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Dear Editor, 
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Assessment from a Drought Propagation Perspective under Non-stationary Environments” for 

consideration by Science of The Total Environment. We confirm that this work is original and has not 

been published elsewhere, nor is it currently under consideration for publication elsewhere. All authors 

have read and approved the manuscript being submitted, and agree to its submittal to this journal, and have 

no conflicts of interest to disclose. 

In China, the challenge of drought monitoring and declaration is exacerbated by the need for multiple 

drought indices covering meteorological, agricultural, hydrological, and groundwater aspects, often lacking 

real-time availability. Especially in the context of changing environments and the non-stationarity of hydro-

meteorological variables. Even though the importance of developing a multivariate nonstationary drought 

index that considers the environmental change has been recognized, relevant research remains rare. To 

address these challenges, we develop a framework for drought monitoring and assessment from a drought 

propagation perspective. Central to this is our proposed a Nonstationary Integrated Drought Index (NIDI) 

that combines the response of meteorological, agricultural, hydrological and groundwater droughts, while 

accounting for the influences of climate change and anthropogenic activities. To validate the applicability 

and effectiveness of the NIDI, we conducted a case study in the Hulu River Basin of western China. The 

results demonstrate that the NIDI successfully accounts for nonstationary hydro-meteorological variables 

associated with climate change and human activities, accurately reproducing their time-dependent structure. 

In conclusion, the presented NIDI offers a more comprehensive approach to drought identification, 

providing valuable insights for accurate drought detection and effective drought-related policy-making.  
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Abstract. According to the coupled influence of climate variation and anthropogenic activities, hydro-19 

meteorological variables are hard to keep stationary in a changing environment. Consequently, the 20 

efficacy of traditional standardized drought indices, predicated upon the assumption of stationarity, has 21 

been called into question. In China, the challenge of drought monitoring and declaration is exacerbated 22 

by the need for multiple drought indices covering meteorological, agricultural, hydrological, and 23 

groundwater aspects, often lacking real-time availability. To address these challenges, we developed a 24 

framework for drought monitoring and assessment from a drought propagation perspective. Central to 25 

this is the Nonstationary Integrated Drought Index (NIDI), which integrates responses from 26 

meteorological, agricultural, hydrological, and groundwater droughts, accounting for climate change and 27 

anthropogenic influences. First, we analyse the process of drought propagation to select the suitable time 28 

scale standardized drought index. Subsequently, significant large-scale climatic indices are selected 29 
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through linear and nonlinear correlation analyses to identify climate anomalies. Anthropogenic influences 1 

are assessed using indicators such as the Normalized Difference Vegetation Index (NDVI), Impervious 2 

Surface Ratio (ISR), and population density (POP). Nonstationary probability models are then developed 3 

for precipitation, soil moisture, runoff, and groundwater series, incorporating climatic and human-induced 4 

factors. Finally, the NIDI is calculated using a D-vine copula model, with parameter estimation and 5 

updating facilitated by a genetic algorithm, representing the temporal dependence structure among the 6 

variables. A case study in the Hulu River Basin of western China validated the NIDI. Results showed that 7 

the NIDI effectively accounts for nonstationary hydro-meteorological variables due to climate change 8 

and human activities, accurately reproducing their time-dependent structure. Compared to conventional 9 

indices like SPI, SSI, SRI, and SGI, the NIDI identifies more extreme drought events. In conclusion, the 10 

presented NIDI offers a more comprehensive approach to drought identification, providing valuable 11 

insights for accurate drought detection and effective drought-related policy-making. 12 

Keywords: Nonstationary Integrated Drought Index, Nonstationary marginal distributions, D-vine 13 

copula, Large-scale climate pattern, Anthropogenic influences 14 

  15 
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1 Introduction 1 

Drought, one of the most disruptive natural hazards, dramatically affects the spatial-temporal pattern 2 

of water and heat on regional or even global scales (Liu et al., 2017; Zhao et al., 2017). Severe droughts 3 

have far-reaching consequences, particularly in developing countries, where they exacerbate existing 4 

vulnerabilities and trigger a cascade of socio-economic challenges (Shah and Mishra, 2020). China is the 5 

largest developing country, suffering from severe drought. The most severe drought always happened in 6 

most northwest, southwest, and southeast areas of China (Shao et al., 2022). Consequently, it is crucial to 7 

cope with the drought problems. Generally, drought monitoring and water resource management plans 8 

were the dominating way to answer the challenge of severe drought problems. Drought indices are 9 

powerful tools for monitoring and determining drought severity. However, the accuracy of drought 10 

assessment is becoming increasingly complex due to the non-stationary nature of hydro-meteorological 11 

variables. Traditional drought indices, which often rely on the assumption of stationarity, may not be fully 12 

reliable in the context of ongoing climate change and the significant influence of human activities (Shao 13 

et al., 2022). Therefore, it is urgent to propose a novel approach for regional and even global drought 14 

assessment and management. 15 

As one of the most complex phenomena, drought is notoriously hard to define (Shah and Mishra, 16 

2020; Svensson et al., 2017). It can be associated with water shortages, the greenness of vegetation, and 17 

a deficiency in rainfall, streamflow, soil moisture, even socioeconomic conditions (Zargar et al., 2011; 18 

Mishra and Singh, 2010). According to the water cycle and different types of water deficits, drought 19 

broadly can be summarized into four main categories: meteorological, agricultural, hydrological and 20 

socioeconomic droughts (Zargar et al., 2011; Heim, 2002). In addition, drought typically begins with 21 

sustained periods of below-average precipitation, known as meteorological drought, and progresses to 22 
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inadequate surface and/or groundwater supplies (hydrological drought), which further triggers 1 

agricultural and socioeconomic droughts (Dracup et al., 1980). Therefore, meteorological, agricultural, 2 

hydrological and groundwater droughts deserve sufficient consideration. 3 

In recent decades, there has been a surge in the development of various drought indices aimed at 4 

enhancing drought monitoring and mitigating associated risks. These indices serve as crucial tools for 5 

assessing drought severity, duration, and spatial extent, providing valuable insights for decision-makers 6 

and stakeholders involved in drought management and response efforts (Yin et al., 2018; Liu et al., 2017). 7 

The standardized drought indices based on probability distribution functions, have been broadly used for 8 

meteorological and hydrological droughts assessment, including the Standardized Precipitation Index 9 

(McKee et al., 1993), the Standardized Runoff Index (Shukla and Wood, 2008), the Standardized stream 10 

index (Shukla and Wood, 2008), and the Standardized Soil moisture Index (AghaKouchak, 2014). The 11 

above wildly used indices are dependent on a sole hydro-meteorological variable (e.g., precipitation, 12 

runoff, or soil moisture) (Huang et al., 2016). However, various hydro-meteorological variables have 13 

inconsistent changes and complicated physical interactions among direct (Zhang et al., 2021). Thus, the 14 

a-single-variable-based drought indices are insufficient for dependable drought risk evaluation and 15 

sensible decision-making. 16 

To overcome this shortcoming, a variety of drought indices that incorporate multiple hydro-17 

meteorological factors were proposed (Zhang et al., 2021; Rajsekhar et al., 2015). For instance, Hao and 18 

AghaKouchak (2013) introduced the Multivariate Standardized Drought Index (MSDI), which combines 19 

the precipitation and soil moisture content via copula. Rajsekhar et al. (2015) developed a multivariate 20 

drought index (MDI) to detect drought conditions via entropy theory and multiple hydro-meteorological 21 

variables. Shah and Mishra (2020) proposed an Integrated Drought Index (IDI) that characterized three 22 
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droughts: hydrology, meteorology, and agriculture, and accounted for groundwater storage at the same 1 

time. Won et al. (2020) developed a Copula-based Joint Drought Index (CJDI) to measure droughts in 2 

terms of atmospheric moisture supply and demand simultaneously. Li et al. (2021) constructed a bivariate 3 

combined drought index (BCDIbcf) to describe meteorological and hydrological droughts 4 

comprehensively. In general, these standardized drought indices were proposed according to the 5 

hypothesis of stationarity. Moreover, they are calculated by hydro-meteorological variables with a 6 

statistically stationary distribution. Nevertheless, hydro-meteorological variables vary significantly with 7 

time based on previous research (Shao et al., 2022). Furthermore, non-stationarity will exist in many 8 

regions of this world which combine impacts of climate variability and human activities (Strupczewski 9 

et al., 2001). Thus, the effectiveness and applicability of traditional standardized drought indices based 10 

on the stationarity assumption have been questioned in a changing environment. 11 

Climate variation and anthropogenic activities are two main driving forces that affect the 12 

hydrological cycle and its available water resources, resulting in more frequent and extensive terrestrial 13 

extreme phenomena such as droughts (2020; Lan et al., 2020; Dai, 2013; Sheffield et al., 2012). Generally, 14 

climate variation can be traced to large-scale climate patterns, such as the El Niño Southern Oscillation 15 

(ENSO), the Pacific Decadal Oscillation (PDO), and the Arctic Oscillation (AO) (Yu et al., 2019; Frazier 16 

et al., 2018). It seems reasonable to represent the nonstationary climate anomalies by the dependence of 17 

hydro-meteorological variables on large-scale climate patterns (Forootan et al., 2019; Ndehedehe et al., 18 

2019). In addition to climate change, scholars have made various efforts to represent anthropogenic 19 

impacts in the hydrology community (Chen et al., 2019; Zhang et al., 2018). One of the widely used ways 20 

to present human activities is the hydrological model (Zhang et al., 2012). In recent years, numerous 21 

studies have explained the non-stationarity of droughts via proposed nonstationary drought indices with 22 
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climate and human-induced indices. Li et al. (2015) introduced a Nonstationary Standardized 1 

Precipitation Index (NSPI), which incorporated climate change into the meteorological drought index. 2 

Wang et al. (2020) developed the Nonstationary Standardized Streamflow Index (NSSI), which depicts 3 

the non-stationarity in streamflow by utilizing climatic and human-induced indices as explanatory 4 

variables. Zhang et al. (2021) proposed a nonstationary meteorological and hydrological drought index 5 

(NMHDI), taking anthropogenic impacts on runoff into account, which provides valuable information for 6 

drought management. Shao et al. (2022) proposed a nonstationary standardized runoff index (NSRI) 7 

based on GAMLSS, considering climate variation and human activity influence, which detected more 8 

frequent severe and extreme droughts. 9 

In the above-mentioned studies, nonstationary drought models showed improved performance in 10 

reproducing extreme droughts when compared to those based on stationarity assumptions. Therefore, the 11 

nonstationary drought indices have an excellent advantage in drought risk monitoring and assessment. 12 

Nevertheless, drought phenomena are related to multiple hydro-meteorological variables. Thus, these 13 

indices derived from a single hydro-meteorological variable would be insufficient for an overall idea of 14 

the drought condition and further drought management (Rajsekhar et al., 2015; Hao and AghaKouchak, 15 

2013). Meanwhile, few studies have considered the climatic and anthropogenic impacts of drought from 16 

a comprehensive perspective. Even though the importance of developing a multivariate nonstationary 17 

drought index that considers the environmental change has been recognized, relevant research remains 18 

rare (Song et al., 2020). 19 

To address the aforementioned challenges and explore comprehensive methods for monitoring and 20 

assessing drought events under climate change, it is necessary to concretely analyse the impacts of climate 21 

change factors and human activities on hydro-meteorological variables. This entails employing non-22 
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stationary probability models to characterize the response of hydro-meteorological variables to these 1 

factors accurately, thereby enabling precise drought monitoring and assessment. The proposed method 2 

can provide valuable guidance for the water resources management in non-stationary environments. The 3 

objective of this study is to develop a framework for construct a comprehensive framework for monitoring 4 

and assessing drought under non-stationary environments. The paper focuses on three main aspects: 5 

 Developing an integrated framework for monitoring and assessing drought events from a 6 

drought propagation perspective under non-stationary environments. 7 

 Proposing a novel Nonstationary Integrated Drought Index (NIDI) to detect the drought 8 

events and extract drought features. 9 

 Assessing drought risk via NIDI and frequency analysis methods, and exploring the 10 

response patterns of drought to climate change and human activities. 11 

To achieve these objectives, this study selected the Hulu River Basin to illustrate our research 12 

objectives and methods. The remainder of the paper is organized as follows. Section 2 describes the 13 

research basins. Section 3 introduces the methodology and details of the analysis approaches. The key 14 

results and discussion are presented in Sections 4 and 5. Section 6 exhibits the main conclusions of this 15 

study. The results could support a new perspective to construct recent comprehensive nonstationary 16 

drought indices under a changing climate. It can provide valuable references for accurate drought 17 

detection and effective drought-related policy-making. 18 
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2 Study Case and data description 1 

2.1 Case study area 2 

The Hulu River serves as the primary tributary in the upper reaches of the Wei River, as illustrated 3 

in Figure 1. Originating from Moon Mountain in Xi Ji county, China, the Hulu River plays a crucial role 4 

in the hydrological network of the region, contributing to the overall water resources and ecological 5 

balance. This basin is located between 34°30′ to 36°30′ northern longitudes and 105°05′ to 106°30′ eastern 6 

latitudes. It covers an area of the catchment above the Qin’an station nearly 9805 km2 (Han et al., 2020), 7 

and locates in the Loess Plateau region. The Hulu River Basin experiences a moderate continental 8 

monsoon climate. The features include a cold winter with minimal snowfall, a hot and rainy summer, and 9 

quickly cool autumn. The main type of land use in the Hulu River Basin includes Cropland (AGRL), 10 

forestland (FRST), grassland (PAST), water bodies (WATR), residential areas (URMD), and unused land 11 

(SWRN) (Figure 1a).  12 
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 1 

Figure 1. Basic information related to a, land use/land cover, b, soil, c, digital elevation model (DEM), d, stream network 2 
and observation stations for Hulu River basin, western China 3 
 4 

In recent years, the hydro-meteorological variables within the Hulu River Basin have undergone 5 

significant changes, driven by the combined impacts of climate change and human activities. This is 6 

because climate change directly affects the formation of runoff processes, while human activities mainly 7 

impact runoff generation and flow processes by altering the underlying surface and local water usage 8 

within the basin. The Loess Plateau, characterized by severe soil erosion and fragile ecosystems, has long 9 

been recognized as a unique geological and geomorphological region worldwide. However, since 1999, 10 

the government has implemented large-scale afforestation and grassland restoration projects in most areas 11 

of northern Shaanxi Province. Monitoring data from 2001 to 2015 show an overall increase in the 12 
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Normalized Difference Vegetation Index (NDVI) in the Loess Plateau region, indicating the effectiveness 1 

of these policies in alleviating ecological environmental problems in the region. Nevertheless, monitoring 2 

data also indicate significant changes in runoff alongside the notable increase in vegetation coverage. This 3 

suggests that vegetation changes are directly or indirectly altering regional hydrological cycles. From a 4 

physical mechanism perspective, increased land surface vegetation leads to increased rainfall interception 5 

and evapotranspiration, altering the original infiltration and groundwater recharge through root water 6 

retention, thereby directly influencing the formation and evolution of regional runoff. Therefore, selecting 7 

the Hulu River Basin as a case study can explore the effects of climate change and human activities on 8 

drought and drought characteristic variables based on the physical mechanisms of regional hydrological 9 

cycles. This study can provide references for drought detection and assessment in the Loess Plateau and 10 

other climatically similar regions. 11 

2.2 Data description 12 

In order to comprehensively identify and assess drought events in a changing environment, this stu13 

dy utilizes five main types of data: observed runoff data, meteorological data, geographical information 14 

data, large-scale climate patterns data and remote sensing datasets related to anthropogenic influences. D15 

aily runoff data were collected from the Yellow River Conservancy Commission covering the period of 16 

1965–2014 at Qin’an station. Daily meteorological data were collected from the China Meteorological 17 

Data Sharing Service System, including precipitation, maximum temperature, minimum temperature, so18 

lar radiation, mean relative humidity, and mean wind speed covering the period of 1965–2014 at 8 rain g19 

auges. The location of the rain gauges is distributed in Figure 1d. Daily baseflow (BF) was calculated us20 

ing the Chapman-Maxwell filter method. In this study, baseflow (BF) is considered as groundwater, as d21 

etailed in Supporting Information S1. Daily soil moisture data is simulated by The Soil and Water Asses22 
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sment Tool (SWAT) model. The SWAT model for the Hulu River Basin needs spatial data and climate i1 

nput. The Chinese Academy of Sciences provided a 30-m resolution digital elevation model (DEM) and2 

 a digital soil map (1:100,000). According to the Genetic Soil Classification of China, five soil types wer3 

e identified for the basin. The soil properties of each type were derived from the Chinese Soil Database 4 

of the Institute of Soil Science. A 1970s land use map with a resolution of 30×30 m provided by the Chi5 

nese Academy of Sciences was used in this study. Materials related to SWAT model simulation results c6 

an be found in the Supporting Information S2. 7 

Moreover, six large-scale climate patterns are utilized as external covariates for the nonstationary m8 

odelling of precipitation, soil moisture, runoff, and groundwater. They are the Atlantic Multidecadal Osc9 

illation (AMO), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the North Pacific (N10 

P), the Pacific Decadal Oscillation (PDO), and the El Niño/Southern Oscillation (ENSO). This paper me11 

asures the inter-annual ENSO state by Southern Oscillation Index (SOI). The monthly time series of the12 

se climate patterns were collected from the Climate Prediction Center of NOAA Earth System Research 13 

Laboratory (http://www.cpc.ncep.noaa.gov/data/). 14 

The Global Inventory Modelling and Mapping Studies (GIMMS) NDVI3g dataset (https://ecocast.a15 

rc.nasa.gov/data/pub/gimms/3g.v1/) was used to analyse vegetation cover dynamics from 1982 to 2014 16 

with a spatial resolution of 1/12°. The Impervious Surface Ratio (ISR) data from 1985 to 2019 at a spati17 

al resolution of 30 m were collected to infer the rate of urbanization (Gong et al., 2020). The ISR dataset18 

 was extracted and calculated from the Google Earth Engine platform. Population data (POP) from 200019 

 to 2019 was obtained from WorldPop (Worldpop, 2018), which is the data on population distributions a20 

nd dynamics at the high spatial resolution, which characterizes population growth and rural-urban migra21 

tion. The POP dataset was processed by an unconstrained top-down modelling method into a resolution 22 
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of 30 arc seconds. Due to the insufficient length of the NDVI, ISR, and POP sequences, a Long Short-T1 

erm Memory (LSTM) network was employed to perform nonlinear interpolation on them for the period 2 

of 1965-2014. 3 

3 Methods 4 

The objective of this study is to develop a framework for drought monitoring and assessment from 5 

a drought propagation perspective under non-stationary environments. There are five steps to achieving 6 

this purpose: (1) conducting linear and nonlinear correlation analyses between the 12-month Standardized 7 

Precipitation Index (SPI) and the Standardized Soil Moisture Index (SSI), Standardized Runoff Index 8 

(SRI), and Standardized Groundwater Index (SGI) at various time lags to explore the patterns of drought 9 

propagation; (2) determining the significant climatic and anthropogenic indices via linear and nonlinear 10 

correlation analysis to present the large-scale climate anomalies and anthropogenic influence variation; 11 

(3) constructing the nonstationary probability model for precipitation, soil moisture, runoff, and 12 

groundwater used the climatic and human-induced factors as explanatory variables; (4) computing the 13 

NIDI to depict the horary dependence structure for precipitation, soil moisture, runoff, and groundwater 14 

by the time-varying copula model; (5) utilizing the NIDI to monitor and assess the droughts and analyse 15 

the drought characters. As a case study, the Hulu River Basin in western China was chosen to validate the 16 

applicability and effectiveness of the NIDI. The NIDI incorporates precipitation, soil moisture, runoff, 17 

and groundwater, climate variation, and anthropogenic activity to assess drought conditions in a changing 18 

environment comprehensively. Figure 2 shows the integrated framework for monitoring and assessing 19 

drought events from a drought propagation perspective under non-stationary environments. A brief 20 

description of the methodology is offered in the subsections below.  21 
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 1 

Figure 2. The integrated framework for monitoring and assessing drought events from a drought propagation perspective 2 
under non-stationary environments. 3 
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3.1 Drought propagation analysis 1 

The propagation of drought is closely tied to fluctuations in the anomalies of hydro-meteorological 2 

signals as it moves through interconnected terrestrial components of the hydrological cycle (Heudorfer 3 

and Stahl, 2017; Van Loon et al., 2015). Throughout these processes, properties like the timing of different 4 

drought stages (e.g., onset, recovery), frequency, duration, severity, and intensity of various drought types 5 

may undergo alterations. Various characteristics or features of drought propagation can be established to 6 

illustrate the propagation process. These characteristics include, but are not limited to, the response time 7 

scale and lag time. Choosing a suitable timescale for the drought index is crucial since drought results 8 

from the accumulated impacts of water deficits over disparate periods (F. Wang et al., 2020). In China, 9 

precipitation has a pronounced seasonal pattern, the whole annual rainfall transpires within the four 10 

monsoon months, namely June to September (Mishra et al., 2012; Rana et al., 2015). Hence, in order to 11 

accommodate the seasonal variation in precipitation, we incorporate a 12-month SPI, which represents 12 

the total precipitation over a 12-month period, to construct the NIDI. Then, we determined the different 13 

timescale for other drought indices by using linear and nonlinear correlation analyses between the 12-14 

month SPI and the SSI, SRI, and SGI at various time lags from the drought propagation perspective. 15 

3.2 Determination of Climate indices (CIs ) and Anthropogenic influences (AIs) 16 

Climate indices (CIs)： 17 

Six large-scale low-frequency climate indices (AMO, AO, NAO, NP, PDO, and SOI) have been 18 

chosen to represent climate indices. A moving average approach is used to smooth the climate indices to 19 

reduce the influence of a noisy environment. Based on the results of drought propagation analysis, sliding 20 

window averaging is applied to the CIs at different temporal scales according to various drought indices. 21 

Meanwhile, the time series for precipitation, soil moisture, runoff, and groundwater are also created by 22 
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different timescales moving average method. This way, the different monthly fluctuations of 1 

precipitation, soil moisture, runoff, and groundwater can be easily discerned and understood. For the 2 

correlation studies, the simultaneous time series and the recreated time series with lead times are prepared 3 

for precipitation, soil moisture, runoff, and groundwater series in a given month. Kendall's correlation 4 

test (Bolboacă and Jäntschi, 2006) was employed to determine the significant precipitation, soil moisture, 5 

runoff, and groundwater climatic factors in nonstationary modelling. 6 

Anthropogenic influences (AIs) : 7 

The effects of vegetation dynamics on the hydrological cycle refer to the influence of vegetation 8 

growth, coverage, and changes on the movement and distribution of water within an ecosystem (Yu et al., 9 

2023). Vegetation serves as a regulator of land-atmosphere interactions and plays a crucial role in 10 

coupling the carbon-water cycles and surface energy balance within the soil-plant-atmosphere system 11 

(Claussen et al., 2013). Vegetation interacts with the hydrological cycle through processes such as 12 

evapotranspiration, interception, infiltration, and groundwater recharge (Ajami et al., 2017). Conversely, 13 

changes in precipitation patterns, rising temperatures, and variations in water availability directly impact 14 

vegetation growth and transpiration. In recent decades, afforestation programs have been proposed to 15 

harness benefits related to flood mitigation and carbon storage. The impact of afforestation on streamflow 16 

across diverse catchments is found to consistently decrease median and low streamflow (Buechel et al., 17 

2022). Consequently, the investigation of vegetation dynamics is underscored as a candidate driving 18 

factor in exploring the changes of drought. 19 

The intensification of anthropogenic activities, accompanied by urbanization processes such as 20 

population growth, economic development, infrastructure development, and rural-urban migration, has 21 

emerged as a global threat to the sustainability of water resources (Mekonnen and Hoekstra, 2016). 22 
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However, obtaining long-term and continuous data sequences of anthropogenic activities that are linked 1 

to the hydrological cycle presents a significant challenge. Also, acquiring human activity data at the 2 

catchment level is difficult. Most associated statistical information is divided based on administrative 3 

units such as urban areas, irregular regions, or spanning multiple catchments (Thorslund and Van Vliet, 4 

2020). Remote sensing observations offer powerful tools for analysing and monitoring the impact of 5 

human activities on river systems globally. These observations provide extensive datasets that allow for 6 

the identification of human pressures and the assessment of their temporal progression and wide spatial 7 

distribution (Ceola et al., 2019). 8 

3.3 Construction of the Nonstationary Integrated Drought Index (NIDI) 9 

Investigating the candidate driving factors for changes in precipitation, soil moisture, runoff, and 10 

groundwater in non-stationary processes, we consider climate forcing, and anthropogenic influences. 11 

Following this, nonstationary probability models are constructed for precipitation, soil moisture, runoff, 12 

and groundwater, utilizing both climatic and human-induced factors as explanatory variables. The next 13 

step involves computing the NIDI to depict the temporal dependence structure for precipitation, soil 14 

moisture, runoff, and groundwater using a vine copula model. Finally, the NIDI is utilized to monitor and 15 

assess droughts, as well as analyse their characteristics. The specific calculation steps for NIDI are as 16 

follows: 17 

Step 1: Nonstationary marginal distribution modelling  18 

Rigby and Stasinopoulos (2005) proposed the GAMLSS model to construct the connection between 19 

the covariates and distribution parameters. This approach is currently extensively employed in 20 

nonstationary modelling for hydro-meteorological variables (Gao et al., 2018). In this framework, the 21 
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probability density function ( )t

X t Xf x  includes the linkages of time-varying parameters with explanatory 1 

variables. This study describes the location parameter as a linear function of the explanatory variables in 2 

Eq. (1): 3 

1 2

0 1 2

n

t t t n ta a I a I a I     L                                                           (1) 4 

where t  denotes the dynamic location parameter; n

tI  presents the nth explanatory variable, and ai is 5 

the coefficient value for each covariate. In addition, the scale parameter also adhered to the same 6 

presumption. 7 

Applicable explanatory variables are vital in uncovering the variation of hydrologic elements and 8 

nonstationary simulations’ success. In this study, the CIs and AIs in Section Error! Reference source 9 

not found. are assumed to be potential covariates for hydro-meteorological variables modelling. The 10 

potential effects of covariates were then explained using three nonstationary models. The nonstationary 11 

behaviours may cause by the application of differing statistical parameters, and shown in Table 1. As 12 

shown in Table 1, Model 0 presents a stationary model whose two parameters are kept steady. 13 

Nevertheless, one or two parameters in the other models fluctuated with variables. In this work, it is 14 

essential to note that all nonstationary model parameters and covariates are related to this work via a linear 15 

relationship. In general, when the length of the hydro logical sequence is greater than 8, the Schwarz 16 

Bayesian Criterion (SBC) criterion is more accurate than the AIC (Zhang, et al. 2021). Hence, the SBC 17 

is employed to evaluate the performance of each model. Meanwhile, the worm diagram is used to assist 18 

the validation from the perspective of qualitative evaluation. 19 

  20 
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Table 1. Classification of four models. 1 
Model Description μ σ 

0 Stationary ~1 ~1 

1 Nonstationary ~1 ~ covariate 

2 Nonstationary ~covariate ~1 

3 Nonstationary ~ covariate ~covariate 

 2 

Step2: Nonstationary joint distribution modelling  3 

There are many pair-copula constructions that can be used for high-dimensional distributions. In 4 

order to facilitate organizing, Bedford and Cooke, (2002) devised a graphical paradigm known as the 5 

regular vine. A wide range of pair-copula decompositions are encompassed under the class of regular 6 

vines. Within this framework, our attention is directed towards the D-vine (Aas et al., 2009) . Based on 7 

the non-stationary marginal distribution results obtained from the first step for precipitation, runoff, soil 8 

moisture, and groundwater, the D-vine copula function is selected to describe their dependence structure. 9 

The general expression for the four-dimensional D-vine structure is: 10 

     

   

1 2 3 4 1 1 2 2 3 3 4 4

12 1 1 2 2 23 2 2 3 3 34 3 3 4 4
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              ( , ), ( , )c F x x x F x x x

                         (2) 11 

where ( )f   presents the marginal distribution, ( )c   is the copula function at different edge. 12 

The D-vine copula function that includes significant CIs and AIs as covariates can describe the 13 

horary dependence structure between different hydro-meteorological variables in a varying environment. 14 

A linear relationship between the copula parameters and the covariates is described as follows: 15 

1 2

0 1 2

t n

C t t n tb b I b I b I     L                                                                    (3) 16 
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where bi presents the coefficient value for each covariate, t

C  represents the dynamic parameter of 1 

time-varying copulas. 2 

Then the nonstationary joint distribution is computed as follows: 3 

( , , , ) ( ), ( ) , ( ), ( ) , ,t t t t t t t t t t t t t t

X t X Y t Y C U t X V t XP X Y U V C F x F y F u F v C x y u v       
 

（ ）            (4) 4 

-1 ( , , , )t t t tNIDI P X Y U V                                                                               (5) 5 

where x, y, u, v are precipitation, soil moisture, runoff, and groundwater, respectively; the t

X , t

Y , t

U  and 6 

t

V are the dynamic parameters of the marginal distributions; ( , , , )t t t tP X Y U V  presents the cumulative 7 

distribution probability of nonstationary joint distribution;  -1   presents the standard normal 8 

distribution. The copula functions’ parameters at different edge are computed by the maximum 9 

likelihood estimation. In addition, the optimal distribution will be determined from a comparison with 10 

Gaussian, Student t, Clayton, Gumbel, Frank, and Joe copula functions via the Akaike information 11 

criterion (AIC) (Akaike, 1973).  12 

Step3: Vine copula’s parameters estimation and update 13 

Nasr and Chebana (2022) proposed a new method for estimating parameters in mixture copula 14 

models. They utilized a metaheuristic algorithm in conjunction with maximum pseudo-likelihood. An 15 

empirical investigation was carried out to evaluate its efficacy, juxtaposing it with commonly employed 16 

established techniques. The findings suggest that the suggested methodology yields more precise 17 

parameter estimations, even when dealing with restricted sample sizes, hence outperforming traditional 18 

techniques. To enhance the performance of the vine copula and accurately estimate the parameters of each 19 
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edge's copula function, this study employs the following method to estimate and update the copula 1 

function parameters: 2 

Initialization: Begin by initializing the vine copula model with initial parameter estimates. 3 

Genetic Algorithm Parameter Estimation: Utilize a genetic algorithm (GA) to estimate the 4 

parameters of the copula functions. GA is a metaheuristic optimization algorithm inspired by the process 5 

of natural selection and evolution. It can effectively search for optimal or near-optimal solutions in 6 

complex search spaces. 7 

AIC Criterion Evaluation: Evaluate the performance of the vine copula model using the AIC. It 8 

balances the goodness of fit of the model with the complexity of the model, penalizing overfitting. 9 

Parameter Update: Update the parameters of the copula functions based on the optimization results 10 

obtained from the GA. This update process aims to improve the fit of the vine copula model to the data 11 

and optimize its performance. 12 

3.4 Drought assessment 13 

Based on the constructed NIDI, this study will comprehensively evaluate drought events from 14 

following aspects. 15 

Drought features identification: 16 

According to computation principles like the SPI, SRI, SSI, and SGI, droughts can be divided into 17 

different levels via NIDI. Table 2 shows the different drought grades of the NIDI and. Based on the 18 

different drought grades, drought properties can be extracted by run theory (Yevjevich 1967). 19 

  20 
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Table 2. The threshold values and descriptions of the NIDI in this study. 1 
Description Values 

Extreme drought <-2.00 

Serious drought -1.50 to -1.99 

Moderate drought -1.00 to -1.49 

No drought >-1.00 

 2 

In previous studies, the effectiveness of the run theory has been validated (Chang et al., 2016). At 3 

present, it is broadly used for recognizing drought events. Due to the convenience and flexibility of the 4 

run theory, it already is a classical method for recognizing drought features (Wu et al., 2020). Therefore, 5 

this work used the run theory to identify the features of drought events. According to the run theory, the 6 

drought event began with an index value was less than −1. It precluded if the drought index value was 7 

more significant than −1.5 and lasted just one month. Additionally, this work will combine two drought 8 

events if they with an interval of just one month. Meanwhile, the drought duration of these two drought 9 

events will be the sum of them. 10 

Bivariate frequency analysis: 11 

Bivariate frequency analysis is performed using the retrieved drought characteristic variables. 12 

Following the steps of the copula function model construction, initially, the Gamma, Gumbel, Normal, 13 

Weibull, and Lognormal functions are utilized for marginal distribution fitting and optimization. 14 

Subsequently, the Clayton, Gumbel, and Frank functions are employed for fitting and optimization. After 15 

obtaining the joint distribution of drought characteristic variables, the return period in two cases was 16 

analyzed, including "and" and "or", and the equations are listed as follows: 17 

( ) 1 ( ) ( ) ( ( ), ( ))and D S D SP D d S s F d F s C F d F s                                                (6) 18 

( )

( )
and

and

E l
T

P D d S s


  
                                                              (7) 19 
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( ) 1 ( ( ), ( ))or D SP D d S s C F d F s                                                           (8) 1 

( )

( )
or

or

E l
T

P D d S s


  
                                                               (9) 2 

where, the return period for the "and" and "or" scenarios is denoted as Tand and Tor, respectively. The 3 

expectation of the drought interval is represented as E(L). FD(d) and FS(s) are the marginal cumulative 4 

distribution probabilities of drought duration and severity, respectively; ( ( ), ( ))D SC F d F s ) is the joint 5 

cumulative distribution probability of drought duration and severity. 6 

4 Results 7 

4.1 Drought propagation analysis 8 

Before conducting drought propagation analysis, linear regression analysis is used between 9 

precipitation and soil moisture, runoff, and groundwater, as shown in Figure 3a, 3b, 3c. The correlation 10 

between precipitation and soil moisture and runoff is higher than that with groundwater. When conducting 11 

drought propagation analysis, it's crucial to consider the lag time. This temporal delay between various 12 

periods or stages (such as onset, persistence, recovery) of meteorological drought and other types of 13 

drought is commonly utilized to characterize drought propagation. We determined the different timescale 14 

for other drought indices by using linear and nonlinear correlation analyses between the 12-month SPI 15 

and the SSI, SRI, and SGI at various time lags. Figure 3d, 3e, 3f shows the Mutual Information Coefficient 16 

(MIC) (as detailed in Supporting Information S3) results for the 12-month SPI and i-month SSI, SRI, 17 

SGI. From Figure 3d, 3e, 3f, we can observe that the propagation time from meteorological drought to 18 

agricultural drought is 1 month, to hydrological drought is 4 months, and to groundwater drought is 6 19 

months. The occurrence of such results is highly likely due to the characteristics of the Loess Plateau 20 
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region, where soil water retention capacity is weak, and groundwater is buried deeply. Consequently, the 1 

propagation of meteorological drought to hydrological drought and groundwater drought in this region 2 

requires a certain amount of time. Therefore, the 1-month SSI, 4-month SRI, and 6-month SGI are 3 

selected to construct NIDI. 4 

 5 
Figure 3. The linear fit between precipitation and a, soil moisture; b, runoff; c, and groundwater. d, The Mutual 6 
Information Coefficient (MIC) results plot for the 12-month SPI and i-month SSI; e, the 12-month SPI and i-month SRI; 7 
f, the 12-month SPI and i-month SGI at various time lags. 8 
  9 
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4.2 Calculation of the explanatory variables 1 

The climatic influencing factors and human activities influencing factors selected in this study are 2 

illustrated in Figure 4. Figure 4a displays different atmospheric circulation indices. Figure 4b shows the 3 

NDVI for the years 1982, 1998, and 2014. Figure 4c illustrates the ISR for the years 1985, 1999, and 4 

2014. Figure 4d depicts the variations in POP for the years 2000, 2007, and 2014. Figure 4e represents 5 

the Pearson correlation analysis results among these influencing factors, while Figure 4f illustrates the 6 

MIC results among these influencing factors. As shown in Figure 4, the correlation among climate impact 7 

factors is stronger than the correlation between climate factors and human activity factors. Additionally, 8 

the correlation among human activity impact factors is stronger than the correlation among climate impact 9 

factors. Figure 5a presents the results of the Detrended Partial-Cross-Correlation Analysis (DPCCA) 10 

(Yuan et al., 2015, as detailed in Supporting Information S4) between precipitation and climate indices 11 

and anthropogenic influences. Figure 5b, 5c, 5d presents the results of dpcca between soil moisture, runoff, 12 

and groundwater and climate indices and anthropogenic influences, respectively. From the figure, it is 13 

evident that there are varying distributions of dpcca values between different influencing factors and 14 

hydro-meteorological variables. Some distributions fall within [-1.0,0.5], while others fall within [-15 

0.2,1.0]. This variability can be attributed to the susceptibility of hydro-meteorological variables to 16 

seasonal influences, whereby responses to different influencing factors vary across different years and 17 

seasons. 18 

  19 
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 1 

Figure 4. a, The plot of large-scale climate circulation indices. The map of b, the Normalized Difference Vegetation 2 
Index (NDVI), c, the Impervious Surface Ratio (ISR), and d, Population (POP). e, The results of Pearson correlation 3 
analysis between climate indices and anthropogenic influences. f, The MIC results between climate indices and 4 
anthropogenic influences. 5 
  6 
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 1 
Figure 5. The results of dpcca between a, precipitation b, soil moisture, c, runoff, d, and groundwater and climate indices and anthropogenic 2 
influences, respectively. 3 
 4 

The influence of large-scale climate circulation patterns on hydro-meteorological variables is not 5 

instantaneous; it exhibits time lag. In other words, changes in hydro-meteorological variables may occur 6 

after a certain period following the occurrence of atmospheric circulation patterns. In order to consider 7 

the influence of different large-scale climate circulation patterns at various time lags on different hydro-8 

meteorological variables, Kendall correlation tests were conducted on them. The results are depicted in 9 

Figure 6. As shown in Figure 6, precipitation in most months had significant correlations with the SOI. 10 

Similarly, the AMO had a strong connection with runoff and soil moisture, and groundwater has a 11 

significant connection with PDO. Moreover, hydro-meteorological variables at different months were 12 

highly correlated with distinct climate patterns and the leading times. For example, the precipitation in 13 

May presented a significant connection to the 1-month leading AMO, 12-month leading NAO, 4-month 14 
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leading NP and 7-month leading SOI. In March, the precipitation notably correlated with the AMO in last 1 

November, NP in last October and the SOI in last July. Besides, the soil moisture in October dramatically 2 

connected with the AMO and NP in September, and the PDO in March. The February runoff remarkably 3 

correlated with the AMO in last July, NAO in last December and SOI in last August. In May, the 4 

groundwater strongly correlated with the NP and SOI in March, PDO in last October. It implies that the 5 

climate indices correlate with precipitation, soil moisture, runoff, and groundwater highly, which may 6 

induce their variation. 7 

 8 
Figure 6. The results of Kendall correlation analysis between a, precipitation, b, soil moisture, c, runoff, d, and groundwater and different 9 
5 lag-time climate indices, respectively. 10 
 11 
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4.3 Modelling with the nonstationary marginal and joint distributions  1 

The assumption of stationarity for hydro-meteorological variables is no longer valid due to the 2 

impact of climate change and human activities. Consequently, stationary probability models have 3 

challenges in accurately representing the dynamic trends and evolutionary patterns of these variables. 4 

Therefore, this study adopts non-stationary probability models to fit hydro-meteorological variables, 5 

aiming to reveal their response to climate change factors and human activity factors. For this purpose, 6 

five widely used distributions (Gamma, Gumbel Normal, Weibull and Lognormal) were employed for 7 

the candidates in this work. Then, they were utilized to fit the 12-month scale precipitation, 1-month scale 8 

soil moisture, 4-month scale runoff, and 6-month scale groundwater series. The CIs were used as 9 

explanatory variables to construct the nonstationary marginal distributions of precipitation in different 10 

months. Similar to precipitation, soil moisture, runoff, and groundwater will establish the nonstationary 11 

marginal distributions for different months using CIs and AIs. The SBC criterion was used for the 12 

goodness of fit (GOF) test, and the results are shown in Figure 7. The optimal distribution functions for 13 

precipitation, soil moisture, runoff, and groundwater varied between the months in Figure 7. As shown in 14 

Figure 7a, the Normal distribution displayed the best fit (smallest GOF values) with precipitation in July, 15 

October November and September, while other distributions fit better with precipitation in the rest of the 16 

months. Like precipitation, different distributions presented the best fit for soil moisture, runoff, and 17 

groundwater data during the various months (shown in Figure 7b,7c,7d). The Gamma and Lognormal 18 

distributions were the optimal options in most months.  19 

  20 
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 1 
Figure 7. The SBC results of nonstationary marginal distributions for a, precipitation, b, soil moisture, c, runoff, and d, groundwater, 2 
respectively. 3 
 4 

Based on the non-stationary marginal distribution models of the hydro-meteorological variables 5 

described above, a D-vine copula function was utilized to capture their dependence, as illustrated in the 6 

Table 3. The Table 3 provides information on the structure of the vine copula, as well as the copula 7 

functions and their parameters at different edges. By comparing the AIC values obtained from different 8 

parameter estimation methods, it can be observed that, in comparison to conventional maximum 9 

likelihood estimation, the GA can more accurately estimate the parameters of copula functions, thus 10 

enhancing the performance of the vine copula function. Therefore, we utilize the parameters estimated by 11 

the GA to update the vine copula function, preparing for the subsequent construction of the NIDI. 12 
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Table 3. Results of the time-varying vine copula function. 1 
tree edge copula MLE GA 

par AIC par AIC 

1 3,2 Gumbel copula 3.1969 -881.14 3.1938 -881.88 

1,3 Normal copula 0.5142 -171.63 0.5147 -171.93 

4,1 Normal copula 0.6582 -331.21 0.6583 -331.30 

2 1,2;3 Frank copula 0.3350 0.16 0.3415 0.18 

4,3;1 Normal copula 0.1306 -7.67 0.1354 -7.85 

3 4,2;1,3 Joe copula -0.6320 -14.42 -0.6215 -14.89 

 2 

4.4 Construction and validation of the NIDI 3 

Building upon the foundation of non-stationary marginal distributions, we employed time-varying 4 

vine copula functions to construct NIDI. Furthermore, we utilized genetic algorithms for parameter 5 

estimation and updating of the constructed NIDI. Based on the proven applicability of the SPI, SRI, SSI, 6 

and SGI, the NIDI was evaluated by comparing its reliability to these indices. According to Figure 8a, 8b, 7 

and 8c, similar variations are observed in SPI, SRI, SSI, SGI, and NIDI in general, implying that NIDI 8 

can determine drought conditions effectively. the correlation between NIDI and SPI, SSI, and SRI is 9 

relatively strong, while its correlation with SGI is weaker. Moreover, the NIDI is able to characterize both 10 

hydrological and meteorological drought simultaneously, which is an advantage of a comprehensive 11 

drought index. In general, both the SPI, SRI, SSI, SGI, and NIDI had similar temporal trends, and they 12 

both performed well during droughts. From Figure 8e, 8f, and 8g, it can be observed that the drought 13 

duration distribution extracted by NIDI is relatively uniform without significant outliers. The severity of 14 

drought extracted is strong and comparable to SPI. However, the peak drought values extracted are the 15 

most extreme, indicating that NIDI can identify more extreme drought situations compared to SPI, SRI, 16 

SSI, and SGI. 17 
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Due to the lack of historical drought information for the Hulu River basin, the historical records for 1 

the Wei River basin will be adopted as references in this study. The historical records (Wen and Ding, 2 

2008) in the Wei River basin, indicate periods of typical drought events to be October 1979 to May 1980, 3 

January 1995 to May 1996, April 1997 to March 1998, November 1998 to April 1999, March 2001 to 4 

August 2001, and May 2008 to August 2008. Comparing these drought events showed that the droughts 5 

recognized by NIDI were in line with history, further verifying the dependability of the NIDI. However, 6 

there are some notable differences, particularly in results prior to 1992. According to Figure 8, the NIDI 7 

was lower than the SPI, SRI, SSI, and SGI prior to 1992, indicating the NIDI recognized more extreme 8 

drought events in comparison with the them. Moreover, the droughts detected by the NIDI were usually 9 

more severe than SPI, SRI, SSI, and SGI in most situations. This difference leads to differing grades 10 

between the two drought indexes. For instance, the NIDI recognized a drought event sustained from May 11 

2004 to October 2004, while the SGI did not identify a drought event throughout the same time. In this 12 

case, the difference in results between the NIDI and SPI, SRI, SSI, and SGI is due to they taking the 13 

stationary model of the entire time series as its basis. As a result, the SPI, SRI, SSI, and SGI typically 14 

underrated extremes and had a lower performance at capturing local variability in series. Conversely, the 15 

NIDI is calculated using a nonstationary model, composing climatic and human-induced influence 16 

information. It implies this model can more precisely compute extreme precipitation, soil moisture, 17 

runoff, and groundwater under changing environments. 18 

  19 
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 1 
Figure 8. The linear regression plots, trend plots, and violin plots of NIDI with respect to a, SPI, b, SSI, c, SRI, and d, SGI, respectively. 2 
The comparative plots of e, drought duration, d, drought severity, and f, drought peak extracted from different drought indices. 3 
  4 
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4.5 Drought frequency analysis 1 

We divided the study period into five parts, namely period A (1966–1975), period B (1976–1985), 2 

period C (1986–1995), period D (1996–2005), and period E (2006–2014). We extracted the frequencies 3 

of near-normal drought, moderate drought, severe drought, and extreme drought using different drought 4 

indices for each period. From Figure 9a, it is evident that all five indices can extract near-normal drought 5 

frequencies, but during 1996–2005 and 2006–2014, the frequency of NIDI was lower than the other four 6 

indices. In Figure 9b, regarding moderate drought frequencies, the NIDI frequency is lower than the other 7 

four indices during 1976–1985 and 1986–1995, but it performs well in other years, even surpassing the 8 

other indices during 1966–1975. Moving to the severe drought section, some indices fail to identify severe 9 

drought during 1966–1975, 1976–1985, and 1986–1995, but NIDI performs well. However, in the 10 

extreme drought section, NIDI exhibits superior performance, identifying extreme drought in all years 11 

when other indices fail to do so. 12 
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 1 
Figure 9. Frequency of a, near normal drought, b, moderate drought, c, severe drought, d, extreme drought in different periods identified by 2 
the NIDI and SPI, SSI, SRI, SGI in the study area. The hydrological drought indexes sequences were divided into three sections, i.e. period 3 
A (1966–1975), period B (1976–1985), period D(1986–1995), period D (1996–2005), period E (2006–2014). 4 
 5 

In addition, this study conducted bivariate frequency analysis on drought characteristic variables 6 

identified by NIDI. Firstly, marginal distribution fitting was performed on drought duration, severity, and 7 

peak values. Five widely used distributions (Gamma, Gumbel, Normal, Weibull, and Lognormal) were 8 

considered as candidates in this analysis. Subsequently, joint distribution fitting was carried out using 9 

bivariate copula functions. Finally, the recurrence period of drought events under the cases of "and" and 10 

"or" was computed. Based on Figure 10a, 10b, and 10c, the corresponding drought characteristic variables 11 

for any joint probability could be obtained. Meanwhile, Figure 10d and 10e provides the drought return 12 

periods under specified joint probabilities.  13 
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 1 
Figure 10. Joint distribution of NIDI’s a, duration and severity, b, duration and peak, c, severity and peak. The recurrence 2 
period of drought events under the cases “and” and “or” estimated by the NIDI (d & e) for the study area. 3 
 4 

5 Discussion 5 

Drought indices have been widely applied to drought monitoring and drought assessment because of 6 

their characteristics that can quantitatively represent drought events. Generally, traditional drought 7 

indices are calculated from a sole variable under the assumption of stationary. However, the statistical 8 

features of hydro-meteorological variables change with time as climate variation and anthropogenic 9 

impacts intensify. Thus, a stationary method would lead to invalid calculations, which would further 10 
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impact the accuracy of drought monitoring and assessment (Jiang et al., 2019). Moreover, the 1 

standardized drought index based on a single hydro-meteorological variable cannot capture drought 2 

information comprehensively. Previous studies have pointed out that it was necessary to propose a 3 

multivariate drought index that considers climate and anthropic-induced nonstationary (Zhang et al., 4 

2021; Song et al., 2020). This index can obtain the drought characteristics from a comprehensive 5 

perspective. Thus, this paper proposed an integrated nonstationary drought index (NIDI) incorporating 6 

precipitation, soil moisture, runoff, and groundwater, climate variation, and anthropogenic activity. 7 

The advantage of the NIDI is that it combines the response to meteorological, agricultural, 8 

hydrological and groundwater droughts whereas considering climate change and anthropogenic influence. 9 

This paper used significant large-scale climatic indices (CIs) as explanatory variables to indicate the 10 

climate variation. Additionally, anthropogenic influence (AIs) is assessed using indicators such as the 11 

NDVI, ISR, and POP. Meanwhile, the fluctuating behaviour of the soil moisture, runoff, and groundwater 12 

series could be represented in the nonstationary modelling by incorporating CIs and AIs as covariates. 13 

Therefore, the NIDI proposed in this study could offer a novel perspective to construct comprehensive 14 

nonstationary drought indices under a variation environment. Results show that NIDI has effectively 15 

identified historical drought events and provided a more comprehensive reference for drought monitoring 16 

and assessment. 17 

Previous research has pointed out that the AO and the NAO impact the evolution of drought in 18 

Northwest China (Wang et al., 2015). Results showed that precipitation was strongly connected with the 19 

NP and SOI, while soil moisture and runoff were closely linked with the AMO, and groundwater was 20 

significant connected with PDO in Hulu River Basin (Figure 6). This could be attributed to the location 21 

of the Hulu River Basin in the Loess Plateau region, characterized by high terrain, arid climate, weak soil 22 
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water retention capacity, and deep groundwater burial, resulting in a delayed response to the AO and 1 

NAO. Taking large-scale CIs as covariates can reappear the variation of the precipitation, soil moisture, 2 

runoff, and groundwater series in nonstationary modelling (Figure 7), producing lower SBC values. In 3 

addition to the effect of climate variability on drought, the influence of anthropogenic activities should 4 

have a constant and dynamical evolution over time. In the nonstationary modelling for the Hulu river 5 

basin, the AIs was always an explanatory variable of the best nonstationary model in 12 months. It 6 

suggested the crucial role of anthropic activities in explaining the nonstationary of soil moisture, runoff, 7 

and groundwater. As a result, the NIDI has the potential to overcome the limitations of the stationary 8 

multivariate standardized drought index and produce more reliable results. 9 

In the case study, the SPI, SRI, SSI, and SGI are chosen for comparative analysis with the NIDI. 10 

These three drought indices are chosen as comparative indices because they are calculated with similar 11 

data sources as the NIDI, and their applicability has been proved in the previous study. The case study 12 

shows that the NIDI has good consistency and is different from the SPI, SRI, SSI, and SGI. However, 13 

SPI, SRI, SSI, and SGI are calculated based on only a single hydro-meteorological variable, so they do 14 

not comprehensively characterise drought. In this study, the results of the drought assessment indicate 15 

that the drought conditions identified by the NIDI are better with the facts than the stationary standard 16 

indices. According to NIDI estimates, extreme drought events have occurred frequently in the Hulu River 17 

Basin in recent years. The overall difference in results between SPI, SRI, SSI, and SGI and NIDI 18 

illustrates that climate change significantly affects hydrological drought conditions in the Hulu River 19 

basin. Therefore, an update to the nonstationary drought index is urgently needed to provide more reliable 20 

and comprehensive drought information. The proposed NIDI in this study combines the responses of 21 

meteorological and hydrological droughts while considering climate change and anthropogenic influence. 22 
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Hence, the NIDI is able to consider the nonstationary behaviour of hydro-meteorological variables and 1 

can be regarded as an improvement over the traditional drought index under nonstationary conditions. 2 

The NIDI index still has certain limitations that need to be explicitly stated. (1) The soil moisture 3 

data were simulated using the SWAT model, which may contain errors compared to actual measurements. 4 

Utilizing long-term remote sensing data could potentially provide more accurate results. (2) Due to the 5 

lack of future climate influencing factors and human activities, this study did not forecast future drought 6 

conditions. However, employing machine learning methods to simulate and predict future influencing 7 

factors, combined with downscaled data from CMIP6 General Circulation Models (GCMs), could enable 8 

the identification and assessment of future drought conditions. (3) This study only selected three human 9 

activity factors, but the influence of human activities on hydro-meteorological variables is complex and 10 

diverse. In future research, more representative and comprehensive human activity factors will be chosen 11 

to participate in drought studies. 12 

6 Conclusions 13 

The mechanism and propagation process of drought are highly complex. Standardized drought 14 

indices constructed based on the assumption of stationarity with single variables are inadequate for 15 

accurately identifying and evaluating drought. Therefore, in this study, based on the analysis of drought 16 

propagation process, NIDI was constructed using top-down hydro-meteorological variables and 17 

propagation time. NIDI also considers the dual impact of climate change and human activities, thus 18 

enabling comprehensive identification and analysis of drought characteristics in a changing environment.  19 

A nonstationary model involving climatic and human-induced covariates provides a better fit for 20 

hydro-meteorological variables than a stationary model. In the Hulu River basin, the climatic covariates 21 
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(especially SOI and AMO) may provide insight into non-stationarity in precipitation, soil moisture, 1 

runoff, and groundwater. Additionally, the exhibits significant effects on model fitting. It indicates that 2 

the introduction of AIs can improve the model's performance to reappear the soil moisture, runoff, and 3 

groundwater variation. 4 

A performance comparison between the SPI, SRI, SSI, and SGI showed that the NIDI has a strong 5 

statistical correlation with the other three drought indices. In addition, the NIDI can detect and assess 6 

droughts directly in a changing environment because it considers the non-stationarities of hydro-7 

meteorological variables. Results revealed that the NIDI recognizes more reliable and acceptable for the 8 

Hulu River Basin in historical drought assessments. The NDI could reconstruct the historical drought 9 

extremes effectively. Moreover, the NIDI illustrated that the Hulu River Basin had undergone more 10 

frequent and severe droughts in recent decades. 11 

According to nonstationary assumptions, drought analysis becomes more challenging. From a 12 

comprehensive perspective, this paper provides an innovative approach to monitoring and assessing 13 

drought in a changing environment. It can provide valuable references for accurate drought detection and 14 

effective drought-related policy-making. 15 
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Table 1. Classification of four models. 

Model Description μ σ 

0 Stationary ~1 ~1 

1 Nonstationary ~1 ~ covariate 

2 Nonstationary ~covariate ~1 

3 Nonstationary ~ covariate ~covariate 
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Table 2. The threshold values and descriptions of the NIDI in this study. 

Description Values 

Extreme drought <-2.00 

Serious drought -1.50 to -1.99 

Moderate drought -1.00 to -1.49 

No drought >-1.00 
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Table 3. Results of the time-varying vine copula function. 

tree edge copula MLE GA 

par AIC par AIC 

1 3,2 Gumbel copula 3.1969 -881.14 3.1938 -881.88 

1,3 Normal copula 0.5142 -171.63 0.5147 -171.93 

4,1 Normal copula 0.6582 -331.21 0.6583 -331.30 

2 1,2;3 Frank copula 0.3350 0.16 0.3415 0.18 

4,3;1 Normal copula 0.1306 -7.67 0.1354 -7.85 

3 4,2;1,3 Joe copula -0.6320 -14.42 -0.6215 -14.89 
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