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Abstract
We consider a combined truck-drone delivery problem with stochastic truck travel times and soft time windows. A
fleet of homogeneous trucks and drones are deployed in pairs to provide delivery services to customers. Each drone
can be launched from and retrieved to its truck multiple times, and in each flight, a drone can serve one or more
customers. Our objective is to determine the truck routes and drone flights that minimise the total cost, including
time window violation penalties. We formulate this problem into a two-stage stochastic model with recourse action in
the second stage to optimise the truck waiting time at each node. We approximate the stochastic model with a large-
scale mixed-integer program using the sample average approximation (SAA) framework, which is computationally
intractable. To this end, we propose a hybrid metaheuristic approach that incorporates SAA. The waiting times of
each truck obtained in the planning phase are optimal against the sampled or estimated travel times along the entire
route, but the actual values are known only once the truck has returned to the depot. To this end, we reformulate
the second-stage model in a rolling-horizon manner, which can be easily implemented and efficiently solved in the
execution phase. Extensive numerical experiments demonstrate the strong performance of the proposed metaheuristic
approach and rolling-horizon model. The results also highlight the clear benefits of the stochastic modelling approach
over its deterministic counterpart, with a pronounced reduction in the total cost in various scenarios.
Keywords: Multi-visit drone routing; Two-stage stochastic model; Soft time windows; Stochastic truck travel times;

Hybrid metaheuristic

1. Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, have shown great potential in delivery
services and have attracted considerable attention in the last decade. For example, in 2017, Aha, Ice-
land’s largest online marketplace, partnered with the drone company Flytrex and together they expanded
on-demand drone delivery service for fast delivery (Edwards, 2018). In 2019, Hangzhou (China) started
drone delivery in partnership with Antwork Technology, a company that has been testing drone logistics
applications in urban settings since 2018 (Hu, 2020). Until now, however, drone deliveries have remained
on a rather small scale and are only available in a few places. One of the major hurdles for mass adoption
is a regulation that requires commercial drones to have visual observers along their routes, which is very
costly, if not impractical. However, this is about to change after the recent relaxation of this requirement by
the Federal Aviation Administration, which began authorising drones to fly beyond the visual line of sight
(FAA., 2023). In light of this relaxation, some major operators announced expansion plans. Amazon will
add a third operational site in the US and two more sites in Europe by 2024 (Jones, 2023). Zipline plans
to deploy next-generation delivery drones for precise delivery to customers, including restaurants, retailers,
and medical centres. They will also start operating in the UK in 2024 (Crumley, 2023). No wonder some
analysts acclaim that ‘drone deliveries are finally going mainstream’ (Muller, 2024).

Compared to conventional vehicles, drones have many attractive benefits, such as faster delivery times,
less environmental impact, and increased accessibility. Drones are highly flexible and not tied to road
networks. However, owing to technological limitations, drones have a restricted cargo capacity and short
flying ranges. To overcome these limitations, a truck-drone combined mode, in which trucks and drones
work together to serve customers, has been proposed to utilise the advantages of both vehicles (Murray &
Chu, 2015). More precisely, while a truck travels along the route to perform delivery tasks, each onboard
drone can take off from the truck, detour to serve one or several customers, and then rejoin the truck along
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the route (we refer to such a detour as a drone flight). Drones can unload/load goods and swap batteries
on trucks, allowing them to perform multiple flights along the route.

In the academic community, a pioneering study on the combined truck-drone mode is the flying sidekick
travelling salesman problem (FSTSP), in which a truck and drone work in tandem (a vehicle pair) in parcel
delivery. The drone can deliver only one parcel per flight (i.e., a single visit)(Murray & Chu, 2015). The
travelling salesman problem with drone (TSP-D), a similar variant, was introduced soon after (Agatz et al.,
2018), allowing each drone to revisit the location where it was launched. The vehicle routing problem with
drones (VRP-D) was first introduced by Wang et al. (2017), in which multiple trucks and drones work
collaboratively to serve customers to achieve the minimal makespan. Since then, many studies examine
variants of combined truck-drone routing problems (Kitjacharoenchai et al., 2020; Meng et al., 2024).

However, the vast majority of existing studies on combined modes only consider deterministic prob-
lems, such as constant travel time over a certain distance. In reality, however, trucks are prone to road
network conditions such as traffic congestion and road work. Actual travel times are often uncertain. This
simplification is particularly detrimental in the presence of service time windows, which are often offered to
and preferred by customers. Ignoring travel time uncertainties can result in poor routing decisions, leading
to service misses (for hard time windows) and high violation penalties (for soft time windows). Moreover,
in soft time windows, it is not always the best option for trucks to set off to the next customer immediately
after service completion at the current one. It may be beneficial to wait for some time so that the arrival
times of subsequent customers fall within their time windows. Therefore, once the truck/drone routes are
determined, another decision is the optimal waiting time at each node to minimise time window violations.
Considering stochastic truck travel times, waiting time optimisation is not a trivial task.

To see this in Figure 1, we show the route and flight of a single truck-drone pair for a network of six
customers and a depot, where the travel times are shown next to each arc and the time windows are shown
in square brackets next to each node. We assume that the service times for the truck and drone are 3 and 2
min, respectively, and that the drone launch and retrieval times are both 1 min. The arrival and departure
times of the truck/drone are denoted by ‘t1’ and ‘t2’, respectively. Without waiting Figure 1(i) shows total 5
time window violations, which are reduced to just 2 if the truck waits at some nodes, as Figure 1(ii) shows.
However, if the truck travel times are different, as in Figure 1(iii), the same waiting times would lead to all
customers being served outside their time windows and a late return of the truck to the depot.

Figure 1: One route/flight with different truck travel times and waiting times.

In classical VRP problems, stochastic truck travel times have been extensively studied (Gendreau et al.,
1996), as have waiting times with soft time windows (Figliozzi, 2010). Few studies considered both, and tend
to focus on the optimal departure time from the depot (Taş et al., 2013). In the VRP-D literature, however,
neither stochastic truck travel times nor optimal waiting times have been adequately studied. In fact, as far
as we know, the closest study to our work is due to Yang et al. (2023), who consider a robust truck-drone
delivery problem with road traffic uncertainty and hard time windows. No waiting time optimisation is
required because the vehicles have to wait until the time windows open. They consider only a single truck
and a single drone, that is, TSP-D, and the drone could only serve one customer per flight. In their model,
the truck remains at the launch node while the drone is serving a customer and waits until the drone returns
before moving to the next location. Such a so-called ‘dispatch-wait-collect’ mode is much less efficient than
the synchronised mode that we consider. They also assume that it is not mandatory to serve all customers,
and that the remaining customers can be served by third-party logistics or crowd-sourced drivers.

In this study, we consider a drone-assisted delivery problem with stochastic truck travel times and soft
time windows. Multiple trucks and drones are deployed in pairs to work in tandem to serve all customers.
Each drone serves multiple customers per flight. Our objective is to minimise the total cost, including time
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window violation penalties. The cost includes the fixed cost for the deployed truck-drone pairs, travelling
cost for trucks, and energy consumption for drones. The penalties include both earliness and lateness
(with respect to the time windows) at all customer nodes, and lateness back to the depot. We formulate
this problem into a two-stage stochastic model, with the recourse action in the second stage being the
optimal waiting time (or departure time) at each node. Because of the complexity of the model, we propose
a hybrid metaheuristic solution approach, which incorporates the sample average approximation (SAA)
method. First, we apply a greedy-based heuristic to generate the initial solution, which is then improved
using a hybrid metaheuristic approach (HMSA) with the mean truck speeds to obtain the best solution.
Subsequently, the SAA framework is incorporated to further improve the solution in a stochastic setting. For
simplicity, drone travel times are assumed to be deterministic, which is a reasonable assumption for drones
and is common in the literature. Nevertheless, stochastic drone travel times due to weather conditions, for
example, will be studied in the future.

In summary, we make the following contributions. 1) To the best of our knowledge, this work is the
first to consider stochastic truck travel times with soft time windows in a multi-visit VRP-D context. This
is also the first study to consider the optimal waiting times for trucks. We formulate the problem as a
two-stage stochastic model in which the first stage determines the route/flights for each truck/drone pair,
whereas the second stage determines the waiting time at each node, including the depot. 2) We approximate
the stochastic model with a large-scale mixed-integer program (MIP) using the SAA framework, which is
computationally prohibitive. Therefore, we propose a hybrid metaheuristic which incorporates SAA. 3) The
waiting times obtained in the planning phase via either the second-stage model or the heuristic approach are
only optimal against the realisation of the entire route of each truck, which is known only once the truck has
returned to the depot. To this end, we reformulate the second-stage model in a rolling-horizon manner, which
is easy to implement and efficient to solve in the execution phase. This model is re-optimised whenever a truck
arrives at a customer node using an up-to-date estimate of the truck speeds in the remaining route at that
time. Only the current waiting time decision is implemented, while the rest are discarded. 4) We conduct
extensive numerical studies to assess the performance and efficiency of the proposed metaheuristic and
rolling-horizon waiting time optimisation model in various problem settings. The results also demonstrate
the benefit of the stochastic model over its deterministic counterpart, showing a pronounced reduction in
total costs in various scenarios.

The remainder of the paper is organised as follows. We review the relevant literature in Section 2.
Section 3 formally presents the problem and formulates it into a two-stage stochastic model. Section 4
describes our proposed solution approach. In Section 5 we present the rolling-horizon model to dynamically
optimise waiting times of trucks. Section 6 presents the computational results along with managerial insights
and corresponding analyses. Finally, Section 7 provides concluding remarks and future directions.

2. Literature review

For the potential benefits of the truck-drone combined delivery service, the VRP-D and other variants
received considerable attention. In this section, we first review existing works on deterministic VRP-D and
their extensions to consider time windows, followed by those that consider stochastic truck travel times.

2.1. Single/multi -visit VRP-D

As mentioned previously, VRP-D was first proposed by Wang et al. (2017). Two years later, Sacramento
et al. (2019) investigated the operational cost of VRP-D, and Schermer et al. (2019) extended VRP-D with
en route operations to reduce the makespan. Kitjacharoenchai et al. (2019) studied multiple TSP-Ds in
which the dispatched drones could return to any nearby truck to minimise completion time. All of them
provide heuristic approaches to solve problems, whereas other studies, such as Tamke & Buscher (2021),
Zhen et al. (2023), and Zhou et al. (2023), develop exact algorithms. Some studies consider more complex
cases for practical applications. For example, Rave et al. (2023) study a variant of VRP-D in which both
customer locations and dedicated micro-depots could be employed for drone launch/retrieval to minimise
the total cost. They develop a customised adaptive large neighbourhood search (ALNS) algorithm to solve
instances with up to 200 customers. Kloster et al. (2023) consider a multiple travelling salesman problem
in which drones can only be launched and retrieved at selected stations. Multiple drones can be dispatched
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from each station to perform round-trip deliveries before they return to the same station. They propose three
metaheuristic algorithms to minimise the makespan of problems containing 120 customers and 6 stations.

In recent years, many studies considered multiple visits during one drone flight in the VRP-D. Kit-
jacharoenchai et al. (2020) extend the FSTSP with multiple visits to further minimise the completion time.
Kyriakakis et al. (2022) investigate a different variant, the electric VRP-D, in which electric vehicles (EVs)
work as a mobile depot travelling between pre-designated stations to dispatch drones for final deliveries. In
their work, the EVs follow the ‘dispatch-wait-collect’ procedure at stations and drones can deliver multiple
parcels per flight. Four variants of the ant colony optimisation framework are employed to address this prob-
lem. Both pickup and delivery services are considered by Luo et al. (2022), who consider paired services in
which the parcels picked up from one customer must be delivered to another on the same route, and propose
an iterated local search algorithm for larger instances. Meng et al. (2023) introduce a multi-visit VRP-D
with pickup and delivery that allows a truck to decide whether to wait at the launch node or move to the
next location for drone retrieval, allowing for more flexible operations to reduce the energy consumption of
drones. They propose a two-stage approach for solving problems involving 100 customers.

2.2. VRP-D with time windows

Adding time windows to the VRP-D (VRPDTW) is a natural extension. Di Puglia Pugliese & Guerriero
(2017) study this problem with hard time windows. Their model could be solved using the CPLEX solver
with up to 10 customers. Subsequently, Coindreau et al. (2021) and Kuo et al. (2022) develop heuristic
approaches to address similar problems. Wang et al. (2022) analyse a VRP-D with hard time windows and
time-dependent road travel times. They integrate the congestion cost into the cost calculation for trucks
and develop an iterated local search heuristic to minimise the total cost.

Some researchers consider multiple visits during each drone flight. For example, Li et al. (2020) extend
the VRPDTW with multiple visits in a drone trip and assume that each truck can deliver and dispatch
drones at customer locations; however, the truck must wait there until all its drones return. Masmoudi
et al. (2022) allow drones to return to any truck to maximise profits. They develop an adaptive multi-start
simulated annealing algorithm to address instances with up to 200 customers. Then, Yin et al. (2023) develop
an enhanced branch-and-price-and-cut (BPC) algorithm to solve the multi-visit VRPDTW optimally. The
BPC integrates a bounded bidirectional labelling algorithm and efficient enhancement strategies, which can
solve instances with up to 45 customers within 3 hours. Meng et al. (2024) study a combined routing
problem in which drones are launched and retrieved only from a pool of designated stations. In addition
to normal pickup and delivery services, they also consider paired services and solve the problem using a
customised ALNS heuristic.

2.3. VRP-D with stochastic truck travel times

Despite the extensive VRP-D literature highlighted above, most studies concentrate on deterministic
problems. To the best of our knowledge, only 2 studies considered stochastic truck travel times in combined
truck-drone delivery problems. Apart from Yang et al. (2023), discussed above, Liu et al. (2022) extend
the basic FSTSP to stochastic travel times, where a single vehicle pair is employed to serve all customers
to minimise the total delivery time. They model the problem as a multi-agent Markov decision process to
capture the uncertainty and develop a reinforcement learning algorithm to solve it.

A brief summary of the most relevant literature is listed in Table 1.

3. The model

3.1. Problem description

A set of homogeneous truck-drone vehicle pairs, starting at and returning to a single depot, are deployed
to make deliveries to customers, each of whom must be served exactly once by either a truck or drone. Some
customers, called truck-only customers, must be served by trucks because of practical requirements, such as
overweight parcels or personal preferences. The others are drone-eligible customers, who can be served by
trucks or drones. Each customer has a soft time window; that is, starting service before or after the time
window is allowed but incurs a penalty for either earliness or lateness. Moreover, all vehicles must return
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Table 1: Summary of the most relevant studies.
Reference K TW ST TC MV/SV Syn
Wang et al. (2017); Sacramento et al. (2019); Zhen et al. (2023) m × ×

√
1

√

Schermer et al. (2019); Kitjacharoenchai et al. (2019); Tamke & Buscher (2021) m × × × 1
√

Rave et al. (2023) m × ×
√

1
√

Zhou et al. (2023) m × ×
√

1 ×
Kloster et al. (2023) m × × × 1 ×
Wang & Sheu (2019); Luo et al. (2022); Kitjacharoenchai et al. (2020) m × ×

√
m

√

Kyriakakis et al. (2022) m × ×
√

m ×
Meng et al. (2023) m × ×

√
m

√

Di Puglia Pugliese & Guerriero (2017); Kuo et al. (2022); Wang et al. (2022) m hard ×
√

1
√

Coindreau et al. (2021) m hard × × 1
√

Li et al. (2020) m hard ×
√

m ×
Masmoudi et al. (2022); Yin et al. (2023) m hard ×

√
m

√

Liu et al. (2022) 1 ×
√

× 1
√

Yang et al. (2023) 1 hard
√

× 1 ×
Meng et al. (2024) m hard ×

√
m

√

This work m soft √ √ m √

K: number of trucks used. m: multiple. TW: time windows (hard: hard time windows; soft: soft time windows). ST:
stochastic travel times. TC: truck capacity. MV/SV: multiple visits/ single visit of drones. Syn: whether trucks and drones

are synchronously serving customers, i.e., trucks can move forward to serve other customers after launching drones.

to the depot before a pre-specific return time, which could be the maximum working hours; otherwise, a
penalty (e.g., overtime pay) is incurred for any lateness. A drone can serve multiple customers in a flight
as long as its payload and battery capacities permit, and it can be launched from its truck and retrieved at
different locations multiple times along the truck route. When a truck and its drone reconvene at a node,
the one arriving first must wait for the other. We assume that drone aprons are available for landing at
customer nodes; thus, the energy consumption of the drones while waiting is negligible. A drone can be
launched and retrieved at most once at each customer location. Once a drone is retrieved, its battery is
swapped with a fully charged one. Trucks/drones start service immediately upon arrival at a customer node.
However, trucks are allowed to wait at each node (including the depot) before departing for the next node.
The operational procedure for a node visited by a truck is illustrated in Figure 2. Note that when the truck
travel time is deterministic along an arc, waiting after service at the outbound node is equivalent to waiting
before service at the inbound node.

Figure 2: The operational procedure at a node visited by trucks.

We consider stochastic truck travel times and deterministic drone travel times. Our objective is to
determine the optimal routes/flights and truck waiting times that minimise the total cost, which includes
the operational cost (travelling cost of trucks and energy cost of drones), fixed cost for deployed vehicle
pairs, and expected penalties for the violation of time windows. We refer to this problem as the ‘multi-
visit drone-assisted routing problem with soft time windows and stochastic truck travel times’ (mDRP-TS)
henceforth. Figure 3 illustrates an example of an mDRP-TS in which two vehicle pairs serve 20 customers.

Figure 3: An illustrative mDRP-TS example.
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3.2. The stochastic model

The mDRP-TS problem can be formulated as a two-stage stochastic model. The first stage determines
the number of deployed truck-drone pairs, their routes, and flights. These decisions are made before vehicles
depart from the depot. The second stage concerns the optimal waiting time at each node to minimise the
time window violations along each itinerary, which takes place after the vehicles have left the depot and
more information on the truck travel times becomes available. Before presenting the model, we introduce
important notation.

A fleet of K truck-drone pairs (indexed by k) is available to serve customers located on a directed graph
G(N,A), where N is the set of nodes and A is the set of arcs. N = {0, 1, ..., n + 1} includes customer set
Nc = {1, ..., n}, starting depot (0), and ending depot (n+1). Let Nd be the set of drone-eligible customers;
then, Nc \ Nd is the set of truck-only customers. Moreover, the sets of outbound and inbound nodes are
denoted by Ns = N \{n+1} and Ne = N \{0}, respectively. Thus, A = {(i, j)|i ∈ Ns, j ∈ Ne, i ̸= j}. Denote
by rij and r̂ij the travel distances for trucks and drones on arc (i, j) using Manhattan and Euclidean metrics,
respectively (Yang et al., 2023). Each arc (i, j) has a stochastic truck travel time induced by stochastic truck
speed vij . We have vij ∼ Fij , where Fij is the corresponding distribution function that is known or can
be estimated at the time of planning. We assume that all vij values are independent. The constant drone
speed is denoted as v̂. Each node i has a known demand di and a soft time window [ei, li]. A time window
[0, lmax] is associated with the depot, where lmax is the time at which all vehicles must return to the depot.
For brevity, we list in Table 2 the notation used in the first-stage problem.

Table 2: Notation for the first-stage problem.
Sets
Nc Set of customers, Nc = {1, 2, ..., n}
N Set of nodes, N = {0, 1, ..., n+ 1}
Ns Set of nodes for the start of an arc, Ns = {0} ∪Nc = {0, 1, ..., n}
Ne Set of nodes for the end of an arc, Ne = Nc ∪ {n+ 1} = {1, ..., n+ 1}
Nd Subset of drone-eligible customers
A Set of arcs, A = {(i, j)|i ∈ Ns, j ∈ Ne, i ̸= j}
K Set of vehicle pairs, each indexed by k ∈ K
Parameters
vij Stochastic truck speed on arc (i, j) (unit: km/h)
Fij Distribution function of truck speed vij

v̂ Constant speed of each drone (unit: km/h)
c0 Fixed cost of deploying a vehicle pair (unit: $)
c Cost for operating truck k per unit distance (unit: $/km)
ĉ Cost for operating drone k per unit time (unit: $/min)
rij Manhattan distance of arc (i, j) (unit: km)
r̂ij Euclidean distance of arc (i, j) (unit: km)
W Available capacity of each truck (unit: kg)
Ŵ Capacity of each drone (unit: kg)
di Demand of customer i ∈ Nc (unit: kg)
B Battery capacity of each drone (unit: min)
si Service time at customer i ∈ Nc by trucks (unit: min)
ŝi Service time at customer i ∈ Nd by drones (unit: min)
M A sufficiently large number
Decision variables
xk
ij ∈ {0, 1} 1 if truck k traverses arc (i, j) with its drone on board and 0 otherwise

ykij ∈ {0, 1} 1 if truck k traverses arc (i, j) independently and 0 otherwise
ŷkij ∈ {0, 1} 1 if drone k traverses arc (i, j) independently and 0 otherwise
Auxiliary variables
zki ∈ {0, 1} 1 if customer i is served by drone k and 0 otherwise
uk ∈ {0, 1} 1 if vehicle pair k is deployed and 0 otherwise
eki ∈ [0, B] Cumulative energy consumed by drone k upon leaving from node i in a flight
wk

i ∈ [0, Ŵ ] Payload of drone k after visiting node i
λk
i ∈ Z+ Relative position of customer i in the visit sequence of truck/drone k, 1 ≤ λk

i ≤ n

For convenience, we denote the vector of routing decision variables as θ = {xkij , ykij , ŷkij , ∀k ∈ K, (i, j) ∈
A} and the vector of stochastic truck speeds for all arcs by v. We now present the first-stage formulation:

min c
∑
k∈K

∑
(i,j)∈A

rij(x
k
ij + ykij) + ĉ

∑
k∈K

∑
(i,j)∈A

ŷkij
r̂ij
v̂

+
∑
k∈K

∑
i∈Nd

ŝiz
k
i

+ c0
∑
k∈K

uk + E[Q(θ,v)], (1)

subject to:
Routing constraints of trucks and drones:∑
i∈Ne

(xk0i + yk0i) =
∑
i∈Ns

(xki,n+1 + yki,n+1) = 1, k ∈ K (2a)
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∑
i∈Ne

(xk0i + ŷk0i) =
∑
i∈Ns

(xki,n+1 + ŷki,n+1) = 1, k ∈ K (2b)

∑
i∈Ns

(xkij + ykij) =
∑
i∈Ne

(xkji + ykji), j ∈ Nc, k ∈ K (3a)

∑
i∈Ns

(xkij + ŷkij) =
∑
i∈Ne

(xkji + ŷkji), j ∈ Nc, k ∈ K (3b)

2 ∗ zki ≤
∑
j∈Ns

ŷkji +
∑
j∈Ne

ŷkij , i ∈ Nd, k ∈ K (4)

∑
k∈K

∑
i∈Ns

(xkij + ykij) +
∑
k∈K

zkj = 1, j ∈ Nc (5a)

∑
k∈K

∑
i∈Ns

(xkij + ykij) = 1, j ∈ Nc \Nd (5b)

∑
j∈Ne

ŷkij − zki ≤
∑
j∈Ne

ykij , i ∈ Nc, k ∈ K (6a)

∑
j∈Ns

ŷkji − zki ≤
∑
j∈Ns

ykji, i ∈ Nc, k ∈ K (6b)

∑
k∈K

∑
j∈Ne

ŷkij ≤ 1, i ∈ Nc (7a)

∑
k∈K

∑
j∈Ns

ŷkji ≤ 1, j ∈ Nc (7b)

∑
j∈Ns

∑
i∈Nc

(xkji + ykji) +
∑
i∈Nd

zki ≤ n · uk, k ∈ K (8)

λk
i − λk

j + n(xkij + ykij) ≤ n− 1, i, j ∈ Nc, k ∈ K (9a)

λk
i − λk

j + n(xkij + ŷkij) ≤ n− 1, i, j ∈ Nc, k ∈ K (9b)

Load capacity constraint of trucks:∑
i∈Ns

∑
j∈Nc

(xkij + ykij)dj +
∑
i∈Nd

zki di ≤W,k ∈ K (10)

Demand flow constraints of drones:
wk
i − dj −M(2− ŷkij − zkj ) ≤ wk

j ≤ wk
i − dj +M(2− ŷkij − zkj ), i ∈ Ns, j ∈ Nd, k ∈ K (11a)

wk
j ≤M(2−

∑
j′∈Ns

ykj′i − ŷkji), j ∈ Nd, i ∈ Ne, k ∈ K (11b)

Energy consumption constraints of drones:
eki ≤ B(2−

∑
j∈Ne

ykij −
∑
j∈Nd

ŷkij), i ∈ Ns, k ∈ K (12a)

eki +
r̂ij
v̂

+ ŝj −M(2− ŷkij − zkj ) ≤ ekj ≤ eki +
r̂ij
v̂

+ ŝj +M(2− ŷkij − zkj ), i ∈ Ns, j ∈ Nd, k ∈ K (12b)

eki +
r̂ij
v̂
−M(2− ŷkij −

∑
i′∈Ns

yki′j) ≤ B, i ∈ Nd, j ∈ Ne, k ∈ K. (12c)

Objective (1) is to minimise the total cost, including expected time window violation penalties. The
first term denotes the transportation cost of trucks, the second term denotes the energy consumption cost
of drones, the third term captures the fixed cost of deploying vehicle pairs, and the final term E[Q(θ,v)]
denotes the expected value of the objective function of the second-stage problem. Constraints (2a) and
(2b) ensure that each vehicle pair departs and returns to a single depot exactly once. Constraints (3a) and
(3b) ensure the flow balance of all the trucks and drones at each node. Constraint (4) ensures that if a
customer is served by drone k, it must visit this node. Constraint (5a) states that each customer can be
served only once by either a truck or drone. Constraint (5b) ensures that truck-only customers are served
by trucks. Constraints (6a) and (6b) ensure that the nodes used for drone launch and retrieval must be
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visited by paired trucks. Constraints (7a) and (7b) ensure that drones can only depart from and arrive at
a customer node once at most. Constraint (8) states that if a vehicle pair k serves a customer, it must be
deployed. Constraints (9a) and (9b) are subtour elimination constraints. If customer j is visited directly
after customer i on the route of vehicle pair k, then λk

i + 1 ≤ λk
j . Constraint (10) ensures that all the

parcels assigned to each vehicle pair cannot exceed the available capacity of trucks. Note that the capacity
constraint of drones is imposed implicitly by the definition of the variable wk

i . Constraint (11a) tracks the
payload of drones upon leaving each node they serve. Constraint (11b) ensures that the payload of drones
upon retrieval is zero. Constraint (12a) ensures that the energy consumption of drones upon launch is zero;
that is, their batteries are fully charged. Constraint (12b) tracks the energy consumption of drones when
leaving the customer they serve. Constraint (12c) ensures that the total energy consumption of a drone
during a flight does not exceed battery capacity.

For a given routing decision θ and a realisation of truck speeds vξ, the second-stage problem optimises
the waiting times of trucks to minimise time window violation penalties. Table 3 presents all the notation
used in the second-stage formulation.

Table 3: Notation for the second-stage problem.
Parameters
ξ A scenario or realisation of truck speeds on all arcs
vξij Truck speed on arc (i, j) in Scenario ξ (unit: km/h)
ce Unit penalty cost of earliness when services start earlier than the lower bounds of time windows (unit: $/min)
cl Unit penalty cost for lateness when services start later than the upper bounds of time windows (unit: $/min)
ck Unit penalty cost for lateness when vehicle pair k returning to the depot late (unit: $/min). We assume ck > cl > ce

[ei, li] Time window for node i (unit: min)
sl Required time for drone launch (unit: min)
sr Required time for drone retrieval (unit: min)
Decision variable
ωk,ξ
i ≥ 0 Waiting time of truck k at node i in Scenario ξ

Auxiliary variables
δ−,ξ
i ≥ 0 Earliness of the service start time at node i before the lower bound of its time window in Scenario ξ
δ+,ξ
i ≥ 0 Lateness of the service start time at node i after the upper bound of its time window in Scenario ξ
δk,ξ ≥ 0 Lateness of vehicle pair k returning to the depot in Scenario ξ
τk,ξi ≥ 0 Arrival time of truck k at node i in Scenario ξ
τ̂k,ξi ≥ 0 Arrival time of drone k at node i in Scenario ξ
φξ
i ≥ 0 Service start time at node i in Scenario ξ

τ̄k,ξi ≥ 0 The time at which both vehicles in pair k are ready for the retrieval at node i in Scenario ξ; i.e., max{τk,ξi + si, τ̂
k,ξ
i }

αξ
i ∈ {0, 1} 1 if node i is served before its lower bound time window in Scenario ξ and 0 otherwise

βξ
i ∈ {0, 1} 1 if node i is served after its upper bound time window in Scenario ξ and 0 otherwise

γk,ξ
i ∈ {0, 1} 1 if truck k arrives at retrieval node i later than its drone k in Scenario ξ and 0 otherwise

The mathematical model of the second-stage problem is presented below:
Q(θ,vξ) = min

∑
i∈Nc

(ceδ−,ξ
i + clδ+,ξ

i ) +
∑
k∈K

ckδk,ξ, (13)

subject to:
Arrival time calculation of drones:

φξ
i + ŝi +

r̂ij
v̂
−M(2− ŷkij − zki ) ≤ τ̂k,ξj ≤ φξ

i + ŝi +
r̂ij
v̂

+M(2− ŷkij − zki ), i ∈ Nd, j ∈ Ne, k ∈ K (14)

τ̄k,ξi + sr + sl +
r̂ij
v̂
−M(3−

∑
j∈Ne

ykij − ŷkij −
∑
j∈Nd

ŷkji) ≤ τ̂k,ξj

≤ τ̄k,ξi + sr + sl +
r̂ij
v̂

+M(3−
∑
j∈Ne

ykij − ŷkij −
∑
j∈Nd

ŷkji), i ∈ Ns, j ∈ Nd, k ∈ K (15a)

φξ
i + si + sl +

r̂ij
v̂
−M(2−

∑
j∈Ne

ykij − ŷkij +
∑
j∈Nd

ŷkji) ≤ τ̂k,ξj

≤ φξ
i + si + sl +

r̂ij
v̂

+M(2−
∑
j∈Ne

ykij − ŷkij +
∑
j∈Nd

ŷkji), i ∈ Ns, j ∈ Nd, k ∈ K (15b)

Arrival time calculation of trucks:

τ̄k,ξi + sr + sl
∑
j∈Nd

ŷkij + ωk,ξ
i +

rij

vξij
−M(2− xkij − ykij −

∑
j∈Nd

ŷkji) ≤ τk,ξj
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≤ τ̄k,ξi + sr + sl
∑
j∈Nd

ŷkij + ωk,ξ
i +

rij

vξij
+M(2− xkij − ykij −

∑
j∈Nd

ŷkji), (i, j) ∈ A, k ∈ K (16a)

φξ
i + si + sl

∑
j∈Nd

ŷkij + ωk,ξ
i +

rij

vξij
−M(1− xkij − ykij +

∑
j∈Nd

ŷkji) ≤ τk,ξj

≤ φξ
i + si + sl

∑
j∈Nd

ŷkij + ωk,ξ
i +

rij

vξij
+M(1− xkij − ykij +

∑
j∈Nd

ŷkji), (i, j) ∈ A, k ∈ K (16b)

Service start time constraints:
τ̂k,ξi −M(1− zki ) ≤ φξ

i ≤ τ̂k,ξi +M(1− zki ), i ∈ Nd, k ∈ K (17a)

τk,ξi −M(1−
∑
j∈Ns

xkji −
∑
j∈Ns

ykji) ≤ φξ
i ≤ τk,ξi +M(1−

∑
j∈Ns

xkji −
∑
j∈Ns

ykji), i ∈ Nc, k ∈ K (17b)

Constraints of the lateness of returning to the depot:
δk,ξ ≥ τ̂k,ξn+1 − lmax −M(1−

∑
i∈Nd

ŷki,n+1), k ∈ K (18a)

δk,ξ ≥ τk,ξn+1 − lmax −M(1−
∑
i∈Nc

xki,n+1 −
∑
i∈Nc

yki,n+1), k ∈ K (18b)

Earliness and lateness calculation:
φξ
i − ei ≤M(1− αξ

i ), i ∈ Nc (19a)

δ−,ξ
i ≤Mαξ

i , i ∈ Nc (19b)

ei − φξ
i ≤ δ−,ξ

i ≤ ei − φξ
i +M(1− αξ

i ), i ∈ Nc (19c)

li − φξ
i ≤M(1− βξ

i ), i ∈ Nc (19d)

δ+,ξ
i ≤Mβξ

i , i ∈ Nc (19e)

φξ
i − li ≤ δ+,ξ

i ≤ φξ
i − li +M(1− βξ

i ), i ∈ Nc (19f)

αξ
i + βξ

i ≤ 1, i ∈ Nc (19g)

Calculation of the time ready for drone retrieval:
τ̂k,ξi − τk,ξi − si ≤M(1− γk,ξi ), i ∈ Nc, k ∈ K (20a)

τ̂k,ξi ≤ τ̄k,ξi ≤ τ̂k,ξi +Mγk,ξi , i ∈ Nc, k ∈ K (20b)

τk,ξi + si ≤ τ̄k,ξi ≤ τk,ξi + si +M(1− γk,ξi ), i ∈ Nc, k ∈ K. (20c)

The objective function Q(θ,vξ) minimises the penalties for violating the time windows in Scenario
ξ given the routing decisions θ. Constraint (14) calculates the arrival time of each drone at a node if
the preceding node is served by it. Otherwise, the arrival time is calculated using the constraints (15a)
and (15b), depending on whether the preceding node is a retrieval node. Similarly, Constraints (16a) and
(16b) calculate the arrival time of each truck at a node depending on whether the preceding node visited
by the truck is a retrieval node. Constraints (17a) and (17b) ensure that the service starts immediately
upon the vehicle arrival at each node. Constraints (18a) and (18b) calculate the lateness of each vehicle
pair that returns to the depot. Constraint (19a)–(19c) calculates the earliness of each customer node,
whereas constraint (19d)–(19f) calculates the lateness of each customer node. Constraint (19g) ensures a
mutually exclusive relationship between the earliness and lateness at each node. Constraints (20a)–(20c)
are the linearised formulae to calculate the time when each vehicle pair is ready for retrieval, that is,
τ̄k,ξi = max{τk,ξi + si, τ̂

k,ξ
i }.

3.3. Sample average approximation

The main challenge in solving the two-stage stochastic model is evaluating E[Q(θ,v)]. The distribution
function Fij can be either continuous or discrete. Even for the latter case, which is simpler, the exact
evaluation of E[Q(θ,v)] is practically impossible when the number of realisations of v is large. This is
the case in this study, even for a small network. A common technique for addressing this computational
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challenge is a sample average approximation framework. A sample of |Ξ| realisations of v is firstly generated,
and then the sample averaged function 1

|Ξ|
∑

ξ∈ΞQ(θ,vξ) is used to approximate E[Q(θ,v)]. By adding
the second-stage constraints (14)–(20) for each realisation vξ to the first-stage formulation, we obtain the
following large-scale MIP. Note that subtour elimination constraints (9a) and (9b) in the first-stage model
are redundant.

min c
∑
k∈K

∑
(i,j)∈A

rij(x
k
ij + ykij) + ĉ

∑
k∈K

∑
(i,j)∈A

ŷkij
r̂ij
v̂

+
∑
k∈K

∑
i∈Nd

ŝiz
k
i

+ c0
∑
k∈K

uk

+
1

|Ξ|
∑
ξ∈Ξ

(∑
i∈Nc

(ceδ−,ξ
i + clδ+,ξ

i ) +
∑
k∈K

ckδk,ξ

)
(21)

subject to:
(2)-(8), (10)-(12), and (14)-(20), ∀ξ ∈ Ξ.

To reduce the approximation error and produce solutions converging to the true optimality a large
sample needs to be generated in the above model, adding extra computational complexity to the already
NP-hard combinatorial optimisation problem. To this end, we develop an efficient heuristic approach that
incorporates the SAA framework, as described in the next section.

4. A hybrid metaheuristic with SAA

Considering that the model will become too large to solve when the sample size grows, we develop a
hybrid metaheuristic (called hybrid iterated greedy metaheuristic based on simulated annealing, HMSA)
with SAA (HMSA-S) for the mDRP-TS. The framework is shown in Algorithm 1. Specifically, a greedy-
based heuristic is first applied to generate a feasible initial solution (line 1), which is then improved by
the HMSA with the mean truck speeds to obtain the best solution S in the deterministic setting (line 2).
Finally, the HMSA integrating SAA (HMSA-SAA) is applied to further optimise solution S in the stochastic
setting (line 3).

Algorithm 1. Outline of the hybrid metaheuristic integrating SAA(HMSA-S)
Input: M , number of batches; H, sample size in each batch; H ′, a large sample size for candidate solution estimation;

T0 = (T01, T02), initial temperature; µ = (µ1, µ2), cooling rate; iterMax = (iterMax1, iterMax2), number of
iterations; Tf = (Tf1, Tf2), floor temperature

Output: the best solution sbest

1: sinitial ← Heuristic for initial solution construction()
2: S ← HMSA(sinitial, T01, µ1, iterMax1, Tf1, 1) using the mean truck speeds
3: sbest ← HMSA-SAA(S, M , H, H ′, T02, µ2, iterMax2, Tf2)
4: return sbest

4.1. Heuristic for initial solution construction

The heuristic constructs an initial solution in two phases. It starts with a GetTruckonly procedure to
construct a truck-only solution to serve all customers. Then, another procedure SeqConstF light is applied
to reassign some customers to drones. Note that the mean truck speeds are used and all procedures below
are performed only if the solution is feasible.

The GetTruckonly procedure starts with a greedy construction of an initial truck-only solution with
the constraint of truck load capacity. Specifically, starting from the depot as the currently visited node scur,
the unassigned customer i that has the minimum cost rscur,i ∗ c+ ce ∗max{0, ei − τki }+ cl ∗max{0, τki − li}
is added to the route of the current truck. After that the newly added customer node becomes the new scur
and the process repeats to add more customers, one-by-one as long as the truck capacity allows. Otherwise,
a new route is started from the depot. The above steps are repeated until all customers are assigned. Then
the obtained routes are improved with a basic SA algorithm. Note that in the initial solution we assume
that there is no additional waiting time at each node. The pseudocode for the GetTruckonly procedure is
presented in Supplementary Materials A (as Algorithm I). The SeqConstF light procedure is the same as
the split and insertion operations proposed in Meng et al. (2023).
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4.2. HMSA

The HMSA is implemented with a set of perturbation procedures to achieve diversification and a
set of local searches embedded in simulated annealing to iteratively obtain a better solution. The local
searches include intra-route and inter-route procedures that work within one route and on different routes,
respectively. In each iteration, the ‘intra’ and then ‘inter’ local searches are applied to generate candidate
solutions. For each of the local searches, each of the operators is invoked to generate one new solution,
and the best-feasible one is chosen as the candidate solution. The pseudocode is shown in Supplementary
Materials B (as Algorithm II).

Perturbation procedure

Based on the problem features, we design a set of customised perturbation operators to shake the current
solution. For the removed nodes in the first four operators, we apply a greedy insertion to each of them, i.e.,
relocate each randomly-selected node from the removal list to the place that gives the best objective value
until a new complete solution is constructed. Moreover, if all attempts fail to obtain a feasible relocation for
a node, a new truck or flight route, whichever is better, is created to serve it. Note that if a launch/retrieval
node is removed, the affected flights also need to be removed.

• Random removal randomly takes out ⌈10% ∗ n⌉ customers from the solution.
• Worst removal iteratively removes the node whose removal produces the greatest cost reduction

from the current solution, until ⌈10% ∗ n⌉ customers are removed.
• Sweep removal removes from the current solution a randomly-selected node i and the first max{1, ⌈10%∗

n− 1⌉} nodes with the smallest acute angles from it. The angle between two nodes are defined by the
two rays from the depot to each node.

• Related removal removes customers with similarities. A randomly-selected seed i is first deleted,
then the node j with the smallest relatedness R(i, j) becomes the new seed and is deleted as well.
We iteratively repeat above steps until ⌈10% ∗ n⌉ nodes are removed. The relatedness is defined by
R(i, j) = w1|di − dj |+ w2(|ei − ej |+ |li − lj |) + w3(rij + r̂ij) + w4 ∗ hi,j , w1, w2, w3, w4 ∈ [0, 1], where
hi,j ∈ {0, 1}. hi,j = 1 indicates that nodes i and j are served by the same vehicle pair and 0 otherwise.
The values of (w1, w2, w3, w4) are tuned to (0.32, 0.51, 0.46, 0.24) via preliminary experiments.

• String relocation first randomly removes 1, 2 or 3 strings from the solution, then randomly relocates
each into the original or other routes. Note that if a split node hosts drone launch or retrieval, it will
be retained in the route and the affected flights in the deleted strings need to find new launch and/or
retrieval node(s) around the new location, as shown in Figure 4. Moreover, a removed string that
contains flights can only be inserted into arcs traversed by both trucks and drones.

Figure 4: String relocation operator.

• Multi-exchange conducts max{2, ⌈15% ∗ n⌉} random exchanges between two nodes from the same
or different routes. The exchanged nodes can be any customers served by trucks or drones.

Intra-route local search

Seven neighborhood operators are used to generate neighbouring solutions within each route.
• Drone node exchange randomly exchanges two nodes served by the drone.
• Truck node exchange randomly exchanges two nodes served by the truck. Note that if a launch/retrieval

node is involved, the locations in the affected flights also need to be exchanged.
• General exchange is similar to truck node exchange, but randomly exchanging two drone-eligible

nodes that are served by a truck and a drone respectively.
• Truck route insertion randomly selects a node served in a drone flight and greedily inserts it into a

location i on the truck route. Note that the launch and retrieval nodes of the flights scheduled after
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location i need to be updated accordingly (i.e., update procedure), as shown in Figure 5, which is also
applied to the next operator.

Figure 5: Truck route insertion operator.

• Same route insertion randomly selects a truck-served node and greedily inserts it to another position
on the truck route. Note that before performing the update procedure, if the moved node serves as a
launch/retrieval node, the affected flights need to (randomly) identify new launch/retrieval nodes.

• Flight change randomly selects a drone-served node and greedily reassigns it to the original or another
flight, then performs a local search for the affected flights for better launch and retrieval positions.

• Flight construction greedily constructs a new flight for a truck-served node. Note that if a launch/retrieval
node is involved, the affected flights need to identify new launch/retrieval nodes.

Inter-route local search

If there are more than one route in the solution, inter-route local search is performed using the operators
below.

• Node insertion first randomly selects two routes, then randomly chooses a node from one route and
greedily relocates it to the other. The relocation can be done in one of following randomly chosen
ways: inserting to the truck route, inserting to an existing flight or creating a new flight.

• Route cut randomly intercepts a string from the longest route to construct a new one, staring from
and ending at the depot.

4.3. Truck waiting time optimisation

The HMSA involves optimising the waiting time at each node. In principle, the waiting times can be
exactly optimised by the second-stage formulation in Section 3.2. However, the total computational time
would be intractable as the model has to be solved for each sampled scenario in each iteration. To accelerate
the solution process, we ignore the impact of waiting times on the penalty cost of drones and develop the
following heuristic to optimise waiting times. For each truck, define the truck route as an ordered set
{0, i1, i2, ..., ig, ..., iG, n + 1}, where G is the number of customers served by the truck. Let sreadyij be the
ready time for serving node j after travelling there from node i on the truck route. That is, if node i is a
retrieval node, sreadyij = τ̄i + sr + sl

∑
j′∈Nd

ŷij′ +
rij
vij

. Otherwise, sreadyij = τi + si + sl
∑

j′∈Nd
ŷij′ +

rij
vij

. We
have the following results:

Lemma 1. The optimal waiting time at the last visited customer (i.e., ωiG) on the truck route is zero,
allowing the earliest arrival time at the depot.

The proofs of Lemma 1 and the Propositions in the paper are all given in Supplementary Materials C.
In view of Lemma 1, we set ωiG = 0.

Proposition 1. If sreadyij ≥ lj, ωi = 0 gives the minimum penalty cost at node j and the earliest ready times
for the subsequent services, i.e., the minimum latency.

In view of Proposition 1, if sreadyij ≥ lj , we set ωi = 0. Otherwise, we consider the following two cases.
Case 1: The truck travels from node i to a non-retrieval node j.

Proposition 2. If sreadyij ≥ ej, ωi = 0 gives the minimum penalty cost at node j and the minimum latency.
Otherwise, the optimal waiting time must take values from [0, ej − sreadyij ], allowing the minimum latency.

In view of Proposition 2, if sreadyij ≥ ej , we set ωi = 0. Otherwise, we find the ωi from the range
[0, ej − sreadyij ] by the following algorithm, which includes six scenarios as shown in Figure 6. We use p to
denote the next node after j in the route.
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Figure 6: The penalty costs at nodes j and p in the case of sreadyij < ej .

Algorithm 2. Waiting time optimisation at node i (when 0 < sreadyij ≤ ej, G ≥ 2)

Input: sreadyij , the ready time for serving node j
Output: the best waiting time ωi

1: sready,ljp = sreadyij + sj + sl
∑

i′∈Nd
ŷji′ +

rjp
vjp

# Calculate the earliest ready time for node p

2: sready,ujp = sready,ljp − sreadyij + ej # Calculate the latest ready time for node p
3: if p ̸= n+ 1 then
4: if sready,ljp > lp then
5: return ωi = 0← Figure 6(vi)
6: else
7: if ep ≤ sready,ljp ≤ lp then
8: if sready,ujp ≤ lp then
9: return ωi = ej − sreadyij ← Figure 6(iv)

10: else
11: return ωi = lp − sready,ljp ← Figure 6(v)
12: else
13: if sready,ujp ≤ lp then
14: return ωi = ej − sreadyij ←Figures 6(i) and 6(ii)
15: else
16: return ωi = lp − sready,ljp ← Figure 6(iii)
17: else # p = n+ 1, node p is the depot
18: Φ̄ = lmax − rjp

vjp
− sj

19: if sreadyij ≥ ej then
20: return ωi = 0← Proposition 2
21: else
22: if Φ̄ ≥ ej then
23: return ωi = ej − sreadyij ← Figure 6(iv)
24: else
25: if Φ̄ > sreadyij then
26: return ωi = Φ̄− sreadyij ← Figure 6(v)
27: else
28: return ωi = 0← Figure 6(vi)

Case 2: The truck travels from node i to a retrieval node j. (Note that if sreadyij + sj ≥ τ̂j , the result is the
same as that in Case 1.)

Proposition 3. When ej ≤ sreadyij ≤ lj, the penalty cost at node j is zero for any ωi ∈ [0, lj − sreadyij ] if
τ̂j − sj ≥ lj (Figure 7i), and for any ωi ∈ [0, τ̂j − sreadyij − sj ] if otherwise (Figure 7ii).

Figure 7: The penalty cost at node j in the case of ej ≤ sreadyij ≤ lj .

In view of Proposition 3, for ej ≤ sreadyij ≤ lj , if τ̂j − sj ≥ lj , we set ωi = lj − sreadyij . Otherwise,
ωi = τ̂j − sreadyij − sj .
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Figure 8: The penalty cost at node j in the case of 0 < sreadyij < ej .

Proposition 4. When 0 < sreadyij < ej, we have: i) if 0 < τ̂j − sj < ej, the optimal waiting time at node i

must take values from [τ̂j − sreadyij − sj , ej − sreadyij ], allowing the minimum latency (Figure 8i); ii) otherwise,
the penalty cost at node j is zero for any ωi ∈ [ej − sreadyij , τ̂j − sreadyij − sj ] if ej ≤ τ̂j − sj ≤ lj (Figure 8ii),
and for any ωi ∈ [ej − sreadyij , lj − sreadyij ] if otherwise (Figure 8iii).

In view of Proposition 4, we obtain the waiting time at node i when 0 < sreadyij < ej as follows. If
ej ≤ τ̂j − sj ≤ lj , we set ωi = τ̂j − sreadyij − sj ; if τ̂j − sj > lj , we set ωi = lj − sreadyij ; otherwise, ωi can be
determined by Algorithm III, which is similar to Algorithm 2 and included in Supplementary Materials D.

To sum up, Algorithm 3 outlines the waiting time optimisation at node ig for all considered cases.

Algorithm 3. Waiting time optimisation at node ig for all considered cases
Input: sreadyig,ig+1

, the ready time for serving node ig+1; τ̂ig+1
, the drone arrival time at node ig+1

Output: the best waiting time ωig

1: if ig = iG or sreadyig,ig+1
≥ lig+1

then
2: return ωig = 0← Lemma 1 & Proposition 1
3: else
4: if ig+1 is not a retrieval node then # Case1
5: if sreadyig,ig+1

≥ eig+1
then

6: return ωig = 0← Proposition 2
7: else
8: return ωig ← Algorithm 2
9: else # Case2

10: if sreadyig,ig+1
+ sig+1 ≥ τ̂ig+1 then

11: if sreadyig,ig+1
≥ eig+1

then
12: return ωig = 0← Proposition 2
13: else
14: return ωig ← Algorithm 2
15: else
16: if sreadyig,ig+1

≥ eig+1
then

17: return ωig ← Proposition 3
18: else
19: return ωig ← Proposition 4

4.4. SAA mechanism

The pseudocode of the HMSA-SAA is presented in Algorithm 4, which repeatedly solves the stochastic
problem M batches. In each batch m, a random sample of size H is generated and used to obtain the best
solution smH with the expected objective value of cmH (lines 5-6). Then the lower bound of the stochastic
problem c̄MH , defined as the average objective value of the M best solutions, is compared against the upper
bound that is obtained in the same manner but with a much larger sample size H ′. If the relative gap
between the two bounds is sufficiently small (gap < 5%), the algorithm returns the final best solution (line
16). Otherwise, it increases the value of H and repeats the above procedure (lines 12-13).
Algorithm 4. HMSA-SAA
Input: S, M , H, H ′, T02, µ2, iterMax2, Tf2

Output: the best solution sM∗

1: Generate a sample of size H ′

2: while True do
3: Initialisation: solution set SM

H ← ∅
4: for m in M do
5: Generate a sample of size H
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6: The best solution and cost smH , cmH ← HMSA(S, T02, µ2, iterMax2, Tf2, H)
7: SM

H .add(smH)
8: Calculate the lower bound c̄MH = 1

M

∑
m∈M cmH of the stochastic problem

9: for smH in SM
H do

10: Using larger sample size H ′ to obtain the upper bound cmH′ = 1
H′

∑
ξ∈H′ F (smH , vξ)

11: cm∗
H′ ← min{cmH′}

12: if gap = (cm∗
H′ − c̄MH )/c̄MH >= 5% then

13: H+ = 10
14: else
15: break
16: return sM∗ ← the solution smH with cost of cm∗

H′ from the M solutions
Note: F (smH , vξ) is the cost of solution smH with scenario vξ.

5. A rolling-horizon model for dynamic waiting time optimisation in the execution phase

Once the optimal routing decisions are identified in the planning phase, the optimal waiting time
decisions for each truck can be derived using either a second-stage model or the heuristic Algorithm 3.
However, both approaches require an input of the actual truck travel speeds on all arcs along the entire
route, which are not available a priori and only become known sequentially as the truck traverses each
arc. Thus, the estimated speeds can be used. Although satellite navigation services, such as Google Maps,
are becoming more accurate, the weather, road conditions and traffic are dynamic and volatile, leading
to unavoidable estimation errors, especially further down the route. Therefore, the obtained waiting time
solutions may become suboptimal, given the inaccurate truck speeds used. To this end, we reformulate the
second-stage model in a rolling-horizon manner that can be easily implemented in the executive phase. This
model allows re-optimisation whenever a truck arrives at a customer node using an up-to-date estimate of
the truck speeds in the remaining route at that time. Only the current waiting time decision is implemented,
while the rest are discarded and re-optimised upon the truck’s arrival at the next node.

For any vehicle pair, suppose that the truck arrives at node im — the mth customer on its route — at
time τim . Let NS(m) = {im, im+1, ..., iG} be the set of customers yet to be served by the truck. Recall that
G is the number of customers served by the truck. The remaining truck route can be represented by ordered
set Sm = {(im, im+1), (im+1, im+2), ..., (iG, n+1)}. For the drone, denote the sequence of uncompleted flights
by Rm = {fm, ..., F}, where F is the total number of flights, and fm is the index of the first uncompleted
flight. Note that the flight currently in the air, if any, is not included. For each flight f ∈ Rm, let the set of
customers covered by this flight be Nf = {if1 , ..., i

f
|Nf |}, and if0 and if|Nf |+1 be the launch and retrieval nodes,

respectively. At time τim the drone could be at one of three locations (as shown in Figure 9): i) already
on the truck, ii) having just completed flight fm − 1 and waiting to be retrieved at node im, and iii) still
up in the air in flight fm − 1, to be retrieved at another node further down the route. To track the drone’s
where-about, we use τ̃im for the time when the drone would arrive at its next retrieval node, which takes
the values of τim , τ̂im and τ̂

ifm−1
|Nfm−1|+1

, respectively, in the above 3 scenarios.

Figure 9: Various scenarios for the drone’s location at time τim .
The set NS(m) can be partitioned into the following subsets: the nodes to be visited by the truck

independently N1
S(m), the nodes to be visited by the vehicle pair together (excluding the launch/retrieval

nodes) N2
S(m), the launch-only nodes N3

S(m), the retrieval-only nodes N4
S(m), and the retrieval-launch

nodes N5
S(m). Moreover, let NR(m) =

∪
f∈Rm Nf be the set of all the customers yet to be served by the

drone. All other variables are the same as those in the second-stage model, but without index k or ξ. For
completeness, for m = 0 we let i0 = 0 and τi0 = 0 denote that the truck is still at the depot; in this case,
we also have f0 = 1 and τ̃i0 = 0 and the model becomes equivalent to the second-stage model (13)-(20c).

We are now ready to present the rolling-horizon waiting time optimisation model for the current truck
visiting node (im) and the corresponding time stamps for the truck (τim) and drone (τ̃im):
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min
∑

i∈NS(m+1)

(ceδ−i + clδ+i ) +
∑

f∈Rm

∑
ifj ∈Nf

(ceδ−
ifj
+ clδ+

ifj
) + ckδ, (22)

subject to:

τi′ =

 τi + si +
ri,i′
vi,i′

+ ωi, (i ∈ N1
S(m), i ̸= im)

∨
(i ∈ N2

S(m)), (i, i′) ∈ Sm

τi + si + sl +
ri,i′
vi,i′

+ ωi, i ∈ N3
S(m), (i, i′) ∈ Sm

(23a)

τim+1 =

max{τim + sim , τ̃im}+ sr +
rim,im+1

vim,im+1
+ ωim , im ∈ N4

S(m)

max{τim + sim , τ̃im}+ sr + sl +
rim,im+1

vim,im+1
+ ωim , im ∈ N5

S(m)
(23b)

τi′ =

max{τi + si, τ̃im}+ sr +
ri,i′
vi,i′

+ ωi, im ∈ N1
S(m), i = ifm−1

|Nfm−1| ∈ N4
S(m)

max{τi + si, τ̃im}+ sr + sl +
ri,i′
vi,i′

+ ωi, im ∈ N1
S(m), i = ifm−1

|Nfm−1| ∈ N5
S(m)

(23c)

τi′ =

 τ̄i + sr +
ri,i′
vi,i′

+ ωi, i ∈ N4
S(m), i ̸= ifm−1

|Nfm−1|, i ∈ NS(m) \ im
τ̄i + sr + sl +

ri,i′
vi,i′

+ ωi, i ∈ N5
S(m), i ̸= ifm−1

|Nfm−1|, i ∈ NS(m) \ im
(23d)

τ̂
ifm1

=



τ
ifm0

+ s
ifm0

+ sl +
r̂
i
fm
0 ,i

fm
1

v̂ , (im ∈ N2
S(m) ∪N4

S(m))
∨
(im ∈ N1

S(m), ifm0 ∈ N3
S(m))

τim + sim + sl +
r̂
im,i

fm
1

v̂ , im ∈ N3
S(m)

max{τim + sim , τ̃im}+ sr + sl +
r̂
im,i

fm
1

v̂ , im ∈ N5
S(m)

max{τ
ifm0

+ s
ifm0

, τ̃im}+ sr + sl +
r̂
i
fm
0 ,i

fm
1

v̂ , im ∈ N1
S(m), ifm0 ∈ N5

S(m)

(24a)

τ
if0
+ s

if0
+ sl +

r̂
if0 ,i

f
1

v̂
≤ τ̂

if1
≤ τ

if0
+ s

if0
+ sl +

r̂
if0 ,i

f
1

v̂
, if0 ∈ N3

S(m), f ∈ Rm \ fm (24b)

τ̄
if0
+ sr + sl +

r̂
if0 ,i

f
1

v̂
≤ τ̂

if1
≤ τ̄

if0
+ sr + sl +

r̂
if0 ,i

f
1

v̂
, if0 ∈ N5

S(m), f ∈ Rm \ fm (24c)

τ̂
ifj
+ ŝ

ifj
+

r̂
ifj ,i

f
j+1

v̂
≤ τ̂

ifj+1
≤ τ̂

ifj
+ ŝ

ifj
+

r̂
ifj ,i

f
j+1

v̂
, ifj ∈ Nf , f ∈ Rm (25)

δ ≥

{
τn+1 − lmax

τ̂n+1 − lmax, n+ 1 ∈ N4
S(m),

(26)

(19a)-(19g), ∀i ∈ NS(m) ∪NR(m), and (20a)-(20c), ∀i ∈ N4
S(m) ∪N5

S(m).
The objective function (22) minimises the total violation penalty of the remaining route. Constraint

(23) calculates the truck arrival times in different situations (as shown in Figure 10), depending on the type
and location of departure node i. Constraint (23a) considers the three situations where i is a non-retrieval
node, as shown in Figure 10i. Constraints (23b)–(23d) consider the following situations where i is a retrieval
node: 1) node i is im and the drone has just completed flight fm − 1 (Figure 10ii), 2) the same as the
previous one except that node i is further down the route (Figure 10iii), and 3) the drone has just completed
flight f ∈ Rm (Figure 10iv).

Figure 10: Cases in which the truck traverses arc (i, i′).

Constraint (24a) calculates the drone arrival time at the first customer node in flight fm under different
situations (as shown in Figure 11i-iv). Constraints (24b) and (24c) calculate the drone arrival time at the
first customer node in subsequent flights. The drone arrival times at all the remaining nodes in each flight
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are calculated using constraint (25). Constraint (26) is equivalent to (18a)-(18b).

Figure 11: Cases for the arrival at the first drone-served node in flight fm.

The above model can be easily solved using off-the-shelf solvers, and the problem size gradually decreases
as the number of customers visited increases.

6. Computational experiments

In this section, a number of computational experiments are conducted to assess the benefits of stochas-
tic modelling and the performance of the proposed hybrid metaheuristic approach, HMSA-S. Section 6.1
introduces the test instances and parameters used in the experiments. The solutions produced by HMSA-S
for all instances are presented in Section 6.2. In Section 6.3, we conduct a simulation study to demonstrate
the benefits of the stochastic approach and the effectiveness of dynamic waiting time optimisation. Finally,
a sensitivity analysis is conducted on the three key parameters in Section 6.4. The metaheuristic was coded
in Python 3.9.5, the rolling-horizon model was solved using Gurobi, and all computations were executed on
a Windows 10 operating system equipped with an Intel (R) Core (TM) i7-10750H processor (2.60 GHz) and
32 GB of RAM.

6.1. Test instances

We randomly generate 36 test instances, grouped into four sets. Each set has a different number of
customers n ∈ {30, 50, 70, 100}. The node locations are uniformly distributed in a square area of 10 km×10
km/12 km×12 km/12 km×12 km/15 km×15 km for the four sets (Liu et al., 2020). Note that our model
and solution algorithms are not restricted to any specific graph of locations. Each set includes 3 time
window scenarios (A, B and C), with 3 instances generated randomly in each scenario (Dellaert et al.,
2019). Specifically, for each customer i we have A) ei ∈ [20, 260] and li = ei + 20, B) ei ∈ [60, 360] and
li = ei + 20 and C) ei ∈ [60, 360] and li = ei + 90. The depot has a time window of [0,450]. In each
instance, the demand for 90% of the customers are randomly generated in the range (0, 2.3] (Liu et al.,
2020). The remaining customers are designated as truck-only nodes, whose demands are sampled in the
range (3, 50](Zhen et al., 2023). For convenience, each instance is called ‘A/B/C.#.n’. All instances are
available at 10.17632/d97vkm32w4.1.

The values of all the other model parameters are listed in Table 4a, while the parameters used in the
metaheuristic approach are listed in Table 4b.

Table 4: List of parameters.
Parameter Value Reference
Distribution of the truck speed on each arc (F ) Truncated normal distribution F (µ, σ2) Chen et al. (2014)

over the support [20, 40] km/h, µ=30, σ2=9
(i.e., the Coefficient of Variation CV=σ/µ=0.1)

Load capacity of drones (Ŵ ) 3.0 kg Liu et al. (2020)
Constant speed of drones (v̂) 40 km/h Nguyen et al. (2022)
Battery duration of drones (B) 30 min Murray & Chu (2015)
Available capacity of trucks (W ) 650 kg Meng et al. (2024)
Setup times for drone launch and retrieval (sl, sr) 1 min, 1 min Murray & Chu (2015)
Service times of trucks and drones (s, ŝ) 3 min, 2 min Coindreau et al. (2021)
Travelling cost per unit distance for trucks (c) $0.78/km Salama & Srinivas (2020)
Drone operating cost per unit time (ĉ) $0.06/min(=0.78/ε ∗ v̂/60), where the Salama & Srinivas (2020)

truck-to-drone unit cost ratio ε =8.3
Unit time penalty costs (ce, cl, ck) $0.5/min, $1.5/min, $3.0/min −
Fixed cost for each deployed vehicle pair (c0) $30 −

(a) Model parameters.
Description Value Description Value
Parameters used in the SAA Parameters used in the hybrid metaheuristic
M - number of batches 5 T0 = (T01, T02)- initial temperatures (100,100)
N - sample size in each batch 15 β = (β1, β2)- cooling rates (0.95,0.92)
N ′- sample size used for solution evaluation 500 Tf = (Tf1, Tf2)- floor temperatures (10,10)

iterMax = (iterMax1, iterMax2)- number of iterations (20,20)
(b) Metaheuristic parameters.
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6.2. HMSA-S solutions

In this section, we present in Table 5 the best solution obtained by the proposed metaheuristic HMSA-
S for each of the 36 instances. The results include the operational cost (Cv), penalty cost (Cp), fixed
cost(Cf ), total cost (TC), number of deployed vehicle pairs (U), number of flights (F ), number of drone-
served customers (R), and number of drone-eligible customers (D). We also report the proportions of the
penalty cost to the total cost (∆p/c% = 100 ∗ Cp

TC ) and drone-served customers to drone-eligible customers
(∆r/d% = 100 ∗ R

D ), and the computational time (cpu).

Table 5: HMSA-S solutions.
Instance Cv Cp Cf TC ∆p/c U F R D ∆r/d cpu(s) Instance Cv Cp Cf TC ∆p/c U F R D ∆r/d cpu(s)
A.1.30 53.92 0.00 60.00 113.92 0.00 2 10 15 27 55.56 769.80 A.1.70 102.47 0.36 90.00 192.83 0.19 3 20 36 63 57.14 2179.76
A.2.30 48.90 0.00 60.00 108.90 0.00 2 10 18 27 66.67 687.22 A.2.70 103.70 1.67 90.00 195.37 0.85 3 18 36 63 57.14 2203.76
A.3.30 54.37 0.00 60.00 114.37 0.00 2 9 16 27 59.26 759.17 A.3.70 106.86 0.44 90.00 197.30 0.22 3 18 33 63 52.38 2328.33
B.1.30 62.06 0.27 30.00 92.33 0.29 1 9 17 27 62.96 1058.66 B.1.70 112.83 1.56 90.00 204.39 0.76 3 18 33 63 52.38 3523.60
B.2.30 82.53 1.46 30.00 113.99 1.28 1 8 15 27 55.56 850.15 B.2.70 120.08 0.00 90.00 210.08 0.00 3 17 31 63 49.21 2351.24
B.3.30 55.85 0.00 60.00 115.85 0.00 2 11 15 27 55.56 976.39 B.3.70 112.83 10.22 90.00 213.05 4.80 4 22 36 63 57.14 2198.35
C.1.30 47.70 0.00 30.00 77.70 0.00 1 7 15 27 55.56 606.07 C.1.70 75.82 0.00 60.00 135.82 0.00 2 19 38 63 60.32 1743.34
C.2.30 49.22 0.01 30.00 79.23 0.01 1 10 15 27 55.56 716.38 C.2.70 84.72 0.00 60.00 144.72 0.00 2 20 40 63 63.49 2454.97
C.3.30 39.97 0.00 30.00 69.97 0.00 1 8 19 27 70.37 660.68 C.3.70 79.34 0.24 60.00 139.58 0.17 2 20 41 63 65.08 2269.07
Avg. 0.18 59.67 Avg. 0.78 57.14

A.1.50 96.73 0.80 90.00 187.53 0.43 3 16 26 45 57.78 1830.18 A.1.100 184.18 7.88 150.00 342.06 2.30 5 25 47 90 52.22 4486.55
A.2.50 106.82 2.50 60.00 169.32 1.48 2 14 24 45 53.33 1761.63 A.2.100 209.83 6.87 120.00 336.70 2.04 4 29 52 90 57.78 3412.94
A.3.50 89.41 4.48 90.00 183.89 2.44 3 17 26 45 57.78 1347.87 A.3.100 190.72 12.71 120.00 323.43 3.93 4 24 43 90 47.78 3353.65
B.1.50 87.00 1.53 60.00 148.53 1.03 2 14 25 45 55.56 2032.34 B.1.100 206.82 3.51 120.00 330.33 1.06 4 30 49 90 54.44 3409.28
B.2.50 109.39 3.34 60.00 172.73 1.93 2 14 23 45 51.11 3521.11 B.2.100 182.96 1.14 150.00 334.10 0.34 5 27 49 90 54.44 5743.05
B.3.50 86.09 3.66 60.00 149.75 2.44 2 17 27 45 60.00 2345.88 B.3.100 187.50 0.22 120.00 307.72 0.07 4 27 49 90 54.44 5609.95
C.1.50 74.00 0.00 60.00 134.00 0.00 2 14 28 45 62.22 1985.31 C.1.100 136.14 0.15 90.00 226.29 0.07 3 27 55 90 61.11 3623.93
C.2.50 72.48 0.34 60.00 132.82 0.26 2 16 29 45 64.44 971.11 C.2.100 150.87 0.22 90.00 241.09 0.09 3 26 52 90 57.78 2981.98
C.3.50 69.08 0.00 60.00 129.08 0.00 2 15 29 45 64.44 1939.53 C.3.100 133.85 1.85 120.00 255.70 0.72 4 28 60 90 66.67 3693.09
Avg. 1.11 58.52 Avg. 1.18 56.30

It is shown that the instances in Scenario C have the lowest total costs compared with their counterparts
in the other two scenarios, and they usually require the least number of vehicle pairs owing to their widest
time windows. In most instances, more than 50% of drone-eligible customers are served by drones. Although
the ratio is slightly higher in Scenario C than in the other scenarios, it is relatively stable over different
instance sizes within each scenario. The number of flights is comparable across the scenarios. In addition,
the computational time increases with the instance size. For scenarios of the same size, the computational
time in Scenario C is the shortest, followed by those in Scenarios A and B. In all scenarios, the time window
violation penalties represent a small proportion of the total costs, always less than 4.80%. A detailed analysis
of waiting time is presented in Section 6.3.2. As we shall see, this is not always the case, and the time window
violation penalties could be significantly higher if trucks are not allowed to wait.

6.3. Benefits of the stochastic approach and dynamic waiting time optimisation

To evaluate the benefits of the stochastic approach and effectiveness of dynamic waiting time optimi-
sation, we conduct the following simulation study. For each problem instance, the routing decisions are
obtained using the HMSA-S. Subsequently, for every truck-drone pair, we first generate a sample of truck
travel speeds along the entire route and solve the rolling-horizon model to determine the waiting time at
the depot. Then, the truck waits at the depot as required before setting off to the first customer node. We
assume that the sampled travel speed for the next arc is always the true speed. Upon arrival at the first
customer node, another sample of truck speeds is generated for the remaining route, and the rolling-horizon
model is solved again to determine the waiting time at that node. This procedure is repeated until the
vehicle pair is returned to the depot. The drones are launched and retrieved as prescribed by their flights.
We calculate the total cost for all vehicle pairs in each replication. In total, 500 replications are conducted
for each instance, and the average total costs are reported.

6.3.1. Benefits of the stochastic modelling approach

In this section, we evaluate the benefits of the stochastic modelling approach for the problem concerned.
To this end, we compare the total costs produced by HMSA-S against those of its deterministic counterpart
HMSA which ignores truck travel time uncertainties. Moreover, we include two benchmark heuristics from
the literature: the large neighbourhood search (LNS) from Kitjacharoenchai et al. (2020) and the adap-
tive multi-start simulated annealing algorithm (AMSA) from Masmoudi et al. (2022). Both heuristics are
designed for a deterministic VRP-D. The average total costs for each of the three deterministic heuristics
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are calculated via the same simulation framework as mentioned above, except that the waiting times are
obtained via the second-stage model using the mean truck travel speeds; thus, the waiting time decisions
remain the same across the 500 replications. In addition, three levels of truck speed variations are consid-
ered in these experiments: Low, Moderate, and High, equal to 0.1, 0.2, and 0.3, respectively. Moreover,
considering that truck speeds on some arcs may experience higher uncertainties than the others in practice,
a mixed scenario where CVs are evenly set to be 0.1/0.2/0.3 among all arcs is included.

The detailed results for all instances in Scenario A are presented in Table 6, which lists the total cost
of the best solution among five runs for HMSA-S. It also reports the extra percentage cost owing to each
deterministic heuristic compared to HMSA-S. It is shown that HMSA-S leads to considerable cost reductions
compared with deterministic heuristics in all considered scenarios. Specifically, the extra costs due to LNS
and AMSA are greater than 14%, and the gap increases with the problem size and degree of uncertainty. The
performance of HMSA is slightly better, but still significantly worse than that of its stochastic counterpart.
Therefore, stochastic modelling is essential for reducing the overall cost of such problems.

Table 6: Total costs of the stochastic and deterministic approaches.
Instance CV Total cost Extra % cost over HMSA-S Instance CV Total cost Extra % cost over HMSA-S

HMSA-S HMSA LNS AMSA HMSA-S HMSA LNS AMSA
A.1.30 L 113.92 7.79 6.37 10.52 A.1.70 L 194.36 14.09 9.87 13.09

M 113.92 8.99 7.01 11.73 M 194.57 16.19 10.91 15.54
H 113.92 10.45 7.30 12.43 H 195.58 15.96 10.79 15.68
X 113.92 10.45 8.74 14.22 X 195.57 16.62 12.73 18.77

A.2.30 L 114.30 5.51 5.60 6.20 A.2.70 L 200.14 14.10 25.71 37.32
M 114.31 6.63 6.79 6.91 M 200.47 17.41 28.32 42.17
H 114.33 6.80 7.18 7.23 H 201.46 17.39 27.81 42.35
X 115.30 7.45 8.39 7.69 X 203.47 17.16 28.46 44.47

A.3.30 L 114.41 12.10 9.29 9.29 A.3.70 L 201.65 13.40 23.37 7.58
M 114.41 15.13 10.93 11.57 M 202.01 15.36 24.04 8.76
H 114.41 16.77 12.16 12.16 H 202.47 15.36 24.31 7.62
X 114.41 19.73 11.89 12.41 X 204.90 14.66 23.78 9.13

A.1.50 L 189.01 9.64 11.28 21.13 A.1.100 L 351.44 20.01 12.89 17.35
M 189.11 11.23 13.56 24.97 M 352.41 23.42 15.63 19.60
H 192.99 10.38 11.93 26.94 H 357.79 20.04 16.18 18.31
X 194.11 9.75 12.59 34.11 X 357.79 23.11 16.95 19.63

A.2.50 L 172.37 18.52 19.62 17.29 A.2.100 L 342.10 17.44 23.69 19.33
M 174.93 18.70 24.34 18.12 M 343.52 20.09 22.34 20.53
H 176.06 18.28 24.56 18.29 H 347.34 19.18 26.93 19.10
X 176.06 18.28 23.93 22.02 X 349.52 21.61 26.09 22.53

A.3.50 L 185.29 8.55 13.13 7.99 A.3.100 L 441.65 6.79 8.83 6.49
M 185.81 10.65 15.34 11.19 M 446.89 7.50 10.28 7.52
H 186.97 10.88 15.04 10.32 H 447.75 6.79 11.62 6.87
X 189.03 9.68 15.06 10.88 X 446.89 8.59 11.90 9.22

Avg. L 12.33 14.14 14.47 H 14.02 16.32 16.44
M 14.28 15.79 16.55 X 14.76 16.71 18.76

L: low. M: moderate. H: high. X: mixed.

6.3.2. Effectiveness of the rolling-horizon waiting time optimisation approach

To evaluate the effectiveness of the proposed rolling-horizon waiting time optimisation approach (RH),
we compare its performance against two other approaches to the waiting time: 1) no waiting at all (NW),
and 2) ignoring the truck travel time uncertainties and solving the second-stage model with the mean truck
travel speeds (MW). The total costs are calculated using the same simulation framework mentioned above.
Specifically, routing decisions are first obtained via HSMA-S. The simulation then proceeds as described,
with the waiting times obtained using each of these alternative approaches. The same samples are used for
all alternatives. At the end of each replication, one would obtain a realisation of the travel speeds for every
truck route. We then use this realisation in the second-stage model and obtain the optimal waiting times as
if the truck speeds were known before departure. The resulting total cost serves as a lower bound (LB) for
the problem. The results for all instances in Scenario B with the three CV values are presented in Table 7.

When no waiting is allowed, the total cost is significantly higher than that of the other two alternative
approaches; the cost could be almost tripled compared with LB. The mean-speed waiting time approach
clearly improves the performance, reducing the total costs, but is still 20% over the LB on average. In sharp
contrast, the proposed rolling-horizon approach is very close to the LB, with an overall gap of less than 3%.
Another observation is that although the total costs increase with the CV values, the performance of RH is
always robust compared to the other two approaches.

To further investigate the benefits of waiting time optimisation, we compare the cost breakdown under
NW and LB for Scenarios A and B with CV=0.1, as shown in Figure 12. It is shown that the total cost of
LB compared with that of NW decreases more significantly in Scenario B than in Scenario A because the
former has a wider range of window-opening times than the latter, allowing more opportunities to reduce the
penalties by waiting. Moreover, in the absence of waiting time, the penalty cost fluctuates significantly and
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Table 7: Total costs of alternative approaches to the waiting time.
Instance CV Total cost Extra % cost over LB Instance CV Total cost Extra % cost over LB

LB NW MW RH LB NW MW RH
B.1.30 L 92.40 153.24 28.64 2.11 B.1.70 L 203.04 210.13 14.18 0.89

M 94.06 148.88 32.05 2.20 M 203.04 216.02 16.11 1.32
H 94.85 148.86 34.12 2.33 H 203.12 265.88 16.23 0.91

B.2.30 L 113.44 232.55 28.15 5.53 B.2.70 L 208.17 205.19 15.25 3.01
M 113.51 237.01 28.27 8.46 M 208.92 208.19 17.96 2.89
H 113.79 242.12 30.42 8.17 H 210.08 211.49 17.80 2.45

B.3.30 L 115.85 136.62 11.17 0.00 B.3.70 L 214.00 171.28 18.87 3.43
M 116.87 141.03 9.87 1.15 M 215.79 182.43 21.47 3.79
H 116.89 146.22 11.07 1.14 H 215.97 184.96 22.83 4.40

B.1.50 L 148.51 164.03 13.96 2.30 B.1.100 L 327.35 186.24 19.87 1.96
M 151.12 163.19 19.74 2.85 M 328.15 196.14 22.02 2.29
H 151.96 164.25 24.26 3.78 H 331.72 199.35 23.63 2.82

B.2.50 L 173.00 256.90 18.33 3.23 B.2.100 L 333.98 157.21 17.60 1.00
M 173.05 259.19 18.39 3.61 M 333.95 165.99 18.43 1.10
H 173.34 269.10 22.49 4.15 H 333.99 179.61 18.87 1.29

B.3.50 L 150.34 218.91 19.85 4.86 B.3.100 L 307.46 170.24 20.17 0.95
M 150.64 226.20 20.00 4.83 M 307.59 191.21 24.59 0.97
H 154.77 224.01 28.82 7.42 H 307.75 207.02 26.54 1.27

Avg. 195.58 20.89 2.91

increases with instance size, whereas in the case of waiting time optimisation, the penalty cost is relatively
small and robust.

Figure 12: Cost breakdown comparison of NW and LB for Scenarios A and B.

6.4. Sensitivity analysis

In this section we conduct sensitivity analyses to identify the impact of the penalty cost rate, variation
in truck travel speeds, and drone unit cost on the solutions of mDRP-TS via the simulation. Unless otherwise
specified, a CV of 0.1 is used.

6.4.1. The impact of the penalty cost rate

Recall that in the experiments conducted thus far, we have (ce, cl, ck) = (0.5, 1.5, 3.0). We now multiply
all cost rates by ρ to study the impacts of different penalty cost rates on the solutions to the problem.
Figure 13 shows the cost breakdown for the six instances of B/C.#.50 for different ρ values. Overall, both
the total and fixed costs increase with the penalty cost rate, whereas the operational cost is relatively stable.
Interestingly, the total penalty cost decreases with ρ. This is because higher penalty cost rates force more
vehicle pairs to be deployed. Thus, more customers can be served within their time windows, leading to
fewer violations and lower total penalty costs. Moreover, the instances of B.#.50 are more sensitive to the
penalty cost rate than those of C.#.50 because the latter have wider time windows that always contribute
to fewer violations.

6.4.2. The impact of the Coefficient of Variation of truck speeds

This section investigates the impact of the variation in truck speeds on the cost breakdown in all
instances in Scenario B. Table 8 displays the comparison results of the fixed, operational, penalty, and total
costs in different CV scenarios. Overall, the fixed cost is the same for different CV values in each instance,
implying that the number of vehicles deployed remains the same. The total cost always increases with the
CV values, with the highest value observed in the mixed scenarios. Interestingly, the operational cost or
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Figure 13: The impact of the penalty cost rate.

penalty cost does not always increase with the CV values. In these cases, the vehicle routes/flights are
changed slightly to reduce the penalty cost, at the expense of higher operational costs.

Table 8: Cost breakdown with different CV values.
Instance Cf

Cv Cp TC

L M H X L M H X L M H X
B.1.30 30.00 62.06 62.94 62.94 64.20 0.24 1.09 2.96 2.60 92.30 94.03 95.90 96.80
B.2.30 30.00 82.53 82.91 82.91 83.02 1.04 0.70 2.81 3.94 113.57 113.61 115.72 116.96
B.3.30 60.00 55.85 56.83 56.83 56.94 0.00 0.12 2.15 2.38 115.85 116.95 118.98 119.32
B.1.50 60.00 87.00 97.71 97.71 101.35 1.56 0.42 0.82 2.59 148.56 158.13 158.53 163.94
B.2.50 60.00 109.39 109.83 115.66 121.46 3.40 3.03 0.39 2.36 172.79 172.86 176.05 183.82
B.3.50 60.00 86.09 91.01 86.71 90.17 4.41 4.33 8.63 8.87 150.50 155.34 155.34 159.04
B.1.70 90.00 112.83 127.23 127.76 135.86 0.35 0.28 0.75 0.57 203.18 217.51 218.51 226.43
B.2.70 90.00 120.08 117.45 115.67 122.53 0.00 0.72 3.25 5.73 210.08 208.17 208.92 218.26
B.3.70 90.00 112.83 123.07 124.31 131.06 11.65 6.41 5.33 6.86 214.48 219.48 219.64 227.92
B.1.100 120.00 206.82 208.56 203.95 211.08 1.35 1.83 7.81 5.55 328.17 330.39 331.76 336.63
B.2.100 150.00 182.96 182.86 182.87 181.53 1.09 1.25 1.28 4.34 334.05 334.11 334.15 335.87
B.3.100 120.00 187.50 215.14 216.24 221.93 0.01 2.39 2.46 5.84 307.51 337.53 338.70 347.77
Avg. 80.00 117.16 122.96 122.80 126.76 2.09 1.88 3.22 4.30 199.25 204.84 206.02 211.06

6.4.3. The impact of the truck-to-drone unit cost ratio

Figure 14 shows the impact of the truck-to-drone unit cost ratio (ε) on the total cost, number of
customers served by drones, and truck travel distance in instances B/C.#.50. We notice that as ε increases;
that is, when the drone unit cost drops (truck unit cost is fairly fixed), more customers are served by drones,
and thus the distance travelled by trucks is reduced. The total cost also decreases, and the reduction is most
obvious as ε increases from 1 to 5, after which the reduction rate decreases. These results indicate that the
benefits of the truck-drone combined mode are more pronounced if the drone unit cost is kept low. Figure
14 also indicates that for the same ε the total cost and truck travel distance are higher in Scenario B.#.50
than in Scenario C.#.50; however, there are no clear differences in the number of customers served by the
drones between these two scenarios.

Figure 14: The impact of the truck-to-drone unit cost ratio.
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7. Conclusion

In this study, we examined a new variant of the truck-drone combined routing problem in last-mile
logistics; that is, the multi-visit drone-assisted routing problem with soft time windows and stochastic truck
travel times. In this problem, a fleet of capacitated truck-drone pairs is deployed to provide delivery services
to customers collaboratively. Each drone can be launched from and retrieved to its truck multiple times.
During each flight, the drone can serve multiple customers. Each customer is associated with a soft time
window, and starting a service outside this time window incurs penalty costs. Trucks are allowed to wait at
the depot and each customer node before departing. Our objective is to minimise the total cost, including
time window violation penalties. We formulated the problem as a two-stage stochastic model, which was
then solved using a customised HMSA that integrates the SAA framework. Moreover, we proposed a
rolling-horizon approach to dynamically optimise waiting time during the execution phase. This approach
is efficient and scalable, and only a modest linear programming model must be solved each time. Extensive
numerical experiments were conducted to assess the performance of the proposed metaheuristic approach
and benefits of the stochastic model. The effectiveness of the rolling-horizon approach was thoroughly
evaluated. Finally, a sensitivity analysis was performed to quantitatively assess the impacts of the key
parameters on the problem results with valuable managerial insights.

Despite the potential benefits in last-mile logistics, combined truck-drone deliveries are not yet widely
adopted in practice. One hurdle is the infrastructure such as self-service express lockers and control cen-
tres, which are still immature for drone operations. In addition, owing to the limitations of technological
development, drone costs are usually variable and uncertain, and the cost advantages of combined delivery
services may not always be obvious, especially in the early stages. Moreover, scheduling and operational
challenges in synchronising trucks and drones for seamless services could be another hurdle. Finally, the
relevant regulations for the commercial application of drones are still evolving and are very different across
regions or countries. Nevertheless, it is worth mentioning that with the continuous development of technol-
ogy, infrastructure and regulation, the adoption of the combined truck-drone deliveries would become more
widely applicable.

Future studies should investigate more practical application scenarios where each truck is equipped with
multiple drones where each drone can conduct multiple fights at each node. Moreover, the consideration
of stochastic and time-dependent truck travel times could be an interesting extension. Another promising
research direction is to consider stochastic travel times for drones that are sensitive to weather.
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