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Abstract. We show that differential privacy type guarantees can be ob-
tained when using a Poisson synthesis mechanism to protect counts in
contingency tables. Specifically, we show how to obtain (ϵ, δ)-probabilistic
differential privacy guarantees via the Poisson distribution’s cumulative
distribution function). We demonstrate this Poisson synthesis mechanism
empirically with the synthesis of the ESCrep data set, an administrative-
type database that resembles the English School Census.
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1 Introduction

Differential privacy (DP) [8] is a property of a perturbation mechanism that for-
mally quantifies how accurately any individual’s true values can be established,
given all other individuals’ true values are known. Originally developed as a way
to protect the privacy of summary statistics (queries), it soon expanded as a
way to protect entire data sets. Differentially private data synthesis (DIPS) has
since become a popular area of research; see, for example, [1], [14], [5], [15], [4],
[16], [7].

In [12], [11], we proposed a synthesis approach for categorical data sets,
which takes place at the tabular level, and which uses saturated count models.
The use of saturated models means we effectively use count distributions, such
as the Poisson, to apply noise to the counts in the original data’s contingency
table. This approach therefore shares traits with DP mechanisms; the Laplace
mechanism, for example, applies Laplace noise to original counts.

In this paper, we consider the ability to obtain DP-guarantees when using
the Poisson distribution to synthesize counts in tabular data (contingency ta-
bles). We show that although ϵ-DP cannot be satisfied, (ϵ, δ)-DP guarantees can
be obtained through the use of the Poisson’s cumulative distribution function
(CDF). With the exception of [16], the use of count distributions has largely
been overlooked as a way to satisfy DP. Similarly, the use of CDFs to satisfy
(ϵ, δ)-probabilistic DP has been underexplored. In the future, this work can then
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be extended from the Poisson to more complex count distributions (such as the
Poisson inverse-Gaussian), where additional parameters provide scope for fine-
tuning.

The paper is structured as follows. Section 2 introduces some terminology and
definitions. Section 3 looks at existing DP mechanisms for contingency tables,
such as the (discretised) Laplace and Gaussian mechanisms. Section 4 gives
our novel contribution, the ability to obtain (ϵ, δ)-DP guarantees when using
a Poisson synthesis mechanism. Section 5 gives an empirical example using an
administrative database. Section 6 gives some concluding remarks.

2 Terminology and definitions

Rinott et al. [17] set out how DP extends into a contingency table setting.
Following their notation, let a = (ak, . . . , aK) ∈ A and b = (bk, . . . , bK) ∈ B
denote vectors of cell counts in the original and synthetic data’s contingency
tables, respectively, where K denotes the number of cells and A and B denote the
range of obtainable original and synthetic counts (respectively). For contingency
tables, we suppose that A = B = ZK

≥0, where Z≥0 is the set of non-negative
integers.

Moreover, we describe a and a′ as neighbours, denoted by a ∼ a′, whenever
all but one of the counts in a and a′ are identical and the differing count differs
by exactly one. Henceforth, without loss of generality, we suppose a and a′ differ
in their kth element only, i.e. ak = a′k − 1 and ai = a′i for i = 1, . . . ,K, i ̸= k.
Thus a represents the data held by the intruder (who knows all but one of
the individuals’ true values) and a′ represents the completed data where the
“unknown individual” has been added to the cell in which they truly belong.

The ϵ-DP definition revolves around the likelihood ratio, or, more accurately,
around a series of likelihood ratios.

Definition 1 (ϵ-DP). A perturbation mechanism M satisfies ϵ-DP (ϵ > 0) if:

exp(−ϵ) ≤ P(M(a) = b)

P(M(a′) = b)
≤ exp(ϵ), (1)

∀ a ∼ a′ ∈ A and ∀ b ∈ B.

Definition 1 is the special case of the standard DP definition, given in [8], for
when the range of A and B are discrete. For any a, a′ and b, whenever the
ratio P(M(a) = b)/P(M(a′) = b) is either small or large, relatively too much is
gleaned about the unknown individual’s true values. It is worth noting, too, that
the above definition considers all possible synthetic data sets in B, illustrating
that DP is not a risk metric for a particular synthetic data set but rather a
property of a synthesis mechanism.

Somewhat confusingly, there are two similar but different relaxations of ϵ-
DP. The first is (ϵ, δ)-differential privacy [9]. The second is known as (ϵ, δ)-
probabilistic differential privacy [14]. These are given below in Definitions 2
and 3. In the remainder of this paper, we focus on (ϵ, δ)-probabilistic DP. Yet
whenever (ϵ, δ)-probabilistic DP is satisfied, (ϵ, δ)-DP is also satisfied [10].
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Definition 2 ((ϵ, δ)-DP). A perturbation mechanism M satisfies (ϵ, δ)-DP (ϵ >
0; 0 ≤ δ ≤ 1) if:

P(M(a) = b)− δ

P(M(a′) = b)
≤ exp(ϵ) and

P(M(a′) = b)− δ

P(M(a) = b)
≤ exp(ϵ) (2)

∀ a ∼ a′ ∈ A, b ∈ B.

Definition 3 ((ϵ, δ)-probabilistic DP). A perturbation mechanism M satis-
fies (ϵ, δ)-probabilistic DP (ϵ > 0; 0 ≤ δ ≤ 1) if:

p

[
1

exp(ϵ)
≤ P(M(a) = b)

P(M(a′) = b)
≤ exp(ϵ)

]
> 1− δ ∀ a ∼ a′ ∈ A, b ∈ B. (3)

Theorem 1 ((ϵ, δ)-probabilistic DP implies (ϵ, δ)-DP). If a perturbation
mechanism M satisfies (ϵ, δ)-probabilistic DP, then it also satisfies (ϵ, δ)-DP.
(Proof: see [10])

3 Examples of existing DP mechanisms

We now give examples of existing DP mechanisms suitable for synthesizing
counts in contingency tables.

Example 1 (The (discretised) Laplace mechanism). A random variable X ∼
Laplace(µ, d) has probability density function fL:

fL(x;µ, d) =
1

2d
exp

(
−|x− µ|

d

)
The Laplace mechanism ML uses the Laplace distribution to add random noise
to the original counts a. Specifically, ML(a) = a+c where c is a K-dimensional
vector of discretised Laplace(0, 1/ϵ) random variates. To show that this mech-
anism does indeed satsify DP, consider an arbitrary b ∈ B (i.e. b = ML(a));
then

P(ML(a) = b)

P(ML(a′) = b)
=

P(c = b− a)

P(c = b− a′)

=
fL(b− a)

fL(b− a′)

≤ exp(ϵ|a− a′|) = exp(ϵ),

as, by definition, |a − a′| = 1. By a similar argument it can be shown that the
LHS is also greater than or equal to exp(1/ϵ), thus satisfying the ϵ-DP definition
given in (1).

Example 2 (The Gaussian mechanism). A random variable X ∼ Normal(µ, σ2)
has probability density function fG:
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fG(x;µ, σ
2) =

1

σ
√
2π

exp

[
−1

2

(
x− µ

σ

)2
]

The application of discretised Normal(0, σ2) random noise results in a synthesis
mechanism, say MG, that achieves (ϵ, δ)-differential privacy. Recall that ai = a′i
for i = 1, . . . , k − 1, k + 1, . . . ,K and that ak + 1 = a′k − 1. Then it follows that

P(MG(a) = b)

P(MG(a′) = b)
=

1
σ
√
2π

exp
[
− 1

2

(
bk−ak

σ

)2]
1

σ
√
2π

exp
[
− 1

2

(
bk−ak+1

σ

)2]
= exp

[
− 1

2σ2
(2ak − 2bk − 1)

]
.

Recall that (ϵ, δ)-probabilistic DP is satisfied whenever

1

exp(ϵ)
≤ P(M(a) = b)

P(M(a′) = b)
≤ exp(ϵ) with probability 1− δ,

which, in this instance, occurs whenever

−ϵ ≤ − 1

2σ2
(2ak − 2bk − 1) ≤ ϵ with probability 1− δ.

The probability 1− δ can be obtained from Φ the normal distribution’s CDF [2],
as bk ∼ Normal(ak, σ2).

1− δ = P(−ϵ ≤ − 1

2σ2
(2ak − 2bk − 1) ≤ ϵ)

= P(ak − σ2ϵ− 1/2 ≤ bk ≤ ak + σ2ϵ− 1/2)

= Φ

(
ak + σ2ϵ− 1/2− ak

σ

)
− Φ

(
ak − σ2ϵ− 1/2− ak

σ

)
= Φ (σϵ− 1/2)− Φ (−σϵ− 1/2)

Example 3 (Multinomial-Dirichlet synthesizer). A multinomial-Dirichlet synthe-
sis mechanism [1], say MMD, can also yield DP guarantees. The original counts
a can be converted to cell probabilities π simply by dividing by n (the num-
ber of individuals in the data). A Dirichlet prior with concentration parameters
α = (αk, α2, . . . , αK) is placed on π (see [1] for more on this approach). Using
the same “without loss of generality” assumptions as previous, it follows that

P(MMD(a) = b)

P(MMD(a′) = b)
=

Γ (bk + ak + αk)

Γ (ak + αk)
· Γ (a′k + αk)

Γ (bk + a′k + αk)
.

=
Γ (bk + ak + αk)

Γ (ak + αk)
· Γ (ak − 1 + αk)

Γ (bk + ak − 1 + αk)

=
bk + ak − 1 + αk

ak − 1 + αk
. (4)
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Recall again that DP is satisfied whenever

1

exp(ϵ)
≤ P(MMD(a) = b)

P(MMD(a′) = b)
≤ exp(ϵ).

As the expression in (4) is always greater than or equal to one, and hence always
greater than 1/exp(ϵ), DP is satisfied whenever

bk + ak − 1 + αk

ak − 1 + αk
≤ exp(ϵ),

and, as ak ≥ 1 and bk ≤ n, whenever

n+ αk

αk
≤ exp(ϵ) ⇒ αk ≥ n

exp(ϵ)− 1

Considering all counts a1, . . . , aK gives that DP is satisfied when:

maxiαi ≥
n

exp(ϵ)− 1
, a result from [14].

4 Satisfying (ϵ, δ)-probabilistic DP with a Poisson
synthesis mechanism

When using saturated count models to synthesize categorical data expressed as
contingency tables, as set out in [12], we are effectively using a count distribution,
e.g. the Poisson, to apply noise to original counts. We assume that a constant
pseudocount α > 0 is added to every element of a (i.e. to all original counts,
not just to zero counts as in [12]), which opens up the possibility that original
counts of zero can be synthesized to non-zeros. When using the Poisson we apply
the following mechanism, which we denote by MP , to obtain a set of synthetic
counts:

bi | ai, α ∼ Poisson(ai + α), i = 1, . . . ,K,

i.e. P(MP (ai) = bi) =
exp(−ai − α)(−ai − α)bi

bi!
, i = 1, . . . ,K.

Supposing once again that a and a′ differ in their kth element only, we have:

P(MP (a) = b)

P(MP (a′) = b)
= exp(−1)

(
ak + α

ak − 1 + α

)bk

. (5)

This quantity is bounded below by exp(-1), with this minimum occurring when
bk = 0. It is unbounded above, however, as bk can be any integer up to infinity;
i.e. the expression in (5) tends to infinity as bk tends to infinity. Thus ϵ-DP
cannot be satisfied.
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Instead, we now consider the (ϵ, δ)-probabilistic DP relaxation, first consid-
ering the left-hand inequality of the DP definition (Def. 1):

1

exp(ϵ)
≤ P(MP (a) = b)

P(MP (a′) = b)
⇒ bk ≥ 1− ϵ

log
(

ak+α
ak−1+α

) .
When ϵ ≥ 1, this inequality holds with probability 1. When 0 < ϵ < 1, the
probability that this inequality holds can be determined through the Poisson’s
CDF, since bk is a realization from a Poisson random variable. This probability
is given as:

1− FP
ak+α

 1− ϵ

log
(

ak+α
ak−1+α

)
 , (6)

where FP
ak+α is the CDF of the Poisson distribution with mean ak + α.

We next consider the right-hand inequality of Def. 1:

P(MP (a) = b)

P(MP (a′) = b)
≤ exp(ϵ) ⇒ bk ≤ 1 + ϵ

log
(

ak+α
ak−1+α

) .
For all ϵ, this inequality holds with probability

FP
ak+α

 1 + ϵ

log
(

ak+α
ak−1+α

)
 . (7)

Recall that in (ϵ, δ)-probabilistic DP, 1−δ is the probability that DP is satisfied,
i.e. the probability that both inequalities hold. A non-trivial question when 0 <
ϵ < 1 is how to combine the probabilities given in (6) and (7) and hence compute
δ? This is an area of future research.

When ϵ > 1, however, the left-hand inequality of Def. 1 always holds, thus
we need only focus on (7). Although non-trivial – note, a formal proof has been
omitted here but extensive empirical simulation results have been undertaken –
for any ϵ ≥ 1 and α > 0, (7) is minimised when ak = 1 (when a′k = 0). Thus:

1− δ = FP
1+α

[
1 + ϵ

log
(
1+α
α

)] . (8)

This also demonstrates the role of α as a tuning parameter for risk. In general, a
larger α value corresponds to a lower δ value. Yet δ is not a decreasing function
of α. For a very brief explanation, this is because increasing α increases the value
of the expression inside the squared bracket in (8), but it also increases the mean
of the Poisson random variable from which a synthetic count is drawn. Figure 1
illustrates the nature of the relationship between α and δ for different values of
ϵ. For example, setting α = 0.1 satisfies approximately (3,0.3)-probabilistic DP
and (1.5,0.6)-probabilistic DP.
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Fig. 1. The relationship between α and δ in the Poisson synthesis mechanism for ϵ = 1.5
and ϵ = 3.

In contingency tables where there are no zero counts, a (ϵ, δ)-DP guarantee
can be obtained when α = 0. In this instance, δ is determined by the smallest
original count, i.e.:

1− δ = FP
ai+α

 1 + ϵ

log
(

miniai+1
miniai

)
 . (9)

In a sense, in this example we have violated the traditional (ϵ, δ)-probabilistic
DP definition given in (3) because δ is dependent on a particular set of original
counts a – not all original counts.

We can easily replace the Poisson with any other count distribution (e.g.
the negative binomial, Poisson inverse-Gaussian, Delaporte, Sichel, etc.), which
would lead to a different result for (5).

5 An empirical example

5.1 The English School Census administrative database

The English School Census (ESC) is a large administrative database belonging to
the UK’s Department for Education (DfE), which holds information about pupils
attending state-funded schools in the UK. Owing to the presence of sensitive
data, strict privacy guarantees would be required for data from the ESC to
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be made available to researchers. There is therefore great appeal to DP-type
approaches, where more formal guarantees of privacy can be obtained.

Access to the real ESC data is currently restricted, even for the sake of
demonstrating the effectiveness of privacy methods. For this reason, staff at the
Office for National Statistics (ONS) created a substitute data set using publicly-
available data sources, such as previously published ESC data and 2011 census
tables. A key feature of this data set, which we name ESCrep, is that it replicates
some of the statistical properties present in the ESC. The version we use here has
approximately 8× 106 individuals (rows) and 5 categorical variables (columns).
As all variables are categorical, the data set can be expressed as a contingency
table. More information about the data set – as well as the data set itself – is
available at [3].

5.2 Applying the Poisson synthesis mechanism

We now apply the Poisson synthesis mechanism to the ESCrep data, considering
different values of α, and considering ϵ > 1 values.

The ESCrep data has a high proportion of zero counts (roughly 90%), hence
the expression in (8) for δ applies. Figure 2 gives combinations of (ϵ, δ) values
that can be achieved for the ESCrep data when using α values of 0.1, 0.2, 0.5
and 1. For example, when ϵ = 2, an α value of 1 is required to obtain a δ value
of 0.05; when α = 0.1, a δ value of 0.05, is obtained only for ϵ values greater
than 6.

DP methods, in general, are known to have a detrimental effect on utility. To
assess the effect of δ on specific utility [18], we compare analysis results obtained
from the original and synthetic data. We fit a log-linear model involving the eth-
nicity and age variables and compute the parameters’ confidence intervals from
both the original and synthetic data. We then use the confidence interval overlap
metric [13] to compare the original and synthetic data confidence intervals.

The boxplots in Figure 3 show that even small values of α have an adverse
effect on overlap, i.e. utility. It suggests that in order to obtain meaningful results
from the synthetic data, the synthesizer would need to keep α as low as possible.
This, of course, is intrinsically linked to the risk-utility trade-off, as to achieve
this, the synthesizer would have to choose a higher value of ϵ or δ (or both).
An advantage of DP synthesis approaches is that they provide a parameter

characterising risk. Although risk and utility are of course intertwined, there are
generally fewer risk metrics available to the synthesizer than there are utility
metrics. Choosing suitable values for ϵ and δ values is far from trivial (see [6])
and in general the synthesizer would consider a range of such values.

6 Discussion

To summarise, this paper is an investigation into obtaining DP-type guarantees
when using a Poisson synthesis mechanism to protect the privacy of counts in
contingency tables. Going forward, we believe other count distributions, such
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as the negative binomial, are likely to be more favourable; i.e. will give better
utility results, while also providing the same DP-type risk guarantees. This is
because such distributions would introduce further tuning parameters in addition
to α. Previous work suggests that such tuning parameter apply noise in a more
efficient fashion [11]. These tuning parameters could be set to obtain certain ϵ
or δ values.

We end with an interesting note in relation to DP. Somewhat counterintu-
itively, the reason why multinomial-based synthesis mechanisms (e.g. the multi-
nomial Dirichlet synthesizer) can satisfy ϵ-DP – but count distributions cannot
– is because with multinomial mechanisms there is a maximum synthetic count
that any original count can take, namely n. With count distributions, any origi-
nal count can be synthesized to any non-negative integer. To conceptualise why
this causes the DP definition to fail, suppose in an intruder’s data set – which,
of course, is the actual data set minus the target individual – a certain cell has a
count of 1. Then suppose in the synthetic data – generated by simulating from
the Poisson – this cell has a count of 5. It is far more likely that this synthetic
count originated from a cell with a count of 2 than from a count of 1 (11.7 times
more likely), therefore the intruder can infer that this cell is a likely origin of
the target. It is interesting therefore that with DP, disclosure risk is deemed to
be at its greatest when the scope for potential movement between original and
synthetic counts is at its greatest. This largely goes against the objectives of tra-
ditional SDC methods, which typically reduce risk by increasing the divergence
from the original counts.
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