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Abstract—Using Pervasive Computing to reduce energy demand of complex
commercial premises is extremely challenging in practice. Yet, this is exactly what
is needed to help organisations address climate and decarbonisation targets.
Complex and heterogenous data, changing policy and practice, evolving
infrastructures and estates, multiple stakeholders, and transient and persistent
faults hidden in longitudinal data from thousands of sensors, are just some of the
challenges to overcome. In our multi-year experience of working to create software
systems to help find energy savings and enable effective policy creation, we have
found an important gap that complicates our efforts: missing business context. In
this article we contribute our key lessons learned so far; categorising the different
types of information missing that need to be captured; and describe how linking
this sea of information meaningfully is one of the most important, yet most
complicated endeavours in energy management. We offer ontologies as a way to
bridge stakeholder domains, and offer unique opportunities for organisations and
researchers in Pervasive Sustainability and beyond to create better tools for
enabling improved practice and operation in smart energy management.

lobally, billions of building and energy data

points are collected each day across the

commercial sector. Pervasive Computing has
already shown use cases for these data to enable
energy interventions,’ energy sensing,? smart home
automation,® and living laboratories.* Tantalisingly, can
these data, often already generated already as part of
many built infrastructures, help reduce energy demand
by increasing efficiency and improving understanding
of the link between energy and current practice?

One only has to walk around a typical office build-
ing, business park or campus environment, to see what
might be termed ‘energy waste’. Lights and displays
left on in unoccupied rooms, or overnight; poorly regu-
lated overwarm or overcooled buildings; especially with
recent shifts to hybrid and home working. But also,
and perhaps more profoundly, as infrastructures are
laid down and evolve over time, projects and people

come and go and layer new energy demanding infras-
tructures over old, where does all this energy actually
go—and is it now ‘being wasted'?

Researchers in the Pervasive Computing commu-
nity have previously urged for more work in sustainabil-
ity,> sparking a surge of publications and workshops.®
Recent reviews of these efforts since have renewed
calls to action,” intriguing us to understand energy de-
mand and help develop interventions to reduce energy
waste and its associated carbon emissions.

In our work we have sought to investigate how we
can find insights for energy savings and organisational
change from the energy and smart campus data al-
ready gathered in non-domestic settings. While plen-
tiful quantitative data relating to automated metering
(with work) can be accessed, actually reducing and
contextualising energy demand and identifying sites
of ‘energy waste’ requires additional quantitative and
qualitative data (which we term context) that we do not



have. We have found that purely looking at quantitative
data does not tell the whole story: events, patterns,
and anomalies that may be able to be detected using
statistical and computational methods, need to be con-
textualised to explain such phenomena meaningfully.

Solving this conundrum can enable the building
of tools for stakeholders such as energy managers
to address smaller issues on the ground, but also
have the far-reaching impacts such as implementing
or affecting change for policies on the broader scope,
we seek.

In this paper we explore how we can bring together
a variety of data in a structured manner, to unpack the
complexity of commercial organisations and provide
insights that connect to business practice and policies,
and the rhythms of the commercial organisation. This
includes the type of information that is important for
energy management—but we would argue critically
rarely recorded—the storage of such, when linked
together, can be utilised to enable new and more
effective automated analysis and stakeholder tools.
Drawing on specific examples chosen from our long
running work in this area, we offer an ‘ontology ap-
proach’ that provides a extensible mechanism to help
address the technical integration of these data. We
showcase this using examples drawn from current
work from real-world ongoing commercial case studies.
Our contributions are a categorisation of the different
types of information we find useful; a presentation of an
ontological approach to capture this information; and
an outlook of how pervasive researchers can better
understand and communicate energy data in relation
to commercial settings.

As researchers, with expertise in energy, sustainability
pervasive computing and HCI, we will openly say that
looking at the time-series energy and building data
alone is limiting and can be frustrating. While statis-
tical methods often work well with clean or synthetic
data, data from sensors deployed in buildings and
campuses for perhaps many years presents orders
of magnitude more challenge. A statistical ‘anomaly’
that looks interesting as energy waste, might in fact
be connected to hardware breakdown, software failure,
network reconfiguration, or a one-off event. Incorrect
interpretation of these data can lead to ineffective
or incorrect changes to future energy management.
Perhaps worse still, false conclusions erodes trust in
pervasive tools and techniques, or the promise of such,
for important stakeholders.

Over many of the authors experience over the

last decade or so of engaging with this problem do-
main, we have seen a variety of energy manage-
ment systems emerge, be implemented, and get re-
placed. The authors have collected and analysed data
in many different shapes and quantities, from small-
scale home qualitative energy intervention studies to
large-scale quantitative data hubs comprising billions
of data points and spanning several years. Especially
in commercial settings, time series data often forms
the backbone of energy data analysis.

What is ‘The Data Challenge’?

To elaborate on the problem of data variety, availability,
and accessibility, we refer to a relatively recent ex-
ample. Our largest dataset stems from our analysis
of electricity use on a University campus in UK. We
gather nearly 60,000 streams of time-series data from
the energy and building management systems (approx.
70 million data points per month). One common type
of analysis is to compare the night time and day
time energy use or the difference between ‘the base
load’ energy used even when a building is thought
to be unoccupied and the ‘peak load’. Most of the
buildings on campus are mixed use, comprising a mix
of backroom plant, offices, teaching spaces, shops
or accommodation, complicating interpretation. When
analysing one of the rarer and simpler to analyse single
use buildings recently we found it had an unusually
high base load that was even exceeding its peak day
time energy consumption. This is extremely unusual.
We zoomed in on the raw time series data points and
noticed a strange pattern of high consumption cyclic
peaks of ten times the normal load level, in regular
intervals but only occurring at night (see Figure 1). This
pattern was observable for several years suggesting a
link to the building’s infrastructure or perhaps linked to
regular energy intensive working practices.

Naturally this ‘odd behaviour’ was raising ques-
tions. The data stream itself did not tell us the answer,
and this pattern was unfamiliar to the stakeholders we
spoke to. We could not explain the pattern from any of
the historic data, nor typical cycles of energy use we
can normally relate to day to day ‘business as usual'.
Our first attempt was to contact the building’s manager.
We were told that the building was only occupied
during normal daytime hours, but that cleaning staff
were known to come in ‘after work’. The staff in that
building had no explanation for the electricity consump-
tion spikes, and naturally, energy management is not
part of their normal daily responsibilities.

As a next step, we contacted the Facility manage-
ment department, who, equally concerned, launched
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FIGURE 1. Consumption patterns over two weeks in a university campus building, exposing unusually high night time usage

(zoomed in view).

their own investigation. A technician conjectured that a
plant room’s hot water storage vessel might have been
the cause, as the building required increased water
safety monitoring due to its primary use. However, this
did not explain the increased night time consumption,
as opposed to day time when one would expect water
to be actually used. What further complicated the quest
was that the timing and recent history before the night
time pattern stopped: the expansion of a district heat-
ing system replaced the individual building’s heating
system. It was supposed, the building in question might
have had further installation changes in its plant room
during this period. Some staff of the University’s facility
management had recently also changed, which made
it harder to recover any further knowledge of these
changes, due to ‘loss of institutional memory’.

This left us with two significant challenges: First,
we did not manage to get a satisfying answer to solve
our riddle, the spikes in night time consumption—which
have since stopped—remain a mystery. Second, for
identifying other past, present, or future anomalies of
a similar kind, we need a robust system—or perhaps
churlishly, any system—to capture relevant organisa-
tional context to explain future events and relate these
to regular patterns of energy use. Third, and most
importantly, the documentation of this incidence is
the result of a lot of specific piecemeal investigative
work. The time series data is located in a time series
database; the analysis was done using custom written
scripts on the researcher's computers, shared and
discussed in the University’s communication platforms;
the communication with the stakeholders was done via
email or informally in person. This represents critical
information gaps: concerning the information about
infrastructure and technology, such as the devices
in the plant room and the consumers of electricity,
that was not centrally documented. Information about

policies such as the switch to district heating, working
hours of staff, cleaning staff's access to the building,
and potentially other consumers is not centrally docu-
mented either. This type of analysis hardly scales given
the complexity of even modest built and monitored
infrastructures!

Recording and taxonomising these data

We have been exploring how to capture, maintain,
and utilise all these forms of data that we have found
important. Using ontologies is not a new concept by
itself in the realm of energy management; ontologies
are an established way of documenting the semantic
structure of energy management systems.® Their use
is not just limited to buildings and organisations of
our scope, but has been explored in small-scale use
cases such as smart homes® up to the scale of smart
grids'® or even entire smart cities.'" Existing examples
within the pervasive community even included first
approaches to include contextual information. 2

To avoid situations like this in the future, we sought to
establish a comprehensive database to store relevant
but open-ended information of this kind, and where
possible capturing this in an ontology that we can then
combine to aid our analysis. In our search for such
a solution we turned to attention to ontologies, which
have been used in many other domains. A strength of
ontologies being the ability to link information of various
types of data, and express and encode relationships
in a repeatable and standardisable way. To illustrate
why we believe ontologies are an appropriate or even
a good tool for this challenge, we will first present
an overview of all types of data we have found to
be relevant in energy management settings. Following



this we will elaborate on the features of ontologies in

general as well as showcase examples of ontologies

we have utilised in more detail.

To be able to create such an ontology, we first need
to assess what kind of information we find relevant for
energy management. We arrived at this list by review-
ing and coding our collective notes of past research
and ongoing work with partner data in the energy
management domain, noting down every type of infor-
mation that was relevant for stakeholders working on
energy decision making, as well as in research projects
and interventions. We then mapped all the data types
using a card sorting exercise to cluster similar types of
information together and identify distinctions between
the various categories. These categories were then
iterated on through discussions among researchers,
until it was concluded that the representation matches
the collective experience of energy data in past and
present projects.

1) Time Series Data. Arguably the most common
information that energy analysis focuses on is time
series data (TSD), such as from meters that record
power consumption at a certain frequency. De-
pending on the size of infrastructure, technological
implementation, and age of building and system this
information can be split into more or less detail by
being at per-building level, floor level, or even per
room in some cases (typically we’ve found granular-
ity of sensing and data increases in newer buildings
and later generations of data logger offer more
sophistication in terms of sampling flexibility and
power related parameteres they log). The type of
information also varies, from power consumption to
water, heat, temperature, gas, oil, or other energy-
related information. The key element of TSD is that
it provides a stream of information with tuples of a
timestamp and an associated value at that point in
time.

2) Metadata. Closely related to TSD, metadata pro-
vides information describing the time series data
itself or its sources. Examples include unit of mea-
surement, frequency, sensor location, resolution of
the logged data, but also descriptive features such
as start and end date of reading, number of values,
or even semi-automated secondary measures such
as mean, variance, or number of missing values.
Essentially, metadata is considered to be informa-
tion that is directly related to a particular time series,
but not associated to an individual timestamp.

3) Post-Processed Data. Raw time series data may
be cleaned or resampled to ease further process-
ing. This includes a cleaned data stream, which is
close to the original time series data, but after the

5)

removal of outliers. Data gaps may be filled with
extrapolated data points or forecasts, or adjusted for
normalisation and standards (such as cumulative
meter readings turned into rate or respecting mul-
tipliers for conversion). This kind of post-processed
data might still be a time series data type, but needs
metadata, tags, or other identifiers to store informa-
tion about its origin and alterations made within the
data pipeline. The next level of post-analysis data
are outputs from algorithms to analyse patterns,
such as statistical models, anomaly or changepoint
detection, and various types of insights that usually
are turned into visualisations. This is the form most
commonly seen for energy data, especially by the
public. There is no standard for what this type
of information looks like, as it can range from a
stream similar to the original time series, e.g., for
a correlation analysis between energy consumption
and weather, which results in another time series.
Or might be a single data point, such as the emer-
gence of a single anomaly detected at a point in
time.

Timestamped Contextual Data. In contrast with
context-aware computing who’s notions of context
have been criticised,® we consider context as an-
notation to add meaning to a time series by con-
veying information about a certain point in time
or time range. The most common examples are
seasonal patterns relating to business practice such
as weekends, working/opening hours, or serving
as an explanation for regularly occurring patterns
in energy increase or decrease that are normally
seen. Another group of examples are explanatory
of events either planned or unplannedwhich might
cause deviation from ‘regular’ energy patterns; such
as sales promotions, blackouts, or erroneous read-
ings. These are thus non-recurring singular points
of context providing a reasoning for sequences of
anomalies or even periods of missing data.
Qualitative Contextual Data. We need to capture
and represent qualitative data, such as explana-
tions and narrative illicited from interviews, informal
testimony from occupants or other stakeholders, or
descriptive information about energy data and its
sources not otherwise considered formal metadata.
In contrast to the previous examples, this type of
data often requires more additional analysis before
it can be linked to a time series, but can often
shed light on an observed or detected patterns or
anomalies. In some cases, this kind of contextual
information even exists without any noticeable devi-
ation from the normal patterns of energy use in the
TSD. Deployment of a research project, a change



in energy management policy, or an intervention
to try and implement a ‘behaviour change’ policy
all may actually result in no statistically significant
effect. Usually the most complicated bit of work in
connecting this type of data to TSD is that it is rarely
directly linked to a single point in time. Even if it
does, the temporality is often hazy in the minds of
the interviewees or stakeholders, unless for the few
rare occasions where capturing such information is
tied to a documented organisational practice.

6) Outputs: Reports, Visualisations, and Policy
Briefs. This type of information consists of polished
analysis and synthensis as documented outputs.
Reports may include results of sophisticated anal-
ysis or data visualisations; internal/ external facing
reports (e.g. annual or quarterly reports); and policy
documents outlining general strategies that can
be linked to energy use directly or indirectly (for
example, heating policy, changes to air handling
for mitigating airbourne viruses). Such data can be
important to contextualise TSD or even other quali-
tative data, and needs further analysis to be directly
linked to other types of energy data. Storing the
entire record and then analysing it into piecemeal
items that can be directly linked to other types of
information helps to complete the picture of the
energy information.

7) Hardware and Infrastructure Documentation.
The metadata often explains the time series data
origin, but there is sometimes the need for more
in-depth information about the hardware, how it is
connected, how the data is being captured, and how
it all ties together. For the purpose of identifying
faults, and especially to distinguish a hardware
breakdown from a statistically significant change in
energy use that turns into an insightful result, it
can be key to have a survey of hardware that is
related to all things energy management. Organisa-
tions and its energy infrastructure change over time
due to change of building use, upgrades, building
development, etc. A full survey of all relevant infras-
tructure, what it powers, and the software pipeline
that forms the backend of the energy data logging,
helps to paint the full picture and build trust in the
data pipeline. Such surveys are expensive and time
consuming, so it is more common for this picture to
emerge incompletely over time.

Ontologies are representations of knowledge or infor-
mation specific to a domain or subject area. An ontol-
ogy captures knowledge (concepts), the relationships

between concepts, and properties of a concept, in
a way that is query-able and is standardised across
domains. They are commonly used in the fields of
linguistics and biology, but their use is growing in
other fields. Whilst formally an ontology represents
knowledge within a specific domain, the concept is
closely related to the concepts of graphs (the structural
concept behind the ontological approach) and linked
data (the method for implementing the ontological ap-
proach). Whilst an ontology itself is typically used to
store knowledge that can be represented by a short
string, @ number or a boolean, by leveraging the linked
data method, knowledge held in all of the types of data
discussed above can be captured.

Ontologies come in various concrete forms, de-
pending on the application domain and intended goals.
Energy management ontologies commonly follow the
format as defined by the OWL Working Group'. Al-
though terms vary, for clarity we will use the following
terms in the remainder of the paper and explain how
we utilised them in our work:

> Class—Examples for this can be types of infras-

tructure ranging from entire buildings to individual
meters, but also stakeholders or any other cluster
of information or concepts such as units or the
concept of an event

Literal—Singular entities of information pertaining
to a particular class to provide a narrow definition
for capturing a value; examples are numerical size
and labels, but also unique identifiers to link to raw
information

Instance—A realisation of the class
Relationship—Linking classes, Literals and In-
stances together; the relationship in-itself provides
the context between two elements
We emphasise that this is just one of many pos-
sible ways to describe the parts that make up an
ontology—there may be as many definitions as ontolo-
gies, and there are more extensive discussions of the
construction of ontologies as well as their individual
components'#Note we are not necessarily arguing that
ontologies are the only way to capture and encode
the business context we need to better explore and
understand the energy data, or enable computational
analysis methods. We also fully expect that not all
business context and qualitative information is well
suited to these methods, in part due to its socially
constructed and fluid nature.™ In the following, we
elaborate on our use of ontologies and how we applied
the concept to our projects by pointing to a case study

Thttps://www.w3.0rg/OWL/


https://www.w3.org/OWL/

in which ontologies were beneficial to our work. Later
on, we will discuss the lessons learned from utilising
them in our research.

Case Study: Quick Service Restaurant

A quick service restaurant is a type of restaurant
specialising in ‘fast food’ service. These days typical
restaurants specialise in take-away, may have table
service and may have a drive-thru facility. In our case
study, food is generally deep fried then kept warm. The
restaurant is thermally regulated using air conditioning,
and has a refrigerated storage facility. Energy manage-
ment within Quick Service Restaurants (QSR) is key to
their profitability. Naturally, there is significant interest
in finding issues in the restaurant infrastructure or use
of infrastructure that can lead to expensive wastes of
energy. For example, deep fat friers or airconditioners
left on out of hours or for extended periods. QSRs
often experience a high turn over of staff, which can
also lead to loss of knowledge about how to use
the systems or lack of long term engagement with
energy savings automation systems or policies. In this
example, by building upon existing ontologies, we show
how we can identify and capture information about
poor energy management.

Figure 2(a) shows a hierarchy of classes, in-
stances of which represent the monitored equipment
in a QSR in our net0i ontology. In line with best
practice, our ontology extends pre-existing ontolo-
gies such as the DOLCE + DnS Ultralite? (de-
noted dul:) by sub-classing dul:situation and
dul:designedArtifact to fully capture granularity
in the types of issue and range of equipment. The
relationships and classes that we use to provide con-
text, utilise other ontologies, such as the OWL Time
ontology® (time:) for describing temporal concepts
and QUDT* (qudt :) for measurement units.

To illustrate the use of these classes and associ-
ated ontologies consider the (simplified) representation
in Figure 2(c). This shows a fryer, “fryer number 1"
(instance #74516, class net0i: fryer) with relation-
ships to instances of other classes, which in turn
describe its properties. For example, instance #16290
(class qudt : quantity) represents information about
its electrical power rating and instance #92105 (class
geo:spatiallocation) information about its physi-
cal location.

2https://triplydb.com/odp/dul
Shttps://www.w3.org/TR/owl-time/
“https://fairsharing.org/FAIRsharing.d3paqw7

The issue (instance #57348) has class
net0i:offTooLateSchedulingIssue. This
combined with its dul :hasConstituent relationship
with  “fryer number 1" indicates poor energy
management since the fryer has been left on for too
long out of hours. The start time of the issue (instance
#30984, class dul : Event) is the end of the expected
operating hours. The end time of the issue (instance
#23579, class dul :Event) is given by a time interval
(instance #61742, class time:Interval), with a
relationship  of
indicating that the time at which the fryer was
switched off is unknown but between the time it
should have been turned off and an end time
(instance #39815, class time:Instant, relationship
time:isEndedBy).

In practice the full ontology for QSRs is more com-
plex than this, to allow for the storing of data relating
to, for example, multiple QSR sites, one-off events and
sales promotions all of which could effect the energy
use. The representation of both issues and equipment
within the same ontology does however offer multiple
benefits, such as being able to uncover new insights
beyond the usual quantitative data analysis and auto-
mated rule-based evaluation.

time:hasTimeInstantInside,

Documenting the different types of data arising in
energy management as well as utilising ontologies to
store and link them together has elevated our project
work and is already starting to allow us to discover
new insights. We believe the lessons learned extend
not only to other similar projects in the domain of
energy management and applied pervasive computing
in smart buildings and environments. The approach
provides conceptual clarity which reduces ambiguity
of terms; provides a common framework of integrat-
ing data from multiple sources effectively. Ontologies
can enable portability of algorithms and methods due
to semantic interoperability or comparability across
sites with different infrastructures. Importantly, codify-
ing some of the business context in this way can also
improve our ability to do knowledge discovery using
automatic analytics and reasoning.

Putting Energy in Context

In interviews with energy stakeholders as well as in
our own research reflections we repeatedly encoun-
tered the importance of a wide range of non-energy
data to help put anomalies and patterns of energy
use in the context of the organisational and busi-
ness processes. This context is seen as the ‘magic
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FIGURE 2. Parts (a) & (b) show classes used for representing equipment and issues in an ontology designed for QSRs. The
schematic in Part (c) shows an example event where Diamonds are instances, Ovals are classes, Literals are underlined and

Relationships shown by arrows.

bullet’ by facility managers to explain the reasoning
behind anomalies; business context is necessary to
fully understand changes in use. Such information is
also key to ensure we can attribute the success of
energy efficiency savings and research experiments
and judge its overall effectiveness. However, context
means different things to different stakeholders. This
is why our categorisation of data types is not just a
benefit for energy management, but almost a necessity
to fully unravel the complexity and prevent misunder-
standings when aiming for energy savings. This links
to previous findings by Cuenca et al."® who call for
a “common vocabulary” in their DABGEO ontology for
energy management.

Another benefit of clarifying the meaning behind
and listing the definitions of various forms of data
types, thereby demystifying context, is that it paves
way to arrive at a better organisation for knowledge
repositories. A lot of the expertise in energy man-
agement relies on tacit knowledge, i.e., unstructured,

loosely documented pieces of information, as well as
information of low data maturity or hidden in vari-
ous places such as embedded in policy reports or
meeting minutes. Our ontological approach allows for
capturing, linking, and re-using this information to be
able to utilise context more meaningfully. This can
enable pervasive researchers not only to gain clarity
in their own work and presentation, but also improve
communication to business stakeholders.

Ontologies as a Tool for Contextualising
Energy Data

Many researchers in pervasive computing work with
large quantities of qualitative data, such as interviews,
desk research, conversational analysis, or focus group
transcripts. While there are various techniques to anal-
yse this data, such as thematic analysis, axial coding,
or affinity diagrams, there is a barrier between time-
series data and the rich context that qualitative data
brings. We are often left to manually annotate figures



with qualitative insights. Ontologies could provide a
meaningful way to link the raw time-series data to the
results and create cross-references to other data types
such as quantitative data points, visualisations, record-
ings, or raw text files. This enables new synergies
and opportunities for collaboration between qualitative
and quantitative researchers, and provide a space for
mixed-methods analysis. For example, in our research
we collected rich information pertaining to the campus’
energy management, ranging from focus groups with
facility management, emails with administrators, and
notes from conversations in liminal spaces.

We are interested in building a more rich picture
of business systems beyond key performance indica-
tors commonly used in energy dashboards. In so do-
ing, we recognise how encoding context can perhaps
unintentionally capture immutable snapshots of that
emerges from dynamic activity.'® Current dashboards
are a blunt tool that communicate KPIs for energy
and building performance, decoupled from lived expe-
riences of occupants, business systems and policies.
Our ontological approach is about codifying and bring-
ing elements and dynamics of business systems and
the use of energy systems into the decision making
processes of stakeholders responsible for energy pol-
icy. Our approach is focused on contextualising energy
decisions in a way that augments existing data-driven
decision making with a mixture of signals from the
lived experiences of building users, the business poli-
cies, and showing human impacts of energy policies
or interventions. The focus of our approach is about
surfacing and augmenting signals, experiences, and
other data relevant to business systems that is easy
to ignore when making decisions through the myopic
lens of energy dashboards that focus solely on energy
demand over time. We see this type of contextualisa-
tion of energy use in business and organisational terms
as a necessary precursor to designing better tools for
reflection and sense making with energy data.'®

The ontological approach provided us with a better
way to document and discuss these data and the
results of its analysis. For researchers in pervasive
sustainability this means it can not only improve the
understanding of the results of data analysis internally,
but also lead to a more holistic understanding of the
causes for identified patterns and anomalies. While
energy data visualisations have been subject of inves-
tigation in HCI for a long time, and the importance
of capturing contextual data has been previously ac-
knowledged'” our approach goes one step further. We
utilise the links unraveled by the ontological approach
and the documentation of relationships between data
and stakeholders to reflect on existing and influence

future policies, which recent research argues is the
most promising way to affect real change for a more
sustainable future.”

Discovering Anomalies to Probe for Context
As highlighted by previous research, harnessing con-
textual data can be key to understand energy data and
lead to more sustainable practices.'® Ontologies have
previously been suggested to allow semi-automated
rule-based assessments of energy data, systematically
identifying patterns and anomalies at an increased
scale or more rapidity.'? Due to our interdisciplinary
research team of qualitative HCI researchers as well
as experts in statistical analysis, we used this to
our benefit by linking the emergence of anomalies
(the what) with the reasoning based on qualitative
data insights (the why). This offers a unique way to
synergise time series data with interview data and
strengthens the collaborative potential of work in our
field. In our case study we used this to cross-reference
operating hours with equipment use to identify energy
savings potential, and the ontology allows us to directly
store the results with explanations arising from the
discussions that follow.

We have also analysed the campus energy con-
sumption during COVID.'® The ontological approach
proved to be the most effective way to link statistical
insights with the various pieces of information we
captured to explain our findings. This proved useful
not only for our own research methodology and docu-
mentation, but allowed for an improved communication
with stakeholders when discussing our results and
taking steps to generalise this type of research inquiry.
While COVID was hopefully a singular occurrence, the
lessons learned from this research can be invaluable
to future policy implementations, as we considered the
COVID lockdown as an extreme policy intervention.

The Inevitable Caveats

Our ontological approach provides several benefits,
but as with almost any application, it does not come
without limitations. Creating an ontology, or adapting
an existing ontology to one’s needs as is most com-
mon practice, takes time, effort, and knowledge. This
is a challenge in organisations as it may cross cut
roles, responsibilities and budget lines. We believe it
is time well spent though, and the growing number
of existing ontologies (e.g., BrickSchema®, QUDT®,

Shttps://brickschema.org/ontology
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or DOLCE+Ultralite DNS’ just to name but a few)
provide a good starting point. Ontologies also suit
themselves better to trial and error; while setting up
an ontology and filling it with data initially might take a
bit more time than creating a time series or relational
database which embed structural decisions, its struc-
ture is more malleable as it is not as rigid and can be
altered later at any time without losing or corrupting
existing data within in (within limits).

We also want to emphasise that we do not con-
sider ontologies to be ‘the solution’. Ontologies, in our
view, cannot replace other tools such as conventional
databases, digital twins, or data exploration dash-
boards, but they offer an important addition to create a
blended environment in which several tools together
form a strong framework. And just as established
tools require training, experience, and maintenance to
function well in a real-world setting, there is a similar
need to embed ontologies in a useful and generalisable
way into the research and practice landscapes to serve
as tools for reflection.?’ In our project, the varying
degrees of experience and expertise of researchers
resulted in tools being developed to allow for a more
versatile access. As is commonplace for new tech-
nologies introduced into a domain, there is a need for
bespoke solutions until off-the-shelf solutions become
widely available for quick adoption.

In this article, we analyse the various types of informa-
tion that can be found in energy management settings,
based on our past and ongoing work in the area. We
present a novel approach, utilising a combination of
ontologies to combine quantitative and qualitative data
for providing energy management solutions that go
beyond existing tools with just a narrow energy data
focus. We believe the lessons learned from our re-
search projects, in particular the documentation of the
different data types derived from energy management
discussions and analyses, illustrate the usefulness of
ontologies in meaningfully analysing time series en-
ergy data and putting this into organisational context.

We believe such an approach can have significant
value to organisations in capturing valuable context to
help deliver more reliable insights for understanding
and reducing the energy burden relating to their in-
frastructure and how it is currently used. We also hope
tools built on this approach could help researchers and
practitioners make better sense of the complexity of

7https://triplydb.com/odp/dul

their data, enabling them to more accurately track the
effectiveness of energy savings interventions, policy
changes and research experiments. Such understand-
ing is surely critical not just in the usual and sometimes
rhetorical search to find energy savings and ‘find effi-
ciencies’; but rather, could help unpack and understand
how energy gets embedded in emergent practice and
infrastructures. Importantly, this should help us ask
the harder questions about our often unquestioned
presumption as to whether current levels of energy
demand can and should continue, and where and how
it can be reduced and reshaped.

This research was funded by EPSRC grant ref.
EP/T025964/1. We gratefully acknowledge our many
interviewees, direct collaborators and data sources,
who have and continue to enable our work in this area.
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