbitrarily
spaced points, and then evaluating this differential at one of these points is given
by [97],

df
= (A.L1)

R dLy,
= kz_ofm) —

where L, is the kth Lagrange polynomial for f at £k =1...n, given by

Ty Zj

Li(z) =] % (A.1.2)
g

S,

To evaluate Maxwell’s equations at the grid boundaries, we choose to differentiate
over 5 different grid points. This ensures the derivatives are stable. The boundary
conditions require that at the cavity walls, certain components of the electromagnetic
field vanish. This means that rather than calculating the derivatives over 5 equally
spaced points, it is more accurate to calculate over 4 grid points, and half a grid cell

to the boundary.
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Appendixz A. Proofs

Explicitly calculating the L; term to show how these terms are calculated,

I — r—(z) v — (z; = *3%)
(27— 55) = (2) (25— %) — (25— 23%)
o~ (- %) e~ (- 1)
X - — X - —. (A.1.3)
(2= %) = (5 -%%)  (z—5) — (z - 5%)
Simplifying the denominators gives
() r— (%) (g - %) v (- )

2
Differentiating this and evaluating at © = x;, noting that only the term where the

first term is differentiated will give a non-zero contribution,

| s sAr 1Az
dly = o X T X X 2= 5 (A.1.5)
dx B e Az 2Az  3Ax 8Ax

Doing this for the remaining terms gives

dLo| 352 dL| 35  dL,| _ 35

dr |, 105Ax"  de|,  8Ax’ dr|, 24Ax
dLs| 21 dLs 5 (A.1.6)
dr |, 40Az’ dv |, 56Ax

Inserting these into equation (A.1.1]), gives the interpolation polynomial,
352 35 Az 35 3Ax
= 10500’ )~ 3ag7 ("”j B 7) TN (wﬁ T2 )

21 5Aw 5 TAz
- - 2T AL
N <x] 2 >+ TN (xﬂ 2 > (A-17)

a
dx

Zj
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