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Abstract

We present a study of combinatorial constructions that are related to understanding

the structure of bar-joint frameworks that are restricted to a subspace of Rd. There

are two such restrictions of Rd we approach.

We combine two recent extensions of the generic theory of rigid and flexible

graphs by considering symmetric frameworks in R3 restricted to move on a surface.

In Chapter 3 necessary combinatorial conditions are given for a symmetric frame-

work on the sphere, cylinder, cone, elliptical cylinder and ellipsoid to be isostatic (i.e.

minimally infinitesimally rigid) under any finite point group symmetry. In Chapter

4 we focus exclusively on the cylinder. In every case when the symmetry group is

cyclic, which we prove restricts the group to being inversion, half-turn or reflection

symmetry, these conditions are then shown to be sufficient under suitable genericity

assumptions, giving precise combinatorial descriptions of symmetric isostatic graphs

in these contexts.

Motivated by applications where boundary conditions play a significant role, one

may generalise and consider linearly constrained frameworks where some vertices

are constrained to move on fixed affine subspaces. Additional to Chapter 3, the

necessary combinatorial conditions are given for a symmetric linearly constrained

framework in Rd to be isostatic under a choice finite point group symmetries. In

Chapter 5, we consider linearly constrained frameworks in the plane, and the case

of rotation symmetry groups whose order is either 2 or odd. These conditions are

then shown to be sufficient under suitable genericity assumptions, giving precise

combinatorial descriptions of symmetric isostatic graphs in these contexts.

To conclude there is a short chapter in which we suggest ways for this research

to be furthered.
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Chapter 1

Introduction

A (bar-joint) framework (G, p) is the combination of a finite simple graph G = (V,E)

and a map p : V → Rd which assigns positions to the vertices, and hence lengths

to the edges. With stiff bars for the edges and full rotational freedom for the joints

representing the vertices, the topic of rigidity theory concerns whether the framework

may be deformed without changing the graph structure or the bar lengths. While

‘trivial’ motions are always possible due to actions of the Euclidean isometry group,

the framework is flexible if a non-trivial motion is possible and rigid if no non-trivial

motion exists.

The problem of determining whether a given framework is rigid is computation-

ally difficult for all d ≥ 2 [1]. However, every graph has a typical behaviour in the

sense that either all ‘generic’ (i.e. almost all) frameworks with the same underlying

graph are rigid or all are flexible. So, generic rigidity depends only on the graph

and is often studied using a linearisation known as infinitesimal rigidity, which is

equivalent to rigidity for generic frameworks [3]. On the real line it is a simple folk-

lore result that rigidity coincides with graph connectivity. In the plane a celebrated

theorem due to Polaczek-Geiringer [36], often referred to as Laman’s theorem due to

a rediscovery in the 1970s [23], characterises the generically rigid graphs precisely in

terms of graph sparsity counts, and these combinatorial conditions can be checked

in polynomial time. Combinatorial characterisations of generically rigid graphs in

dimension 3 or higher have not yet been found. Much of the recent work in rigidity

has been motivated by this open problem in three dimensions. One natural approach
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to this setting is to consider restricting the framework, fully or partially, to some

subspace of Rd.

One such case is to replace Rd with a d-dimensional manifold (or d-fold for short).

It seems unlikely that rigidity becomes easier on a d-fold when d ≥ 3 and hence it

is natural to consider rigidity for frameworks realised on 2-folds. Specifically, let S

be a 2-fold embedded in R3 and let the framework (G, p) be such that p : V → S,

but the ‘bars’ are straight Euclidean bars (and not surface geodesics). Supposing

S is smooth and an irreducible real algebraic set, and the subgroup of Euclidean

isometries that preserve S has dimension at least 1, characterisations of generic

rigidity were proved in [30, 31].

A linearly constrained framework is a bar-joint framework in which certain ver-

tices are constrained to lie in given affine subspaces, in addition to the usual dis-

tance constraints between pairs of vertices. Linearly constrained frameworks arise

naturally in practical applications where objects may be constrained to move, for

example, on the ground, along a wall, or in a groove. In particular, slider joints are

very common in mechanical engineering (see, e.g., [10]) and have been applied to

modelling boundary conditions in biophysics [45].

Streinu and Theran [44] proved a characterisation of generic rigidity for linearly

constrained frameworks in R2. The articles [8, 20] provide an analogous character-

isation for generic rigidity of linearly constrained frameworks in Rd as long as the

dimensions of the affine subspaces at each vertex are sufficiently small (compared to

d), and [15] characterises the stronger notion of global rigidity of two dimensional

linearly constrained frameworks.

Separately, the genericity hypothesis, while natural from an algebraic geometry

viewpoint, does not apply in many practical applications of rigidity theory. In par-

ticular, structures in mechanical and structural engineering, computer-aided design,

biophysics, and materials science often exhibit non-trivial symmetry. This has mo-

tivated multiple groups of researchers to study the rigidity of symmetric structures

over the last two decades, which has led to an explosion of results in this area.

We direct the reader to [6, 42] for details. Importantly, there are two quite differ-

ent notions of symmetric rigidity that one may consider. Firstly, forced symmetric
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rigidity concerns frameworks that are symmetric and only motions that preserve the

symmetry are allowed (that is, a framework may be flexible but if all the non-trivial

motions destroy the symmetry then it is still ‘forced symmetric rigid’). Secondly, in-

cidental symmetric rigidity again concerns symmetric frameworks, but the question

of whether they are rigid is the same as in the non-symmetric case.

It is incidental symmetry that we focus on in this thesis. More specifically, we are

interested in describing, combinatorially, when a generic symmetric framework on a

surface such as the infinite cylinder, or a linearly constrained framework is isostatic,

i.e. minimally infinitesimally rigid in the sense that it is infinitesimally rigid but

ceases to be so after deleting any edge. The corresponding question in the Euclidean

plane has been studied in [38, 39]. In these papers, Laman-type results in the plane

have been established for the groups generated by a reflection, the half-turn and a

three-fold rotation, but these problems remain open for the other groups that allow

isostatic frameworks.

This thesis begins with a chapter outlining the background material required

when studying rigidity theory, and more specifically introduces frameworks restricted

to lie on a surface, and linearly constrained frameworks, both with and without sym-

metry. We are then required to visit some basic material on representation theory.

This thesis contains the first analysis of incidental symmetric rigidity on 2-folds,

given in [33] which focuses on the cylinder, and the first rigidity-theoretic analysis

of symmetric linearly constrained frameworks, given in [34] which focuses on the

plane. In Chapter 3, the representation-theoretic necessary conditions for isostaticity

are given for all relevant symmetry groups of the cylinder, sphere, cone, elliptical

cylinder and ellipsoid, as well as for linearly constrained frameworks for all relevant

symmetry groups in the plane, three dimensions, and some symmetry groups of

interest in d-dimensional space.

Typically it is much harder to prove sufficient conditions for rigidity. This is

demonstrated by the following. Firstly, in [30] the necessary conditions for mini-

mally rigid frameworks are established for all smooth two dimensional manifolds,

but sufficiency has only been established for a few select surfaces. Secondly, in

[7] the necessary conditions were established and conjectured to be sufficient for

3



2-dimensional symmetric isostatic frameworks. This was confirmed for frameworks

subject to the symmetry constraints imposed by a reflection, a half-turn [39] or a

three-fold rotation [38], but it remains open for the dihedral groups. Indeed, this

difference is not restricted only to isostatic frameworks. In [41] the authors consider

symmetric infinitesimally rigid frameworks on the plane, establishing necessary and

sufficient conditions for symmetric frameworks for reflection, half-turn and three-fold

rotation, and necessary conditions for any other cyclic group.

In order to prove sufficiency and hence give combinatorial characterisations we

will develop detailed geometric and combinatorial tools. For this reason we restrict

our scope to certain important cases. In the first such case we give combinato-

rial characterisations of frameworks on the cylinder. To see why the cylinder, first

consider the ‘simplest’ 2-fold: the sphere. In this case, Laman-type theorems ei-

ther follow from a projective transfer between infinitesimal rigidity in the plane and

on the sphere [5, 10] or seem to be equally as challenging as the open problems

in the plane. The cylinder provides the first case when the combinatorial spar-

sity counts change and hence lead to new classes of graphs and rigidity matroids

to investigate. In Chapter 4, we give complete combinatorial characterisations of

symmetry-generic isostatic frameworks on the cylinder for the groups generated by

an inversion (Section 4.3), a half-turn (Section 4.4) and a reflection (Section 4.5).

The proofs rely on symmetry-adapted Henneberg-type recursive construction moves

described in Section 4.1. In the case of isostatic frameworks in R2 only the well

known 0- and 1-extension operations are needed to prove Laman’s theorem [36, 23].

For the cylinder several additional operations were needed with associated combina-

torial and geometric difficulties [30]. The additional conditions isostatic frameworks

under symmetry must satisfy differ for each group, necessitating group-by-group

combinatorial (and hence geometric) analyses. Fortunately, in each of the cases we

study in detail only moderate extensions of existing geometric arguments are needed

and hence we present a number of those for an arbitrary symmetry group (Section

4.1). On the other hand there are significant additional combinatorial difficulties in

the recursive construction proof technique which takes up the main technical parts

of this chapter (Sections 4.3, 4.4 and 4.5).
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In Chapter 5, we give the complete combinatorial characterisations of symmetry-

generic isostatic frameworks for the groups generated by a rotation of order either

2 or odd. These results, Theorems 5.2.10 and 5.3.7, are proved in Sections 5.2 and

5.3. The proofs of these combinatorial characterisations rely on symmetry-adapted

Henneberg-type recursive construction moves described in Section 5.1.
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Chapter 2

Rigidity Theory

We will begin our study with the necessary background material for later chapters.

We first introduce basic graph theory, and introduce symmetric graphs. We follow

this with a short section on representation theory which will enable us to prove the

results in Chapter 3.

2.1 Graph theory

A multigraph G is the triple (V,E, L), where V is a non-empty finite set, E is a

multiset of unordered pairs of distinct elements in V , and L is a multiset of pairs

of duplicate elements in V . A looped simple graph is a multigraph where E is

restricted to be a set (L remains a multiset). A simple graph is a multigraph where

E is restricted to be a set and L = ∅ (thus will be written G = (V,E)). We will

simply say graph, to exclusively mean a simple graph or a looped simple graph,

where the distinction should be clear from the context. It is non-standard to view

a graph as containing loops. We take this approach as loops will be helpful for the

purpose of defining the constraints at vertices in linearly constrained rigidity.

Given a graph G = (V,E, L), we say v ∈ V is a vertex of G, {u, v} ∈ E is an

edge of G, and {v, v} ∈ L is a loop of G. Where two (or more) edges or loops share

the notation above, we may indicate this with subscripts, for example {v, v}i. For

a graph H, we may write V (H), E(H), L(H) for the vertex set, edge set, loop set

of H respectively. We will often choose to denote the edge {u, v} by uv or vu, and

7



similarly the loop {v, v} by vv. For e = uv ∈ E and l = ww ∈ L, we say that u and

v are adjacent in G, that u and v are incident to the edge e, that w is incident to

the loop l, and that u and v are endpoints of the edge e.

Graphs G1 = (V1, E1, L1) and G2 = (V2, E2, L2) are said to be isomorphic if there

exists a bijective function f : V1 → V2, such that uv ∈ E1 and ww ∈ L1 if and only

if f(u)f(v) ∈ E2 and f(w)f(w) ∈ L2. For isomorphic G and H, we write G ∼= H.

A subgraph H = (V ′, E ′, L′) of G, denoted H ≤ G, is a graph with V ′ ⊆ V ,

E ′ ⊆ E, L′ ⊆ L. A subgraph is said to be proper unless H ∼= G. Let X ⊂ V be

non-empty. The induced subgraph of X in G, written G[X], has vertex set X, edge

set {uv : uv ∈ E, u, v ∈ X}, and loop set {ww : ww ∈ L,w ∈ X}. In a simple graph,

we will use iG(X) to denote the number of edges in the induced subgraph G[X] and

the set X will be called k-critical, for k ∈ N, if iG(X) = 2|X| − k. For looped

simple graphs, we require further notation. Here we write iE+L(X), iE(X), iL(X)

to denote the number of edges and loops, edges, loops in the induced subgraph G[X]

respectively, and the set X will be called k-critical and k-edge-critical, for k ∈ N,

if iE+L(X) = 2|X| − k, and iE(X) = 2|X| − k respectively. We also write kX and

k̄X to denote the critical and edge-critical values, that is kX = 2|X| − iE+L(X) and

k̄X = 2|X| − iE(X) for X ⊂ V .

Remark 2.1.1. The term critical has previously been used in rigidity theory (for

example [27]) to refer to a vertex set where the induced subgraph has as many edges

as may be permitted for such a graph to be minimally rigid. For symmetry reasons it

will turn out that we need to deal with a range of densities of subgraphs, extending

the complication involved to establish our results. This will be made evident in

Chapters 4 and 5.

For X, Y ⊂ V , dG(X, Y ) will denote the number of edges of the form xy with

x ∈ X \ Y and y ∈ Y \ X. For a simple graph G, the degree of a vertex v in G,

denoted dG(v), is the number of edges incident to v. In looped simple graphs, it is

common to think of loops as degenerate edges, and the degree counts the number of

edges coming ‘out’ from a vertex. Hence, for a looped simple graph G, the degree

of v in G, still written dG(v), is the number of edges and twice the number of loops

incident to v. With this notation, for H ≤ G, dH(v) is the degree of v in the
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subgraph H. We will often suppress subscripts when the graph is clear from the

context and use d(v), i(X) and d(X, Y ). In our work we will often be concerned with

the minimum degree of a graph G. We denote this by δ(G). The maximum degree of

a graph is denoted by ∆(G). The open neighbourhood of a vertex v, denoted N(v),

is the set of all vertices of G adjacent to v. The closed neighbourhood of v is the set

N [v] := N(v) ∪ {v}.

2.1.1 Graphs

In this short subsection we introduce graphs which we will regularly encounter during

our studies. The complete graph (on n vertices), denoted Kn, is the simple graph

with uv ∈ E for every distinct pair u, v ∈ V . A bipartite graph has vertex set

partitioned V = A ∪ B where A ∩ B = ∅, and edge set so that e ∈ E implies e

has one endpoint in A and the other in B. We write Kn,m as the bipartite graph

where |A| = n and |B| = m. The empty graph (on n vertices), denoted On, has

E,L = ∅. A tree is a simple graph with |V | = n, |E| = n−1, such that all subgraphs

H = (V ′, E ′) satisfy |E ′| ≤ |V ′| − 1. The path (on n vertices), denoted Pn, is a tree

with ∆(G) = 2. The cycle, denoted Cn, is the graph obtained from a path Pn by

adding an edge between the two degree 1 vertices. Then, Wn denotes the wheel over

a cycle on n− 1 vertices (n ≥ 4), where a new vertex v is added, with v adjacent to

all u ∈ V − v. We write Wd(n, k) to denote the windmill, which is k copies of Kn

all joined at a single vertex. Examples of these graphs are depicted in Figure 2.1.

2.1.2 Graph operations

We will wish to construct new graphs through graph operations. The most basic

of these operations are adding or deleting a single edge, loop or vertex. We write

G+ x and G− x for each of these operations, noting that when adding or removing

a vertex, all of the edges or loops incident will be added or deleted. Our main

operations of interest are the 0-extensions and 1-extensions.

For a simple graph G with |V | ≥ k, a (k, 0)-extension of G adds a new vertex of

degree k, say v adjacent to v1, . . . , vk, to generate a new graph G+ = (V ∪ {v}, E ∪

9



K5 K2,3 Wd(4, 2)

P5 C5 W6

Figure 2.1: Illustrated graphs, K5, K2,3,Wd(4, 2), P5, C5,W6.

{vv1, . . . , vvk}). Conversely, a (k, 0)-reduction of G+ at v deletes the vertex v and

its incident edges, returning the graph G. Where the value of k is clear from the

context, these operations will be known as a 0-extension and a 0-reduction.

For a simple graph G with |V | ≥ k + 1 and |E| ≥ 1, a (k, 1)-extension of

G adds a new vertex of degree k + 1, say v adjacent to v1, . . . , vk+1, and deletes

an edge e ∈ E, where e = vivj for some 1 ≤ i, j ≤ k + 1, to generate a new graph

G+ = (V ∪{v}, E∪{vv1, . . . , vvk+1}\{e}). Conversely, a (k, 1)-reduction of G+ at v,

deletes the vertex v and its incident edges, and adds an edge vivj for 1 ≤ i, j ≤ k+1

such that the resultant graph is simple. Where the value of k is clear from the

context, these operations will be known as a 1-extension and a 1-reduction.

For a looped simple graph G with |V | ≥ k−1, a looped (k, 0)-extension of G adds

a new vertex of degree k+1, say v adjacent to v1, . . . , vk−1 and incident to a loop l,

to generate a new graph G+ = (V ∪ {v}, E ∪ {vv1, . . . , vvk−1}, L∪ {l}). Conversely,

a looped (k, 0)-reduction of G+ at v deletes the vertex v and its incident edges and

loop, returning the graph G. Where the value of k is clear from the context, these

operations will be known as a looped 0-extension and a looped 0-reduction.
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A (k, 0)-extension on k vertices. A (k, 1)-extension on k + 1 vertices.

A looped (k, 0)-extension on k − 1 vertices. A looped (k, 1)-extension on k vertices.

Figure 2.2: Four extension operations which will be visited throughout this thesis.

For a looped simple graph G with |V | ≥ k and |E| ≥ 1, a looped (k, 1)-extension

of G adds a new vertex of degree k + 2, say v adjacent to v1, . . . , vk and incident to

a loop l, deletes a loop l∗ ∈ E, where l∗ = vivi for some 1 ≤ i ≤ k, to generate a

new graph G+ = (V ∪ {v}, E ∪ {vv1, . . . , vvk}, L ∪ {l} \ {l∗}). Conversely, a (k, 1)-

reduction of G+ at v deletes the vertex v and its incident edges and loop, and adds

a loop vivi for 1 ≤ i, j ≤ k + 1. Unlike for a (k, 1)-reduction, this loop can cause

multiplicity at that vertex since the resultant graph will still be looped simple.

We depict these operations in Figure 2.2. Where the value of k is clear from

the context, these operations will be known as a looped 1-extension and a looped

1-reduction. We shall revisit the notion of graph operations throughout.
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2.2 Rigidity and frameworks

Let a, b ∈ Rd and write a = (a1, . . . , ad), b = (b1, . . . , bd). Euclidean space is the

inner product space (Rd, ⟨·, ·⟩), where ⟨·, ·⟩ : Rd × Rd → R is given by ⟨a, b⟩ =
√
a1b1 + · · ·+ adbd. The Euclidean norm is the function || · || : Rd → R given by

||a|| = ⟨a, a⟩. In the following subsection, we introduce rigidity and frameworks

which lie in Euclidean space. Similar introductions can be found in [13, 14, 28]

which provided me with background throughout my studies. We will also restrict

ourselves to simple graphs, and introduce rigidity for looped simple graphs later.

A configuration p : V → Rd of a graph G is a function that assigns positions to

the vertices (and in doing so lengths to the edges) in d-dimensional Euclidean space.

A framework is a pair (G, p) of a graph and its configuration.

The pair (G, p) as defined above is usually called a bar-joint framework. This

is due to the view of the framework as having ‘rigid’ bars for edges, which cannot

stretch, bend, break or compress, and perfect joints at the vertices, which allow full

rotational freedom.

Two frameworks (G, p) and (G, q) are equivalent if ||p(u) − p(v)||2 = ||q(u) −

q(v)||2 for all u, v ∈ V where uv ∈ E. The two frameworks are congruent if ||p(u)−

p(v)||2 = ||q(u)− q(v)||2 for all u, v ∈ V .

A framework (G, p) in Rd is rigid if there exists an ϵ > 0 such that all frameworks

(G, q) which are equivalent to (G, p) and satisfy ||p(v) − q(v)|| < ϵ for all v ∈ V

are also congruent to (G, p). In the above, we say that (G, q) is sufficiently close

to (G, p). A framework (G, p) in Rd is globally rigid if all equivalent frameworks

are also congruent. An alternate but equivalent definition of rigidity comes from

motions of the framework. A continuous motion of a framework (G, p) is a function

λ : I × V → Rd, where:

• I ⊆ R is an interval, and for each v ∈ V , λ(t, v) is a curve (a continuous image

of an interval) in Rd;

• for each t ∈ I, λt is a configuration of G, with λt(v) := λ(t, v);

• for some t0 ∈ I, λt0 = p;

12



• for any t ∈ I, (G, λt) is equivalent to (G, p).

A framework is rigid if there exists an ϵ > 0 for which all continuous motions of

(G, p), say λ with λt0 = p, satisfy the condition that (G, λt) is congruent to (G, p)

for all |t − t0| < ϵ. A continuous motion is called trivial if for any t ∈ I, (G, λt) is

congruent to (G, p).

It is computationally NP-hard to determine whether a specific framework is

globally rigid in Rd [37, Lemma 4.4] and rigid in Rd for d ≥ 2 [1, Theorem 1.2].

However, with an additional condition on the configuration p, rigidity of a framework

relies only on the graph. A framework (and its configuration) is generic if the

set of all positions of vertices is an algebraically independent set over Q. That

is to say, with the vertices of G labelled v1, . . . , vn, there is no polynomial with

rational coefficients not all zero, P(x1, . . . , xn) with xi ∈ Rd for all i, such that

P(p(v1), . . . , p(vn)) = 0. This condition on p appears restrictive, and for many

applications is too restrictive. Indeed, in both cases of our study, restricting the

vertices to lie on a surface and for the framework to be symmetric, the configuration

is not generic. In these cases, we will require slightly altered conditions on p, which

will be introduced in Sections 2.3 and 2.4. For rigidity in Rd, the set of generic

configurations form an open and dense set p(V ) ∈ Rd|V | [3], so almost all frameworks

are generic. The primary motivation for studying generic frameworks is the following

definition. A graph G is rigid (globally rigid) if there exist a generic framework (G, p)

which is rigid (globally rigid respectively). It was proven in [3] that when one generic

framework is rigid, all generic frameworks are rigid.

Example 2.2.1. The graph K4 is globally rigid as any pair of vertices is adjacent,

so all equivalent frameworks must be congruent. If we remove any edge e, K4 − e

being rigid in R2 is a classical result. Removing a further edge either results in K1,3

or C4, both of which are not rigid in R2.

In Example 2.2.1 we see motivation for the following defintion. A graph G

(and similarly its framework (G, p)) is minimally rigid or isostatic if it is rigid and

removing any edge results in a graph (framework resp. ) which is not rigid. i

iIt is possible that a rigid graph has no spanning isostatic subgraph (we will see an example
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Each edge gives a constraint on possible motions of the vertices, which provides

a system of equations to classify if a framework is rigid. However, as presented, the

system of equations are quadratic, and thus solutions difficult to acquire. Define the

rigidity map of a framework (G, p) as the function fG : Rd|V | → R|E| by

fG(p) = (. . . , ||p(u)− p(v)||2, . . . ) for all uv ∈ E.

The reason we are interested in the square edge lengths is that we may take the

Jacobian of this function to linearise the problem of rigidity. We say that p ∈ Rd|V |

is a regular point of fG if rank dfG(p) = max{rank dfG(q) : q ∈ Rd|V |}. Note that

a generic configuration will also be a regular point of the rigidity map as any row

dependencies would contradict the definition of generic configuration.

The rigidity matrix of a framework (G, p), denoted R(G, p), is the |E| × d|V |

matrix with R(G, p) = 1
2
dfG|p. Each row of the matrix corresponds to one edge

and each d columns to one vertex. The row corresponding to the squared length

||p(u)−p(v)||2 has d-tuple entry p(u)−p(v) in the d columns for u and d-tuple entry

p(v)− p(u) in the d columns for v, with zeros otherwise.

An infinitesimal motion of a framework (G, p), denoted ṗ : V → Rd, is a contin-

uous motion which assigns infinitesimal velocities to the vertices of G. Motivation

of this study arises from infinitesimal motions which are a result of considering

differentiable motions (a continuous motion which is differentiable) of (G, p), and

studying the derivative at t0. Since infinitesimal motions are linear, they satisfy the

following equation:

(p(u)− p(v)) · (ṗ(u)− ṗ(v)) = 0 for all uv ∈ E.

This equation leads to the observation that for any infinitesimal motion ṗ of (G, p),

R(G, p)ṗ = 0. An infinitesimal motion is trivial if it satisfies R(Kn, p)ṗ = 0, where

|V | = n. Any trivial infinitesimal motion belongs to the kernel of the rigidity matrix,

and therefore we may apply the rank-nullity theorem to deduce the following lemma.

later in Figure 4.17). Hence, the study of isostatic frameworks which we undertake cannot always
be extended to rigidity as a whole. In Section 4.6.2 we show to two symmetries where our results
can be extended.
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Lemma 2.2.2. [4] Let (G, p) be a framework in Rd and |V | = n. Then

rank(R(G, p)) ≤


(
n
2

)
if n ≤ d;

dn−
(
d+1
2

)
if n ≥ d+ 1.

Furthermore, when n ≥ d + 1, (G, p) is infinitesimally rigid if and only if equality

holds.

In the above lemma, we say that (G, p) is infinitesimally rigid if the only in-

finitesimal motions are the trivial solutions that arise from Euclidean congruences

of Rd.

It was shown in an unnumbered theorem of [4] that for p a regular point, (G, p)

is rigid in Rd if and only if (G, p) is infinitesimally rigid in Rd.

A graph G = (V,E) is (k, l)-sparse if |E ′| ≤ k|V ′|− l for all subgraphs (V ′, E ′) of

G with |V ′| ≥ k+2. G is (k, l)-tight if it is (k, l)-sparse and |E| = k|V |− l. A graph

is Laman if it is (2, 3)-tight. Note from Lemma 2.2.2 it follows that for a framework

to be minimally infinitesimally rigid in Rd, the graph should be (d,
(
d+1
2

)
)-tight.

Theorem 2.2.3. [23, Theorems 6.3, 6.4] Every Laman graph can be constructed

from K2 by a sequence of (2, 0)-extensions and (2, 1)-extensions.

Laman graphs and their construction form an important case of study in rigidity

due to the following theorem. This was originally discovered by Polaczek-Geiringer

[36] in 1927, with rediscovery by Laman in 1970, which we cite due to language of

origin.

Theorem 2.2.4. [23, Theorem 5.6] The generic framework (G, p) in R2 is isostatic

if and only if G is a Laman graph.

It is natural to hope that similar classifications exist in higher dimensions. Be-

ginning first with three dimensions, analysis of the rank of the rigidity matrix gives

that any isostatic framework must have a graph which is (3, 6)-tight. However, we

can find examples of (3, 6)-tight graphs which are not rigid. One such example,

named the double-banana, can be seen in Figure 2.3. This further leads to the

condition that G must be 3-connected, that is, deleting any two vertices of G still
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Figure 2.3: The double banana, an example of a (3, 6)-tight graph which is not rigid
in R3.

results in a connected graph. This provides an additional level of difficulty, and no

characterisation has yet been found.

2.3 Frameworks on surfaces

Let S denote a 2-dimensional manifold embedded in R3. We will refer to S as a

surface. A framework (G, p) on S is the combination of G = (V,E) and a map

p : V → R3 such that p(v) ∈ S for all v ∈ V and p(u) ̸= p(v) for all uv ∈ E. We

also say that (G, p) is a realisation of the graph G on S. (G, p) is rigid on S if every

framework (G, q) on S that is sufficiently close to (G, p) arises from an isometry of

S.

While much of this section remains true for a wider selection of surfaces, in

the subsection that follows we will focus on the important case when S is a cylin-

der. Throughout, Y denotes the infinite circular cylinder; that is the real algebraic

subvariety of R3 defined by the irreducible polynomial x2 + y2 = 1.

As in the Euclidean case, it is a computationally challenging problem to deter-

mine if a given framework (G, p) is rigid on Y. Hence we follow the standard path

of linearising and considering infinitesimal motions as follows.
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Given a framework (G, p̂) on Y, we are interested in the set of frameworks (G, p)

on Y which are equivalent to (G, p̂) where p̂(vi) = (x̂i, ŷi, ẑi) and p(vi) = (xi, yi, zi).

The set of all frameworks on Y that are equivalent to (G, p̂) is given by the set of

solutions to the following system of equations:

∥p(vi)− p(vj)∥2 = cij (vivj ∈ E) (2.3.1)

x2i + y2i = 1 (vi ∈ V ) (2.3.2)

where cij = ∥p̂(vi) − p̂(vj)∥2. We can differentiate these equations to obtain the

following linear system for the unknowns ṗ(vi), vi ∈ V :

(p(vi)− p(vj)) · (ṗ(vi)− ṗ(vj)) = 0 (vivj ∈ E) (2.3.3)

xiẋi + yiẏi = 0 (vi ∈ V ). (2.3.4)

Solutions to this linear system are infinitesimal motions. We say that (G, p̂) is

infinitesimally rigid if the only infinitesimal motions are the trivial solutions that

arise from Euclidean congruences of R3 that preserve Y (that is, translations in

the z-direction and rotations about the z-axis, or combinations thereof). If (G, p)

is not infinitesimally rigid it is called infinitesimally flexible. The trivial solutions

may be referred to as the trivial infinitesimal motions, or simply trivial motions.

Equivalently, (G, p̂) is infinitesimally rigid if the rank of the matrix of coefficients of

the system is 3|V | − 2 [30]. This matrix, the rigidity matrix of (G, p) on Y, denoted

RY(G, p) has 3|V | columns and |E| + |V | rows. The rows corresponding to (2.3.3)

have the form

(
. . . 0 p(vi)− p(vj) 0 . . . 0 p(vj)− p(vi) 0 . . .

)
and the rows corresponding to (2.3.4) have the form

(
. . . 0 (xi, yi, 0) 0 . . .

)
.

A framework (G, p) is called isostatic if it is infinitesimally rigid and independent
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in the sense that the rigidity matrix of (G, p) on Y has no non-trivial row dependence.

Equivalently, (G, p) is isostatic if it is infinitesimally rigid and deleting any single

edge results in a framework that is not infinitesimally rigid. A framework (G, p) on

Y is completely regular if the rigidity matrix RY(K|V |, p) of the complete graph on

V and every square submatrix has maximum rank among all realisations of K|V | on

Y. In the completely regular case, rigidity and infinitesimal rigidity on a “smooth”

surface (such as any considered in this thesis) coincide [30, Theorem 3.8]. Note that

the set of all completely regular realisations of G on Y is an open dense subset of

the set of all realisations of G on Y. Thus, we may define a graph G to be isostatic

(independent, rigid) on Y if there exists a framework (G, p) on Y that is isostatic

(independent, infinitesimally rigid) on Y.

It follows from the definitions that the smallest (non-trivial) rigid (or isostatic)

graph on Y is the complete graph K4. In [30] exactly which graphs are rigid on Y

was characterised. The characterisation uses the following definition which will be

one of the fundamental objects of study in this thesis. Recall a graph G = (V,E) is

(2, 2)-sparse if |E ′| ≤ 2|V ′| − 2 for all subgraphs (V ′, E ′) of G. G is (2, 2)-tight if it

is (2, 2)-sparse and |E| = 2|V | − 2.

Theorem 2.3.1. [30, Theorem 5.4] A graph G is isostatic on Y if and only if G is

(2, 2)-tight.

Interestingly, the set of (2, 2)-tight graphs is exactly the set of simple graphs

obtained as the edge-disjoint union of two spanning trees [26, Theorem 1]. We

derive symmetry adapted results in Section 4.6.

While the theorem gives a complete answer in the generic case, this thesis will

improve this answer to apply under the presence of non-trivial symmetry. To see the

potential complications that can arise when the genericity hypothesis is weakened

one might consider the results of [17] which apply to frameworks on Y that are

generic except for one simple failure: two vertices are located in the same place.
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2.4 Linearly constrained frameworks

Following [8], we define a linearly constrained framework in Rd to be a triple (G, p, q)

where G = (V,E, L) is a looped simple graph, p : V → Rd is injective and q : L →

Rd. For vi ∈ V and ℓj ∈ L we put p(vi) = pi and q(ℓj) = qj.

An infinitesimal motion of (G, p, q) is a map ṗ : V → Rd satisfying the system

of linear equations:

(pi − pj) · (ṗi − ṗj) = 0 for all vivj ∈ E (2.4.1)

qj · ṗi = 0 for all incident pairs vi ∈ V and ℓj ∈ L. (2.4.2)

The second constraint implies that the infinitesimal velocity of each vi ∈ V is con-

strained to lie on the hyperplane through pi with normal vector qj for each loop ℓj

incident to vi.

The rigidity matrix R(G, p, q) of the linearly constrained framework (G, p, q) is

the matrix of coefficients of this system of equations for the unknowns ṗ. Thus

R(G, p, q) is a (|E| + |L|) × d|V | matrix, in which: the row indexed by an edge

vivj ∈ E has pi − pj and pj − pi in the d columns indexed by vi and vj, respectively

and zeros elsewhere; and the row indexed by a loop ℓj = vivi ∈ L has qj in the d

columns indexed by vi and zeros elsewhere. The |E|× d|V | sub-matrix consisting of

the rows indexed by E is the bar-joint rigidity matrix R(G − L, p) of the bar-joint

framework (G− L, p).

The framework (G, p, q) is infinitesimally rigid if its only infinitesimal motion

is ṗ = 0, or equivalently if rankR(G, p, q) = d|V |. A framework (G, p, q) is called

isostatic if it is infinitesimally rigid and independent in the sense that the rigidity

matrix of (G, p, q) has no non-trivial row dependence. Equivalently, (G, p, q) is iso-

static if it is infinitesimally rigid and deleting any single edge results in a framework

that is not infinitesimally rigid.

Example 2.4.1. Suppose that G consists of a single vertex with one loop and

(G, p, q) is a framework in R2. Then G is not infinitesimally rigid since the trans-

lation along the line corresponding to the loop is an infinitesimal motion (and any

19



infinitesimal motion is considered non-trivial in our context).

Similarly a complete graph, realised generically, is infinitesimally rigid in any

dimension as a bar-joint framework. However as a linearly constrained framework

it is not infinitesimally rigid since the translations and rotations are infinitesimal

motions.

In this thesis, our attention is solely on infinitesimal motions, with all larger

motions (those over an interval of positive length) having been discussed for back-

ground.

A linearly constrained framework (G, p, q) in Rd is generic if rank R(G, p, q) ≥

rank R(G, p′, q′) for all frameworks (G, p′, q′) in Rd.

We say that the looped simple graph G is rigid in Rd if rankR(G, p, q) = d|V |

for some realisation (G, p, q) in Rd, or equivalently if rankR(G, p, q) = d|V | for all

generic realisations (G, p, q). Similarly, we define G to be isostatic (independent) if

there exists a framework (G, p, q) that is isostatic (independent).

Streinu and Theran gave the following characterisation of looped simple graphs

which are rigid in R2. We will say that G = (V,E, L) is: sparse if |E ′|+ |L′| ≤ 2|V ′|

for all subgraphs (V ′, E ′) of G and |E ′| ≤ 2|V ′| − 3 for all simple subgraphs with

|E ′| > 0; and tight if it is sparse and |E|+ |L| = 2|V |.

Theorem 2.4.2. [44, Theorem B] A generic linearly constrained framework (G, p, q)

in R2 is isostatic if and only if G is tight.

While the theorem gives a complete answer in the generic case, we will extend

this to apply under the presence of non-trivial symmetries.

While for bar-joint frameworks little is known when d ≥ 3, in the linearly con-

strained case characterisations are known when suitable assumptions are made on

the affine subspaces defined by the linear constraints. Jackson, Nixon, and Tani-

gawa [20] extended the results of Cruickshank, Guler, Jackson, and Nixon [8] to give

the following characterisation of looped simple graphs with each vertex incident to

sufficiently many loops, which are rigid in Rd. We will say G is k-sparse for some

integer k ≥ 1 if iE+L(X) ≤ k|X| for all X ⊆ V , and that G is k-tight if it is k-sparse

and |E∪L| = k|V |. Recall iE+L(X) is the number of edges and loops in the induced
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subgraph G[X].

Theorem 2.4.3. [20, Theorem 3.2] Suppose d ≥ 2 is an integer and G is a looped

simple graph with the property that every vertex of G is incident with at least ⌊d
2
⌋

loops. Then G is isostatic in Rd if and only if G is d-sparse and Kd+2-free.

It would be an interesting future project to extend our analysis to higher di-

mensions. In Sections 3.9 and 3.10 we begin such analysis by considering the fixed

element counts for symmetric graphs.

2.5 Symmetric frameworks

2.5.1 Symmetric frameworks on surfaces

Let G = (V,E) be a graph and Γ be a finite group. Then the pair (G, ϕ) is called

Γ-symmetric if ϕ : Γ → Aut(G) is a homomorphism, where Aut(G) denotes the

automorphism group of G. If ϕ is clear from the context we often also simply write

G instead of (G, ϕ).

Let (G, ϕ) be a Γ-symmetric graph. Then, for a homomorphism τ : Γ → O(R3)

and an embedded surface S of R3, we say that a framework (G, p) is Γ-symmetric

on S (with respect to ϕ and τ), or simply τ(Γ)-symmetric, if τ(γ)pi = pϕ(γ)i for all

i ∈ V and all γ ∈ Γ and p : V → R3 is such that p(v) ∈ S for all v ∈ V . We will

refer to τ(Γ) as a symmetry group and to elements of τ(Γ) as symmetry operations or

simply symmetries of (G, p). We will often need to work with symmetric subgraphs

and their frameworks. So for a Γ-symmetric graph (G, ϕ) we often consider a Γ-

symmetric subgraph (H,ϕ′), where ϕ′(γ) = ϕ(γ)|V (H). In that case we often slightly

abuse notation and write (H,ϕ) (or even just H) instead of (H,ϕ′). We also say

that a subset X of V is Γ-symmetric if (G[X], ϕ) is a Γ-symmetric subgraph of the

Γ-symmetric graph (G, ϕ).

A Γ-symmetric framework (G, p) on S (with respect to τ and ϕ) is completely

Γ-regular (with respect to τ and ϕ) if the rigidity matrix RS(K|V |, p) of the complete

graph on V and every square submatrix has maximum rank among all Γ-symmetric

realisations of K|V | on S (with respect to τ and ϕ). The set of all completely Γ-
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regular realisations of G on S (with respect to τ and ϕ) is an open dense subset of the

set of all Γ-symmetric realisations of G on S (with respect to τ and ϕ). Thus, we may

say that a graph G is τ(Γ)-isostatic (independent, infinitesimally rigid, rigid) on S

if there exists a Γ-symmetric framework (G, p) on S (with respect to τ and ϕ) which

is isostatic (independent, infinitesimally rigid, rigid). Later we will often remove ϕ

from this notation and simply refer to a τ(Γ)-isostatic (independent, infinitesimally

rigid, rigid) graph on S (where ϕ is clear from the context).

An isometry of R3 that maps S onto itself is called a surface-preserving isometry.

A symmetry group of a framework on S consisting of surface-preserving isometries

is called a surface-preserving symmetry group.

2.5.2 Symmetric linearly constrained frameworks

Let G = (V,E, L) be a looped simple graph and Γ be a finite group. Then the

pair (G, ϕ) is called Γ-symmetric if ϕ : Γ → Aut(G) is a homomorphism, where

Aut(G) denotes the automorphism group of G. Note that an automorphism ϕ(γ)

of G consists of a permutation of the vertices, ϕ1(γ), and a permutation of the

loops, ϕ2(γ), so that vivj ∈ E if and only if ϕ1(vi)ϕ1(vj) ∈ E, and vi is incident

to the loop lj if and only if ϕ1(vi) is incident to ϕ2(lj). The permutation ϕ1(γ)

clearly induces a permutation of the edges in E. Moreover, ϕ1(γ) must map a

vertex with n loops to another vertex with n loops, and a loop can only be fixed by

ϕ2(γ) (i.e. ϕ2(γ)(lj) = lj) if it is incident to a vertex vi that is fixed by ϕ1(γ) (i.e.

ϕ1(γ)(vi) = vi). In our context, a loop always represents a linear constraint in the

plane. Thus, we will assume that a loop at vi can only be fixed by ϕ2(γ) if γ is the

identity or an element of order 2 (since a line in the plane cannot be unshifted by

an isometry of order greater than 2).

If Γ is clear from the context, then a Γ-symmetric graph will often simply be

called symmetric. Similarly, if ϕ is clear from the context, we may simply refer to the

Γ-symmetric graph (G, ϕ) by G. We also say that a subset X of V is τ(Γ)-symmetric

(sparse) if G[X] is τ(Γ)-symmetric (sparse).

Let (G, ϕ) be a Γ-symmetric looped simple graph. Then, for a homomorphism

τ : Γ → O(Rd), we say that a linearly constrained framework (G, p, q) is Γ-symmetric
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(with respect to ϕ and τ), or simply τ(Γ)-symmetric, if

• τ(γ)pi = pϕ(γ)i for all vi ∈ V and all γ ∈ Γ;

• τ(γ)qj = qϕ(γ)j for all lj ∈ L and all γ ∈ Γ whose order is not 2;

• τ(γ)qj = −qϕ(γ)j if τ(γ) is the half-turn and the loop lj is fixed by γ ∈ Γ;

• τ(γ)qj = ±qϕ(γ)j if τ(γ) is a reflection and the loop lj is fixed by γ ∈ Γ.

We will refer to τ(Γ) as a symmetry group and to elements of τ(Γ) as symmetry

operations or simply symmetries of (G, p, q).

A Γ-symmetric linearly constrained framework (G, p, q) is Γ-generic (with re-

spect to τ and ϕ) if rank R(G, p, q) ≥ rank R(G, p′, q′) for all linearly constrained

frameworks (G, p′, q′) that are Γ-symmetric with respect to τ and ϕ. The set of

all Γ-generic realisations of G (with respect to τ and ϕ) is an open dense subset of

the set of all Γ-symmetric realisations of G (with respect to τ and ϕ). Thus, we

may say that a graph G is τ(Γ)-isostatic (independent, infinitesimally rigid, rigid)

if there exists a Γ-symmetric framework (G, p, q) (with respect to τ and ϕ) which

is isostatic (independent, infinitesimally rigid, rigid). Later we will often remove ϕ

from this notation and simply refer to a τ(Γ)-isostatic (independent, infinitesimally

rigid, rigid) graph (where ϕ is clear from the context).

2.5.3 Symmetry operations and groups

Throughout this thesis, we will use a version of the Schoenflies notation for symmetry

operations and groups of frameworks. This notation is primarily used to describe

symmetries in three dimensions. However, we can easily restrict these operations to

describe symmetries in two dimensional space, and in Section 3.10 we will describe

an extension to d dimensions. The symmetry operations are the identity, denoted

by id; rotations by 2π
n
, n ∈ N, n ≥ 2, denoted by cn, which we will refer to as an

n-fold rotation for n ≥ 2, and more commonly half-turn when n = 2; reflections,

denoted by σ; and improper rotations (i.e. rotations cn followed by a reflection in

the plane through the origin that is perpendicular to the cn axis), n ∈ N, n ≥ 2,

denoted by sn; the inversion in the origin, denoted by φ. In two dimensions, the
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operation sn is not defined, and for three dimensions s2 = φ. There are occasions

where we will further wish to specify an axis or plane for a rotation or reflection,

and we will adjust the notation to make this axis clear. This will be dealt with case

by case.

The symmetry groups these generate describe what are known in the literature

[2] as point groups in three dimensions (although again we may make adjustments

to other dimensions). These groups fall into the following families. Let n ≥ 2 be

an integer. The reflection group Cs is the order two group generated by σ. There

are three cyclic groups ii. Firstly, Cn, is generated by a rotation cn. The axis of

rotation for cn is known as the primary axis of the group whenever n ≥ 3. This

leads to two further classes of groups: Cnv is generated by Cn with a reflection plane

which contains the primary axis; Cnh is generated by Cn with a reflection plane

perpendicular to the primary axis. The roto-reflection group Sn is generated by the

improper reflection sn. We note that Sn = Cnh for odd n. There are three classes

of dihedral groups, Dn, Dnh, Dnd. Dn is generated by a rotation cn and a half-turn

c2 whose axis is perpendicular to the primary axis. Dnh is generated by Dn with a

reflection plane perpendicular to the primary axis. This reflection with the half-turn

rotation composes to a reflection which contains the primary axis, so this group can

be viewed as Dnv. Dnd is Dnh with a reflection that takes the primary axis to (one

of) the half-turn axes. There are two tetrahedral groups T, Td which are isometries

of a tetrahedron. Firstly, T has the rotations which preserve the tetrahedron, that

is four three-fold rotations (with axis through a vertex and its opposite face), and

three half-turn rotations (with axis through the midpoints of opposite edges). Td

has 6 additional reflections, each containing an edge of the tetrahedron. This group

contains all the symmetries which preserve the tetrahedron. Th, does not preserve

the surface of the tetrahedron, but is the group T with the inversion (and generates

further reflections). There are two octahedral groups, O and Oh. O is the rotations

which preserve the cube, namely three 4-fold axes between the centres of faces of the

iiWe use the term cyclic group to match that of the literature. However, this is in conflict with
that typically used in abstract alegbra, where a cyclic group is one which can be generated by a
single element of the group. In this definition, the reflection groups and inversion groups are also
cyclic.
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cube, four 3-fold axes between the centres of edges of the cube, and six 2-fold axes

between the opposite vertices of the cube. Oh is generated by O with a reflection

perpendicular to a 4-fold rotation. This group also contains further reflections,

improper rotations and the inversion. Finally, we have two icosahedral groups,I and

Ih, being the rotations and symmetries of a icosahedron, respectively. I is formed by

multiple rotations of orders 2 3 and 5, while Ih them rotations as well as reflections,

the inversion, and roto-reflections. In total, Ih is a order 120 group, so we do not

describe these symmetries further. This is indeed all of the point groups, which we

shall use throughout Chapter 3.

Our studies in Chapter 3 will take interest in when the diagonal entries of the

matrix representation of these symmetries takes integer values. Therefore we will

require the following theorem.

Theorem 2.5.1. [25, Theorem 1] Let n be a natural number. The value of cos(2π
n
)

is rational if and only if n = 1, 2, 3, 4, 6.

2.6 Representation theory

In the following, we give basic definitions that will be required in our work to

establish necessary conditions for rigidity.

A representation of a group Γ on a d-dimensional vector space V over a field F

is a homomorphism ρ : Γ → GL(V ). Write (V, ρ) for this representation of Γ. The

dimension d of V is called the degree of ρ. We say (V, ρ) is a unitary representation

if ρ maps the identity element of Γ to the identity of GL(V ).

If (V, ρ), (W,σ) are representations of Γ, a homomorphism of representations is

a linear map φ : V → W so that φ(ρ(γ)v) = σ(γ)φ(v) for all γ ∈ Γ, v ∈ V . That is

to say the diagram,
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V

V

W

W

ρ(γ)

φ

φ

σ(γ)

commutes. An isomorphism is a homomorphism with an inverse, and we write

(V, ρ) ∼= (W,σ).

We say ρ, σ : Γ → GL(V ) are equivalent if there exists A ∈ GL(V ) such that

ρ(γ) = A−1σ(γ)A for all γ ∈ Γ.

Given two representations (V, ρ), (W,σ) of Γ, we may form a new representation

ρ⊕ σ : Γ → GL(V ⊕W ) with ρ⊕ σ(γ) = ρ(γ)⊕ σ(γ). It is helpful to consider the

matrix form of this representation, that is

ρ⊕ σ(γ) =

ρ(γ) 0

0 σ(γ)

 .

If (V, ρ) is a representation of Γ, and W a linear subspace of V , we say W is

ρ-invariant (or simply invariant when ρ is clear from the context) if ρ(γ)W ⊆ W

for all γ ∈ Γ.

Given (V, ρ) and a ρ-invariant subspace W ≤ V , we can write

ρ(γ) =

ρ(W )(γ) σ1(γ)

0 σ2(γ)

 ,

where ρ(W )(γ)w ∈ W for all w ∈ W , and we say that (W, ρ(W )) is a subrepresentation

of (V, ρ).

A representation V is called irreducible (or simple) if V ̸= 0 and there are no proper

non-trivial subrepresentations.

Note that we know little about σ1 and σ2 in the above definition.

Theorem 2.6.1. [43] A unitary representation has the property that the orthogonal

complement of an invariant subspace is again invariant.
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Theorem 2.6.2. (Maschke’s Theorem) Let V be a representation of a finite group

S with subrepresentation W ⊆ V . Assume that the characteristic of the field F

does not divide the order of S. Then there is a subrepresentation W ′ ⊆ V with

W ⊕W ′ = V .

Furthermore, any representation (V, ρ) can be written as a direct sum of irreducible

representations, (V, ρ) =
⊕d

i=1(Vi, ρi).

Theorem 2.6.3. (Schur’s Lemma) Let (V1, ρ1), (V2, ρ2) be irreducible representa-

tions of a finite group Γ. Any map φ : V1 → V2 with φ(ρ1(γ)v) = ρ2(γ)φ(v) for all

γ ∈ Γ, v ∈ V1, is either zero or an isomorphism.

If A = (aij) is a square matrix then the trace of A is given by tr(A) =
∑

i aii. For

a representation (V, ρ) of Γ, the character of ρ is the function χρ : Γ → F defined

by χρ(γ) = tr(ρ(γ)).
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Chapter 3

Symmetric Isostatic Frameworks

In this chapter, we will establish necessary conditions for a symmetric framework

which has points restricted to lie on subsets of the space to be isostatic. To this end

we first show that the rigidity matrix of a symmetric framework restricted to chosen

surfaces embedded in three dimensions can be transformed into a block-decomposed

form by using suitable symmetry-adapted bases. The necessary conditions are then

obtained by comparing the number of rows and columns of each submatrix block.

Using basic character theory, these conditions can be stated simply in terms of the

number of structural components that remain unshifted under the various symme-

tries of the framework. We will repeat this process for the rigidity matrix of a

symmetric linearly constrained framework, and establish equivalent conditions for

linearly constrained frameworks in two, three, and higher dimensions.

3.1 Necessary Conditions for Symmetric Isostatic

Frameworks on Surfaces

3.1.1 Block-diagonalization of the rigidity matrix

Let G = (V,E) be a graph and Γ be a finite group. If A is a m × n matrix and

B = (bij) is a p × q matrix, the Kronecker product A ⊗ B is the pm × qn block
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matrix

A⊗B =


b11A . . . b1qA
...

. . .
...

bp1A . . . bpqA

 .
Then let τ(γ) denote the 3×3 matrix which represents γ with respect to the canonical

basis of R3. Let PV (γ) and PE(γ) be the permutation matrix of V and E respectively,

induced by γ. Here we define the permutation matrix to be the matrix so that

(ei)
TPV (γ) = (ej)

T where ϕ(γ)(vi) = vj. We have two important maps, τ ⊗ PV :

Γ → R(3|V |)×(3|V |) and P̃E := PE ⊕ PV : Γ → R(|E|+|V |)×(|E|+|V |).

In three dimensional rigidity, there is a 6-dimensional space of trivial motions

of a framework of whose the points affinely span R3. We take special interest in a

list of surfaces, one for each possible point symmetry group. The sphere removes all

three translational trivial motions; the cylinder removes two translational and two

rotational; the cone removes three translational and two rotational; the elliptical

cylinder two translational and three rotational; and the ellipsoid removes all six

trivial motions. We need to define each surface for our use. We remark that to

define the surfaces in such a way requires using trivial motions to place the surface

as so. In rigidity in free space, one might wish to place vertices at a position in

space, using the trivial motions. However this is not possible in our case.

It is important for us to define which normal to each surface we will use, and

make note of which symmetries preserve the surfaces. We define the sphere to be the

surface S = {(x, y, z) : x2+y2+z2 = 1}. Then we define the normal to the sphere at

a point to be nS(x, y, z) = (x, y, z). The surface-preserving symmetry operations for

S are rotations cn, n ∈ N, around any axis through the origin, reflections in a plane

through the origin, denoted by σ, and improper rotations around an axis, denoted

by sn, n ≥ 2, where s2 is the inversion φ in the origin.

We define the cylinder to be the surface Y = {(x, y, z) : x2 + y2 = 1}. Then

we define the normal to the cylinder at a point to be nY(x, y, z) = (x, y, 0). The

surface-preserving symmetry operations for Y are rotations cn, n ∈ N, around the

z-axis, reflections in a plane containing the z-axis, denoted by σ, reflection in the

xy-plane, denoted by σ′, half-turn in an axis that is perpendicular to the z-axis (and
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goes through the origin), denoted by c2
′ and improper rotations around the z-axis,

denoted by sn, n ≥ 2.

We define the cone to be the surface C = {(x, y, z) : x2 + y2 = z2}. Then we

define the normal to the cone at a point to be nC(x, y, z) =
1√

x2+y2+z2
(x, y,−z) =

1√
2|z|(x, y,−z). The surface-preserving symmetry operations for C are rotations, cn,

n ∈ N, about the z-axis, and a half turn rotation c′2 about an axis in the xy-plane,

reflections σ in a plane containing the z-axis, and σ′ in the xy-plane, and improper

rotations, denoted sn for n ≥ 2 about the z-axis.

We define the elliptical cylinder to be the surface L = {(x, y, z) : x2+ay2 = 1} for

some fixed a > 0. Then we define the normal to the elliptical cylinder at a point to

be nL(x, y, z) =
1√

x2+(ay)2
(x, ay, 0). The surface-preserving symmetry operations for

E are rotations, c2 about the z-axis, and c
′
2 about an axis in the xy-plane, reflections

σ in the xz- or yz-plane, and σ′ in the xy-plane, and the inversion φ through the

origin.

We define the ellipsoid to be the surface E = {(x, y, z) : x2 + ay2 + bz2 = 1} for

some fixed a, b > 0. Then we define the normal to the ellipsoid at a point to be

nE(x, y, z) =
1√

x2+(ay)2+(bz)2
(x, ay, bz). The surface-preserving symmetry operations

for E are reflections in the xy-, xz-, yz-planes denoted σxy, σxz, σyz respectively, half-

turn rotations about the x-, y-, z-axis, denoted c2x, c2y, c2z respectively, and the

inversion φ. For the reflections and half-turns, when it is clear that the choice of

plane and axis is free, we may denote these by σ and c2 respectively.

For the set of all these surfaces we write Ψ = {S,Y,C,L,E}

Lemma 3.1.1. Let S ∈ Ψ and τ(Γ) be any isometry of R3 which preserves S. The

normal of the image of a point is equal to the image of the normal of the point, that

is to say, the equation n(τ(γ)pk) = τ(γ)n(pk) holds for all pk ∈ p(V ).

Proof. On the sphere, nS(x, y, z) = (x, y, z), so the equation holds. For our re-

maining surfaces, we use Schoenflies notation to check the equation holds for the

symmetries of R3 which preserve the surface in question. We therefore consider

where these symmetries map points to, and then consider these points for each sur-

face and their respective normal. Let p = pk = (x, y, z) be a point on a surface. We
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check the following: (i) τ(γ) = cn, a rotation around the z-axis,

cnp =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1




x

y

z

 =


x cos θ + y sin θ

y cos θ − x sin θ

z


(ii) for τ(γ) = c′2, a rotation in the x-axis,

c′2p =


1 0 0

0 −1 0

0 0 −1




x

y

z

 =


x

−y

−z


(iii) for τ(γ) = σ, a reflection in the yz-plane,

σp =


−1 0 0

0 1 0

0 0 1




x

y

z

 =


−x

y

z


and any other reflections containing the z-axis can now be written as the combination

of a rotation by angle θ and the reflection in the yz-plane. Since both of these satisfy

the equation in the lemma, it is easy to see the product will too. (iv) for τ(γ) = σ′,

a reflection in the xy-plane,

σ′p =


1 0 0

0 1 0

0 0 −1




x

y

z

 =


x

y

−z


(v) for τ(γ) = sn, the improper rotation about the z − axis,

snp =


cos θ sin θ 0

− sin θ cos θ 0

0 0 −1




x

y

z

 =


x cos θ + y sin θ

y cos θ − x sin θ

−z


finishing our list of symmetries. We must now consider each surface individually.

We first look at the cylinder, which has normal to the surface nY(x, y, z) :=
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(x, y, 0). All five of the above symmetries preserve Y, and now for a point p ∈ Y we

have five calculations:

(i) nY(cnp) = nY(x cos θ + y sin θ, y cos θ − x sin θ, z) = (x cos θ + y sin θ, y cos θ −

x sin θ, 0) = cn(x, y, 0);

(ii) nY(c
′
2p) = nY(x,−y,−z) = (x,−y, 0) = c′2(x, y, 0);

(iii) nY(σp) = nY(−x, y, z) = (−x, y, 0) = σ(x, y, 0);

(iv) nY(σ
′p) = nY(x, y,−z) = (x, y, 0) = σ′(x, y, 0);

(v) nY(snp) = nY(x cos θ + y sin θ, y cos θ − x sin θ,−z) = (x cos θ + y sin θ, y cos θ −

x sin θ, 0) = sn(x, y, 0).

Hence this gives the desired result for any symmetry of the cylinder.

Now we must do the same for the cone, where nC(x, y, z) :=
1√
2|z|(x, y,−z). Again

all five of the symmetries preserve C, giving us:

(i) nC(cnp) = nC(x cos θ + y sin θ, y cos θ − x sin θ, z) = 1√
2z
(x cos θ + y sin θ, y cos θ −

x sin θ,−z) = cn
1√
2|z|(x, y,−z);

(ii) nC(c
′
2p) = nC(x,−y,−z) = 1√

2|z|(x,−y, z) = c′2
1√
2|z|(x, y,−z); (iii) nC(σp) =

nC(−x, y, z) = 1√
2|z|(−x, y,−z) = σ 1√

2|z|(x, y,−z);

(iv) nC(σ
′p) = nC(x, y,−z) = 1√

2|z|(x, y, z) = σ′ 1√
2|z|(x, y,−z);

(v) nC(snp) = nC(x cos θ+y sin θ, y cos θ−x sin θ,−z) = 1√
2|z|(x cos θ+y sin θ, y cos θ−

x sin θ, z) = sn
1√
2|z|(x, y,−z).

Hence this gives the desired result for any symmetry of the cone.

Next we consider the elliptical cylinder, and calculate the normal to be nL(x, y, z) :=

1√
x2+(ay)2

(x, ay, 0). All five of the above symmetries preserve L, although cn and sn

each only hold for n = 2:

(i) nL(c2p) = nL(−x,−y, z) = 1√
x2+(ay)2

(−x,−ay, 0) = c2
1√

x2+(ay)2
(x, ay, 0);

(ii) nL(c
′
2p) = nL(x,−y,−z) = 1√

x2+(ay)2
(x,−ay, 0) = c′2

1√
x2+(ay)2

(x, ay, 0);

(iii) nL(σp) = nL(−x, y, z) = 1√
x2+(ay)2

(−x, ay, 0) = σ 1√
x2+(ay)2

(x, ay, 0);

(iv) nL(σ
′p) = nL(x, y,−z) = 1√

x2+(ay)2
(x, ay, 0) = σ′ 1√

x2+(ay)2
(x, ay, 0);

(v) nL(φp) = nL(−x,−y,−z) = 1√
x2+(ay)2

(−x,−ay, 0) = φ 1√
x2+(ay)2

(x, ay, 0).

Hence this gives the desired result for any symmetry of the elliptical cylinder.

Finally for the ellipsoid, with normal to the surface nE(x, y, z) :=
1√

x2+(ay)2+(bz)2
(x, ay, bz).

We need only to consider the symmetries from (i), (v), with cn and sn each only
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holding for n = 2, and even though 3 mirrors are possible, we will only give one here

in (iii):

(i) nE(c2hp) = nE(−x,−y, z) = 1√
x2+(ay)2+(bz)2

(−x,−ay, bz) = c2h
1√

x2+(ay)2+(bz)2
(x, ay, bz);

(iii) nE(σp) = nE(−x, y, z) = 1√
x2+(ay)2+(bz)2

(−x, ay, bz) = σ 1√
x2+(ay)2+(bz)2

(x, ay, bz);

(v) nE(φp) = nE(−x,−y,−z) = 1√
x2+(ay)2+(bz)2

(−x,−ay,−bz) = φ 1√
x2+(ay)2+(bz)2

(x, ay, bz).

Hence this gives the desired result for any symmetry of the ellipsoid.

Lemma 3.1.2. Let (G, p) be a τ(Γ)-symmetric framework on a surface S ∈ Ψ. If

RS(G, p)u = z, then for all γ ∈ Γ, we have

RS(G, p)(τ ⊗ PV )(γ)u = P̃E(γ)z.

Proof. Suppose RS(G, p)u = z. Fix γ ∈ Γ and let τ(γ) be the orthogonal matrix

representing γ with respect to the canonical basis of R3. We enumerate the rows of

RS(G, p) by the set {a1, . . . , a|E|, b1, . . . , b|V |}. By [40], we know that (RS(G, p)(τ ⊗

PV )(γ)u)ai = (P̃E(γ)z)ai , for all i ∈ [|E|]. We are left to show the result holds for the

rows of RS(G, p) which represent the normal vectors of the vertices on the surface.

Write u ∈ R3|V | as u = (u1, . . . , u|V |), where ui ∈ R3 for all i, and let Φ(γ)(vi) =

vk. We first see that (P̃E(γ)z)bk = zbi = n(pi) · ui by the definition of PV (γ). From

RS(G, p)u = z, we also get that zbi = n(pi) · ui. Then (τ ⊗PV )(γ)u = (ū1, . . . , ū|V |),

with ūl = τ(γ)uj when Φ(γ)(vj) = vl. Therefore,

(RS(G, p)(τ ⊗ PV )(γ)u)bk = n1(pk) · (τ(γ)ui)1 + n2(pk) · (τ(γ)ui)2 + n3(vk) · (τ(γ)ui)3

= n(pk) · (τ(γ)ui)

= n(τ(γ)pk) · (τ(γ)ui).

Finally, using Lemma 3.1.1 plus the fact that the canonical inner product on Rd is

invariant under the orthogonal transformation γ ∈ Γ gives that n(τ(γ)pk)·(τ(γ)ui) =

τ(γ)n(pk) · (τ(γ)ui) = n(pk) · ui = zbi , finishing the proof.

The following is an immediate corollary of Schur’s lemma (see e.g. [43]) and the

proposition above.
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Corollary 3.1.3. Let (G, p) be a τ(Γ)-symmetric framework on S ∈ Ψ and let

I1, . . . , Ir be the pairwise non-equivalent irreducible linear representations of τ(Γ).

Then there exists matrices A,B such that the matrices B−1RS(G, p)A and A−1RS(G, p)
TB

are block-diagonalised and of the form

R1 0

R2

. . .

0 Rr


where the submatrix Ri corresponds to the irreducible representation Ii.

This block decomposition corresponds to R3|V | = X1 ⊕ · · · ⊕ Xr, R|E|+|V | =

Y1 ⊕ · · · ⊕ Yr. Each of the Xi are (τ ⊗ PV )-invariant subspaces, and each of the Yi

are P̃E-invariant subspaces. Then, the submatrix Ri has size (dim(Yi))× (dim(Xi)).

3.1.2 Additional necessary conditions

Using the block-decomposition of the rigidity matrix, we may follow the basic ap-

proach described in [11, 40] to derive added necessary conditions for a symmetric

framework on a surface to be isostatic. We first need the following result.

Theorem 3.1.4. The space of trivial motions of an affinely spanning τ(Γ)-symmetric

framework (G, p) on S ∈ Ψ, written T(G, p), is a (τ ⊗ PV )-invariant subspace of

R3|V |. Furthermore, the space of translational motions and the space of rotational

motions of (G, p) are also (τ ⊗ PV )-invariant subspaces of R3|V |.

It is useful to introduce notation for the trivial motions of (G, p) before giving the

proof of the above theorem. Let (G, p) be a symmetric framework on S, where {p(v) |

v ∈ V } span R3. Let N = ker(R(Kn, p)). Then N is the subspace of R3|V | consisting

of all infinitesimal trivial motions of (G, p). Write N = T ⊕ R where T,R are the

spaces of all translational and rotational trivial motions of (G, p), respectively. We

wish to assign bases to T and R. Let {Ti : V (G) → R3 | i = 1, . . . , 3} where
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Ti(v) = ei, the ith canonical basis vector of R3, for all v ∈ V and i = 1, 2, 3. Then

the basis for R we give as {Rij : V (G) → R3 | 1 ≤ i < j ≤ 3} with Rij defined by

Rij(vk) = (pk)iej − (pk)jei, for all vk ∈ V .

Proof. Suppose that (G, p) affinely spans R3, so that the dimension of the trivial

motion space of (G, p) on S is maximal. We first show that N = ker(R(Kn, p))

is (τ ⊗ PV )-invariant. By Lemma 3.1.2, if RS(Kn, p)u = z then RS(Kn, p)(τ ⊗

PV )(γ)u = P̃E(γ)z. Let u ∈ N . Then RS(Kn, p)u = 0, so

P̃E(γ)RS(Kn, p)u = P̃E(γ)z

= P̃E(γ)0 = 0

therefore RS(Kn, p)(τ ⊗ PV )(γ)u = P̃E(γ)RS(Kn, p)u = 0, giving (τ ⊗ PV )(γ)u ∈

ker(RS(Kn, p)). Hence N is (τ ⊗ PV )-invariant, as required for the first part of the

theorem.

We note that the cylinder Y is the only surface in Ψ with non-trivial spaces for

both translational motions and rotational motions. Therefore for any S ∈ Ψ \ {Y}

the proof is complete. Hence from here we only consider the cylinder. To show that

the space of translational motions is (τ ⊗ PV )-invariant, first note that for Y, this

space is generated by the vector t = (0, 0, 1, 0, 0, 1, . . . , 0, 0, 1)T . We need to show

that for each γ ∈ Γ, we have (τ ⊗ PV )(γ)t = αt for some α ∈ R. By the definition

of τ ⊗PV this holds if τ(γ)(0, 0, 1)T = α(0, 0, 1)T for all γ ∈ Γ. Since τ(Γ) preserves

Y, such an α does exist for each γ (specifically α = ±1).

Finally we look at the space of rotational motions. For Y, this space is generated

by the vector r = (r1, . . . , r|V |) ∈ R3|V | defined as rk = (pk)1e2 − (pk)2e1 ∈ R3, for

all k ∈ V , where e1 and e2 are the standard basis vectors of R3 with 1 as the first

and second coordinate, respectively. Note that r is perpendicular to t. Since for all

γ ∈ Γ, (τ⊗PV )(γ) is an orthogonal matrix, (τ⊗PV ) is a unitary representation (with

respect to the canonical inner product on R3|V |). Therefore the subrepresentation

H ′
e
(N) of H ′

e with representation space N is also unitary (with respect to the inner

product obtained by restricting the canonical inner product on R3|V | to N). It follows

that the space ⟨r⟩ is (τ ⊗PV )-invariant since it is the orthogonal complement to ⟨t⟩
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in N .

Let (τ ⊗ PV )
(T) be the subrepresentation of (τ ⊗ PV ) with representation space

T(G, p). Then T = T1 ⊕ · · · ⊕ Tr where Ti is the (τ ⊗ PV )-invariant subspace

corresponding to the irreducible representation Ii.

Theorem 3.1.5. Let (G, p) be a τ(Γ)-symmetric framework on S ∈ Ψ. If (G, p) is

isostatic, then

χ(P̃E) = χ(τ ⊗ PV )− χ((τ ⊗ PV )
(T)).

Proof. By Maschke’s Theorem, for the subrepresentation (τ ⊗ PV )
(T) ⊆ (τ ⊗ PV ),

there exists a subrepresentation (τ⊗PV )
(Q) ⊆ (τ⊗PV ) with (τ⊗PV )

(T)⊕(τ⊗PV )
(Q) =

τ ⊗ PV . Further, since τ ⊗ PV is unitary, we know that Q(G, p) is the (τ ⊗ PV )-

invariant subspace of R3|V | which is orthogonal to T(G, p).

Since (G, p) is isostatic, the restriction of the linear map given by the rigidity

matrix to Q(G, p) is an isomorphism onto R|E|+|V |. Moreover if R′
S(G, p) is the

matrix corresponding to this linear map restricted to Q(G, p), then, the statement

for RS(G, p) in Lemma 3.1.2 also holds for R′
S(G, p) and hence we have

R′
S(G, p)(τ ⊗ PV )(γ)(R

′
S(G, p))

−1 = P̃E(γ) for all γ ∈ Γ.

Thus, (τ ⊗ PV )
(Q) and P̃E are isomorphic representations of Γ. Therefore, we have

χ(P̃E) = χ((τ ⊗ PV )
(Q)) = χ(τ ⊗ PV )− χ((τ ⊗ PV )

(T)).

3.2 The sphere

There is a precise geometric correspondence between infinitesimal rigidity in the

plane and on the sphere (see [10] for details) and this extends to symmetric frame-

works for any plane symmetry group [5]. There are however symmetries in the plane

which are not solved, and symmetries which exist on the sphere which do not exist

in the plane, therefore study here is warranted. There have been significant recent

results on the sphere, with complete descriptions of isostatic graphs on concentric
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spheres [30], and in the forced symmetric case, the description of isostatic graphs

with rotation, reflection, dihedral, inversion and improper rotation symmetry [32].

In this section and those which follow within this chapter, we look to decipher

which of the point groups listed in Section 2.5 are impermissible. We will be left

with a list of groups which may have symmetric isostatic frameworks, and provide

conditions on the graphs for them to exist under such symmetries. We remark that

this is not the same as claiming such graphs do indeed exist in all the cases.

We recall the surface-preserving symmetry operations for S are rotations cn,

n ∈ N, around any axis through the origin, reflections σ, in a plane through the

origin, improper rotations sn, n ≥ 2, around any axis through the origin, and that

s2 is the inversion φ. Write θ = 2π
n

for an anticlockwise rotation by angle around

the axis of rotation. The values of the traces of the matrices for P̃E and τ ⊗ PV for

each group element follow immediately from the definition. The following lemma

provides the traces of the matrices for (τ ⊗ PV )
(T).

Lemma 3.2.1. For the aforementioned symmetry operations on the sphere, the

χ((τ ⊗ PV )
(T)) row of the character table is

id cn≥3 c2 σ sn φ

χ((τ ⊗ PV )
(T)) 3 2 cos θ + 1 −1 −1 1− 2 cos θ 3

Proof. We will show that, for all symmetry operation τ(γ) in our table, (τ ⊗PV )(γ)

acts linearly on the basis vectors of the trivial motion space. To do this, we

find for each symmetry operation the coefficients αk such that (τ ⊗ PV )(γ)bj =∑
k αkbk, where {bk} is the basis for the trivial motion space. Let (G, p) be a

isostatic τ(Γ)-symmetric framework, with p = (x1, y1, z1, . . . , x|V |, y|V |, z|V |). Let

the basis for the subspace of rotational trivial motions be {b1, b2, b3} where b1 =

(−y1, x1, 0, . . . ,−y|V |, x|V |, 0) ∈ R3|V |, b2 = (−z1, 0, x1, . . . ,−z|V |, 0, x|V |) ∈ R3|V |,

b3 = (0,−z1, y1, . . . , 0,−z|V |, y|V |) ∈ R3|V |. We will check the 3i− 2, 3i− 1, 3i coordi-

nates of the vectors (τ⊗PV )(γ)bj, j = 1, 2, 3. Below we give these basic calculations.

Throughout these calculations, we will be considering the point that is the preimage

of p(i) = (xi, yi, zi) under τ(γ), for some vertex vi ∈ V . This will be the preimage

of the vertex vi under the automorphism ϕ(γ), the vertex vî := ϕ(γ)−1vi. Then

τ(γ)−1pi = pî = (xî, yî, zî).
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For each group, (τ ⊗ PV )(id)bj = bj for j = 1, 2, 3, and so tr((τ ⊗ PV )
(T)(id)) =

1 + 1 + 1 = 3.

For τ(γ) = cn an anticlockwise rotation by angle θ = 2π
n

around the z-axis, with

τ(γ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

,

(τ ⊗ PV )(γ)b1 =



...

−yî cos(θ)− xî sin(θ)

−yî sin(θ) + xî cos(θ)

0
...


=



...

−yi
xi

0
...


= b1

since τ(γ)(x, y, z) = (x cos(θ)− y sin(θ), x sin(θ) + y cos(θ), z). Then,

(τ ⊗ PV )(γ)b2 =



...

−zî cos(θ)

−zî sin(θ)

xî
...


and

(τ ⊗ PV )(γ)b3 =



...

zî sin(θ)

−zî cos(θ)

yî
...


.

Letting î be the index of ϕ(γ)−1vi, we note that τ(γ−1)(xi, yi, zi) = (xi cos(θ) +

yi sin(θ),−xi sin(θ) + yi cos(θ), zi) = (xî, yî, zî) and observe the following two equa-
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tions hold:
−zî cos(θ)

−zî sin(θ)

xî

 = 0


−yi
xi

0

+ cos(θ)


−zi
0

xi

+ sin(θ)


0

−zi
yi

 (3.2.1)


zî sin(θ)

−zî cos(θ)

yî

 = 0


−yi
xi

0

− sin(θ)


−zi
0

xi

+ cos(θ)


0

−zi
yi

 . (3.2.2)

Therefore when we consider the diagonal entries of (τ ⊗ PV )
(T)(γ), the first entry

is 1 since (τ ⊗ PV ) maps the first basis vector to itself, and the second and third

entries are both cos(θ) by Equations 3.2.1 and 3.2.2 respectively. We can give

tr((τ ⊗ PV )
(T)(γ)) = 1 + 2 cos(θ).

For τ(γ) = σ a reflection in a plane, say τ(γ) =


−1 0 0

0 1 0

0 0 1

,

(τ ⊗ PV )(γ)b1 = (. . . , yî, xî, 0, . . . ) = (. . . , yi,−xi, 0, . . . ) = −b1;

(τ ⊗ PV )(γ)b2 = (. . . , zî, 0, xî, . . . ) = (. . . , zi, 0,−xi, . . . ) = −b2;

(τ ⊗ PV )(γ)b3 = (. . . , 0,−zî, yî, . . . ) = (. . . , 0,−zi, yi, . . . ) = b3

since τ(γ)(x, y, z) = (−x, y, z). Hence, tr((τ ⊗ PV )
(T)(γ)) = −1− 1 + 1 = −1. The

same easily holds for τ(γ) =


1 0 0

0 −1 0

0 0 1

 and τ(γ) =


1 0 0

0 1 0

0 0 −1

.

For τ(γ) = sn an anticlockwise improper rotation by angle θ = 2π
n
, say around

the z-axis, τ(γ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 −1

, and τ(γ)(x, y, z) = (x cos(θ) −

y sin(θ), x sin(θ) + y cos(θ),−z). Furthermore, zî = −zi. Therefore (τ ⊗ PV )(γ)
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acts as follows:

(τ ⊗ PV )(γ)b1 =


−yî cos(θ)− xî sin(θ)

−yî sin(θ) + xî cos(θ)

0

 =



...

−yi
xi

0
...


= b1

(τ ⊗ PV )(γ)b2 =



...

−zî cos(θ)

−zî sin(θ)

−xî
...


=



...

zi cos(θ)

zi sin(θ)

−xî
...


and

(τ ⊗ PV )(γ)b3 =



...

zî sin(θ)

−zî cos(θ)

−yî
...


=



...

−zi sin(θ)

zi cos(θ)

−yî
...


.

As in Equations 3.2.1 and 3.2.2, we write the second and third vectors above as a

linear sum of the basis vectors,
zi cos(θ)

zi sin(θ)

−xî

 = 0


−yi
xi

0

− cos(θ)


−zi
0

xi

− sin(θ)


0

−zi
yi

 (3.2.3)


−zi sin(θ)

zi cos(θ)

−yî

 = 0


−yi
xi

0

+ sin(θ)


−zi
0

xi

− cos(θ)


0

−zi
yi

 . (3.2.4)

The basis vector b1 is preserved by (τ ⊗ PV ), and with Equations 3.2.3 and 3.2.4,

tr((τ ⊗ PV )
(T)(γ)) = 1− 2 cos(θ).
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We are now able to give the full character table for τ(Γ)-symmetric isostatic

frameworks on S (see Table 3.1). We give these without calculation as they can be

seen directly from the matrix representations of τ ⊗ PV and P̃E.

For a Γ-symmetric graph G = (V,E) with respect to ϕ : V → Aut(G), we say

that a vertex v ∈ V is fixed by γ ∈ Γ if ϕ(γ)(v) = v. Similarly, an edge uv ∈ E is

fixed by γ ∈ Γ if both u and v are fixed by γ or if ϕ(γ)(u) = v and ϕ(γ)(v) = u. For

groups of order two, we will often just say that a vertex or edge is fixed if it is fixed

by the non-trivial group element.

Note that if (G, p) is a τ(Γ)-symmetric framework on S, then there is no vertex

fixed for any improper rotation sn. The number of vertices that are fixed by an

element in τ(Γ) corresponding to rotations cn, or reflections σ are denoted by vn

and vσ, respectively. The number of edges that are fixed by the element in τ(Γ)

corresponding to rotations cn, reflections σ and improper rotations sn are denoted

by en, eσ, and esn, respectively.

S id cn σ sn
χ(P̃E) |E|+ |V | en + vn eσ + vσ esn

χ(τ ⊗ PV ) 3|V | (2 cos θ + 1)vn vσ 0

χ((τ ⊗ PV )
(T)) 3 2 cos θ + 1 −1 1− 2 cos θ

Table 3.1: Character table for symmetry operations of the sphere.

In the following proofs we shall use Theorem 3.1.5 to draw conclusions from

Table 3.1.

Corollary 3.2.2. If (G, p) is a τ(Γ)-symmetric isostatic framework on S, then cn /∈

τ(Γ) for any n ≥ 4, and sn /∈ τ(Γ) for any n ≥ 2. Moreover,

• if c2 ∈ τ(Γ) then e2 = 1 and v2 = 0;

• if c3 ∈ τ(Γ) then e3 = v3 = 0;

• if σ ∈ τ(Γ) then eσ = 1.

Furthermore, τ(Γ) is impermissible if it contains symmetries which cannot be gen-

erated by those listed above.
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Proof. Let’s first analyse isostatic frameworks with a cn symmetry. From the table

we have en = 2vn cos θ − 2 cos θ − 1. Note that by surface symmetry, vn = 0, 1, 2.

Let vn = 0. We have en = −2 cos θ − 1. There are solutions when n = 2, 3, 4.

We have that an isostatic framework with c2 symmetry has no fixed vertex and one

fixed edge, we have that an isostatic framework with c3 symmetry would have no

fixed vertex and no fixed edge, and an isostatic framework with c4 symmetry is not

permissible.

Let vn = 1. We then have en + 1 = 0 which is not possible.

Lastly, let vn = 2. Tthen en = 2 cos θ−1. This gives possible values of en as 0 or

1, when θ is π
3
or 0 respectively. However, an isostatic framework with c6 symmetry

must also have a c3 symmetry, but the number of fixed vertices required in each

contradicts. We may deduce that the only possible symmetry element of this kind

is c3.

Any isostatic framework with sn≥5-symmetry will have a forbidden ck symmetry.

We must check s3 and s4. The table gives esn = 2 cos θ − 1, and in both cases

2 cos θ − 1 is negative so this is not possible.

The following corollary gives the possible non-trivial groups that can be con-

structed from the symmetries given in Corollary 3.2.2. Note that we will always

consider the non-trivial groups, without explicitly stating from this point forward.

These are the groups from Section 2.5 which can be constructed from only these

symmetries, and do not contain cn for any n ≥ 4 or sn for any n ≥ 2.

Corollary 3.2.3. If (G, p) is a τ(Γ)-symmetric isostatic framework on S, then

τ(Γ) =



Cs = {id, σ};

C2 = {id, c2};

C3 = {id, c3, c23};

C2v = {id, c2, σ, c2σ};

C3v = {id, c3, c23, σ, c3σ, c23σ};

D3 = {id, c3, c23, c′2, c′2c3, c′2c23};

T, {id, c2, c3} ∈ T.
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Proof. We once again look for groups generated by {id, c2, c3, σ} which do not con-

tain forbidden symmetry operations from Collorary 3.2.2. The groups Cs, C2 and

C3 can easily be observed as permissible here. A group with a c2 and c3 symmetry

operation with the same rotation axis would also have a c6 which is forbidden. In D2

the three half turn rotations would need to fix the same edge, since no edge can lie on

an axis of rotation, but this is not possible. The restrictions of Corollary 3.2.2 allow

D3 as the half turns will fix edges not fixed by the threefold rotation. Similarly, the

tetrahedral group T contains three two-fold rotations and four three-fold rotations.

Each edge fixed by each of the half turn rotations will not be fixed by the other half

turns, nor any of the three-fold rotations. The groups Dnh, Dnd, Td, Th, O,Oh, I, Ih

all preserve the sphere, but contain higher order rotations or improper rotations

which do not have isostatic frameworks associated. This only leaves groups with

one rotation axis and one reflection. If the rotation axis is perpendicular to the

reflection plane, we would have φ or s3 which is forbidden, so the axis of rotation

axis must be contained in the plane of reflection. This leaves C2v and C3v as the

only remaining groups.

Theorem 3.2.4. Let (G, p) be an isostatic τ(Γ)-symmetric framework on S. Then

(G, ϕ) is Γ-symmetric, (2, 3)-tight and will satisfy the constraints given in Table 3.2:

τ(Γ) Number of edges and vertices fixed by symmetry elements
Cs eσ = 1
C2 e2 = 1
C3 e3 = v3 = 0
C2v eσ = e2 = 1, v2 = 0
C3v e3 = 0, v3 = 0, eσ = eσ′ = eσ′′ = 1
D3 e3 = 0, v3 = v2 = 0, e2′ = 1
T v2, v3, e3 = 0, e2 = 1

Table 3.2: Fixed edge and vertex counts for symmetry operations on the sphere.

Proof. The graph G must be Γ-symmetric and (2, 3)-tight (by [30]). The first three

rows of our table come directly from Corollaries 3.2.2 and 3.2.3. For both C2v and

C3v the vertices fixed by the reflections will not be fixed by the rotation, unless they

lie on the axis of rotation. Edges fixed by the mirrors either lie on the plane of

reflection, or are perpendicular to the plane. For C2v, the edge fixed by the mirror
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must be fixed by the half-turn, or else its c2-copy will be fixed by σ. When thinking

about C3v, the edges fixed by a reflection will not have c3-copies also fixed by the

same reflection, and it is possible to have edges fixed by the reflection which are not

fixed by the rotation. Hence, both C2v and C3v are as in the table above. For D3

and T , the single edge fixed by each half turn rotation has images under the other

elements of D3 and T which will not be fixed by that same rotation.

Remark 3.2.5. Suppose the edge between pi and pj is fixed by c′2 in aD3-symmetric

framework. Then, the edges between c3pi and c3pj, and between c23pi and c
2
3pj will

be fixed by c3c
′
2 and c23c

′
2 respectively. Similarly for tetrahedral group T , the edges

fixed by each of the half turn rotation axis will be formed of an orbit under one of

the c3 rotation axis.

3.3 The cylinder

The cylinder presents itself as the most likely surface for new characterisations of

symmetric frameworks. The cylinder is well studied, with known characterisations

of minimal rigidity on concentric cylinders [30], of global rigidity [19], and forced-

symmetric isostatic graphs for rotation, reflection and inversion symmetry [32]. Fur-

ther, the authors in the last article provided conjectures for characterisations of in-

cidentally symmetric infinitesimally rigid/isostatic on the cylinder, in the presence

of Ci and Cs symmetries.

In this section we calculate the characters of the representations appearing in

the statement of Theorem 3.1.5 for the cylinder Y in order to establish necessary

conditions for symmetric frameworks on the cylinder to be isostatic. In Chapter 4 we

revisit the cylinder, to establish the combinatorial characterisation for the graphs

which give rise to Ci-, Cs-, and C2-symmetric frameworks, in doing so proving

the above conjecture from [32]. This work on the cylinder has been submitted for

publication [33].

We recall the surface-preserving symmetry operations for Y are rotations cn,

n ∈ N, around the z-axis, reflections σ in a plane containing the z-axis, and σ′ in

the xy-plane, half-turn rotation c′2 in an axis that is perpendicular to the z-axis and
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improper rotations sn, n ≥ 2, around the z-axis. The values of the traces of the

matrices for P̃E and τ ⊗ PV for each group element follow immediately from the

definition. The following lemma provides the traces of the matrices for (τ ⊗ PV )
(T).

Lemma 3.3.1. For the aforementioned symmetry operations on the cylinder, the

χ((τ ⊗ PV )
(T)) row of the character table is

id cn c′2 σ σ′ sn φ

χ((τ ⊗ PV )
(T)) 2 2 −2 0 0 0 0

Proof. We will show that, for all symmetry operations τ(γ) in our table, (τ⊗PV )(γ)

acts linearly on the basis vectors of the trivial motion space. To do this, we

find for each symmetry operation the coefficients αk such that (τ ⊗ PV )(γ)bj =∑
k αkbk, where {bk} is the basis for the trivial motion space. Let (G, p) be a

isostatic τ(Γ)-symmetric framework, with p = (x1, y1, z1, . . . , x|V |, y|V |, z|V |). Let

the basis of the subspace of translational trivial infinitesimal motions be b1 =

(0, 0, 1, 0, 0, 1, . . . , 0, 0, 1) ∈ R3|V |, and the basis for the subspace of rotational triv-

ial motions be b2 = (−y1, x1, 0, . . . ,−y|V |, x|V |, 0) ∈ R3|V |. Lastly, recall for τ(Γ)-

symmetric frameworks, we have τ(γ)pi = pϕ(γ)i for all i ∈ |V | and all γ ∈ Γ. We

will check the 3i − 2, 3i − 1, 3i coordinates of the vectors (τ ⊗ PV )(γ)bj, j = 1, 2.

Below we give these basic calculations. As in Lemma 3.2.1, we use the notation

vî := ϕ(γ)−1vi and τ(γ)
−1pi = pî = (xî, yî, zî).

For the identity, (τ ⊗ PV )(id)bj = bj for j = 1, 2, and so tr((τ ⊗ PV )
(T)(id)) =

1 + 1 = 2.

For τ(γ) = cn an anticlockwise rotation by angle θ = 2π
n

around the z-axis,

τ(γ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

,
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(τ ⊗ PV )(γ)b1 = (. . . , 0, 0, 1, . . . ) = b1.

(τ ⊗ PV )(γ)b2 =



...

−yî cos(θ)− xî sin(θ)

−yî sin(θ) + xî cos(θ)

0
...


=



...

−yi
xi

0
...


= b2

since τ(γ)(x, y, z) = (x cos(θ) − y sin(θ), x sin(θ) + y cos(θ), z). Hence, (τ ⊗ PV )(γ)

maps both basis vectors of T to themselves, so tr((τ ⊗ PV )
(T)(γ)) = 1 + 1 = 2.

For τ(γ) = c′2 a half-turn rotation perpendicular to the z-axis, wlog τ(γ) =
1 0 0

0 −1 0

0 0 −1

, (τ⊗PV )(γ)b1 = (. . . , 0, 0,−1, . . . ) = −b1. Observe, (τ⊗PV )(γ)b2 =

(. . . ,−yî,−xî, 0, . . . ) = (. . . , yi,−xi, 0, . . . ) = −b2 since τ(γ)(x, y, z) = (x,−y,−z).

Hence, (τ ⊗ PV )(γ) maps both basis vectors of T to the negative of themselves, so

tr((τ ⊗ PV )
(T)(γ)) = −1− 1 = −2.

For τ(γ) = σ a reflection in a plane which contains the z-axis, wlog τ(γ) =
−1 0 0

0 1 0

0 0 1

 say, (τ ⊗ PV )(γ)b1 = (. . . , 0, 0, 1, . . . ) = b1. Then note that (τ ⊗

PV )(γ)b2 = (. . . , yî, xî, 0, . . . ) = (. . . , yi,−xi, 0, . . . ) = −b2 since τ(γ)(x, y, z) =

(−x, y, z). Hence, as reasoned previously, tr((τ ⊗ PV )
(T)(γ)) = 1− 1 = 0.

For τ(γ) = σ′ a reflection in the xy-plane, τ(γ) =


1 0 0

0 1 0

0 0 −1

, we have (τ ⊗

PV )(γ)b1 = (. . . , 0, 0,−1, . . . ) = −b1. Then, (τ ⊗ PV )(γ)b2 = (. . . ,−yî, xî, 0, . . . ) =

(. . . ,−yi, xi, 0, . . . ) = b2 since τ(γ)(x, y, z) = (x, y,−z). Hence, tr((τ ⊗PV )
(T)(γ)) =

−1 + 1 = 0.

For τ(γ) = sn an anticlockwise rotation by angle θ around the z-axis, followed

by a reflection in the xy-plane, τ(γ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 −1

, (τ⊗PV )(γ)b1 =
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(. . . , 0, 0,−1, . . . ) = −b1.

(τ ⊗ PV )(γ)b2 =



...

−yî cos(θ)− xî sin(θ)

−yî sin(θ) + xî cos(θ)

0
...


=



...

yi

−xi
0
...


= b2

since τ(γ)(x, y, z) = (x cos(θ) − y sin(θ), x sin(θ) + y cos(θ),−z). Hence, tr((τ ⊗

PV )
(T)(γ)) = −1 + 1 = 0.

While covered by s2, we check for τ(γ) = φ the inversion, τ(γ) =


−1 0 0

0 −1 0

0 0 −1

,

(τ⊗PV )(γ)b1 = (. . . , 0, 0,−1, . . . ) = −b1. Then, (τ⊗PV )(γ)b2 = (. . . , yî,−xî, 0, . . . ) =

(. . . ,−yi, xi, 0, . . . ) = b2 since τ(γ)(x, y, z) = (−x,−y,−z). Hence, tr((τ⊗PV )
(T)(γ)) =

−1 + 1 = 0.

We are now able to give the full character table for τ(Γ)-symmetric isostatic

frameworks on Y (see Table 3.3). We give these without calculation as they can be

seen directly from the matrix representations of τ ⊗ PV and P̃E.

Note that if (G, p) is a Γ-symmetric framework on Y with respect to τ and ϕ,

then there is no vertex fixed by an element of Γ corresponding to a rotation cn about

the z-axis or the inversion φ. The number of vertices that are fixed by the element

in Γ corresponding to the half-turn c′2, or the reflections σ and σ′ are denoted by

v2′ , vσ and vσ′ , respectively. An edge of G cannot be fixed by an element of Γ that

corresponds to a rotation cn, n ≥ 3, or an improper rotation sn, n ≥ 3. Hence we

have separate columns for c2 and φ = s2 below. The number of edges that are fixed

by the element in Γ corresponding to the half-turns c2 and c′2, the reflections σ and

σ′ and the inversion φ are denoted by e2, e2′ , eσ, eσ′ and eφ, respectively.

We note that the first column of Table 3.3 recovers the result from Theorem

2.3.1 that |E| = 2|V | − 2. In the following proofs we shall use Theorem 3.1.5 to

draw conclusions from Table 3.3.
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Y id cn≥3 c2 c′2 σ σ′ sn≥3 φ

χ(P̃E) |E|+ |V | 0 e2 e2′ + v2′ eσ + vσ eσ′ + vσ′ 0 eφ
χ(τ ⊗ PV ) 3|V | 0 0 −v2′ vσ vσ′ 0 0

χ((τ ⊗ PV )
(T)) 2 2 2 −2 0 0 0 0

Table 3.3: Character table for symmetry operations of the cylinder.

Corollary 3.3.2. If (G, p) is a τ(Γ)-symmetric isostatic framework on Y, then

cn /∈ τ(Γ) for any n ≥ 2, and sn /∈ τ(Γ) for any n ≥ 3. Moreover,

• if c′2 ∈ τ(Γ) then e2′ = 2 and v2′ = 0, or e2′ = 0 and v2′ = 1;

• if σ ∈ τ(Γ) or σ′ ∈ τ(Γ) then eσ = 0 and eσ′ = 0;

• if φ ∈ τ(Γ) then eφ = 0.

Furthermore, τ(Γ) is impermissible if it contains symmetries which cannot be gen-

erated by those listed above.

Proof. We will check for which symmetry operations the counts from the table are

possible. Beginning with cn≥3, we immediately see the equality χ(P̃E) = χ(τ⊗PV )−

χ((τ ⊗ PV )
(T)) does not hold. For c2, where fixed edges are possible, we have that

e2 = −2 so there are no isostatic frameworks with a cn (n ≥ 2) symmetry on the

cylinder. Further to that, since any sn≥3 symmetry would also imply a ck symmetry

for some k ≥ 2, there are no isostatic frameworks which have a sn≥3 symmetry on

the cylinder.

Reading from the table we then draw the following conclusions. For an isostatic

framework with a c′2 symmetry, e2′+2v2′ = 2, so there are either two fixed edges and

no fixed vertex or one fixed vertex and no fixed edge. For both mirrors, eσ+vσ = vσ,

giving no restriction on the number of fixed vertices, but an isostatic framework must

have no fixed edge. Finally for inversion, since there can be no fixed vertex with

inversion symmetry on the cylinder, our table gives eφ = 0, so there are also no fixed

edges.

We recall from Section 2.5 the groups which can be constructed from our sym-

metry operations. In the following corollary, we show the groups that can be con-

structed from the symmetry operations above, which do not contain symmetries

which are excluded in Corollary 3.3.2.
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Corollary 3.3.3. If (G, p) is a τ(Γ)-symmetric isostatic framework on Y, then

τ(Γ) =



Ci = {id, φ};

Cs = {id, σ} or {id, σ′};

C2 = {id, c′2};

C2v = {id, σ, σ′, c′2};

C2h = {id, σ, c′2, φ}.

Proof. We need to find the groups which can be generated from the symmetry oper-

ations {id, σ, σ′, c′2, φ}, which also do not contain the forbidden symmetry operations

in Corollary 3.3.2. It is immediate that the groups of order 2 satisfy this, namely,

Ci = {id, φ}, Cs = {id, σ} or {id, σ′}, C2 = {id, c′2}. Observing that when the axis of

rotation of c′2 lies within the mirror planes of σ and σ′, we have that σσ′ = σ′σ = c′2,

and see the group C2v = {id, σ, σ′, c′2} is also allowable. Another group of order

4 can be found by now aligning the axis of rotation to be perpendicular to the

plane of the mirror σ, then C2h = {id, σ, c′2, φ}, with σc′2 = c′2σ = φ. Noting that

φσ′ = σ′φ = c2, we see D2h = {id, σ, σ′, c′2, φ, φσ, φσ
′, φc′2} does not have a symmet-

ric isostatic framework on the cylinder. Indeed, looking at point group tables, this

is all of the possible groups from our symmetries, so our list is complete.

We are now able to use Corollaries 3.3.2 and 3.3.3 to draw conclusions about

τ(Γ)-symmetric isostatic frameworks on the cylinder.

Theorem 3.3.4. Let (G, p) be an isostatic τ(Γ)-symmetric framework on Y. Then

(G, ϕ) is Γ-symmetric, (2, 2)-tight and will satisfy the constraints in Table 3.4.

τ(Γ) Number of edges and vertices fixed by symmetry operations
Ci eφ = 0
Cs eσ = 0
C2 e2′ = 2, v2′ = 0 or e2′ = 0, v2′ = 1
C2v eσ = eσ′ = 0, (e2′ = 2, v2′ = 0 or e2′ = 0, v2′ = 1)
C2h eσ = 0, eφ = 0, e2′ = 2, v2′ = 0

Table 3.4: Fixed edge and vertex counts for symmetry operations on the cylinder.
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Proof. The graph G must clearly be Γ-symmetric and (2, 2)-tight (by [30]). The Ci,

Cs, C2-symmetric isostatic framework values follow immediately from Corollaries

3.3.2 and 3.3.3. For C2v, C2h, we must check that the values found in 3.3.2 and 3.3.3

do not contradict to further restrict. Firstly, for C2v-symmetric isostatic frameworks,

let’s consider the case when the c′2 symmetry gives two fixed edges. The two edges

fixed by c′2 will only be fixed by σ or σ′ if the edges are perpendicular to the mirror

planes, or contained in them. Therefore it is possible to have a framework with

eσ = eσ′ = 0 and e2′ = 2. In the eσ = eσ′ = 0, e2′ = 0, v2′ = 1 case, the vertex fixed

by c′2 will also be fixed by both mirrors (with the alignment we have chosen), so

there is no contradiction here.

Secondly, for C2h-symmetric isostatic frameworks, we again begin by considering

the case when the c′2 symmetry gives two fixed edges. Here again, there is no

requirement for the edges fixed by the c′2 symmetry to be fixed by either the inversion

or the mirror perpendicular to the axis of rotation. However, say v is a vertex

fixed by c′2, then σ(v) = φ(v) ̸= v will also be fixed by c′2, so the frameworks

with eσ = 0, eφ = 0, e2′ = 2, v2′ = 0 are the only possible C2h-symmetric isostatic

frameworks.

Remark 3.3.5. If a C2v-symmetric isostatic framework has two edges fixed by the

rotation, say f1 and f2, then σ(f1) = σ′(f1) = f2. The two edges fixed by the rotation

in a C2h-symmetric isostatic framework, say u1v1 and u2v2, satisfy σ(u1v1) = u2v2

and if σ(u1) = u2, then φ(u1) = v2 and φ(v1) = u2.

3.4 The cone

When considering constructing frameworks on the cone (and similarly later on the

elliptical cylinder), there are typically more difficulties in doing so than on the

sphere or cylinder. An example of this added difficulty comes from considering the

combinatorial reductions, which we introduce in Chapter 4. A common approach to

these reductions, which we follow, is to consider the degree 3 vertices in the graph.

The reason for this is to perform a (2, 1)-reduction (recall from Section 2.1.2). A

(2, 1)-reduction will not be possible if the degree three vertex is in a K4. In the
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class of (2, 3)-tight graphs, there are no K4 subgraphs. For (2, 2)-tight graphs, K4

subgraphs are themselves tight, and techniques (see Section 4.2) have been developed

for this eventuality. In (2, 1)-tight graphs, the vertices of a K4 subgraph are sparse.

However, recursive constructions of (2, 1)-tight graphs have been established [29],

and results for symmetric frameworks have been established in the forced-symmetric

setting [32].

One could consider the torus instead of the cone and derive the same counts as

below. The primary difference for our study is the possibility of a vertex at the

origin, which when present will be fixed by multiple symmetries. We recall from

Section 3.1 the surface-preserving symmetry operations for C are {cn, c′2, σ, σ′, sn}

for all n ≥ 2.

Remark 3.4.1. In the proof of Lemma 3.3.1 we considered how (τ ⊗ Pv)(γ) acts

on the basis vectors of the trivial motion spaces for both of the basis vectors of the

trivial motions of the cone and elliptical cylinder. Namely, for the cone, we take the

results of only the rotational basis vector, and for the elliptical cylinder we take the

results only of the translational basis vector.

Corollary 3.4.2. For the following symmetry groups on the cone, the χ((τ⊗PV )
(T))

row of the character table is

C id cn≥3 c2 c′2 σ σ′ sn≥3 φ

χ((τ ⊗ PV )
(T)) 1 1 1 −1 −1 1 1 1

Proof. This result is proved in the proof of Lemma 3.3.1, by excluding the transla-

tional trivial motion.

Note that if (G, p) is a τ(Γ)-symmetric framework on C with respect to τ and ϕ,

then there is at most one vertex fixed by an element of Γ corresponding to a rotation

cn about the z-axis, c′2 about an axis in the xy-plane, an improper rotation sn about

the z-axis, or the inversion φ. The number of vertices that are fixed by the element

in Γ corresponding to a rotation cn, the half-turn c′2, the reflections σ and σ′, the

improper rotations sn, or the inversion φ are denoted by vn, v2′ , vσ, vσ′ , vsn and vφ

respectively. An edge of G cannot be fixed by an element of Γ that corresponds to

a rotation cn, n ≥ 3, or an improper rotation sn, n ≥ 3. Hence we have separate
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columns for c2 and φ = s2 below. The number of edges that are fixed by the

element in Γ corresponding to the half-turns c2 and c′2, the reflections σ and σ′ and

the inversion φ are denoted by e2, e2′ , eσ, eσ′ and eφ, respectively. We have omitted

the column for the identity, in which χ(P̃E)(id) = |E|+ |V |, χ(τ ⊗ PV )(id) = 3|V |,

and χ((τ ⊗ PV )
(T)) = 1.

C cn≥3 c2 c′2 σ σ′ sn≥3 φ

χ(P̃E) vn e2 + v2 e2′ + v2′ eσ + vσ eσ′ + vσ′ vsn eφ + vφ
χ(τ ⊗ PV ) (2 cos θ + 1)vn −v2 −v2′ vσ vσ′ (2 cos θ − 1)vsn −3vφ

χ((τ ⊗ PV )
(T)) 1 1 −1 −1 1 1 1

Table 3.5: Character table for symmetry operations of the cone.

In the following proofs we shall use Theorem 3.1.5 to draw conclusions from

Table 3.5.

Corollary 3.4.3. Let (G, p) be a τ(Γ)-symmetric isostatic framework on the cone.

Then cn /∈ τ(Γ) for any n ≥ 2, sn /∈ τ(Γ) for n ≥ 2, σ′ /∈ τ(Γ), and φ /∈ τ(Γ).

Furthermore, if an isostatic framework exists for the following symmetry operations,

then it satisfies the following:

• if c′2 ∈ τ(Γ) then e2′ = 1 and v2′ = 0;

• σ ∈ τ(Γ) then eσ = 1.

Furthermore, τ(Γ) is impermissible if it contains symmetries which cannot be gen-

erated by those listed above.

Proof. We begin by looking to conclude which symmetries cannot have isostatic

frameworks. For the cone, rotation about the axis has a count of vn = 2vn cos θ+vn−

1, and we note that there can be at most one fixed vertex (a vertex at (0, 0, 0)). Note

that if there is no fixed vertex, this equality does not hold, so we assume one fixed

vertex. We can solve the equation with vn = 1, to see that the symmetry operation

would have to be c6. However, a c6-symmetric framework is also c3 symmetric,

but we have seen there is no c3-symmetric isostatic framework. For c2 symmetry,

where fixed edges are possible, we have e2 + 2v2 = −1 which is a contradiction.

A σ′-symmetric isostatic framework would have to satisfy eσ + vσ = vσ − 1 which
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is not possible. As on the cylinder, any sn≥3-symmetric framework would also be

ck-symmetric for some k. which is not possible.

This leaves three final groups operations, c′2, σ and φ. For c′2 the table gives

e2 + 2v2 = 1, for σ we have eσ = 1, and for φ we have eφ + 4vφ = −1, which has no

solutions, as required.

Corollary 3.4.4. If (G, p) is a τ(Γ)-symmetric isostatic framework on C, then

τ(Γ) =

Cs = {id, σ};

C2 = {id, c′2}.

Proof. We must find the groups which can be generated from the symmetry opera-

tions {id, σ, c′2}, which do not contain any forbidden symmetry operations found in

Corollary 3.4.3. This gives us the groups of order 2. Since σ′ is a forbidden operation,

any group which contains both σ and c′2 must have the axis of rotation perpendicular

to the plane of reflection. Furthermore, as with this alignment σc′2 = φ, which is

not contained in any groups with isostatic frameworks, and our list is complete.

We are now ready to give the necessary conditions for a isostatic framework on

the cone.

Theorem 3.4.5. Let (G, p) be an isostatic τ(Γ)-symmetric framework on C. Then

(G, ϕ) is Γ-symmetric, (2, 1)-tight and will satisfy the constraints given in Table 3.6:

τ(Γ) Number of edges and vertices fixed by symmetry elements
Cs eσ = 1
C2 e2′ = 1, v2′ = 0

Table 3.6: Fixed edge and vertex counts for symmetry operations on the cone.

Proof. The graph G must be Γ-symmetric and (2, 1)-tight (by [30]). Both rows of

the table follow immediately from corollaries 3.4.3 and 3.4.4.

3.5 The elliptical cylinder

Less analysis has been undertaken on the rigidity of frameworks on the elliptical

cylinder than on the sphere, cylinder and cone. As we will see, isostatic frameworks
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without symmetry on the elliptical cylinder must be (2, 1)-tight. Indeed, [30, The-

orem 1.1] characterises rigidity for what the authors define as “Type 1 surfaces”,

which includes the elliptical cylinder. It is worth mentioning work in progress of

Andrew Sainsbury that focuses on establishing necessary and sufficient conditions

for generic global rigidity on the elliptical cylinder. We recall Remark 3.4.1, and the

following may be taken as a corollary of Lemma 3.3.1. Unlike the cylinder, sphere

or cone, the elliptical cylinder is not invariant for a general rotation about an axis.

Therefore, we only consider id, c2, c
′
2, σ, σ

′ and φ.

Corollary 3.5.1. For the following symmetry groups on the elliptical cylinder, the

χ((τ ⊗ PV )
(T)) row of the character table is

L id c2 c′2 σ σ′ φ

χ((τ ⊗ PV )
(T)) 1 1 −1 1 −1 −1

Proof. This result is proved in the proof of Lemma 3.3.1, by excluding the rotational

trivial motion.

Note that if (G, p) is a Γ-symmetric framework on Y with respect to τ and ϕ,

then there is no vertex fixed by an element of Γ corresponding to a rotation cn about

the z-axis or the inversion φ. The number of vertices that are fixed by the element

in Γ corresponding to the half-turn c′2, or the reflections σ and σ′ are denoted by

v2′ , vσ and vσ′ , respectively. An edge of G cannot be fixed by an element of Γ that

corresponds to a rotation cn, n ≥ 3, or an improper rotation sn, n ≥ 3. Hence we

have separate columns for c2 and φ = s2 below. The number of edges that are fixed

by the element in Γ corresponding to the half-turns c2 and c′2, the reflections σ and

σ′ and the inversion φ are denoted by e2, e2′ , eσ, eσ′ and eφ, respectively.

L id c2 c′2 σ σ′ φ

χ(P̃E) |E|+ |V | e2 e2′ + v2′ eσ + vσ eσ′ + vσ′ eφ
χ(τ ⊗ PV ) 3|V | 0 −v2′ vσ vσ′ 0

χ((τ ⊗ PV )
(T)) 1 1 −1 1 −1 −1

Table 3.7: Character table for symmetry operations of the elliptical cylinder.

The following result from Theorem 3.1.5 and Table 3.7 is immediate, so is given

without proof.
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Corollary 3.5.2. Let (G, p) be a τ(Γ)-symmetric framework on the elliptical cylin-

der. Then c2 /∈ τ(Γ) and σ /∈ τ(Γ). Furthermore, if an isostatic framework exists

for the following symmetry elements, then it satisfies the following:

• if c′2 ∈ τ(Γ) then e2′ = 1 and v2′ = 0;

• if σ′ ∈ τ(Γ) then eσ′ = 0;

• if φ ∈ τ(Γ) then eφ = 1.

Furthermore, τ(Γ) is impermissible if it contains symmetries which cannot be gen-

erated by those listed above.

Corollary 3.5.3. If (G, p) is a τ(Γ)-symmetric isostatic framework on L, then

τ(Γ) =


Ci = {id, φ};

Cs = {id, σ′};

C2 = {id, c′2}.

Proof. The possibility of Ci-, Cs-, and C2-symmetric isostatic frameworks on L is

immediate from Corollary 3.5.2. We therefore must check if any other groups can be

generated from σ′, c′2, and φ which do not include symmetries from Corollary 3.5.2

which do not permit isostatic frameworks. Here we are only given three choices for

how to compose two of the elements: σ′c′2 is a reflection containing the z-axis; σ′φ

is a half-turn rotation about the z-axis; c′2φ is also a reflection containing the z-axis

(orthogonal to the reflection plane generated by σc′2). Hence the list in the corollary

is complete.

Theorem 3.5.4. Let (G, p) be an isostatic τ(Γ)-symmetric framework on L. Then

(G, ϕ) is Γ-symmetric, (2, 1)-tight and will satisfy the constraints given in Table 3.8:

3.6 The ellipsoid

The ellipsoid is an example of a surface where T = ∅, hence Theorem 3.1.5 gives the

equation χ(P̃E) = χ(τ ⊗PV ). We recall from Section 3.1 that the surface-preserving
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τ(Γ) Number of edges and vertices fixed by symmetry elements
Ci eφ = 1
Cs eσ = 1
C2 e2′ = 1, v2′ = 0

Table 3.8: Fixed edge and vertex counts for symmetry operations on the elliptical
cylinder.

symmetry operations we consider are half-turns, reflections and the inversion. We

can therefore immediately give the full character table for τ(Γ)-symmetric frame-

works on E (Table 3.9). We note that on the ellipsoid, there can be no vertices fixed

by the inversion. We remark that for a framework on E, any graph G = (V,E) must

E id c2 σ φ

χ(P̃E) |E|+ |V | e2 + v2 eσ + vσ eφ
χ(τ ⊗ PV ) 3|V | −v2 vσ 0

Table 3.9: Character table for symmetry operations of the ellipsoid.

satisfy |E| = 2|V |. This provides significant difficulty in establishing combinatorial

results akin to those found in Chapter 4, as the graph may be 4-regular (that is all

vertices are of degree 4). As a result, there is no known characterisation of generic

rigidity or generic global rigidity on the ellipsoid [18]. One would expect similar

difficulties would be found when attempting to find a characterisation of symmetric

rigidity.

Corollary 3.6.1. Let (G, p) be a τ(Γ)-symmetric framework on the ellipsoid. If the

following symmetry operations are in τ(Γ), then they satisfy the following:

• if c2 ∈ τ(Γ) then e2 = v2 = 0;

• if σ ∈ τ(Γ) then eσ = 0;

• if φ ∈ τ(Γ) then eφ = 0.

Furthermore, τ(Γ) is impermissible if it contains symmetries which cannot be gen-

erated by those listed above.

Proof. This is a consequence of Theorem 3.1.5, which we use to draw conclusions

from Table 3.9. The results follow immediately.
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Corollary 3.6.2. If (G, p) is a τ(Γ)-symmetric isostatic framework on E, then

τ(Γ) =



Ci = {id, φ};

Cs = {id, σ};

C2 = {id, c2};

C2h = {id, σ, c2, φ};

D2 = {id, c2x, c2y, c2z};

D2h = {id, σ1, σ2, c2, φ, σ1φ, σ2φ, c2φ},

where c2x, c2y, c2z are rotations about the x-, y-, z-axis respectively, and σ1, σ2 ∈

{σxy, σxz, σyz}.

Proof. None of the operations in Table 3.9 forbid isostatic frameworks, hence we are

tasked to find which groups {id, c2, σ, φ} generate. We observe choosing any two of

{c2, σ, φ} will together generate the third. Hence we have C2h, where for example,

σc2 = φ, hence c2 rotates about the axis which is perpendicular to the plane of the

reflection. For D2 we note that c22r = id for any r = x, y, z, and the composition of

any two of c2x, c2y, c2z generates the third. To generate D2h, let σ1 ∈ {σxy, σxz, σyz}

and σ2 ∈ {σxy, σxz, σyz} \ σ1. Then σ1σ2 = c2, hence c2 rotates about the line which

is the intersection of the two planes of reflection of σ1 and σ2. One can check that

both half turns not chosen as c2 in C2h can be generated from {c2, σ, φ}, completing

the proof.

Theorem 3.6.3. Let (G, p) be an isostatic τ(Γ)-symmetric framework on E. Then

(G, ϕ) is Γ-symmetric, (2, 0)-tight and will satisfy the constraints given in Table

3.10:

τ(Γ) Number of edges and vertices fixed by symmetry elements
Ci eφ = vφ = 0
Cs eσ = 0
C2 e2 = v2 = 0
C2h eσ = e2 = eφ = v2 = vφ = 0, 2|vσ
D2 e2 = v2 = 0
D2h eσ = e2 = eφ = v2 = vφ = 0, 2|vσ

Table 3.10: Fixed edge and vertex counts for symmetry operations on the ellipsoid.
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Proof. The graph G must be Γ-symmetric and is (2, 0)-tight from the count of the

identity column in Table 3.9. Note that sparsity is a result of all subgraphs of the

graph being symmetric to the identity group, and thus must too follow this count.

The first four rows follow immediately from Corollaries 3.6.1 and 3.6.2. Since in

Corollary 3.6.1, we have no fixed edges or vertices for c2 and φ, and no fixed edges

for σ, we only need to check if in C2h and D2h the vertices fixed by σ are restricted.

Any point on the mirror would have its image point under the inversion on the

mirror too. Since this point can never coincide with the original, the number of

vertices fixed by the mirror must be divisible by 2. It is possible for the image under

inversion and half turn rotation to coincide, so the number of mirror fixed vertices is

not necessarily divisible by 4. Indeed, in D2h, we have the same structure but now

with two orthogonal mirrors. This does not impact the number of vertices fixed by

each mirror.

3.7 Necessary conditions for isostatic linearly con-

strained frameworks

For the remainder of the chapter we turn our attention to linearly constrained frame-

works. We provide analogous results to those in Section 3.1. We require some altered

definitions, where which term being used should be clear from the context.

Let G = (V,E, L) be a graph and Γ be a finite group. Let ϕ : Γ → Aut(G) and

τ : Γ → O(Rd) be homomorphisms. We say (G, p, q) is Γ-symmetric (with respect

to ϕ and τ) if for every γ ∈ Γ, τ(γ)pi = pϕ(γ)i for all i ∈ [|V |], and τ(γ)qj = qϕ(γ)j

for all j ∈ [|L|].

Let τ(γ) denote the d×d matrix which represents γ with respect to the canonical

basis of Rd. Let PV (γ), PE(γ) and PL(γ) be the permutation matrix of V , E and L

respectively, induced by γ. We define a new matrix P ∗
L : Γ → Rd|L| with respect to

τ by

P ∗
L(γ)i,j =

τ(γ)
qi
qi

if i = j and li ∈ L

PL(γ)i,j otherwise,

that is to say for a fixed loop li, the normal to the linear constraint qi is either
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preserved or inverted by τ(γ), and the entry of the matrix P ∗
L corresponding to

that fixed loop is ±1 respective to this preservation or inversion. We then have

two important maps, τ ⊗ PV : Γ → R(d|V |)×(d|V |) and PE,L := PE ⊕ P ∗
L : Γ →

R(|E|+|L|)×(|E|+|L|).

3.7.1 Block-diagonalization of the rigidity matrix

Lemma 3.7.1. Let G be a graph, τ(Γ) be a symmetry group, and ϕ : Γ → Aut(G)

be a homomorphism. If R(G, p, q)u = z, then for all γ ∈ Γ, we have

R(G, p, q)(τ ⊗ PV )(γ)u = PE,L(γ)z.

Proof. Suppose R(G, p, q)u = z. Fix γ ∈ Γ and let τ(γ) be the orthogonal matrix

representing γ with respect to the canonical basis of Rd. We enumerate the rows of

R(G, p, q) by the set {a1, . . . , a|E|, b1, . . . , b|L|}. By [40], we know that (R(G, p)(τ ⊗

PV )(γ)u)ai = (P̃E(γ)z)ai , for all i ∈ [|E|]. We are left to show the result holds for

the rows of R(G, p, q) which represent the normal vectors of the vertices with loops.

Write u ∈ Rd|L| as u = (u1, . . . , u|L|), where ui ∈ Rd for all i, and let Φ(γ)(li) = lk.

We first see that (P̃E(γ)z)bk = zbi by the definition of PL(γ). From R(G, p, q)u = z,

we also get that zbi = n(qi) ·ui. Then (τ⊗PV )(γ)u = (ū1, . . . , ū|L|), with ūl = τ(γ)uj

when Φ(γ)(vj) = vl. Therefore,

(R(G, p, q)(τ ⊗ PV )(γ)u)bk = n1(pk) · (τ(γ)ui)1 + . . . nd(pk) · (τ(γ)ui)d

= n(pk) · (τ(γ)ui)

= n(τ(γ)pi) · (τ(γ)ui).

Finally, the definition of symmetric looped graph and the fact that the canonical

inner product on Rd is invariant under the orthogonal transformation τ(γ) ∈ O(Rd)

give that

n(τ(γ)pi) · (τ(γ)ui) = τ(γ)n(pi) · (τ(γ)ui) = n(pi) · ui = zbi ,

60



finishing the proof.

The following is an immediate corollary of Schur’s lemma (see e.g. [43]) and the

lemma above.

Corollary 3.7.2. Let (G, p, q) be a τ(Γ)-symmetric framework and let I1, . . . , Ir be

the pairwise non-equivalent irreducible linear representations of τ(Γ). Then there

exist matrices A,B such that the matrices B−1R(G, p, q)A and A−1R(G, p, q)TB are

block-diagonalised and of the form

R1 0

R2

. . .

0 Rr


where the submatrix Ri corresponds to the irreducible representation Ii.

This block decomposition corresponds to Rd|V | = X1 ⊕ · · · ⊕Xr and R|E|+|L| =

Y1⊕· · ·⊕Yr. The space Xi is the (τ⊗PV )-invariant subspace of Rd|V | corresponding

to Ii, and the space Yi is the P̃E-invariant subspace of R|E| corresponding to Ii.

Then, the submatrix Ri has size (dim(Yi))× (dim(Xi)).

3.7.2 Additional necessary conditions

Using the block-decomposition of the rigidity matrix, we may follow the basic ap-

proach described in [11, 40] to derive added necessary conditions for a symmetric

linearly constrained framework to be isostatic. We first need the following result.

If A = (aij) is a square matrix then the trace of A is given by tr(A) =
∑

i aii.

For a linear representation ρ of a group Γ and a fixed ordering γ1, . . . , γ|Γ| of the

elements of Γ, the character of ρ is the |Γ|-dimensional vector χ(ρ) whose ith entry

is tr(ρ(γi)).

Theorem 3.7.3. Let (G, p, q) be a τ(Γ)-symmetric framework. If (G, p, q) is iso-

static, then

χ(PE,L) = χ(τ ⊗ PV ).
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Proof. Since (G, p, q) is isostatic, the rigidity matrix of (G, p, q) is a non-singular

square matrix. Thus, by Lemma 3.7.1, we have

R(G, p, q)(τ ⊗ PV )(γ)(R(G, p, q))
−1 = PE,L(γ) for all γ ∈ Γ.

It follows that τ ⊗ PV and PE,L are isomorphic representations of Γ. Hence,

χ(PE,L) = χ(τ ⊗ PV ).

3.8 Two-dimensional linearly constrained frame-

works

Rigidity in the plane is well studied. There are classical results for generic frame-

works [36, 23], symmetric frameworks [38, 39], linearly constrained frameworks [44],

and globally rigid linearly constrained frameworks [15]. The setting of symmetric

linearly constrained frameworks in the plane is conducive to new results. In the

following section we calculate the characters of the representations appearing in the

statement of Theorem 3.7.3 for the plane. The graphs satisfying these conditions for

Cn-symmetric frameworks are further studied in Chapter 5: firstly Section 5.2 con-

siders graphs with isostatic frameworks under the presence of a half-turn symmetry,

and Section 5.3 considers graphs with isostatic frameworks under the presence of a

n-fold symmetry for odd n. This work has been submitted for review in [34].

The surface-preserving symmetry operations for the plane are rotations cn, n ∈

N, around the origin, reflections (without loss of generality we take the mirror line

to be the x-axis), denoted by σ. With these symmetries we will now give the full

character table for τ(Γ)-symmetric isostatic frameworks on the plane. We give the

the row corresponding to τ ⊗ PV without calculation as the entries can be seen

directly from the matrix representation.

For a Γ-symmetric graph G = (V,E, L) with respect to ϕ : V → Aut(G), we

say that a loop vv ∈ L is fixed by γ ∈ Γ if v ∈ V is fixed by γ. Loops fixed by γ

correspond to linear constraints of vertices fixed by γ, where the linear constraint is
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also fixed by τ(γ). In the matrix PE,L there is two possibilities for the entry of a fixed

loop, namely ±1, representing if the normal of the linear constraint is preserved or

inverted.

Neither an edge or a loop of G can be fixed by an element of Γ that corresponds

to a rotation cn, n ≥ 3, so we have a separate column for c2 below. The number of

vertices that are fixed by the element in Γ corresponding to the half-turn c2, a general

n-fold rotation cn, or the reflection σ are denoted by v2′ , vn and vσ, respectively. The

number of edges that are fixed by the element in Γ corresponding to the half-turn

c2 and the reflection σ are denoted by e2 and eσ respectively. Finally, the number of

loops that are fixed by c2, cn and σ are l2, ln, and lσ,+, lσ,− respectively, where lσ,+

counts linear constraints perpendicular to the mirror whose normals are preserved,

and lσ,− counts those linear constraints parallel to the mirror with inverted normals.

Before giving the character table, we consider the values corresponding to the

fixed linear constraints in PE,L(γ) for σ and cn for all n ≥ 2. For n ≥ 3, no lines

are fixed by cn. A half turn which fixes a linear constraint would map a normal

to its inverse, hence have a −1 entry representing that loop in PE,L(c2). Linear

constraints parallel to a mirror would have normals which are perpendicular, hence

the normals would map to its inverse having a −1 entry in the matrix PE,L(σ),

whereas the linear constraints perpendicular have normals parallel to the mirror, so

have a 1 representing the loop in the matrix PE,L(σ). This gives all the information

necessary to complete Table 3.11.

id cn≥3 c2 σ
χ(PE,L) |E|+ |L| 0 e2 − l2 eσ + lσ,+ − lσ,−
χ(τ ⊗ PV ) 2|V | 2vn cos(

2π
n
) −2v2 0

Table 3.11: Character table for symmetry operations of the plane.

In the following proofs we shall use Theorem 3.7.3 to draw conclusions from Ta-

ble 3.11. The first column (for the identity element) simply recovers the result from

Theorem 2.4.2 that |E|+ |L| = 2|V | for an isostatic linearly constrained framework

in the plane. The other columns provide further conditions for isostaticity in the

presence of symmetry. It is easy to see that if the counts in Corollary 3.8.1 are

satisfied for a τ(Γ)-symmetric framework, then the corresponding counts are also
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satisfied for any τ(Γ′)-symmetric subframework with Γ′ ⊆ Γ.

Corollary 3.8.1. If (G, p, q) is a τ(Γ)-symmetric isostatic linearly constrained frame-

work in the plane, then the following hold,

• for n odd or n ≥ 6 even, if cn ∈ τ(Γ), then vn = en = ln = 0;

• if c2 ∈ τ(Γ) then v2 = e2 = l2 = 0 or v2 = 1, l2 = 2;

• if c4 ∈ τ(Γ) then v4 = 0, 1 and e4 = l4 = 0;

• if σ ∈ τ(Γ) then eσ + lσ,+ = lσ,−.

Furthermore, τ(Γ) is impermissible if it contains symmetries which cannot be gen-

erated by those listed above.

Proof. Recall from Theorem 3.7.3 that if (G, p, q) is a τ(Γ)-symmetric isostatic

framework, then χ(PE,L) = χ(τ ⊗ PV ). We now consider each of the columns in

Table 3.11. From the second column, we obtain vn cos(
2π
n
) = 0, hence either vn = 0

or cos(2π
n
) = 0. The latter is only possible for a positive integer n when n = 4.

Hence, for any symmetry group containing c4, we have v4 = 0 or v4 = 1, since p is

injective. For all other n ≥ 3, there are no fixed vertices, edges or loops.

In the second column, the equation χ(PE,L) = χ(τ ⊗ PV ) can only hold for

c2 ∈ τ(Γ) if 2v2 = l2 − e2. Again recalling that for rotations we may have at most

one fixed vertex, this implies that either v2 = 0 then necessarily we have l2 = 0 and

hence e2 = 0, or v2 = 1 then e2 = l2 − 2. Considering the condition given by id at

the single fixed vertex, l2 ≤ 2. This gives when v2 = 1, l2 = 2 and e2 = 0. Any group

containing c4 necessarily contains c2, and the two conditions above are not mutually

exclusive. Instead, a fixed point in a C4-symmetric framework is constrained by two

lines which must be perpendicular.

For the reflection, from the table, we immediately have eσ + lσ,+ = lσ,−.

Note that from these symmetry operations any symmetry group in the plane

is possible. This contrasts with the situation for bar-joint frameworks in the plane

where isostatic symmetric frameworks are only possible for a small number of sym-

metry groups: see [7, 38, 39] for details.
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Corollary 3.8.2. If (G, p, q) is a τ(Γ)-symmetric isostatic linearly constrained frame-

work in the plane, then

τ(Γ) =


Cs = {id, σ}

Cn = {id, cn, . . . , cn−1
n };

Cnv = {id, cn, . . . , cn−1
n , σ, . . . , σcn−1

n }.

We are now able to use Corollary 3.8.1 to summarize the conclusions about

τ(Γ)-symmetric isostatic linearly constrained frameworks for each possible symmetry

group τ(Γ). We say that (G, ϕ) is τ(Γ)-tight if it is tight, Γ-symmetric and satisfies

the relevant constraints in Table 3.12.

τ(Γ) Number of edges, loops and vertices fixed by symmetry operations
Cs eσ + lσ,+ = lσ,−
Cn vn, en, ln = 0
C2 v2, e2, l2 = 0 or v2 = 1, e2 = 0, l2 = 2
C4 v2, v4, e2, e4, l2, l4 = 0 or v2, v4 = 1, e2, e4 = 0, l2 = 2, l4 = 0
C2v eσ + lσ,+ = lσ,−, (v2, e2, l2 = 0 or v2 = 1, e2 = 0, l2 = 2)
C4v eσ + lσ,+ = lσ,−, (v2, v4, e2, e4, l2, l4 = 0 or v2, v4 = 1, e2, e4 = 0, l2 = 2, l4 = 0)
Cnv eσ + lσ,+ = lσ,−, vn, en, ln = 0

Table 3.12: Fixed edge, loop and vertex counts for symmetry operations on the
plane. Note that n in the above table is a positive integer, not equal to 2 or 4.

Theorem 3.8.3. Let (G, p, q) be an isostatic τ(Γ)-symmetric framework on the

plane. Then (G, ϕ) is τ(Γ)-tight.

Proof. Clearly G is Γ-symmetric and tight by Theorem 2.4.2. That the constraints

in Table 3.12 are satisfied follows immediately from Corollary 3.8.1 for the groups Cs

and Cn. For dihedral groups we check if any of the constraints from Corollary 3.8.1

are mutually exclusive. A vertex fixed by c2 will be a point at the origin, therefore

lie on any mirror. The two c2-fixed loops incident to this vertex can be σ symmetric

to each other or, one must lie on the mirror and the other perpendicular. With an

additional c4 symmetry operation, these linear constraints must be perpendicular.

Either of the two cases above is still possible, with the mirrors bisecting the angle
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between the linear constraints or one line lying on each mirror. For Cnv there will

be no point at the origin. Any vertices, edges or loops fixed by a mirror will have

an orbit of cn symmetric copies, all fixed by their own respective mirrors. None of

this contradicts cn counts.

3.9 Three-dimensional linearly constrained frame-

works

We turn our attention to three-dimensional linearly constrained frameworks. The

symmetry operations to consider in R3 are rotations around an axis by an angle 2π
n
,

cn for n ∈ N, reflections in a plane, denoted by σ, and improper rotations around an

axis by an angle 2π
n
, denoted by sn, n ≥ 2. Recall that for n = 2, sn is the inversion

φ in the origin.

We begin with comments on χ(PE,L) for each symmetry operation. We recall that

loops represent constraining a point to a hyperplane, which in this case restricts the

point to a plane. For c2, a fixed loop would lie on a vertex along the axis of rotation.

Any linear constraint could contain this axis of rotation, or be perpendicular to it. If

the linear constraint contained the axis, any normal to that linear constraint would

be inverted by c2. Count these fixed loops with l2,−, noting that these would have

negative entry in P ∗
L. Conversely, a constraint plane perpendicular to the axis has

its normal preserved by c2, and we count these loops with l2,+. For higher order

rotations, fixed vertices again lie on the axis of rotation. A fixed loop would need

the constraint plane to be perpendicular to the axis of rotation, and the normal to

this plane would be preserved by cn. For improper rotations, the only fixed point

in R3 is the origin. For the inversion any plane through the origin would be fixed,

with the the normal being inverted. Higher order improper rotations only fix the

plane through the origin perpendicular to the axis of rotation, and sn inverts the

normal of this plane. A plane can be fixed by a reflection if the constraint plane is

the mirror plane, which inverts the normal and we count with lσ,−. Alternatively

when the constraint plane is orthogonal to the mirror plane the normal would be

preserved, and we count these fixed loops with lσ,+.
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We can give the entries for χ(τ ⊗PV ) by reading immediately from the matrices,

and so we are ready to give the character table for symmetry operations of R3.

R3 id c2 cn sn σ
χ(PE,L) |E|+ |L| e2 + l2,+ − l2,− en + ln es,n − ls,n eσ + lσ,+ − lσ,−
χ(τ ⊗ PV ) 3|V | −v2 vn(2 cos(

2π
n
) + 1) vs,n(2 cos(

2π
n
)− 1) vσ

Table 3.13: Character table for symmetry operations of R3.

Corollary 3.9.1. If (G, p, q) is a τ(Γ)-symmetric isostatic linearly constrained frame-

work in R3, then the following hold,

• if c2 ∈ τ(Γ) then v2 + e2 + l2,+ = l2,−;

• if c3 ∈ τ(Γ) then e3, l3 = 0;

• if c4 ∈ τ(Γ) then v4 = e4 + l4;

• if c6 ∈ τ(Γ) then v6, e6, l6 = 0;

• if φ ∈ τ(Γ) then eφ = 0 and 3vφ = lφ;

• if s3 ∈ τ(Γ) then vs,3, es,3, ls,3 = 0;

• if s4 ∈ τ(Γ) then es,4 = 0 and either ls,4 = vs,4 = 0 or ls,4 = vs,4 = 1;

• if s6 ∈ τ(Γ) then es,6, ls,6 = 0 and vs,6 = 0, 1;

• if σ ∈ τ(Γ) then eσ + lσ,+ = vσ + lσ,−.

Furthermore, τ(Γ) is impermissible if it contains symmetries which cannot be gen-

erated by those listed above.

Proof. We will first consider rotations. The result of c2 follows immediately from the

table. For n ≥ 3, we check for solutions to the equation en + ln = vn(2 cos(
2π
n
) + 1).

As en, ln, vn are integers, we require cos(2π
n
) to be rational. By Theorem 2.5.1, this

happens if and only if n = 1, 2, 3, 4, 6. Solving the equation for n = 3, 4, 6, we

deduce the equations e3 + l3 = 0, v4 = e4 + l4, and 2v6 = e6 + l6. Since e3, l3 are

positive, this gives the required result for c3 and c4. Then, any edge or loop fixed

by c6 will be fixed by c3 (since the edge must be between two fixed vertices and the
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loop represents a plane perpendicular to the axis of rotation), since e3, l3 = 0 implies

e6, l6 = 0, and this gives that v6 = 0.

Considering improper rotations, for the inversion Table 3.13 gives eφ−lφ = −3vφ.

With the inversion, the only possibility for a fixed vertex is at the origin, hence

vφ = 0, 1. Recall that fixed loops are incident to fixed vertices. When vφ = 0,

lφ = 0, and so eφ = 0. Alternatively, vφ = 1 and eφ − lφ = −3. An isostatic linearly

constrained framework in R3 may have at most 3 linear constraints at a point, and

so eφ− 3 ≤ −3. For improper rotations of order at least 3, there can be at most one

fixed loop, with linear constraint a plane perpendicular to the axis of rotation. For

n = 3, es,3 − ls,3 = −2vs,3. Again, vs,3 = 0, 1 and ls,3 ≤ 3, so the possible solutions

for (es,3, ls,3, vs,3) are (0, 0, 0), (0, 2, 1) and (1, 3, 1). In the latter two cases, there are

more loops than permissible, so (es,3, ls,3, vs,3) = (0, 0, 0) is the unique solution. For

n = 4, es,4 − ls,4 = −vs,4. Here, (es,4, ls,4, vs,4) = (0, 0, 0), (0, 1, 1). As (s4)
2 = c2,

we consider the interactions of edges loops and vertices fixed by s4 with c2. Indeed,

neither of these cases conflict with the conditions of c2. In the latter case, the vertex

fixed by s4 would be fixed by c2, the loop fixed by s4 would be fixed by c2 and

have its normal preserved. Therefore an isostatic framework would require l2,− = 2,

which could happen with one loop the image of the other under s4. For n = 6,

es,6 − ls,6 = 0. We note that (s6)
2 = c3 and (s6)

3 = φ. As l3 = 0, this forces ls,6 = 0,

which leads to es,6 = 0. If vs,6 = 1, then vφ = 1 and lφ = 3, and s6 and c3 must map

these constraint planes to each other.

Finally, the result for the reflection follows immediately from Table 3.13.

The symmetries named in Corollary 3.9.1 are ones which occur naturally in the

real world. For example, these symmetries are commonly seen in the structure of

crystals. In this setting, the groups they produce are called the crystallographic

point groups. For further reading on point groups, the reader is recommended [2].

In the following corollary, cn and sn will denote rotations about the ‘primary’ axis of

the group, and c′2 is a half turn rotation about an axis perpendicular to the primary

axis. To denote reflections, σ is a reflection in a plane containing the primary axis,

and σ′ a reflection in a plane perpendicular to this axis. Schoenflies notation can

cause difficulties in describing the largest of the groups, especially when multiple
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axes of rotation are involved (and there is no clear candidate for the ‘primary’ axis),

as well as multiple mirror planes which are not perpendicular or containing the

principal rotation axis. For this reason, in the following corollary, the symmetry

groups Dnd, T, Td, Th, O,Oh are listed with the symmetry operations they contain

from Corollary 3.9.1.

Corollary 3.9.2. If (G, p, q) is a τ(Γ)-symmetric isostatic linearly constrained frame-

work in R3, then

τ(Γ) =



Cs = {id, σ};

Ci = {id, φ};

Cn = {id, cn, . . . , cn−1
n } for n ∈ {2, 3, 4, 6};

Sn = {id, sn, . . . , sn−1
n } for n ∈ {4, 6};

Cnv = {id, cn, . . . , cn−1
n , σ, . . . , σcn−1

n } for n ∈ {2, 3, 4, 6};

Cnh = {id, cn, . . . , cn−1
n , σ′, . . . , σ′cn−1

n } for n ∈ {2, 3, 4, 6};

Dn = {id, cn, . . . , cn−1
n , c′2, . . . , c

′
2c

n−1
n } for n ∈ {2, 3, 4, 6};

Dnh = {id, cn, . . . , cn−1
n , c′2, . . . , c

′
2c

n−1
n , σ, . . . , σc′2c

n−1
n } for n ∈ {2, 3, 4, 6};

Dnd, {id, cn, c′2, σ, s2n} ∈ Dnd for n ∈ {2, 3};

T, {id, c2, c3} ∈ T ;

Td, {id, c2, c3, σ, s4} ∈ Td;

Th, {id, c2, c3, σ, φ} ∈ Th;

O, {id, c2, c3, c4} ∈ O;

Oh, {id, c2, c3, c4, σ} ∈ Oh.

Proof. We begin by noting that S3 = C3v so does not appear in the above. Further,

both s8 ∈ D4d and s12 ∈ D6d so do not have isostatic frameworks associated with

them. Then, every symmetry operation in Corollary 3.9.1 can have no associated

fixed elements. Hence, any group which contains only symmetries generated by

elements of {c2, c3, c4, c6, φ, s3, s4, s6, σ} may permit an isostatic linearly constrained

framework.

As in previous sections, the identity column of the character table gives |E| +

|L| = 3|V |. For linearly constrained frameworks in Rd for d ≥ 3, there is no
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τ(Γ) Number of edges, loops and vertices fixed by symmetry operations
Cs eσ + lσ,+ = vσ + lσ,−
Ci eφ = 0, 3vφ = lφ
C2 v2 + e2 + l2,+ = l2,−
C3 e3, l3 = 0
C4 v2 = v4 = e4 + l4, l2,+ = l4, v2 + e2 + l2,+ = l2,−
C6 ei, li, vi = 0 for i = 2, 3, 6
C2v eσ + lσ,+ = vσ + lσ,−, v2 + e2 + l2,+ = l2,−
C3v eσ + lσ,+ = vσ + lσ,−, e3, l3 = 0
C4v eσ + lσ,+ = vσ + lσ,−, v2 = v4 = e4 + l4, l2,+ = l4, v2 + e2 + l2,+ = l2,−
C6v eσ + lσ,+ = vσ + lσ,−, ei, li, vi = 0 for i = 2, 3, 6
C2h eσ′ + lσ′,+ = vσ′ + lσ′,−, v2 + e2 + l2,+ = l2,−
C3h eσ′ + lσ′,+ = vσ′ + lσ′,−, e3, l3 = 0
C4h eσ′ + lσ′,+ = vσ′ + lσ′,−, v2 = v4 = e4 + l4, l2,+ = l4, v2 + e2 + l2,+ = l2,−
C6h eσ′ + lσ′,+ = vσ′ + lσ′,−, ei, li, vi = 0 for i = 2, 3, 6
S4 es,4 = 0, ls,4 = vs,4 = 0, 1, v2 + e2 + l2,+ = l2,−
S6 es,6, e3, eφ, ls,6, l3 = 0, vs,6 = vφ = 0, 1, lφ = 3vφ

Table 3.14: Fixed edge, loop and vertex counts for some symmetry operations in
R3.

analogous result to Theorem 2.4.2. However, we can extend Theorem 2.4.3 to apply

under the presence of the symmetries in Corollary 3.9.2. We say that (G, ϕ) is τ(Γ)-

3-tight if it is 3-tight, Γ-symmetric and satisfies the relevant constraints in Table

3.14. We omit the rows of the table for Dn, Dnh, Dnd, T, Td, Th, O and Oh, which as a

result are not included in the following theorem. Note that a marginal improvement

may be made here, using a result akin to Lemma 2.2.2, to improve upon the 3-tight

condition. However, it is likely the constructive proof, should it follow that in [20],

would not be enough to prove any strengthening of the theorem.

Theorem 3.9.3. Let (G, ϕ) be a Γ-symmetric looped simple graph with the property

that every vertex of G is incident with at least 1 loop, and (G, p, q) be an isostatic

τ(Γ)-symmetric framework in R3. Then (G, ϕ) is τ(Γ)-3-tight and K5-free.

Proof. We know G is Γ-symmetric and that it is 3-sparse and K5-free by Theorem

2.4.3. That the constraints in Table 3.12 are satisfied follows immediately from

Corollary 3.9.1 for the groups Cs, C2, C3, Ci. For C4, we recall any vertex fixed by

either c2 or c4 is fixed by both, and lies on the axis of rotation. Any edge fixed by
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c4 must have endpoints both fixed, and thus is fixed by c2. Any loop fixed by c4

will represent a plane perpendicular to the rotation axis; such planes will be fixed

by, and have their normals preserved by, c2. Hence l2,+ = l4. The other conditions

in the table come from the corollary. For C6, since v6 = 0, there are no vertices on

the axis of rotation, so v2 and v3 are also zero. As a result, there are no fixed loops,

and therefore the equation for c2 in Corollary 3.9.1 gives e2 = 0.

For dihedral groups we check if any of the constraints from Corollary 3.8.1 are

mutually exclusive. For groups Cnv, it is reasonably easy to check that the con-

straints do not conflict, as there is no requirement for the edges, loops and vertices

fixed by a rotation to be fixed by the reflection. For groups Cnh, any vertices fixed

by the rotation will be fixed by the reflection. One should consider whether loops

fixed by the rotation will have mirror image loops, or are fixed by σ′. In the later

case, one would need to consider whether the normals are preserved or inverted.

Additionally, sn ∈ Cnh so the fixed elements of improper rotations should also be

considered. However, after inspection it can be seen that the constraints are not

mutually exclusive.

For rotation-reflection groups S4 and S6, we first observe the possible loop and

vertex fixed by s4 would be fixed by c2, and the image of any c2 fixed element under

s4 would still be fixed by c2. This does not lead to any further constraints. Recall

s26 = c3 and s36 = φ. The vertex fixed at the origin must have 3 loops fixed by the

inversion. These loops must be formed from a single orbit by s6 or c3. Vertices on

the axis of rotation fixed by c3 will have an image under φ which is also fixed by c3.

None of these conditions are mutually exclusive.

We remark that the fixed element conditions for a C4-3-tight graph have non-

zero solutions. For example, v2 = 2, e2 = e4 = 1, l2,+ = l4 = 1, l2,− = 4. Indeed, we

may construct a graph with exactly these fixed elements (see Figure 3.1).
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− −

+
−
−

Figure 3.1: A C4-3-tight, Γ = {id, γ, γ2, γ3}-graph, with τ(γ) = c4. All elements are
fixed by γ2. We note γ fixes the vertices, the edge, and the + marked loop, and
transposes the − marked loops at each vertex.

3.10 Linearly constrained frameworks in higher

dimensions

We finally look at d-dimensional linearly constrained frameworks for some symmetry

operations and a selection of the symmetry groups they generate. In this section,

we use Schoenflies notation outside its intended application of symmetries in two

and three dimensions. Indeed, this limits the symmetries that can be discussed. For

example in R4, we would not be able to describe the symmetry given in the matrix

M =


cos(2π

3
) − sin(2π

3
) 0 0

sin(2π
3
) cos(2π

3
) 0 0

0 0 cos(π
2
) − sin(π

2
)

0 0 sin(π
2
) cos(π

2
)

 ,

representing a double rotation, with one threefold rotation in the xy-plane and a

fourfold rotation in the zw-plane. For a complete description of symmetry operations

in higher dimensions, one may turn to Coxeter notation. The symmetry operations

we consider are rotations around an axis by an angle 2π
n
, cn for n ∈ N, reflections in

a hyperplane, denoted by σ, and improper rotations around an axis by an angle 2π
n
,

denoted by sn, n ≥ 2. Unlike for d = 3, s2 is not the inversion φ in the origin.

Again we begin with comments about χ(PE,L) for each symmetry operation. We

recall that loops represent constraining a point to a hyperplane. We further note that
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an axis of rotation in d-dimensional space would be a (d− 2)-dimensional subspace.

For cn, a fixed loop would lie on a vertex along the axis of rotation. Any (d − 1)-

dimensional constraint could contain this axis of rotation, or contain the plane of

rotation. If the hyperplane contained the axis, the normal would lie in the plane of

rotation and therefore would be inverted by c2; again we count these fixed loops with

l2,−. Higher order rotations do not preserve the hyperplane in this case. Conversely,

when the constraint hyperplane contains the rotation plane, its normal is preserved

by c2 and cn generally, and we count these loops with l2,+ and ln respectively. For

higher order rotations, fixed vertices again lie on the axis of rotation. For improper

rotations, the only fixed point is the origin. Higher order improper rotations only

fix hyperplanes through the origin containing the plane of rotation, and sn inverts

the normal of these planes. The inversion fixes any hyperplane through the origin,

with the the normal being inverted. A hyperplane can be fixed by a reflection if the

constraint plane is the mirror plane, which inverts the normal and we count with

lσ,−. Alternatively when the constraint plane is orthogonal to the mirror plane the

normal would be preserved, and we count these fixed loops with lσ,+.

We can give the entries for χ(τ ⊗PV ) by reading immediately from the matrices,

and so we are ready to give the character table for symmetry operations of Rd. We

have omitted the column for the identity, in which χ(PE,L)(id) = |E| + |L| and

χ(τ ⊗ PV )(id) = d|V |.

Rd c2 cn sn φ σ
χ(PE,L) e2 + l2,+ − l2,− en + ln es,n − ls,n eφ − lφ eσ + lσ,+ − lσ,−
χ(τ ⊗ PV ) v2(d− 4) vn(2 cos(

2π
n
) + d− 2) vs,n(2 cos(

2π
n
) + d− 4) −dvφ vσ(d− 2)

Table 3.15: Character table for some symmetry operations of Rd.

Corollary 3.10.1. If (G, p, q) is a τ(Γ)-symmetric isostatic framework in Rd, then

the following hold,

• if c2 ∈ τ(Γ) then e2 + l2,+ = (d− 4)v2 + l2,−;

• if c3 ∈ τ(Γ) then e3 + l3 = (d− 3)v3;

• if c4 ∈ τ(Γ) then e4 + l4 = (d− 2)v4;
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• if c6 ∈ τ(Γ) then e6, l6, v6 = 0;

• if s2 ∈ τ(Γ) then es,2 − ls,2 = (d− 6)vs,2;

• if s3 ∈ τ(Γ) then es,3 − ls,3 = (d− 5)vs,3;

• if s4 ∈ τ(Γ) then es,4 − ls,4 = (d− 4)vs,4;

• if s6 ∈ τ(Γ) then es,6 − ls,6 = (d− 3)vs,6;

• if σ ∈ τ(Γ) then eσ + lσ,+ = (d− 2)vσ + lσ,−;

• if φ ∈ τ(Γ) then eφ = 0, lφ = dvφ.

Furthermore, τ(Γ) is impermissible if it contains symmetries which cannot be gen-

erated by those listed above.

Proof. By Theorem 2.5.1, the rational values for cos(2π
n
) are n = 1, 2, 3, 4, 6, hence

these are the orders of the rotations we take interest in (n ≥ 2). We can read the

relationships between fixed edges loops and vertices from Table 3.15 immediately for

c2, c3, s2, σ, φ since they do not generate other symmetry operations. However, for

an isostatic framework in Rd there can be at most d loops at any vertex, rearranging

the equation for the inversion gives lφ = eφ + dvφ, and so eφ = 0. As (c4)
2 = c2,

anything fixed by c4 must be fixed by c2. Vertices and hyperplanes counted by l2,+

fixed by c2 must be fixed by c4, however hyperplanes counted by l2,− and edges with

endpoints not fixed are not fixed by c4. Reading from the table, with the additional

information that e2+l2,+ ≥ e4+l4, gives the added condition that 2v4 ≤ l2,−, and the

conditions are not contradictory. (c6)
2 = c3, the table gives that e6 + l6 = (d− 1)v6.

We recall that any vertex, edge or loop fixed by a rotation of order n ≥ 3 will be fixed

by all rotations of order n ≥ 3. Therefore e3+ l3 = e6+ l6, and (d−1)v6 = (d−3)v6,

which gives us e6, l6, v6 = 0. We note that (s3)
4 = c3, any hyperplane, vertex or

edge fixed by s3 will also be fixed by c3. On the other hand, there can be loops,

vertices and edges fixed by c3 which are not fixed by s3. The conditions in the

table for s3 and c3 then are not mutually exclusive. Further, (s3)
3 = σ, with

es,3 ≤ eσ, ls,3 ≤ lσ,−, vs,3 ≤ vσ, which also does not restrict the conditions from the

table. We then have that (s4)
2 = c2, and by geometry es,4 ≤ e2, ls,4 ≤ l2,+, vs,4 ≤ v2,
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which does not further restrict the equations from Table 3.15. Finally (s6)
2 = c3 and

(s6)
3 = s2. Any element fixed by s6 will be fixed by s2 and c3, and any vertex fixed

by s2 is also fixed by s6. However, s2 can fix edges and loops which s6 does not, so

the equations are not mutually exclusive. Likewise, elements fixed by c3 need not

be fixed by s6, so we do not obtain further constraints on the s6 symmetry.

We note that for sn there are (d − 2) possible hyperplanes that can be fixed,

hence the can be at most one fixed vertex at the origin, and ls,n ≤ (d− 2)vs,n.

Unlike in the previous sections where we gave all groups that could be generated

from our symmetries, and containing only symmetries which have isostatic frame-

works, this is not possible for general dimensions. Instead we give some examples

of symmetry groups most likely to be of interest in future research, due to their

commonly occurring nature in lower dimensions, smaller group size, and potentially

simpler to establish combinatorial characterisations. Therefore, we will consider

τ(Γ)-symmetric isostatic framework in Rd, with

τ(Γ) =



Cs = {id, σ}

Ci = {id, φ}

C2 = {id, c2}

C3 = {id, c3, c23}

C4 = {id, c4, c2, c34};

C6 = {id, c6, c3, c2, c46, c56};

S4 = {id, s4, c2, s34}.

As in Section 3.9, we extend Theorem 2.4.3 to apply under the presence of

the symmetries listed above. We say that (G, ϕ) is τ(Γ)-d-tight if it is d-tight,

Γ-symmetric and satisfies the relevant constraints in Table 3.16.

Theorem 3.10.2. Let d ≥ 4 be an integer, (G, ϕ) be a Γ-symmetric looped simple

graph with the property that every vertex of G is incident with at least ⌊d
2
⌋ loops,

and (G, p, q) be an isostatic τ(Γ)-symmetric framework in Rd. Then (G, ϕ) is τ(Γ)-

d-tight and Kd+2-free.
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τ(Γ) Number of edges, loops and vertices fixed by symmetry operations
Cs eσ + lσ,+ = (d− 2)vσ + lσ,−
Ci eφ = 0, lφ = dvφ
C2 v2 + e2 + l2,+ = l2,−
C3 e3, l3 = 0
C4 v2 = v4 = e4 + l4, l2,+ = l4, v2 + e2 + l2,+ = l2,−
C6 ei, li, vi = 0 for i = 2, 3, 6
S4 es,4 − ls,4 = (d− 4)vs,4, e2 + l2,+ = (d− 4)v2 + l2,−

Table 3.16: Fixed edge, loop and vertex counts for symmetry operations in Rd.

Proof. We know G is Γ-symmetric and that it is d-sparse and Kd+2-free by Theorem

2.4.3. That the constraints in Table 3.16 are satisfied follows immediately from

Corollary 3.10.1 for the groups Cs, C2, C3, Ci. For C4, we recall any vertex fixed by

either c2 or c4 is fixed by both, and lies on the axis of rotation (which we recall is a

(d−2)-dimensional subspace). Any edge fixed by c4 must have endpoints both fixed,

and thus is fixed by c2. Any loop fixed by c4 will represent a hyperplane orthogonal

to the rotation axis; such planes will be fixed by, and have their normals preserved

by, c2. Hence l2,+ = l4. The other conditions in the table come from the corollary.

For C6, since v6 = 0, there are no vertices on the axis of rotation, so v2 and v3 are

also zero. As a result, there are no fixed loops, and therefore the equation for c2 in

Corollary 3.10.1 gives e2 = 0.

For the rotation-reflection groups S4, we first observe any loop or vertex fixed

by s4 would be fixed by c2, and the image of any c2 fixed element under s4 would

still be fixed by c2. This does not lead to any further constraints.

We conclude with a remark on the limitations of the approach of using looped

simple graphs as above. In our work we remained consistent with previous literature

on the topic. However, once combining linearly constrained frameworks with a

symmetry action on the graph, cases arise which appear special in this setting,

although might not be special for symmetric linearly constrained frameworks in

general. In particular, this special case concerns points fixed by the symmetry,

which also have linear constraints present. In our view of loops at a vertex, the

symmetry forces the number of loops to be a factor of the order of the group. For

example, in Section 3.8, C4 presents as a special case for the number of edges, loops
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and vertices fixed by symmetry operations.

An alternate approach could be to keep a linear space of equations at each vertex,

rather than loops in the graph structure, and look at maps between them as a Γ-

representation. This or a similar view, will lead to a generalisation where the linear

constraints are not symmetric and would add a level of complexity warranting study

as a new project.
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Chapter 4

Isostatic Frameworks on the

Cylinder

4.1 Rigidity preserving operations

Given a τ(Γ)-symmetric isostatic framework on Y, in this section we will construct

larger τ(Γ)-symmetric isostatic frameworks on Y. To do this we introduce symmetry-

adapted Henneberg-type graph operations. These operations are depicted in Figures

4.1, 4.2 and 4.3.

Where it is reasonable to do so, we will work with a general group Γ = {id =

γ0, γ1, . . . , γt−1} and we will write γkv instead of ϕ(γk)(v) and often γk(x, y, z) or

(x(k), y(k), z(k)) for τ(γk)(p(v)) where p(v) = (x, y, z). For a group of order two, it

will be common to write v′ = γ(v) for γ ∈ Γ \ {id}.

v

v′

v

v′

Figure 4.1: Symmetrised 0- and 1-extensions adding new vertices v and v′ in each
case.
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v

v′

Figure 4.2: The symmetrised vertex-to-K4 operation (in this case expanding the
degree 3 vertices v and v′).

Figure 4.3: The symmetrised vertex-to-C4 operation. In this example each of the
split vertices had degree 6 and the corresponding two new vertices have degree 4
each.

In each of the following operations we have a Γ-symmetric graph (G, ϕ) for

a group Γ of order t and define a new Γ-symmetric graph (G+, ϕ+). We write

G = (V,E) and G+ = (V +, E+). For all γ ∈ Γ and v ∈ V , ϕ+(γ)v = ϕ(γ)v.

A symmetrised 0-extension creates a new Γ-symmetric graph G+ by adding the t

vertices {v, γv, . . . , γt−1v} with v adjacent to two vertices, say vi, vj ∈ V , and for

each k ∈ {1, . . . , t − 1}, γkv adjacent to γkvi, γkvj. Let ei = xiyi, 0 ≤ i ≤ t − 1 be

an edge orbit of G of size t under the action of Γ. Further let z0 ̸= x0, y0 and let

zi = γiz0 for i = 1, . . . , t− 1. A symmetrised 1-extension creates a new Γ-symmetric

graph by deleting all the edges ei from G and adding t vertices {v, γv, . . . , γt−1v}

with v adjacent to x0, y0 and z0, and γiv adjacent to xi, yi and zi for i = 1, . . . , t−1.

A symmetrised vertex-to-C4 operation at the vertices w, γ1w, . . . , γt−1w, creates a

new Γ-symmetric graph G+ = (V +, E+) where V + = V ∪ {u, . . . , γt−1u}. The edge

set changes such that if w is adjacent to v1, . . . , vr in G, v1, v2 are adjacent to both

w and the new vertex u, with v3, . . . , vr adjacent to one of w or u in E+, so that
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symmetry is preserved. Similarly γkv1, γkv2 are adjacent to both γkw and γku and

γkv3, . . . , γkvr are adjacent to one of γkw or γku in G+. A symmetrised vertex-to-

K4 operation at the vertices w, γ1w, . . . , γt−1w, creates a new Γ-symmetric graph

G+ with V + = V ∪ {a0, b0, c0, . . . , at−1, bt−1, ct−1}, where for each 1 ≤ i ≤ t − 1,

γia0 = ai, γib0 = bi, γic0 = ci. If in G the vertex w is adjacent to v1, . . . , vr, then vi

is adjacent to some di ∈ {w, a, b, c} in G+ for each i. Similarly γkvi is adjacent to

γkdi for all k. Finally, we let G+[w, a0, b0, c0] ∼= K4 and G+[γiw, ai, bi, c1] ∼= K4 for

all i.

For Γ = Z2, we introduce special cases of symmetrised extensions above. A

symmetrised fixed-vertex 0-extension, adds a single degree two vertex v that is fixed.

The neighbours of the new vertex are not fixed, but are images of each other under

the non-trivial group element. A symmetrised fixed-vertex-to-C4 operation at the

fixed vertex w creates a new graph G+ = G+ u, where u is also a fixed vertex. The

edge set changes such that if w is adjacent to v1, . . . , vr in G, then v1, v2 are adjacent

to both w and the new vertex u, with v3, . . . , vr adjacent to one of w or u in E+.

4.1.1 Henneberg extensions

To make the geometric statements in this section as general as possible, we some-

times show that the graph operations preserve τ(Γ)-independence and sometimes

τ(Γ)-rigidity depending on the proof strategy. Note that for some symmetry groups

τ(Γ), there are no τ(Γ)-isostatic graphs and hence this distinction is important.

Lemma 4.1.1. Suppose (G, ϕ) is Γ-symmetric. Let (G+, ϕ+) be obtained from (G, ϕ)

by a symmetrised 0-extension such that vi and vj are not fixed vertices and vi ̸= γkvj

for any k. If G is τ(Γ)-independent (isostatic) on Y, then G+ is τ(Γ)-independent

(isostatic) on Y.

Proof. Write G+ = G + {v, . . . , γt−1v}, and let v ∈ V + be adjacent to vi, vj,

and for each k ∈ {1, . . . , t − 1}, γkv adjacent to γkvi, γkvj. Since G is τ(Γ)-

independent on Y we may choose p so that RY(G, p) has linearly independent rows.

Define p+ : V + → R3 by p+(w) = p(w) for all w ∈ V , p+(v) = (x, y, z), and

p+(γkv) = (x(k), y(k), z(k)). Write p(vi) = (xi, yi, zi), p(vj) = (xj, yj, zj). Then,
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RY(G
+, p+) =



RY(G, p)

x− xi y − yi z − zi

* x− xj y − yj z − zj 0

x y 0
. . .

x(k) − x
(k)
i y(k) − y

(k)
i z(k) − z

(k)
i

* 0 x(k) − x
(k)
j y(k) − y

(k)
j z(k) − z

(k)
j

x(k) y(k) 0
. . .


and hence the fact that RY(G

+, p+) has linearly independent rows will follow once

each 3 × 3 submatrix indicated above is shown to be invertible. For the first such

submatrix, one can see that is the case unless p(vj) lies on the intersection between

the cylinder and the plane A = {(x, y, z) + a1(x, y, 0) + a2(x − xi, y − yi, z − zi)}.

Note that the hypotheses of the lemma guarantee that p+ can be chosen to avoid this

case. Since each τ(γk) is an isometry, all of the other t − 1 remaining submatrices

are also invertible, and so rank RY(G
+, p+) = rank RY(G, p) + 3t. Hence, if G is

τ(Γ)-independent on the cylinder, so is G+. As the operation preserves sparsity

counts, the above holds for isostaticity

We note that p(vj) could belong to the plane A in the above proof when v, vi, vj

are in special positions. Hence when some of v, vi, vj are fixed by the symmetry or

are images of one another under the symmetry, a symmetrised 0-extension may not

preserve rigidity. In the following remark we note two cases when such symmetry

exists but RY(G
+, p+) has full rank.

Remark 4.1.2. For a Z2-symmetric graph G and symmetry group τ(Γ) = Cs, let

G+ be defined in either of the following ways:

• let G+ = G+ {v} be obtained by a symmetrised fixed-vertex 0-extension,

• let G+ = G+{v, v′} be obtained by a symmetrised 0-extension, where N(v) =

{vi, vj} = N(v′).
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If G is Cs-independent (isostatic) on Y then G+ is Cs-independent (isostatic) on

Y.

Lemma 4.1.3. Let (G, ϕ) be a Γ-symmetric graph, and (G+, ϕ+) be obtained from

(G, ϕ) by a symmetrised 1-extension. If G is τ(Γ)-rigid (isostatic) on Y, then G+ is

τ(Γ)-rigid (isostatic) on Y.

Proof. Let G+ be obtained from a symmetrised 1-extension on G, that is by deleting

the edges {v1v2, . . . , γt−1(v1v2)}, and adding the vertices {v0, . . . , γt−1v0} where v0 is

adjacent to v1, v2, v3 and each γiv0 is adjacent to γiv1, γiv2, γiv3. Let (G, p) be com-

pletely Γ-regular on Y and define p+ = (p0, p−1 = γ1(p0), . . . , p−t+1 = γt−1(p0), p),

where (G+, p+) is completely Γ-regular. Suppose for a contradiction (G+, p+) is

not infinitesimally rigid on Y. Then any τ(Γ)-symmetric framework of G+ on Y

will be infinitesimally flexible. We will use a sequence of τ(Γ)-symmetric frame-

works, moving only the points {p0, . . . , p−t+1}. First let a, b be tangent vectors at

p1, with b orthogonal to p1 − p2 and a orthogonal to b. Let ((G+, pj))∞j=0 where

pj = (pj0, . . . , p
j
−t+1 = γt−1(p

j
0), p) is so that

γi(p1)− γi(p
j
0)

||γi(p1)− γi(p
j
0)||

→ γia

as j → ∞, for each i ∈ 0, . . . , t − 1. The frameworks (G+, pj) have a unit norm

infinitesimal motion uj which is orthogonal to the space of trivial motions. By the

Bolzano-Weierstrass theorem there is a subsequence of (uj) which converges to a

vector, u∞ say, also of unit norm. We can discard and relabel parts of the sequence

to assume this holds for the original sequence. Looking at the limit (G+, p∞),

write u∞ = (u∞0 , . . . , u
∞
−t+1, u1, u2, . . . , un), p

∞ = (p∞0 , . . . , p
∞
−t+1, p1, p2, . . . , pn) with

γi(p
∞
0 ) = γi(p1) for each i.

We show that (u1, u2) is an infinitesimal motion of the bar joining p(v1) and

p(v2). Since p
j
0 converges to p1 in the a direction, the velocities u1 and u∞0 have the

same component in this direction, so (u1 − u∞0 ) · a = 0. Then u1 − u∞0 is tangential

to Y at p1, and orthogonal to a, so it is orthogonal to p1 − p2. Also, u2 − u∞0 is

orthogonal to p1 − p2. Subtracting one from the other gives u1 − u2 is orthogonal to

p1 − p2, which is the required condition for an infinitesimal motion.
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Figure 4.4: Tangent vectors a, b in relation to the edge v1v2.

Once again looking at (G, p), we know the infinitesimal motion u = (u1, u2, . . . , un)

is a trivial motion. In order to preserve the distances d(p∞0 , p2) and d(p∞0 , p3), u
∞
0

is determined by u2 and u3. Similarly u∞−i is determined by the motion vectors of u

which are present on the neighbours of γip0, for all 1 ≤ i ≤ t− 1. We now see that

u∞0 agrees with u1 and so u∞ is a trivial motion for (G+, p∞). However, since u∞ is

a unit norm infinitesimal motion and orthogonal to the space of trivial motions, we

have reached a contradiction.

4.1.2 Further operations

For a graphG and pairwise vertex disjoint subgraphsH1, . . . , Hk ofG, writeG//{Hi}ki=1

for the graph derived from G by contracting each of the subgraphs H1, . . . , Hk

to their own single vertex. The resultant graph G//{Hi}ki=1 will have |V (G)| −∑k
i=1(|V (Hi)| − 1) vertices and |E(G)| −

∑k
i=1 |E(Hi)| edges. When k = 1 we will

sometimes use the more common notation G/H1.
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Lemma 4.1.4. Suppose (G, ϕ) is Γ-symmetric and H ≤ G is a copy of K4. Further,

suppose for all γ ∈ Γ \ {id}, we have that V (H) ∩ V (γH) = ∅. If G//{γi(H)}t−1
i=0 is

τ(Γ)-isostatic on Y, then G is τ(Γ)-isostatic on Y.

Proof. Let |V | = n and (G, p) be a τ(Γ)-symmetric framework on Y which is

completely Γ-regular. Further, let the vertices of H be x, y, z, w. Suppose p =

(p(v1), . . . , p(vn)), labelling so that

V (γi(H)) = {γix = v4i+1, γiy = v4i+2, γiz = v4i+3, γiw = v4i+4}

for each i = 1, . . . t− 1. Define a set of graphs {Gj}tj=0 by

Gj =

{
G//{γi(H)}t−1

i=j if j = 0, . . . , t− 1;

G if j = t.

where γ0 = id. We want to show by induction that for 0 ≤ j ≤ t − 1, if Gj is

isostatic on Y, then Gj+1 is isostatic on Y. Then repeating this method, we show

Gt := G will be isostatic and τ(Γ)-symmetric on Y. For each 0 ≤ i ≤ t− 1, let the

vertices v4i+1, v4i+2, v4i+3, v4i+4 in G contract to v4i+1 in {G0, . . . , Gi−1}.i We start

by writing

RY(G1, p|G1) =

 RY(γ0(H), p|γ0(H)) 0

M1(p) M2(p)


whereM2(p) is a square matrix of size 3(n−3t−1), since |V (G1)| = n−3(t−1) and

soM2(p) has 3(n−3(t−1))−12 columns, and |E(G1)| = |E|−6(t−1) = 2n−6t+4

soM2(p) has 2n−6t+4+(n−3(t−1))− (6+4) rows. For a contradiction, suppose

that G1 is not τ(Γ)-isostatic. Then there exists a non-trivial infinitesimal motion m

of (G1, p|G1). Since (H, p|H) is infinitesimally rigid on Y, we may suppose that

m = (0, 0, 0, 0,m5,m9, . . . ,m4t+1,m4t+2, . . . ,mn).

iIn the graph Gj , j can be seen as a count on the number of K4 copies of H that are not
contracted.
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Consider the realisation (G1, p̂) such that

p̂ = (p(v1), p(v1), p(v1), p(v1), p(v5), p(v9), . . . , p(v4t+1), p(v4t+2), . . . , p(vn))

and define (G0, p
∗) by letting

p∗ = (p(v1), p(v5), p(v9), . . . , p(v4t+1), p(v4t+2), . . . , p(vn)).

By construction (G0, p
∗) is completely Γ-regular, so it is τ(Γ)-isostatic on Y. Now,

M2(p) is square with the nonzero vector (m5,m9, . . . ,m4t+1,m4t+2, . . . ,mn) ∈ kerM2(p).

Hence rankM2(p) < 3(n−3t−1). Since (G, p) is completely Γ-regular, we also have

rankM2(p̂) < 3(n− 3t− 1) and hence there exists a nonzero vector m̂ ∈ kerM2(p̂).

Therefore we have

RY(G0, p
∗)

 0

m̂

 =

 p(v1) 0

* M2(p̂)

 0

m̂

 = 0,

contradicting the infinitesimal rigidity of (G0, p
∗). We continue the above process

inductively, writing RY(Gj, p) as RY(γj−1(H), p|γj−1(H)) 0

L1(p) L2(p)


where L2(p) is a square matrix of size 3(n−3(t−j)−4). From the same contradiction

argument as before, we have that (Gj, p) is isostatic, and by noting that Gt will be

τ(Γ)-symmetric, we finish the proof.

The proof of the following lemma works with a similar strategy as is applied in

Lemma 4.1.4. For the first bullet point of the lemma, for a Ci-symmetric graph, we

additionally need to perform a (non-symmetric) 0-reduction on the vertex resulting

from the contraction of G1.

Lemma 4.1.5. Suppose (G1, φ1) and (G2, φ2) are Γ-symmetric graphs with G1 =

(V1, E1) and G2 = (V2, E2).
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• For τ(Γ) = Ci, let (G, ϕ) be the Γ-symmetric graph with V (G) = V1 ∪ V2 and

E(G) = E1 ∪ E2 ∪ {e1, e2}, and ϕ defined so that ϕ(γ)|Vi
= ϕi(γ) for i = 1, 2

and all γ ∈ Γ; additionally e1 = xy, e2 = x′y′ for any x ∈ V1, y ∈ V2.

• For τ(Γ) ∈ {C2, Cs}, suppose G2 has a fixed vertex v with neighbours x1, x
′
1, . . . , xk, x

′
k.

Define (G, ϕ) to be the Γ-symmetric graph with vertex set V = V1∪V2\{v}, and

edge set E obtained from E1 ∪ E2 by deleting the edges vx1, vx
′
1, . . . , vxk, vx

′
k

and replacing them with the edges x1y1, x
′
1y

′
1, . . . , xkyk, x

′
ky

′
k for some not nec-

essarily distinct y1, y
′
1, . . . , yk, y

′
k ∈ V1, and ϕ being induced by φ1, φ2, similar

to the above.

If G1 and G2 are τ(Γ)-rigid (isostatic) on Y, then G is τ(Γ)-rigid (isostatic) on Y.

Proof. We prove the two statements simultaneously. Let |V | = n and (G, p) be a

completely τ(Γ)-regular framework on Y. Put p = (p(v1), . . . , p(vn)) labelling so

that V1 = {v1, . . . , vr} and V2 = {vr+1, . . . , vn}. As in Lemma 4.1.4, we write

RY(G, p) =

 RY(G1, p|G1) 0

M1(p) M2(p)


whereM2(p) is a 3(n−r) square matrix. We repeat the same arguments as before to

show G is rigid. For a contradiction, suppose that G is not rigid. Then there exists

some non-trivial infinitesimal motion m of (G, p). Since (G1, p|G1) is τ(Γ)-rigid on Y,

we may suppose that m = (0, . . . , 0,mr+1, . . . ,mn). Consider the realisation (G, p̂)

such that p̂ = (p(v1), . . . , p(v1), p(vr+1), . . . , p(vn)) and define (G/G1, p
∗) by letting

p∗ = (p(v1), p(vr+1), . . . , p(vn)). By construction (G/G1, p
∗) is completely regular,

so (G/G1, p
∗) is independent on Y.

Now, M2(p) is square with the nonzero vector (m1,mr+1, . . . ,mn) ∈ kerM2(p).

Hence rankM2(p) < 3(n − r). Since (G/G1, p
∗) is completely τ(Γ)-regular, we also

have rankM2(p̂) < 3(n− r) and hence there exists a nonzero vector m̂ ∈ kerM2(p̂).

Therefore we have

(RY(G/G1, p
∗))

 0

m̂

 =

 p(v1) 0

* M2(p̂)

 0

m̂

 = 0,
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contradicting the rigidity of (G/G1, p
∗). Note that in the Ci-symmetric case, G/G1

is the graph obtained from G2 by a (non-symmetrised) 0-extension. Hence, we know

that if G1 and G2 are τ(Γ)-rigid on Y, then G/G1 is rigid and so G is τ(Γ)-rigid. As

the operation preserves sparsity, the above also preserves isostaticity.

Recall that the normal to the cylinder, which we write as nY, acts on a point

(x, y, z) of the cylinder by nY(x, y, z) = (x, y, 0). As our focus in this chapter is on

the cylinder, we will simply write n(w) for the normal at the point w.

Lemma 4.1.6. Let (G, p) be a τ(Γ)-symmetric and independent (isostatic) frame-

work. Let w ∈ V be adjacent to v1, . . . , vr. Suppose that p(w)− p(v1), p(w)− p(v2),

and n(w) are linearly independent. Let (G+, ϕ+) be obtained by performing a sym-

metrised vertex-to-C4 operation at the vertices w, γ1w, . . . , γt−1w. Let p+(v) = p(v)

for all v ∈ V \ {γkw | k ∈ {0, . . . , t− 1}}, and p+(γkw) = p+(γku) = p(γkw) for all

k. Then (G+, p+) is independent (isostatic).

Proof. We will construct RY(G
+, p+) from RY(G, p) by a series of matrix row oper-

ations. We first add 3t zero columns to RY(G, p) for the new vertices {γku}. Then

add 3t rows to this matrix, for the edges γkuγkv1, γkuγkv2, and the normal vectors

to the surface at the points p(γku). Since p(w)− p(v1), p(w)− p(v2), n(w) are lin-

early independent (and, hence, so are each of the p(γkw)−p(γkv1), p(γkw)−p(γkv2),

n(γkw)), rankRY(G
+, p+) = rankRY(G, p)+3t. This gives the matrixM of the form:

M =



* p(w)− p(v1) 0

* p(w)− p(v2) 0
...

* p(w)− p(vi) 0
...

* 0 p(u)− p(v1)

* 0 p(u)− p(v2)
...

* n(w) 0

* 0 n(u)
...



,
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where the columns given are for the vertices w and u, and rows given for the edges

wv1, wv2, wvi, uv1, uv2 and normal vectors to the surface at w and u. There would

be similar columns for each pair γkw and γku. This is the rigidity matrix for a

graph generated from G by a τ(Γ)-symmetric vertex-to-C4 operation where viw is

an edge for all 3 ≤ i ≤ r. We wish to show that removing the edges {γkwγkvi :

k = 0, . . . , t − 1} and replacing them with the edges {γkuγkvi : k = 0, . . . , t − 1}

preserves τ(Γ)-independence.

Since p(w) − p(v1), p(w) − p(v2), and n(w) are linearly independent and span

R3, there exists α, β, γ ∈ R such that

p(w)− p(vi) = α(p(w)− p(v1)) + β(p(w)− p(v2)) + γn(w).

Hence we perform row operations as follows. From the row of wvi, subtract α

multiples of the row of wv1, β multiples of the row of wv2, and γ multiples of the

row for the normal vector of w. Then to the row of wvi, add α multiples of the row of

uv1, β multiples of the row of uv2, and γ multiples of the row for the normal vector of

u. Since p(w) = p(u), when we do this to every neighbour vi of u, and similarly γkvi

of γku (since all τ(γk) are isometries of R3 that preserve the cylinder, the same α, β, γ

work for the symmetric copies) in G+, we obtain RY(G
+, p+). The row operations

preserve τ(Γ)-independence, giving the desired result. As the operation preserves

sparsity counts, the above preserves isostaticity.

When considering Cs-symmetric frameworks, we will use a special case of Lemma 4.1.6

which we record in the following remark.

Remark 4.1.7. Let (G, p) be a Cs-symmetric and independent (isostatic) frame-

work with w ∈ V fixed by σ and adjacent to v1, . . . , vr. Suppose that p(w)− p(v1),

p(w)−p(v′1), and n(w) are linearly independent. Let G+ be obtained by performing

a symmetrised fixed-vertex-to-C4 operation at w, so that v1, v
′
1 are adjacent to both

w and the new vertex u also fixed by σ in G+. Let p+(v) = p(v) for all v ∈ V , and

p+(u) = p(w). Then (G+, p+) is independent (isostatic).

For the case when the group is C2, we will need one more operation. A double

1-extension on a Z2-symmetric graph G is the combination of two non-symmetric
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Figure 4.5: A double 1-extension which deletes a fixed edge, and adds a new fixed
edge between two degree 3 vertices.

1-extensions: the first creates a new graph G+ by removing a fixed edge e = vv′

of G, adding a new vertex, say w, of degree three adjacent to v, v′ and some other

vertex y; followed by another non-symmetric 1-extension on G+, namely removing

wv′ and adding a new vertex w′ with 3 incident edges chosen so that v′ = φ(v). See

Figure 4.5.

Lemma 4.1.8. Let (G, ϕ) be a Γ-symmetric graph (where Γ = Z2), with fixed edge

vv′. Let (G+, ϕ+) be the graph with vertex set V + = V + {w,w′}, and edge set

E+ = E − vv′ + {wv,wy, w′v′, w′y′, ww′}, ϕ+(γ)|V = ϕ(γ) for all γ ∈ Z2. If G is

C2-rigid (isostatic) on the cylinder then G+ is too.

Proof. Let G+ be obtained from a double 1-extension on G, that is by deleting the

edge vv′, and adding the vertices w,w′ where w is a node adjacent to v, y, w′ and w′

is adjacent to v′, y′, w. Let c = τ(γ) be the half-turn in τ(Γ) (recall that previously

c was called either c2 or c′2 depending on the position of the rotational axis relative

to the cylinder). Let p0 and c(p0) be the positions of the vertex w and its symmetric

copy. Let (G, p) be completely Γ-regular on Y and define p+ = (p0, p−1, p), so that

(G+, p+) is completely Γ-regular. We let p(v) = p1, p(v
′) = p2 = c(p1), p(y) = p3,

and p(y′) = p4 = c(p3).

Suppose for a contradiction that (G+, p+) is not infinitesimally rigid on Y. Then

any τ(Γ)-symmetric framework of G+ on Y will be infinitesimally flexible. We will

use a sequence of τ(Γ)-symmetric frameworks, moving only the points {p0, c(p0)}.

Let T denote the tangent plane to Y at p1. Choose a and b to be orthogonal vectors

in T such that b is orthogonal to p1 − p2 and a orthogonal to b. Let ((G+, pj))∞j=0 be
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a sequence of frameworks where pj = (pj0, c(p
j
0), p) is taken so that

ci(p1)− ci(pj0)

||ci(p1)− ci(pj0)||
→ cia

as j → ∞, for each i ∈ 0, 1. The frameworks (G+, pj) have a unit norm infinitesimal

motion uj which is orthogonal to the space of trivial motions of Y. By the Bolzano-

Weierstrass theorem there is a subsequence of (uj) which converges to a vector, u∞

say, also of unit norm. We can discard and relabel parts of the sequence to assume

this holds for the original sequence. For convenience, in an infinitesimal motion

u, we will denote the instantaneous velocity at c(p0) by u−1. Looking at the limit

(G+, p∞), write u∞ = (u∞0 , u
∞
−1, u1, u2, . . . , un), p

∞ = (p∞0 , c(p
∞
0 ), p1, p2, . . . , pn) with

p∞0 = p1 and c(p∞0 ) = p2.

We show that (u1, u2) is an infinitesimal motion of the bar joining p(v) and p(v′).

Since p0 converges to p1 in the a direction, the velocities u1 and u∞0 have the same

component in this direction, so (u1 − u∞0 ) · a = 0. Then u1 − u∞0 is tangential

to Y at p1, and orthogonal to a, it must be orthogonal to p1 − p2. Similarly, c(p0)

converges to c(p1) = p2 in the c(a) direction, the velocities u2 and u
∞
−1 have the same

component in this direction, so (u2 − u∞−1) · c(a) = 0. Then u2 − u∞−1 is tangential

to Y at p2, and orthogonal to c(a). Hence, u2 − u∞−1 must be equal to ±c(b), and

orthogonal to p2 − p1. As there is a bar joining p(w) = p∞0 and p(w′) = c(p∞0 ),

u∞0 − u∞−1 is orthogonal to p1 − p2. We may express this as

⟨u1 − u∞0 , p1 − p2⟩ = ⟨u∞0 − u∞−1, p1 − p2⟩ = ⟨u∞−1 − u2, p1 − p2⟩ = 0.

It follows from summation of the above, that ⟨u1 − u2, p1 − p2⟩ = 0, which is the

required condition for an infinitesimal motion.

Once again looking at (G, p), we know the infinitesimal motion u = (u1, u2, . . . , un)

is a trivial motion. In order to preserve the distance d(p∞0 , p3), u
∞
0 takes one of two

values, representing rotating or translating the bar between p(w) and p(y). Addition-

ally, (u1−u∞0 )·a = 0 determines u∞0 . Similarly, u∞−1 is determined by d(c(p∞0 ), p4) and

(u2−u∞−1) ·γ2a = 0. Finally, since ⟨u∞0 −u∞−1, p
∞
0 −c(p∞0 )⟩ = 0, ⟨u1−u2, p1−p2⟩ = 0,

and p∞0 = p1, c(p
∞
0 ) = p2, we have that u∞0 agrees with u1 and u∞−1 agrees with u2,
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so u∞ is a trivial motion for (G+, p∞). This gives a contradiction since u∞ is a unit

norm infinitesimal motion orthogonal to the space of trivial motions of Y.

4.2 Symmetric isostatic graphs

In the next four sections we prove our main results on the cylinder. These are

combinatorial characterisations of when a symmetric graph is isostatic on Y for the

symmetry groups Ci = {id, φ}, C2 = {id, c′2} and Cs = {id, σ}. These results give

a precise converse to the necessary conditions developed in Section 3.3 and utilise

the geometric operations of the previous section. In order to prove the results we

need to develop some combinatorics. In this section we work as generally as possible

among the three groups. Then the three subsequent sections specialise one by one

to the specific symmetry groups.

4.2.1 Base graphs

Consider the inversion symmetry group Ci. It follows from Theorem 3.3.4 that the

graphs we need to understand are Ci-symmetric graphs which are (2, 2)-tight and

have no edges or vertices fixed by the inversion φ. Henceforth we shall refer to

such graphs as (2, 2)-Ci-tight graphs. Similarly, graphs which are (2, 2)-sparse and

Ci-symmetric shall be referred to as (2, 2)-Ci-sparse. Figure 4.6 shows the two base

graphs for the class of (2, 2)-Ci-tight graphs; we will call the graph on six vertices

(F1, ϕ1), and the graph on eight vertices (F2, ϕ0), where for γ ∈ Z2 \ {id}, ϕ1(γ) and

ϕ0(γ) do not fix any vertices or edges of F1 and F2 respectively.

(F1, ϕ1) (F2, ϕ0)

Figure 4.6: The Ci-symmetric base graphs, with inversion through the centre of each
graph.

Instead consider the half-turn symmetry group C2. By Theorem 3.3.4, a C2-

isostatic graph is (2, 2)-tight and has two fixed edges and no fixed vertex, or no

92



fixed edge and one fixed vertex. Hence a graph is called (2, 2)-C2-tight if it is (2, 2)-

tight, C2-symmetric and contains either two fixed edges and no fixed vertex, or no

fixed edge and one fixed vertex. Similarly, graphs which are (2, 2)-sparse and C2-

symmetric shall be referred to as (2, 2)-C2-sparse. In Figure 4.7, we show four small

C2-symmetric graphs that are (2, 2)-tight. These are, reading left to right, top to

bottom: (K4, ϕ3) with two fixed edges and no fixed vertex, (W5, ϕ4) with one fixed

vertex and no fixed edge, (Wd(4, 2), ϕ5) with one fixed vertex and no fixed edge, and

(F2, ϕ2). These will turn out to be the base graphs of our recursive construction.

(K4, ϕ3) (W5, ϕ4) (Wd(4, 2), ϕ5)

(F2, ϕ2)

Figure 4.7: The C2-symmetric base graphs, with rotation at the centre of each graph.

Finally consider the reflection symmetry group Cs. By Theorem 3.3.4, a Cs-

isostatic graph is (2, 2)-tight and has no fixed edge and any number of fixed vertices.

Hence a graph is called (2, 2)-Cs-tight if it is (2, 2)-tight, Cs-symmetric and contains

no fixed edge. Similarly, graphs which are (2, 2)-sparse, Cs-symmetric and have no

fixed edge shall be referred to as (2, 2)-Cs-sparse. In Figure 4.8, we show six small

Cs-symmetric graphs that are (2, 2)-tight. These are, reading left to right, top to

bottom: (F2, ϕ2), (W5, ϕ4), (Wd(4, 2), ϕ5), (F1, ϕ1), (F1, ϕ6) with two fixed vertices

and no fixed edge, and (K3,4, ϕ7) with three fixed vertices and no fixed edge. These

will be the base graphs of our recursive construction.

4.2.2 Reduction operations

We will consider reduction operations : these are the reverse of the extension oper-

ations described in Section 4.1. While the operations we require vary slightly for
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(F1, ϕ1)

(F2, ϕ2) (Wd(4, 2), ϕ5)

(K3,4, ϕ7)

(F1, ϕ6)

(W5, ϕ4)

Figure 4.8: The Cs-symmetric base graphs, with the mirror vertically aligned on the
page.

each symmetry group, the following are required across the three symmetries we will

provide characterisations for: symmetrised 0-reduction, symmetrised 1-reduction,

symmetrised C4 contraction, symmetrised K4 contraction.

Lemma 4.2.1. Let (G, ϕ) be (2, 2)-C-tight for C ∈ {Ci, C2, Cs} and suppose v ∈ V

is a vertex of degree 2. Then either C = Cs, v = σ(v) = v′ and H = G − {v} is

(2, 2)-C-tight or v ̸= v′ and H = G− {v, v′} is (2, 2)-C-tight.

Proof. The case when C = Cs and v = v′ is trivial. Moreover if C = C2 then

any degree two vertex v in a (2, 2)-C-tight graph G satisfies v′ = c′2(v) ̸= v, for

otherwise the subgraph G − v would be (2, 2)-tight but have no fixed edges or

vertices, contradicting the fact that G is (2, 2)-C-tight. For any C, vv′ /∈ E for

otherwise H = G − {v, v′} would have |V (H)| = |V | − 2 but |E(H)| = |E| − 3,

violating the (2, 2)-sparsity of G. Then, any subgraph of H is a subgraph of G, so

as G is (2, 2)-tight, H is. Also H will be C-symmetric, and we do not remove any

fixed edges or vertices.

Most of the technical work in the next four sections involves analysing when we

can remove a vertex of degree 3. Hence, for brevity, we will say that a vertex of

degree 3 is called a node.

Nodes in C2-symmetric graphs will often require extra attention. A method
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we will repeatedly use and can be seen in the below lemma, involves finding a

tight C2-symmetric subgraph that does not contain fixed elements; such a subgraph

contradicts Theorem 3.3.4.

Lemma 4.2.2. Let (G, ϕ) be (2, 2)-C-tight for C ∈ {Ci, C2, Cs} and suppose v ∈ V

is a node so that x, y ∈ N(v) with xy /∈ E and {x, y} ≠ {x′, y′}. Then G′ =

G−{v, v′}+{xy, x′y′} is not (2, 2)-C-tight if and only if at least one of the following

hold:

1. there exists a 2-critical set U with x, y ∈ U ;

2. there exists a 3-critical set W with x, y, x′, y′ ∈ W ;

3. C = C2 and there exists a 4-critical set T with x, y, x′, y′ ∈ T and G[T ] is

C2-symmetric with no fixed vertex or edges.

Proof. Suppose that x, y (resp. x′, y′) are contained in a 2-critical set U , or x, y, x′, y′

are contained in a 3-critical set W . Then U and W would, with the new edges,

create subgraphs G′[U ] = (U,E1) and G′[W ] = (W,E2) where |E1| = 2|U | − 1

and |E2| = 2|W | − 1 respectively. This proves the first two conditions imply G′

is not (2, 2)-C-tight. Additionally for (2, 2)-C2-tight graphs, all C2-symmetric tight

subgraphs must have the fixed vertex or edge constraint. Any reduction cannot

create a tight subgraph which does not satisfy this fixed count. Therefore a 4-critical

C2-symmetric vertex set T where G[T ] does not contain fixed edges or vertices has

G′[T ] a C2-symmetric (2, 2)-tight subgraph of G′, which is not (2, 2)-C2-tight. Hence

the third condition implies G′ is not (2, 2)-C-tight.

Conversely if conditions (1)-(3) hold then the facts that G is (2, 2)-C-tight, G′

is obtained from a subgraph of G by adding 2 distinct edges, and Ci and Cs do

not have fixed vertex or edge constraints that need to be preserved in the reduction

imply that G′ is (2, 2)-C-tight.

Lemma 4.2.3. Let (G, ϕ) be (2, 2)-C-tight for C ∈ {Ci, C2, Cs} with no fixed edge

and suppose v ∈ V is a node with N(v) = {x, y, z}. If the pair x, y is not contained

in any 2-critical subset of V \ {v, v′}, then there does not exist W ⊆ V \ {v, v′} with

x, x′, y, y′ ∈ W and iG(W ) = 2|W | − 3.

95



Proof. Suppose for a contradiction that there exists someW ⊆ V \{v, v′}, x, x′, y, y′ ∈

W with i(W ) = 2|W | − 3. Observe i(W ′) = i(W ), i(W ∪W ′) ≤ 2|W ∪W ′| − 3 and

i(W ∩W ′) ≤ 2|W ∩W ′| − 3 (since x, x′, y, y′ ∈ W ∩W ′). Now we have

2|W | − 3 + 2|W ′| − 3 = i(W ) + i(W ′) = i(W ∪W ′) + i(W ∩W ′)− d(W,W ′)

≤ 2|W ∪W ′| − 3 + 2|W ∩W ′| − 3− d(W,W ′)

= 2|W |+ 2|W ′| − 6− d(W,W ′).

(4.2.1)

It follows that we have equality throughout and d(W,W ′) = 0. However W ∪W ′ is

C-symmetric with no fixed edges, so i(W ∪W ′) is even, a contradiction.

Remark 4.2.4. The following is a result analogous to [27, Lemma 2.2]. Similar

counting arguments to Equation (4.2.1) can be used to give the following (and other

similar observations) on the union and intersection of k-critical sets that we use

repeatedly. Let (G, ϕ) be (2, 2)-tight. Take X, Y ⊆ V . If X, Y ⊆ V are 2-critical

and X ∩ Y ̸= ∅ then X ∪ Y and X ∩ Y are 2-critical and d(X, Y ) = 0.

Further if X is 2-critical, Y is 3-critical and X ∩ Y ̸= ∅, then either:

• d(X, Y ) = 0, i(X ∩ Y ) = 2|X ∩ Y | − 3 and i(X ∪ Y ) = 2|X ∪ Y | − 2; or

• d(X, Y ) = 0, i(X ∩ Y ) = 2|X ∩ Y | − 2 and i(X ∪ Y ) = 2|X ∪ Y | − 3; or

• d(X, Y ) = 1 and X ∩ Y and X ∪ Y are 2-critical.

Recall for a closed neighbourhood of a vertex v, we write N [v] = N(v) ∪ {v}.

Lemma 4.2.5. Let (G, ϕ) be (2, 2)-C-tight for C ∈ {Ci, Cs} and suppose v ∈ V is a

node with N(v)∩N(v′) = ∅. Then either G[N [v]] = K4, or there exists x, y ∈ N(v)

such that xy /∈ E, and G− = G− {v, v′}+ {xy, x′y′} is (2, 2)-C-tight.

Proof. Assume that G[N [v]] ̸= K4. By Lemma 4.2.3, we only need to show that

for one pair of non-adjacent vertices in N(v), there is no 2-critical set containing

them. We consider cases based on i(N(v)). Let N(v) = {x, y, z}. Firstly, where

there are no edges on the neighbours of v, if all of the pairs {x, y}, {x, z}, {y, z}

are contained in 2-critical sets U1, U2, U3 ⊆ V − {v, v′} say, then by Remark 4.2.4,
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U1 ∪ U2 is 2-critical and so U1 ∪ U2 ∪ {v} breaks (2, 2)-sparsity of G. Similarly

when i(N(v)) = 1. Now suppose i(N(v)) = 2, and say xy /∈ E. If there existed a

2-critical U ⊆ V − {v, v′} with x, y ∈ U , then iG(U ∪ {v, z}) = 2|U ∪ {v, z}| − 1

which contradicts (2, 2)-sparsity of G. Hence G− = G−{v, v′}+ {xy, x′y′} is (2, 2)-

C-tight.

v

v′

v

v′

v

v′

Figure 4.9: The local structure of the cases in Lemma 4.2.5.

Lemma 4.2.6. Let (G, ϕ) be (2, 2)-C-tight for C ∈ {Ci, Cs} and suppose v ∈ V is a

node such that N(v) = {x, y, z} and N(v) ∩N(v′) = {x, y}, with x′ = y or C = Cs

and x and y are fixed vertices. Then one of the following hold:

1. G[{v, v′, x, y, z, z′}] ∼= (F1, ϕ1);

2. C = Cs and G[{v, v′, x, y, z, z′}] ∼= (F1, ϕ6);

3. there exists some v1 ∈ {x, y} such that G− = G − {v, v′} + {v1z, v′1z′} is

(2, 2)-C-tight.

Proof. Suppose {xz, yz, xz′, yz′} ⊂ E. If x′ = y, then G[{v, v′, x, y, z, z′}] ∼= (F1, ϕ1)

as in (1), otherwise x and y are fixed and G[{v, v′, x, y, z, z′}] ∼= (F1, ϕ6) as in (2).

When one of the edge pairs {xz, yz′}, {xz′, yz} is present, without loss of gener-

ality say {xz, yz′} ∈ E. Suppose there exists a U ⊆ V − v, with y, z ∈ U which is

2-critical. If U ∩U ′ ̸= ∅, then U ∪U ′ is 2-critical by Remark 4.2.4, and U ∪U ′ ∪{v}

violates (2, 2)-sparsity of G. If U ∩ U ′ = ∅, then xz′, yz′ ∈ d(U,U ′) so U ∪ U ′ is 2-

critical and U ∪U ′∪{v} again breaks (2, 2)-sparsity. By Lemma 4.2.3, since there is

no 2-critical set on x, y, z, z′, we have that iG(W ) ≤ 2|W |−4 for all W ⊆ V \{v, v′}

such that x, y, z, z′ ∈ W , so G− = G− {v, v′}+ {xz′, yz} is (2, 2)-C-tight.
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Now assume we have no edges on N(v). We want to show that we can add either

xz, yz′ or yz, xz′ to G−{v, v′}. Suppose we can add neither xz or x′z, that is, there

are 2-critical sets U1, U2 ⊆ V −v with x, z ∈ U1 and x
′, z ∈ U2. Then U1∩U2 ̸= ∅, so

U1 ∪ U2 is 2-critical by Remark 4.2.4. Thus the subgraph induced by U1 ∪ U2 ∪ {v}

contradicts G being (2, 2)-tight. We recall Lemma 4.2.3 gives for any W containing

{x, y, z, z′}, that iG(W ) ≤ 2|W | − 4, giving us the required result.

v

x

z
x′

v′

z′

v

x

z
x′

v′

z′

v

x

z
x′

v′

z′

Figure 4.10: The local structure of the cases in Lemma 4.2.6.

Lemma 4.2.7. Let (G, ϕ) be (2, 2)-C-tight for C ∈ {C2, Cs} and suppose v ∈ V is a

node so that N [v]∩N [v′] = {t}, where t is a fixed vertex in G. Let N(v) = {x, y, t}.

Then either G[N [v]∪N [v′]] = (Wd(4, 2), ϕ5) or one of G1 = G−{v, v′}+ {xt, x′t},

G2 = G− {v, v′}+ {yt, y′t}, or G3 = G− {v, v′}+ {xy, x′y′} is (2, 2)-C-tight.

Proof. Since G has no fixed edges, Lemma 4.2.3 implies that if x, y, x′, y′ are in a

3-critical set then they are in a 2-critical set too. Hence, for the remainder of the

proof, we only consider 2-critical or 4-critical sets in the case when C = C2.

We break up the proof into cases by considering the number of edges induced by

the neighbours of v. Firstly, when all 3 edges xy, xt, yt are present in the graph, we

have a copy ofWd(4, 2). Now, when two edges are present, without loss of generality,

we may assume either xy /∈ E or yt /∈ E. If xy /∈ E (resp. yt /∈ E), suppose there

exists a 2-critical U ⊂ V with x, y ∈ U (resp. t, y ∈ U). Then the subgraph induced

by U ∪ {v, t} (resp. U ∪ {v, x}) violates the (2, 2)-sparsity of G. There is no 4-

critical C2-symmetric set T containing x, y and not v, t since the subgraph induced

by T ∪ {v, v′, t} violates (2, 2)-sparsity.

Consider now the case where one or zero edges are induced by {x, y, t}. No two

of the pairs {x, y}, {x, t}, {y, t} can each be contained in a 2-critical set, as if any two
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were contained in 2-critical sets U1, U2, then by Remark 4.2.4, U1∪U2 is 2-critical but

the subgraph induced by U1 ∪ U2 + v violates the (2, 2)-sparsity of G. For C = C2,

to complete the proof we need to confirm that one of these pairs and its symmetric

copy is not in a 4-critical set which contains no fixed vertex. However, for any two

sets from {x, y, x′, y′}, {x, x′, t}, {y, y′, t}, at least one contains the fixed vertex of G.

Hence we may reduce symmetrically unless G[N [v] ∪N [v′]] ∼= (Wd(4, 2), ϕ5).

Lemma 4.2.8. Let (G, ϕ) be (2, 2)-C-tight for C ∈ {C2, Cs} and suppose v ∈ V

is a node chosen so that N [v] ∩ N [v′] = {t, x, x′}, where t is fixed. Then either

G[N [v] ∪N [v′]] = (W5, ϕ4), or G
′ = G− {v, v′}+ {xt, x′t} is (2, 2)-C-tight.

Proof. Since t is a fixed vertex, the edge xx′ does not exist. We therefore only have

to consider whether xt and x′t are edges of G. If xt, x′t ∈ E, then G[N [v]∪N [v′]] =

(W5, ϕ4). So suppose xt, x
′t /∈ E. Suppose there exist setsW1,W2 ⊂ V that are both

2-critical, with x, t ∈ W1, x
′, t ∈ W2. Then W1 ∪W2 is 2-critical and the subgraph

induced by W1 ∪ W2 ∪ {v, v′} contradicts the (2, 2)-sparsity of G. Similarly, any

3-critical blocking set U containing x, x′, t would induce a subgraph that breaks

(2, 2)-sparsity after adding v, v′ and their incident edges. Finally, for C = C2, xt

cannot be blocked by a 4-critical set T , as they cannot contain fixed vertices and t

itself is fixed.

4.2.3 Contraction operations

Lemma 4.2.9. Let (G, ϕ) be (2, 2)-C-tight for C ∈ {Ci, C2, Cs}. Suppose G contains

a copy of K4 with vertices {x1, x2, x3, x4} = X, and put {x′1, x′2, x′3, x′4} = X ′ where

X ̸= X ′. Let G− denote the graph obtained from G by contracting X to w and X ′

to w′ so that, for any v ∈ V \ (X ∪ X ′) with vxi ∈ E (resp. vx′i ∈ E), we have

vw ∈ E(G−) (resp. vw′ ∈ E(G−)). Then either

1. G− is (2, 2)-C-tight,

2. there exists y ∈ V \X such that yxi, yxj ∈ E for some 1 ≤ i < j ≤ 4,

3. C = Ci, C2, Cs and G[X,X ′] ∼= (F2, ϕ0) or G[X,X
′] ∼= (F2, ϕ2), or
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4. C = C2, Cs and G[X,X ′] ∼= (Wd(4, 2), ϕ5).

Proof. First note that for any C, |X∩X ′| ≤ 1 since G is (2, 2)-tight. If |X∩X ′| = 1,

this vertex must be fixed by any of the symmetries, so C = C2 or Cs, and G[X,X
′] ∼=

(Wd(4, 2), ϕ5), which is condition (4). We may therefore suppose X ∩X ′ = ∅. Let

G− be as above. Observe that C-symmetry is preserved in the reduction operation.

We have |V (G−)| = |V | − 6 and |E(G−)| = |E| − 12. We first show that if G− is

simple, then it is (2, 2)-tight. By construction,

|E(G−)| = |E| − 12 = 2|V | − 2− 12 = 2(|V | − 6)− 2 = 2|V (G−)| − 2.

Now consider F ≤ G−. If w,w′ /∈ V (F ), then F is a subgraph of G. Since G

is (2, 2)-tight, |E(F )| ≤ 2|V (F )| − 2. Any subgraph containing w or w′ can be

compared to a subgraph F ′ ≤ G, by replacing w,w′ with X,X ′ respectively, as well

as making the appropriate edge set adjustment. From F ′ being a subgraph of G it

easily follows that F is (2, 2)-sparse, so G− is (2, 2)-C-tight.

We next consider when the operation could create multiple edges. Let t de-

note the number of neighbours in X of a vertex v ∈ V \ X. Note that t ≤ 2

as iG−({x1, x2, x3, x4, v}) = 6 + t ≤ 8. If t = 2, we create an edge of multiplic-

ity two between v and w. This gives condition (2). The other possibility is for

a multiple edge between w and w′. This will happen when d(X,X ′) ≥ 2. Since

iG−({x1, x2, x3, x4, x′1, x′2, x′3, x′4}) ≤ 14, there can be at most two such edges. When

this is an equality, G[X,X ′] ∼= (F2, ϕ0) or G[X,X
′] ∼= (F2, ϕ2), depending on fixed

edges, giving condition (3). In other cases we may perform the reduction operation

and the resulting graph G− is (2, 2)-C-tight, which is condition (1) and completes

the proof.

Lemma 4.2.10. Let (G, ϕ) be (2, 2)-C-tight for C ∈ {Ci, C2, Cs} and let X be a

copy of K4 in G which contains a node v and X ∩ X ′ = ∅. Suppose we cannot

contract X since there exists y ∈ V with two edges to distinct vertices, say a, b in X.

Then there is a C-symmetric C4 contraction that results in a (2, 2)-C-tight graph.

Proof. Label the final vertex of X as c. We write H = G[{a, b, c, v, y}]. Note that

vy /∈ E, and so G[{a, b, v, y}] ∼= K4 − e. Hence there is a potential C4 contraction,
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with v → y. We claim that this C4 contraction results in a smaller (2, 2)-tight graph

and hence the C-symmetric C4 contraction results in a (2, 2)-C-tight graph. We

begin by noting that there is no 2-critical set U containing v, y and at most one of

a, b (otherwise adding the vertices of H not contained in U and their incident edges

violate (2, 2)-sparsity). Similarly there is no 3-critical set containing v, y but not

a, b.

Since v is a node, and a, b ∈ N(y), c /∈ N(y), the subgraphs of the contracted

graph of small criticality we are interested in will contain one or both of the edges

cy, c′y′. Suppose there exists a 2-critical set U with {c, y} ∈ U and a, b, v /∈ U .

Then U ∪ v is 3-critical and hence does not exist as above. Similarly there is

no 2-critical set containing {c′, y′}. To complete the proof we check that there is

no 3-critical set W containing c, y, c′ and y′. Let L = W + {a, b, a′, b′}. Since

ac, ay, bc, by, a′c′, a′y′, b′c′, b′y′ ∈ E, we have iG(L) ≥ 2|L| − 3. However, we then see

that

iG(L+ {v, v′}) ≥ 2|L| − 3 + 6 = 2|L+ {v, v′}| − 1,

contradicting G being (2, 2)-tight.

Lemma 4.2.11. Let (G, ϕ) be (2, 2)-C-tight for C ∈ {C2, Cs} with no fixed edges,

δ(G) ≥ 3 and let H ≤ G be a proper subgraph. If H is (2, 2)-C-tight then there

exists a proper tight subgraph F of G, with H ≤ F , such that G/F is (2, 2)-C-tight.

Proof. We begin by noting that unless there exists a y1 ∈ V \V (H) that is adjacent

to two vertices of H, we can contract H to a fixed vertex to create a simple graph

G/H, and

|E(G/H)| = |E| − |E(H)| = 2|V | − 2− 2|V (H)|+ 2 = 2(|V (G/H)| − 1).

Any subgraph of G/H which breaks (2, 2)-sparsity either does not contain the con-

tracted vertex and hence trivially breaks the (2, 2)-sparsity of G, or does and the

obvious corresponding subgraph breaks the (2, 2)-sparsity of G since K1 and H are

both (2, 2)-tight. If G is C2-symmetric, for H to be (2, 2)-C2-tight it must contain

the fixed vertex of G, and since H contracts to a fixed vertex in G/H it would be
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the only such fixed vertex. This contraction preserves C-symmetry, so G/H would

be (2, 2)-C-tight. If such a y1 exists, then let H1 be the subgraph of G including H

and y1 (and y′1 if y1 is not fixed). Note that H1 is also (2, 2)-C-tight. By the same

reasoning as above, H1 can be contracted to a fixed vertex unless there exists y2 ad-

jacent to two vertices of H1. This sequence must end with a proper tight subgraph

F = Hk as δ(G) ≥ 3, completing the proof.

4.3 Ci-symmetric isostatic graphs

We now focus exclusively on Ci symmetry and put together the combinatorial anal-

ysis to this point to prove a recursive construction. From this we then deduce our

characterisation of completely Ci-regular isostatic frameworks. We need one final

lemma first.

Lemma 4.3.1. Let (G, ϕ) be a (2, 2)-Ci-tight graph distinct from (F1, ϕ1) and (F2, ϕ2).

If all nodes are in copies of (F1, ϕ1) or (F2, ϕ2), then G contains a 2-edge-separating

set S. Further, let G1, G2 be the connected components of G−S. Then both G1 and

G2 are (2, 2)-Ci-tight with one of the Gi being isomorphic to (F1, ϕ1) or (F2, ϕ2).

Proof. Let k be the number of (2, 2)-Ci-tight subgraphs which are isomorphic to

(F1, ϕ1) or (F2, ϕ0). We first show that these k (2, 2)-Ci-tight subgraphs cannot have

intersecting vertex sets. Two Ci-symmetric subgraphs cannot have an intersection

of size 1, since the intersection is Ci-symmetric and there are no fixed vertices. Since

G is (2, 2)-sparse the intersection of any two Fi is 2-critical. Hence the intersection

is of size at least four. Since each Fi is Ci-symmetric, their intersection must be,

so H = Fi ∩ Fj is a proper (2, 2)-Ci-tight subgraph with 4 ≤ |V (H)| ≤ 6. Since

F1 is not a subgraph of F2, and K4 is not Ci-symmetric, this means that all of the

Fi are pairwise vertex disjoint. Let v0 be the number of vertices of G in these k

(2, 2)-Ci-tight subgraphs, r = |V | − v0, e0 = 2v0 − 2k be the number of edges of G

in these k subgraphs, and s = |E| − e0.

Since |E| = 2|V | − 2, we can now deduce, with substitutions from above, that
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s+ e0 = 2r + 2v0 − 2, and hence

s+ 2v0 − 2k = 2r + 2v0 − 2.

This implies that s = 2r+2k− 2. Let H1, H2, . . . , Hk denote the k copies of F1, F2.

For any 1 ≤ j ≤ k, G \ Hj is (2, 2)-Ci-tight and d(Hj, G \ Hj) is even, since no

edges of G are fixed by the inversion. Each of the r vertices not in some Hj are

of degree at least four. Counting incidences, we see 2s ≥ 4r +
∑k

i=1 ai where for

each i, ai ∈ {2, 4, . . . } is counting the number of edges incident to each Hi. We can

substitute s from the above to obtain

2(2r + 2k − 2) ≥ 4r +
k∑

i=1

ai,

and cancelling gives 4k − 4 ≥
∑k

i=1 ai. This means at least two of the ai are equal

to two, so at least two (2, 2)-Ci-tight subgraphs can be separated from G with the

removal of two edges, hence G contains a 2-edge-separating set S.

Let G1, G2 be the components of G − S. We know from the above that one

component is isomorphic to (F1, ϕ1) or (F2, ϕ0), without loss of generality say G2.

Then G1 is (2, 2)-tight and contains a copy of F1 or F2 which is (2, 2)-Ci-tight. This

gives us that φ(G1)∩G1 ̸= ∅. Further, we note that G1 inherits inversion symmetry

from G and S ∩ φ(G1) = ∅. Since φ(G1) is connected, this implies φ(G1) = G1.

Since φ fixes no vertices or edges of G, it will not fix any vertices or edges of Gi.

Hence G1 is (2, 2)-Ci-tight.

Theorem 4.3.2. A graph (G, ϕ) is (2, 2)-Ci-tight if and only if (G, ϕ) can be gen-

erated from (F1, ϕ1) or (F2, ϕ0) by symmetrised 0-extensions, 1-extensions, vertex-

to-K4 operations, vertex-to-C4 operations, and joining such a graph to a copy of

(F1, ϕ1) or (F2, ϕ0) by two new distinct edges that are images of each other under φ.

Proof. We first show that if G can be generated from the stated operations, then it

is (2, 2)-Ci-tight. Note that (F1, ϕ1) and (F2, ϕ0) are independent and (2, 2)-Ci-tight.

In Section 4.1 we showed that the named operations preserve independence. It is

clear these operations introduce two edges for each new vertex and do not introduce
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fixed edges. Thus, if we apply these operations to an independent and (2, 2)-Ci-tight

graph, the result will also be independent and have the correct edge counts described

in Section 3.3. Thus the new graph must be (2, 2)-Ci-tight from Theorem 3.3.4.

For the converse, we show by induction that any (2, 2)-Ci-tight graph G can

be generated from a copy of (F1, ϕ1) or (F2, ϕ0). Suppose the induction hypothesis

holds for all graphs with |V | < n. Now let |V | = n and suppose G is not isomorphic

to either of the base graphs (F1, ϕ1) and (F2, ϕ0). We wish to show that there

is an operation from our list taking G to a (2, 2)-Ci-tight graph G− = (V −, E−)

with |V −| < n. Then we know that G− can be generated from a copy of (F1, ϕ1)

or (F2, ϕ0), and hence so can G. We first note that any (2, 2)-Ci-tight graph G

has 2 ≤ δ(G) ≤ 3. There is no v ∈ V with d(v) = 0, 1, as then G − v would

break sparsity. By the handshaking lemma, if all vertices are at least degree 4, then

|E| ≥ 2|V |. If δ(G) = 2, then we remove any degree 2 vertex and its symmetric copy.

This yields a (2, 2)-Ci-tight graph by Lemma 4.2.1, and this graph G− = (V −, E−)

has |V −| = n− 2 as required. Otherwise δ(G) = 3.

If there exists a degree three vertex v ∈ V with N(v)∩N(v′) = ∅, with G[N [v]] ≇

K4, then we perform a Ci-symmetric 1-reduction, which is possible by Lemma 4.2.5.

If N(v)∩N(v′) ̸= ∅ and G[N [v]∪N [v′]] ≇ F1, then we again perform a symmetrised

1-reduction which is possible by Lemma 4.2.6. In both cases, the new graph G− =

(V −, E−) also has |V −| = n − 2 as required. Otherwise, all nodes are in copies of

K4 or (F1, ϕ1).

Now suppose G contains a subgraph isomorphic to K4 and consider a contraction

of this K4. By Lemma 4.2.9, this K4 can be reduced unless there is a vertex with

two neighbours in the K4, or the K4 is part of a subgraph isomorphic to (F2, ϕ0).

In the former case, we use Lemma 4.2.10, and G− = (V −, E−) is a (2, 2)-Ci-tight

graph with |V −| < n. In the latter case, all nodes are in (2, 2)-Ci-tight subgraphs

isomorphic to (F1, ϕ1) or (F2, ϕ0) and we recall G is not isomorphic to (F2, ϕ0).

Hence we may apply Lemma 4.3.1 to deduce that G contains a two edge seperating

set S, so that G − S has two connected components G1, G2, where without loss of

generality G1 is (2, 2)-Ci-tight and G2 is isomorphic to (F1, ϕ1) or (F2, ϕ0). Writing

G1 = (V1, E1), we have |V1| < n so G1 and by extension G can be generated from
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(F1, ϕ1) or (F2, ϕ0). Finally, since G is not isomorphic to (F1, ϕ1) or (F2, ϕ0), we are

finished.

Theorem 4.3.3. A graph (G, ϕ) is Ci-isostatic if and only if it is (2, 2)-Ci-tight.

Proof. Necessity was proved in Theorem 3.3.4. It is easy to check using any com-

puter algebra package that the base graphs (F1, ϕ1) and (F2, ϕ0) are Ci-isostatic.

Sufficiency follows from Theorem 4.3.2 and the results of Section 4.1, namely Lem-

mas 4.1.1–4.1.6, by induction on |V |.

4.4 C2-symmetric isostatic graphs

In this section we turn our attention to C2-symmetric graphs on the cylinder. In

our recursive construction we will take care to maintain the number of fixed edges

and vertices in each operation, and hence we will essentially view the case of two

fixed edges and no fixed vertex as disjoint from the case of no fixed edge and one

fixed vertex.

4.4.1 Reduction operations

In the Ci-symmetric case, when looking at 1-reductions, we considered the induced

subgraphs on open neighbourhoods of the vertex we wished to remove. However,

for C2 symmetry, we must consider closed neighbourhoods, as we may have fixed

edges. The options for the intersection of the closed neighbour sets of a node, say

v, and its image v′ are: empty intersection; one vertex in the intersection, where

the vertex in the intersection will be fixed; two vertices in the intersection, where

v and v′ are both adjacent to a vertex and its image under the half-turn or where

vv′ ∈ E; three vertices in the intersection, with one vertex fixed and no fixed edges;

four vertices in the intersection, and the vertices form either K4 or K4 − e as an

induced subgraph. Note that the two cases above with fixed vertices were shown to

be reducible in Section 4.2.

We recall from Lemma 4.2.2 for Ci and Cs symmetry, that we had to consider 2-

and 3-critical sets which prevent a symmetrised 1-reduction. These both need to be
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considered with C2 symmetry, but the conditions that a (2, 2)-C2-tight graph has

one fixed vertex and no fixed edges or no fixed vertex and two fixed edges means we

must now also consider 4-critical sets which do not have any fixed edges or vertices.

Performing a symmetrised 1-reduction which adds two edges to such a set would

violate our conditions for (2, 2)-C2-tightness.

Lemma 4.4.1. Let (G, ϕ) be (2, 2)-C2-tight and suppose v ∈ V is a node with N [v]∩

N [v′] either empty or consisting of only one fixed vertex and suppose iG(N(v)) ≤ 1.

If there is a 4-critical C2-symmetric subset T ⊂ V − {v, v′}, with G[T ] containing

no fixed edges or vertices, and containing two non-adjacent vertices of N(v), then

there exists a C2-symmetric 1-reduction at v that results in a (2, 2)-C2-tight graph.

Proof. Let N(v) = {x, y, z} and let T ⊂ V − {v, v′} be as in the proposition state-

ment. Without loss of generality, we may suppose xy, xz /∈ E and x, y ∈ T . Note

that z /∈ T . We show that either G′ = G − {v, v′} + {xz, x′z′} is (2, 2)-C2-tight or

yz /∈ E and G′ = G−{v, v′}+ {yz, y′z′} is (2, 2)-C2-tight. We first prove that there

cannot exist a 4-critical C2-symmetric set T1 such that G[T1] contains no fixed edges

or vertices and x, z ∈ T1. Suppose to the contrary, that T1 exists. As T1∩T ̸= ∅, and

both T1∩T and T1∪T are C2-symmetric and the induced subgraphs do not contain

fixed edges or vertices, we have i(T1∩T ) ≤ 2|T1∩T |−4 and i(T1∪T ) ≤ 2|T1∪T |−4.

Then

2|T1| − 4 + 2|T | − 4 = i(T1) + i(T ) = i(T1 ∪ T ) + i(T1 ∩ T )− d(T1, T )

≤ 2|T1 ∪ T | − 4 + 2|T1 ∪ T | − 4 = 2|T1|+ 2|T | − 8.

Hence equality holds and T1 ∩T and T1 ∪T are 4-critical. This is a contradiction as

T1 ∪ T ∪ {v, v′} would be 2-critical with no fixed edge and no fixed vertex induced

by this set. Similarly if yz /∈ E, then there does not exist a 4-critical C2-symmetric

set T2 such that G[T2] contains no fixed edges or vertices and y, z ∈ T2.

Assume now that there exist two 2-critical sets U1 and U2 containing {x, z} and

{x′, z′} respectively. We may assume U2 = U ′
1, for otherwise we could consider

U3 = U1 ∪ U ′
2 and U ′

3 = U ′
1 ∪ U2. Let U = U1 ∪ U2. Note that if U1 ∩ U2 = ∅ then

U is 4-critical. Otherwise, by Remark 4.2.4, U is 2-critical, and since G[U ] is C2-
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symmetric, it contains the fixed edges or vertex. It follows that T ∪U = T ∪U1∪U2

is 4-critical. Writing a for the criticality of U , we have

2|T | − 4 + 2|U | − a = i(T ) + i(U) = i(T ∪ U) + i(T ∩ U)− d(T, U)

≤ 2|T ∪ U | − 4 + 2|T ∩ U | − 2 = 2|T |+ 2|U | − 6.

If U is 4-critical this would imply that G[T ∪ U ∪ {v, v′}] is (2, 2)-tight and C2-

symmetric but does not contain fixed elements, which contradicts Theorem 3.3.4.

So we may suppose U is 2-critical and d(T, U) = 0, implying yz, y′z′ /∈ E. Then

there cannot exist a 2-critical set on {y, z} or {y′, z′}, as if say y, z ∈ X was 2-critical,

G[U ∪X ∪ {v, v′}] would not be sparse.

Finally, assume there exists a 3-critical set W containing {x, z, x′, z′}, or when

yz /∈ E, {y, z, y′, z′}. We can assume this set is C2-symmetric by taking W ∪W ′.

Since the induced subgraph contains only one fixed edge, i(W∪T ) ≤ 2|W∪T |−3, and

i(W∩T ) ≤ 2|W∩T |−4. By similar calculations as we did for 4 and 2-critical sets, we

see that in the equations above equality holds throughout, and hence T ∪W ∪{v, v′}

breaks (2, 2)-sparsity of G. Then by Lemma 4.2.2, either G′ = G−{v, v′}+{xz, x′z′}

or yz /∈ E and G′ = G− {v, v′}+ {yz, y′z′} is (2, 2)-C2-tight as required.

Lemma 4.4.2. Let (G, ϕ) be (2, 2)-C2-tight and suppose v ∈ V is a node with

N [v] ∩ N [v′] = ∅. Then either G[N [v]] = K4, or there exists x, y ∈ N(v) such that

xy /∈ E, and G− = G− {v, v′}+ {xy, x′y′} is (2, 2)-C2-tight.

Proof. We break up this proof into cases by looking at the number of edges amongst

the neighbours of v. Label the neighbours of v by x, y, z. Firstly, when all 3 edges

xy, xz, yz are present in the graph, we have a K4. Next suppose two edges are

present, say without loss of generality xy /∈ E. Suppose there exists a 2-critical

set U ⊂ V − v with x, y ∈ U . Then the subgraph induced by U ∪ {v, z} violates

the (2, 2)-sparsity of G. To do the 1-reduction symmetrically, we must check that

there is no W ⊂ V − v with x, y, x′, y′ ∈ W such that |E(W )| = 2|V (W )| − 3. This

follows since the subgraph induced byW ∪{v, z, v′, z′} breaks (2, 2)-sparsity. If there

exists a 4-critical C2-symmetric subset T ⊂ V − {v, v′} containing x, y, x′, y′ then

T ∪{v, z, v′, z′} is 2-critical and C2-symmetric, so all fixed edges and/or vertices are
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contained in G[T ].

For the case with one or zero edges amongst x, y, z, we begin by noting that no

two of the pairs {x, y}, {x, z}, {y, z} can each be contained in a 2-critical set, as if

any two were contained in 2-critical sets U1, U2, then, by Remark 4.2.4, U1 ∪ U2 is

2-critical and U1 ∪U2 + v violates the (2, 2)-sparsity of G. If there exists a 4-critical

C2-symmetric subset T ⊂ V − {v, v′} containing v1, v2, v
′
1, v

′
2 then T ∪ {v, v3, v′, v′3}

is 2-critical and C2-symmetric. Hence by Lemma 4.4.1, if {v1, v2} was the only pair

not in a 2-critical set we can perform a C2-symmetric 1-reduction at v in this case.

Finally we must consider when there do not exist 2-critical sets containing

{v1, v2} and {v2, v3} respectively with {v1, v2, v3} = {x, y, z}. (Whether there is

a 2-critical set containing v1, v3 is not important for the argument that follows.) As-

sume for a contradiction thatW1,W2 ⊂ V −v are 3-critical with {v1, v2, v′1, v′2} ∈ W1,

{v2, v3, v′2, v′3} ∈ W2. By counting similar to Remark 4.2.4, the union and intersec-

tion of two 3-critical sets are either both 3-critical or one is 2-critical and the other is

4-critical. SinceW1∩W ′
1 andW1∪W ′

1 contain {v1, v2} neither are 2-critical (similarly

W2∩W ′
2 andW2∪W ′

2 are not 2-critical since they both contain {v2, v3}). Hence both

W1∪W ′
1 and W2∪W ′

2 are 3-critical and C2-symmetric, so the subgraphs induced by

these sets must each contain exactly 1 fixed edge. If they do not contain the same

fixed edge, (W1 ∪W ′
1) ∩ (W2 ∪W ′

2) is C2-symmetric and contains no fixed edges or

vertices, so must be 4-critical, which would imply (W1∪W ′
1)∪(W2∪W ′

2) is 2-critical

but then {v1, v2} is contained in a 2-critical set. If the induced subgraphs do contain

the same fixed edge, both (W1∪W ′
1)∩(W2∪W ′

2) and (W1∪W ′
1)∪(W2∪W ′

2) would be

3-critical, but then the subgraph induced by (W1 ∪W ′
1)∪ (W2 ∪W ′

2)+ {v, v′} would

violate (2, 2)-sparsity. Hence one of the pairs vi, vj is not contained in a 2-critical or

a 3-critical subset of V − v. It remains to deal with the case when this pair vi, vj is

blocked by a 4-critical subset T ⊂ V −{v, v′}. It follows from Lemma 4.4.1 that we

can reduce v symmetrically and the proof is complete.

Lemma 4.4.3. Let (G, ϕ) be (2, 2)-C2-tight and suppose v ∈ V is a node with

N(v) = {x, y, v′} and N [v] ∩N [v′] = {v, v′}.

1. Suppose xx′, yy′ /∈ E. Then either G′
1 = G − {v, v′} + {xx′} or G′

2 = G −
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Figure 4.11: Reduction schematic when the degree three vertex is adjacent to its
symmetric image.

{v, v′}+ {yy′} is (2, 2)-C2-tight.

2. Suppose xx′ ∈ E or yy′ ∈ E. Then there is another node in G and it is not of

this type.

The following proof has two cases, firstly assuming the edges xx′ and yy′ are not

present among the neighbours of v and v′, and secondly assuming one is. (Note that

it is not possible for both to be since vv′ ∈ E would give three fixed edges.)

Proof. For (1), we may perform a non-symmetric 1-reduction at v′ as it cannot

happen that {v, x′} and {v, y′} can be in 2-critical blocking sets, or else the union of

these sets, sayW , is 2-critical andW +v′ breaks sparsity. To perform a second non-

symmetric 1-reduction at v, we see that neither {x, x′} or {y, y′} can be contained

in a 2-critical set. If there were such a set, without loss of generality call it U and let

it contain x, x′, then U ∪ U ′ is 2-critical (x, x′ ∈ U ∩ U ′), C2-symmetric, but cannot

contain both of the fixed edges of G, which is a contradiction.

For (2), assume without loss of generality that xx′ ∈ E. Since G is (2, 2)-tight

and δ(G) = 3 there are at least four nodes in G. If v, v′, x, x′ are the only nodes,

then G− {v, v′, x, x′} is (2, 2)-C2-tight. We now simply note that this arrangement

can only appear once in each graph, since it has both of the fixed edges.

In the above proof, for the second 1-reduction we are still considering G, rather

than G− v + xx′. We can do this since the blocking set in the reduced graph does

not use v, therefore it does not include the edge vv′ so the blocking set without v′

would still be 2-critical.
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Lemma 4.4.4. Let (G, ϕ) be (2, 2)-C2-tight, suppose v ∈ V is a node such that

N [v] ∩ N [v′] = {x, x′} and let the other neighbour of v be z. Then G′
1 = G −

{v, v′}+ {xz, x′z′} or G′
2 = G− {v, v′}+ {x′z, xz′} is (2, 2)-C2-tight.

Proof. We prove this by case analysis, counting if the edges xz, yz, and xy are

present. Firstly, xz, x′z and xx′ cannot all be present, as the subgraph induced by

N [v] ∪ N [v′] would break (2, 2)-sparsity. Further we do not have xz, x′z ∈ E and

xx′ /∈ E, as N [v] ∪N [v′] is 2-critical, C2-symmetric and the induced subgraph does

not contain the correct fixed elements. Our first case where a 1-reduction is possible

is when one edge of xz, x′z is present with xx′, say x′z, xx′ ∈ E, xz /∈ E. If there

exists a 2-critical set U containing x, z, not containing v, then the subgraph induced

by U ∪ {v, x′} contradicts the (2, 2)-sparsity of G. If there exists a 3-critical set W ,

with x, x′, z, z′ ∈ U , v, v′ /∈ W , then the subgraph induced byW ∪{v, v′} also breaks

the (2, 2)-sparsity of G. For any 4-critical T containing x, z, x′, z′, G[T ] contains a

fixed edge, namely xx′. By counting, if G[T ] contains one fixed edge and T is 4-

critical, it must contain both fixed edges, therefore there is no 4-critical blocking set

for the 1-reduction at v and v′.

Consider the case when one of the edges xz, x′z is present, say x′z ∈ E, xz, xx′ /∈

E. There does not exist 2-critical U1, U2 with x, z ∈ U1, x, x
′ ∈ U2, as this contradicts

Remark 4.2.4 as d(U1, U2) ̸= 0. We therefore know that one of G1 = G − v + xx′

or G2 = G − v + xz is (2, 2)-tight, although not C2-symmetric. We want to show

that it is always the case that we can perform a (non-symmetric) 1-reduction at v

by adding the edge xz. Suppose we add xx′. Consider 1-reductions at v′ ∈ G1.

If there exists a 2-critical set U containing {x′, z′}, then the subgraph induced by

W∪{x′, z′} contradicts the (2, 2)-sparsity of G1. Hence we can perform a 1-reduction

at v′ in G1 adding the edge x′z′. Since we could perform this 1-reduction in G1, we

know a 2-critical set U∗ in G preventing a 1-reduction adding the edge x′z′ must

contain v. However, then the subgraph H induced by U∗ ∪ {x, v′} contradicts the

(2, 2)-sparsity of G, as H contains the edges xv, xz′, v′x′, v′z′, v′x. Hence, we may

perform a 1-reduction at v′ in G by adding the edge x′z′.

Now when xz, x′z /∈ E, if both {x, z} and {x′, z} are in 2-critical sets U1 and U2

respectively, U1 ∪ U2 is 2 critical so U1 ∪ U2 ∪ {v} contradicts (2, 2)-sparsity of G.
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There is no 3-critical set W or 4-critical set T containing x, z, x′, z′. Observe that

such a setW +{v, v′} would break sparsity, and a set T +{v, v′} would be 2-critical,

C2-symmetric, but G[T ∪ {v, v′}] contains no fixed vertex or edge.

Lemma 4.4.5. Let (G, ϕ) be (2, 2)-C2-tight and suppose v ∈ V is a node such

that N [v] ∩ N [v′] = {v, v′, x, x′} and xx′ /∈ E. Then G′ = G − {v, v′} + {xx′} is

(2, 2)-C2-tight.

Proof. G′ is not (2, 2)-C2-tight if and only if there exists a 2-critical set X in G −

{v, v′} containing x and x′. However vv′ is not in G[X] so such a set X cannot exist

and the lemma follows.

4.4.2 Combinatorial characterisation

We can now put together the combinatorial results of this section to prove the

following recursive construction and then apply this result alongside the results of

Section 4.1 to deduce our characterisation of C2-isostatic graphs.

Theorem 4.4.6. A graph (G, ϕ) is (2, 2)-C2-tight if and only if (G, ϕ) can be gen-

erated from (K4, ϕ3), (W5, ϕ4), (Wd(4, 2), ϕ5), (F2, ϕ2) (these graphs were depicted in

Figure 4.7) by symmetrised 0-extensions, 1-extensions, vertex-to-K4 operations and

vertex-to-C4 operations.

Proof. Each of the base graphs are independent and tight and Section 4.1 showed

the symmetrised 0-extension, 1-extension, double 1-extension, vertex-to-K4, vertex-

to-C4 and vertex-to-(2, 2)-C2-tight operations preserve independence. It is easy to

see the operations also preserve (2, 2)-tightness and the number of fixed elements.

We can therefore apply Theorem 3.3.4 to the extended graph.

Conversely, we show by induction that any (2, 2)-C2-tight graph G can be gen-

erated from our base graphs. Suppose the induction hypothesis holds for all graphs

with |V | < n. Now let |V | = n and suppose G is not isomorphic to one of the

base graphs in Figure 4.7. Obviously any (2, 2)-C2-tight graph contains a vertex

of degree 2 or 3. The former case is dealt with by Lemma 4.2.1. Hence sup-

pose δ(G) = 3 and v is a vertex of minimum degree. There are 6 cases depend-

ing on the closed neighbourhood of v, namely with labelling from this section,
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N [v] ∩ N [v′] ∈ {∅, {t}, {v, v′}, {x, x′}, {t, x, x′}, {v, v′, x, x′}}. By Lemmas 4.2.7,

4.2.8, and 4.4.2–4.4.5 we see that the only blocks to reducing any given node are

K4 (either C2-symmetric or non-symmetric) and the base graphs (Wd(4, 2), ϕ5) and

(W5, ϕ4). (Note that if the option in Lemma 4.4.3(2) occurs then we may reduce

the other node unless it is contained in a non-symmetric K4.)

Suppose one of the base graphs in Figure 4.7 is a subgraph of G, denoted by H.

If H ∼= (K4, ϕ3) or (F2, ϕ2), H contains all the fixed edges of G and there can be no

other base graph copy. Otherwise, H ∼= (W5, ϕ4) or (Wd(4, 2), ϕ5) and if another

copy of either (W5, ϕ4) or (Wd(4, 2), ϕ5) exist, call it H1, then note that H1 ∩H is

precisely the fixed vertex. Then H1 is a proper (2, 2)-C2-tight subgraph of G and

we apply Lemma 4.2.11. We may now suppose that H is the only subgraph of G

which is a copy of a base graph depicted in Figure 4.7.

We will show there is a node in G not contained in H. Note that H has at least

four degree three vertices. Observing that d(V (H), V (G \H)) ≥ 2, the sum of the

degrees in H increases by at least two in G compared to H, meaning there must

be two nodes in G \H. Hence we may assume all vertices of degree three are in a

unique (2, 2)-C2-tight base graph or a K4 copy which is not C2-symmetric. We may

now, in all cases, suppose that G has a degree 3 vertex that is contained in a K4.

We now apply Lemma 4.2.9 and 4.2.10 to complete the proof.

Theorem 4.4.7. A graph (G, ϕ) is C2-isostatic if and only if it is (2, 2)-C2-tight.

Proof. Since C2-isostatic graphs are (2, 2)-tight, necessity follows from Theorem

3.3.4. It is easy to check using any computer algebra package that the base graphs

depicted in Figure 4.7 are C2-isostatic. Hence the sufficiency follows from Theorem

4.4.6 and Lemmas 4.1.1, 4.1.3, 4.1.4, 4.1.6, 4.1.8 by induction on |V |.

4.5 Cs-symmetric isostatic graphs

We turn our attention to Cs-symmetric graphs on the cylinder. Here Cs is generated

by a single reflection σ which could contain the cylinder axis or be perpendicular to

it.
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4.5.1 Reduction operations

For a (2, 2)-Cs-tight graph, there are 6 possible cases for the structure of N(v) ∩

N(v′), namely N(v) ∩ N(v′) ∈ {∅, {t}, {x, x′}, {t1, t2}, {x, x′, t}, {t1, t2, t3}}, where

vertices fixed by the non-trivial element are denoted t, and those not fixed x. In

Section 4.2, Lemmas 4.2.5 -4.2.8 dealt with the first five of these cases. These

lemmas showed the reduction is possible, or the node is contained in a (2, 2)-Cs-

tight subgraph of G. This leaves only the toughest case when all three neighbours

of a node lie on the mirror.

Hence, for the remainder of this section we assume that all nodes have all neigh-

bours on the mirror. The following lemmas require some new notation for describing

our graphs. We will consider a vertex partition V = V r ∪V b∪V g into red, blue and

green vertices. The partition is chosen so that a vertex which is fixed by the mirror

symmetry is red, any vertex which is adjacent to a red vertex is blue, and the re-

maining vertices are green. This also gives us a notion of edge colouring. We colour

an edge red-blue if its endpoints are one red and one blue, blue-blue if its endpoints

are blue, blue-green if its endpoints are one blue and one green, and green-green if

its endpoints are green. Note that red-red edges are not possible in a (2, 2)-Cs-tight

graph, and red-green edges are not possible by the choice of the partition. We can

therefore write E = Erb ∪ Ebb ∪ Ebg ∪ Egg.

It will also be useful to consider the subgraphs of G which consist of red-blue and

blue-blue edges. We will call these red-blue connected components or rb-components

for shorthand. We label the rb-components of a graph A1, . . . , Ak, so the component

Ai = (Vi, Ei) is ki-critical, has red vertex set V r
i and blue vertex set V b

i , and has

red-blue edges Erb
i and blue-blue edges Ebb

i as in G. A natural extension of this is

to say that the subset of the edges Ebg that are incident to a vertex in Ai form a

new set denoted Ebg
i . Lastly, let S ⊂ V b be the nodes with all three neighbours on

the mirror. Let s = |S| and si = |S ∩ Vi|. We illustrate these definitions in Figure

4.12.

Lemma 4.5.1. Let (G, ϕ) be (2, 2)-Cs-tight with δ(G) ≥ 3. Then G[V r ∪ V b] is

(2, 2)-Cs-tight if and only if V g = ∅. Moreover, if V g ̸= ∅ then there exists an
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v′1

v1

v′2

v2

Figure 4.12: A (2, 2)-Cs-tight graph G. The red vertices lie on the mirror line, the
blue vertices are depicted as unfilled circles and the green vertices are the filled
vertices not on the mirror. Each copy of K3,4 in G is a rb-component and S =
{v1, v′1, v2, v′2}.

i ∈ {1, . . . , k} such that |Ebg
i | ≤ 2ki − 2 and si ≥ 2ki − |Ebg

i |.

Proof. If V g = ∅ then G[V r ∪ V b] = G and hence it is (2, 2)-Cs-tight. Conversely,

we begin by noting that

|Erb|+ |Ebb|+ |Ebg|+ |Egg| = 2|V r|+ 2|V b|+ 2|V g| − 2. (4.5.1)

Then, for each i ∈ {1, . . . , k}, |Erb
i |+ |Ebb

i | = 2|V r
i |+ 2|V b

i | − ki. Summing gives

|Erb|+ |Ebb| = 2|V r|+ 2|V b| −
k∑

i=1

ki (4.5.2)

and then, by subtracting (4.5.2) from (4.5.1), we obtain |Ebg| + |Egg| = 2|V g| −

2 +
∑k

i=1 ki. Counting vertex degrees gives |Ebg| + 2|Egg| =
∑

v∈V g dG(v) ≥ 4|V g|.

Therefore, 2|Ebg|+ 2|Egg| = 4|V g| − 4 + 2
∑k

i=1 ki ≤ |Ebg|+ 2|Egg| − 4 + 2
∑k

i=1 ki.

Rearranging and simplifying gives

|Ebg| ≤ 2
k∑

i=1

ki − 4, (4.5.3)

which, for k = 1 and k1 = 2, completes the first statement of the proof.

If |Ebg
i | ≥ 2ki for all i, we would contradict Equation (4.5.3). Again counting
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vertex degrees,

|Erb
i | =

∑
v∈V r

i

dG(v) ≥ 4|V r
i | (4.5.4)

and since the vertices of Si are nodes,

|Erb
i |+ 2|Ebb

i |+ |Ebg
i | =

∑
v∈V b

i

dG(v) ≥ 4|V b
i | − si. (4.5.5)

Adding Equations (4.5.4) and (4.5.5), we see that 2|Erb
i |+ 2|Ebb

i |+ |Ebg
i | ≥ 4|V r

i |+

4|V b
i | − si. Now recalling Equation (4.5.2) (restricted to Ai), we obtain

4|V r
i |+ 4|V b

i | − si − |Ebg
i | ≤ 2|Erb

i |+ 2|Ebb
i | ≤ 4|V r

i |+ 4|V b
i | − 2ki,

which completes the proof.

Lemma 4.5.2. Let (G, ϕ) be a (2, 2)-Cs-tight graph, distinct from K3,4, with δ(G) =

3. Suppose that the neighbour set of every node consists only of fixed vertices and

that no proper subgraph H of G is (2, 2)-Cs-tight. Then there exists a C4-contraction

(which contracts two fixed vertices) that results in a (2, 2)-Cs-tight graph.

v′11

v11

v′12

v12

v′21

v21

v′31

v31

v′32

v32

v′33

v33

v′41

v41

v′42

v42

Figure 4.13: The depicted graph H is a subgraph of some (2, 2)-Cs-tight graph G.
All nodes in G have all their neighbours on the mirror and H is induced by S and
the neighbours of vertices in S. We have labeled so that vji, v

′
ji ∈ Sj. Note that

v31 and v′33 are in the same set of the partition since there is a 4-cycle containing
v31 and v32 and another containing v32 and v′33, but v33 and v41 are in different sets
since no two common neighbours exist.

Proof. If V g ̸= ∅, then by Lemma 4.5.1 there exists a rb-component Ai with |Ebg
i | ≤

2ki − 2 and si ≥ 2ki − |Ebg
i |. Suppose S ∩ Vi = {u1, u2, . . . , ur}. We define S1

recursively. Let u1 be in S1. For any uq ∈ S ∩ Vi, uq ∈ S1 if there exists t1, t2 ∈ V r
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and up ∈ S1 so that uqt1upt2 is a 4-cycle in G. If S1 ̸= S ∩Vi, take uk ∈ (S ∩Vi) \S1

and put it in S2, then define S2 analogously. In this manner we obtain the partition

S∩Vi = S1⊔S2⊔· · ·⊔Sl. (See Figure 4.13 for an illustration.) Since there is no K3,4

subgraph of G we may assume, for a contradiction, that all red pairs of neighbours

of nodes are contained in at least two 4-cycles. Take a pair of red vertices that are in

two 4-cycles. The 4 neighbouring vertices have at least 3 neighbours on the mirror.

As there is no K3,4 subgraph, there must be at least two new red vertices adjacent to

the 4 blue vertices mentioned. This creates new 4-cycles which involve the original

two red vertices. Hence the degree of any red vertex adjacent to a node is at least

six. It is possible that a vertex of Sj shares exactly one neighbour with a vertex of

Sk for j ̸= k. Let there be p such vertices. All such vertices have degree at least 12.

For each Sj there are 1
2
|Sj| + 2 red vertices of degree at least six (this double

counts the p vertices of minimum degree 12), and at least |Sj| + 4 blue vertices of

degree at least 4. Let r and b be the number of red and blue vertices respectively

of Vi not already counted. Then, |Vi| = 1
2
si + 2l − p + r + si + 4l + b + si, the first

four summands representing red vertices, the next three blue vertices, and the last

summand the nodes (which are also blue). Once again we turn to counting degrees.

We have

2|Ei|+ |Ebg
i | ≥ 6(1

2
si+2l−2p)+12p+4r+4(si+4l)+4b+3si = 10si+28l+4r+4b.

(4.5.6)

Also, since each Ai has |Ebg
i | ≤ 2ki − 2 and |Vi| = 5

2
si + 6l + r + b− p, we have

2|Ei|+ |Ebg
i | ≤ 4|Vi| − 2ki + 2ki − 2 = 10si + 24l + 4r + 4b− 4p− 2. (4.5.7)

This implies that 4l + 4p ≤ −2, contradicting our assumption that all pairs of

neighbours of a node are in two C4. If V g = ∅, the proof is unchanged except that

|Ebg| = 0 and |E| = 2|V | − 2, so Equation (4.5.7) is

2|E| ≤ 4|V | − 4 = 10s+ 24l + 4r + 4b− 4p− 4

and so 4l + 4p ≤ −4 instead.
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Finally, we need to check that this C4-contraction preserves sparsity. Label the

vertices v, v′, t, t1 where t, t1 are fixed and are contracted and labelled t in the new

graph, and let the final neighbour of v be t2. Indeed, if a subgraph H of the reduced

graph breaks sparsity, then H = (Vt, Et) has |Et| ≥ 2|Vt| − 1. If H is Cs-symmetric

this must be |Et| ≥ 2|Vt|, and if H is not symmetric, H has at least one fixed vertex

(namely t), so Vt∩σVt ̸= ∅, and by similar counting arguments to Remark 4.2.4, one

of H ∩H ′ and H ∪H ′ has |Ẽ| = 2|Ṽ |. We may therefore assume H is Cs-symmetric.

Noting that Et ⊂ E, we draw the following conclusions.

If v, v′ ∈ Vt then i(Vt+{t1}) = |Et|+2 so Vt+{t1} breaks sparsity. Else we have

v, v′ /∈ Vt and i(Vt + {t1, v, v′}) = |Et|+ 4 if t2 /∈ Vt and i(Vt + {t1, v, v′}) = |Et|+ 6

if t2 ∈ Vt. Therefore Vt + {t1, v, v′} breaks sparsity unless t2 /∈ Vt and |Et| = 2|Vt|.

However, in this final case G[Vt + {t1, v, v′}] is a (2, 2)-Cs-tight proper subgraph of

G contradicting the conditions of the lemma.

4.5.2 Combinatorial characterisation

We can now put together the combinatorial results of this section to prove the

following recursive construction and then apply this result alongside the results of

Section 4.1 to deduce our characterisation of C2-isostatic graphs.

Theorem 4.5.3. A graph (G, ϕ) is (2, 2)-Cs-tight if and only if (G, ϕ) can be gen-

erated from the graphs (F2, ϕ2), (W5, ϕ4), (Wd(4, 2), ϕ5), (F1, ϕ1), (F1, ϕ6), (K3,4, ϕ7)

(these graphs were depicted in Figure 4.8) by fixed-vertex 0-extensions, fixed-vertex-

to-C4 and symmetrised 0-extensions, 1-extensions, vertex-to-K4, vertex-to-C4, and

vertex-to-(2, 2)-Cs-tight operations.

Proof. Each of the base graphs are independent and tight and it can be seen that

the fixed-vertex 0-extension, fixed-vertex-to-C4 and symmetrised 0-extension, 1-

extension, vertex-to-K4, vertex-to-C4 and vertex-to-(2, 2)-Cs-tight operations pre-

serve independence, tightness and do not introduce fixed edges. By Theorem 3.3.4,

any graph after such operations is (2, 2)-Cs-tight.

Conversely, we show by induction that any (2, 2)-Cs-tight graph G can be gen-

erated from our base graphs. Suppose the induction hypothesis holds for all graphs
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with |V | < n. Now let |V | = n and suppose G is not isomorphic to one of the

base graphs in Figure 4.8. Obviously any (2, 2)-Cs-tight graph contains a vertex

of degree 2 or 3. The former case is dealt with by Lemma 4.2.1. We can also

apply Lemma 4.2.11 to assume there are no (2, 2)-Cs-tight proper subgraphs of G.

Hence suppose δ(G) = 3 and v is a vertex of minimum degree. There are 6 cases

depending on the closed neighbourhood of v, namely with labelling from this sec-

tion, N(v)∩N(v′) ∈ {∅, {t}, {x, x′}, {t1, t2}, {t, x, x′}, {t1, t2, t3}}. By Lemmas 4.2.5

(∅), 4.2.7 ({t}), 4.2.6 ({x, x′} and {t1, t2}), 4.2.8 ({t, x, x′}) we see that the only

remaining blocks to reducing any given node is K4 or all three neighbours being

fixed vertices. If G has a degree 3 vertex that is contained in a K4 then by Lem-

mas 4.2.9 and 4.2.10 we may assume that the K4 and its symmetric copy intersect

non-trivially. Since there are no (2, 2)-Cs-tight proper subgraphs of G this gives a

contradiction. Finally we may suppose that all nodes have all neighbours on the

mirror, and by Lemma 4.5.2 there exists a C4 contraction, completing the proof.

Theorem 4.5.4. A graph (G, ϕ) is Cs-isostatic if and only if it is (2, 2)-Cs-tight.

Proof. Since Cs-isostatic graphs are (2, 2)-tight, necessity follows from Theorem

3.3.4. It is easy to check using any computer algebra package that the base graphs

depicted in Figure 4.8 are Cs-isostatic. Hence the sufficiency follows from Theorem

4.5.3, Lemmas 4.1.1, 4.1.3, 4.1.4, 4.1.5, 4.1.6, and Remarks 4.1.2, 4.1.7 by induction

on |V |.

4.6 Additional Results

An immediate consequence of Theorems 4.3.3, 4.4.7, and 4.5.4 is that there are

efficient, deterministic algorithms for determining whether a given graph is Ci-, C2-,

or Cs-isostatic since the (2, 2)-sparsity counts can be checked using the standard

pebble game algorithm [16, 24] and the additional symmetry conditions for the

number of fixed vertices and edges can be checked in constant time, from the group

action ϕ.

118



4.6.1 Tree decomposition

It is classical [26] that every (2, 2)-tight graph can be decomposed into the edge-

disjoint union of two spanning trees, and such packing or decomposition results are

often of interest in combinatorial optimisation [12]. We derive symmetric decompo-

sition results for C2, Ci and Cs in the following corollaries.

Corollary 4.6.1. A graph (G, ϕ) is C2-isostatic if and only if it is the edge-disjoint

union of two Z2-symmetric spanning trees (T1, ϕ), (T2, ϕ).

Proof. To show sufficiency, note that (T1, ϕ), (T2, ϕ) can be labelled so that if u is

the symmetric copy of v in T1, then they are symmetric copies in T2. By parity,

each tree will either have one fixed vertex, which will be the same vertex in G, or

one fixed edge. Since the spanning trees are edge-disjoint, G will either have one

fixed vertex and no fixed edge, or no fixed vertex and two fixed edges. Further,

it is known that the edge-disjoint union of two spanning trees is (2, 2)-tight. The

fact that G is (2, 2)-C2-tight now follows from the C2-symmetry of the two spanning

trees.

We prove the necessity of the symmetric decomposition by applying Theorem

4.4.6. It will be convenient to think of the edges of the two trees as being coloured

red and blue respectively. We illustrate appropriate colourings of the base graphs in

Figure 4.14. To check that the operations preserve the coloured trees, we describe

the edge colourings for each operation.

Firstly, the symmetrised 0-extension has one edge coloured red and the other

blue, with the symmetric edges coloured the same as their preimage. For a sym-

metrised 1-extension, in which say xy and x′y′ in G are deleted and the new vertices

added in G+ are v and v′, then colour vx, vy, v′x′, v′y′ in G+ the colour of xy in

G, and set the third edge incident to v (resp. v′) as the other colour. A double

1-extension can be thought of in the same way; if vv′ was deleted in G, the path

containing v, w, w′, v′ will be coloured the same as ww′. In a symmetrised vertex-

to-K4 operation, the two new K4 subgraphs should be coloured as in Figure 4.14

in such a way to preserve the symmetry. A vertex-to-(2, 2)-C2-tight subgraph op-

eration replaces a fixed vertex with a (2, 2)-C2-tight subgraph. As seen in Lemma
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4.2.11, the new subgraph can be constructed from either (W5, ϕ4) or (Wd(4, 2)ϕ5)

with a series of symmetrised 0-extensions. We therefore colour the subgraph starting

with the (W5, ϕ4) or (Wd(4, 2), ϕ5) copy, and colour the edges of the 0-extensions as

previously described.

Finally, we note that we do not perform fixed-vertex-to-C4 operations when

considering (2, 2)-C2-tight graphs. A symmetrised vertex-to-C4 operation can have

two possibilities. The path of length 2 on v1, w, v2 (with w to be split into w and

u in the operation, NG(w) = v1, v2, . . . , vr and v1, v2 becoming adjacent to both)

can be coloured with both edges the same colour, or each edge different. In both

cases, colour the edges of Ĝ = G+ \ {wv1, wv2, uv1, uv2, w′v′1, w
′v′2, u

′v′1, u
′v′2} as in

G. Now suppose first that wv1 is red and wv2 is blue in G. Then in G+, we colour

wv1, uv1 red and wv2, uv2 blue, and µvi the same colour as wvi for all µ ∈ {w, u}

and i ∈ {3, . . . , r} (colouring the edges in the orbit analogously).

Hence we may suppose both wv1 and wv2 are coloured red in G. We claim that

for any arrangement of the edges from v3, . . . , vr to either w or u in G+, there is a

colouring in G+ of wv1, wv2, uv1, uv2 with three red edges and one blue edge that

will result in G+ being the edge-disjoint union of two C2-symmetric spanning trees.

Note that such a colouring gives |V (G+)|−1 blue and red edges. Necessarily, w and

u are in different connected components of the Ĝ induced by the blue edges, say Xw

and Xu respectively. The vertex v1 will be in one of these components, without loss

of generality say Xw. Colouring the edge uv1 blue will connect these two components

and hence give a blue spanning tree. Since wv1 and wv2 are coloured red in G it

is easy to see that colouring the edges uv2, wv1, wv2 red in G+ will produce a red

spanning tree. Applying this colouring symmetrically completes the proof.

With a similar proof, we can establish the following result. We highlight the

difference in the two corollaries, namely that in Corollary 4.6.1 the non-identity

element of Γ fixes the colouring, whereas in Corollary 4.6.2 the non-identity element

of Γ reverses the colouring. We illustrate appropriate colourings of the base graphs

in Figures 4.15 and 4.16.

Corollary 4.6.2. For τ(Γ) ∈ {Ci, Cs}, a Γ-symmetric graph (G, ϕ) is τ(Γ)-isostatic
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Figure 4.14: The C2-symmetric base graphs decomposed into two C2-symmetric
edge disjoint trees, coloured red and blue (depicted with dashed and solid edges
respectively).

if and only if it is the edge-disjoint union of two spanning trees T1, T2, where ϕ(γ)T1 =

T2 for the non-trivial element γ of Γ.

Proof. To show sufficiency, note that for the non-trivial element γ of Γ, ϕ(γ) does

not fix any edges of (G, ϕ), since T1, T2 are edge-disjoint. It is possible for vertices

to be fixed by ϕ(γ); in particular there may be no fixed vertices as is required for

Ci-isostaticity. It is known that the edge-disjoint union of two spanning trees is

(2, 2)-tight. Hence G is (2, 2)-τ(Γ)-tight.

We prove the necessity of the symmetric decomposition by applying Theorems

4.3.2 and 4.5.3. As in Corollary 4.6.1, it will be convenient to think of the edges of

the two trees as being coloured red and blue respectively. We illustrate appropriate

colourings of the base graphs in Figures 4.15 and 4.16 for τ(Γ) = Ci and τ(Γ) = Cs

respectively. To check that the operations preserve the coloured trees, we describe

the edge colourings for each operation, beginning with the shared operations de-

scribed in Section 4.2.

Firstly, the symmetrised 0-extension has one edge coloured red and the other

blue, with the symmetric edges coloured the opposite to their preimage. For a

symmetrised 1-extension, say xy (a red coloured edge) and x′y′ (a blue coloured

edge) in G are deleted and the new vertices added in G+ are v and v′. Let the third

neighbour of v be z. Then colour vx, vy, v′z′ in G+ the colour of xy in G (red), and

v′x′, v′y′, vz in G+ the colour of x′y′ in G (blue). In a symmetrised vertex-to-K4

operation, the two new K4 subgraphs are coloured so that each vertex of the K4 is
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incident to an edge from a red tree and an edge from a blue tree, and the symmetric

copy so that ϕ(γ) exchanges red and blue. Such a colouring is the K4 in Figure 4.14.

The same logic applies for a vertex-to-(2, 2)-Cs-tight subgraph operation.

Finally we consider vertex-to-C4 operations. First we consider fixed-vertex-to-C4

operations for (2, 2)-Cs-tight graphs. The path of length 2, v1, w, v
′
1, will be coloured

one edge blue and the other red. The new vertex u must colour the edge to v1 with

a different colour to the edge to v′1. A symmetrised vertex-to-C4 operation can have

two possibilities. The path of length 2 on v1, w, v2 (with w to be split into w and u

in the operation, NG(w) = v1, v2, . . . , vr and v1, v2 becoming adjacent to both) can

be coloured with both edges the same colour, or each edge different. In both cases,

colour the edges of Ĝ = G+ \ {wv1, wv2, uv1, uv2, w′v′1, w
′v′2, u

′v′1, u
′v′2} as in G. Now

suppose first that wv1 is red and wv2 is blue in G. Then in G+, we colour wv1, uv1

red and wv2, uv2 blue, and colouring the edges in the orbit the alternate colour.

Hence we may suppose both wv1 and wv2 are coloured red in G. We claim that

for any arrangement of the edges from v3, . . . , vr to either w or u in G+, there is a

colouring in G+ of wv1, wv2, uv1, uv2 with three red edges and one blue edge that will

result in G+ being the edge-disjoint union of two τ(Γ)-symmetric spanning trees.

Note that such a colouring gives |V (G+)| − 1 blue and red edges. Necessarily, w

and u are in different connected components of the Ĝ induced by the blue edges,

say Xw and Xu respectively. The vertex v1 will be in one of these components,

without loss of generality say Xw. Colouring the edge uv1 blue will connect these

two components and hence give a blue spanning tree. Since wv1 and wv2 are coloured

red in G it is easy to see that colouring the edges uv2, wv1, wv2 red in G+ will produce

a red spanning tree. Applying this colouring with three blue edges and one red on

u′v′1, u
′v′2, w

′v′1, w
′v′2 completes the proof.

Figure 4.15: The Ci-symmetric base graphs decomposed into two edge disjoint span-
ning trees, coloured red and blue (depicted with dashed and solid edges respectively),
which are images of one another under the map ϕ(γ).
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Figure 4.16: The Cs-symmetric base graphs decomposed into two edge disjoint span-
ning trees, coloured red and blue (depicted with dashed and solid edges respectively),
which are images of one another under the map ϕ(γ).

The next obvious challenge would be to extend the characterisations in Theorems

4.3.3, 4.4.7, and 4.5.4 to deal with the remaining groups described in Theorem

3.3.4. While it is conceivable these groups could be handled by an elaboration of

our techniques there will be many more cases and technical details to consider due

to the multiple symmetry conditions. Moreover the corresponding problems in the

Euclidean plane (see [38, 39]) remain open, providing a note of caution.

4.6.2 τ(Γ)-symmetric infinitesimal rigidity

Analogous to the situation for frameworks in the Euclidean plane, an infinitesimally

rigid C2-symmetric framework on Y does not necessarily have a spanning isostatic

subframework with the same symmetry. An example is depicted in Figure 4.17.

Thus, for symmetric frameworks on Y, infinitesimal rigidity can in general not be

characterised in terms of symmetric isostatic subframeworks. To analyse symmetric

frameworks for infinitesimal rigidity, rather than isostaticity, a different approach

(similar to the one in [41], for example) may be needed. Surprisingly, it turns out

that for Ci and Cs the situation is special and a simplified version of the approach

in [41] may be applied in combination with Theorems 4.3.3 and 4.5.4 to deduce the

following characterisation of symmetric infinitesimal rigidity. We present the reader

a sketch of the proof, since a formal proof requires ideas and methods not visited in
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Figure 4.17: A C2-rigid graph where no vertex or edge is fixed by the half-turn.
There is no (2, 2)-C2-tight spanning subgraph.

the rest of the thesis. We first introduce terminology akin to that found in [41].

Let (G, ϕ) be a simple Γ-symmetric graph. For v ∈ V , let Γv := {ϕ(γ)v : γ ∈ Γ}

be the vertex orbit of v. For e ∈ E, let Γe := {ϕ(γ)e : γ ∈ Γ} be the edge orbit

of e. We write G/Γ for the quotient graph of G by Γ, which is a multigraph with

vertex set V0 the set of all vertex orbits of G under Γ and edge set E0 the set of all

edge orbits of G under Γ. That is V0 = {Γv : v ∈ V } and E0 = {Γe : e ∈ E}. The

quotient graph then has incidence relation Γe = ΓuΓv if some (and therefore every)

edge in Γe is incident with a vertex in Γu and a vertex in Γv.

We will create a directed graph called the gain graph. For our purposes, a

directed graph is a multigraph (with possible duplicate edges) with edge orientation

(i.e. uv ̸= vu). In G, fix a representative v∗ for every vertex orbit Γv. Fix an

orientation on the edges of G/Γ. Then for the directed edge e = uv, there is a

unique γ ∈ Γ so that (u∗, γv∗) ∈ E(G). This γ is the gain of e. Let G0 = G/Γ be a

directed quotient graph. Then the pair (G0, ψ) is a gain graph if ψ : E0 → Γ maps

each edge of G0 to its gain. This definition assumes that there are no fixed vertices

(each vertex has trivial stabiliser).

Before we are ready to give our theorem we require one more piece of terminology.

Let C ≤ G0 be a cycle, with vertices {v1, . . . , vn} and directed edges {e1, . . . , en}.

The gain of a cycle is
∑

i ψ(ei)
ϵi where ϵi = 1 if the cycle follows the directed edge

and ϵi = −1 otherwise. A subgraph H ≤ (G,ψ) is balanced if the gain of every cycle

is the identity of Γ.

Theorem 4.6.3. For τ(Γ) ∈ {Ci, Cs}, a graph (G, ϕ) is τ(Γ)-infinitesimally rigid

if and only if (G, ϕ) has a spanning subgraph H that is (2, 2)-τ(Γ)-tight.

Proof. If (G, ϕ) has a spanning subgraph H that is (2, 2)-τ(Γ)-tight, then (G, ϕ) is

τ(Γ)-infinitesimally rigid by Theorems 4.3.3 and 4.5.4. We first consider Ci symme-
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try. We want to show that if (G, p) is Ci-symmetric and infinitesimally rigid, then

G contains a (2, 2)-Ci-tight spanning subgraph.

Since (G, p) is Ci-symmetric, its rigidity matrix block-decomposes into two blocks

R0 and R1, where R0 corresponds to the trivial (fully-symmetric) representation ρ0

and R1 to the non-trivial (anti-symmetric) representation ρ1. Each of these blocks

has |V0| columns, where V0 is the set of vertex orbits under Ci. No vertex can be

fixed by inversion, since the framework lies on the cylinder.

Since (G, p) is infinitesimally rigid, it must be “fully-symmetric infinitesimally

rigid” and “anti-symmetric infinitesimally rigid”. That is to say, the quotient

framework of G must have a spanning ρ0-isostatic subframework and a spanning

ρ1-isostatic subframework. Here, ρi-isostatic means that there is no non-trivial in-

finitesimal motion or self-stress that is ρi-symmetric (i.e. it is in the (PV⊗τ)-invariant

subspace and PE-invariant subspace corresponding to ρi, respectively).

Since the rotation about the cylinder axis is a ρ0-symmetric trivial motion, the

spanning ρ0-symmetric isostatic subframework must satisfy: |E0| = 2|V0|−1 (where

E0 and V0 are the sets of edge and vertex orbits under Ci) and also |E ′
0| ≤ 2|V ′

0 | − 1

for all subgraphs and |E ′
0| ≤ 2|V ′

0 |− 2 for all balanced subgraphs (V ′
0 , E

′
0). Call such

a group-labelled (multi-)graph (2, 2, 1)-tight.

Since the translation along the cylinder axis is a ρ1-symmetric trivial motion, the

spanning ρ1-symmetric isostatic subframework must satisfiy the same (2, 2, 1)-tight

count.

Now, notice that the lifting of a (2, 2, 1)-tight quotient gain graph with no loops

is a (2, 2)-tight Ci-symmetric graph which has no vertex or edge that is fixed by

inversion. We still need to show that there is a (2, 2, 1)-tight spanning subgraph

that has no loop edges (so that the lifting has no edge fixed by the inversion).

Note that a loop corresponds to a single edge in the lifted graph and that edge

contributes a single row to R0 and no row to R1. So the (2, 2, 1)-tight gain graph

that we showed above must exist for ρ1-isostaticity cannot have a loop. So its lifting

is (2, 2)-Ci-tight, as desired.

For Cs the proof is similar, but slightly more subtle, as there can be vertices

fixed by the reflection. This would require a modification to the definition of the
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gain graph when there are vertices with non-trivial stabilisers. An example of such

a modification can be found in a recent paper by La Porta and Schuzle [22]. It’s

easy to see that each fixed vertex contributes one column to R0 and one column to

R1, as it has a fully-symmetric degree of freedom (along the mirror plane) and an

anti-symmetric degree of freedom (perpendicular to the mirror plane).

The trivial motion space still splits as above, so there is a 1-dimensional trivial

motion space of symmetry ρ0 and ρ1.

So for both ρ0- and ρ1-isostaticity, we must have a spanning subgraph satisfy-

ing |E0| = 2|V0| + |V fixed
0 | − 1 and the corresponding subgraph counts. Call this

(2, 1, 2, 1)-tight. As above for Ci, a loop edge is redundant in the ρ − 1-symmetric

infinitesimal rigidity matroid, so the (2, 1, 2, 1)-tight subgraph guaranteed to exist

for ρ1-isostaticity cannot have a loop. Similarly, it cannot have an edge between ver-

tices that are fixed by the reflection. So this (2, 1, 2, 1)-tight quotient graph lifts to

a (2, 2)-tight graph with no fixed edges (but possibly fixed vertices), as desired.
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Chapter 5

Linearly Constrained Isostatic

Frameworks

5.1 Rigidity preserving operations

Given a τ(Γ)-symmetric isostatic linearly constrained framework in R2, we next

introduce several construction operations and prove that their application results

in larger τ(Γ)-symmetric isostatic linearly constrained frameworks in R2. More-

over we use this to show that a certain infinite family of Cn-symmetric linearly

constrained frameworks are isostatic. These construction operations are symmetry-

adapted looped Henneberg-type graph operations. The operations are depicted in

Figures 5.1 and 5.2 for specific symmetry groups.

We will work with an arbitrary finite group Γ = {id = γ0, γ1, . . . , γt−1} and we

will write γkv instead of ϕ(γk)(v) and often γk(x, y) or (x(k), y(k)) for τ(γk)(p(v))

where p(v) = (x, y). For a group of order two, it will be common to write v′ = γv

for γ ∈ Γ \ {id}.

Let G = (V,E, L) be a Γ-symmetric looped simple graph for a group Γ of or-

der t. Then a symmetrised 0-extension creates a new Γ-symmetric looped simple

graph G+ = (V +, E+, L+) by adding the t vertices {v, γv, . . . , γt−1v} with either: v

adjacent to vi, vj, and for each k ∈ {1, . . . , t − 1}, γkv adjacent to γkvi, γkvj; or v

adjacent to vi and incident to the loop (v, v), and for each k ∈ {1, . . . , t − 1}, γkv

adjacent to γkvi and incident to (γkvi, γkvi).
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v

γv

v

γv

Figure 5.1: Cn-symmetric 0-extensions adding new vertices v and γv in each case;
n = 2 shown.

Let ei = xiyi ∈ E, i = 0 ≤ i ≤ t − 1 be an edge orbit of G of size t under

the action of Γ. Further let z0 ̸= x0, y0 and let zi = γiz0 for i = 1, . . . , t − 1. A

symmetrised 1-extension creates a new Γ-symmetric looped simple graph by adding

t vertices {v, γv, . . . , γt−1v} and deleting all the edges ei from G, and with v adjacent

to x0, y0 and z0, and γiv adjacent to xi, yi and zi for i = 1, . . . , t− 1. Alternatively,

let li = xixi ∈ L for i = 0 ≤ i ≤ t − 1 be a loop orbit of G of size t under the

action of Γ. A symmetrised looped 1-extension creates a new Γ-symmetric looped

simple graph by adding t vertices {v, γv, . . . , γt−1v} and t loops l∗i = (γiv, γiv) for

i = 0 ≤ i ≤ t − 1 and deleting all the loops li from G, and with v adjacent to x0

and y0, and γiv adjacent to xi and yi for i = 1, . . . , t− 1.

Lemma 5.1.1. Suppose G is Γ-symmetric. Let G+ be obtained from G by a sym-

metrised 0-extension. If (G, p, q) is τ(Γ)-isostatic in R2, then for appropriate maps

p+, q+, (G+, p+, q+) is τ(Γ)-isostatic in R2.

Proof. There are two cases to consider here for the two variants of 0-extensions. We

first consider a new orbit of vertices adjacent to two vertices. Write G+ = G +

{v, . . . , γt−1v}, and let v ∈ V + be adjacent to v1, v2, and for each k ∈ {1, . . . , t− 1},

γkv adjacent to γkv1, γkv2. Define p+ : V + → R2 by p+(z) = p(z) for all z ∈ V ,

p+(v) = (x, y), and p+(γkv) = (x(k), y(k)). Write p(v1) = (x1, y1), p(v2) = (x2, y2).
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vγv

γ2v

vγv

γ2v

Figure 5.2: Cn-symmetric 1-extensions adding new vertices v, γv and γ2v in each
case; n = 3 shown.

Then,

R(G+, p+, q) =



R(G, p, q)

x− x1 y − y1

* x− x2 y − y2 0
. . .

x(k) − x
(k)
1 y(k) − y

(k)
1

* 0 x(k) − x
(k)
2 y(k) − y

(k)
2

. . .


,

and hence the fact that R(G+, p+, q) has linearly independent rows will follow once

each 2×2 submatrix indicated above is shown to be invertible. Choose (x, y) so that

p+(v), p+(v1), p
+(v2) are not collinear, that is (x, y) ̸= (x1, y1)+λ(x2−x1, y2−y1) for

any λ ∈ R, which is exactly the requirement for the first submatrix to be invertible.

Since each τ(γk) is an isometry, all of the other t − 1 remaining submatrices are

also invertible, and so rankR(G+, p+, q) ≥ rankR(G, p, q) + 2t. Hence, if G is τ(Γ)-
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independent so is G+.

Alternatively, consider a new orbit of vertices with one loop incident, adjacent

to one vertex. Write G+ = G + {v, . . . , γt−1v} and let v ∈ V + be adjacent to v1

and incident to the loop l′ = vv, and for each k ∈ {1, . . . , t − 1}, γkv adjacent to

γkv1 and incident to γkl. Define p+ : V + → R2 by p+(z) = p(z) for all z ∈ V ,

p+(v) = (x, y), and p+(γkv) = (x(k), y(k)) and q+ : L+ → R2 by q+ = q(l) for all

l ∈ L, q+(l′) = (u,w), and q+(γkl
′) = (u(k), w(k)). Write p(v1) = (x1, y1). Then,

R(G+, p+, q+) =



R(G, p, q)

x− x1 y − y1

* u w 0
. . .

x(k) − x
(k)
1 y(k) − y

(k)
1

* 0 u(k) w(k)

. . .


,

and hence the fact that R(G+, p+, q+) has linearly independent rows will follow once

each 2×2 submatrix indicated above is shown to be invertible. Choose p+(v), q+(l′)

so that (u,w) ̸= λ(x−x1, y−y1) for any λ ∈ R (equality in the equation corresponds

to the linear constraint being perpendicular to the edge vv1), hence the first subma-

trix is invertible. Since each τ(γk) is an isometry, all of the other t − 1 remaining

submatrices are also invertible, and so rankR(G+, p+, q+) ≥ rankR(G, p, q) + 2t.

Hence, if G is τ(Γ)-independent so is G+.

Remark 5.1.2. For a Cs-symmetric graph G, let G+ = G + v be obtained by a

0-extension with a vertex v fixed by σ. Then, by letting v be adjacent to v1, v2 ∈ V ,

y2 = −y1, the relevant 2× 2 matrix (see the proof above) is still invertible, hence if

G is Cs-independent, then G
+ is Cs-independent.

Lemma 5.1.3. Let G be a Γ-symmetric graph, and G+ be obtained from G by a

symmetrised 1-extension. If G is τ(Γ)-isostatic, then G+ is τ(Γ)-isostatic.

Proof. Suppose first that the 1-extension adds a new set of vertices, {v, γv, . . . , γt−1v},

where for each i ∈ {0, . . . , t−1}, γiv is adjacent to three vertices, say γiv1, γ
iv2, γ

iv3,
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and the edges (γiv1, γ
iv2) are deleted. Call this new graph G+. Write p(v1) =

(x1, y1), p(v2) = (x2, y2), p(v3) = (x3, y3). Define p
+ : V + → R2 by putting p+(z) =

p(z) for all z ∈ V , and choosing special positions so that p+(v) = 1
2
(p(v1)+ p(v2)) =

(x, y), and p+(γkv) = (x(k), y(k)). Now consider the rigidity matrix of the realisation

of K3 with vertex positions p+(v), p+(v1), p
+(v2). Then,

R(K3, p
+) =


p+(v1)− p+(v2) p+(v2)− p+(v1) 0

p+(v1)− p+(v) 0 p+(v)− p+(v1)

0 p+(v2)− p+(v) p+(v)− p+(v2)



=


p+(v1)− p+(v2) p+(v2)− p+(v1) 0

1
2
(p+(v1)− p+(v2)) 0 1

2
(p+(v2)− p+(v1))

0 1
2
(p+(v2)− p+(v1))

1
2
(p+(v1)− p+(v2))


has rank 2 and the linear dependence is non-zero on all 3 rows. We note that

the τ(γ) preserves this linear dependence. Then, since (G+ +
⋃t−1

i=0{(γiv1, γiv2)} \⋃t−1
i=0{(γiv, γiv2)}, p+, q) is obtained from (G, p, q) by a symmetrised 0-extension,

rankR(G+ +
t−1⋃
i=0

{(γiv1, γiv2)} \
t−1⋃
i=0

{(γiv, γiv2)}, p+, q) = rankR(G, p, q) + 2t.

We observe from R(K3, p
+) that

rankR(G+ +
t−1⋃
i=0

{(γiv1, γiv2)}, p+, q) = rankR(G, p, q) + 2t

too, and further, since any row can be written as a linear combination of the other

two, we can delete any edge orbit from the orbit of the K3 subgraphs and preserve

infinitesimal rigidity. Since (G+, p+, q) is infinitesimally rigid in this special position,

G+ is τ(Γ)-isostatic.

Consider now a looped 1-extension that creates a new graph G+ from G by

adding vertices {v, γv, . . . , γt−1v}, where for each i ∈ {0, . . . , t− 1}, γiv is adjacent

to two vertices, say γiv1, γ
iv2, and incident to the new loop γil′, with the loops

γil = (γiv1, γ
iv1) deleted. Write p(v1) = (x1, y1), p(v2) = (x2, y2). Define p+ :

V + → R2 by putting p+(z) = p(z) for all z ∈ V , and choosing special positions
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p+(v) = p(v1)+q(l) = (x, y), and p+(γkv) = (x(k), y(k)). Further define q+ : L+ → R2

by q+(h) = q(h) for all h ∈ L and the special position q+(l′) = q+(l) = (c, d) and

symmetrically the loops {γl′, . . . , γt−1l′}. We then consider the rigidity matrix for

the realisation of H = G[{v, v1}] with the vertex positions p+(v), p+(v1) and linear

constraints q+(l), q+(l′). Then,

R(H, p+, q+) =


p+(v1)− p+(v) p+(v)− p+(v1)

q+(l) 0

0 q+(l′)

 =


(−c,−d) (c, d)

(c, d) 0

0 (c, d)


has rank 2 and the linear dependence is non-zero on all 3 rows. We note that τ(γ)

preserves this linear dependence. Then since

(G+ +
t−1⋃
i=0

{(γiv1, γiv1)} \
t−1⋃
i=0

{(γiv, γiv1)}, p+, q+)

is obtained from (G, p, q) by a symmetrised 0-extension,

rankR(G+ +
t−1⋃
i=0

{(γiv1, γiv1)} \
t−1⋃
i=0

{(γiv, γiv1)}, p+, q+) = rankR(G, p, q) + 2t.

We then see from R(H, p+, q+) that

rankR(G+ +
t−1⋃
i=0

{(γiv1, γiv1)}, p+, q) = rankR(G, p, q) + 2t

too, and further since any row can be written as a linear combination of the other

two, we can delete the orbit of one of {l, l′, vv1} and preserve infinitesimal rigidity.

Since (G+, p+, q+) is infinitesimally rigid in this special position, G+ is τ(Γ)-isostatic.

We next show some specific families of graphs are Γ-isostatic for certain groups.

In the next sections these families will turn out to be base graphs for our construction

arguments. A pinned graph on n vertices is the graph with 2 loops incident to each

vertex and E = ∅, which we denote Pn. A looped n-cycle is a cycle on n vertices
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with a single loop incident to each vertex (see Figure 5.3), which we denote LCn.

Define the symmetric graph (P1, ϕ0) to have ϕ0 : Z/2Z → Aut(P1) fix all elements of

P1 for all γ ∈ Z/2Z. Furthermore, define (P1, ϕ1) to have ϕ1 : Z/2Z → Aut(P1) fix

the vertex and transpose the loops for the non-trivial element of Z/2Z. Let (Pn, ϕn)

be defined by ϕn : Z/nZ → Aut(Pn) having a single orbit of the n vertices. Lastly,

(LCn, ψn) has ψn : Z/nZ → Aut(LCn) form a single orbit of the n vertices.

Lemma 5.1.4. The following graphs or graph classes are τ(Γ)-isostatic:

• (P1, ϕ0) is C2-isostatic;

• (P1, ϕ1) is C4-isostatic;

• for n ≥ 2, (Pn, ϕn) is Cn-isostatic;

• for odd n ≥ 3, (LCn, ψn) is Cn-isostatic.

Proof. In the first two bullet points, we have a single vertex restricted by two linear

constraints. This will be pinned unless the corresponding loops are c2 images of

each other, in which case the linear constraints must coincide. In the third bullet

point, every vertex is pinned. Therefore in the first three bullet points the graphs

are τ(Γ)-isostatic. In the final bullet point, we put the framework in special position,

so that the linear constraints pass through the origin (that is the vertices can only

move radially). Any infinitesimal motion of a vertex can therefore be described as

“inward” or “outward” from the origin, depending on whether the radial distance

decreases or increases. In order for the edge lengths to be preserved, any inward

moving vertex must be adjacent to two outward moving vertices, and likewise any

outward moving vertex must be adjacent to two inward moving vertices. As a result

of this, inward and outward moving vertices must alternate in the cycle. Thus

there are as many outward as inward moving vertices, which is not possible with

n odd. Hence, this special position is infinitesimally rigid, and so the graph is

τ(Γ)-isostatic.

Using another special position argument, Lemma 5.1.4 can be extended to show

all Cn-symmetric looped n-cycles are τ(Γ)-isostatic. While we are only able to
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Figure 5.3: Base graphs for the construction of Cn-symmetric (n ≥ 3) linearly
constrained isostatic frameworks; (P5, ϕ5) and (LC5, ψ5) depicted.

construct the set of all τ(Γ)-isostatic graphs for rotational groups of order 2 or of

odd order, we give the extended result below.

Lemma 5.1.5. All Cn-symmetric looped n-cycles are rigid.

Proof. The case for odd looped n-cycles was shown in Lemma 5.1.4 and for simplicity

is omitted here, but can also be shown to be rigid by a small elaboration of this

method. Let n = 2k be even. Let G0 = ({v0}, ∅, {l0, l′}) be a graph with one

pinned vertex, and define p0 : V → R2 by p0(v0) = (1, 0). Note that as long

as q0(l0) and q0(l
′) are not linearly dependent, the framework (G0, p0, q0) is rigid.

We set q0(l
′) = (sin π

2k
, cos π

2k
) and q0(l0) = (− sin π

2k
, cos π

2k
). For 1 ≤ i ≤ n − 1,

construct Gi from a looped 0-extension, with new vertex vi adjacent to vi−1 and

loop li at vi. The maps pi, qi act on {v0, . . . , vi−1} and {l0, . . . , li−1} as pi−1 and

qi−1 respectively, with pi(vi) = τ(c2k)(pi−1(vi−1)) and qi(li) = τ(c2k)(qi−1(li−1)).

Since pi(vi) − pi(vi−1) ̸= 0, the 0-extension preserves rigidity. Write p = p2k−1 and

q = q2k−1. Let G be a looped 2k-cycle. By construction, G2k−1 = G−{v0v2k−1+ l
′},

and in the framework (G2k−1, p, q), the constraint from l′ is the line through p(v0)

and p(vk−1), and the constraint from l2k−1 is the line through p(v2k−1) and p(vk)

(see Figure 5.4). As with (H, p+, q+) in Lemma 5.1.3, we can show that the rigidity

matrix on ({v0, v2k−1}, v0v2k−1, {l2k−1, l
′}) has rank 2 with linear dependence non-

zero on all 3 rows, hence rankR(G2k−1, p, q) = rankR(G, p, q) and so G, which is

C2k-symmetric, is rigid.

In the following lemmas we consider only the Cs-tight graphs, as we require

0-extensions and 1-extensions which involve fixed vertices in this setting.
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(G9, p9, q9) (G, p, q)

(G0, p0, q0) (G1, p1, q1) (G4, p4, q4)

Figure 5.4: Process of generating a looped 10-cycle (G, p, q). At each stage shown
the framework is depicted with edges of the graph included and linear constraints
of interest included as dotted lines.
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Lemma 5.1.6. Suppose G is Cs-symmetric. Let G+ be obtained from G by a looped

0-extension at a fixed vertex, which fixes the added vertex, edge and loop, or a 0-

extension adding a fixed vertex adjacent to two symmetric vertices. If (G, p, q) is

Cs-isostatic in R2, then for appropriate maps p+, q+, (G+, p+, q+) is Cs-isostatic in

R2.

Proof. Write G+ = G + {v} and let v be adjacent to v1 and incident to the loop

l′ = vv. Without loss of generality let the mirror line be the x-axis. Define

p+ : V̂ → R2 by p+(z) = p(z) for all z ∈ V , p+(v) = (x, 0), and q+ : L̂ → R2 by

q+ = q(l) for all l ∈ L, q+(l′) = (0, 1). Write p(v1) = (x1, 0). Then, R(G
+, p+, q+) =


R(G, p, q) 0

x− x1 0

* 0 1

 ,
and hence the fact that R(G+, p+, q+) has linearly independent rows follows if the

2× 2 submatrix indicated above is invertible. This happens as long as x ̸= x1.

Alternatively when G+ = G + {v}, let v be adjacent to v1 and v′1. We re-

tain the definition of p+ and q+, now letting p+(v) = (x, 0), p+(v1) = (x1, y) and

p+(v′1) = (x1,−y). Now, R(G+, p+, q+) =


R(G, p, q) 0

x− x1 x− x1

* −y y

 ,
with the 2 × 2 submatrix indicated above is invertible if and only if x ̸= x1 and

y ̸= 0.

In each case we may choose a special position so that rankR(G+, p+, q+) ≥

rankR(G, p, q) + 2, and therefore this holds for the vertices in Cs-generic position.

Hence, if G is Cs-isostatic so is G+.

Lemma 5.1.7. Let G be a Γ-symmetric graph, and G+ be obtained from G by a

1-extension on a fixed edge adding a new fixed vertex incident to a fixed edge. If G

is τ(Γ)-isostatic, then G+ is τ(Γ)-isostatic.
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Proof. Suppose that the 1-extension adds a new vertex, v, where v is adjacent to

three vertices, say v1, v
′
1, v2, and the edge (v1, v

′
1) is deleted. Call this new graph G+.

Write p(v1) = (x1, y1), p(v2) = (x2, y2), and by symmetry p(v′1) = (x1,−y1). Define

p+ : V + → R2 by putting p+(z) = p(z) for all z ∈ V , and choosing special positions

so that p+(v) = (p(v1) + p(v′1)) = (x1, 0). Now consider the rigidity matrix of the

realisation of K3 with vertex positions p+(v), p+(v1), p
+(v′1). Then,

R(K3, p
+) =


p+(v1)− p+(v′1) p+(v′1)− p+(v1) 0

p+(v1)− p+(v) 0 p+(v)− p+(v1)

0 p+(v′1)− p+(v) p+(v)− p+(v′1)



=


0 −2y1 0 2y1 0 0

0 −y1 0 0 0 y1

0 0 0 −y1 0 y1


has rank 2 and the linear dependence is non-zero on all 3 rows. Then, since (G+ +

(v1, v
′
1) − (v, v′1)}, p+, q) is obtained from (G, p, q) by a 0-extension adding a fixed

vertex,

rankR(G+ + (v1, v
′
1)− (v, v′1)}, p+, q) = rankR(G, p, q) + 2t.

We observe from R(K3, p
+) that rankR(G+ + (v1, v

′
1)}, p+, q) = rankR(G, p, q) + 2t

too, and further, since any row can be written as a linear combination of the other

two, we can delete any edge from the the K3 subgraph and preserve infinitesimal

rigidity. Since (G+, p+, q) is infinitesimally rigid in this special position, G+ is τ(Γ)-

isostatic.

Having seen fixed vertex variants of 0- and 1-extensions, and the looped 0-

extension, it is natural to ask whether there is such a fixed vertex move for looped

1-extensions. An extension on two vertices off the mirror would require deleting two

loops to preserve symmetry. To resolve this, one may think to perform two looped

1-extensions, adding two new looped vertices with one loop at each. However then

each of these loops would be fixed. In order to preserve the Cs-tightness condition

given in Table 3.12, one loop would correspond to a linear constraint perpendicular

to the mirror, and the other correspond to one along the mirror. Alternatively, one
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u− v +
+

v
−

Figure 5.5: Two ideas for σ-fixed looped 1-extensions adding new vertices u, v and
v respectively.

v

Figure 5.6: Fixed 1-extension variant adding a new fixed vertex v.

may consider two fixed vertices, one incident to a loop. A 1-extension adding a fixed

vertex incident to two fixed edges and one fixed loop, in order to preserve tightness

counts, would require the deleted loop to correspond to a perpendicular constraint,

and the new loop correspond to a linear constraint along the mirror. Figure 5.5

depicts the result of such ideas. Both of these however do not preserve infinitesi-

mal rigidity. In the following lemma we present a variant to a looped fixed vertex

1-extension which does preserve infinitesimal rigidity. It is unlikely such a move

would be required to classify Cs-tight graphs, but we present it here for interest.

Lemma 5.1.8. Let G be a Γ-symmetric graph. Let G+ be obtained from G by:

adding a new pinned fixed vertex; adding two new edges from this new vertex to any

vertex of G incident to a loop and its σ image; and deleting a loop at this vertex of

G and its image under σ. If G is τ(Γ)-isostatic, then G+ is τ(Γ)-isostatic.

Proof. We create the new graph G+ from G by adding a new vertex {v}, where v is

adjacent to two vertices each the mirror image of the other, say w,w′, and incident

to the new loops lv and l
′
v which are σ images of each other, with the loops l = (w,w)
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and σl = (w′, w′) deleted (see Figure 5.6). Write p(w) = (x, y), p(w′) = (x,−y).

Define q+ : L+ → R2 by q+(h) = q(h) for all h ∈ L and the special position

q+(lv) = q+(l) = (c, d) and symmetrically the loop q+(l′v) = q+(l′) = (c,−d).

Further define p+ : V + → R2 by putting p+(z) = p(z) for all z ∈ V , and choosing the

unique special position p+(v) = (x0, 0) so that (x0, 0) = (x, y)+λ(c, d) for some real

λ ̸= 0. We then consider the rigidity matrix for the realisation ofH = G[{v, w}]\{l′v}

with the vertex positions p+(v), p+(w) and linear constraints q+(lv), q
+(l). Then,

R(H, p+, q+) =


p+(w)− p+(v) p+(v)− p+(w)

q+(l) 0

0 q+(lv)

 =


λ(−c,−d) λ(c, d)

(c, d) 0

0 (c, d)


has rank 2 and the linear dependence is non-zero on all 3 rows. We note that this

linear dependence also holds on H ′ = G[{v, w′}] \ {lv}. Then since (G+ + {l, l′} \

{lv, l′v}, p+, q+) is obtained from (G, p, q) by a fixed vertex 0-extension,

rankR(G+ + {l, l′} \ {lv, l′v}, p+, q+) = rankR(G, p, q) + 2.

We then see from R(H, p+, q+) that rankR(G+ + {l, l′}, p+, q) = rankR(G, p, q) + 2

too, and further since any row can be written as a linear combination of the other

two, we can delete one of {lv, l, vw} and its image in {l′v, l′, vw′} and preserve in-

finitesimal rigidity. Since (G+, p+, q+) is infinitesimally rigid in this special position,

G+ is τ(Γ)-isostatic.

Lemma 5.1.9. Let G be τ(Γ)-isostatic. Let w ∈ V be adjacent to v1, . . . , vr and

incident to the loops l1, l2. Suppose that both {p(w) − p(v1), p(w) − p(v2)} and

{q(l1), q(l2)} are linearly independent sets in R2. Let G+ be obtained by forming

a vertex-to-C4 operation at the vertices w (and σw if σ ∈ Γ and σw ̸= w), so that

v1, v2 are adjacent to both w and the new vertex u in G+ (and similarly σv1, σv2 are

adjacent to both σw and σu when they exist). Then G+ is τ(Γ)-isostatic.

Proof. We will construct R(G+, p+, q+) from R(G, p, q) by a series of matrix row

operations. We first add 2 zero columns to R(G, p, q) for the vertex {u, σu} and

another 2 zero columns for the vertex σu when σ ∈ Γ and σu ̸= u (which for the
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remainder of the proof we will assume). Then add 4 rows to this matrix, for the

edges uv1, uv2, u
′v′1, u

′v′2. Since this is a pair of 0-extensions, rankR(G+, p+, q+) =

rankR(G, p, q) + 2. This gives the matrix M of the form:

M =



* p(w)− p(v1) 0

* p(w)− p(v2) 0
...

* p(w)− p(vi) 0
...

* 0 p(u)− p(v1)

* 0 p(u)− p(v2)
...

* q(l1) 0

* q(l2) 0
...



,

where the columns given are for the vertices w and u, and rows given for the edges

wv1, wv2, wvi, uv1, uv2 and loops l1, l2. There would be similar columns for each pair

σw and σu. This is the rigidity matrix for a graph generated from G by a τ(Γ)-

symmetric vertex-to-C4 operation where viw is an edge for all 3 ≤ i ≤ k. We wish

to show that removing the edges {wvi} and loops l1, l2 at w and replacing them with

the edges {uvi} and loops l3, l4 at u preserves the rank of the rigidity matrix.

Since p(w)− p(v1) and p(w)− p(v2) are linearly independent and span R2, there

exists α, β ∈ R such that p(w)− p(vi) = α(p(w)− p(v1)) + β(p(w)− p(v2)). Hence

we perform row operations as follows. From the row of wvi, subtract α multiples of

the row of wv1, and β multiples of the row of wv2. Then to the row of wvi, add α

multiples of the row of uv1, and β multiples of the row of uv2. Since p(w) = p(u),

when we do this to every neighbour vi of u, and similarly γkvi of γku (since all

τ(γk) are isometries of R3 that preserve the cylinder, the same α, β, γ work for

the symmetric copies in G+), we obtain RY(G
+, p+). The row operations preserve

τ(Γ)-independence, giving the desired result.
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Figure 5.7: The four possibilities for vertex-to-C4 operations on Cs-tight graphs.
Lemma 5.1.9 shows these operations preserve rigidity except in the case involving 3
fixed vertices (bottom right).
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5.2 C2-symmetric isostatic graphs

In the following sections we prove the main results of this chapter. These results show

that the standard sparsity counts, together with the necessary conditions derived

in Section 3.8, are also sufficient for generic symmetric frameworks to be isostatic.

The proofs are based on a recursive construction using the Henneberg-type moves

discussed in the previous section. We first consider C2 rotational symmetry. Recall

G = (V,E, L) is: sparse if |E ′| + |L′| ≤ 2|V ′| for all subgraphs (V ′, E ′) of G and

|E ′| ≤ 2|V ′| − 3 for all simple subgraphs with |E ′| > 0; and tight if it is sparse and

|E|+|L| = 2|V |. Furthermore, a C2-tight graph is a tight graph with v2 = e2 = l2 = 0

or v2 = 1, e2 = 0, l2 = 2.

We refer the reader to Section 2.1 for a reminder of the definition of k-critical

and k-edge-critical sets. Note that if X is τ(Γ)-symmetric and for each γ ∈ Γ\{id},

γ has no fixed edges or loops, then |Γ| divides kX and k̄X . Additionally, we note that

a C2-tight graph with fixed edge, loop, and vertex counts described in Table 3.12,

has either no fixed loops or two fixed loops incident to a fixed vertex. Therefore any

symmetric vertex set will induce a subgraph with no fixed loops or two fixed loops,

and so |C2| = 2 will still divide kX . This fact will be crucial in what follows.

Lemma 5.2.1. Let G be a graph and suppose A,B ⊆ V have non-empty intersec-

tion. Then kA+kB = kA∪B +kA∩B +d(A,B) and k̄A+ k̄B = k̄A∪B + k̄A∩B +d(A,B).

Proof. Since |A|+ |B| = |A ∪B|+ |A ∩B|, we have

2|A| − kA + 2|B| − kB = iE+L(A) + iE+L(B) = iE+L(A ∪B) + iE+L(A ∩B)− d(A,B)

= 2|A ∪B| − kA∪B + 2|A ∩B| − kA∩B − d(A,B)

= 2|A|+ 2|B| − kA∪B − kA∩B − d(A,B),

(5.2.1)

giving the result. The edge-critical variant is identical.

Most of the technical work in the next two sections involves analysing when we

can remove a vertex incident to 3 edges or 2 edges and 1 loop. In this chapter, we

will call such a vertex, in either case, a node. We will consider reduction operations :
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these are the reverse of the extension operations described in Section 5.1, namely

symmetrised (looped) 0-reductions and symmetrised (looped) 1-reductions.

5.2.1 Reduction operations

Lemma 5.2.2. Let (G, ϕ) be a C2-tight graph containing a vertex v incident to two

edges. Then G \ {v, v′} is C2-tight.

Note that this lemma includes the cases when v has degree two and is adjacent

to two distinct vertices and when v has degree three with a loop at v (recall Figure

5.1).

Proof. If either G− v or G \ {v, v′} breaks sparsity, G would not be tight.

In the proof of the following lemma, spefically the second paragraph of Case 2,

we prove the following remark which we will reference in future proofs.

Remark 5.2.3. Suppose (G, ϕ) is C2-tight containing a node v ∈ V with N(v) =

{x, y, z}. Then it is impossible for x, y to be in a 0-critical set and x, z, x′, z′ to be in

a 4-edge-critical set. This conclusion is independent of the number of edges induced

by N(v).

Lemma 5.2.4. Let (G, ϕ) be a C2-tight graph and suppose v ∈ V is a node with

N(v) = {x, y, z} and N(v)∩N(v′) = ∅ or {t} where t ∈ {x, y, z} is a fixed vertex. For

a pair x1, x2 ∈ {x, y, z} with x1x2 /∈ E, the following holds: x1, x2 is not contained

in any 0-critical set or any 3-edge-critical set, and x1, x2, x
′
1, x

′
2 is not contained in

any 1-critical set or any 4-edge-critical set.

Proof. In the following argument, we leave it possible that one of the vertices of

{x, y, z} is fixed, and for example x′ = x. We split up the proof based on the number

of edges of G induced by N(v). If three edges were present G[N(v) ∪ {v}] ∼= K4

which is not sparse, so we may assume xy /∈ E. Suppose the pair x, y is not in a

0-critical set and suppose there exists a 1-critical set W containing x, y, x′, y′. Then

W ∪ W ′ and W ∩ W ′ are both C2-symmetric so have even criticality since G is

C2-tight. By Lemma 5.2.1 one must be 0-critical, a contradiction since both contain
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x, y. Hence we know that if x, y ∈ N(v) are not in a 0-critical set, then x, y, x′, y′

are not in a 1-critical set.

Case 1: If there are two edges on the vertices of N(v), say x, y /∈ E, then x, y

cannot be contained in a 3-edge-critical subset and x, y, x′, y′ are not in a 4-edge

critical subset as these sets with v, z and v, z, v′, z′ added respectively would not be

sparse. It’s easy to see that there is no 0-critical set on x, y, and there is no 1-critical

set on x, y, x′, y′ from the paragraph above, finishing Case 1.

Case 2: Suppose exactly one edge, say xz, is present on the vertices of N(v).

First assume x, y is contained in a 0-critical set, X. Then it is easy to check that

y, z is not in a 0-critical set. Assume there exists a 3-edge-critical set U on y, z.

This means there are lU ∈ {0, 1, 2, 3} loops on the vertices of U , with U being

(3− lU)-critical. By Lemma 5.2.1,

kX∪U = kX + kU − kX∩U − d(X,U).

We know kX = 0, X ∩ U has edge-criticality of at least 2 and X ∩ U ⊂ U so there

are lX∩U ≤ lU loops on the vertices of X ∩ U . Therefore,

kU − kX∩U = 3− lU − k̄X∩U + lX∩U ≤ 1,

and xz gives that d(X,U) is at least 1, so X ∪U is 0-critical. But then X ∪U + {v}

is not sparse in G, a contradiction.

To show y, z, y′, z′ is not contained in a 4-edge-critical set, first notice that X∪X ′

is 0-critical, containing x, y, x′, y′. Relabel this union as X. Assume there is a 4-

edge-critical set W on y, z, y′, z′. We take the symmetric sets W ∪W ′ and W ∩W ′,

which by symmetry have even edge-criticality. Additionally, y, z, y′, z′ ∈ W ∩W ′,

so that k̄W∩W ′ ≥ 3. Hence by Lemma 5.2.1, k̄W∪W ′ + k̄W∩W ′ ≤ k̄W + k̄W ′ = 8, and

so k̄W∩W ′ , k̄W∪W ′ = 4. As a result of this, we may always take 4-edge-critical sets of

C2-tight graphs to be symmetric (in particular we may assume W is symmetric).

There are either 0, 2, or 4 loops on the vertices of W (by symmetry and G being

C2-tight), with W being 4, 2, or 0-critical respectively in those cases. Again, since

kX∪W = kX + kW − kX∩W − d(X,W ), any looped vertex of W is also a vertex of
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X∩W , giving kW −kX∩W = 0 (X∩W contains at least 2 vertices and is symmetric,

so has at least 4 for its edge-critical value) and X ∪W ∪ {v} is not sparse. Hence

the lemma holds in this case with x1, x2 = y, z.

Now assume neither x, y nor y, z are contained in 0-critical sets. If both x, y, x′, y′

and y, z, y′, z′ are in 4-edge-critical setsW1,W2, then we may supposeW1 andW2 are

symmetric as before. BothW1∪W2 andW1∩W2 are C2-symmetric and have at least

2 vertices, so are also both 4-edge-critical. In particular, W1 ∪W2 ∪ {v, v′} violates

the sparsity of G. When only one of x, y, x′, y′ and y, z, y′, z′ are in a 4-edge-critical

set, say x, y, x′, y′ in W , assume there exists a 3-edge-critical set U containing y, z.

Lemma 5.2.1 for edge-criticality says

k̄U∪W = k̄U + k̄W − k̄U∩W − d(U,W ).

Since k̄U∩W ≥ 2 and d(U,W ) ≥ 1 (due to the presence of the edge xz), we have

k̄U∪W ≤ 4. Similarly, k̄U∪U ′∪W ≤ 4, but adding v, v′ contradicts the sparsity of G.

Finally, if no such 4-edge-critical set exists, x, y and y, z cannot both be in 3-edge-

critical sets, say U1, U2, by considering U1∪U2∪{v}, as xz again gives d(U1, U2) ≥ 1.

Hence the lemma holds when one edge is present on the neighbours of v.

Case 3: Lastly suppose there are no edges induced by the vertices of N(v). It is

easy to show that there exists a 0-critical set on at most one pair of neighbours of

v, while there can be 3-edge-critical sets on at most two pairs.

First assume x, y is contained in a 0-critical set, X. Assume x, z and y, z are

contained in 3-edge-critical sets U1, U2 and note that (U1∪U2)∩X and any supersets

thereof (since they contain x, y) cannot be 3-edge-critical else all 3 pairs of neighbours

of v are in 3-edge critical sets. Consider the equations,

k̄U1∪U2 = k̄U1 + k̄U2 − k̄U1∩U2 − d(U1, U2) (5.2.2)

k(U1∪U2)∪X = kU1∪U2 + kX − k(U1∪U2)∩X − d(U1 ∪ U2, X). (5.2.3)
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A contradiction occurs when

kU1∪U2 ≤ k(U1∪U2)∩X + d(U1 ∪ U2, X),

as this would violate the sparsity of G. Let la ≥ lb count the number of loops on

vertices of U1 ∪ U2, (U1 ∪ U2) ∩ X respectively. Equation (5.2.2) along with the

inequalities k̄U1∪U2 ≥ 4 and k̄U1∩U2 ≥ 2 gives that these two inequalities are in fact

equalities. Then, since k̄(U1∪U2)∩X ≥ 4 = k̄(U1∪U2), we have

k(U1∪U2)∩X = k̄(U1∪U2)∩X − lb ≥ k̄(U1∪U2) − la = k(U1∪U2),

which, with Equation (5.2.3), gives the desired contradiction. So there is a pair

x1, x2 not contained in a 0-critical or 3-edge critical set. By Remark 5.2.3, there is

no 4-edge-critical or 1-critical set containing x1, x2, x
′
1, x

′
2, completing this case.

Finally, suppose there is no 0-critical set on any pair of neighbours of N(v). We

know, from above, that at most one pair of neighbours of v with their symmetric

copies can be contained in a 4-edge-critical set. Hence in this case we only obtain a

contradiction to the lemma if say x, y, x′, y′ is in a 4-edge-critical setW while x, z and

y, z are in 3-edge-critical sets, say U1 and U2 respectively (see Figure 5.8). Recall that

x, y cannot also be in a 3-edge-critical set and since k̄U1∩U2 ≥ 2 in Equation (5.2.2),

we have k̄U1∪U2 = 4. Further, x, y ∈ (U1∪U2)∩W , so k̄(U1∪U2)∪W = 4. Now instead of

considering the 3-edge-critical sets U1 and U2 with the 4-edge-critical setW , consider

the 3-edge-critical sets U ′
1 and U ′

2 with the 4-edge-critical set (U1 ∪ U2) ∪W . The

same methods show k̄(U1∪U2)∪W∪(U ′
1∪U ′

2)
= 4. However the set (U1∪U2)∪W∪(U ′

1∪U ′
2)

with {v, v′} added is not sparse. This exhausts all cases, completing the proof.

Lemma 5.2.5. Let (G, ϕ) be C2-tight and suppose v ∈ V is a node such that N(v) =

{x, y, x′} and N(v) ∩ N(v′) = {x, x′}. For a pair (x1, x2) ∈ {(x, y), (x′, y)}, with

x1x2 /∈ E, we have:

x1, x2 is not contained in any 0-critical set or any 3-edge-critical set; and

x1, x2, x
′
1, x

′
2 is not contained in any 1-critical set or any 4-edge-critical set.

Proof. Without loss of generality, one of the following hold:

146



z v

x

y

y′

x′

v′ z′
W

U1

U2

Figure 5.8: Diagram of part of a C2-tight graph with hypothetical 3-edge-critical
sets U1, U2 and 4-edge-critical set W , with x, z ∈ U1, y, z ∈ U2, x, y, x

′, y′ ∈ W .

1. xy, x′y′ ∈ E, x′y, xy′ /∈ E.

2. xy, x′y, xy′, x′y′ /∈ E.

The edge sets described in (1) and (2) describe all possibilities when N(v)∩N(v′) =

{x, x′}. Suppose the edges present are as in (1) or (2), and at least one of the

following exists: (i) there exists X with x′, y ∈ X which is 0-critical; or (ii) there

exists W with x′, y, x, y′ ∈ W which is 1-critial or 4-edge-critical. Note that X ∪X ′

is 0-critical and contains all the neighbours of v and v′, as with such aW , X∪{v, v′}

and W ∪ {v, v′} break sparsity of G immediately.

Hence for the remainder of the proof, we need only consider 3-edge-critical sets.

First in case (1), let U be 3-edge-critical with x′, y ∈ U . From Lemma 5.2.1,

k̄U∪U ′ ≤ k̄U + k̄U ′ − d(U,U ′) = 3 + 3− 2 = 4.

Then U ∪ U ′ ∪ {v, v′} violates the sparsity of G, completing the first case. Now

assume we have no edges as in (2). We want to show that we can add either xy, x′y′

or x′y, xy′ to G− {v, v′}. Suppose there exists two 3-edge-critical sets, U1, U2, with

x, y ∈ U1 and x′, y ∈ U2. Relabel Y := U1 ∪ U2. Note that Y is not 3-edge-critical

else Y + {v} is not sparse. On the other hand k̄U1∩U2 ≥ 2, so by counting k̄Y ≤ 4,

hence Y must be 4-edge-critical. Symmetrically, k̄Y ′ = 4. Then as x, x′ ∈ Y ∩ Y ′,

k̄Y ∩Y ′ ≥ 3, and since Y ∩ Y ′ is symmetric, the number of edges on the set must be
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even, so k̄Y ∩Y ′ ≥ 4. Hence

k̄Y ∪Y ′ = k̄Y + k̄Y ′ − k̄Y ∩Y ′ − d(Y, Y ′) ≤ 4 + 4− 4 = 4,

so adding {v, v′} to Y ∪ Y ′ breaks sparsity of G.

v

x

y
x′

v′

y′

v

x

y
x′

v′

y′

Figure 5.9: The local structure of cases (1) and (2) in Lemma 5.2.5.

Lemma 5.2.6. Let (G, ϕ) be a C2-tight graph containing a node v with three distinct

neighbours. Then G \ {v, v′}+ {x1x2, x′1x′2} is C2-tight for some x1, x2 ∈ N(v).

Proof. From the definition of a C2-tight graph, we know there are no fixed edges

and at most 1 fixed vertex in G. Therefore vv′ /∈ E and |N(v)∩N(v′)| cannot be 3.

Lemmas 5.2.4 and 5.2.5 show that when N(v) ∩ N(v′) equals ∅, {t} or {x, x′}, the

reduction will preserve sparsity, as required.

Lemma 5.2.7. Let (G, ϕ) be a C2-tight graph. Suppose v is a node adjacent to

distinct vertices {x, y}, and v is incident to a loop. There exists some x1 ∈ {x, y}

such that G \ {v, v′}+ {(x1, x1), (x′1, x′1)} is C2-tight.

Proof. Suppose there exist 0-critical sets X, Y , with x ∈ X and Y ∈ Y . Then

X ∪ Y + {v} is not sparse. Hence, without loss of generality we may take it that

x is not in a 0-critical set. Instead now suppose x, x′ is in a 1-critical set, say W .

Then W ∪W and W ∩W are both contain x, x′ and are C2-symmetric, hence have

an even critical value. From the equation in Lemma 5.2.1,

2 = kW + kW ′ = kW∪W ′ + kW∩W ′ + d(W,W ′).
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Thus one of W ∪W and W ∩W is 0-critical, label this 0-critical set U . If y is in a

0-critical set Y , U ∪ Y ∪ {v} breaks sparsity of G. If instead y, y′ is in a 1-critical

set, we may do the same steps as above to find a 0-critical set containing both y, y′,

leading to the same contradiction. Hence there is a x1 ∈ {x, y} which is not in a

0-critical set with x1, x
′
1 not in a 1-critical set, completing the proof.

We put together the combinatorial analysis to this point to prove the following

recursive construction. From this we then deduce our characterisation of C2-isostatic

graphs. We need one more lemma which we prove for arbitrary cyclic groups as we

will use it again later in the thesis.

Two vertices u, v ∈ V are connected if there exists a path from u to v. We define

two vertices u, v ∈ V to be γ-symmetrically connected if u = γv or v = γu, or if

there exists a path from u to γv or γu to v. A Γ-symmetrically connected component

is a set of vertices which are pairwise γ-symmetrically connected for some γ ∈ Γ, and

a graph is Γ-symmetrically connected if it has only one Γ-symmetrically connected

component.

Lemma 5.2.8. A graph (G, ϕ) is Cn-tight if and only if every Cn-symmetrically

connected component of G is Cn-tight.

Proof. Label the Cn-symmetrically connected components of G with H1, . . . , Hr,

with Hi = (Vi, Ei, Li). By sparsity, we know each of the subgraphs Hi are sparse.

We have |Ei|+|Li| ≤ 2|Vi| and |Ei| ≤ 2|Vi|−3, which givesG being tight if and only if

equality holds in the first equation for each i, which is to say each Cn-symmetrically

connected component is tight.

We recall the following C2-tight graphs: (P1, ϕ0) with one fixed vertex and two

fixed loops; (P2, ϕ2) with two vertices and four loops and no vertices or loops fixed.

These graphs are depicted in Figure 5.10.

Theorem 5.2.9. A graph (G, ϕ) is C2-tight if and only if (G, ϕ) can be generated

from disjoint copies of (P1, ϕ0) and (P2, ϕ2) by symmetrised 0-extensions and sym-

metrised 1-extensions.
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u
v

v′

Figure 5.10: The base graphs, left (P1, ϕ0) and right (P2, ϕ2), for C2-symmetric
linearly constrained frameworks.

Proof. It is easy to see that any graph generated from (P1, ϕ0) or (P2, ϕ2) by sym-

metrised 0-extensions and 1-extensions is C2-symmetrically connected and C2-tight.

Hence G is C2-tight by Lemma 5.2.8.

We show by induction that any C2-tight graph G can be generated from sym-

metrically connected copies of (P1, ϕ0), (P2, ϕ2). We may assume by Lemma 5.2.8

that G is C2-symmetrically connected. Suppose the induction hypothesis holds for

all graphs with |V | < m. Now let |V | = m and suppose G is not isomorphic to

(P1, ϕ0) or (P2, ϕ2). Since G is C2-tight, the minimum degree is at least 2 and at

most 4.

A degree 2 vertex in a tight graph must be adjacent to two vertices and hence is

reducible by Lemma 5.2.2. A degree 3 vertex can have a loop and an edge incident

to it or be adjacent to three vertices. The former is reducible by Lemma 5.2.2 and

the latter by Lemma 5.2.6.

Hence suppose δ(G) = 4 and v is a vertex of minimum degree. We claim there

is such a v that is incident to a loop. Suppose not, then every vertex has at least 4

neighbours and so 2|E| ≤
∑

v∈V degE(v) which violates the definition of tight. Since

v is incident to a loop and has degree 4 either it has two incident loops or is incident

to two edges and a loop. In the former case the orbit of such a vertex would be its

own C2-symmetrically connected component. In the latter case w is reducible by

Lemma 5.2.7. This exhausts the possible cases and completes the proof.

Theorem 5.2.10. A graph (G, ϕ) is C2-isostatic if and only if it is C2-tight.

Proof. Necessity was proved in Theorem 3.8.3. Lemma 5.1.4 implies the base graphs

(P1, ϕ0) and (P2, ϕ2) are C2-isostatic. Sufficiency follows from Theorem 5.2.9 and

Lemmas 5.2.2, 5.2.6 and 5.2.7 by induction on |V |.
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5.3 Cn-symmetric isostatic graphs

In this section we analyse Cn rotational symmetry, for all odd n ≥ 3. The arguments

will build on the proofs in the previous section.

5.3.1 Reduction operations

Lemma 5.3.1. Let (G, ϕ) be a Cn-tight graph containing a vertex v incident to two

edges. Then G \
⋃n

i=0{γiv} is Cn-tight.

Note that this lemma includes the cases when v is degree two adjacent to two

distinct vertices and when v is degree three with a loop at v, and is depicted in

Figure 5.1.

Proof. For fixed 1 ≤ k ≤ n and any 0 ≤ i1 < · · · < ik ≤ n − 1, if G \
⋃k

j=0{γijv}

breaks sparsity, G would not be sparse.

Let us first show the following key technical lemma for C3, and then follow it with

the general case. Both proofs are similar, but technical; the easier case is presented

first for the reader’s convenience.

Lemma 5.3.2. Let (G, ϕ) be a C3-tight graph containing a v adjacent to two distinct

vertices {v1, v2} and incident to a loop. Let γ ∈ C3 \ {id}. Then there exists some

x ∈ {v1, v2} such that G \
⋃2

i=0{γiv}+
⋃2

i=0{γixγix} is C3-tight.

Proof. We prove the lemma by first checking there is a neighbour of v not contained

in a 0-critical subset of V , and then (for any k ∈ {1, 2}) that any k + 1 symmetric

copies of that neighbour are not contained in a k-critical subset of V .

If both of v1, v2 were in 0-critical sets, say V1, V2 respectively, then V1 ∪ V2 ∪ {v}

would break sparsity. Label the vertex which is not in a 0-critical set x. Note that

any symmetric copy of x is also not in a 0-critical set.

Let 0 ≤ i1 < i2 ≤ 2 and W be a set which contains {γi1x, γi2x}. First we note

that W and γi2−i1W are not 0-critical since they each contain a copy of x. Suppose

for a contradiction that W and γi2−i1W are 1-critical. Then W ∪ γi2−i1W contains

{γi1x, γi2x, γ2i2−i1x} and is not 0-critical; and W ∩ γi2−i1W contains {γi2x} and is
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also not 0-critical. By Lemma 5.2.1, kW∪γi2−i1W and kW∩γi2−i1W must both be 1.

Observe that γ2i2−i1 is the third and final element of C3, and γ
2i2−i1W is 1-critical, so

again, by Lemma 5.2.1, k(W∪γi2−i1W )∪γ2i2−i1W and k(W∪γi2−i1W )∩γ2i2−i1W must both

be 1. However, since G is C3-symmetric, 3 divides both |W ∪ γW ∪ γ2W | and

iE+L(W ∪ γW ∪ γ2W ). Then since iE+L(A) = 2|A| − kA, 3 would have to divide the

criticality of W ∪ γW ∪ γ2W , which is a contradiction. Therefore any {γi1x, γi2x}

with distinct i1, i2 ∈ {0, 1, 2} is not contained in a 1-critical set.

Let W be a set which contains {x, γx, γ2x}. We know from the above W is not

0 or 1-critical. Assume for contradiction it is 2-critical. Then W ∪ γW contains

{x, γx, γ2x} and so is not 1-critical; and W ∩ γW contains {x, γx, γ2x} which is

also not 1-critical. By Lemma 5.2.1, kW∪γW and kW∩γW must both be 2. Similarly,

W ∪γW ∪γ2W is 2-critical. However, as before G is C3-symmetric, so 3 would have

to divide the criticality of W ∪ γW ∪ γ2W , which is a contradiction. This proves

any set containing {x, γx, γ2x} is not a 2-critical set. Hence, there are no sets which

would break sparsity conditions of our graph class by performing a 1-reduction at

v, adding a loop at a neighbour.

Having established this result for C3-symmetric graphs, we extend this to odd

order cyclic symmetric groups.

The two 1-reductions we perform have similarities in their proofs, where we

build an inductive argument on the number of symmetric copies of neighbours of v.

Since some of these ideas overlap, they will be shared between the two proofs where

possible. The significant difference between the two proofs is that adding an edge

means we must check both edge sparsity and sparsity are preserved, whereas adding

a loop does not require the edge sparsity condition to be checked. To begin with we

derive a technical lemma which is used in the inductive step of both arguments.

Let A ⊂ V and j be a positive integer less than or equal to n. Define Xj(A)

to be the set with elements being j copies of A under action γ, written Xj(A) ={
γi1A, . . . , γijA : i1 < · · · < ij ∈ {0, . . . , n − 1}

}
. We will write Xj for Xj(A) and

Xj for Xj(A) where the context is clear. Let ϕ : Xj → Zn, ϕ({γi1A, . . . , γijA}) =

{i1, . . . , ij}.
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Lemma 5.3.3. Let n be a positive odd integer, (G, ϕ) be a Cn-tight graph and let Xj

be defined as above. If for A ⊂ N(v), X1 is not in a 0-critical set for all X1 ∈ X1,

then Xj is not contained in a (j − 1)-critical set for all j ≤ n.

Proof. We proceed by induction on j and begin by noting that the case when j = 1

is trivial. Assume no Xj is contained in a (j − 1)-critical set for all j ≤ k. We will

show any Xk+1 is not contained in a k-critical set. Fix Xk+1 ∈ Xk+1 and write X =

ϕ(Xk+1). For notation, write γ
iX = ϕ(γiXk+1) and γ

iX∪γjX = ϕ(γiXk+1∪γjXk+1)

and γiX ∩γjX similarly. By the induction hypothesis, any set containing Xk+1 also

contains k or fewer copies of x, so is not j-critical for any j < k. Suppose for a

contradiction that Xk+1 is contained in a k-critical set, say W . We will show that⋃n−1
i=0 γ

iW has 2|
⋃n−1

i=0 γ
iW |−a edges for some a < n. Since

⋃n−1
i=0 γ

iW is symmetric,

n divides |
⋃n−1

i=0 γ
iW |. As our graph class has no fixed edges or loops, this gives a

contradiction. Initially, we assume that X generates Zn.

Observe that if γitX ⊆ X ∪ · · · ∪ γit−1X and X ∪ · · · ∪ γit−1X = X ∪ · · · ∪ γitX

then

kW∪···∪γit−1W = kW∪···∪γitW .

Therefore, to bound kW∪···∪γn−1W our main focus is the case when γitX ̸⊆ X ∪ · · · ∪

γit−1X. First, when γi1X ̸⊆ X we have |X ∩ γi1X| < |X| < |X ∪ γi1X|. By the

induction hypothesis, any set containing ϕ−1(X ∩ γi1X), such as W ∩ γi1W , is not

contained in a (|X ∩ γi1X| − 1)-critical set. This implies kW∩γi1W ≥ |X ∩ γi1X|.

Lemma 5.2.1 implies that

kW∪γi1W = kW + kγi1W − kW∩γi1W − d(W, γi1W )

≤ |X| − 1 + |γi1X| − 1− |X ∩ γi1X| − d(W, γi1W )

≤ |X ∪ γi1X| − 2

(5.3.1)

and hence the critical value for W ∪ γi1W is at most (|X ∪ γi1X| − 2).

We repeat this process with γi2X ̸⊆ X ∪ γi1X, and hence investigate (X ∪ γi1X) ∪

γi2X and (X∪γi1X)∩γi2X. We know that kW∪γi1W = k or kW∪γi1W ≤ |X∪γi1X|−2
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and kγi2W = k. Since γi2X ̸⊆ X ∪ γi1X we have

|(X ∪ γi1X) ∩ γi2X| < |X ∪ γi1X| < |(X ∪ γi1X) ∪ γi2X|.

Noting that ϕ−1((X∪γi1X)∩γi2X) is not contained in any (|(X∪γi1X)∩γi2X|−1)-

critical set, (as (X ∪ γi1X) ∩ γi2X ⊂ γi2X we can apply the induction hypothesis),

so

k(W∪γi1W )∩γi2W ≥ |(X ∪ γi1X) ∩ γi2X|

(as ϕ−1((X ∪ γi1X) ∩ γi2X) ⊆ (W ∪ γi1W ) ∩ γi2W ), therefore

kW∪γi1W∪γi2W = kW∪γi1W + kγi2W − k(W∪γi1W )∩γi2W − d(W ∪ γi1W, γi2W )

≤ |X ∪ γi1X| − 2 + |γi2X| − 1− |(X ∪ γi1X) ∩ γi2X|

− d(W ∪ γi1W, γi2W )

≤ |X ∪ γi1X ∪ γi2X| − 3.

(5.3.2)

Thus the critical value for W ∪ γi1W ∪ γi2W is at most (|X ∪ γi1X ∪ γi2X| − 3).

Recalling that γitX ⊆ X ∪ · · · ∪ γit−1X implies that

kW∪···∪γit−1W = kW∪···∪γitW ,

and noting that |(X ∪ · · · ∪ γn−1X) \ X| = n − k − 1, the case when γitX ̸⊆

X ∪ · · · ∪ γit−1X can happen at most n− k − 1 times. Therefore, we obtain that

kW∪···∪γn−1W ≤ |X ∪ · · · ∪ γn−1X| − n+ k.

Finally since |X ∪· · ·∪γn−1X| = n, W ∪· · ·∪γn−1W cannot be n-critical. However,

since G is Cn-symmetric, n divides |W ∪ · · · ∪ γn−1W | and n divides iE+L(W ∪

· · · ∪ γn−1W ). However then, since iE+L(A) = 2|A| − kA, n divides the criticality of

W ∪ · · · ∪ γn−1W , a contradiction.

Instead assume that X generates a subgroup of Zn, let m be such that m ·

|⟨X⟩| = n and l = |⟨X⟩| ≥ k + 1. Let j1, . . . , jl be distinct elements of ⟨X⟩ so that

γjr ∩ (γj1W ∪ · · · ∪ γjr−1W ) is non-empty for all 2 ≤ r ≤ l. We can apply the above
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argument, instead noting that |(γj1X ∪ · · · ∪ γjlX) \X| = l − k − 1, so that

kγj1W∪···∪γjlW ≤ |γj1X ∪ · · · ∪ γjlX| − l + k = k.

Let W ∗ = γj1W ∪ · · · ∪ γjlW . By construction we have

W ∗ ∪ γW ∗ ∪ · · · ∪ γm−1W ∗ = W ∪ γW ∪ · · · ∪ γn−1W.

Therefore, since the criticality of the union of sets is less than the sum of the criti-

calities of those sets,

kW∪···∪γn−1W ≤ mkW ∗ ≤ mk < m(k + 1) ≤ ml = n,

and we arrive at a contradiction as before.

Lemma 5.3.4. Let (G, ϕ) be a Cn-tight graph. Suppose v is a node adjacent to

distinct vertices {v1, v2}, and v has a loop. Let γ ∈ Cn be a generator of Cn. There

exists some x ∈ {v1, v2} such that G \
⋃n−1

i=0 {γiv}+
⋃n−1

i=0 {γixγix} is Cn-tight.

Proof. Since γ ∈ Cn is a generator of Cn and no element is fixed by cn, for any

u ∈ V , u, γu, . . . , γn−1u are all distinct. We will show that there is a neighbour of v

not contained in a 0-critical subset of V , and that (for any k ∈ {1, . . . , n− 1}) any

k + 1 symmetric copies of that neighbour are not contained in a k-critical subset of

V .

To see there exists an x ∈ {v1, v2} which is not in a 0-critical set, suppose both

v1 and v2 are in 0-critical sets. Let V1, V2 denote the 0-critical sets containing v1, v2

respectively. Then V1 ∪ V2 ∪ {v} would break sparsity. The base case of induction

is now complete since, by extension, γix is not in a 0-critical set for any i ∈ [n− 1].

Indeed, we now have a set {x, γx, . . . , γn−1x} where no one element is contained in a

0-critical set. Hence, we have, for {x} ⊂ N(v), shown that any X1({x}) ∈ X1({x})

is not contained in a 0-critical set, so Lemma 5.3.3 implies that no Xj is contained

in a (j − 1)-critical set for all j ≤ n. Hence, the 1-reduction will not break sparsity

of G, completing the proof.
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Lemma 5.3.5. For a positive odd integer n, let (G, ϕ) be a Cn-tight graph and let

v ∈ V be a node adjacent to distinct vertices {v1, v2, v3}. Let γ ∈ Cn be a generator

of Cn. There exists some x, y ∈ {v1, v2, v3} such that G\
⋃n−1

i=0 {γiv}+
⋃n−1

i=0 {γixγiy}

is Cn-tight.

Proof. With the same arguments used in Lemma 5.2.4, we may show that there

exists a pair {x0, y0} ∈ {{v1, v2}, {v1, v3}, {v2, v3}} which is not contained in a 0-

critical set or a 3-edge-critical set. We claim that for some i, j ∈ {1, 2, 3}, and any

choice of k+ 1 elements from {{vi, vj}, {γvi, γvj}, . . . , {γn−1vi, γ
n−1vj}}, there is no

(k − 1)-critical set containing those k elements. We prove this by induction on k.

We have that {x0, y0} is not contained in a 0-critical set. We write xi = γix0,

and similarly yi. By the symmetry of G, {xi, yi} is not in a 0-critical set for any

i ∈ {0, . . . , n− 1}. Hence the basis of induction is complete.

Write Xk({x0, y0}) =
{
{xi1 , yi1}, . . . , {xik , yik} : i1 < · · · < ik ∈ {0, . . . , n− 1}

}
.

Assume no Xj is contained in a (j − 1)-critical set for all j ≤ k. Then, Lemma

5.3.3 completes the induction. Hence, we have shown that there is a pair {x0, y0}

not in a 0-critical set, and for any such pair, the union of any k symmetric copies

of that pair is not contained in a (k − 1)-critical set. It remains to show is that the

1-reduction does not violate the inequality |E ′| ≤ 2|V ′| − 3.

We require an analogous reduction to Lemma 5.3.3 with edge-criticality. To

this end, for a given k-edge-critical set W , we consider the union
⋃n−1

i=0 γ
iW , which

is a Cn-symmetric set. In this case it is possible for the order of the group to

divide the number of edges in the set, so instead we will show that
⋃n−1

i=0 γ
iW has

2|
⋃n−1

i=0 γ
iW | − a edges for some a < 2n. Since

⋃n−1
i=0 γ

iW is symmetric we know n

divides |
⋃n−1

i=0 γ
iW |. Hence it must be that a = n.

Assume no Xj is contained in a (j+2)-edge-critical set for all j ≤ k. Then, for a

contradiction, suppose Xk+1 is contained in a (k+3)-edge-critical set. That is, there

exists a W containing k + 1 copies of {x0, y0} such that k̄W = k + 3 = |X|+ 3− 1.

We follow a similar approach to Lemma 5.3.3, however it is now vital that the

appropriate intersections be non-empty.

First take |X ∩ γi2−i1X| < |X| < |X ∪ γi2−i1X|. By the induction hypothesis,

any set containing ϕ−1(X ∩ γi2−i1X), such as W ∩ γi2−i1W , is not contained in a
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γ2v

vγv

γ2v

Figure 5.11: Two Cn-symmetric sets U and T , with U n-critical and T 0-critical.
The case when n = 3 is shown.

(|X∩γi2−i1X|+2)-critical set. This implies kW∩γi2−i1W ≥ |X∩γi2−i1X|+3. Lemma

5.2.1 implies that

k̄W∪γi2−i1W = k̄W + k̄γi2−i1W − k̄W∩γi2−i1W − d(W, γi2−i1W )

≤ |X|+ 3− 1 + |γi2−i1X|+ 3− 1− |X ∩ γi2−i1X| − 3

≤ |X ∪ γi2−i1X|+ 3− 2.

(5.3.3)

Hence the critical value for W ∪γi2−i1W is at most |X ∪γi2−i1X|+3−2. We repeat

this process with γi3−i1X ̸⊆ X ∪ γi2−i1X, and hence take (X ∪ γi2−i1X) ∪ γi3−i1X

and (X ∪ γi2−i1X) ∩ γi3−i1X. Continuing, we obtain

k̄W∪γi2−i1W∪···∪γik−i1W ≤ |X ∪ · · · ∪ γik−i1X|+ 3− k.

If X generates Zn, with the same reasoning as in Lemma 5.3.3, we can choose an

ordering j1, . . . , jn of Zn such that

k̄γj1W∪···∪γjnW ≤ |γj1X ∪ · · · ∪ γjnX|+ 3− n+ k = k + 3.

Since γj1W∪· · ·∪γjnW is cn-symmetric, we have a contradiction unless k̄γj1W∪···∪γjnW =

n. Suppose this equality holds, and write U =
⋃n−1

i=0 γ
iW .

Without loss of generality we may suppose {x0, y0} = {v1, v2}. If both edges

v1v3, v2v3 are present, then
⋃n−1

i=0 (γ
iW ∪ {zi, vi}) breaks sparsity. So suppose other-

wise. We will show that one pair from {{v1, v3}, {v2, v3}} is in neither a 0-critical or
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a 3-edge-critical set. Take a pair from {{v1, v3}, {v2, v3}}, say {y0, z0}. If {y0, z0} is

in a 0-critical set T0, then T =
⋃n−1

i=0 γ
iT0 is 0-critical. We have already shown that

U is not p-critical for p ∈ {0, . . . , n− 1}, hence n = k̄U ≥ kU ≥ n, therefore U must

be n-critical and iL(U) = 0. Then,

kU∪T ≤ kU + kT − kU∩T = n− kU∩T .

Since iL(U) = 0, iL(U ∩ T ) = 0, so kU∩T = k̄U∩T ≥ 3. This gives kU∪T ≤ n − 3.

Then,
⋃n−1

i=0 γ
iv∪U∪T violates the sparsity of G (see Figure 5.11 for an illustration).

Similarly, if x0z0 /∈ E, then {x0, z0} is not in a 0-critical set, and we can apply the

inductive argument from the beginning of the proof to deduce that no k copies of

either pair is in a (k − 1)-critical set.

Now suppose {y0, z0} is in a 3-edge-critical set T0. If x0z0 ∈ E, then

k̄U∪T0 = k̄U + k̄T0 − k̄U∩T0 − d(U, T0) ≤ n+ 3− 2− 1 = n.

Repeating this with T1 = γT0, so k̄U∪T0∪T1 ≤ n, until Tn−1 = γn−1T0 gives k̄U∪T0∪···∪Tn−1 ≤

n. This union with
⋃n−1

i=0 {γiv} breaks sparsity of G. We note that the above con-

tradiction would hold with x0z0 /∈ E and k̄U∩T0 ≥ 3. Therefore assume x0z0 /∈ E

and k̄U∩T0 = 2. Similar to the above, we arrive at a contradiction if {x0, z0} is in a

3-edge-critical S0 unless k̄U∩S0 = 2. Then

k̄S0∪T0 = k̄S0 + k̄T0 − k̄S0∩T0 − d(S0, T0) ≤ 3 + 3− 2 = 4.

By definition, edge-criticality equal to 2 implies the vertex set is a singleton. Hence

U∩T0 = {y0} and U∩S0 = {x0}. Then U∩(S0∪T0) = {x0, y0}, and since x0y0 /∈ E,

{x0, y0} is 4-edge-critical (as depicted in Figure 5.12).

We have

k̄U∪(S0∪T0) ≤ k̄U + k̄S0∪T0 − k̄U∩(S0∪T0) ≤ n+ 4− 4 = n.

Repeating with (Si, Ti) = (γiS0, γ
iT0) for i = 1, . . . n−1 implies that

⋃n−1
i=0 (Si∪Ti)∪U
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Figure 5.12: Cn-symmetric and n-edge-critical U with 3-edge-critical sets S0 and T0.

is n-edge-critical. Then adding v, . . . , γn−1v breaks sparsity of G. Therefore one of

the pairs {x0, z0} and {y0, z0} are not contained in a 3-edge-critical set. Without

loss of generality, say that it is {x0, z0}. We can now build an inductive argument,

assuming q copies of {x0, z0} are not contained in a (q+2)-critical set for 1 ≤ q ≤ k1.

As before with {x0, y0}, suppose k1+1 copies of {x0, z0} are contained in a (k1+2)-

edge-critical set R. As with W , γh1R ∪ · · · ∪ γhnR is Cn-symmetric. Hence we

have a contradiction unless k̄γh1R∪···∪γhnR = n for some ordering h1, . . . , hn of Zn.

Recall that U = γj1W ∪ · · · ∪ γjnW and put R∗ = γh1R ∪ · · · ∪ γhnR. Then R∗ is

Cn-symmetric. For any set the edge-criticality is at least 2, hence by sparsity and

symmetry k̄U∩R∗ ≥ n. Therefore,

k̄U∪R∗ ≤ k̄U + k̄R∗ − k̄U∩R∗ ≤ n+ n− n = n,

which, on adding
⋃n−1

i=0 {γiv}, violates the sparsity of G. This completes the induc-

tion for one of {x0, y0} and {x0, z0}.

If X generates a subgroup of Zn, let m be such that m · |⟨X⟩| = n. Then, with

l = |⟨X⟩| ≥ k + 1, there is an ordering j1, . . . , jl of ⟨X⟩ such that

k̄γj1W∪···∪γjlW ≤ |γj1X ∪ · · · ∪ γjlX|+ 3− l + k = k + 3.

Let W ∗ = γj1W ∪ · · · ∪ γjlW . By construction we have

W ∗ ∪ γW ∗ ∪ · · · ∪ γm−1W ∗ = W ∪ γW ∪ · · · ∪ γn−1W.
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Whenever n ≥ 3 is odd, we have that

m(k + 3) = m(k + 1) + 2m ≤ ml + 2m = n+ 2m < 2n.

Hence,

k̄W∪···∪γn−1W = mk̄γj1W∪···∪γjlW < 2n,

and since W ∪ · · · ∪ γn−1W is Cn-symmetric we may repeat the argument in the

paragraph above to obtain a contradiction.

It was only in the final paragraph of the proof where the proof does not apply

to an arbitrary cyclic group. Consider a C2m-tight graph G, and the set X2 =

{{x0, y0}, {xm, ym}} which is contained in a 4-edge-critical set W . Then assuming

each of the sets are disjoint, W ∪ · · · ∪ γm−1W is 4m = 2n-edge-critical. A different

approach is therefore required in these groups.

We can now present our main results.

Theorem 5.3.6. Let n be a positive odd integer. A graph (G, ϕ) is Cn-tight if and

only if every Cn-symmetrically connected component of G can be generated from

(Pn, ϕn) or (LCn, ψn) by symmetrised 0-extensions and 1-extensions.

Proof. Any Cn-symmetrically connected component generated from one of the base

graphs by symmetrised 0-extensions and 1-extensions is Cn-tight. For the converse,

we show by induction that any Cn-tight graph G can be generated from symmet-

rically connected copies of our base graphs. We may assume by Lemma 5.2.8 that

G is Cn-symmetrically connected. Suppose the induction hypothesis holds for all

graphs with |V | < m. Now let |V | = m and suppose G is not isomorphic to one of

the base graphs in Figure 5.3. For a tight graph, 2 ≤ δ(G) ≤ 4.

A degree 2 vertex is reducible by Lemma 5.3.1. A degree 3 vertex can have a loop

and an edge incident to it or be adjacent to three vertices. The former is reducible

by Lemma 5.3.1 and the latter by Lemma 5.3.5. When δ(G) = 4, it can be shown

(see the proof of Theorem 5.2.9) that there exists a vertex w ∈ V incident to a loop

and adjacent to two vertices. Then w is reducible by Lemma 5.3.4, completing the

proof.
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Theorem 5.3.7. Let n be a positive odd integer. A graph (G, ϕ) is Cn-isostatic if

and only if it is Cn-tight.

Proof. Since Cn-isostatic graphs are tight, necessity follows from Theorem 3.8.3. In

Lemma 5.1.4, the base graphs (Pn, ϕn) and (LCn, ψn) (n = 5 depicted in Figure

5.3) are Cn-isostatic. Hence the sufficiency follows from Theorem 5.3.6 and Lemmas

5.1.1 and 5.1.3 by induction on |V |.
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Chapter 6

Further Research

In many respects the most natural continuation of my studies would have been to

consider a reflection symmetry for linearly constrained frameworks in R2. The ex-

tension operations that we expect to be required for a classification were given in

Section 5.1. We will discuss the difficulties that arise from our methods of classifying

linearly constrained Cs-symmetric isostatic graphs. We consider reduction opera-

tions for Cs-tight graphs. We recall Cs-tight graphs have two alignments of fixed

linear constraints, one perpendicular to the mirror which is represented positively

in P ∗
L and one along the mirror which is represented negatively in P ∗

L, and the total

number of such loops representing each case is counted by lσ,+ and lσ,− respectively.

From Table 3.12 we have (with eσ, vσ the number of fixed edges and vertices by the

reflection) that eσ + lσ,+ = lσ,− and there is no restriction on vσ besides that each

fixed loop must be incident to a fixed vertex, trivially giving vσ ≥ max{lσ,+, lσ,−}.

In order to differentiate between the different possibilities for the image of a

linear constraint by the reflection in our figures, we will identify linear constraints

not fixed by the mirror by loops without signage, those fixed with normals which

are preserved by the mirror by loops with a plus sign within, and those fixed with

normals inverted by the mirror by loops with a minus sign in.

Here we introduce our base graphs for Cs-tight graph with such notation (see

Figure 6.1). We show five small Cs-symmetric graphs that are tight. These are,

reading left to right, top to bottom: (P1, ω0) with two fixed loops, one which has

its normal preserved and the other having its normal inverted; (P1, ω1) with no
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+−
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(P1, ω0) (P1, ω1) (P2, ω2)

(LC3, ω3) (LC4, ω4)

Figure 6.1: Some Cs-tight base graphs.

fixed loops; (P2, ω2) with no fixed elements; (LC3, ω3) with one fixed edge, one fixed

vertex, and one fixed loop which has its normal inverted; and (LC4, ω4) with two

fixed vertices and two fixed loops, one of each kind. These could form the base

graphs of a recursive construction.

We will again consider reduction operations previously seen, namely symmetrised

0-reduction, symmetrised 1-reduction, and additionally for Cs-symmetry, fixed 0-

reductions and C4-reductions. Like in (2, 2)-Cs-tight graphs, much extra consider-

ation is required around fixed vertices. In this setting, we also have fixed edges

and loops, which prove to be a significant problem for a graph classification like in

Section 4.5. As is often the case one of the most difficult part of this problem is

reducing vertices of degree 3. In Figure 6.2 we give some of the variations in neigh-

bours of a degree 3 vertex. In this figure we omit a fixed vertex with 3 neighbours

all fixed since we believe this case should not arise once 0-reductions have been per-

formed. In Figure 6.3 we demonstrate a Cs-tight graph in which all nodes lie on the

mirror. This was not encountered when we studied the (2, 2)-Cs-tight graphs. In

this particular graph, a reduction of a fixed vertex to a fixed edge would preserve

the eσ + lσ,+ = lσ,− constraint, since the node is already incident to a fixed edge.

Another natural question to ask, is if there exists analogous results to Theorem

4.6.3 for our characterisations of isostatic linearly constrained frameworks in the

plane. If Cn acts freely on the vertices, edges and loops, we conjecture that an

infinitesimally rigid Cn-symmetric linearly constrained framework in R2 will always
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Figure 6.2: Some possibilities for nodes in a Cs-tight graph. In the bottom right
graph v is a fixed vertex.

− v1 − v2 − v3 − v4

u1 u2 u3 u4

Figure 6.3: A Cs-tight graph where each node {v1, v2, v3, v4} lies on the mirror.
Some edges are shown incomplete, with u1, u2, u3, u4 forming a K4, and similarly
the other vertices not on the mirror form a K4 with their translational copies (as
drawn).
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Figure 6.4: A C3-symmetric rigid graph with no spanning isostatic C3-symmetric
subgraph.

have a spanning isostatic subframework with the same symmetry. If so, generic

infinitesimal rigidity of Cn-symmetric linearly constrained frameworks in R2, where

Cn acts freely, can be characterised in terms of symmetric isostatic subframeworks.

This is in general not true; Figure 6.4 provides a small counterexample.

Further to this, when we first undertook our study of symmetric linearly con-

strained frameworks, we planned to investigate rigidity in Rd. Hence given more

time, symmetric linearly constrained frameworks in Rd would likely have been the

next point of study in this thesis. Here, there is the widest selection of groups to

choose from. Once again the inversion group appears the most likely to give promis-

ing results. There are no fixed edges to consider, and either there is no fixed vertex

or loop, or the only fixed vertex will be pinned at the origin by d hyperplanes. While

it would be natural to begin the study with the three dimensional case, one would

hope that the results of [8, 20] could be used to give analogous results for similarly

defined graphs in d dimensions.

One may instead choose to return to the symmetry of isostatic frameworks on sur-

faces. While new complexity would likely arise, it is possible that to give characteri-

sations of (2, 2)-C2v-tight and (2, 2)-C2h-tight graphs requires no new techniques from

those used in Chapter 4. One likely source of further difficulties comes when per-

forming 1-reductions on such graphs. Checking for k-critical sets, for k ∈ {3, 4, 5, 6},

which contain 1, 2, 3 and 4 (respectively) of the pairs of endpoints for the edges to

be added in the reduction will require a careful approach. However, this is similar

to the work undertaken in Section 5.3 considering the k-edge-critical sets.

Both the cone and elliptical cylinder present as natural best options to classify
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the class of (2, 1)-τ(Γ)-tight graphs (notation to specify which surface would appear

useful). From our research, order two groups are the least problematic to work with,

and all of the groups with isostatic frameworks in this setting are order 2. All of the

groups contain one fixed edge (an odd number is guaranteed given the total edge

parity and groups being order 2), which is different to anything studied in this thesis.

The inversion and half-turn present as the best groups to first approach given the

difficulties that can arise with fixed vertices. In particular, two fixed vertices can be

adjacent which will change the problem from the cylinder case.

As seen in [10], there is a precise geometric correspondence between infinitesimal

rigidity in the plane and that on the sphere, which has been extended to symmetric

frameworks. A similar geometric correspondence between infinitesimal rigidity of

normed planes and the cylinder looks likely to exist. It would be interesting to

investigate whether an extension to symmetric frameworks can also be made here.

Indeed, for q ∈ (1,∞), q ̸= 2, isostatic frameworks in the normed plane ℓ2q have

a ‘generic’ characterisation which is (2, 2)-tight just as the cylinder does. In the

plane setting, the isometries differ to those on the cylinder, which one would expect

to allow different groups to express minimally rigid graphs, and the representation

theory to give different fixed edge and vertex counts.
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