
Unraveling Quantum Computing System Architectures:

An Extensive Survey of Cutting-Edge Paradigms

Xudong Zhaoa, Xiaolong Xua,∗, Lianyong Qib,∗, Xiaoyu Xiac, Muhammad
Bilald, Wenwen Gonge, Huaizhen Kouf

aSchool of Software, Nanjing University of Information Science and
Technology, Nanjing, China

bCollege of Computer Science and Technology, China University of Petroleum (East
China), Qingdao, China

cSchool of Computing Technologies, RMIT University, Melbourne, Victoria, Australia
dSchool of Computing and Communications, Lancaster University, Bailrigg, Lancaster

LA1 4WA, United Kingdom
eDepartment of Computer Science and Technology, Tsinghua University, Beijing, China

fSchool of Computer Science and Engineering, Nanjing University of Science and
Technology, Nanjing, China

Abstract

Context: The convergence of physics and computer science in the realm
of quantum computing systems has sparked a profound revolution within
the computer industry. However, despite such promise, the existing focus on
quantum software systems primarily centers on the generation of quantum
source code, inadvertently overlooking the pivotal role of the overall software
architecture.

Objectives: In order to provide comprehensive guidance to researchers
and practitioners engaged in quantum software development, employing an
architecture-centered development model, an extensive literature review was
conducted pertaining to existing research on quantum software architecture.
The analysis encompasses a detailed examination of the characteristics ex-
hibited by these studies and the identification of prospective challenges that
lie ahead in the field of quantum software architecture.

Methods: We have closely examined instances of quantum software en-
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gineering, quantum modeling languages, quantum design patterns, and quan-
tum communication security to gain insights into the distinctive attributes
associated with various software architecture approaches.

Results: Our findings underscore the critical significance of prioritizing
software architecture in the development of robust and efficient quantum
software systems. Through the synthesis of these multifaceted aspects, both
researchers and practitioners can devise quantum software solutions that are
inherently architecture-centric.

Conclusion: The software architecture of quantum computing systems
plays a pivotal role in determining their ultimate success and usability. Given
the ongoing advancements in quantum computing technology, the migration
of traditional software architecture development methods to the domain of
quantum software development holds significant importance.

Keywords: Quantum Computing, Quantum Software Architecture,
Quantum Software Engineering.

1. Introduction

Quantum computing, along with the broader field of quantum informa-
tion, encompasses a collection of concepts and technical systems that delve
into the nature of information and its processing, grounded in the principles
of quantum mechanics [1]. The evolution of quantum computing ideas and
concepts has undergone a relatively protracted period, during which physi-
cists and mathematicians have played pivotal roles in advancing the devel-
opment of quantum computing. The developmental trajectory of quantum
computing can be divided into the following epochs [2]:

• Theoretical Era (Early 1980s to Early 1990s): During this period, the
theoretical foundation of quantum computing was established. In 1982,
Feynman introduced the concept of quantum computing, followed by
the formulation of basic principles of quantum algorithms by Deutsch,
Bennett, and others. In 1994, Peter Shor proposed the renowned Shor’s
algorithm [3], demonstrating that quantum computing can solve NP
problems in polynomial time. The hallmark of this era was a predomi-
nance of theoretical investigations, as experimental techniques were not
yet fully mature.
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• Experimental Era (Mid-1990s to Mid-2000s): In this era, experimental
techniques in quantum computing experienced rapid advancement. In
1995, IBM Laboratory successfully demonstrated quantum computing
with two qubits. In 1998, Los Alamos National Laboratory achieved
quantum computing with seven qubits. This period was characterized
by swift progress in experimental techniques, though the number of
qubits remained quite limited.

• Engineering Era (Mid-2000s to Present): In this period, quantum com-
puting entered the engineering phase. In 2007, IBM Laboratory un-
veiled the first commercially available quantum computer. In 2016,
Google Laboratory announced the achievement of quantum supremacy.
This era is marked by the commercialization and practical application
of quantum computers, accompanied by substantial enhancements in
the quantity and quality of qubits.

In recent years, with the advent of quantum algorithms, Quantum Pro-
gramming Languages (QPLs), and quantum compilers, programmers have
been able to use the theories and principles of quantum mechanics to pro-
cess information and perform specific computational tasks at a much higher
speed compared to classical computer systems [4, 5, 6, 7]. In recent research
endeavors, a substantial number of scholars have amalgamated the distinc-
tive attributes of quantum computing with algorithms in various domains,
in a concerted effort to collectively enhance the efficacy of these algorithms.
Edge computing [8], as an emerging computational paradigm, achieves lower
latency and higher efficiency by deploying computational tasks in close prox-
imity to data sources. When coupled with quantum computing, it further
augments the performance of edge computing, particularly in scenarios neces-
sitating efficient processing of extensive datasets, thereby endowing quantum
computing with substantial support for edge computing endeavors. Machine
learning [9] and data mining [10], domains reliant on extensive data process-
ing and analysis, stand to benefit profoundly from quantum computing. The
parallel computational capabilities inherent to quantum computing render
it an ideal choice for handling intricate machine-learning models and large-
scale data mining tasks. Through adept utilization of quantum algorithms,
researchers can expedite training processes and optimize model performance,
thereby propelling advancements in the realms of machine learning and data
mining. Cloud computing [11], characterized by network-based computa-
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tional models, has emerged as a primary provisioning mechanism for com-
puting resources in numerous enterprises and organizations. Infusing quan-
tum computing into cloud computing architectures offers users substantially
augmented computational capabilities, thereby supporting complex scientific
computations, simulations, and data processing tasks. This fusion also charts
a new trajectory for the evolution of cloud services, driving further enhance-
ments in cloud-based functionalities.

In contrast to classical computers, quantum computers possess the re-
markable ability to concurrently handle multiple computational tasks and
execute complex computations swiftly. However, the current focus of QPLs
and their corresponding algorithms primarily revolves around computational
and implementation specifics, aiming to generate executable specifications.
This narrow perspective tends to overlook the comprehensive global view
of the software system under design. By excessively emphasizing source
code implementation details, the architectural viewpoint, which serves as a
blueprint for the system, is undermined, potentially compromising the quality
and functionality of the final product, namely quantum software. Neverthe-
less, leading technology companies are significantly increasing their financial
and strategic investments in quantum computing platforms, with a particu-
lar emphasis on QPLs, such as Microsoft’s Q# [12], IBM’s Qiskit [13], and
Google’s Cirq. It is worth noting that the field of quantum software engi-
neering is still in its nascent stage. Recent research has highlighted that
quantum software projects, which neglect fundamental design principles and
prioritize the implementation of quantum source code, often yield subopti-
mal and error-prone outcomes. For instance, with regard to performance
concerns, non-optimized code may engender suboptimal execution times, no-
tably when tasked with computations of substantial scale within the domain
of quantum computing. Such inefficiencies may culminate in instances of
timeout or inadequacy in resource allocation, thereby impeding the success-
ful completion of computational tasks [14]. Pertaining to modularity and
the promotion of code reusability, a dearth in modular design engenders ver-
bosity, augments maintenance complexity, and obfuscates comprehensibility.
Consequently, during the process of function extension or modification, the
propensity for inadvertent error introduction or unforeseen behavioral out-
comes is notably heightened.

To invigorate the intellectual discourse and scholarly investigations within
the academic community, and to furnish a comprehensive standpoint on
Quantum Software Architecture (QSA) research, this paper undertakes a
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systematic review encompassing the definition and research methodologies
pertaining to quantum computing software architecture. The second section
of this paper elucidates the distinctive attributes of quantum computing,
quantum software engineering, and the precise definition of quantum com-
puting software architecture. Subsequently, the third section expounds upon
the specific applications, directions, and role of QSA. In the fourth section,
the research emphasis on constructing software architecture was introduced,
encompassing the exploration of Q-UML, architecture design patterns, and
quantum communication technology. Lastly, the fourth section consolidates
recent research findings in this domain, while offering recommendations and
insights regarding future developmental trajectories.

2. Basic Concepts

In this section, we provide a brief review of the concepts in quantum
computing and software architecture.

2.1. Quantum Computing VS Classical Computing

Quantum computing is a product of the combination of quantum mechan-
ics and computer science. According to Moore’s law, the number of transis-
tors integrated into a chip grows exponentially with time. When the storage
unit of a computer reaches the atomic scale, significant quantum effects will
seriously affect its performance. These quantum effects encompass phe-
nomena such as quantum tunneling, superposition, and entanglement, which
manifest prominently at the quantum level.

Quantum tunneling involves particles traversing energy barriers that clas-
sical physics would deem impassable. Superposition allows qubits to exist
in multiple states simultaneously, enabling quantum computers to explore
diverse possibilities concurrently. Entanglement establishes a correlation be-
tween quantum systems, leading to instantaneous connections across vast
distances. As the storage units shrink toward atomic dimensions, these quan-
tum effects become increasingly influential, posing substantial hurdles for
conventional computers.

This is the fundamental difficulty encountered in the development of con-
ventional computers [15]. Further development of computer science (CS)
requires the help of new principles and methods, and quantum computing
provides a new way to solve this problem.

5



Similarly, the basic unit of information storage and processing in quantum
computing is the qubit, which is in a quantum superposition of states |0⟩ and
|1⟩.

As stated in Heisenberg’s uncertainty principle, “the position of a moving
particle and its momentum cannot be determined simultaneously”, we cannot
get the exact state of a quantum. According to the theorem of physics,
once we measure or observe the quantum (position, momentum, etc.), it will
inevitably lead to the collapse of the quantum state. We can only get the
state determined after the measurement, but we cannot confirm the previous
state of the quantum. The state of a quantum with state |ψ⟩ can be expressed
by

|ψ⟩ = α0|0⟩+ α1|1⟩ (1)

and
|α0|2 + |α1|2 = 1, (2)

where α0 is the square of the probability that the quantum will get 0 after
measurement, and α1 is the square of the possibility that the quantum will
get 1 after measurement.

Eq.(1) and Eq.(2) solely delineate the superposition equation governing
the state in the context of a single bit. In the scenario of two bits, the state’s
superposition equation is expressed as indicated in Eq.(3).

|ψ⟩ = α0|00⟩+ α1|01⟩+ α2|10⟩+ α3|11⟩ (3)

In summary, the most prominent distinction between qubits and classical
bits lies in their state space and the nature of permissible operations. The
capacity of qubits to exist in superposition states and undergo quantum
gate operations confers quantum computing with advantages over classical
computing in specific tasks, particularly when addressing complex problems.

2.2. Quantum Software Engineering (QSE)

Since the late 1960s, scholars in the field of computer science have been
actively addressing the challenges posed by the “Software Crisis”, a term
denoting persistent challenges and inherent deficiencies within the software
development process. In response to this enduring predicament, researchers
have diligently explored a diverse array of techniques and methodologies
aimed at alleviating these sustained issues, as substantiated by the com-
prehensive study conducted in [16]. In recent years, with the continuous

6



development of science and technology and the essence of social development
needs, software engineering gradually towards the road of intelligence, in-
formation technology, and integration, and the emergence of new software
engineering models such as the Extreme Programming Model (XP model),
component-based models and other new software engineering models. These
models improve the efficiency and quality of software development by im-
proving the logic flow of the model and the reusability of the code.

The term “quantum software engineering” was originally coined by John
Clark et al. [17] at the 2002 workshop on Grand Challenges in Comput-
ing Research. Since then, quantum software engineering has been studied
in depth, with many papers discussing the challenges and opportunities of
quantum computing in the quantum software development process.

Stepney et al. [18] presented a pivotal challenge in the realm of quantum
software engineering: the establishment of a mature discipline for quantum
software engineering, aimed at fully leveraging the potential of commercial
quantum computer hardware. They posit that “the entire classical software
engineering needs to be redesigned and extended to the quantum domain”
and delineate this challenge from multiple perspectives of quantum software
engineering, encompassing quantum computing models, languages, quantum
compilers, methods, and tools.

Certainly, the software engineering and quantum computing communities
have focused on the above challenges to contribute to the overall construction
of the quantum software engineering field. Barbosa et al. [19] outlined several
research challenges that must be addressed to advance software engineering
applications in quantum computing. For instance, most current quantum
algorithms assume the availability of a large number of qubits capable of
indefinitely preserving information, a technological capability not presently
attained. Ahmad et al. [20], on the other hand, highlighted the complex-
ities inherent in quantum computing systems and technology development,
encompassing challenges associated with quantum computer programming,
operation, and maintenance, as well as the distinct engineering paradigms
involved. Many researchers have used the classical SE process for the design
and development of quantum software. For instance, UML use case dia-
grams can depict external entities and use cases within a quantum software
system. Researchers, as delineated in [21], concentrate on the application
of agile practices in quantum software development, endeavoring to address
associated challenges and limitations.

Since quantum computing technology is still in its infancy, we still do not
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have clear models, standards, or methods to help us create new systems and
migrate existing ones. Considering the current state of quantum computing,
we need to go back to the path taken by software engineering in the last
century to achieve a new golden age of QSE [22].

2.3. Quantum Software Architecture (QSA)

While the scale of software systems is rapidly increasing, software devel-
opment methods have undergone a series of changes. In the process, software
architecture has evolved from a vague concept to a maturing technology.

Figure 1: four stages of software architecture

Examining the historical trajectory of software architecture, one can dis-
cern four distinct stages, spanning from the initial phase of “unstructured”
design to the contemporary paradigm of architecture-based software devel-
opment, as illustrated in Figure 1.

According to the ISO/IEC/IEEE 42010:2022 description of the software
architecture [23], it can be abstracted into the following set:

SA = {system, environment, Architecture, ArchitectureDescription}
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1) The term “System” pertains to an entity whose configuration holds signifi-
cance and can be characterized as ”software-intensive” within the software
development process. This designation encompasses any system wherein
software plays a substantial role in shaping its design, assembly, deploy-
ment, and progression. It encompasses individual applications, conven-
tional systems, subsystems, systems of systems, product lines, product
families, entire enterprises, and aggregates of other pertinent entities.

2) The “Environment” encompasses the full spectrum of influences acting
upon a system throughout its entire life cycle, which includes its interac-
tions with the surrounding milieu. A system is situated within an envi-
ronment that may encompass multiple other systems.

3) “Architecture” encompasses the fundamental constituents of a system and
its nexus with the environment. This may encompass the constituent
elements or parts of the system, their configuration, interconnections,
the governing principles of organization, and the design and evolutionary
principles that govern the system across its life cycle.

4) An “Architecture Description” is employed to explicate the substance of
the system’s architecture. The ensuing discourse offers an exhaustive
scrutiny and analysis of the methodology for delineating architecture.

Overall, software architecture encompasses the intricate process of metic-
ulously planning and defining the comprehensive structure and organization
of a software system during its design phase. This endeavor entails abstract-
ing and elucidating the various constituents, modules, components, and their
interrelationships within the system, with the ultimate aim of realizing the
system’s overarching functionality and performance prerequisites. The pri-
mary objective of software architecture is to furnish a meticulously crafted
blueprint that delineates the responsibilities and functionalities of each sys-
tem module, as well as establishes the interfaces and interactions between
them. This blueprint serves as an invaluable guide to aid the development
team in comprehending and effectively communicating the system’s holistic
structure and design intent throughout the design phase. Moreover, soft-
ware architecture provides a well-defined framework that steers developers
in module development, component integration, and system testing during
the implementation phase. It is crucial to note that software architecture
not only focuses on the static structural aspects of the system but also en-
compasses the dynamic behavior and evolutionary trajectory of the system.
The entire process of software architecture is shown in Figure 2. The pro-
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Figure 2: Architectural process and activities

cess comprises five primary activities: architectural requirements, architec-
tural modeling, architectural implementation, architectural validation, and
architectural deployment. The architectural requirements activity aims to
ascertain the requirements and constraints of quantum software. The archi-
tectural modeling activity aims to employ appropriate modeling techniques
and tools to describe the architecture of quantum software. The architec-
tural implementation activity aims to transform architectural design into
executable code. The architectural validation activity aims to verify the cor-
rectness, reliability, and performance of quantum software. The architectural
deployment activity aims to deploy quantum software into the target envi-
ronment. The process also encompasses several supporting activities such as
architectural review, architectural evolution, and architectural management.
These activities and supporting elements collectively constitute the quantum
software architecture process. The design decisions pertaining to software ar-
chitecture invariably entail a meticulous consideration of system scalability,
maintainability, reusability, performance, security, and other pertinent fac-
tors.
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All software development methods address the transition from require-
ments to implementation, and quantum software development is no excep-
tion. In quantum computing systems, the software architecture represents
the blueprint for developing quantum hardware-operated software systems
and applications [24]. However, most quantum software projects nowadays
focus on generating quantum source code and neglect quantum software de-
sign, which is often prone to errors. Software architecture is one of the critical
steps in software development, which can guide all stages of software devel-
opment and has an important impact on the maintainability, scalability, and
reusability of software. Software architecture for quantum computing sys-
tems enables software engineers to create a model that serves as the basis
for system implementation. The model can drive developers to understand
requirements and design software to ensure that the software system meets
business needs and technical requirements while organizing code and modules
and defining interfaces and interactions between modules.

3. Quantum Software Architecture Practice

In the discourse surrounding QSA Practice, its pivotal role and posi-
tioning within the software lifecycle are paramount. Given its status as an
emerging technology, the inherent potentials and challenges posed by quan-
tum computing demand a comprehensive reassessment of all aspects related
to software development and design. This segment aims to scrutinize the
placement and significance of QSA within the software lifecycle, examining
its influence on the progression of software and the methodologies involved
in its development.

3.1. The position of QSA in the software life cycle

Figure 3 illustrates the interconnectedness between the software life cycle
and the software architecture process within the broader context of soft-
ware development. The software development process encompasses various
stages, spanning from conceptualization to implementation. These stages
include problem definition, requirements analysis, outline design, detailed
design, testing, and operation and maintenance. The software architecture
is established after the requirements analysis phase and before the software
design phase. The following analysis explores the interrelationships among
these stages, elucidating the purpose of each phase.
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Figure 3: Architestural Process and quantum software life cycle

1) Requirements analysis phase: This phase primarily focuses on determin-
ing the system’s functions based on the specified requirements. During
this phase, the designer conducts a comprehensive investigation of the
target object and its environment. This process involves gathering essen-
tial information about the target object and extracting valuable insights.
Abstract thinking and logical reasoning are employed to produce software
specifications.

2) Software architecture establishment stage: In this stage, the designer an-
alyzes the entire system primarily from a structural perspective. The
objective is to select appropriate components, define their interactions,
and identify any constraints imposed on them. The ultimate goal is to
formulate a system framework that aligns with the user’s requirements,
thereby establishing the foundation for subsequent design activities.

3) Design phase: The main objective of this phase is to modularize the sys-
tem and determine the detailed interfaces between the components, al-
gorithms, and data types. These design decisions support the framework
developed in the architecture phase and provide the basis for implemen-
tation.

4) Implementation phase: In this phase, the algorithms and data types de-
signed during the previous design phase are translated into a programming
language. This process ensures that the design, architecture, and require-
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ments analysis specifications are met, resulting in the development of a
target system that fulfills the design requirements.

The software architecture assumes a pivotal role throughout the entire
system development process. It serves as the starting point and founda-
tion for the subsequent design activities. Furthermore, it acts as a guiding
principle for system assembly and maintenance.

3.2. The role of QSA in the software life cycle

Software architecture assumes a fundamental and indispensable role through-
out the entirety of the system development process, serving as the corner-
stone and foundation for design activities. Moreover, it serves as a guiding
principle for system assembly and maintenance. The significance of sound
software architecture becomes evident across all stages of the software life
cycle, and its applicability extends to numerous scenarios within the domain
of quantum software engineering.

1) Design and Implementation of Quantum Algorithms: The software ar-
chitecture for quantum computing is utilized to design and implement
quantum algorithms. It provides a structured approach to describe and
organize the various components of an algorithm, such as quantum gate
operations, quantum registers, and quantum measurements. By employ-
ing a well-designed software architecture, the complexity of algorithms
can be better managed and organized, enhancing their readability, main-
tainability, and scalability [25].

2) Facilitating the scalability and reusability of software systems: Quan-
tum computing software architectures play a pivotal role in fostering the
scalability and reusability of software systems. By partitioning the soft-
ware system into discrete modules and components, each entrusted with
distinct functions and responsibilities, the software system can be ren-
dered more amenable to scalability and reusability. Quantum computing
software architecture encompasses a repertoire of design principles and
patterns, such as loose coupling and high cohesion, which empower de-
velopers to proficiently devise and execute scalable and reusable quantum
computing software systems.

3) Quantum Computing Task Scheduling and Optimization: The software
architecture for quantum computing is utilized for task scheduling and
optimization. In quantum computing, task scheduling involves mapping
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different parts of an algorithm onto the hardware resources of a quantum
computer to achieve efficient computations. The software architecture
provides a framework and algorithms for task scheduling, aiding in the
optimization of task allocation and scheduling to maximize the utilization
of the quantum computer’s performance.

4. Research Priorities in Quantum Software Architecture

The domain of QSA is marked by a constellation of distinctive challenges.
To begin with, both the hardware and software underpinning quantum com-
puters are in their formative stages, necessitating the cultivation of innovative
software tools and methodologies. Furthermore, the operational paradigm of
quantum computers deviates from that of classical counterparts, necessitat-
ing a reevaluation of established approaches to software design and develop-
ment. Additionally, the elevated error rates intrinsic to quantum computing
demand the adoption of specialized error correction coding techniques. As
quantum computers continue to burgeon in scale and intricacy, it becomes
imperative to conceive novel architectures and algorithms capable of meeting
these exigencies. Moreover, the assurance of security and privacy in quantum
communication stands forth as a pivotal challenge. The ensuing discourse
probes into three critical dimensions: architectural design patterns, archi-
tecture modeling languages, and quantum communication. Each of these
components constitutes a crucial realm of investigation, proffering potential
resolutions to the challenges at hand.

4.1. Quantum Software Modeling Language

As quantum computing technologies have evolved and become more widely
used, it has been realized that a formal and precise description method is
needed to help understand and design quantum computing systems.

The evolution of classical computing offers valuable lessons. Software
modeling, an essential facet, aids in comprehending systems, capturing re-
quirements, architecting software, risk identification, and verifying correct-
ness. UML stands out among traditional modeling languages, widely ac-
cepted for its comprehensive nature [26].

Another prominent language, Business Process Modeling Notation (BPMN),
serves as a graphical depiction of business processes across diverse sectors
like finance, healthcare, and business. BPMN’s standardized graphical ele-
ments—activities, events, gateways, and process connections—enable clear
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representation. Its usage empowers companies to comprehend, streamline,
and enhance business processes, ultimately boosting efficiency [27].

In the realm of quantum software modeling, the emergence of Q-UML
showcased as an extension of the established UML, and Quantum4BPMN
brings unique attributes, as highlighted in Table 1. These quantum-centric
languages offer avenues for precise depiction of quantum computing systems,
addressing their unique characteristics and complexities.

While UML and BPMN remain prominent, numerous other software mod-
eling languages, such as Petri nets [28], temporal logic [29], and SysML [30],
cater to diverse domains and possess distinct advantages. Optimal selection
of the modeling language aligning with the project’s requirements enhances
developers’ understanding, system depiction, and team collaboration.

Table 1: Q-UML vs. Quantum4BPMN Comparison

Aspect Q-UML[31] Quantum4BPMN [32]

Type Modeling Process Modeling
Application Software Design Business Process

Optimization
Symbols Class Diagrams, Sequence

Diagrams, Use Case
Diagrams

Flowcharts, Activity
Diagrams, Gateways

Audience Developers, Architects Analysts, Designers, Users
Precision High Detail Moderate, Focuses on

Sequence
Learning Challenging Relatively Easy
Generality Versatile Business Process Focus
Tools Abundant Modeling Tools Specialized BPM Tools
Automation Requires Development Direct Support, Integrates

with Tools
Focus Technical Business
Scenarios Software Development,

System Design
Business Process

Management, Optimization,
Automation

4.1.1. Q-UML

UML is a widely used modeling language that can be used to describe
and design various components and interactions in software systems. compo-
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nents, system structures, and processes. By using UML, developers can bet-
ter understand the overall structure of a software system and better commu-
nicate and collaborate during the design and development process. However,
the traditional UML modeling language mainly models classical computing
systems, while quantum computing systems have their unique features and
requirements, such as the superposition of quantum states and entanglement.
These features require a new modeling language to support the description
and analysis [33].

In this context, Q-UML, an extension of the classical computer software
modeling language UML, was introduced at the Quantum Software Engi-
neering Workshop of the ACM/IEEE International Conference on Software
Engineering (ICSE) in 2020. It integrates the characteristics of classical UML
with those of quantum computing, offering a formal methodology to describe
quantum computing systems [34]. Using Q-UML can help developers better
understand and design quantum computing systems, thus improving devel-
opment efficiency and software quality. Regarding the modeling notation,
Q-UML has proposed possible extensions to class and sequence diagrams.

Table 2: Summary View of Q-UML (CD = Class Diagram, UD = Use case Diagram, SD
= State Diagram, AD = Activity Diagram, SD = Sequence Diagram, DD = Deployment
Diagram)

Ref. CD UD SD AD SD DD

[31] ✓ ✓ ✓ ✓ ✓
[34] ✓ ✓
[35] ✓ ✓ ✓ ✓ ✓
[36] ✓
[37] ✓
[38] ✓

Table 2 presents an overview of the attributes associated with Q-UML
as a chosen modeling notation by researchers in recent years. Numerous re-
searchers have adhered to the established conventions of modeling in classical
software engineering, including the continued utilization of class diagrams.

4.1.2. Quantum4BPMN

Within the realm of quantum computing, Quantum4BPMN, as an ex-
tension of BPMN in the quantum domain [32], can be employed as a suit-
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able quantum modeling language to effectively depict and scrutinize business
processes within quantum computing systems. By utilizing the BPMN nota-
tion, quantum modeling languages can aptly represent various concepts as-
sociated with quantum algorithms [39], quantum circuits [40], and quantum
communications. As an integral component of the quantum modeling lan-
guage, Quantum4BPMN offers a user-friendly and comprehensible approach
to delineating and evaluating business processes within quantum computing
systems. By leveraging its capabilities, developers can enhance their com-
prehension and proficiency in quantum algorithm design, thereby fostering
advancements and practical implementations in the domain of quantum com-
puting.

4.2. Architecture Design Patterns

Software architecture design patterns are a set of generic solutions for
solving common software design problems. This notion of pattern and pat-
tern language has its origin in [41]. A pattern is a structured document
containing an abstract description of a proven solution to a recurring prob-
lem. At present, software architects have not yet devised specific architecture
patterns tailored for quantum software systems. Such patterns are essential
for effectively addressing quantum-related concerns while specifying the ar-
chitecture of quantum software systems [42]. For instance, the layered ar-
chitecture pattern entails dividing a system into distinct layers, each with
defined functions and responsibilities. However, there exists a compatibil-
ity issue between the software architectural design patterns of classical and
quantum computing systems. This arises from the fundamental disparities
in their computational models and programming paradigms: classical com-
putation operates based on Boolean logic principles and manipulates bits,
whereas quantum computation operates on quantum bits, leveraging prin-
ciples from quantum mechanics. This implies that software architectural
design patterns tailored for classical computing may not directly apply to
quantum computing. On the other hand, quantum software development
lacks standardization. Currently, there are several QPLs and development
frameworks available, each with its own set of design patterns and best prac-
tices. This makes it challenging to devise a unified software architectural
design pattern applicable across different quantum software systems. In or-
der to address these compatibility issues, researchers are delving into novel
software architectural design patterns specifically tailored for quantum com-
putation. These design patterns take into account the unique characteristics
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of quantum computation, such as superposition, entanglement, and inter-
ference, providing a framework for designing efficient, scalable, and reliable
quantum software systems. Table 3 provides a comparative analysis of four
commonly employed architectural design patterns for quantum software sys-
tem architecture from various perspectives.

Table 3: Comparison of Architectural Design Patterns

Criteria Layered
Architecture

Pipe and
Filter

Prototype
Pattern

Two-Qubit
Gate Pattern

Advantages
Modularity High Medium Low Medium
Concurrency Low High Low High
Object Creation Time - - High -
Dynamic Object Addi-
tion/Removal

Medium High Medium Medium

Testability High Medium Medium Medium
Quantum Parallelism - - - High
Supports Complex Quan-
tum Operations

- - - High

Disadvantages
Performance Overhead Medium Low Low High
Complexity Medium Low Low Medium
Communication Overhead - Medium - -
Requires Hardware Sup-
port

- - - Yes

Applicability
Clear Software Layering Yes - - -
Processing Large Data
Streams

- Yes - -

Creating Many Similar Ob-
jects

- - Yes -

Need for Fast Parallel Pro-
cessing

- Yes - -

Utilizing Quantum Paral-
lelism for Speedup

- - - Yes

4.2.1. Layered Pattern

Among the existing studies, the Layered pattern has the most research,
which has found extensive application in numerous software development sce-
narios, particularly in the design and development processes of large-scale,
complex systems. The layered architecture was first proposed in [43], which
supports framework development in a hierarchical and systematic manner
that allows challenges to be solved independently at each level. Each layer
has assigned responsibilities, and interfaces are defined between interacting
layers, with lower layers providing services and processing commands from
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higher layers. This approach allows quantum engineers to focus on individual
challenges while also seeing how a process fits into the overall design. The
framework needs to address issues such as defective hardware, error man-
agement, and classical processing for quantum computer design. However,
this leads to some degree of performance loss due to the need for commu-
nication between the different layers. Fu et al. [44] also adopted a layered
model design approach in designing the Heterogeneous Quantum Computer
Architecture with quantum error correction and detailed the stack structure
of the quantum computing system and quantum compiler.

4.2.2. Pipe and Filter Pattern

The Pipeline and Filter architectural pattern is a widely embraced paradigm
in parallel programming, designed to streamline the efficient handling of data.
This pattern finds extensive application in scenarios that involve the pro-
cessing of data streams, such as log processing, image manipulation, and
text analysis. Its primary function lies in breaking down intricate systems
into smaller, more manageable components, thereby enhancing their develop-
ment, testing, and maintenance. This decomposition occurs through a series
of sequential processing stages termed filters, wherein each filter conducts
specific data operations and then passes the processed data to the subse-
quent filter in the pipeline, as illustrated in Figure 4. The essence of this
pattern revolves around fostering principles of modularity, reusability, and
adaptability, thus laying a robust foundation for software design.

Figure 4: Pipe and filter pattern

Initially introduced by Buschmann et al. [45], the Pipeline and Filter
pattern has undergone successive refinements by various researchers. The
modern interpretation of this pattern demonstrates enhanced characteris-
tics in terms of security, maintainability, and extensibility. Notably favored
by scholars involved in quantum computing research [46], it is particularly
esteemed due to its inherent simplicity, operational efficiency, and ease of
debugging.
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However, it is important to acknowledge that the Pipeline and Filter
pattern, like any architectural approach, is not without its limitations. One
notable drawback lies in the potential performance overhead introduced by
the necessity for inter-filter communication and data transfer, especially when
dealing with large volumes of data.

4.2.3. Prototype Design Pattern

The main idea of the prototype design pattern is to use a prototype
object as a template and then duplicate this object to create new objects.
For example, if we need to create multiple identical quantum states in our
program, then we can use a prototype object as a template and then copy this
object to create new quantum states. This will avoid re-creating a new object
each time, thus improving the efficiency and performance of the program [47].

The Prototype design pattern is a flexible and efficient approach to ob-
ject creation, particularly suitable for scenarios where the creation process is
intricate or there is a need to circumvent the overhead of constructors. This
makes it very flexible and scalable in quantum software. In addition, using
the prototype design pattern reduces the overhead of object creation, thus
improving the efficiency and performance of the program. Figure 5 shows
the structure of the Prototype pattern.

Figure 5: Prototype design pattern
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However, the prototype design pattern also has some disadvantages. First,
it may consume a lot of memory because of the need to copy objects. Second,
because of the complex relationships that may exist between objects, these
relationships need to be taken into account when copying objects, which may
increase the complexity of the code.

4.2.4. Two-qubit Gate Pattern

Two-qubit gate pattern is applicable to numerous quantum computing
tasks, particularly in the construction and operation of quantum circuits.
The basic idea is to take two quantum bits as input and perform a specific
gate operation on them to obtain the output.

Advantages of this mode of door operation include:

• Scalability: The two-qubit gate pattern can be extended to an arbitrary
number of gate operations between quantum bits to build more complex
quantum circuits and algorithms.

• Controllability: The two-qubit gate pattern can be gated between any
two quantum bits, allowing flexible control of the interactions and ex-
changes between quantum bits.

• Reusability: The two-qubit gate pattern is a generic gate operation
pattern that can be reused in multiple quantum circuits and algorithms
to save development time and resources [48].

However, there are some challenges with the two-qubit gate pattern:

• Resource consumption: The two-qubit gate pattern usually requires a
large number of hardware resources and energy, which is a challenge
for the practical implementation of quantum computing systems [49].

• Errors and noise: Due to the volatility and noise of quantum bits, the
two-qubit gate pattern may be affected by errors and noise, which leads
to unreliability and inaccuracy of quantum computing results.

As a consequence, the two-qubit gate pattern is a useful mode of gate
operation, but some challenges and limitations need to be overcome to achieve
reliable and efficient quantum computing.
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4.3. Quantum Communication

One current focal point in quantum science involves advancing commu-
nication efficiency [50]. This entails the transmission of more information
using fewer carriers, leveraging the quantum state of physical entities such
as photons, atoms, or ions as carriers for information encoding. These quan-
tum states are transmitted through quantum channels to convey information
[51]. Additionally, quantum computing demonstrates the capability to en-
crypt transmitted information. In classical computing, established crypto-
graphic methodologies like blockchain technology [52, 53], Software-Defined
Networking (SDN) [54], and select machine learning algorithms [55] can be
integrated with quantum computing, yielding heightened efficiency and bol-
stered security in algorithmic pursuits. The communication process adheres
to fundamental principles of quantum mechanics such as Heisenberg’s uncer-
tainty principle and the theory of measurement collapse. Quantum commu-
nication primarily encompasses Quantum Key Distribution, Quantum Dense
Coding, and Quantum Teleportation.

4.3.1. Quantum Key Distribution

Quantum Key Distribution (QKD) technology is the most important and
mainstream technology in the current research and application of quantum
confidential communication. By providing information-theoretically secure
key distribution, it opens a new chapter in the use of quantum methods for
secure transmission [56].

In conventional encryption methods, both communicating entities em-
ploy a shared key for both encryption and decryption operations. However,
this approach introduces the inherent vulnerability of the key being com-
promised by malicious adversaries. In contrast, QKD leverages quantum
bits as cryptographic keys. These qubits are generated by the sender via
quantum randomization techniques and subsequently transmitted to the re-
ceiver through quantum communication channels. Notably, the transmission
process incorporates mechanisms to detect any unauthorized measurement
attempts on the quantum bits, as per the principles of quantum mechan-
ics. Illicit measurements can destroy the key, safeguarding its confidentiality.
Figure 6 visually illustrates this key destruction mechanism, highlighting the
interplay between quantum mechanics and the security of QKD. In the ini-
tialization phase, Alice encodes single photons according to specific schemes
and transmits them to Bob, who prepares measurement devices. Upon receiv-
ing the quantum states, Bob randomly selects a basis (vertical, horizontal,
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Figure 6: Quantum key distribution(Alice and Bob represent the two sides of the commu-
nication, Eve is the eavesdropper)

diagonal) for measurement and records the corresponding outcomes. Sub-
sequently, Alice and Bob publicly disclose a portion of their measurement
results for discussion, aiming to detect any eavesdropping attempts. Due
to the non-clonability of quantum states, illicit measurements lead to state
collapse, thereby being detected during the public discussion phase. In the
event of anomalies, Alice and Bob abandon the current key and terminate
communication. Otherwise, they process the measurement outcomes to de-
rive a shared secure key. Nonetheless, adversaries may attempt to intercept
quantum states multiple times during transmission, potentially introducing
disruptions even if eavesdropping is detected.

Table 4: Literature Summary of QKD

Ref. Transmission Distance Key Rate Protocol Average Attenuation

[57] 1200km 1000HZ downlink protocol, BB84 -
[58] 600km 1bps TF-QKD -
[59] 833km - TF-QKD 0.1419 dB/km
[60] 202.81km 6.214bps CV-QKD -
[61] 511km 3.45bps TF-QKD 0.158dB/km
[62] 10km 115.8Mb/s BB84 -
[63] 1002km 47.06Kbps SNS-TF-QKD 0.157dB/km
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QKD technology is in the initial stage of radicalization. there are two
main ways to implement QKD, one is discrete variable quantum key distri-
bution (DV-QKD) and continuous-variable quantum key distribution (CV-
QKD). In the first approach, single-photon detectors are usually used to de-
code. In the second approach, the quantum states are described in the optical
domain, and their special states are continuous and have infinite dimensions
[64]. The two have a good complementary relationship and each has its own
application focus: in coding, CV-QKD cannot achieve continuous coding
in reality, which brings experimental complexity and discretization errors;
while in detection, the coherent detectors of CV-QKD are better than the
SPDs used in DV-QKD [65]. In light of recent advances in QKD, an increas-
ing number of researchers have embraced the utilization of the Twin-Field
Quantum Key Distribution (TF-QKD) protocol within their experimental
endeavors. This strategic choice is driven by the imperative to surmount the
constraints pertaining to transmission rates and distances, which have been
inherent challenges in the domain of QKD. Table 4 presents a comprehensive
compilation of empirical findings achieved by esteemed scholars in the realm
of QKD over the course of recent years.

Figure 7: Classification and characteristics of CV-QKD

CV-QKD is mainly divided into Gaussian modulation type protocols and
discrete modulation type protocols according to the different information
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modulation methods. From the perspective of optoelectronic system archi-
tecture, there are existing CV-QKD systems with accompanying local oscil-
lation CV-QKD schemes and local oscillation CV-QKD schemes. Figure 7
presents the classification and distinctive characteristics of the four types of
CV-QKD.

4.3.2. Quantum Dense Coding

Quantum Dense Coding (QDC), a technique based on quantum entan-
glement, was proposed by Bennett et al. [66] in 1992 as one of the most
intriguing applications embodying the properties of quantum entanglement.

QDC relies on a specific form of quantum entanglement known as Bell
states. Bell states represent a maximally entangled state of a two-qubit
system, exhibiting the following characteristics:

• Maximal Entanglement: Bell states achieve the highest possible degree
of entanglement between two qubits. This implies that upon measuring
one qubit, the state of the other qubit instantaneously collapses to a
definite outcome.

• Non-Locality: Bell states exhibit non-local correlations, meaning that
a measurement of one qubit instantaneously influences the state of the
other qubit, even if they are separated by considerable distances.

A concrete example of a Bell state is

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩), (4)

where |00⟩ and |11⟩ denote the basis states of a two-qubit system. This state
holds particular significance as it forms the foundation for realizing QDC.

QDC uses classical bits to represent information and exploits the nonlo-
cal correlation property of quantum entangled states to send one quantum
bit and transmit two bits of classical information using a quantum channel,
which has attracted the research interest of a wide range of scholars. Ben-
nett’s quantum dense coding scheme considers one sender and one receiver,
and in 1998, Bose et al. [67] extended the dense coding scheme to a multi-
party information transmission process. In 2010, Situ et al. [68] proposed
a simultaneous dense coding scheme for one sender and multiple receivers.
Zhang et al. [69] analyzed the performance of the simultaneous dense cod-
ing protocol in the case of decoherence of quantum states. In 2014, Situ
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et al. [70] proposed another controlled simultaneous dense coding scheme
based on GHZ states. Currently, numerous scholars are ardently engaged in
the refinement and advancement of QDC methodologies. Table 5 serves to
encapsulate a comprehensive compendium of extant experimental endeavors
undertaken in the realm of QDC theory.

Table 5: Literature Summary of QDC

Ref. Coding Scheme Quantum Entanglement Scheme

[68] Simultaneous Dense Coding Bell State, GHZ State, W State
[70] Simultaneous Dense Coding GHZ State
[71] Superdense Coding Bell State
[72] Device-independent Quantum Dense Coding Bell State
[73] Distributed Quantum Dense Coding GHZ State
[74] Distributed Quantum Dense Coding GHZ State
[75] Superdense Coding Bell State
[76] Private Dense Coding Bell State
[77] Time-Bin Encoding Bell State
[78] Time-Bin Encoding Bell State

4.3.3. Quantum Teleportation

Quantum Teleportation (QT) was first proposed by Bennett et al. [79].
QT is a communication technique based on quantum entanglement that al-
lows the transmission of a quantum state from one place to another without
replicating or transmitting the actual quantum state in the intermediate
process. The keys to achieving quantum invisible state transfer are quantum
entanglement and quantum measurement. Technology is also mentioned in
the famous science fiction novel Three Bodies. However, in reality, because
QT requires classical channels to transmit information, it is theoretically
impossible for the information to be transmitted faster than the speed of
light.

Figure 8 reveals the basic principle of QT: Alice performs a measure-
ment on an unknown quantum state, represented by a particle intended for
transmission, using one of the particles from an entangled pair known as an
EPR pair, employing the Bell basis. According to fundamental principles of
quantum mechanics, it is established that the quantum information encoded
within the unknown quantum state is transferred to the other particle of the
entangled EPR pair. Subsequently, the measurement outcome is conveyed
to Bob through a classical communication channel. Bob, upon receiving this
information, gains confidence in the state-carrying particle (the other particle
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Figure 8: The principle of QT

of the EPR pair) and proceeds to reproduce the original quantum state. The
measurement result is then communicated back to Bob through the classical
channel, ensuring that the carrier particle can acquire a state similar to the
one originally transmitted. Through this process, the faithful reproduction
of the quantum state is achieved.

Table 6: Literature Summary of QT

Ref. Implementation Platform Entanglement Type Measurement Communication Channel

[80] Nanobeams EPR BSM Optical transmission channel
[81] Single photon qutrit-qutrit HD-BSM Optical transmission channel
[82] CQI-MP three-dimensional HD-BSM Quantum communication channel
[83] MRR Bell operator MZI Photons transmitted within chip
[84] Quantum circuit EPR BSM Classical communication channel

* BSM = Bell-State Measurement, HD-BSM = High-Dimensional Bell-State Measurement, CQI-MP = Collective quantum
interference of multiple particles, MRR = Microresonator, MZI = Mach-Zehnder Interferometer

QT relies on quantum entanglement and quantum measurements without
transmitting the actual quantum state. Although quantum stealth transfer
still requires the support of quantum channels, it can effectively avoid the
impact of channel noise and interference on transmission quality and thus
has a wide range of applications. Table 6 summarizes the QT experiments in
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recent years. Nowadays, quantum teleportation experiments have diversified
their platforms, including optical systems, MRRs on silicon chips [83], and
linear-optic multiqubit circuits. Novel techniques, such as nonlinear optical
sources and HD-BSM, have been introduced to improve the generation effi-
ciency and transmission quality of photon pairs [81]. Research has explored
various types of entangled pairs, such as EPR pairs and three-dimensional
entangled states. Additionally, catalytic teleportation has been studied, in-
volving an additional quantum system shared between Alice and Bob, aiming
to enhance the teleportation process without affecting the catalyst state [85].

4.3.4. Performance Comparison and Applicability Scenarios

The preceding elucidation of QKD, QDC, and QT necessitates a compar-
ative evaluation of their operational efficacy and domain-specific suitability.
The merits, demerits, and practical scenarios of the three quantum commu-
nication methods are delineated in Figure 9.

Figure 9: Characteristics of Communication Methods

QKD emerges as an exemplar of cryptographic security protocols. Grounded
in the principles of quantum mechanics, QKD guarantees information con-
fidentiality via inherent properties of quantum states, rendering intercepted
transmissions fundamentally unobtainable. However, practical implementa-
tion demands sophisticated quantum hardware and is limited by transmission
distances constrained by present technological capabilities.

28



QDC showcases superior efficiency in information transmission. By lever-
aging entanglement and encoding classical bits into quantum states, it en-
ables higher transmission rates than classical methods. This efficiency proves
beneficial in bandwidth-limited scenarios, yet it necessitates a pre-shared en-
tangled state, posing practical challenges in its application.

QT excels in quantum state transfer across vast distances. Its ability to
teleport quantum information over extensive separations without physically
traversing the intervening space holds promise for secure long-distance com-
munication. Nonetheless, its reliance on entanglement establishment and the
requirement for classical communication channels for teleportation comple-
tion present practical constraints.

5. Conclusions

To solve the problem of quantum programmers ignoring the overall quan-
tum software design, QSA has emerged as a new type of software architecture.
Many researchers have made contributions to this field [86]. At the same
time, we migrate the research methods and tools from the classical domain
to the quantum realm, we should also pay attention to the characteristics of
the quantum field.

Implications and Future Work: At present, quantum modeling lan-
guages are existing models that are simplified versions of classical modeling
methods and do not explicitly cover quantum properties, including superpo-
sition, interference, and entanglement, which will make it difficult to exploit
the full features of quantum computing in the designed software. The design
models for QSA are poorly developed, and there is also a lack of decision
methods for selecting design models. Researchers in [21] identified and pri-
oritized challenges associated with QSA execution processes and devised a
comprehensive decision framework to address these issues, opening new av-
enues for subsequent studies.

In the domain of quantum communication, the establishment of quantum
networks presents a significant challenge. There is an urgent requirement
for communication protocols tailored to quantum networks. Similarly, end-
users play a crucial role in the development process. Currently, traditional
software development methods lack practical experience in quantum software
development, necessitating researchers’ exploration in this domain. Khan et
al. proposed attempts to integrate agile practices into quantum software
development in [87].
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In conclusion, while serving as a vital tool for quantum software devel-
opment, the software architecture for quantum computing requires further
research and widespread adoption. As part of future work, we aim to apply
the insights gleaned from this research to enhance our processes and under-
take additional studies to evaluate these improvements.

References

[1] Andrew Steane. Quantum computing. Reports on Progress in Physics,
61(2):117, 1998.

[2] Sukhpal Singh Gill, Adarsh Kumar, Harvinder Singh, Manmeet Singh,
Kamalpreet Kaur, Muhammad Usman, and Rajkumar Buyya. Quan-
tum computing: A taxonomy, systematic review and future directions.
Software: Practice and Experience, 52(1):66–114, 2022.

[3] P.W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations
of Computer Science, Dec 2002.

[4] Akshay Ajagekar and Fengqi You. New frontiers of quantum comput-
ing in chemical engineering. Korean Journal of Chemical Engineering,
39(4):811–820, 2022.

[5] Thomas E O’Brien, Michael Streif, Nicholas C Rubin, Raffaele Santa-
gati, Yuan Su, William J Huggins, Joshua J Goings, Nikolaj Moll, Elica
Kyoseva, Matthias Degroote, et al. Efficient quantum computation of
molecular forces and other energy gradients. Physical Review Research,
4(4):043210, 2022.

[6] Raihan Ur Rasool, Hafiz Farooq Ahmad, Wajid Rafique, Adnan
Qayyum, Junaid Qadir, and Zahid Anwar. Quantum computing for
healthcare: A review. Future Internet, 15(3):94, 2023.
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