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Abstract  
  
Apples are a nutritious, globally significant crop, yet their production has a substantial 

environmental impact due to the reliance on heavy pesticide use within disease management 

strategies. Apple scab, caused by the fungus Venturia inaequalis, is the primary cause of yield 

losses among all the pathogens that affect apples globally, leading to the highest protection costs 

and volumes of fungicides used for control. Conventional disease management strategies rely on 

uniform spraying of protective fungicides, repeated frequently throughout the growing season. 

This expensive, chemical-intensive approach contributes to widespread environmental 

contamination in many apple-growing regions worldwide. The early detection of apple scab 

infections offers a promising alternative for disease control by enabling targeted fungicide 

spraying, thereby improving the effectiveness of control measures and reducing chemical usage. 

Remote sensing systems are powerful tools for the early detection of plant pathogens; however, 

practical solutions for apple scab monitoring in commercial orchards are limited. The challenges 

of early detection in orchards arise from diverse symptom variations, variable illumination 

conditions, tree physiologies, and influences from other stress factors. Demonstrating the 

feasibility of early apple scab detection by remote sensing systems in uncontrolled conditions 

represents a significant step towards applying such systems in commercial orchards.  

  

This thesis aims to develop a remote sensing strategy for the early detection of apple scab 

infections under natural illumination conditions. The research rationale will first be introduced, 

followed by a review of the requirements for early disease detection in orchards and the current 

strategies and technologies available, including imaging sensors, classification methods and 

acquisition platforms. The capabilities of several low-cost sensing systems (multispectral, 

thermal, and 3D cameras) for detecting early apple scab infections under natural illumination 

are then assessed. Results indicate that apple scab symptoms could be manually identified 

several days earlier from high-resolution near-infrared (NIR) imagery than equivalent RGB 

imagery due to major differences in NIR radiation absorption potential between healthy and 

infected tissue. RGB and NIR time series datasets comprising 150 individual plants were then 

acquired and used to train convolutional neural networks (CNNs) to enable rapid, automated 

classification of apple scab symptoms. These CNNs consistently classified apple scab infections 

earlier and more accurately from NIR imagery than RGB imagery. This research shows that NIR 

imagery is effective for early apple scab detection under natural illumination conditions, and 

automated identification of the disease can be achieved accurately and rapidly with CNN 

classification models. This represents a significant advancement towards applying remote 

sensing systems for disease monitoring in apple orchards. 
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Introduction 
 

1.1 Smart Farming and the Sustainable Intensification of 
Agriculture 

 

Global food security is essential for an equitable society, although achieving this is a significant 

challenge amidst population growth and environmental decline. Conventional agricultural 

policies and practices have promoted cropland expansion, intensive irrigation and reliance on 

external inputs (chemical pesticides, inorganic fertilisers, and heavy machinery) as the primary 

means to increase yields (Pretty, 1995). These high-input, resource-intensive strategies are 

major sources of pollution and greenhouse gas emissions and lead causes of water scarcity, soil 

depletion, and biodiversity loss, which pose serious threats to agricultural yields (Gomiero, 

2016; Lanz et al., 2018; Anderson et al., 2020; Rosa et al., 2020). The world must move towards a 

sustainable method of increasing agricultural production to ensure global food security without 

causing further environmental and ecological damage. Sustainable intensification is a system 

that increases crop yields without cultivating additional land or causing adverse environmental 

impacts (Pretty & Bharucha, 2014). The concept emphasises the efficient utilisation of resources 

to manage soils and nutrition, irrigation, and pest and disease management while reducing 

reliance on cropland expansion and chemical inputs (Pretty, 1997). Sustainable intensification 

offers an alternate approach to agriculture that can concurrently tackle crop production-based 

food security issues and environmental degradation. 

 

Large-scale sustainable intensification methodologies rely upon the appropriate implementation 

of smart agricultural technologies. (Dicks et al., 2019). Smart farming, also known as Agriculture 

4.0 or “the fourth agricultural revolution”, utilises modern innovations and developments in 

information and communication technologies to increase efficiencies in crop production and 

provide environmental and social benefits to growing regions (Rose & Chilvers, 2018). The 

increasing accessibility of emerging technologies, including robotics, the Internet of Things 

(IoT), Unmanned Aerial Vehicles (UAVs), cloud computing, wireless sensor networks, and 

Artificial Intelligence (AI), allows for decision-making and management tasks to be informed by 

real-time data (Wolfert et al., 2014; Javaid et al., 2022). Practical solutions have been utilised in 

agricultural operations to estimate evapotranspiration, soil moisture, and crop phenotyping, 

enabling automated irrigation and precise application of fertilisers and pesticides (Sishodia et 

al., 2020). As the global population increases, agricultural yields must also increase in order to 

maintain the availability of nutritious food. Smart farming is increasingly important in providing 
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solutions for sustaining productivity and adapting to environmental decline and climate change. 

Precision agriculture, the most prominent methodology used within smart farming, aims to 

improve production efficiency by applying information and technology to understand the 

spatiotemporal variability of agricultural production to inform targeted, site-specific crop 

management (Stafford, 2000; Auernhammer, 2001; Pierce & Nowak, 1999). Precision 

agriculture came to prominence at the turn of the millennium with the widespread introduction 

of Geographic Information Systems (GIS), Global Positioning Systems (GPS), remote sensing and 

other data generators into agricultural operations (Karunathilake et al., 2023). These 

technologies enable management strategies to consider variability in geography, soil properties, 

crop physiology, historical yield distributions, and the influence of external biotic and abiotic 

stresses (Zhang et al., 2002). Monitoring crop health and yield variability can inform decision-

making to improve resource input efficiency and maximise yields, providing widespread 

economic and environmental benefits. Appropriate integration of Smart farming technologies 

and precision agriculture strategies into current agricultural practices can provide an essential 

route to the sustainable intensification of agriculture. 

 

1.2 Precision Agriculture Strategies for Crop Disease 
Management 

 

Plant pathogens pose a major threat to global food security. Crop diseases, borne of fungal, 

bacterial, and viral pathogens, reduce the quality and quantity of agricultural yields, 

exacerbating food supply deficits and threatening the financial viability of crop production 

(Strange & Scott, 2005; Ristaino et al., 2021). Intensive farming practices with high-density 

monocultures increase the risk of substantial losses caused by pathogens (Newton et al., 2009). 

Intensive protection measures are implemented to minimise crop losses by spraying high doses 

of pesticides (fungicides, bactericides, and insecticides) to prevent and control pests and 

diseases proliferating within the field and during storage (Oerke, 2006). With their abundant 

pesticide use, specifically fungicides, these disease management routines incur some of the 

highest economic costs and environmental impacts within agricultural production. The excessive 

use of these inputs has led to them contaminating the natural environment, destroying beneficial 

ecosystems, and leading to pests developing resistance to specific modes of action (Aktar et al., 

2009; Sharma et al., 2019; Tudi et al., 2021). Furthermore, routine fungicide spray techniques 

are expensive, and significant disease-related crop losses still occur (Popp et al., 2013). Current 

crop protection strategies based on homogenous fungicide spraying are unsustainable. 

Alternative methods that reduce overall fungicide use while also minimising crop losses due to 

disease are essential to improve the environmental impacts associated with agriculture. 
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Precision agriculture strategies for crop disease management have the potential to improve 

sustainability within agricultural production and increase marketable yields (Mahlein et al., 

2012; Balasundram et al., 2020). Precision crop protection can reduce the reliance on treating 

crops homogenously and instead tackle plant pathogens through rapid, site-specific targeted 

treatment (Roberts et al., 2021). GIS has long been used to map the spatial heterogeneity of 

disease epidemics over their regions (Nelson et al., 1999) and provide an accessible platform for 

monitoring and forecasting crop disease with visual assessments and spatial analysis (Dong et 

al., 2019; Dong et al., 2020). Novel IoT-based monitoring systems and wireless technologies 

enable real-time monitoring and analysis of environmental and crop information, feeding into 

dynamic forecasting models or decision-making to determine infection risk more accurately and 

rapidly (Khattab et al., 2019). Precision pesticide applications through Variable-Rate Spray 

(VRS) systems are increasingly utilised in commercial growing environments. VRS technologies 

adjust agrochemical applications in real time depending on location, inoculum levels and canopy 

densities to address the specific needs of the area, improve spray deposition and minimise 

pesticide waste while maintaining high efficacy in control (Zhang et al., 2018; Manandhar et al., 

2020). 

 

Essential to all these precision technologies is detailed information on the temporal and spatial 

variability of crop health parameters within fields collected from remote sensors (Mulla et al., 

2013). Remote sensing is a non-contact method of obtaining information by measuring 

electromagnetic energy reflected or radiated by a surface, which can then be analysed to 

determine information on crop health (Martinelli et al., 2015). Optical sensors are powerful tools 

that allow for rapid, automated, non-destructive measurements that can be used to diagnose 

disease in plants in real time under field conditions (Sankaran et al., 2010). Various remote 

sensing options exist for plant disease detection, including spectral, thermal and fluorescence 

imaging systems, each with unique benefits and limitations for different diseases and field 

conditions (Mahlein, 2012; Kuska et al., 2018). To be effective, remote disease detection systems 

need to be able to i) detect symptoms of the disease early, ii) identify the causal pathogen and 

differentiate it from other stress sources, and iii) quantify the severity of infection (Mahlein, 

2016; Ray et al., 2017).  

 

Optical sensors are sensitive to biological changes but do not measure plant parameters directly, 

so advanced data analysis methods rapidly interpret information for decision-making (Behmann 

et al., 2015). Supervised and unsupervised machine learning techniques have been utilised to 

enable the early detection and diagnosis of plant diseases without labour-intensive manual 

techniques. Deep learning techniques, notably Convolutional Neural Networks (CNNs), have 
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quickly become the most common method for plant disease diagnosis (Saleem et al., 2019; 

Hasan et al., 2020; Li et al., 2021). These CNN models can accurately and rapidly identify many 

diseases despite considerable symptom variance. Importantly, CNNs perform well on images 

captured in laboratory conditions as well as in natural, real-world settings, where weather, 

illumination and background conditions vary. Utilising deep learning classification models to 

diagnose diseases accurately and rapidly from images acquired by remote sensors means that 

new approaches to crop management are feasible at scale. 

 

The adoption of precision technologies for crop disease detection and management has been 

slow. The high cost and uncertainty of using novel methods, along with the high risk and extreme 

consequences if they fail, can cause apprehension in adopting technologies. It is essential that 

these technologies are thoroughly researched and utilised correctly to maximise their potential. 

Precision crop protection, enabled by accurate, early detection and identification from remote 

sensors and machine learning algorithms, can inform targeted fungicide use. Judicious fungicide 

use can remove the need for unnecessary homogenous spraying, improving the efficiency and 

efficacy of crop disease treatment. Improving crop disease management efficiency can improve 

the sustainability of agricultural production while also increasing the quantity of agricultural 

yields. 

 

1.3 The Impact of Apple Scab 
 

Apples are among the most important horticultural crops due to their high economic and 

nutritional value. They are also one of the most produced fruits worldwide, with 95.84 million 

tonnes grown over an area of 4.86 million hectares (Food and Agriculture Organization of the 

United Nations, 2024). Apple orchards are subject to some of the most chemically intensive 

disease management regimes in agriculture (Simon et al., 2011). Commercial apple production 

involves typically high-density monoculture rows that maximise the productivity and 

profitability of orchards (Reig et al., 2019). The conditions created by these high-density 

orchards of susceptible cultivars are conducive to pest and disease epidemics, putting them at 

high risk of major crop losses (Peil et al., 2009; Lindell et al., 2023). These may occur from direct 

losses from fruit infection, which can cause lesions or rots in apples preharvest within orchards 

and postharvest in cold storage, or through indirect losses through reduced productivity of trees. 

Severe infections from foliar pathogens, such as powdery mildew, can stunt trees and produce 

lower-quality fruit (Holb, 2013). Extreme examples of destructive diseases, including European 

canker (Weber, 2014) and Fireblight (Khan et al., 2012), can even lead to the death of entire 

plants. Due to the numerous threats to their orchards, growers rely heavily on inorganic 
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pesticides to maintain their yields despite the economic and environmental impact of the 

chemicals. This chemical-intensive management is characteristic of apple orchards in all growing 

regions worldwide. The scale of apple production and the intensity of disease control applied 

across all growing regions has significant potential for sustainable intensification.  

 

Apple scab is the most important disease facing global apple production because of the high 

susceptibility of most commercial varieties, its widespread presence, and the economic cost of 

required management techniques (MacHardy et al., 2001). Apple scab is caused by the 

ascomycete fungus V. inaequalis, which occurs in all commercial growing regions but has the 

most severe effects in countries with cool, moist springs and high summer rainfall (MacHardy, 

1996; Bowen et al., 2011). Epidemics of apple scab rapidly spread throughout orchards, and 

poor disease management can result in the loss of an entire orchard. The major economic costs 

of the disease come from direct losses due to fruit infection developing within orchards and 

storage. Apple scab causes symptomatic olive-brown lesions to develop on the fruit; these 

lesions grow, darken, and coalesce, eventually developing a corky texture as the pathogen and 

apple flesh become necrotic (Belete & Boyraz, 2017). Apple fruits that display any symptom of 

apple scab are lost as they do not meet the market requirement for a high-quality, blemish-free 

product (Berrie & Xu, 2003). The primary infection cycle of V. inaequalis begins as the fungus 

overwinters as pseudothecia in leaf litter on the orchard floor. In spring, rainfall and sunlight 

promote the release of ascospores, which are wind-dispersed long distances throughout the 

orchard and germinate on young leaf tissue. Infected leaves develop characteristic lesions 

comprised of a dense layer of fungal conidia. As the infection matures, these conidia penetrate 

through the leaf cuticle and are splash-dispersed over short distances to infect surrounding plant 

tissue and fruits. (Oerke & Steiner, 2024). This secondary infection cycle repeats throughout the 

growing season, increasing the severity of orchard epidemics.  

 

Due to the polycyclic nature of the pathogen, the repeated and intensive application of fungicides 

remains the primary method of controlling scab (Koller et al., 2005; Chatzidimopoulos et al., 

2020). Orchards in the UK receive an average of 13 fungicidal sprays for apple scab control per 

growing season at 7–14-day intervals (Berrie & Xu, 2003; Mace et al., 2019; Ridley et al., 2024). 

The abundant use of fungicides significantly increases production costs, and concerns over the 

impact on human health and the agroecosystem mean alternate methods to optimise fungicide 

use are being sought. Improving the fungicide-use efficiency of apple scab management could 

reduce the environmental impact of disease control and the losses of this major horticultural 

crop. 
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Integrated Pest and Disease Management (IPM) is considered the best practice for controlling V. 

inaequalis and other pathogens and pests in orchards. IPM is a practical and environmentally 

sensitive approach that relies on a combination of sanitation and treatment through cultural and 

biological controls, supported by tactical chemical use, to manage pests and diseases in orchards. 

Comprehensive knowledge of the pathogens and their interactions with host plants is the basis 

of IPM strategies. Treatment decisions are made to prevent diseases from exceeding an economic 

damage threshold using the most economical and environmentally friendly means. (MacHardy, 

2000; Beckerman et al., 2013).  

 

Numerous non-chemical IPM options are available for treating apple scab. Orchard sanitation 

measures can include pruning trees to improve air circulation or by removing overwintering 

inoculum on the orchard floor. Sanitation provides an alternative solution to fungicide use but is 

laborious and may often result in higher scab incidence and lower yields if used in place of 

chemical treatment (Antal et al., 2023). Scab-resistant apple varieties are another option for 

managing apple scab using fewer fungicides, with several cultivars containing specific scab-

resistant genes currently grown in commercial orchards (Belfante et al., 2004; Papp et al., 2016; 

Patocchi et al., 2020). Consumer and company preferences regarding taste, aesthetics, and shelf 

life drive commercial apple production; breeding resistant varieties is an extremely long and 

arduous process to identify which plants carry these valuable traits (Petkovsek et al., 2007; Papp 

et al., 2020). Developing resistant crops only offers a partial solution to intensive fungicide use in 

the long term.  

 

Efficient fungicide application is currently the best defence against apple scab. Orchards that 

received no fungicide applications had higher scab severities and lower fruit quality than both 

conventional management and IPM with tactical fungicide use (Holb et al., 2017). Disease 

forecasting is another key method used in IPM strategies to optimise fungicide use based on 

weather-related risks and historical and current inoculum levels. ADEM (Apple Disease East 

Malling) and RIMpro are computer programs that provide warnings on a range of diseases, 

including apple scab, powdery mildew, European canker, and fireblight infection. These 

programs use information on weather variables: rainfall, surface wetness duration, ambient 

temperature, and ambient relative humidity to generate warnings. Scab forecasting models have 

been successfully deployed to inform reductions in fungicide applications, but there is evidence 

to suggest that this approach has led to increased incidences of scab infection in orchards (Berrie 

& Xu, 2003; Garofalo et al., 2018). 
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All IPM strategies rely on accurate information on disease incidence, location, severity, and 

phenological stages to inform cultural control or fungicide use (Whalon & Croft, 1984; 

MacDonald & Glynn, 1994; Cirjak et al., 2022). Visual assessments made through crop scouting 

are the most common techniques of orchard health monitoring (Ray et al., 2017). Crop scouting 

is performed primarily by agronomists, crop consultants, and other field specialists (Thapa et al., 

2020). Scouts must have extensive knowledge and training before becoming effective at orchard 

disease diagnostics. As a result, only a limited number of experienced scouts are available, and so 

most are required to cover many orchards in a region within a narrow time-frame. Scouts 

establish a random sampling system throughout an orchard to avoid assessing every tree, which 

can inadvertently lead to missed disease symptoms. Scouts evaluate risk and scout based on 

specific susceptible cultivars, specific regions of orchards, or known presence of the disease in 

the region or previous seasons. These scouts also provide growers and clients with further 

treatment recommendations (spray schedule, pesticide use, and cultural control). Crop scouting 

is an essential resource for growers. However, it is time-consuming, expensive, and prone to 

errors from sampling biases and missing latent infections (Bock et al., 2010). While crop 

scouting provides growers with vital information on orchard health and treatment 

recommendations, these are often ancillary to the homogenous, repeated protective spraying of 

trees over the growing season. 

 

The lower input costs associated with reduced fungicide applications are often offset by the high 

cost of consultants, scouting, weather-monitoring equipment, sanitation equipment, hardware, 

and software programs that are required for IPM. Furthermore, there is concern that current 

IPM strategies have contributed to increased resistance due to the dependency on broad-

spectrum fungicides. Inappropriate reduction in fungicide spraying has led to increasing 

incidence within orchards. Higher levels of overwintering inoculum can drive the selection and 

the evolution of fungicide resistance through simple stochastic processes (Beckermann, 2013). 

IPM implementation may suffer due to a lack of well-qualified IPM experts, and it is too difficult 

compared to conventional management (Parsa et al., 2014).  

 

The labour-intensive demands of disease monitoring limit the practical use of the method 

without the use of state-of-the-art monitoring and information systems to aid decision-making 

(Barzman et al., 2015). Although our in-depth understanding of the epidemiology of apple scab 

has reduced fungicide usage, scab control in most apple-growing regions still depends on the 

significant input of agrochemicals. This will likely continue until effective and durable scab 

resistance is incorporated into new apple cultivars. (Bowen et al., 2011). Many growers operate a 

zero-tolerance for scab due to the risk to their harvests. As IPM strategies can increase infections 
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in commercial orchards, heavy fungicide use is still the most common control method worldwide 

(Damos et al., 2015). Apple scab management will rely on fungicide application in the future, and 

so tactical spraying, based on disease risk and presence is the most feasible way of improving the 

sustainability of disease control. 

 

Precision agriculture technologies offer the potential to improve orchard health monitoring by 

acquiring objective information from imagery, acquired over wider areas, more regularly than 

crop scouts. Despite this, the successful deployment of remote sensing systems for disease 

detection in orchards has been limited. This can be attributed to previous research focusing on 

successful imaging in controlled laboratory conditions. Sensors must demonstrate their ability to 

detect apple scab early in the complex environments of orchards, where illumination and plant 

stress conditions are uncontrollable. Applying deep learning CNN models to this data can 

provide rapid, precise, and objective classifications of disease presence even under these 

heterogeneous conditions. The capabilities of both technologies must be demonstrated by 

reliably providing the rapid and accurate identification of apple scab at different phenological 

stages, under a range of illumination conditions, on complex apple plants. Early detection of 

apple scab can inform intelligent decision-making within orchards for effective cultural control 

measures and improving fungicide-use efficiency. Applying precision agricultural methodologies 

to improve apple scab management could reduce yield losses due to the disease while also 

reducing the environmental impact of control, making sustainable intensification of apple 

production feasible.  

 

1.4 Thesis Overview 
 

1.4.1 Thesis Aims and Objectives 
 

The aim of this thesis is to develop an effective remote-sensing strategy for the early detection of 

apple scab. The intention is to provide an alternate solution to manual disease monitoring in 

apple orchards to enhance the decision-making process. Producing a feasible method is 

paramount, with the accurate detection of apple scab infections under real-world conditions 

being the major focus. 
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The thesis addresses this aim with the following objectives: 

1)  Identify potential precision agriculture technology strategies (sensors, models, and 

platforms) for the detection and diagnosis of apple disease (Chapter 2). 

2) Perform a feasibility study of several low-cost sensors and their capabilities of detecting 

apple scab in real-world conditions (Chapter 3). 

3) Examine the viability of deep learning CNNs for classifying early apple scab from a novel 

multispectral imagery time series (Chapter 4). 

4) Provide a robust assessment of the performance of CNNs in classifying apple scab at 

progressing severities under natural illumination conditions from near-infrared and visible-band 

(Chapter 5).  

5)  Reflect on the experimental design and the use of high-resolution multispectral imagery 

for apple disease detection (Chapter 6). 

 

1.4.2 Thesis Structure 
 

The thesis is composed of seven chapters, some of which have been published, submitted, or 

intended to be submitted to peer-reviewed journals. The full list of references is provided at the 

end of the thesis. Supplementary material is provided in the appendices at the end of the thesis. 

 

Chapter 2 – Remote Sensing Strategies for Disease Monitoring in Apple Orchards 

This chapter reviews the use of current and prospective precision agriculture technologies to 

detect apple diseases. Examples of remote sensors, data analytics, and acquisition platforms are 

obtained from the literature and discussed. A critical evaluation of the advantages and 

disadvantages of the numerous potential solutions and provides recommendations for future 

research. Through the literature review, it was found that apple scab would provide the greatest 

potential for developing the technology, and that successful early detection had only been 

demonstrated in controlled laboratories, rather than uncontrolled orchard conditions 

 

Chapter 3 – Feasibility of Detecting Apple Scab Infections using Low-Cost Sensors and 

Interpreting Radiation Interactions with Scab Lesions 

This chapter investigates the use of three low-cost sensors for the early detection of apple scab. 

Multispectral, thermal, and 3D imaging sensors were used to acquire daily information on apple 

scab development on seedlings. The novel use of high-resolution multispectral imagery showed 

considerable potential. The interactions between near-infrared radiation and apple scab lesions 

were discussed for the first time.  
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Chapter 4 – Classifying Early Apple Scab Infections in Multispectral Imagery using 

Convolutional Neural Networks 

This chapter utilises CNN models to provide automated classifications of scab infections from 

multispectral imagery. Multispectral imagery and publicly available data of 6 apple disease 

classes were used to train CNN models. The trained CNN models were then used to classify apple 

scab infection from the multispectral time series to determine if automated classification of early 

apple scab was feasible from multispectral imagery. This would demonstrate if there was an 

improvement in early detection compared to RGB imagery alone. 

 

Chapter 5 – Monitoring Apple Scab Progression from Visible and Near-Infrared Time 

Series Imagery using Convolutional Neural Networks 

This chapter further examines the performance of CNNs to classify apple scab on a larger variety 

of more complex plants. By utilising a larger sample selection, including a control set, more 

robust training can be performed and reliable assessments of model performance. This chapter 

explores methods of improving model performance and demonstrates the differences in 

classification capabilities under different illumination conditions, plant health and structure 

conditions and disease severity and phenological stages. 

 

Chapter 6 – General Discussion 

This chapter discusses the novel contributions made by this thesis, including the experimental 

design, technology development, multispectral imagery, and assessment measures. The 

strengths and weaknesses of each methodological stage are explored and used to offer 

suggestions for improving techniques. These are summarised to provide recommendations for 

further work to improve apple scab detection. Opportunities for future research and how these 

technologies may be implemented for the sustainable intensification of apple production are 

given. 

 

Chapter 7 – Conclusions and Future Research 

This chapter provides a summary of the findings from the research, discusses the use of high-

resolution multispectral imaging, and combines with CNNs to detect diseases in orchards. This 

chapter concludes with suggestions for further research that can provide a route to practical use. 
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2 Remote Sensing Strategies for Disease 
Monitoring in Apple Orchards 

 

2.1 Introduction 
 
Apples (Malus x domestica) are among the most widely cultivated and valuable fruit crops in the 

world. The threat of plant pathogens and resulting disease epidemics significantly impacts the 

economic and environmental sustainability of apple production. Crop diseases lower fruit 

quality, reduce tree productivity and render yields unmarketable. Commercial, high-density 

orchards are particularly vulnerable to rapid-onset disease epidemics (Peil et al., 2009), which 

can lead to major economic losses both in the field (MacHardy, 1996) and postharvest (Ivić et al., 

2013). Consequently, apple orchards receive some of the highest volumes of pesticides applied in 

agricultural production (Simon et al., 2011; Penvern et al., 2012; Mouron et al., 2012). A 

significant proportion of orchard production costs are devoted to pest and disease management 

(Taylor & Granatstein, 2013). Moreover, the intensive application of pesticides negatively 

impacts the orchard environment and ecosystem. Reducing pesticide use while minimising 

losses through informed, targeted control can improve farm economics by increasing yields and 

lowering input costs while simultaneously reducing the environmental impacts of global apple 

production. Enhancing disease management within orchards can thus facilitate the sustainable 

intensification of apple production. 

 

Conventional disease control methods within orchards are intensive, involving repeated 

applications of large volumes of pesticides, primarily fungicides, for disease protection 

(MacHardy, 2000; Alaphilippe et al., 2013). The abundant usage of fungicides is inefficient and 

expensive. There are concerns over the contamination effects of these fungicides on terrestrial 

(Martínez-Toledo et al., 1998; Kumari et al., 2020) and aquatic environments (Mohr et al., 2023), 

as well as their impact on beneficial pollinators (Piechowicz et al., 2021) and human health for 

both farmers (Hines et al., 2008) and consumers (Lozowicka et al, 2016). Furthermore, the non-

targeted application of fungicides in apple orchards has led to pathogens developing resistance 

to certain chemicals, further increasing the challenges of managing apple diseases (Beckerman 

et al., 2013; Cox, 2015; Heaven et al., 2023). Despite intensive spray regimes, growers still 

experience major crop losses due to disease each year, and large volumes of fungicides continue 

to be applied to commercial orchards each season (Figure 2.1) 
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Figure 2.1   Changes in fungicide usage within the UK from 2012 – 2022 (adapted from Garthwaite et al., 2013; 

Garthwaite et al., 2015; Garthwaite et al., 2017; Mace et al., 2019; Ridley et al., 2022; Ridley et al., 2024). 
 

Precision agriculture offers a potential solution for improving disease management routines 

within orchards. Precision methodologies aim to enhance agricultural production efficiency by 

collecting data on the spatial and temporal variability of crop factors, which can then inform 

targeted, site-specific crop management (Stafford, 2000; Auernhammer, 2001). Targeted 

pesticide applications help reduce the volume of chemicals used by minimising drift and 

applying pesticides only when necessary, maintaining adequate disease protection while 

achieving significant economic savings in management costs (Berk et al., 2020; Sedlar et al., 

2013). Site-specific disease management based on disease incidence can provide more effective 

control than homogeneous spraying, reducing the volume of pesticides applied (Behmann et al., 

2015; Mahlein et al., 2018; Chawade et al., 2019).  

 

Remote sensors are essential to precision agriculture. They are powerful tools with the potential 

for objective, non-invasive disease detection and diagnosis through real-time measurements of 

plant parameters (Mulla, 2013). Remote sensors detect variability in the reflectance and 

emissivity of plants, which can be used to evaluate anatomical, physiological, and biochemical 

properties and identify stress caused by pests and diseases (Prabhakar et al., 2012). Remote 

sensing technologies can detect diseases early and map sites of infection, informing efficient and 

effective crop spraying, therefore reducing pesticide volume and disease control costs (Zanin et 

al., 2022). Despite the successful use of remote sensors for disease detection in arable crops, 

limited progress has been made in applying these technologies to disease detection in orchards 

(Jarolmasjed et al., 2019). Although developing a system to diagnose disease in orchards poses 
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significant challenges, there is substantial potential for improving pesticide efficiency in many 

orchards worldwide. This improvement would create widespread global economic and 

environmental benefits, as well as higher production yields (Delalieux et al., 2007). 

 

An effective orchard disease monitoring system should be capable of performing three specific 

tasks: (i) Early Detection, (ii) Classification, and (iii) Quantification (Mahlein, 2016; Ray et al., 

2017). Early detection has no clear definition but has been used synonymously with 

presymptomatic detection of latent infection (Bock et al., 2020). For precision agriculture 

purposes, early detection typically refers to identifying diseases in the initial stages of symptom 

development when severity is low (Chawade et al., 2019; Pallotino et al., 2019; Oerke, 2020). 

Early detection is critical for targeted pesticide application, as once symptoms develop, they can 

reduce plant productivity, damage fruits, and increase the risk of secondary infections (Chaerle & 

Van Der Straeten, 2000; Barbedo, 2019a). Classification, also referred to as identification, 

involves diagnosing diseases by separating biotic stress from abiotic causes and differentiating 

the causative pathogen from other potential sources of stress (Mahlein, 2016). Inaccurate 

disease assessments and false diagnoses can lead to incorrect management decisions, resulting 

in greater host plant damage and increased risk of disease spread (Thapa et al., 2020). 

Quantification of infection measures disease severity, indicating the extent of infection 

symptoms displayed on the measured plant area (Bock et al., 2010). Severity estimates are often 

provided on an ordinal scale, typically based on a percentage, although qualitative descriptions 

of symptom development may also be used (Chiang & Bock, 2022). Severity estimates are 

fundamental for establishing disease management thresholds, determining crop losses, 

evaluating treatment efficacy, and forecasting disease epidemics (Pethybridge & Nelson, 2015; 

Bock et al., 2020). 

 

A remote sensing strategy that detects stress early, accurately identifies the causative pathogen 

and estimates severity can provide an invaluable asset for growers in making informed decisions 

on disease management (Delalieux et al., 2007). Early disease detection can further improve the 

efficiency of disease control by facilitating site-specific management strategies through targeted 

fungicide application or sanitation techniques to reduce disease spread and severity (Sankaran 

et al., 2010; Ray et al., 2017; Khaled et al., 2018). However, incorrect or delayed diagnosis can 

result in improper treatment, allowing diseases to proliferate. As many fungal pathogens 

produce similar symptoms, it is crucial to distinguish between different species through an 

appropriate disease detection process. Sensing systems for precision agricultural operations 

consist of three key components: remote sensors, classification methods, and acquisition 

platforms (Olsen & Anderson, 2021). Selecting the appropriate technology for each component is 
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essential for the early detection of diseases in apple plants. Furthermore, these systems must be 

capable of operating effectively under the complex conditions experienced within commercial 

orchards. 

 

A wealth of high-impact literature provides comprehensive reviews of utilising precision 

agriculture technologies for plant disease monitoring (Li et al., 2014; Mahlein, 2016; Chawade et 

al., 2019; Zhang et al., 2019; Pallotino et al., 2019; Oerke et al., 2020; Buja et al., 2021). Despite 

the prevalence of early detection and classification studies for apple diseases, there has yet to be 

a thorough review of these technologies within the context of orchard operations. Therefore, this 

is the first review to focus on each of the three components of a remote sensing strategy 

exclusively for apple disease monitoring. The aim of this work is to identify optimal technologies 

that could be applied for orchard monitoring and opportunities for further research and future 

implementation. First, the report will discuss the numerous diseases that affect apple production 

and current practices for monitoring these diseases. Second, it will review the potential of 

remote sensors to detect early stages of apple diseases, specifically RGB, multispectral, 

hyperspectral, thermal, fluorescence, and 3D imaging sensors. Third, methods of classifying 

images will be reviewed to facilitate rapid and accurate identification of plant pathogens. Fourth, 

acquisition platforms that provide the spatial coverage necessary for orchard monitoring will be 

assessed. Fifth and final, all the information will be synthesised to discuss the potential and 

practicalities of a remote sensing system for disease detection within apple orchards and to 

provide recommendations for further research. 

 

2.2 Disease Monitoring in Apple Orchards 
 

2.2.1 Taxonomy of Apple Diseases 
 

Apple orchards are host to over 70 different infectious diseases that can impact yields through 

rots, decays, blights, lesions, and cankers (Belete & Boyraz, 2017). High-density orchards provide 

a hospitable environment for pathogens to overwinter and spread rapidly under ideal 

conditions. Crop pruning and thinning techniques offer many potential sites for infection (Simon 

et al., 2011). Additionally, high-density orchards of susceptible monocultures create a conducive 

environment for pathogen proliferation (Peil et al., 2009; Lindell et al., 2023). Climate change can 

further exacerbate disease risk by introducing favourable conditions earlier in the season, 

increasing the number of infection periods, especially in temperate regions (Gautam et al., 2013; 

Garrett et al., 2021). Fungi are by far the most common and diverse group of pathogens affecting 
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agricultural production, with their spores spreading easily throughout the growing environment, 

causing crop losses and reducing plant productivity (Fisher et al., 2012). However, many other 

sources of stress are present within apple orchards (Figure 2.2). 

 

 

 
Figure 2.2 Common biotic and abiotic stresses monitored in apple orchards 

 

Plants under stress develop symptoms on their organs that can reduce tree productivity, render 

fruit unmarketable, and act as sources for secondary infections. There are generally four types of 

visible disease symptoms used to detect and diagnose diseases: (i) reduction in biomass, (ii) 

change in pigment concentrations, (iii) presence of pathogens (such as pustules, lesions, 

mycelium, and ooze), and (iv) wilts (Zhang et al., 2019). The appearance, incidence, and severity 

of disease symptoms are influenced by climatic conditions, the quantity of inoculum present in 

the environment, susceptibility, host vigour and physiological development stage, and the 

presence of multiple stress factors. Moreover, several stresses can result in similar symptoms, 

further increasing the complexity of quick and accurate diagnosis (Barbedo et al., 2016). While 

plant diseases can manifest in fruits, shoots, blossoms, and other plant regions, foliage is the 

most common organ of interest. The leaves of stressed plants undergo non-visible physiological 

changes, affecting their photosynthetic capabilities, internal chemical and structural 

composition, as well as leaf water content and transpiration rates (Berger et al., 2007). These 

changes are often the first indicators of plant disease and can be treated before infections 

become severely destructive to yields.  
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According to MacHardy (2000), three major diseases threaten apple production: apple scab, 

powdery mildew, and fireblight (Figure 2.3). However, many other apple diseases also 

significantly impact orchards across the world. The following sections provide a brief description 

of key apple diseases that have received considerable research attention for disease detection 

and management. 

 

2.2.1.1 Apple Scab (Venturia inaequalis) 

 

Apple scab is widely considered the most economically impactful disease affecting apples 

worldwide (MacHardy, 1996), with most commercial cultivars being susceptible (Holb, 2007). 

Apple scab, caused by the hemibiotrophic fungus Venturia inaequalis, significantly impacts apple 

production yields through infectious lesions that develop on fruit in orchards and storage, 

rendering them unmarketable (Bowen et al., 2011). Infections can be easily identified on leaves, 

shoots, blossoms, pedicels, petioles, and fruits. Heavy scab infection can debilitate trees through 

defoliation, reduced formation of leaf buds and fruits, and increased susceptibility to injury 

(Belete & Boyraz, 2017). Apple scab is characterised by distinctive olive-brown lesions with a 

velvety texture developing on the leaves and fruits. Severe infection of leaves results in dwarfing, 

necrotic tissues, and senescence, whereas severe fruit infections cause deformations, cork-

textured lesions, and early drops (Crassweller et al., 2020). The symptoms of apple scab are 

highly variable due to the ontogenic resistance of certain genotypes or phenological stages 

(Gessler et al., 2006). 

 

2.2.1.2 Powdery Mildew (Podosphaera leucotricha) 

 

Powdery mildew, caused by the obligate biotrophic fungus Podosphaera leucotricha, is endemic 

to all apple production regions worldwide (Strickland et al., 2021). Infected plants experience 

reduced photosynthesis and transpiration, resulting in low carbohydrate assimilation and 

reduced growth (Ellis et al., 1981). Most yield losses occur through infection of flower buds, 

reducing fruit set and overall plant vitality, with direct infection of fruits being rare (Urbanietz & 

Dunemann, 2005). Characteristic symptoms of powdery mildew include leaves and blossoms 

covered with a white, powdery mycelium coating, ultimately causing leaf deformation and 

reduced shoot size in the later stages (Crassweller et al., 2020). 
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2.2.1.3 Fireblight (Erwinia amylovora) 

 
Fireblight is among the most devastating diseases facing apple production. It is a necrotic 

disease caused by the bacterial pathogen Erwinia amylovora, which causes infected blossoms, 

foliage, and fruits to appear water-soaked before turning black, giving them a scorched 

appearance (Steinberger & Beer, 1988; Oh & Beer, 2005). The inoculum source is a bacterial ooze 

that exudes from infected tissue as droplets (Zeng et al., 2020). The most destructive effects of 

the pathogen are the formation of cankers that girdle the trunk, branches, and rootstock, which 

can rapidly lead to the death of a tree (Aćimović et al., 2023). 

 

2.2.1.4 Marssonina Blotch (Marssonina coronaria) 

 
Marssonina blotch, also known as apple blotch, is a serious disease affecting apple orchards 

worldwide caused by the fungus Marssonina coronaria (Lee et al., 2011). Severe leaf infection 

causes premature defoliation, which weakens the physiological balance of the host, resulting in 

long-term reduced tree vigour and decreased yields (Wöhner & Emeriewen, 2018). The disease 

first appears as dark green circular patches on the upper surface of mature leaves in mid-

summer. As the disease progresses, the leaf spots coalesce, black fruiting bodies develop on the 

affected surfaces, and the surrounding tissue becomes chlorotic (Crassweller et al., 2020). 

 

2.2.1.5 European Canker (Neonectria ditissima) 

 
European canker is a destructive disease caused by the fungus Neonectria ditissima that has a 

major impact in Northern Europe (Garkava-Gustavsson, 2013). European canker affects yields by 

reducing tree vigour through the deterioration of tree architecture and branching (Delgado et al., 

2022). Infections are observed as cankers on trunks and branches, which become girdled, 

leading to the death of all tissue distal to the infection site and, in severe cases, the entire tree 

(Weber & Børve, 2021). Furthermore, the pathogen also causes direct yield losses in fruit 

through storage rots (Weber, 2014). N. ditissima is identifiable by characteristic red pustules 

developing within cankers (Weber & Børve, 2021). 

 

2.2.1.6 Frogeye Leaf Spot and Black Rot (Botryosphaeria obtusa) 

 
The saprophytic fungus Botryosphaeria obtusa causes frogeye leaf spot on leaves and black rot 

on fruit (Phillips et al., 2007). Frogeye leaf spot is a significant disease in North America, with 

most losses occurring through fruit rot and limb cankers (Biggs, 2004). The initial symptoms of 

frogeye leaf spot are small purple circles appearing on leaves, which enlarge and turn brown in 
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the centre. Black rot appears at the calyx of the fruit, developing into a rotting area that increases 

as a series of concentric bands, with decayed flesh remaining firm and leathery (Crassweller et 

al., 2020). 

 

2.2.1.7 Cedar-Apple Rust (Gymnosporangium juniperi-virginianae) 

 
Cedar-apple rust is a major demicyclic rust disease in North America, caused by the fungal 

pathogen Gymnosporangium juniperi-virginianae. Red cedar (Juniperus virginiana) and apple are 

alternate hosts of the pathogen (Aldwinckle et al 1977; Chen & Korban, 1987). Cedar-apple rust 

initially presents as small, yellow spots on the leaf surfaces that enlarge, changing colour to 

orange-red, with small black fruiting bodies becoming visible. Severe infections cause tree 

defoliation, reduced fruit size and quality, or deformation (Crassweller et al., 2020). 

 

 
Figure 2.3 Severe foliar and fruit symptoms of apple scab, powdery mildew and fireblight (adapted from Ayer et al., 2020; 

Strickland et al., 2020; Wallis et al., 2020) 
 

2.2.2 Conventional Methods of Disease Monitoring 

 

Integrated Pest and Disease Management (IPM) combines monitoring, cultural and biological 

management, and tactical pesticide use (Jacobsen, 1997). IPM offers significant economic 

benefits by reducing overall pesticide costs and potentially increasing yields through healthier 
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crops. Additionally, IPM provides environmental benefits by reducing pesticide runoff, thus 

minimizing its impact on non-target species and contributing to biodiversity conservation (Tudi 

et al., 2021). Despite being considered the best practice for disease protection in orchards, the 

labour-intensive demands of disease monitoring limit the practical use of IPM in most 

commercial orchards (MacHardy, 2000). The most common technique for disease monitoring 

involves visual assessment by crop scouts (Ray et al., 2017). Crop scouting is low-throughput and 

expensive, and the lack of experienced individuals able to perform these tasks means full 

coverage and regular monitoring are limited. Although detailed guidelines for characteristic 

pathogen symptoms and assessment standards have improved accuracy and reliability, the 

technique remains subjective and may lead to biased assessments (Bock et al., 2020). 

Furthermore, it is difficult to detect the early stages of the disease through visual assessment, 

especially in their latent, presymptomatic stages (Bock et al., 2010). Advanced disease 

assessments can be achieved through serological, molecular, and biomarker-based methods, 

which can provide objective, accurate assessments of disease in crops, even in presymptomatic 

stages. However, these advanced methods are laborious, destructive, and require specialised 

equipment and elaborate preparation procedures that are not feasible for real-time, on-site 

diagnosis (Sankaran et al., 2010; Fang et al., 2015; Martinelli, 2015). Current disease monitoring 

methods can be improved by enabling widespread coverage and rapid early detection of diseases 

within orchards. There is an urgent need for disease detection, classification, and monitoring 

techniques to provide rapid, objective assessments of epidemics with appropriate coverage 

(Mahlein, 2016). 

 

2.3 Remote Sensors for Disease Detection 
 

2.3.1 Leaf Optical Properties 
 
Remote sensors are powerful, cost-effective methods for rapid, large-scale, non-invasive 

assessments for plant disease detection in agriculture. Remote sensing for plant pathology uses 

non-contact measurements of electromagnetic radiation (Figure 2.4) interactions with plant and 

pathogenic material (Mulla, 2013). Leaf optical properties are characterised by reflectance, 

transmittance, absorbance, and emission of electromagnetic radiation, which are determined by 

biochemistry and physiology (Jacquemoud & Ustin, 2001). Plant pathogens may be directly 

present or cause significant changes to leaf structure and morphology, transpiration, and 

pigment concentrations, all of which can be detected by remote sensing systems. There is a suite 
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of remote sensing systems available, each capable of detecting disease symptoms based on 

certain influences symptoms have on foliar biochemistry and physiology (Zhang et al., 2019a). 

 

 
Figure 2.4 The electromagnetic spectrum (excluding Gamma Rays) 

 

Leaf reflectance characteristics are valuable for diagnosing tree health and detecting disease 

presence. Plant pathogens affect the photosynthetic process and damage plant tissue cell 

structure, thereby modifying the interaction between vegetation and electromagnetic radiation 

(Bock et al., 2020). These impacts manifest as changes in leaf and canopy reflectance due to 

alterations in pigmentation, water content, cellular structure degradation, and hypersensitive 

reactions (Mahlein et al., 2018). Reflectance of vegetation is typically observed in three distinct 

spectral domains: visible (VIS, 400 to 700 nm), near-infrared (NIR, 700 to 1100 nm), and short-

wave infrared (SWIR, 1100 to 2500 nm) (Prabhakar et al., 2012; Mahlein et al., 2012; Gogoi et al., 

2018). 

 

The visible domain is where the main light-absorbing pigments are chlorophylls (chlorophyll a 

and chlorophyll b), carotenoids, xanthophylls, and polyphenols (Jacquemoud & Baret, 1990). 

Healthy leaves are green due to the high absorption in blue and red wavelengths by chlorophyll 

in palisade cells (Gitelson et al., 2003). However, during senescence, as chlorophyll levels decline, 

increasing reflectance in red and blue bands causes yellow-brown colours to develop in visible 

images (Blackburn, 1998b; Mulla et al., 2013). Beyond the visible domain, more information 

regarding leaf physiology can be used to determine health and identify potential signs of stress. 

The red edge is a key region observed in plant health monitoring. The red edge is a spectral 

phenomenon for chlorophyll-producing plants, defined as a significant increase in reflectance at 

700 nm at the border between red and NIR (Bock et al, 2010). Stressed leaves exhibit a 

downward shift in this rapid rise in reflectance toward the red region of the spectrum, known as 

a blue shift of the red edge (Horler et al., 1983). In the NIR domain, absorption within leaves is 

low, and reflectance and transmittance reach their maximum values due to internal scattering at 



 
37 

 

the air-cell-water interactions within the leaves, providing information on leaf and cell structure 

(Jacquemoud & Ustin, 2001; Slaton et al., 2001). In the shortwave infrared domain, water 

absorption bands are found, allowing reflectance in this region to estimate leaf water content 

(Ceccato et al., 2001; Jacquemoud & Ustin, 2001). Beyond the shortwave infrared lies the thermal 

infrared domain (TIR: 6.0 - 14.0 µm). Thermal infrared measures radiation emitted from 

surfaces, enabling the characterisation of plant tissue health based on changes in the 

transpiration rate and water content, which may indicate stress (Ishimwe et al., 2014; Khanal et 

al., 2017). 

 

The following section provides an in-depth review of various sensor technologies that have 

potential applications in the early detection of apple diseases. These technologies include 

visible-band RGB sensors, multispectral sensors, hyperspectral sensors, fluorescence imaging, 

thermal imaging, and 3D imaging sensors. Each sensor type offers unique capabilities for 

identifying disease symptoms at different stages. This review will discuss the principles behind 

each technology, the specific disease indicators they can detect, examples of their use in 

detecting apple diseases, and their strengths and limitations. 

 

2.3.2 Colour Cameras (RGB Imaging) 
 

Colour cameras, produce visible-spectrum imagery and are the most common instruments used 

in agriculture for sensing plant parameters (Olsen & Anderson, 2021). Most colour cameras use 

silicon-based charge-coupled device (CCD) or, more commonly, complementary metal-oxide 

semiconductor (CMOS) sensors with arrays of three colour photosensors (red, green, and blue) 

to obtain reflectance values, which are used to estimate the true colour of each pixel in the 

visible domain. RGB imagery extracts colour components of hue, saturation, and intensity 

(Pallotino et al., 2019). This imagery can identify colour, texture, and shape parameters to aid 

diagnosis based on specific features of disease symptoms, including biomass variation, wilts, and 

pathogen bodies (Bock et al., 2010; Behmann et al., 2015). Assessments from RGB imagery are 

objective, accurate, and reliable, equivalent to those obtained by visual estimation. However, 

unlike manual inspection from in-field crop scouting, assessments from RGB imagery can have 

higher throughput and be less prone to subjective errors, making them useful in quantifying 

disease severity (Bock et al., 2020). 

 

Due to their similarity to visual assessments, there are few studies that directly assess the use of 

RGB imagery for the early detection of diseases in apple orchards. However, RGB imagery has 
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been effectively used to quantify the severity of fireblight infections by measuring shoot 

senescence. The reflectance intensity for each of the three individual bands was calculated to 

measure the senescence on blighted shoots, determining the proportion of healthy green tissue 

to infected tissue to identify and quantify infection severity (Jarolmasjed et al., 2019). Chandel 

(2021) found that high-resolution RGB imagery was sufficiently capable of detecting and 

mapping powdery mildew from an unmanned aerial vehicle (UAV) platform in apple orchards. 

Histograms in the blue channel showed an ability to distinguish and segment powdery mildew-

infected leaves from healthy leaves and other background objects, enabling high classification 

accuracy (Chandel et al., 2020). These RGB methods have been applied to apple diseases that 

significantly influence canopy reflectance, with considerable distinctions between healthy and 

infected tissue colour. However, they may prove less effective when symptoms are much smaller, 

and there is limited contrast between healthy and infected tissue, such as with the olive-green 

lesions of symptomatic apple scab. 

 

Despite the lack of disease detection capability studies in orchards, RGB imagery is extensively 

used for training and testing deep learning convolutional neural network (CNN) models. These 

studies utilise the imagery of various plant diseases acquired in controlled laboratory and real-

world environments. RGB imagery containing apple diseases is available in public datasets such 

as PlantVillage (Hughes & Salathe, 2015) and PlantPathology (Thapa et al., 2020), with the latter 

featuring imagery acquired under varying illumination conditions, leaf angles, and symptom 

variance (Figure 2.5). Unlike the orchard studies by Jarolmasjed et al. (2019) and Chandel et al. 

(2021), these images are localised on single leaves containing known late-stage symptoms. They 

are captured using handheld devices in the absence of strict acquisition protocols, which make 

scaling up coverage for full orchard monitoring difficult. This image acquisition step is 

important, and it is recommended that standardised imaging procedures be adopted to maintain 

uniform focus, sharpness, and illumination, as well as to control the angle and distance between 

the sensor and plant to avoid biases in classification (Mahlein, 2016). The camera and hardware 

settings play a major role in ensuring suitable image quality for assessment. Having appropriate 

camera sensors and lenses, along with optimal exposure settings (aperture, shutter speed, ISO 

levels), is essential to provide clear imagery for detecting diseases (O’Conner et al., 2017). 
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Figure 2.5 RGB imagery displaying the symptom variance of late-stage apple diseases (adapted from Thapa et al., 2020) 

 

 

RGB imagery is an objective way to diagnose diseases from symptoms and quantify severity, but 

its major limitation is the inability to detect diseases pre-symptomatically, potentially limiting its 

use as a standalone sensor for disease management. However, RGB imaging has several key 

benefits over other sensing methods. Colour cameras are generally low-cost, easily accessible, 

and highly suited to field studies due to their lightweight, robust design, high-quality light 

sensitivity, and acquisition rates. Furthermore, the resolution of these commercial cameras is 

significantly better than that of other sensing methods discussed in remote sensing of plants, 

enabling the detection of plant disease symptoms at small scales. RGB imagery is a well-

established method for quantifying severity and diagnosing late-stage diseases. It is currently 

used as a tool for aiding crop scouting, developing assessment aids, and analysing pathogen 

effects over time and across species (Bock et al., 2010). The accessibility and simplicity of colour 

cameras for growers mean they will likely continue to play a vital role in disease assessments of 

orchards well into the future. 
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2.3.3 Hyperspectral Sensing 
 
Hyperspectral imaging is a powerful sensing tool for the presymptomatic detection of plant 

diseases, providing detailed information on the spatial and spectral variability of an object. 

Hyperspectral imaging offers increased continuity, range, and resolution of spectral reflectance 

measurements over colour cameras and multispectral imagers. These sensors measure the 

reflectance of an object in narrow wavebands (~10 nm) over a wide spectral range (350-2500 

nm), effectively acting as a fingerprint to characterise the composition of each pixel (Mulla, 

2013). In hyperspectral imaging, hundreds of these narrowband images are captured, providing 

both spatial and spectral data of a target subject, which are combined into a three-dimensional 

block of data known as a hypercube (Figure 2.6). This hypercube enables the visualisation of the 

biochemical and structural composition of the imaged sample (Gowen et al., 2007). The 

interactions between pathogens and plants induce changes in leaf physiology and biochemistry 

as complex processes govern the appearance and progression of disease symptoms. During 

pathogenesis, these interactions cause variations in reflectance by altering the physiological and 

biochemical states of the plant. Each host-pathogen interaction exhibits unique spatial and 

temporal dynamics, affecting reflectance at different wavelength ranges through various stages 

of the disease (Mahlein et al., 2018). Hyperspectral imagery can be used to sense crop 

characteristics such as water content and transpiration, chlorophyll, carotenoids, cellulose, 

cellular structure, leaf area index, and crop biomass (Mulla, 2013). Hyperspectral imaging 

captures subtle variations in these parameters, making it a valuable tool for early disease 

detection and detailed plant health analysis. 

 

 
Figure 2.6 Simplified diagram of a hyperspectral imaging hypercube and vegetation reflectance spectrum 
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The high spectral resolution and sensitivity of hyperspectral data allow for the monitoring of 

subtle changes in reflectance patterns indicative of early stress symptoms. However, the entire 

spectrum is not always necessary, and spectral bands can be highly correlated, leading to 

redundancy in information (Delalieux et al., 2009a; Mahlein et al., 2012). Single wavebands are 

good indicators of biochemical features but are subject to variability from environmental factors 

and redundancy issues. Narrowband vegetation indices help reduce data dimensionality and 

enable more computationally efficient data processing and analysis (Kuska et al., 2018). 

Although many standardised narrowband indices are available, it is common to trial 

hyperspectral imagery in controlled settings to identify optimal wavebands and develop novel 

indices suited to specific diseases in different plants and phenological stages.  

 

Non-imaging hyperspectral spectroscopy has successfully been used to detect apple scab disease 

at presymptomatic stages of infection (Delalieux et al., 2007). Narrow wavebands in the SWIR 

region between 1500-2250 nm, which are strongly associated with leaf water content, were 

found to be the most appropriate and applicable for detecting apple scab at early infection stages 

(Delalieux, 2009b). Specifically, reflectance at 1460 nm and 1940 nm showed effective 

discrimination potential for apple scab identification. These wavebands are the main water 

absorption bands, and a decreased spectral reflectance indicates an increase in leaf water 

content post-infection (Delalieux, 2009a). These results were validated in later hyperspectral 

imaging studies of early apple scab infections, displayed in Figure 2.7 (Nouri et al., 2018; 

Gorretta et al., 2019). Leaf phenology also plays an important role in leaf water content and 

reflectance at these stages, which could easily be misrepresented as early-stage scab infections 

(Delalieux et al., 2009a). At developed scab stages, vegetation indices such as R440/R690 (where 

R440 indicates reflectance at 440 nm and R690 indicates reflectance at 690 nm) and R695/R760, as 

well as the chlorophyll a-related Pigment Specific Simple Ratio (PSSRa) R800/R680 developed by 

Blackburn (1998a), exhibited superior distinction between non-infected and infected leaves 

(Delalieux et al., 2009b).  
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Figure 2.7 Hyperspectral imaging principal component analysis scores for healthy and apple scab- infected (adapted from 

Nouri et al., 2018) 
 

Hyperspectral spectroscopy has also been extensively used to detect fireblight infection. 

Skoneczny et al. (2020) found that the indices Anthocyanin Reflectance Index (ARI), Modified 

Simple Ratio (MSR), and the novel indices QF1450 (R1600-R1450)/(R1600+R1450) and QFI1910 (R1600-

R1910)/(R1600+R1910) could differentiate between healthy and fireblight-infected leaves. 

Jarolmasjed (2019) also used hyperspectral spectroscopy and found the red edge band, along 

with the 1170 nm band and novel vegetation indices (R1170/R1320) and (R1420/R1880), to be most 

significant. As with apple scab observations, variations in the SWIR region, attributed to changes 

in leaf water content, were responsible for detecting fireblight infection in the early stages. 

Hyperspectral imaging has been used in many other applications to detect powdery mildew 

(Nagy et al., 2014; Shadrin et al., 2020), apple mosaic virus (Ban et al., 2019; Liu et al., 2024), and 

Marssonina blotch (Park et al., 2018; Shuaibu et al., 2018). In these studies, chlorophyll-related 

pigment indices in the visible spectrum and water content in the SWIR range showed the 

greatest capacity for disease detection. 

 

The majority of studies using hyperspectral techniques have been conducted in laboratory 

environments with non-imaging sensors, limiting their potential for outdoor application. Of the 

studies discussed, only Jarolmasjed et al. (2019) applied spectroscopy in the field; however, this 

was a low-throughput technique used on a select number of trees. Non-imaging sensors do not 

provide spatial information; they average spectral information over a determined area, which 

may include both healthy and infected leaves, reducing the sensitivity and specificity of 
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observations and their applicability to real-world agricultural environments (Mahlein et al., 

2018; Bock et al., 2020; Oerke et al., 2020). Imaging sensors are more widely applicable for 

disease detection as they can detect heterogeneous variations and patterns in observed surfaces. 

They also allow precise delineation of measurement areas and the elimination of background 

areas in an image (Deery et al., 2014). However, the practicalities of translating hyperspectral 

imagery to field settings are challenging. Hyperspectral imagers are often extremely expensive, 

with poor spatial resolutions, slow image acquisition, and limited fields of view, making 

adequate coverage of orchards unfeasible. While some studies have applied hyperspectral 

imagers to airborne systems for monitoring plant pathogens in citrus (Garcia-Ruiz et al., 2013; 

Abdulridha et al., 2019), their application in apple orchards is limited, aside from measuring 

nitrogen content (Ye et al., 2020; Li et al., 2022). 

 

While hyperspectral cameras have great capabilities for detecting presymptomatic stress for a 

range of apple diseases, they have yet to be successfully applied to orchard environments. The 

large quantities of data pose significant computational challenges, as time series experiments 

can contain several gigabytes to terabytes (Fahlgren, 2015; Kersting et al., 2016). Orchard 

monitoring would likely require many thousands of images per day for adequate coverage, with 

each image requiring the extraction of reflectance signatures pixel by pixel. Information derived 

from controlled-environment studies could be used to identify specialised wavebands to develop 

optimal filters for multispectral imaging systems. The development of improved hyperspectral 

imaging systems, with greater portability, resolution, and acquisition speeds, can make 

hyperspectral imaging an effective practical tool in agriculture and plant phenotyping in the 

future (Behmann et al., 2018; Kuska et al., 2018). Until their effectiveness can be demonstrated 

in large-scale field studies, their use may be constrained to phenotyping studies in controlled 

environments. 

 

2.3.4 Multispectral Cameras 
 

Multispectral imaging systems are currently used in a wide range of precision agriculture 

applications, providing more detailed information on crop health than standard visible band 

imagery by incorporating data from red, green, blue, and additional NIR bands (Mahlein, 2016). 

Multispectral imagery can be assessed based on individual band imagery or combined to create 

false-colour composites (Figure 2.8). The interaction of NIR light with plant tissue is particularly 

useful for phenotyping changes in plant structure and leaf water content (Fahlgren et al., 2015). 

Although multispectral sensors often provide less data complexity and information content than 
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hyperspectral imaging, making them less preferred in early disease detection studies, they offer 

several key advantages. Multispectral imaging systems are generally lower in cost, lighter in 

weight, and have higher resolutions and fields of view than hyperspectral systems (Huang et al., 

2010). These practical benefits make multispectral sensors commonly used in airborne 

applications for crop monitoring and various precision agriculture tasks (Deng et al., 2018). 

 

 
Figure 2.8 Multispectral imaging (component bands and false colour composite) of apple trees in an orchard (adapted 

from Jarolmasjed et al., 2018) 
 

Numerous off-the-shelf multispectral cameras are available for agricultural purposes and are 

commonly installed on UAV platforms for precision agriculture management (Deng et al., 2018; 

Assmann et al., 2019). Commonly used systems include the MicaSense RedEdge (MicaSense, 

Seattle, USA) by Mamaghani et al. (2019) and the Parrot Sequoia (Parrot Drone SAS, Paris, 

France) by Olsson et al. (2021). Consumer colour cameras can also be modified into near-

infrared sensors by removing the infrared ‘hot mirror’ filter, providing a low-cost, high-

resolution multispectral imaging method (LeBourgeois et al., 2008). These modified 

multispectral systems have already demonstrated success in detecting plant stress within apple 

orchards (Jarolmasjed et al., 2018). Multispectral cameras utilise broadband vegetation indices 

developed from the reflectance characteristics of plants and spectral algorithms correlated to 

specific plant parameters, providing a more purposeful estimation of biophysical parameters 

than single bands alone. Standardised Difference Vegetation Indices (SDVIs), such as NDVI and 

NDRE (Gitelson & Merzlyak, 1994), are commonly used in multispectral imagery because they 

reduce the effects of spectral variations caused by surface topography and sun elevation. 

Modified multispectral cameras are also capable of deriving these vegetation indices (Anderson 

et al., 2016; Berra et al., 2017). However, SDVIs have seen limited success in disease detection 

studies, as the optimal information on the physiological status of plants does not often correlate 

ideally with the regions being studied (Delalieux et al., 2009a). 
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In the study of powdery mildew in apple orchards, Chandel et al. (2021) used a UAV-based 

multispectral camera (MicaSense) to measure nine vegetation indices that have the potential to 

characterise variations in canopy pigments due to the disease. The Modified Simple Ratio-Red 

(MSRRed) index, Modified Simple Ratio-Blue (MSRBlue) index, and Optimised Soil Adjusted 

Vegetation Index (OSAVI) showed the highest contrast, with lower values for infected leaves 

compared to healthy ones. These indices represent variations in chlorophyll, anthocyanin, and 

carotenoid pigments (Vescovo et al., 2012; Kyratzis et al., 2017). Similarly, Jarolmasjed et al. 

(2019) employed two multispectral camera methods alongside RGB imagery and hyperspectral 

spectroscopy measurements. These included a dedicated multispectral camera (MicaSense) 

observing GNDVI, NDVI, and NDRE indices and a modified colour camera with the red channel 

detecting NIR reflectance (680-800 nm). All these indices typically detect variations in 

chlorophyll and water content of leaves (Abdulridha et al., 2020), making them effective at 

detecting leaf wilting and chlorosis caused by fire blight infections. Both multispectral cameras 

showed a significant correlation between these indices and disease severity ratings, indicating 

they could detect differences between healthy and infected tissue and potentially map disease 

spread in orchards. While these systems effectively detected powdery mildew and fireblight 

infections in high-density orchard environments on practical mobile acquisition platforms, 

neither demonstrated potential for early detection. These studies focused on quantifying the 

severity of late-stage infections rather than identifying early stress symptoms. 

 

Aside from the aforementioned studies, the application of multispectral cameras for detecting 

apple disease in orchards is limited, with most focus on symptoms of abiotic water stress in 

canopies (Gomez-Candon et al., 2014; Virlet et al., 2015). However, multispectral sensors have 

been used to detect diseases in other tree crops, such as citrus (Garcia-Ruiz et al., 2013; 

DadrasJavan et al., 2019). Multispectral sensing has also been used for early detection of Erwinia 

amylovora infections in pear trees (Bagheri, 2020). By developing a multispectral camera system 

to measure vegetation indices previously found to be discriminative in hyperspectral analysis 

(Bagheri et al., 2018), fireblight infections, nutrient deficiencies, and healthy samples could be 

distinguished from UAV imagery. 

 

Notably, apple scab detection using multispectral imagery has not been performed in either 

controlled or uncontrolled conditions. This may be attributed to the low resolution of these 

cameras and their intended operational height, making them unsuitable for apple scab detection. 

The dedicated multispectral cameras discussed in this section have a sensor resolution of 1.2 MP 

(1280x720 pixels). Chandel et al. (2021) used a 1.2 MP sensor, which, when flown over an 

orchard at a 15 m distance, had a resolution of 11 mm/pixel. Scab lesions typically reach a 
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maximum radius of 10 mm (Bowen et al., 2011). The ground sampling distance at these 

operating heights is too coarse to detect scab symptoms in all but the most severe infections. 

Multispectral cameras that contain high-resolution sensors may be capable of the detection of 

apple scab infections on leaves. 

 

2.3.5 Chlorophyll Fluorescence Imaging 
 
Chlorophyll fluorescence provides information on the photosynthetic performance of a leaf by 

quantifying light emitted from the chlorophyll under abiotic and biotic stresses (Chaerle & Der 

Streaten, 2000). Chlorophyll fluorescence imaging is an active sensing method that measures leaf 

fluorescence. This technique involves exciting the leaf with a red-far light source to assess 

photosynthetic electron transfer (Baker, 2008). Fluorescence imaging uses multispectral CCD 

sensors to detect the light emitted from plants in the blue, green, red, red-edge, and NIR bands, 

using multispectral imaging sensors (Sankaran et al., 2010). Chlorophyll fluorescence is valuable 

because it provides insights into the photosynthetic performance of a leaf by quantifying light 

emitted from the chlorophyll under stress conditions. This energy absorbed by chlorophyll can 

either be utilised in photosynthesis, released as heat, or emitted as chlorophyll fluorescence. 

Since these processes compete with one another, chlorophyll fluorescence data offer valuable 

insights into the efficiency of photosynthesis and heat dissipation (Maxwell & Johnson, 2000). 

Divergence in chlorophyll fluorescence measurements often precedes the appearance of visible 

symptoms, with changes in chlorophyll function occurring before changes in chlorophyll content 

(Konanz et al., 2014; Shakoor, 2017). 

 

Chlorophyll fluorescence has been utilised in a limited capacity for early apple scab detection 

and has not been applied to other apple diseases. Delalieux (2009a) used light-adapted 

fluorescence imaging alongside hyperspectral spectroscopy to detect early symptoms of apple 

scab. The quantum efficiency of Photosystem II (ΦPSII) photochemistry was derived from 

fluorescence imagery of leaves under light-adapted conditions. Due to their lower ΦPSII 

quantum efficiency compared to control leaves, scab infection could be detected before the onset 

of visible symptoms. However, young apple leaves also show lower ΦPSII quantum efficiency 

than mature leaves, making it difficult to distinguish young leaves from infected leaves without 

the simultaneous use of a spectral sensor. Furthermore, as apple scab infections developed and 

caused tissue damage, the observed ΦPSII values increased. It was recommended that while 

there was some potential, accurate identification of scab infections could only be achieved with 

the simultaneous use of hyperspectral sensors. Belin et al. (2013) also performed early detection 

of apple scab in a comparative study between dark-adapted chlorophyll fluorescence and 
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thermography. While fluorescence imaging detected apple scab infections 1–2 days before the 

appearance of visible symptoms, the use of thermal imaging sensors was found to be superior. 

 

The practicalities of chlorophyll fluorescence imaging limit its application for disease monitoring 

in the field. This active sensing method uses time-of-flight emission and detection of light, which 

restricts the operating speed of an acquisition platform (Deery et al., 2014). Furthermore, the 

sample preparation necessary for adequate fluorescence and the high-power requirements of 

the sensors limit their use outside controlled laboratory settings (Mahlein et al., 2012; Bauriegel 

& Herppich, 2014). Additionally, chlorophyll fluorescence has limited diagnostic potential, as its 

measurements are similar for a range of diseases and are sensitive to many other factors 

affecting the photosynthetic performance of leaves (Simko et al., 2016). While chlorophyll 

fluorescence imagery has shown potential for early detection of foliar diseases in controlled 

environments, previous reviewers agree that fluorescence imaging, especially when used 

independently, is unsuitable for disease detection in field environments (Fang et al., 2015; 

Mahlein, 2016). 

 

2.3.6 Thermography 
 

Thermography is a method of detecting the emissivity of a surface in the thermal infrared range 

(TIR: 3.0 - 14.0 µm) of the electromagnetic spectrum (Oerke & Steiner, 2010). Thermal infrared 

measurements can characterise tissue health, as pathogens influence the transpiration rate and, 

consequently, the water content of plants, indicating stress (Ishimwe et al., 2014; Khanal et al., 

2017). Thermography is highly suited for disease detection because increasing leaf temperature 

correlates with a decrease in transpiration rate due to the active regulation of stomatal aperture 

(Chaerle & Der Straeten, 2000; Jones & Schofield, 2008). The spatial and temporal 

heterogeneities in thermal images of leaf tissue can indicate presymptomatic infection by a 

pathogen, with local temperature changes resulting from pathogen activity or plant defence 

mechanisms (Mahlein et al., 2012). 

 

Thermography has demonstrated considerable potential for the early detection of apple scab 

infections, as well as for quantifying severity, resistance of host tissue, and differences in the 

aggressiveness of V. inaequalis isolates infecting plants with apple scab (Oerke et al., 2011). 

Thermography visualised presymptomatic apple scab detection through areas of localised 

cooling before the onset of visual symptoms and extended beyond these regions in the later 

stages of infection. These regions of localised cooling indicated an increased cuticular 
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transpiration rate around scab lesions (Oerke & Steiner, 2024). The maximum temperature 

difference (MTD) increased with the development of the scab and strongly correlated with the 

infection site size and overall disease severity. The use of MTD as an effective parameter for 

disease detection was also found in studies by Lindenthal et al. (2005) and Oerke et al. (2006). In 

the late stages of the disease, the MTD became less pronounced as senescence across the whole 

leaf reduced the overall transpiration rate (Oerke et al., 2011). Belin et al. (2013) also 

demonstrated the effectiveness of thermal imaging for apple scab detection, observing early 

signs of stress up to three days before the onset of visible symptoms. Thermal imaging was 

shown to be capable of early scab detection in TIR regions 3-5 µm (Belin et al., 2013) and 8-12 

µm (Oerke et al., 2011), demonstrating the robustness of the method. 

 

 
Figure 2.9 Thermal assessment of apple scab progression where white circles denote initial symptom development 

(adapted from Oerke et al., 2011) 
 

Aside from these studies, there is limited application of thermal imaging for the early detection 

of apple diseases. Although MTD and the Crop Water Stress Index (CWSI) are often applied in the 

thermography of fruit crops (Gonzalez-Dugo et al., 2014; Lee, 2019), the diagnostic potential of 

thermal imaging is limited, as many plant diseases lead to similar effects on leaf transpiration 

(Pineda et al., 2020). Both thermal studies of early apple scab detection were performed in 

highly controlled environments. There are major practical limitations in applying thermal 

imagery in field environments. Thermal images are sensitive to noise and environmental factors 

such as ambient temperature, sunlight, rainfall, or wind speed. In a preliminary assessment of 

the potential of apple flower stigma temperatures for fireblight prediction, it was found that 

temperature was mainly influenced by solar radiation (Rougerie-Durocher et al., 2020). The 

ideal conditions for capturing thermal images include keeping leaves out of direct sunlight, dry 

and unobscured, and taking images against the sun, although this is challenging to achieve in 

real-world orchards. Additionally, thermal cameras have low sensor resolutions, making sub-leaf 
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assessments for apple scabs difficult as pixel values become mixed with background soil and 

canopy height variations. While thermal imaging has the potential to provide early warnings of 

tree stress in orchards, numerous issues must be addressed to improve its effectiveness. 

Nonetheless, thermography can play an effective role in disease risk prediction by measuring 

environmental conditions favourable for infections by phytopathogens, such as leaf wetness and 

surface temperature, to be used in models quantifying disease risks (Lindenthal et al., 2005). 

 

2.3.7 3D Imaging Systems 
 

3D imaging is a more recent sensing technique that allows for the evaluation of structural 

changes in a plant that could be linked to plant stress. Changes in plant structure and biomass 

can provide important information regarding plant health, as regions of stunted growth or 

deformation of leaves, fruit, and shoots can indicate disease (Paulus et al., 2014). While 

architectural traits can be estimated with 2D imagery, several photogrammetric solutions are 

available to produce 3D models of plants that offer different characteristics in terms of cost, field 

of view, and accuracy (Martinez-Guanter et al., 2019). For plant phenotyping purposes, 3D 

imaging generally uses either triangulation methods (Structure-from-Motion, Stereovision, 

Structured Light) or time-of-flight methods (LiDAR) to produce coordinates in a 3D space as a 

point cloud (Paulus et al., 2019). The only instance of 3D imagery being used for disease 

detection was through data fusion to improve early apple scab detection via thermal imagery 

(Chéné et al., 2012). 3D imaging excels in its ability to segment images based on depth, which can 

be extremely useful in separating leaves from the background in both RGB and thermal imagery, 

particularly in scenarios with complex or low-contrasting backgrounds. 

 

Although there are no other studies using 3D imaging for disease detection, these systems have 

been widely applied in apple orchards for various management purposes. LiDAR scanning 

systems are the most common method for reconstructing tree canopy properties in orchards. 

LiDAR has been shown to generate reliable measurements for determining plant geometry and 

structural parameters, enabling targeted pruning of apple trees (He & Schupp, 2018; Murray et 

al., 2020). The quantification of structural parameters such as Leaf Area Index (LAI) also allows 

these sensors to inform Variable Rate Spray (VRS) technologies to optimise pesticide application 

based on canopy sizes (Maghsoudi & Minaei, 2014; Berk et al., 2020). LiDAR operates by creating 

point clouds based on the measurement of travel time from a laser transmitter to a target, 

effectively modelling the structural complexity of trees in apple orchards to inform orchard 

management. 
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LiDAR can assess the structural characteristics of plants with high accuracy but lacks colour 

information, which can limit its practical effectiveness for plant phenotyping (Lin, 2015). Colour 

or further reflectance information may be added through texture mapping with spectral sensor 

data, but this process can be laborious and inaccurate (Omasa et al., 2007; Martinez-Guanter et 

al., 2019). RGB-Depth (RGB-D) sensors are low-cost methods increasingly adopted in plant 

phenotyping research. A review of four low-cost RGB-D sensors found that an active stereoscopy 

sensor outperformed similar time-of-flight, structured light, and passive stereoscopy sensors for 

field phenotyping in outdoor lighting (Vit & Shani, 2018), in agreement with previous 

assessments by Kazmi et al. (2014). These low-cost RGB-D sensors were also utilised to aid 

thermography for apple scab detection (Chéné et al., 2012). 

 

The operation of remote sensors in outdoor environments is essential for practical application. 

While these sensors display sensitivity to illumination variations in field conditions, they are 

typically applied to measure apple plant parameters in real-world orchards. 3D imagery is 

becoming an increasingly important addition to plant phenotyping studies; however, its use 

within disease detection studies has not been fully realised. There may be potential for 

quantifying diseases such as fireblight, powdery mildew, or abiotic stresses that influence the 

wilting of shoots and leaves, but these applications may only be effective in later stages of 

infection. There may be limited applicability of 3D sensors alone for disease detection, but 

incorporating 3D data through fusion with other sensing methods could provide valuable 

information on crop health. 

 

3D imagery provides ancillary data to precision agriculture systems that can aid autonomous 

monitoring of orchards, such as collision detection systems for autonomous platforms 

(Petiteville et al., 2018) and informing variable rate spray technologies (Berk et al., 2020). 

Furthermore, regular monitoring through 3D imaging could be used to understand the impact of 

repeated infections on the growth and productivity of trees in orchards over time. The 

application of 3D imaging sensors is likely to become increasingly prevalent in future orchard 

monitoring systems, and further research into their potential for disease detection should be 

considered. 
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2.3.8 Sensor Selection 
 
The selection of appropriate sensors for the early detection and identification of diseases in 

apples is crucial for informing targeted control measures. Although considerable research has 

been conducted on using RGB, hyperspectral, multispectral, fluorescence, thermal, and 3D 

imaging, no single sensor has demonstrated the capability for widespread early detection in 

commercial orchards (Table 2.1). Both hyperspectral and thermal imaging have shown great 

potential for detecting presymptomatic signs of stress from apple diseases, with hyperspectral 

imaging exhibiting significant diagnostic potential across various disease sources. However, 

these techniques have only been effectively demonstrated in controlled laboratory conditions, 

and there are inherent drawbacks to their use for appropriate coverage in orchards. In contrast, 

RGB imagery has been widely applied in real-world environments with notable diagnostic 

potential. However, these systems have only proven effective during the late stages of infection, 

when considerable damage has already occurred to apple trees, limiting their utility for early 

detection. Multispectral cameras have seen limited application for disease detection in apple 

orchards, often used alongside RGB imagery for detecting late-stage diseases. Despite this, there 

is evidence that these systems are capable of rapid in-field detection of early disease symptoms 

in other crops, such as wheat (Nguyen et al., 2023), tomato (Xu et al., 2006; Fahrentrapp et al., 

2019), and trees including pear (Bagheri, 2020), olive (Castrignano et al., 2020), and pine (Yu et 

al., 2021). Further research is recommended to investigate the potential for multispectral 

imaging systems to detect early signs of apple diseases in real orchard environments.  

 

The early detection and accurate classification of apple disease using individual sensors can be 

challenging, as they often study a limited range of responses which can have a weak linkage to 

the causative agent or be mistaken for another stress factor due to similar symptoms. A 

multimodal approach combining several sensors can produce more consistent and useful 

information than any individual data source, leading to improved classification accuracies in data 

analysis (Busemeyer et al., 2013). The aim of a multimodal sensor approach is to obtain a lower 

detection error probability and higher reliability by acquiring more relevant information 

(Castanedo et al., 2013). There are examples of large field-scanning platforms that utilise all the 

sensors reviewed here to achieve maximum information output for phenotyping crops 

(Kirchgessner et al., 2016; Virlet et al., 2016). However, the downside of implementing numerous 

sensors simultaneously is the drastic increase in cost, weight, and power requirements of the 

acquisition routine, limiting potential mobile platforms. Additionally, challenges arise from the 

different spatial and temporal resolutions of each sensor and the complexity and redundancy of 

the acquired data (Pallotino et al., 2019). 
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Sensor Disease Parameters Early 
Detection Diagnostic Field 

Use Reference 

RGB 

Powdery 
Mildew 

Shape, texture, 
texture colour 

features; 
Greenness 

indices 

 x x Chandel 2020, 2021 

Fireblight  x x Jarolmasjed et al., 2019 
Multiple 

Diseases 
 x x Thapa et al., 2020 

Hyperspectral 

Apple Scab 

Visible-SWIR 
reflectance; 
narrowband 
reflectance, 
narrowband 

indices 

x x  
Delalieux et al 2007 ; 

Delalieux et al, 2009a ; 
Nouri et al., 2018 ; Gorretta 

et al., 2019 
Apple 

Mosaic 
Virus 

x x  Ban et al., 2014 Liu et al., 
2024 

Fireblight x x  Jarolmasjed et al., 2019 ; 
Skoneczny et al, 2020 

Powdery 
Mildew x x  Nagy et al., 2014 ; Shadrin 

et al., 2020 
Marssonina 

Blotch x x  Park et al., 2018 ; Shuaibu 
et al 2018 

Multispectral 

Powdery 
Mildew 

Blue, green, 
red, red-edge, 
near-infrared 
reflectance; 
broadband 
vegetation 

indices 

 x x Chandel et al 2020 ; 
Chandel et al 2021 

Fireblight  x x Jarolmasjed et al., 2019 

Fluorescence Apple Scab Photosynthetic 
Change x   Delalieux et al., 2009b ; 

Belin et al., 2013 

Thermography Apple Scab Temperature; 
Transpiration x   Oerke et al., 2011 ; Belin et 

al 2013 
Table 2.1 Remote sensors utilised in literature for the detection of apple diseases 

 

2.4 Classification Techniques for Disease Identification 
 

2.4.1 Traditional Machine Learning Classification 
 
Manual classification of remotely sensed imagery by expert operators familiar with disease 

symptoms can accurately distinguish between complex disease presences under various 

conditions and is easy to implement, requiring no sophisticated equipment (El Jarroudi et al., 

2014). However, monitoring diseases within orchards would require the analysis of a large 

number of images, and the time-consuming nature of manual assessments is too labour-

intensive and subject to human errors to be implemented at a large scale (Bock et al., 2020). 

Plant disease detection through remote sensing relies heavily on powerful data analytics to 

identify plant diseases through supervised and unsupervised machine learning methods 

(Behmann et al., 2015; Shruthi et al., 2019). Traditional methods of disease detection based on 

machine learning algorithms typically involve four steps: pre-processing, segmentation, feature 

extraction, and classification (Singh & Gupta, 2016; Prakash et al., 2017; Li et al., 2021). Pre-

processing techniques enhance image quality. Segmentation methods isolate areas of interest. 
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Feature extraction techniques aim to identify and quantify relevant disease characteristics. 

Finally, classification algorithms categorise these extracted features into disease classes. A range 

of techniques is available for each step (Table 2.2), each with inherent benefits and limitations 

regarding processing time, ease of use, and accuracy (Iqbal et al., 2018).  

 
Phase Technique 

Preprocessing 
Colour Transformation Structure 

Image Enhancement 

Noise Reduction 

Segmentation 

K-means Clustering* (Segmentation) 

Thresholding 

Colour Segmentation 

Edge Detection 

Feature Extraction 

Texture 

Colour Segmentation 

Shape 

Vegetation Indices (Vis) 

Partial Least Squares (PLS) 

Analysis of Variance (ANOVA) 

Classification 
(Supervised) 

Support Vector Machine (SVM) 

Spectral Angle Mapper (SAM) 

Tree-based Modelling 

Artificial Neural Network (ANN) 

Convolutional Neural Network (CNN) 

K-nearest Neighbour (KNN) 
Classification (Unsupervised) K-means Clustering* (Classification) 

Table 2.2 Key image analysis phases and techniques used in plant disease detection studies 
 

The pre-processing, segmentation, and feature extraction stages are essential as they provide 

crucial data to the machine learning classification algorithms. However, the classification step is 

the most critical phase of the analysis process, as it correlates image-extracted information to 

biologically relevant traits to determine disease-infected tissue. Supervised classification, which 

requires learning from annotated training data, is the most commonly used technique for apple 

disease classification. Support vector machines (SVMs) are widely used classifiers in plant 

disease detection studies (Liu et al., 2017). However, they have only been implemented to 

classify fireblight (Jarolmasjed et al., 2019) and apple mosaic virus (Liu et al., 2023) from 

hyperspectral data. Unsupervised learning aims to determine key patterns in data without 

additional manual input of training data, allowing an algorithm to act on supplied information 

unsupervised. K-means clustering, an unsupervised technique, was used to effectively classify 

infected regions pertaining to apple powdery mildew in RGB imagery (Chandel et al., 2021). It 
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has also been used to segment trees from background soil in multispectral imagery before 

further analysis of fireblight infection (Jarolmasjed et al., 2019). Many remaining studies, notably 

thermography assessments (Oerke et al., 2011; Belin et al., 2013), have relied mainly on manual 

assessments and simple statistical analyses of results. 

 

Machine learning classification techniques can achieve high levels of accuracy in test conditions 

but are heavily dependent on the preceding pre-processing, segmentation, and feature extraction 

steps, any of which can introduce errors or artefacts. These techniques are more suitable for 

investigative studies of sensor feasibility in detecting certain diseases. They often succeed only in 

controlled environments, requiring uniform lighting, high contrast from the background, and 

minimal noise to achieve useful results, which are not feasible in field environments (Zhong & 

Zhao, 2020; Li et al., 2021). Classification of plant pathogens through traditional machine 

learning methods can be highly accurate in most studies but is often restricted to diagnosing 

single diseases (Barbedo et al., 2016). The limitations of traditional machine learning algorithms 

can make them unsuitable for large-field operations, especially when tasked with diagnosing 

early symptoms of diseases in the complex conditions of real-world commercial orchards. 

 

2.4.2 Deep Learning Convolutional Neural Network Models 
 
In recent years, deep learning Convolutional Neural Networks (CNNs) have been widely 

implemented for various precision agriculture tasks (Kamilaris & Prenafeta-Boldú, 2018), with 

specific focus on disease detection studies (Boulent et al., 2019). CNNs are a class of feed-

forward artificial neural networks popular in plant disease classification due to their high 

performance in classifying diseases in complex scenarios (Hasan et al., 2020). CNN models 

consist of multiple layers of image filters and feature maps within convolutional layers, along 

with pooling and fully connected layers representing learned features from the data (Yamashita 

et al., 2018). A simplified diagram of a CNN model is displayed in Figure 2.10. CNNs learn filter 

weights, fully connected layer weights, and biases directly from training datasets to solve 

classification problems through each of these layers. This autonomous learning process involves 

adjusting the weights of convolutional filters to detect features, tuning the weights of neurons in 

fully connected layers for final decision-making, and optimising biases for better model fitting. 

Unlike traditional machine learning techniques that rely on hand-crafted feature extraction, this 

enables CNN models to solve complex classification problems more quickly, efficiently, and with 

a lower error rate (Toda & Okura, 2019; Iqbal et al., 2018; Li et al. 2021). 
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Figure 2.10 The basic structure of a CNN for apple disease classification (adapted from Liu & Wang, 2021) 

 

Numerous CNN model architectures are utilised for disease detection, differing based on the 

number and arrangement of layers and additional processing units (Alzubaidi et al., 2021; Taye, 

2023). CNNs are effective at early detection of plant diseases using various remote sensing 

techniques (Golhani et al., 2018), including Marssonina blotch with hyperspectral imaging (Park 

et al., 2018). As previously discussed in Section 2.3.2, RGB imagery has been widely used for the 

detection and classification of numerous apple diseases with high accuracies (Table 2.3). CNNs 

offer practical analysis options, enable real-time identification of apple diseases (Jiang et al., 

2019) and provide severity estimates of these diseases in trees (Zhong & Zhao, 2020; Liu et al., 

2022). They have been used to classifying numerous apple diseases accurately from imagery 

captured at various developmental stages of infection, in the presence of multiple diseases, and 

from multiple acquisition angles (Thapa et al., 2020). Many CNN classification studies promote 

the effectiveness of their custom-designed CNN architectures (Jiang et al., 2019; Chao et al., 

2020; Wang et al., 2021; Chao et al., 2021; Li & Li, 2022; Li et al., 2022; Turkoglu et al., 2022; 

Yadav et al., 2022), sometimes without accurate manual interpretation of the disease imagery 

(Bansal et al., 2021). 

 

Many CNN architectures are readily available and have been previously trained on millions of 

annotated images from ImageNet (Deng et al., 2009). These pre-trained CNN models can serve as 

the basis for new classification models with less data required for the new training stage, 

reducing training time and alleviating overfitting through a technique called transfer learning 

(Zhuang et al., 2020). Fine-tuning, a key transfer learning method, involves using the weights of a 

pre-trained model to initialise a new model before retraining on the target training set (Boulent 

et al., 2019). Fine-tuning significantly improves adaptation to new datasets compared to the 

direct application of a pre-trained network (Radenović et al., 2018). 
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Source Model Dataset Conditions Diseases Classified Accuracy F1 
Score  

Mohanty et 
al. (2016) GoogleNet PlantVillage Controlled 

38 various crop diseases 
including AS, CAR, FLS, 

H 
99.34% 0.9935 

Jiang et al. 
(2018) VGG-INCEP Unique Mixed 

ALS, MB, AMV, GS, 
Pucciniaceae 

glue rust 
97.14%  

Chao et al. 
(2020) XDNet Unique Mixed ALS, AMV, AS, BS, GS, H 98.82%  

Li & Li, 
(2020) ConViT Unique Mixed ALS, AMV, BS, CAR, GS 95.21% 95.1900 

Zhong & 
Zhao 

(2020) 
DenseNet-121 PlantVillage Controlled 

AS (General), AS 
(Serious), CAR (General), 

CAR (Serious), FLS, H 
92.29% 0.9270 

Chao et al. 
(2021) SE_Xception Unique Mixed ALS, AMV, BS, CAR, GS, 

H 99.40% 99.1000 

Turkoglu et 
al. (2021) MLP-CNNs Unique Outdoors AS, BS, Woolly Apple 

Aphid, Green Apple Aphid 99.20%  

Wang et al. 
(2021) CA-Enet Unique Outdoors 

AMV, AS, FLS, H 
Japanese Maple Rust, 
Glomerella Leaf Spot, 

Apple Litura Moth, Apple 
Leaf Mites 

98.92% 0.9880 

Li et al. 
(2022) MCNN Unique, 

PlantVillage Controlled ALS, AMV, AS, CAR, FLS, 95.31%  

Yadav et 
al. (2022) AFD-Net 

Plant 
Pathology 

2020, Plant 
Pathology 

2021 

Outdoors AS, CAR, FLS, H, PM, 
Multiple Disease 98.00% 0.8900 

Vishnoi et 
al. (2023) Deep CNN PlantVillage Controlled AS, CAR, FLS 98.00% 0.9700 

Table 2.3 Previous studies utilising CNN models for apple disease classification (ALS – Alternaria Leaf Spot; AMV – Apple 
Mosaic Virus; AS – Apple Scab; BS -Brown Spot; CAR – Cedar-Apple Rust; FLS – Frogeye Leaf Spot; GS – Grey Spot; H – 

Healthy; MB – Marssonina Blotch; PM – Powdery Mildew) 
 

CNNs are a supervised learning method, and to achieve superior classification capabilities, large 

quantities of training data are required (Tajbakhsh et al., 2016). The lack of adequate labelled 

samples for training and fine-tuning poses a major challenge for deep learning studies, especially 

for multispectral and hyperspectral imagery (Saleem et al., 2019; Hasan et al., 2020). The 

collection and annotation of large quantities of foliar disease imagery are labour-intensive 

processes that constrain the development of classification models. Public datasets such as 

PlantVillage (Hughes & Salathe, 2015) and PlantPathology (Thapa et al., 2020) provide useful 

resources (Figure 2.11). One major limitation of the PlantVillage dataset is that it contains 

images of individual leaves with homogenous backgrounds. Despite high classification 

accuracies, these images do not accurately represent true orchard scenarios (Mohanty et al., 

2016; Vishnoi et al., 2023). Applying models trained purely on these datasets may decrease 

accuracy when applied directly to orchard images. Deep learning algorithms trained from images 

captured in the field, with a natural background, provide significantly more accurate models than 

those trained in laboratories (Chao et al., 2020). Images captured in a natural growing 
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environment enable deep learning models to detect diseases better in real-world scenarios. 

Additionally, the collection and annotation of plant disease imagery from non-RGB sources are 

recommended to enable the early detection of infections through novel remote sensing 

applications. 

 

 
Figure 2.11 Example imagery of apple foliar diseases from public datasets. PV – PlantVillage (Hughes & Salathe, 2015); 

PP - PlantPathology2020 (Thapa et al., 2020) 
 

2.4.3 Classification Model Selection 
 
Automated classification by deep learning CNNs has largely overtaken traditional machine 

learning as the method of choice for disease diagnosis. Their ability to accurately classify 

multiple diseases concurrently, under various symptom displays, and in complex acquisition 

conditions without extensive pre-processing requirements opens up the possibility of automated 

monitoring of apple orchards on a large scale. Future research should focus on improving the 

robustness of these models by incorporating diverse datasets and exploring the integration with 

alternative sensing methods, such as colour cameras, to enhance early disease detection and 

classification accuracy. 
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2.5 Acquisition Platforms for Orchard Monitoring 
 

2.5.1 Requirements for Acquisition Platforms in Orchards 
 

The selection of an appropriate sensing platform is crucial for the effective acquisition of 

remotely sensed data in precision agriculture-based monitoring systems. Many early disease 

detection studies were conducted in controlled settings, using proximal imaging from fixed 

structures to optimise image and information quality. Transitioning from these controlled 

environments to real-world settings for disease detection experiments introduces new 

challenges in monitoring disease in apple orchards. Scaling imagery to orchard-wide monitoring 

will require the use of mobile platforms, which will introduce further complexities to detection, 

classification, and quantification tasks. Due to the novelty of apple disease detection, there are 

limited examples of mobile platforms within the context of the study. This section expands on 

research into potential technologies that have been applied in apple orchards for other precision 

management tasks or disease detection in other tree crops. 

 

Mobile platforms range from ground-based to spaceborne (Figure 2.12), with increased imaging 

distance bringing a trade-off between spatial coverage and minimum pixel size (Shakoor et al., 

2017). Platforms that offer larger spatial coverage per image are beneficial as they can observe 

whole orchards rapidly and capture more plants in a single image, both of which help maintain 

better consistency in environmental conditions that may influence measurements. Achieving 

rapid full coverage of an orchard is necessary to accurately map and quantify disease severity 

and inform reactive, site-specific treatment decisions. However, wide coverage is often achieved 

by increasing imaging distances, which comes at the expense of spatial resolution by reducing 

the ground sampling distance or the area covered by each pixel (O’Connor et al., 2017). Poor 

spatial resolution implies large pixels containing averaged information, making it difficult to 

distinguish infected tissue from non-infected tissue and background characteristics (Mulla, 

2013). Many apple disease symptoms are localised entirely within individual leaves rather than 

affecting the whole canopy, especially during the early stages of infection. To effectively detect 

many apple diseases in the early stages of infection, ground sampling distance must achieve 

millimetre-scale observations. Each sensing platform has strengths and weaknesses for early 

detection and large-scale monitoring of plants on an epidemic hierarchical scale, i.e., region > 

field > foci > plant > symptom (Oerke et al., 2020). A compromise between rapid coverage and 

ground-pixel resolution must be made, informed by the optimal localisation scale for early 

disease symptoms and the limitations of sensing hardware (Mahlein et al., 2012).  
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Figure 2.12 Remote sensing platforms for agricultural applications (adapted from Shakoor et al., 2017) 

 

2.5.2 Ground-based Sensing Platforms 
 
Ground-based sensing platforms, which operate directly in fields, can be used to acquire high-

resolution imagery of disease symptoms. Handheld sensing is the most readily available 

approach to crop sensing. Most colour, modified multispectral, and thermal cameras are 

designed for handheld use, with select hyperspectral cameras also available (Behmann et al., 

2018). Handheld platforms allow for close-up imaging of specific foci, providing high-resolution 

data crucial for detecting early disease symptoms. These platforms are versatile and can be used 

to detect disease in various parts of apple trees across orchards. Additionally, handheld sensing 

devices are generally cost-effective and user-friendly, making them accessible to a wide range of 

users. However, handheld methods are low-throughput and labour-intensive, offering little 

improvement in orchard coverage over traditional scouting methodologies (Deery et al., 2014). 

The strength of handheld platforms lies in the dexterity of the human operator, who can image 

infection in areas difficult to access, such as the lower canopy and the abaxial surface of leaves. 

These factors give handheld platforms a significant advantage in the early detection of many 

diseases. 

 

Dedicated vehicles offer improved functionality compared to handheld sensors, providing a 

system of acquisition designed for use in the field for phenotyping tasks. The simplest of these is 

a hand-pushed cart, which offers an advantage over handheld methods by allowing heavier 

sensors to acquire imagery at consistent heights and angles while maintaining some of the 
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flexibility of human-adjusted viewing angles. Simple hand-pushed carts provide advantages in 

cost, simplicity, and flexibility, as well as the ability to maintain imaging height and angles and 

use multiple sensors. For example, the Phenocart developed by White & Conley (2013), used a 

bicycle-frame design and was mounted with an infrared thermometer, multispectral sensor, RGB 

camera, global navigation satellite system, and laptop. This setup has been used by Thompson et 

al. (2018) and Lima et al. (2020). While these methods are still heavily reliant on manual labour 

and can be difficult to use for sensing tree canopies, they offer an economical method for in-

orchard observations of apple disease. More complex, dedicated phenotyping vehicles are 

available as manned buggies or Autonomous Ground Vehicles (AGVs). Manned buggies such as 

the Phenomobile (Deery et al., 2014) and Breedvision (Busemeyer et al., 2014), equipped with 

multiple sensors, have been developed for field phenotyping studies of arable crops. AGVs, such 

as the Thorvald II agricultural robotic platform (Grimstad & From., 2017), are commercially 

available options and are being used in some capacity for sensing fruit crops (Kirk et al., 2020). 

AGVs can theoretically provide continual observation of orchards with limited labour 

requirements; however, the upfront cost and maintenance of these technologies are extremely 

high, making them unlikely to be feasible for application in commercial farms in the near future. 

 

Tractor-based platforms are a useful method for orchard monitoring as they are both widely 

accessible to most orchards and regularly utilised for various monitoring tasks. Sensors can be 

attached to these tractors with limited modifications, providing both side and aerial views of 

leaves while travelling at a moderate pace through orchards. These systems also have fewer 

concerns over the power and weight requirements of sensing methods. Tractor-mounted sensors 

have been used in the multispectral detection of fireblight (Jarolmasjed et al., 2019) and 

Huanglongbing in citrus orchards (Sankaran et al., 2013). Additionally, tractor-mounted sensors 

can measure tree area (Polo et al., 2009) and enable the real-time adjustment of pesticide 

applications alongside Variable Rate Spray (VRS) technology (Berk et al., 2020). One key issue 

with tractor-based platforms is the negative impact on image quality from vehicle vibrations or 

visibility reduction from pesticide spray and vehicle emissions. However, tractor-based 

platforms remain a potential option for low-cost crop monitoring, utilising systems readily 

available to apple growers. 

 

Field scanning platforms provide a mobile acquisition method that can be automated for crop 

sensing with high levels of precision and reliable positioning for continual, precise monitoring of 

crop stress. These systems support heavy payloads, enabling them to carry numerous high-

resolution sensors, including RGB, hyperspectral, fluorescence, thermal, and 3D imaging sensors. 

The automation capabilities of these platforms allow for continuous monitoring of crop stress. 
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Notable examples include the Rothamsted Field Scanalyzer (Lemnatec GmbH) (Virlet et al., 

2016) and the Field Phenotyping Platform at ETH Zurich (Kirchgessner et al., 2017), which have 

been valuable for phenotyping studies in field crops. However, due to their expensive 

infrastructure, these systems are typically employed only for high-investment phenotyping 

studies. These systems have been designed for use with arable crops, and their implementation 

for monitoring tree crops would be challenging. Despite their strong capabilities for early stress 

detection, they are unsuitable for practical application in monitoring disease in current 

commercial orchards. 

 

Fixed towers operate similarly to tractor booms but are stationary, enabling continuous 

monitoring and reducing noise from vibrations. The permanency of fixed towers would 

necessitate multiple units to achieve full coverage in an orchard, which can be costly and 

potentially disruptive to other orchard management activities. The cost, coverage, and resolution 

of towers depend on their height, but their design supports high weights and power 

requirements, allowing for fine spatial resolutions. Fixed sensing towers can monitor fine spatial 

and temporal variations in crops to inform site-specific management (Ahamed et al., 2012). They 

facilitate phenotyping with a spatial and/or temporal resolution that surpasses what traditional 

UGV and airborne approaches can achieve and can operate continuously (Shafiekhani et al., 

2017). Although these fixed towers require significant infrastructure investments and the use of 

multiple sensors throughout orchards, they do offer an optimal trade-off between widespread 

coverage and high resolution. 

 

The main limitations of ground-based sensors include the extended time required for monitoring 

single orchards and the challenges in standardising image acquisition due to plot size, soil 

compaction, and vibrations from motors or uneven terrain surfaces. Ground-based sensors also 

face difficulties in transportation between locations and may not be capable of generating real-

time surface maps or measuring plant parameters from multiple trees simultaneously 

(Sankaran, 2015). Despite these limitations, ground-based systems offer significant advantages. 

They can support high-quality sensors with higher power requirements, facilitating real-time 

classification and even treatment applications due to their increased weight capacity, which 

further supports the use of advanced computational hardware. 
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2.5.3 Aerial Sensing Platforms 
 

Airborne platforms offer significant advantages over ground-based sensing by enabling rapid 

coverage of large areas, facilitating swift management decisions. Unmanned Aerial Vehicles 

(UAVs), also known as drones or unmanned aerial systems, have become increasingly employed 

as remote sensing platforms for near-ground agricultural observations. UAVs are the most 

commonly used platform to acquire RGB and multispectral imagery for disease detection studies 

in fruit crops. These platforms have been successfully used to detect diseases in apples 

(Jarolmasjed et al., 2019; Chandel et al., 2021), citrus (Garcia-Ruiz et al., 2013; Abdulridha, 

2019), pears (Schoofs et al., 2020; Bagheri et al., 2020), and grapes (Albetis et al., 2017). The 

most commonly used categories of UAVs include multi-rotor (rotocopters), fixed-wing, hybrid 

UAVs, and unmanned helicopters (Zhang & Zhu, 2023). Other types, such as parachute and blimp 

UAVs, are also available (Chawade et al., 2019). Multi-rotor UAVs are preferable due to their 

ability to hover and provide improved control, allowing for higher-quality data acquisition with 

better resolution and reduced blurring compared to fixed-wing UAVs, which can be affected by 

their speed (Sankaran et al., 2015). Several factors should be considered when selecting a UAV 

for agricultural applications, including platform stability, autonomy, battery resources, and 

operational altitude range (Barbedo, 2019b). Minimum operational heights are often determined 

by flight regulations, which can result in pixel sizes unsuitable for leaf disease detection (Stöcker 

et al., 2017; Barbedo, 2019b). Additionally, UAV systems have limitations in payload capacity and 

power supply, which can restrict the feasibility of using high-quality sensors and lenses or 

multiple sensing systems simultaneously. Despite these limitations, the integration of UAV 

systems into mainstream agricultural operations presents a significant opportunity for the 

remote sensing of crop diseases. UAV technology is now well-developed, making it a viable 

option for the widespread implementation of remote sensing-based disease monitoring in 

orchards.  

 

2.5.4 Platform Selection 
 

Ultimately, there is a trade-off between a platform's ability to acquire high-resolution imagery for 

detecting early symptoms of infections and its capability to monitor orchards rapidly, providing 

accurate assessments of the location and severity of infections. Currently, UAV systems offer the 

greatest opportunity for monitoring disease. These systems are modest in price, easy to operate, 

widely used, and capable of automating imaging routines. However, UAV systems face weight, 

power, and legal restrictions that may affect imaging capabilities (Duggal et al., 2016). Therefore, 
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it is essential to identify systems that are lightweight yet capable of capturing fine spatial 

resolution features on leaves. Alternatively, handheld operation remains the most readily 

applicable method, with the advantage of human dexterity allowing for the earliest possible 

detection and real-time identification of diseases on apple trees. Despite this, handheld methods 

are labour-intensive and may not significantly improve orchard coverage compared to traditional 

scouting methodologies. There is still a significant level of research required to transition remote 

sensing systems from controlled environments to practical field applications for the early 

detection of disease in apple orchards. While selecting an appropriate platform at this stage 

might be of low priority, understanding the best method of acquisition will aid in the selection, 

design, and development of optimal remote sensing systems 

 

2.6 Potentiality and Practicalities of Remote Sensing for 
Disease Monitoring 

 

2.6.1 Recommendations for Remote Sensing System Technologies 
and Opportunities for Further Research 

 

An operational system that rapidly covers an orchard and precisely maps disease before 

epidemics spread could facilitate reactive pesticide application, resulting in significant chemical 

savings. The ability to detect and quantify apple scab, the most significant apple disease, would 

offer the greatest immediate benefit to apple production. Despite extensive research 

demonstrating early detection of apple scab using hyperspectral and thermal imagery, these 

systems have proven challenging to implement in real-world orchard conditions. It is imperative 

to investigate the feasibility of using other sensors to detect early signs of apple scab stress in 

uncontrolled, non-laboratory environments. RGB imagery has shown considerable potential for 

detecting apple scab infections in real-world environments; however, early detection remains 

challenging, particularly for high-throughput monitoring. Multispectral sensors have successfully 

been used in real-world environments to detect plant pathogens but have yet to be applied 

specifically to apple scab infections. Further research into the potential of multispectral imaging 

for the early detection of apple scab is recommended.  

 

Deep learning CNN classification techniques have been successful in diagnosing multiple 

diseases in apple orchards. These models have primarily been applied to RGB images acquired 

from handheld devices, capturing information on apple disease symptoms in mature stages of 
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infection. There is considerable potential for utilising CNNs for widespread, automated 

classification and severity estimation of apple disease imagery from remotely sensed systems. 

For effective classification of apple scab infections, CNNs must identify apple scab symptoms 

from early to late stages of infection and from low to high severities (Figure 2.13). Additionally, 

they must distinguish these features from other plant pathogens present in real-world orchards 

under natural illumination conditions. Once the capabilities of early detection and classification 

of apple scab infections are proven, they can be applied to commercial orchards. UAV systems 

show the greatest promise for the regular, automated monitoring of orchards, necessitating the 

design of remote sensing systems capable of apple scab detection at high spatial resolutions. In 

the meantime, handheld and fixed platform acquisitions can be employed to assess feasibility 

and develop sensor designs for practical testing and trials of imaging and classification systems. 

 

 
Figure 2.13 Apple scab symptom variation with stage and severity (adapted from Thapa et al., 2021) 
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2.6.2 Practical Considerations for Orchard Use 
 

The complex and heterogeneous outdoor environments of orchards make the early detection of 

plant diseases extremely challenging. Both extrinsic and intrinsic factors of plant disease 

imagery significantly impact the accuracy of plant disease classification (Barbedo, 2019a). 

Extrinsic factors arise from physical issues encountered while acquiring imagery in uncontrolled 

environments (Figure 2.14). These include the presence of shadows, solar illumination angle, 

specular lighting, and bidirectional reflectance distribution function, all of which can affect 

reflectance values and vegetation indices. Aerial image capture can cause occlusions and 

shadows due to overlaying branches and leaves, masking regions of interest (Barbedo, 2013; 

Bock et al., 2020). The influence of these extrinsic factors can be reduced by optimising the 

acquisition platform and timing of monitoring, thereby improving classification accuracies. 

 

 
Figure 2.14 Extrinsic factors influencing accurate disease classification. Column A) Presence of strong shadows. Column 

B) Strong illumination and specular lighting. Column C) Occlusion of leaves by overlaying foliage. (Adapted from Thapa et 
al., 2021) 

 

Intrinsic factors are more difficult to control as they result from the inherent variability of 

symptom presence within agricultural environments (Barbedo et al, 2016). There are three 

major intrinsic factors that can impact the accurate diagnosis of plant diseases (Figure 2.15). 

Firstly, a single disease can produce a wide range of symptoms depending on the phenological 

stage of the leaf or pathogen. Secondly, many pathogens and stress causes result in similar 

symptom expressions, increasing the difficulty in identifying the causative factor. Finally, 

multiple diseases are often present simultaneously, with symptoms of several diseases 

displaying on individual leaves. Classification models must be capable of accurately diagnosing 

individual apple diseases under these circumstances. Utilising highly varied apple disease 
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training datasets containing annotated images of a range of symptom expressions can enable 

CNNs to effectively generalise across the multitude of symptom displays (Thapa et al., 2020). 

Additionally, CNNs can employ a multi-label classification method to identify the component 

diseases in leaves exhibiting multiple symptoms (Ji et al., 2020). 

 

 
Figure 2.15 Intrinsic factors influencing accurate disease classification. Column D) Differing symptom presence from the 

same pathogen. Column E) Similar symptom presence from differing pathogens. Column F) Multiple pathogens present on 
individual leaves (adapted from Thapa et al., 2021) 

 

2.6.3 Prospective Applications of Disease Monitoring Systems 
 

The majority of the studies reviewed in this chapter employed remote sensors in controlled 

environments, primarily for phenotyping purposes. Phenotyping is a critical component of crop 

improvement, assessing the relative effects of genetic and environmental factors, as well as their 

interaction, on production traits such as yield potential and stress tolerance (Fiorani & Schurr, 

2013; Sankaran et al., 2015). Remote sensors are highly effective for phenotyping as they enable 

non-destructive monitoring of plant parameters, thereby increasing experimental capacity for 

different genotypes and treatments by reducing the need for replicate sampling sets (Fahlgren et 

al., 2015; Araus & Kefauver, 2018). Numerous repetitions with varying genotypes and treatments 

must often be evaluated, considering both morphological and physiological plant traits, which 

increases the complexity and dimensionality of the data produced (Chawade et al., 2019). 

Information on plant stress tolerance gathered through these methods can be instrumental in 

breeding disease-resistant cultivars of apples (Papp et al., 2020). Given the controlled 

environmental conditions in phenotyping studies, remote sensing applications have been 

notably successful compared to the time-consuming visual assessments of disease (Mahlein, 

2016). 
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For precision agriculture purposes, large-scale monitoring and timely plant protection measures 

are essential. Utilising an effective combination of sensors, classification models, and platforms 

can facilitate automated, rapid monitoring of orchards, providing a viable alternative or 

supplementary method to the labour-intensive traditional crop scouting. This approach 

enhances the implementation of Integrated Pest Management (IPM) strategies. Precise and 

accurate disease estimates are crucial for predicting yield loss and forecasting epidemics. An 

accurate understanding of disease incidence allows growers to estimate yields, inform labour 

needs, and assess the risk of storage rots to determine optimal marketing times. Disease 

forecasting models, such as ADEM (Xu & Butt, 1995; Berri & Xu, 2003) and RIMPro (Aćimović & 

Rosenberger, 2019), issue warnings to growers about the risks of apple scab, powdery mildew, 

European canker, and fireblight, enabling timely fungicide applications. These models rely on 

meteorological information, cultivar susceptibility, and regional inoculum levels to forecast 

disease risk (MacHardy, 2000). Providing more objective assessments of disease severity in 

orchards can improve the accuracy of these models' disease risk predictions. 

 

The ultimate aim of an orchard monitoring system is to reduce pesticide use through site-specific 

application. Integrating remote sensing systems with Variable Rate Spray (VRS) technologies 

(Maghsoudi et al., 2014; Berk et al., 2020) can enable real-time adjustments of pesticide 

applications based on disease incidence and severity. The benefits of implementing a precision 

agriculture-based approach to disease monitoring are threefold. First, it can improve the 

economic cost-efficiency of apple disease management, especially for major diseases such as 

apple scab. Targeted pesticide application can significantly reduce input costs while maintaining 

or improving disease control. The site-specific precise application of pesticides minimises 

pesticide wastage, reducing overall expenditure on chemicals. Second, reducing pesticide use 

will have widespread benefits for ecosystems surrounding commercial orchards. Excessive 

pesticide application in orchards has contaminated surrounding soil and water bodies. Judicious 

use of pesticides reduces the contamination effects on these ecosystems due to excessive 

chemical runoff. Finally, a precision management approach to disease control aims to reduce 

crop losses, thereby increasing marketable yields. Accurate and timely detection of diseases can 

prevent the spread of infections, leading to higher fruit quality and yield quantity. Achieving 

increased yields through efficient and effective pesticide use would significantly contribute to 

the sustainable intensification of agriculture. 
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2.7 Conclusion 
 

Remote sensors, classification models, and acquisition platforms are key precision agriculture 

technologies that offer the potential to improve disease monitoring in orchards compared to 

traditional labour-intensive crop scouting techniques. These technologies can be used for the 

early detection, identification, and quantification of plant pathogen infections in orchards, 

informing targeted pesticide spraying and other Integrated Pest Management (IPM) strategies. 

Despite considerable research into the use of different remote sensing technologies for apple 

disease detection, there have yet to be practical applications capable of commercial use. This 

review is the first to collate previous research on these precision agriculture technologies 

specifically for apple disease detection. It presents the requirements for disease monitoring in 

orchards, the current use of sensors, classification models, and acquisition platforms for apple 

monitoring, and recommendations for further research. 

 

This review identified numerous options for early detection, including thermal and fluorescence 

imaging, with hyperspectral sensing being the most widely implemented for early apple disease 

detection. However, all these early detection studies were successful in part due to the controlled 

environmental and acquisition conditions in which they were performed. For practical 

application in orchards, remote sensors must demonstrate effectiveness in real-world 

conditions. Apple scab is largely considered to be the most important apple disease, receiving 

the largest quantities of fungicides. Developing a remote sensing strategy for apple scab 

monitoring would provide the most widespread benefit. Thermography has considerable 

potential for presymptomatic stress detection due to apple scab but may have difficulty 

operating under the influence of natural illumination and weather conditions. RGB imagery and 

multispectral imagery have been widely applied to numerous apple and other tree crop diseases, 

but the latter has seen limited investigation into its potential for apple scab detection. 

While many methods of classifying diseases are available, deep-learning CNNs show the greatest 

promise for rapid, accurate identification tasks. They consistently demonstrate high 

classification accuracies when classifying apple diseases in laboratory and orchard conditions. 

Although several datasets are publicly available, they are mostly focused on RGB imagery of 

individual leaves displaying late-stage symptoms. Further research is needed to evaluate the 

accuracies of different sensors and to classify apple diseases in the early stages of infection. To 

achieve this, a large dataset must be collected. Acquisition platforms will be essential for 

implementation in orchards, providing adequate coverage while simultaneously offering high 

resolution to identify the smallest symptoms. UAVs have the greatest potential for orchard-wide 

surveys, but handheld devices may be the most readily available for use by crop scouts. 
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While there are many solutions available for research in laboratories, the technologies must also 

be scalable to orchards and demonstrate effectiveness in real-world environments. CNN models 

and UAVs are currently available solutions that have successfully been applied at scale for 

acquiring and classifying remotely sensed imagery for stress detection in field and orchard 

crops. The key limiting factor is the use of an appropriate imaging sensor. As it stands, only RGB 

imagery and multispectral imagery show potential for practical implementation in commercial 

orchards, but the latter has attracted notably little research for apple scab detection. It is 

recommended that future research investigates the capabilities of multispectral imaging systems 

for the early detection of apple diseases, specifically apple scab, in real-world conditions. The 

early detection of apple scab in orchards is challenging due to the variety of symptom variations, 

natural illumination conditions, tree physiologies, and other stress factors. Enabling early 

detection through multispectral imaging can improve the efficiency of disease control in apple 

orchards and reduce losses due to diseases. This review offers a step toward developing a 

precision agriculture approach to the sustainable intensification of apple production, improving 

the environmental impacts and increasing yields in commercial apple orchards. 
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3 Feasibility of Detecting Apple Scab 
Infections using Low-Cost Sensors and 
Interpreting Radiation Interactions with 
Scab Lesions  

 

Abstract  
 

Apple scab is a major crop disease caused by the fungus Venturia inaequalis. Apple scab can 

spread rapidly throughout orchards, diminishing tree productivity and causing huge losses in 

marketable fruit. Efficient orchard reconnaissance and early detection of infections can inform 

fungicide applications for effective disease control, and a range of new low-cost sensors offer a 

means of imaging orchards as the basis for scab detection. This study evaluates the potential 

contribution of three imaging devices: a multispectral (VIS-NIR), thermal, and 3D camera for 

detecting apple scab on young apple plants. In a controlled experiment, apple seedings were 

infected with apple scab, and disease progression was imaged daily under natural illumination 

conditions in a glasshouse with minimal image processing. Whilst the thermal and 3D imaging 

was deemed unsuitable for scab detection, the high-resolution multispectral imagery was 

exceptionally effective, specifically the near-infrared (NIR) band (800-1000 nm). NIR imagery 

permitted the earliest scab detection due to the substantially lower reflectance of the fungal 

structures of V. inaequalis relative to healthy leaf tissue. Due to the novelty of multispectral 

imaging for scab detection, this chapter offers a model of near-infrared radiation interactions 

between the pathogen and leaf to explain the reflectance characteristics of scab lesions 

throughout the growth cycle of the pathogen. The simple, low-cost remote sensing approach 

developed here holds considerable promise for providing timely information on tree infection to 

improve the efficiency of apple scab disease management routines.  
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3.1 Introduction  
 
Apple scab is considered the most important disease facing apple production due the high 

disease susceptibility of most popular cultivars, widespread presence, and the economic cost of 

control (MacHardy et al., 2001). Epidemics of apple scab rapidly spread throughout orchards 

causing huge losses of marketable fruit and long-term reductions in tree productivity. The 

pathogen occurs in all commercial growing regions, with the most devastating effects occurring 

in countries with cool, moist springs and high summer rainfall (MacHardy, 1996). Current 

disease protection methods require abundant preventative fungicide applications that have a 

significant effect on production costs and negative impacts on the ecology, environment, and 

human health surrounding orchards (Papp et al., 2020). Responsive infection control strategies, 

informed by early detection of the presence of pathogens, could potentially reduce fungicide use 

significantly as part of an integrated pest management strategy (MacHardy, 2000). Detecting 

apple scab infection on leaves early, before the disease becomes infectious, could improve the 

efficiency of chemical treatment strategies through the timely application of curative fungicides 

and reduce crop losses. This smart farming strategy could lessen the economic and 

environmental impacts of scab treatment over current approaches.  

  

The lifecycle and epidemiology of apple scab is well-defined. Apple scab, caused by the 

ascomycete fungus V. inaequalis, begins its lifecycle overwintering in leaf litter as ascospore-

containing pseudothecia, which are responsible for the primary infection phase (Figure 3.1). 

Rainfall and the presence of sunlight promote the ejection of ascospores from the pseudothecia, 

which are spread by wind to trees up to 200 metres away (Belete & Boyraz, 2017). Germination 

occurs when ascospores land on young leaf tissue and penetrate through the cuticle via germ 

tubes, with high humidity and free water on the leaf surface required for germination (Bowen et 

al., 2011). Temperature determines the hours of continuous leaf wetness required before 

germination occurs, known as the Mill’s infection period (MacHardy & Gadoury, 1989; 

Stensvand et al., 1997). In spring, the lower surfaces of leaves are the first to become exposed, 

with the first scab symptoms developing here. Once leaves are fully unfurled, symptoms appear 

on both the abaxial (lower) and adaxial (upper) surfaces. No penetration of the epidermal cell 

layer occurs. Instead, the pathogen develops subcuticular runner hyphae from the germ tubes, 

and melanoproteins create a nutrient transport system that diverts solute flow towards the site 

of infection (Delalieux et al., 2007; Jha et al., 2009). Sexual reproduction of V. inaequalis occurs 

within this subcuticular space as the hyphae develop into stromata, producing dense 

accumulations of conidia. As the conidia mature, they penetrate through the cuticle and become 

exposed, to then be released by rain and splash-dispersed to surrounding leaves and fruits. 
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Infection by splash dispersal acts as a secondary infection cycle that repeats until the end of the 

growing season (Bowen et al., 2011).  

  

Young leaves are most susceptible to secondary infection, becoming more resistant as they 

mature until the cuticle cracks and the leaf is susceptible again. Once the fungus ruptures the 

cuticle, the disease symptoms become visible macroscopically. The thick mass of conidia gives 

lesions a velvety texture, and the melanin pigments contained within cells produce a distinctive 

olive-brown colour (Oerke et al., 2011). The diffuse, circular lesions that develop on the upper 

surface increase in size, raise and darken as the infection matures, ultimately leading to leaf 

senescence. Fruits are extremely vulnerable to scab after petal fall, especially during long, warm 

periods of high humidity. Symptomatic olive-brown lesions occur on the apple fruit skin that 

grow, darken, and coalesce, eventually developing a corky texture as both pathogen and apple 

flesh become necrotic. Symptoms occasionally occur on shoots as light-brown swellings or 

reddish-brown spots but are rarely scouted for in disease assessments (MacHardy, 1996). These 

visible symptoms provide the basis for apple scab diagnosis by agronomists.  

  

 
Figure 3.1 The lifecycle of the hemibiotrophic fungus V. inaequalis on apple trees. 

 

Several studies have utilised remote sensing systems for the detection of apple scab on young 

plants, based not only on the visible symptoms but also the effect on the spectral and thermal 

properties of leaves to diagnose early infection. Delalieux et al. (2007) demonstrated that 

spectroscopy could detect scab infection early before the onset of visible symptoms through 
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variations in the reflectance characteristics of leaves and their impact on ratio indices. 

Shortwave infrared wavebands associated with water content between 1350–1750 nm and 

2200–2500 nm could distinguish infected and non-infected leaves at an early stage, especially as 

a ratio index (R1480/R2135) (Delalieux et al., 2009b). The chlorophyll-related Pigment Specific 

Simple Ratio (PSSRa = R800/R680) (Blackburn, 1998a) was also capable of detecting scab at a later 

stage of infection. Hyperspectral sensing can be effective at detecting apple scab disease early 

through the stress response of plants although their utility for orchard use is challenged by their 

high costs, complex acquisition requirements, and large volumes of data produced.  

  

Thermographic imaging of leaves infected with V. inaequalis displayed concentric spots of lower 

leaf temperature 1 to 3 days before the appearance of visible scab symptoms due to increased 

rates of leaf transpiration (Oerke et al., 2011). Areas of decreased leaf temperature exceeded 

that of the scab lesions by up to 80% when the first symptoms became visible, which indicated 

that the extent of infection and scab colonisation greatly exceeded the macroscopic lesion size. 

Another strong indication of stress from leaf infection was the maximum temperature difference 

across a single leaf, which would be expected to remain homogenous across healthy leaf tissue, 

with higher differences occurring where the transpiration rate was affected due to lesions. 

Measurements of maximum temperature difference are a well-established method for 

determining leaf infections (Lindenthal et al., 2005; Oerke et al., 2006; Jafari et al., 2017). A 

major drawback of these thermal imaging methods is the lack of diagnostic potential, as many 

biotic and abiotic stress factors display similar effects on transpiration (Oerke et al., 2011). A 

further study of scab infection found thermal sensing to be effective at displaying symptoms 

earlier than that of fluorescence imagery (Belin et al., 2013). Infected leaves showed a decrease 

in Photosystem II quantum efficiency, but this is similar to that of young leaves, and the 

protocols required for fluorescence imaging are unsuitable for use on tree crops (Delalieux et al., 

2009a). 3D imaging has been used in past research as a way of segmenting thermal images, 

which can be difficult to distinguish from backgrounds, to detect scab, as well as to determine 

leaf curvature, orientation and growth rate that are all affected by scab infection (Chéné et al., 

2012). There has been no further research into the use of 3D sensors for apple scab detection in 

plants, likely due to the limited structural influence of scab on young plants and the negligible 

height of lesions on leaves in the early stages of infection.  

  

While the initial research demonstrated the potential for the early pre-visual detection of apple 

scab in controlled laboratory settings, further progress towards operational techniques has 

stalled, likely due to the requirements for specialist equipment. The previous examples of 

spectrometry, thermography and fluorescence imagery are unsuited for detecting disease on 
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leaves in complex orchard settings because they need controlled illumination sources, complex 

optics and computational hardware that increase the bulk and power necessary to run such 

systems (Lopez-Ruiz et al., 2017). Such sensors are also expensive and delicate, and they require 

significant training to acquire and analyse data, making them unlikely to achieve widespread 

adoption as a solution in real-world orchards. However, there have been numerous 

breakthroughs in low-cost sensors used for plant phenotyping over the past decade, including 

thermal imaging (Acorsi et al., 2020; Vagelas et al., 2021), 3D imaging (Vit & Shani, 2018; Paulus 

et al., 2014) and multispectral sensing (Kitić et al., 2019). These low-cost sensors are lightweight 

and designed for ease of use and may lend themselves to imaging in orchard environments. In 

this context, the simultaneous deployment of many low-cost sensors has enabled the scaling up 

of measurements to facilitate the rapid imaging of large numbers of plants.  

  

Off-the-shelf systems for low-cost thermal and 3D imaging are readily available from suppliers, 

whereas finding a low-cost spectral imager is more challenging. Hyperspectral cameras 

(Behmann et al., 2018) and multispectral cameras used in agriculture and research, including 

Parrot Sequoia+ and MicaSense RedEdge, exist (Assman et al., 2018), yet these systems cost 

£1,000s, and they are primarily designed only for use with UAV systems which further increases 

costs. A well-established method in plant phenotyping is to convert digital cameras into visible 

and near-infrared sensitive (VIS-NIR) cameras, as their CCD and CMOS sensors can detect 

wavelengths between 400-1000 nm (Verhoeven, 2008; LeBourgouis et al., 2008; Morales et al., 

2020). These systems do not compute radiance data as calibrated reflectance values, but they do 

provide high-resolution near-infrared imagery that can display features through monochromatic 

brightness values. In general, commercially available digital RGB (red-green-blue) cameras are 

low-cost, lightweight, durable sensing systems designed for ease of use. These cheap, high-

resolution camera systems could provide greater benefits than current expensive, low-

resolution, off-the-shelf multispectral cameras for detecting apple scab.  

  

A low-cost sensing approach holds promise for establishing a practical method for the 

widespread survey of orchard trees for scab infections. As the first stage in developing this 

method, this study evaluated a range of low-cost (below £1,000) sensors for the early detection 

of apple scab under natural illumination conditions. Apple seedlings were artificially inoculated 

with V. inaequalis before images were acquired daily using a novel, low-cost, high-resolution 

multispectral (RGB, red-edge and NIR wavebands), thermal and 3D cameras. Images were 

visually interpreted for symptoms to track disease development throughout the experiment. The 

purpose of this paper is to provide descriptive evaluation on the suitability for each individual 

sensor to detect apple scab from the early to late stages of infection. The use of the high-
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resolution multispectral camera is a novelty for the detection of scab infection, and so the 

physical processes underpinning the results will be discussed. The overall aim is to determine 

which low-cost sensors display the potential for the early scab detection in apple orchards. 

 

3.2 Methodology 
 
3.2.1 Plant Material and Inoculation  
 

Young apple plants were propagated from the seeds of the economically important and highly 

susceptible cultivars of Gala and Braeburn in an uncontrolled glasshouse at Lancaster University 

(Lancaster, UK) that simulated the natural illumination environment of an orchard. A total of 45 

seedlings were grown in individual, uniform 500 ml pots filled with young plant compost 

containing slow-release fertiliser and irrigated when required. All plants had been actively 

growing for three months and contained at least four unfurled leaves. Seedlings were selected as 

test subjects due to the simplicity of their structures and their lack of exposure to other potential 

sources of stress and infection. The young plants were artificially inoculated with apple scab in 

order to image daily from the known point of infection. V. inaequalis is well-suited to artificial 

inoculation, and standard practice is to use conidia as these spores are abundant, easy to harvest 

and prepare, and suspend well in water, unlike ascospores (Moore, 1964). An amalgamation of 

techniques was used to develop a novel, low-cost, in-situ inoculation method.  

  

Inoculum was gathered from infected leaves in commercial orchards of Jazz and Jonagold 

varieties in Herefordshire (UK) during October 2020. Infected samples were identified by 

assessing leaves that contained freshly sporulating lesions, which correlated to those in the 

literature and orchard production guides (MacHardy, 1996). Harvested leaves were placed in a 

paper bag to minimise condensation and frozen at -20 °C in a sealed container, a common 

method of storing scab conidia (Szkolnik, 1978). The inoculum suspension was produced by 

shredding 20 infected leaves, mixing with 100 ml of distilled water and shaking vigorously, a 

method adapted from disc-cutting methods by Barbara et al. (2008) and Xu et al. (2008). An 

application of 5 ml of vegetable juice was added to help stimulate the fungal growth (Szkolnik, 

1978). The suspension was then immediately applied to leaves, which avoided the need to 

germinate spores on agar plates. Two methods of inoculum application were trialled.  

  

The first round of experiments utilised a drip method with a pipette, as used by Oerke et al. 

(2011), to produce scab lesions in precise locations that could help indicate if infection spread to 

other leaves. However. this method caused excessive runoff down the midrib of leaves, 
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displacing most of the inoculum applied and resulted in development on only 2 of the initial 20 

plants with a bias towards development along the midrib. The second method applied inoculum 

via an atomiser, with inoculum evenly sprayed across all leaves until their surfaces were 

saturated (Delalieux et al., 2007). The spray method proved more successful, with 17 of the 

remaining 25 plants developing infections. Each pot was individually covered with a transparent 

polythene bag to maintain a high humidity that promoted germination (Xu et al., 2008). They 

were then carefully transferred to a warm, dark room, avoiding displacement of the inoculum 

from the leaves, and incubated for 48 hours. After the incubation period, each pot was 

transferred to the glasshouse, where illumination, temperature and relative humidity were left 

uncontrolled. The environmental conditions recorded within the experimental glasshouse are 

provided in Appendix A.  

 

3.2.2 Low-Cost Sensing Setup   
  
3.2.2.1 Multispectral Camera Setup  

 
Multispectral imaging was achieved using two co-aligned Raspberry Pi-based CMOS sensors with 

the infrared-cut filter removed from one (Figure 3.2). Each sensor was fitted with a 16 mm 

telephoto lens and was capable of capturing 12.3 MP images with a 1.55 µm pixel pitch. This 

setup provided high-resolution sensing with adjustable focus and aperture. External bandpass 

filters (Midwest Optical Systems, Palatine, USA) covering the red-edge band (680-720 nm) and 

NIR band (800-1000 nm) were fitted to the sensors so that the multispectral camera system 

delivered RGB, red-edge and NIR wavebands. Both sensors were operated through a Raspberry 

Pi Compute Module 4 and I/O Board (Raspberry Pi Foundation, Cambridge, UK), which enabled 

simultaneous dual-camera image acquisition. The approximate cost of the setup was £500.  
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Figure 3.2 Low-cost, high-resolution stereoscopic multispectral camera   

 
  
3.2.2.2 Thermal Camera Setup   

  
Thermal and 3D imagery was acquired using cheap, off-the-shelf options. Thermal images were 

acquired with a CAT S60 smartphone featuring a FLIR lepton sensor (FLIR Systems, Inc., 

Wilsonville, USA), with a spectral sensitivity of 8-14 µm and a thermal sensitivity of 50 mK. The 

cost of the CAT S60 smartphone was approximately £299.  

  
3.2.2.3 3D Camera Setup   

  
3D data was acquired with an Intel Realsense d435i stereoscopic camera (Intel Corporation, 

Santa Clara, USA) which processed a 3D model from dual NIR imagery aided by structured NIR 

light at a cost of £299, although this does not include the computational hardware required to 

acquire imagery, which would increase the price-point. 3D point clouds had an RGB texture 

overlay generated by the onboard camera to provide a true colour model.  

  

3.2.2.4 Acquisition Procedure   

  
All three imaging systems were fixed to a variable friction arm and clamped to a platform 

directly above the imaging surface for nadir-view imagery (Figure 3.3). The multispectral 

camera and 3D sensors were positioned 750 mm above the imaging surface, and due to 

differences in field-of-view, resolution and focal length, the thermal camera was positioned 300 

mm above the surface. While this arrangement of sensors led to different imaging geometries 

between sensors, this was acceptable for the purposes of this study, where precise image co-
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registration was not required. The images from the three sensors were ultimately interpreted 

manually rather than through a quantitative procedure. Moreover, this variability in geometry is 

similar to that anticipated when using an array of different sensors in the field setting for 

operational scab detection. Images were taken between 11 am and 3 pm from 7-35 days post 

inoculation (d.p.i.) After both sets of experiments, over 9000 images were taken from 

multispectral, thermal and 3D cameras. Information on the camera specifications and 

acquisition methods of the imaging system are displayed in Table 3.1  

 

 
Figure 3.3 Low-cost image acquisition setup consisting of a multispectral camera, thermal camera, and 3D imager on a 

variable friction arm 
 

Imaging System  Multispectral Camera  Thermal Camera  3D Camera  
Spatial Resolution  4056 x 3050 pixels  80 x 60 pixels  848 x 480 pixels  

Field of View  45° x 34°  46° x 36°.  87° x 58°.  
Approximate Cost  £500  £300  £299  

Image format  JPEG  JPEG  PLY  
Acquisition Software  Linux (Raspberry Pi OS)  MyFLIR  Intel RealSense Viewer  

Table 3.1 Low-cost camera specifications 
 



 
79 

 

3.2.3 Disease Assessment  
  
Apple scab incidence and severity were assessed through visual interpretation of the seedling 

images by a single trained individual to maintain consistency. Diagnosis of apple scab was based 

on the symptoms listed in the Penn State Tree Fruit Production (Crassweller et al., 2020), and in 

the works of MacHardy (1996). This method of manual interpretation of symptoms is equivalent 

to scouting performed by agronomists as a ground-truth. Disease severity was graded on an 

ordinal scale, a widely-used descriptive method of classifying disease based on the intensity of 

symptoms present (Bock et al., 2010). 

 

The symptoms to be observed were derived from the production guides and previous literature 

that used sensors to detect apple scab. The multispectral images were checked for spatial 

variability in reflectance intensity in Adobe Photoshop Software (Adobe Inc., San Jose, USA). 

Thermal images were searched in FLIR Tools for regions of localised cooling. Models acquired 

through 3D imaging were assessed for signs of deformation and stunting of leaves and to 

determine the span of leaves and plants to the nearest 5 mm in the open-source software 

MeshLab.  

 

Each image was examined alongside a corresponding RGB image where scab could be identified 

based on the colour, shape, and texture of lesions. Disease progression was assessed 

retrospectively from the most recent to the oldest images, which allowed scab infections to be 

traced back to the initial location with greater accuracy. Infection severity was assessed daily 

using an ordinal scale (Figure 3.4). Early detection of apple scab was taken to mean detection of 

lesions before they become sporulating, in terms of the ordinal scale provided, this is at stages of 

low severity and earlier.  
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Figure 3.4 Ordinal scale of categorical apple scab infection severities and example RGB imagery. 

 
 

3.3 Results  
  
3.3.1 Multispectral Imagery  
  
Preliminary observations revealed that high-resolution multispectral images had by far the 

greatest potential for detecting scab at any stage. NIR imagery, in particular, displayed 

symptoms of scab earlier, clearer and to a greater extent than any other image type. Symptoms 

in the NIR band were characterised by dark lesions contrasted against asymptomatic leaf tissue 

of high brightness. Although similar symptoms could be observed in red-edge images, they were 

much less pronounced, likely due to the narrower spectral bandwidth than the NIR, which 

allowed less light to enter the sensor (Figure 3.5). Reflectance in the red-edge was also 

influenced by pigment concentrations unrelated to scab. For the remainder of this section of the 

paper, to demonstrate the ability of low-cost multispectral imagery to provide information on 

scab infection, only multispectral NIR band images will be compared against RGB, which are 

representative of the view of a human observer.  
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Figure 3.5 The progression of apple scab from low to severe infection in RGB, NIR and red-edge imagery over the 
experiment with imagery acquired at 9 (low severity), 17 (moderate severity), and 35 (high severity) days past 

inoculation (d.p.i.). 
 

The NIR imagery provided information based on pixel brightness that was sensitive to scab 

symptoms from initial symptoms to high-severity infections. Infected tissue had a much lower 

brightness than healthy tissue, making it easy to locate scab infections and distinguish them 

from other leaf features. At the initial symptom stage, infection points were difficult to identify 

visually through RGB imagery, appearing as small, dark-green points along leaf veins roughly two 

weeks after inoculation. Infection sites would have been difficult to distinguish without 

contextual information of infection sites from the time series and cross-referencing between 

multispectral image types. This allowed lesion growth to be tracked backwards from late-stage 

infections to the initial sites of infection (Figure 3.6). Initial symptoms would remain as small 

points for several days after first detection until rapid growth would occur, indicating that the 

lesions were sporulating. It was at this stage of moderate severity that infection could be 

identified by the naked eye if inspected, but the determination of size and location of lesions was 
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still challenging with RGB imagery. An example of the full-time series imagery for a plant sample 

is provided in Appendix D.  

 

 
Figure 3.6 The progression of apple scab symptoms on a single leaf from initial symptoms at 12 d.p.i. to moderate severity 

at 22 d.p.i. Arrows indicate initial infection locations identified through retrospective analysis. 
 

The high-resolution multispectral imagery provided great levels of detail on the colour, shape, 

and texture features of scab lesions on leaves and their development throughout disease 

progression (Figure 3.7). Symptomatic lesions at low severity were small, light-brown, circular, 

and with a fuzzy texture with clearly separate points of origin. When focusing on the full pixel 

resolution, the circular lesions appeared more diffuse, expanding from a central point along a 

main vein in a web-like pattern and growing along venules with green leaf tissue visible in 

between. The lack of contrast between olive lesions and green tissue, and diffuse borders made 

it difficult to determine the extent of lesions without image enhancement. In mature infections 

the network of fungal structures broadened, leaving little-to-no green tissue visible within 

lesions. As the mass of mycelium increased in mature lesions, they developed dark-brown and 

grey colours (Figure 3.5). The symptoms discussed were clearly detectable in otherwise healthy 

leaves, but in leaves that had suffered damage due to abnormally high glasshouse temperatures 

that resulted in brown, necrotic tissue, it was more difficult to determine scab lesion location 

and extent (Figure 3.8, Figure 3.9, and Figure 3.10).  
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NIR imagery was sensitive to scab infection from pre-visual symptoms to late-stage infections. In 

the early stages of infection, apple scab can be observed as a dark point along the midrib or vein 

of a leaf, three to six days before it is detectable in RGB. The central point of infection had a 

significantly lower pixel brightness than the diffuse edges, where the fungal structures are at 

their least dense (Figure 3.7). Symptomatic fungal structures appeared similar to those in RGB 

imagery but were more defined and covered a greater proportion of leaf tissue. Throughout the 

visual assessment of disease severity, NIR imagery would consistently rank infections at a higher 

severity than that of RGB images on the same day. Large areas of asymptomatic tissue remained 

within infected leaves, and no subcuticular mycelium was detectable in both RGB and NIR 

imagery. As scab lesions grew and merged, over half of the leaf tissue would display fungal 

symptoms and eventually begin to senesce due to the stress caused by the disease.  

 

 
Figure 3.7 A single apple leaf with moderate-severity infection in A) RGB and B) NIR imagery at 18 days post inoculation. 

Features labelled include: 1) mature coalesced lesions, 2) large circular lesions growing along venules, 3) small lesions 
with individual points of infection on main veins 4) asymptomatic leaf tissue 

 

The ambient light environment had a major impact on the visibility of scab lesions on leaves in 

NIR imagery and, to a lesser extent, RGB (Figure 3.8). Early detection of apple scab infection was 

easiest to detect under shade or cloud cover on bright days as this gave the largest contrast 

between healthy and infected tissue and the greatest detail on leaf features as colour and texture 

information. Overcast days were also useful as light was diffuse so healthy, and infected tissue 
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could be clearly determined. Under stormy conditions, less light reached the plants, resulting in 

dimmer images with lower levels of detail (Figure 3.8). Direct sunlight was a major challenge; 

specular light reflected from the leaf surface which reduced the detail of the leaf texture in both 

RGB and NIR imagery, making it difficult to detect lesions underneath. Shadows cast across 

leaves also increased the difficulty of identifying scab lesions due to the reduced contrast 

between dark lesions and dark leaf tissue. Disease severity assessments of leaves under direct 

sunlight may be incorrectly attributed as having a lower severity compared to the same leaves 

imaged under shade earlier in the time series.  

 
Figure 3.8 Influence of ambient light environment on the perception of scab. Irradiance was measured at 13 d.p.i. as 0.048 

kW/m², at 22 d.p.i. as 0.353 kW/m², and at 23 d.p.i. as 0.149 kW/m². Observe the influence of shadow on infected leaf 1, 
and specular light on infected leaves 2 and 3. Bright spots in NIR imagery at 13 d.p.i. are an artefact from the NIR 

structured light from the 3D camera. 
 

3.3.2 Thermal Imagery  
  
The early detection of apple scab from thermal imagery was inconclusive due to the difficulty in 

distinguishing temperature changes from the plants stress response against external 

environmental influences of sunlight. In optimal imaging conditions of diffuse light, thermal 

infrared emission measured regions of cooling by 1-2 °C in regions where scab symptoms were 

developing, although this could only be identified by using multispectral images to locate 

infected regions beforehand (Figure 3.9). Temperature variance due to leaf stress was often 

significantly lower than compared to regions that were influenced by shading, direct sunlight, 

and the background material (Figure 3.10). Furthermore, the thermograms were low resolution 
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and compression into JPEG format further degrading image quality. The coarser image 

resolution for thermography compared to multispectral imagery, made it extremely difficult to 

detect symptoms, especially during the early stages of infection when spatial temperature 

variations are small. Acquiring higher-resolution thermal imagery for the specified low-cost 

price-point was unachievable.  
 

 
Figure 3.9 Progression of apple scab infection in Thermal, RGB and NIR imagery over a 28-day period from 7 d.p.i. to 35 
d.p.i.. Length of leaf in pixels from base to tip of a 50 mm leaf, and diameter of a 4 mm scab lesion included to highlight 

difference in image resolution between thermal and multispectral systems. 
 

 
Figure 3.10 Temperature variation across different features of a A) thermogram and corresponding B) RGB 
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3.3.3 3D Imagery  
  
The results of 3D modelling of young plants were mixed. During the early stages of infection, 

there were no discernible changes to plant architecture or leaf structure that would indicate 

scab infection. In some cases of severe infection leaf deformation occurred after 50% of the 

surface was covered with fungal symptoms. Symptomatic lesions could be observed in the RGB 

texture overlays of the point clouds, but as with thermal imaging, the low resolution provided 

little benefit (Figure 3.11). There were several artefacts commonly observed in the 3D models 

that affected the model quality, which was attributed to the coarse depth resolution. An NIR 

texture overlay could be registered to the generated point cloud at finer depth measurements, 

which helped improve model quality. The 3D imaging did not provide the ability to detect scab 

infections at the early stages but did provide a benefit as a supplementary sensor for measuring 

the sizes of leaves and lesions during assessment. 

  

 
Figure 3.11 3D models of young apple plants with an A) RGB texture overlay and B) NIR texture overlay observed from 1) 
isometric viewpoints, 2) side viewpoints 3) top-down viewpoints. Artefacts labelled include *overlay stretching between 
different depths, ** flattening of plant height, *** incorrect background depth between leaves, **** gaps in models due to 

shadowing from leaves  
 

Overall, the results clearly demonstrated that multispectral imaging is the superior method to 

thermal and 3D imaging for detecting apple scab from early to late stages through subjective 

visual interpretation. Of the three multispectral bands used, NIR-based imagery displayed the 

greatest promise for detecting scab lesions on young plants at early stages under natural 

illumination. Low-cost thermal imaging did not provide suitable data and is not recommended 

for further use for early detection of disease in real-world conditions. There may still be 

potential for 3D imaging to aid research in developing a scab detection system by acting as an 

ancillary technology supporting multispectral assessment through generating 3D models and 

spatial measurements of plants, leaves, and lesions, but it cannot be used alone to detect early 

symptoms of scab, only at late stages of the disease through the onboard RGB and NIR cameras.  
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3.4 Discussion  
  
3.4.1 Radiation Interaction with Scab Lesions  
  
Reflectance characteristics of leaves in the VIS-NIR range show the greatest potential for 

detecting scab infection on apple plants. The visible domain is where the light-absorbing 

pigments, specifically chlorophyll in the palisade cells, have the greatest influence on healthy leaf 

tissue reflectance. The melanin pigments in conidia have low reflectance in blue wavelengths, 

increasing exponentially towards red, giving a brown-coloured reflection. This colour does not 

contrast significantly against the chlorophyll in green leaf tissue, making it difficult to 

differentiate early symptoms from leaf tissue at early stages and to determine the extent of scab 

lesions in later stages.  
  
In healthy leaves, only a small fraction of NIR radiation is absorbed by cells, with the majority 

being reflected back through the upper surface or transmitted down through the leaf (Woolley, 

1971). Multiple scattering of photons causes reflectance to be much greater than the reflectance 

of visible light, where absorption of pigments results in single scattering processes (Ustin & 

Jacquemoud, 2020). The reflectance of NIR light in leaves is determined by the internal cellular 

structure, especially in the spongy mesophyll layer at the cell membrane and air interfaces 

where light is reflected and refracted (Gausman & Allen, 1973). NIR reflectance increases with 

an increase in number of intercellular air spaces because light is scattered in passing from 

hydrated cell walls with a higher refractive index than that of intercellular air and is much less 

likely to be absorbed (Allen et al., 1970). In scab lesions the dense accumulation of subcuticular 

conidia has a significantly lower volume of air cavities than the mesophyll layer that reduces the 

penetration into the spongy mesophyll of the leaf and instead interacts with the subcuticular 

matter. Lesions contain masses of individual cells where near-infrared light undergoes similar 

cell wall interactions and scattering. Unlike the spongy mesophyll layer, there is little 

intercellular air space, increasing the likelihood of scattered light being absorbed within the 

conidia (Curran, 1989). The scattering and absorption of NIR light results in little radiation being 

reflected up through the surface and appears as regions of low brightness in NIR imagery and 

reduced transmission through to the mesophyll layers (Figure 3.12). The symptoms visible in 

NIR imagery are a result of the fungal structures themselves reducing reflection rather than a 

physio-chemical plant response to disease as V. inaequalis does not penetrate the epidermal 

layer or damage underlying cells in a way that would affect mesophyll layer structure (Bowen et 

al., 2011; MacHardy, 1996). Due to the novelty of the method and the limited research on the 
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absorbance, reflectance, and refractive characteristics of phytopathogenic fungi at NIR 

wavelengths, further study into the interactions of V. inaequalis with NIR radiation is 

recommended  
  

 
Figure 3.12 Interaction of NIR light with infected and asymptomatic leaf cross-sections 

 

3.4.2 Apple Foliar Sensing Requirements  
  
Only high-resolution multispectral imagery from converted digital cameras was found to be 

effective at detecting scab on seedlings from initial symptoms to high-severity infections. Low-

cost thermal imagery was less effective despite well-documented research into leaf temperature 

changes caused by scab (Oerke et al., 2011) and other fungal diseases (Lindenthal et al., 2005; 

Jafari et al., 2017). Previous experiments were performed under controlled environmental and 

illumination conditions, using expensive, specialist equipment that could accurately measure 

temperature changes at a higher spatial resolution than the FLIR lepton. While these studies 

provide useful insights into the thermal properties and transpiration of scab-infected plants, it 

would not be feasible to implement them in commercial orchards for early disease detection. 

The low resolution and major influence of sunlight on the results would create major challenges 
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when imaging adult trees from a greater distance, further influenced by weather and other 

stress factors. Furthermore, proprietary software was required for advanced analysis of the 

FLIR thermal images, which restricted the ability to determine maximum temperature difference 

features in this study. If developments in thermography technologies further reduce the price of 

thermal imaging cameras with high resolutions, there may be scope to review the 

recommendation for use in certain circumstances. 3D imagery had not previously been utilised 

in the detection of scab based on deformation scab indices on leaves but had been used as an 

ancillary technology to aid the segmentation of leaves (Chéné et al., 2012) and to provide point 

clouds for 3D spectral modelling. There may still be potential for 3D sensors as an ancillary 

technology in tree-level scales, where models can be acquired from a greater distance. Although 

the Intel RealSense was selected based on the recommendations of outdoor use by Vit & Shani, 

(2018), other methods may be found to be more suitable, and as with thermal imaging further 

developments in the near future may improve the feasibility of use. Of the three low-cost sensors 

applied for early detection of apple scab, high-resolution multispectral imaging has the greatest 

potential for successful application in commercial orchards.  
  

3.4.3 Directions for Future Research   
  
Modifying digital cameras can open disease detection up to growers of small and large orchards 

in both developed and developing nations as they are cheap, robust and easy to operate. The 

concept of converting RGB cameras into multispectral imaging systems would work for most 

commercial digital cameras but not all have the adaptability of the Raspberry Pi based system. 

One important factor to consider is the image resolution, as scab symptoms are several 

millimetres in diameter which can be challenging when using imagery acquired from a platform 

at a distance from trees. Another key factor is adequate control over the exposure settings that 

affect brightness, focus and clarity. The influence of specular reflectance of solar radiation has 

been significant detriment to thermal and 3D and has been shown to degrade clarity in 

multispectral images, this problem can be mitigated by reducing the light reaching the sensor 

through shorter shutter speeds and smaller apertures. Similarly control of focus is important 

and maintaining an appropriate shutter speed to achieve maximum detail in an image. In this 

experiment no post-processing took place as images were saved as JPEGS. Post-processing of 

RAW imagery could also help mitigate the effects of sunlight and shade in detecting scab 

symptoms on leaves. Automating the image acquisition process is necessary in order to capture 

data across orchards for disease detection rapidly and having a multispectral camera operating 

remotely and automatically adjust settings based on environmental conditions would achieve 

this.  
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A limitation of this study is the labour-intensive and subjective nature of severity ranking. Whilst 

appropriate at the current stage of comparing different sensing technologies, for larger trials on 

mature trees, a more objective approach of ranking disease severity based on the percentage of 

tissue infected would be preferable. Using machine learning rather than manual estimations can 

improve the objectivity of results. Several studies have devoted research to using RGB images 

from consumer cameras to identify apple scab and other diseases accurately in complex 

environments using machine learning (Chandel, et al., 2021; Jarolmasjed et al., 2019) and by 

extension deep learning methods (Chao et al., 2020; Jiang et al., 2019; Liu et al., 2017; Zhong & 

Zhao, 2020). Using machine learning to automate the identification, classification and 

quantification of apple scab could improve labour costs in data analysis to complement the low-

cost sensors for a comprehensive, economical solution to Apple scab detection. To reliably 

detect scab early would require accurate annotating for training and testing classification 

models. This study demonstrates the ability of a crop scout to determine scab infection even at 

early stages of infection. One major challenge of remote sensing for disease detection in crops is 

the potential for multiple biotic and abiotic stresses to act concurrently upon plants, leading to 

large variations of symptoms displayed on leaves. Further study into the effect of other biotic 

and abiotic stresses on leaves and scab lesions would be required to improve classification 

confidence in real-world detection of apple scab.  

  
3.5 Conclusion  
  
The aim of this research was to identify a suitable low-cost sensing system for detecting apple 

scab disease on young apple plants. A sensing system consisting of a multispectral, thermal, and 

3D camera was constructed to observe V. inaequalis progression on infected apple seedlings in a 

glasshouse. It was demonstrable that low-cost sensing of apple scab through multispectral 

imaging is not only feasible but ideally suited due to the unique epidemiology of V. inaequalis. 

NIR imagery clearly displayed the extent of fungal structures against the high brightness of 

asymptomatic leaf tissue, and the high-resolution provided insight into the growth of scab and 

diagnosis based on shape features. Low-cost thermal images were unsuitable for diagnosing 

scab at any stage due to the poor resolution, and 3D sensing did not provide significant benefit 

when used alongside multispectral imaging. This study displays the feasibility for low-cost 

detection of apple scab through the novel use of VIS-NIR-based multispectral imagery. There is a 

great scope for this technology to be utilised to improve the efficiency and economics of scab 

management strategies. To achieve its full potential, multispectral imagery must be scaled up for 

image acquisition and classification of apple scab on mature apple trees by developing methods 

of automating image acquisition and analysis.  
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4 Classifying Early Apple Scab Infections in Multispectral 
Imagery using Convolutional Neural Networks  

 

Abstract  
 
Multispectral imaging systems combined with deep learning classification models can be cost-

effective tools for the early detection of apple scab (Venturia inaequalis) disease in commercial 

orchards. Near-infrared (NIR) imagery can display apple scab symptoms earlier and at a greater 

severity than visible-spectrum (RGB) imagery. Early apple scab diagnosis based on these NIR 

images may be automated using deep learning Convolutional Neural Networks (CNNs). CNN 

models have previously been used to accurately classify a range of apple diseases but have 

primarily focused on identifying late-stage rather than early-stage detection. This study fine-

tunes CNN models to classify apple scab symptoms as they progress from the early to late stages 

of infection from multispectral (RGB-NIR) time series imagery.  

 

A large Apple Disease Identification (ADID) dataset was created from publicly available, pre-

existing disease datasets and a novel multispectral dataset. This ADID dataset contained 29,000 

images of infection symptoms across six disease classes. Two CNN models, the lightweight 

MobileNetV2 and heavyweight EfficientNetV2L, were fine-tuned to identify each disease class in 

a testing dataset, with performance assessed through metrics derived from confusion matrices. 

The models achieved overall scab-prediction accuracies of 93.84% and 94.22% for MobileNetV2 

and EfficientNetV2L, respectively, but only achieved accuracies of 77.14% and 77.64% for 

classifying scab within the multispectral imagery. These lower performance scores were 

attributed to a higher proportion of false-positive scab predictions in the multispectral dataset. 

Time series analyses revealed that the models could classify apple scab earlier than the manual 

classification techniques, leading to more false-positive assessments. CNN-based classification 

could accurately distinguish between healthy and infected samples up to 7 days post-inoculation 

for NIR imagery.  
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4.1 Introduction  
 
Rapid and reliable diagnosis of plant pathogens is essential for sustainable disease management 

within apple orchards. Disease monitoring has traditionally been achieved through crop 

scouting, with tree health monitored through visual assessments of stress symptoms, followed 

by recommendations for appropriate disease management (Crassweller et al., 2020). Manual 

assessments also provide valuable information on inoculum presence for disease forecasting 

models and are used to evaluate the efficacy of disease management strategies objectively 

(Berrie & Xu, 2003). Crop scouts require extensive knowledge and training before becoming 

effective at orchard disease diagnosis; hence, scouting is time-consuming and expensive and fails 

to provide the coverage or frequency necessary to detect the earliest disease symptoms on trees. 

Furthermore, crop scouts struggle to diagnose presymptomatic infections, and their subjective 

decisions may lead to misdiagnoses (Mahlein, 2016; Bock et al., 2020). Orchard monitoring is an 

essential part of disease management, but the limitations of current strategies prevent the 

widespread adoption of site-specific control options. As a result, the standard disease control 

strategy relies on the regular mass spraying of protective pesticides throughout the season in 

order to limit pathogen germination and spread (Alaphilippe et al., 2013). This chemical-

intensive approach has high economic and environmental impacts on commercial orchards and 

limited effectiveness at controlling the spread once symptoms are present (Simon et al., 2011).  

  

Of all the pathogens that threaten annual apple production, apple scab (Venturia inaequalis) has 

the most significant economic impact. This fungal disease is present worldwide, but the effects 

are most severe in temperate regions with high rainfall that promotes the initial spreading and 

germination of the pathogen (MacHardy, 1996). Characteristic symptoms of the disease are the 

dark lesions that grow on leaves and fruit. Symptoms developing on fruits are the primary 

source of direct yield loss, although repeat infections of leaves can weaken plants and reduce bud 

formation limiting tree productivity. The conidia that form these lesions also act as the source of 

secondary infections throughout the season, making disease control difficult once these lesions 

form (Jha et al., 2009; Bowen et al., 2011). The polycyclic nature of V. inaequalis infections 

requires an average of 13 repeated fungicidal treatments throughout each growing season 

(Barbara et al., 2008), with detrimental environmental and economic effects on commercial 

orchards. This intensive fungicide use has increased the risk of V. inaequalis strains developing 

pesticide resistance (Chatzidimopoulos et al., 2020), reducing the efficacy over subsequent 

seasons. Disease forecasting models are critical to apple scab management (MacHardy, 2000). 

Epidemiological models such as ADEM (Berrie & Xu, 2003) and RIMpro (Aćimović & 

Rosenberger, 2018) require information on weather conditions, varietal susceptibility, and 
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inoculum levels from manual assessments, in order to forecast disease incidence and infection. 

These disease-forecasting models can reduce fungicide use by optimising spray timing, yet this 

can result in increased disease incidence (Berrie & Xu, 2003) or providing excess spray 

recommendations when unnecessary (Garofalo et al., 2019). Advancements in remote sensing 

technologies and classification models have made full-scale automated orchard disease 

monitoring feasible. These technologies have the potential to provide rapid, reliable, and 

repeatable disease monitoring across whole orchards. Early detection could aid site-specific 

treatment decisions. Targeted control measures could then be used to reduce pesticide use to 

reduce the overall economic and environmental impact caused by current fungicide usage while 

minimising the risk of severe epidemics.  

 

There are numerous examples of remote imaging systems with the potential for early apple scab 

detection. Thermal imagery acquired in the 5-8 µm range has been shown to detect scab two 

days before visible symptoms develop, with areas of localised cooling of 1 °C caused by increased 

transpiration at infection sites (Oerke et al., 2011). These cooler areas extended up to 80% 

further than scab lesions once symptoms became visible. Other researchers have established 

reliable early detection through thermography, detecting symptoms up to three days earlier in 

the 3-5 µm range than in RGB imagery (Belin et al., 2013). However, despite the solid basis of 

early detection studies, thermal imagery has only been successful at close range under 

temperature- and illumination-controlled laboratory conditions. External influences of 

illumination and weather conditions within orchards would cause larger temperature 

fluctuations across leaves than those caused by varying transpiration rates. Thermal imaging 

systems have low resolution and can only sense the intra-leaf variability caused by early scab 

symptoms within proximal distances, limiting their practicality for imaging the many trees 

within commercial orchards. Bleasdale et al. (2022) demonstrated how multispectral imagery, 

specifically within the near-infrared waveband, could detect apple scab earlier at a greater 

sensitivity than RGB imagery under varying illumination levels in uncontrolled environmental 

conditions. The dark fungal structures of V. inaequalis contrast significantly against bright, 

healthy leaf tissue, even during the early stages of infection. Through manual assessment of the 

time series, they found that scab could be detected nine days after inoculation, between two to 

six days earlier than in RGB imagery. The main limitation of this study was the subjectivity and 

time-consuming nature of the manual classification process, and further research into the use of 

automated classification techniques on the multispectral dataset was recommended.  

 

Deep learning Convolutional Neural Networks (CNNs) are a class of artificial neural networks 

popular in plant disease classification studies due to their high performance and limited pre-
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processing requirements compared to traditional machine-learning classification methods. A 

comprehensive review of using CNNs for plant disease identification is presented by Boulent et 

al. (2019). In recent years, CNNs have been used to classify a variety of apple diseases from 

traditional RGB datasets (Jiang et al., 2019; Chao et al., 2021), including apple scab infection 

(Zhong & Zhao, 2020; Kodors et al., 2021; Turkoglu et al., 2022). Each study confirms that CNNs 

can rapidly classify diseases from images of leaves containing well-established symptoms. Two 

large apple disease datasets, PlantPathology2020 and PlantPathology2021 (Thapa et al., 2020), 

have recently provided researchers with many sample images to train CNNs for disease 

classification. Both datasets contain imagery of diseases at different levels of severity, including 

early symptoms, and under variable illumination conditions to improve training and allow CNNs 

to achieve high classification accuracies even under challenging orchard conditions (Yadav et al., 

2022). Whilst these studies have shown considerable promise, more research on the ability of 

CNNs to detect apple diseases at their earliest stages is required as this rapid treatment is critical 

for appropriate disease management. Using CNNs to classify apple scab in multispectral RGB-

NIR imagery could enable the rapid classification of early scab symptoms and be a valuable tool 

for providing disease incidence assessments.  

 

This study evaluates the ability of CNNs to classify apple scab infection as it progresses from 

early-stage to large-stage in multispectral (RGB-NIR) imagery. Two pre-trained CNN models, 

MobileNetV2 and EfficientNetV2L, are fine-tuned and utilised to classify both scab-infected and 

healthy samples from a previously collected multispectral time series. Both models were trained 

on multispectral imagery and supplementary data from public sources that contain imagery of 

apple leaves across six disease classes. A multi-class classification strategy is used to identify 

scab from plant images containing symptoms under varying illumination conditions and 

increasing levels of severity. The trained models are validated through a performance analysis of 

class predictions from public datasets, where images and labels were previously independently 

verified. A time series analysis of the novel multispectral dataset is performed based on a 

heatmap of confidence of scab predictions. The differences in performance between the 

individual RGB and NIR component images are also assessed to determine the differences in 

capabilities of CNNs to classify apple scab in standard RGB and NIR-based multispectral data. 

This paper is the first to use CNNs to classify apple diseases using low-cost, high-resolution 

multispectral imagery and to determine the change in scab-classification capabilities with 

progression in symptom severity. 
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4.2 Methodology  
  
This section describes the three main components developed for the study to achieve its aim: the 

datasets, the CNN models, and the analytical techniques. The first subsection covers the 

construction of the novel Apple Disease IDentification (ADID) dataset from annotated imagery 

within public and private datasets. The second subsection discusses the MobileNetV2 and 

EfficientNetV2L models and the code structure developed for a multi-class classification 

strategy. The final subsection describes the methods and metrics used to evaluate the overall 

performance of the models and their ability to predict apple scab from early to late stages in a 

multispectral time series.  

 
4.2.1 Apple Disease Identification Dataset  
  
4.2.1.1 Multispectral Dataset Acquisition  

 

The primary data used in this research was a multispectral time series of images acquired from a 

previous study on the feasibility of using low-cost sensors for early apple scab detection 

(Bleasdale et al., 2022). Apple seedlings were grown in a glasshouse at Lancaster University 

(Lancaster, UK) and artificially infected using an inoculant containing conidia, a suspension of V. 

inaequalis. After incubation, each seedling was individually placed on a black surface and imaged 

from above from 7-35 days post-inoculation (d.p.i). All imaging occurred within the same 

glasshouse, where illumination, temperature, and relative humidity remained uncontrolled. 

Multispectral imagery was achieved by modifying digital cameras to be sensitive to near-infrared 

(NIR) light (Verhoeven, 2008; LeBourgouis et al., 2008). There were 45 seedlings photographed 

over the 28 days of the experiment, yielding 2,504 multispectral images at 12.3 MP resolution. 

The lead author manually classified each image as ‘healthy’ or ‘scab’ from the first visible sign of 

symptoms. The RGB and NIR time series imagery were classified independently, leading to 

differences in the datasets (Figure 4.1). Minor technical issues resulted in images not being 

acquired for some seedlings at 11, 17, and 27 d.p.i., coloured grey within the heatmap.  
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Figure 4.1 Manual classification results of the RGB and NIR time series datasets. Each cell represents a single image. 

 
4.2.1.2 Supplementary Apple Disease Imagery  

  
The primary multispectral dataset was supplemented with secondary publicly available datasets 

to create a large ADID dataset. CNNs require large, varied training datasets for robust 

classification under heterogeneous acquisition conditions and intra-class variability (Boulent et 

al., 2019). The primary multispectral time series contained a small number of samples with 

similar symptom features and approximately twice as many healthy samples as scab samples. 

When the size and diversity of the data are limited, CNNs can overfit and produce inaccurate 

classifications (Alomar et al., 2023). Four additional datasets were therefore incorporated into 

the ADID dataset: PlantPathology2020 (Thapa et al., 2020), PlantPathology2021 (Yadav et al., 

2022), PlantVillage (Hughes & Salathe, 2015; Mohanty et al., 2016), and AppleScabLDs (Kodors 

et al., 2021). Images from these datasets contained a wide variety of late-stage symptoms that 

would increase the variance in the training data to minimise the risk of overfitting or bias 

toward healthy predictions. All the public datasets were downloaded from the Kaggle platform 

(https://www.kaggle.com). The final ADID dataset contained 29,000 images acquired from 

different RGB sensors with varying illumination effects, leaf backgrounds, and symptom 

severities (Figure 4.2). All images were resized via compression or expansion techniques to 900 

x 1200 pixels.  
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Figure 4.2 Example images of the variation of symptoms in the early and late stages of apple scab infection. *PlantVillage 
contains only well-established symptoms of scab, although this still includes variations in the stage and severity of lesions. 

 
 

The ADID dataset contains six classes, including four fungal diseases: frogeye leaf spot 

(Botryosphaeria obtusa), powdery mildew (Podosphaera leucotricha), cedar-apple rust 

(Gymnosporangium juniperi-virginianae) and apple scab (Venturia inaequalis), alongside a 

healthy and a complex class. The healthy class was defined as images showing no symptoms of 

biotic disease on leaves. The complex class was defined as images containing two or more 

diseases or symptoms that could not be reliably identified as one of the four fungal diseases. An 

example of each class is displayed in Figure 4.3.   The annotation of images differed between 

datasets, with lead authors, plant pathologists, and agronomists providing assessments for 

PlantVillage (Hughes & Salathe, 2015), AppleScabLDs (Kodors et al., 2021), and for both 

PlantPathology2020 and PlantPathology2021 (Thapa et al., 2020). Two key amendments were 

made to the original annotations. In PlantPathology2020, the original class ‘multiple_diseases’ 

was relabelled ‘complex,’ in PlantPathology2021, all images containing two or more classes were 

also relabelled ‘complex.’ Grammatical formatting was performed to achieve consistent labelling 

between datasets. No further corrections were made to the annotations made in previous 

assessments. As the labels had been independently verified, they could be used as an unbiased 

data source to validate the performance of the model in classifying the test dataset. The 

composition of the final ADID dataset under a multi-class labelling strategy is summarised in 

Table 4.1 
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Figure 4.3 Example images of characteristic symptoms of each of the six classes from the PlantPathology2021 dataset  

 
 

Dataset  Complex  Frogeye 
Leaf Spot  Healthy  Powdery 

Mildew  Rust  Scab  Total  

PlantPathology2021  2956  3180  4623  1184  1859  4822  18624  
PlantPathology2020  206  0  864  0  1380  1189  3639  

PlantVillage  0  592  1606  0  253  594  3045  
AppleScabLDs  0  0  206  0  0  982  1188  

MultispectralRGB  0  0  875  0  0  377  1252  
MultispectralNIR  0  0  784  0  0  468  1252  

ADID   3162  3772  8958  1184  3492  8432  29000  
Table 4.1 Composition of classes from the public and primary datasets of the 29,000 images used in the final ADID dataset 
 

4.2.1.3 Dataset Partitioning   

 
The final ADID dataset was partitioned with an 80:20 split into training and testing sets. Images 

from public datasets were split at random into training and testing datasets, as all plant samples 

and symptoms were independent. The multispectral dataset required a different approach due 

to the limited sample number and the acquisition as a time series rather than random sampling. 

The dataset split had to be determined manually, as having the same plant sample and infection 

occurring in both training and testing results could cause high bias and unreliably high 

accuracies. The division took place on a sample-by-sample basis, with all daily images for 26 

seedlings used for training and 18 for testing the model. The multispectral data was split 60:40 

between testing and training data, allowing more samples to be assessed in a time series. 

Samples (S) S01-S08 were inoculated but showed no apple scab symptoms during manual 

classification. The remaining samples S09-S18 developed characteristic scab lesions during the 

course of the experiment. No validation dataset was required as the CNN performance would be 

assessed from the annotated testing set. This helped preserve the number of multispectral 
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images used to train the model. Table 4.2 displays the final distribution of classes for the 23,200 

training and 5,800 testing images in the ADID subsets. 

 
Image Set  Complex  Frogeye Leaf 

Spot  Healthy  Powdery 
Mildew  Rust  Scab  Total  

Training  2542  3081  6930  961  2907  6779  23200  

Testing  620  691  2028  223  585  1653  5800  
Table 4.2 The distribution of class labels for the training and testing datasets 

 

4.2.2 Fine-Tuning Convolutional Neural Networks  
 
4.2.2.1 The MobileNetV2 and EfficientNetV2L CNN Models   

  
Two pre-trained CNN models to classify the ADID dataset, MobileNetV2 (Sandler et al., 2018) 

and EfficientNetV2L (Tan & Le, 2021), were selected due to their differing architectures and 

resource requirements. Both models were compared against each other to demonstrate that the 

classification of multispectral imagery can work regardless of the architecture. The MobileNetV2 

and EfficientNetV2L models were readily available from the Keras library, having already been 

pre-trained on the millions of annotated images on ImageNet (Deng et al., 2009). These models 

were fine-tuned on the ADID testing set. Fine-tuning uses the weights of these pre-trained 

models to initialise them before retraining all or part of these weights on the target training set 

(Boulent et al., 2019). This process significantly enhances the ability of the CNNs to adapt to the 

target classification set compared to using a pre-trained network directly (Radenović et al., 

2018; Dhaka et al., 2021). A large amount of annotated data is required to train CNNs for optimal 

classification. The limited variation in the multispectral data put the model at risk of overfitting, 

especially for the NIR images. Several augmentation techniques were applied to all training 

images to improve the final accuracy further. Data augmentation is a standard method of 

artificially expanding databases by simulating changes in acquisition conditions (Alomar et al., 

2023). Seven geometric augmentations were applied randomly to all images within the training 

dataset: horizontal flips, vertical flips, shearing, zooming, width shifts, height shifts, and 

rotations. For this study, all pre-trained model weights were frozen except for the final fully 

connected layer. This layer remained unfrozen and was retrained on the training set to produce 

fine-tuned MobileNetV2 and EfficientNetV2L models for apple scab classification. The entire 

CNN training and testing process is presented in Figure 4.4.  
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Figure 4.4 Flow diagram of the ADID Dataset multi-class classification process 

 
4.2.2.2 Model Training Environment  

 
Appropriate hyperparameters are essential for optimal CNN model training. Consistency was 

maintained to enable fair comparisons between MobileNetV2 and EfficientNetV2L models. All 

hyperparameter adjustments for both models were tuned based on the validation accuracies and 

performance of models measured from previous validation runs. Each model was trained past 

convergence for 20 epochs, using an incremental learning rate with the Softmax activation 

function, Adam optimisation and a CategoricalCrossentropy loss function, defined as:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 =  −�𝐶𝐶𝑖𝑖log (𝐶𝐶𝑖𝑖)
𝐶𝐶

𝑖𝑖

 

(1) 

Where ti is the probability of the ground truth, and si is the probability of the target class (CNN 

confidence score) for each class C.  The ideal batch sizes for the hardware were 60 and 6 for 

MobileNetV2 and EfficientNetV2L, respectively (Table 4.3).  

 
Configuration Parameters  

CPU  AMD Ryzen 7 5800H 3.2GHZ  
GPU  Nvidia GeForce RTX 3070 Laptop GPU (8Gb)  
RAM  64Gb  

Hard Disk  1Tb  
Operating System  Windows 11 Home OS Build 22000.1455  

Table 4.3 The hardware and software environment of the experiment 
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4.2.3 Performance Assessment  
 
After each model had completed training and classification, results were recorded in a 

spreadsheet, attributing a confidence score to each of the six classes per image. Being a multi-

class strategy, the confidence scores distributed across the six classes were equal to 1.00. A 

confidence score of 0.33 provided a boundary threshold for the model to provide positive 

predictions for a maximum of three disease labels. Full-scale and individual-label confusion 

matrices were generated via the model, with the prediction labels from the latter used to analyse 

the accuracy of each model.  

  Class  Where: 

True 
Label 

0 TN FP  True Negative (TN): Correctly identified 
absence of labelled leaf class 

1 FN TP  False Negative (FN): Incorrectly 
identified absence of labelled leaf class 

  0 1  False Positive (FP): Incorrectly 
identified labelled leaf class 

  
Predicted 

Label 
 True Positive (TP): Correctly identified 

labelled leaf class 

 
These values were used to assess the performance of each CNN model classification using the 
formulas provided below. 
 
Accuracy – Evaluation of the overall performance of the model: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 +  𝐹𝐹𝑇𝑇
 

(2) 
Recall/Sensitivity – Evaluation of the performance of performance of the model in predicting 
true-positive cases: 

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑇𝑇
 

(3) 
Specificity – Evaluation of the performance of the model in predicting true-negative cases: 

𝑆𝑆𝐶𝐶𝑅𝑅𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑇𝑇
 

(4) 
Precision – The accuracy of the positive predictions made by the model: 

𝑇𝑇𝐶𝐶𝑅𝑅𝐴𝐴𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑇𝑇
 

(5) 
F1 Score - A consistency mean of recall and precision where there is an imbalance between the  
false positive and negative samples within the class: 

𝐹𝐹1 𝑆𝑆𝐴𝐴𝐶𝐶𝐶𝐶𝑅𝑅 =
2 (𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 × 𝑇𝑇𝐶𝐶𝑅𝑅𝐴𝐴𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶)
(𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 + 𝑇𝑇𝐶𝐶𝑅𝑅𝐴𝐴𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶)

 

(6) 
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The confidence scores attributed to apple scab for each day were used for the time series 

analyses. These scores were then used to generate a heatmap, where the value of each cell 

represents one image on one day, as with the manual classification time series (Figure 4.1). 

Yellow cells indicated low confidence in containing apple scab, with colours developing from 

aqua to dark blue as confidence increases. The heatmaps for each model were then assessed and 

compared against each other. Key features of these assessments included discrepancies between 

model and manual classifications, the earliest points of detection, the confidence scores, and the 

presence of noise or significant errors in classification.  

 

4.3 Results and Discussion  
 

The first subsection of the results assesses the overall performance of the ADID-trained CNNs by 

demonstrating the ability to accurately classify each of the six classes in the publicly available 

data subset. The second subsection investigates the model performance on the experimental 

multispectral dataset and the discrepancies between the performance metrics and the time 

series analysis. The third subsection further examines the classification of apple scab by 

comparing the results of RGB and NIR imagery against each other. The final subsection reviews 

the limitations of the experiment and provides recommendations for further research.  

 

4.3.1 Model Training and Convergence  
 

Training MobileNetV2 and EfficientNetV2L on the ADID dataset proved successful, with minimal 

indication of overfitting or bias throughout the epochs from Training Accuracy and 

CategoricalCrossentropy Training Loss metrics (Figure 4.5). Both models achieved high 

performance when classifying images across the entire ADID dataset, validating the capability of 

both CNNs to classify late-stage apple disease images. The final models achieved training 

accuracies of 97.49% and 99.33% for MobileNetV2 and EfficientNetV2L, respectively, although 

the latter required a significantly longer training time (Appendix C).  
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Figure 4.5 Graphs displaying the convergence speed for training accuracy (left) and loss (right) for both MobileNetV2 and 

EfficientNetV2L models 
 

Model  Training Time  Avg time per 
epoch  

Training   
Accuracy  

Training 
Loss  

Testing 
Time  

Testing 
Accuracy  

MobileNetV2  7815s  390s  0.975  0.093  95s  0.969  
EfficientNetV2L  25111s  1256s  0.993  0.018  123s  0.971  

Table 4.4 CNN model training and testing metrics for the MobileNetV2 and EfficientNetV2L models. Training and testing 
accuracy and training loss were recorded after Epoch 20. 

 

4.3.2 Classification Performance on the ADID Dataset  
 

The full-scale confusion matrices for all six classes are illustrated in Figure 4.6, and performance 

metrics are presented in Table 4.5. The overall test accuracies of 96.99% and 97.13% are 

comparable to the highest overall prediction accuracies of 97.14% achieved by Jiang et al. 

(2019) and 98.82% by Chao et al. (2020). Direct comparison is difficult due to the different 

disease classes and the novelty of the multispectral dataset. The performance results for all six 

classes show that overall, the EfficientNetV2L model slightly outperforms MobileNetV2. The 

models perform exceptionally well when classifying ‘frogeye leaf spot’, ‘healthy’, ‘rust’, and 

‘powdery mildew’ classes. Classification of ‘powdery mildew’ consistently ranks best, most likely 

due to the uniqueness of symptoms and the small batch of test samples. Both models perform 

weakest for the ‘complex’ class across all metrics, yet they still outperform the prediction 

accuracy of 51% in Thapa et al. (2020) and the F1-score of 0.56 in Yadav et al. (2022) for the 

equivalent ‘multiple-disease’ class in PlantPathology2020. These results demonstrate a clear 

limitation of the ‘complex’ class, potentially attributed to the broad definition of ‘complex’, 

encompassing all images displaying symptoms of more than one disease. CNNs are highly 

effective at generalising, often correctly labelling diseases under novel circumstances. The 

‘complex’ class is for images containing symptoms from multiple diseases, and there is the 

potential for CNNs to classify the individual causative diseases rather than the combination as a 

whole. Furthermore, including the ‘complex’ class may adversely affect the training of the model 
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weights against diseases with severe symptoms. The ‘complex’ class should be removed in 

future studies in place of a multi-label classification strategy (Wei et al., 2014).  

  

The ‘scab’ class has the second weakest performance of the six, achieving F1-scores of 0.896 and 

0.899 and performing worse than the 0.97 F1-score achieved by Yadav et al. (2022). These 

results are heavily influenced by the novel multispectral time series data, accounting for 10.0% 

of the training and 17.5% of the testing images. MobileNetV2 had more true-positive predictions 

of apple scab than EfficientNetV2L and more false-positive and fewer false-negative predictions, 

which may be more desirable to inform spray decisions as they reduce the risk of missing an 

infection that can quickly spread. The following sections examine the scab class in greater detail 

by exploring the influence of multispectral time series imagery on the classification results.  

 

 

 
Figure 4.6 Confusion matrices of CNN predictions for each of the six classes in the ADID dataset for the MobileNetV2 and 

EfficientNetV2L models. 
 

Model  Metric  Complex  Frogeye 
Leaf Spot  Healthy  Powdery 

Mildew  Rust  Scab  Total  

MobileNetV2   

Accuracy  0.9631  0.9845  0.9536  0.9960  0.9840  0.9384  0.9699  
Recall  0.8500  0.9479  0.9295  0.9372  0.9504  0.9310  0.9260  

Specificity  0.9766  0.9894  0.9666  0.9984  0.9877  0.9414  0.9787  
Precision  0.8133  0.9238  0.9373  0.9587  0.8968  0.8636  0.8970  
F1 Score  0.8312  0.9357  0.9334  0.9475  0.9228  0.8961  0.9113  

EfficientNetV2L   

Accuracy  0.9655  0.9872  0.9519  0.9964  0.9845  0.9422  0.9713  
Recall  0.8855  0.9638  0.9354  0.9279  0.9487  0.9062  0.9262  

Specificity  0.9751  0.9904  0.9608  0.9991  0.9885  0.9566  0.9803  
Precision  0.8097  0.9315  0.9276  0.9763  0.9024  0.8927  0.9039  
F1 Score  0.8459  0.9474  0.9315  0.9515  0.9250  0.8994  0.9149  

Table 4.5 Performance metric scores for each of the six classes for the MobileNetV2 and EfficientNetV2L models. 
 



 
105 

 

4.3.3 Apple Scab Classification from the Multispectral Time Series  
  
4.3.3.1 Classification Performance  

  
The classification results were divided into test images from multispectral sources and those 

from public datasets to examine the capability of early apple scab prediction from multispectral 

imagery. The confusion matrices and the performance metrics for the multispectral data are 

displayed in Figure 4.7 and Table 4.6, respectively. The performance of both models to classify 

apple scab from within the multispectral dataset is considerably lower than their classifying 

ability on publicly available data. Despite the lower performance, the F1 scores of 0.665 and 

0.630 demonstrate that MobileNetV2 and EfficientNetV2L can correctly identify scab in most 

circumstances. MobileNetV2 outperforms MobilenetV2, yet only marginally compared to the 

training time and computational cost. MobileNetV2 has more instances of true-positive and 

fewer false-negative scab predictions yet has more false-positive classifications than 

EfficientNetV2L.  

 

There are numerous reasons why both models perform poorer when classifying apple scab from 

the primary multispectral subset than from the full ADID dataset. Images from public datasets 

account for 91.4% of total images within the ADID dataset, with most of these containing 

localised images of leaves with large and well-defined, late-stage symptoms of diseases (Thapa et 

al., 2020). By contrast, the primary multispectral dataset contains images of whole plants, as 

seedlings, with an extensive background area. The early symptoms displayed in the multispectral 

dataset cover a much smaller area both on the leaf and within the entirety of the image itself, 

unlike the public images, which could prove more difficult for the CNNs to identify accurately. 

The training dataset for the primary multispectral imagery is also much smaller and less varied, 

increasing the likelihood of biases toward certain image features that may adversely affect 

classification accuracies. Furthermore, the multispectral dataset contains symptoms of leaves 

due to heat and drought stress, which was caused by hot weather in July 2021. These symptoms 

have been ignored for the study but may have influenced model training and predictions. Further 

analysis of the multispectral data as a time series provides a greater understanding of the CNN 

capabilities to classify early apple scab.  
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Figure 4.7 Confusion matrices of the scab category in the multispectral dataset for the MobileNetV2 and EfficientNetV2L 

models. 0 indicates negative labels (healthy) and 1 positive labels (scab) 
 

Model  Metric  Score  

MobileNetV2   

Accuracy  0.7714  
Recall  0.7945  

Specificity  0.7623  
Precision  0.5714  
F1 Score  0.6645  

EfficientNetV2L   

Accuracy  0.7764  
Recall  0.6701  

Specificity  0.8186  
Precision  0.5945  
F1 Score  0.6300  

Table 4.6 Performance scores for the scab classifications in the multispectral imagery by the MobileNetV2 and 
EfficientNetV2L models 

 

4.3.3.2 Time Series Assessment 

 
The time series heatmaps of confidence outputs from all models (Figure 4.8) show that apple 

scab is detected earlier and in more samples than the manual classification described earlier in 

Section 4.2.1.1 (Figure 4.1). The results are consistent between models, with most samples 

retaining a positive scab classification after first detection MobileNetV2 consistently classifies 

‘scab’ earlier and in more plant samples compared to EfficientNetV2L. Furthermore, these scab 

predictions in the former have much higher confidence scores than the latter. Sporadic noise 

increases over time, with samples on individual days containing false positives and negatives, 

with little indication that illumination and acquisition conditions or specific samples are the 

cause.  

   

Several key differences exist in the time series predictions between CNN models and the manual 

classification. The earliest detection of apple scab by CNN classification occurred at 7 d.p.i. in 



 
107 

 

Samples S09 to S12, S17, and S18; these results were 5 to 25 days before visible symptoms were 

detected. These early apple scab classifications are comparable to the earliest symptoms 

detected in thermal imagery at 6 d.p.i. (Oerke et al., 2011). Samples S01 to S08 were manually 

classified as healthy but showed sporadic classification of scab by the CNNs in the late stages of 

the experiment. These samples had been inoculated, but through visual inspection, it was 

assumed that the pathogen had not germinated. It cannot be determined whether these results 

are false positives, and it is recommended that a control set is used in future research. A 

potential cause of false-positive scab predictions is the presence of numerous lesions due to heat 

damage on the leaves. This may have influenced the model into classifying abiotic lesions or 

masked scab symptoms during manual assessment. Samples S13 and S15 were classified as scab 

by the CNNs instead of healthy under manual assessment. Conversely, samples S14 and S16 have 

been labelled as containing scab in the manual classification but show no signs of scab in the 

CNN predictions.  

 

 
Figure 4.8 Heatmap of the scab prediction confidence in the multispectral time series classification for the MobileNetV2 

(left) and EfficientNetV2L (right) models. Each cell represents the confidence score output for an individual image.  
 

4.3.4 Comparing Classification Performance on RBG and NIR Imagery  
 

The individual RGB and NIR components of the multispectral imagery were investigated 

separately to reveal the differences and influences each had over the final multispectral results. 

Classification performance was consistently better in NIR imagery than in RGB imagery, with 

classification performance higher in all categories except specificity (Table 4.7). Classification of 

NIR imagery produced more true-positive ‘scab’ predictions, displayed higher confidence scores, 

and classified ‘scab’ earlier than RGB imagery (Figure 4.9). The NIR time series features more 

stable ‘scab’ predictions on infected samples, with less noise and false negatives, especially in the 

latter half of the experiment when scab symptoms had progressed from early to late stages. The 

NIR time series contains more examples of positive predictions in samples S01 to S08 than in 
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RGB; these samples were manually classified as healthy. The results show that CNNs reliably 

classify early and late-stage apple scab in NIR imagery, even with limited training data; the 

classification of RGB images should have been more robust due to the similar features found in 

the RGB images of the public datasets. As previously discussed, prediction results may be 

negatively influenced by errors in manual classification, as well as limited quantity and variation 

in training samples. Numerous instances of noise exist across all four of the time series, with 

little correlation between them, suggesting limited influence from the acquisition procedure or 

plant physiology on these outliers.  
 

Model  Metric  RGB Score  NIR Score  

MobileNetV2   

Accuracy  0.7871  0.7559  
Recall  0.7462  0.8333  

Specificity  0.8010  0.7200  
Precision  0.5607  0.5794  
F1 Score  0.6403  0.6834  

EfficientNetV2L   

Accuracy  0.7754  0.7773  
Recall  0.5000  0.8025  

Specificity  0.8691  0.7657  
Precision  0.5652  0.6132  
F1 Score  0.5306  0.6952  

Table 4.7 Performance scores for the scab classifications in the RGB and NIR imagery by the MobileNetV2 and 
EfficientNetV2L models. 

 

 
Figure 4.9 Above) Heatmap of the scab prediction confidence in the RGB (left) and NIR (right) time series imagery for the 

MobileNetV2 model. Below) Heatmap of the scab prediction confidence in the RGB (left) and NIR (right) time series 
imagery for the EfficientNetV2L model. Each cell represents the confidence score output for an individual image.  
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The results demonstrate the potential for using NIR imagery for the early detection of apple scab 

and through to the late stages of infection. The high confidence of early-stage predictions is 

attributed to the high contrast of scab symptoms on leaf tissue in the NIR imagery. Issues 

regarding poor performance in the multispectral data may be solved by increasing the training 

data with more significant variations of symptoms, plants, and acquisition conditions. While NIR 

imagery can be more helpful in detecting apple scab earlier than RGB imagery, further research 

is required to determine the viability of usage within commercial orchards.  

 

4.3.5 Experimental Limitations and Recommendations for Further 
Research  

 

The study reveals that CNN models can classify apple scab infections in multispectral imagery 

quicker, earlier, and more objectively than manual techniques. However, the CNNs were 

considerably more effective in classifying late-stage symptoms on publicly available secondary 

datasets compared to the primary dataset. Several improvements could help demonstrate the 

benefits these technologies can provide. CNN training requires a large quantity of data to yield 

reliable results. In the present study, only 1,252 NIR images were acquired on simple seedling 

samples, leading to a limited selection of symptoms despite dataset augmentation. More NIR 

images, with a greater range of early apple scab symptoms, would provide a more robust 

classification model.  

 

 This research and previous studies show the strength of CNNs in diagnosing diseases from 

multiple sources within RGB (Jiang et al., 2018; Chao et al., 2021; Yadav et al., 2022). No 

equivalent multispectral datasets currently exist containing frogeye leaf spot, powdery mildew, 

and cedar-apple rust symptoms. Acquiring and labelling NIR images of these diseases would 

enable researchers to determine the diagnostic capabilities in realistic orchard settings. 

Furthermore, this would improve the robustness of model training and the reliability of scab 

disease predictions in orchards. Multi-label classification techniques are recommended as these 

have an advantage in field assessments, as several stresses are often present concurrently. 

Further experiments should consider removing the complex category as this can not only 

adversely affect training models but provide no further information on the disease and, 

therefore, potential treatment options. Countless stress symptoms occur on leaves and fruits 

from pest and abiotic sources. The generalisation capabilities of CNNs allow for detecting 

diseases in the presence of non-pathogenic symptoms if the models are trained to ignore them 

as background information. Increasing the training data by including diseases in the presence of 

other stresses could improve diagnostic capabilities within real-world scenarios.  
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 The earliest that CNN models can classify scab infection is 7 d.p.i., one day later than from 

manual observation in thermal imagery (Oerke et al., 2011). The author collected the first 

images of the experiment at 7 d.p.i., so it may be possible that the models could detect scab even 

earlier. Future experiments should begin preferably from the day after inoculation to remove 

any doubt on the earliest detection of initial symptoms. An area that could be further explored is 

the earliest point at which scab infection should be labelled and the influence this may have on 

the training of the models. It can be assumed that as soon as V. inaequalis germination has 

occurred, the sample is infected, but the current labelling method was based on manual 

classification from the earliest date of visual detection. Providing training data containing initial 

symptoms based on retrospective assessments could create a bias toward scab predictions, as 

these initial symptoms are often featureless dark points (Bleasdale et al., 2022). A more rigorous 

assessment of false positives must occur. High numbers of false positives reduce model precision 

and, at an orchard scale, may lead to incorrect estimations of scab severity, which would 

inevitably lead to the over-spraying of pesticides. Classification experiments using a control set 

could improve the validity of performance metrics and the ability of CNNs to distinguish 

between healthy and early-stage infections. Time series imagery of healthy plants alongside 

those with present or latent scab symptoms can be used to confidently identify false positives. 

Additionally, it may aid investigations into acquisition settings or plant physiologies that may 

influence ‘scab’ predictions.  

  

This chapter showed CNNs to be effective at classifying disease regardless of model architecture 

with minimal difference in performance. Model selection should be determined by 

computational and time resources available. EfficientNetV2L provided marginally higher 

performance but at the cost of a major increase in training time and resource requirements 

against MobileNetV2. Lightweight CNNs, including MobileNetV2, could enable greater 

accessibility to this technology and rapidly assess orchard health in many regions worldwide. 

Multispectral imagery combined with CNN-based classification can identify early-stage and well-

developed apple scab symptoms on seedlings. This research provides a step toward full-scale 

apple scab detection within orchards that could be used to inform site-specific spraying and scab 

forecasting models. Further development of the technologies, with suitable acquisition platforms 

and processing environments, could create a powerful tool for growers to have regular updates 

on disease and crop health, with less reliance on the schedule of crop scouting set by 

agronomists.  
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4.4 Conclusion  
 

This study successfully achieved the aim of automating the detection of early apple scab 

infection by using CNNs to classify a time series of multispectral imagery. CNN models 

consistently classified early-stage and late-stage scab infections in RGB and NIR imagery and 

distinguished these from other diseases in public datasets. Time series analyses have 

demonstrated that apple scab could be detected earlier and more often in CNN-based 

classification than by manual classification. The results confirmed that using NIR imagery to 

detect apple scab was superior to RGB as predictions occurred earlier and with greater accuracy 

overall. Despite this, overall predictions from both NIR and RGB imagery within the 

multispectral dataset were less accurate than predictions made in publicly available datasets, 

where images focused on late-stage symptoms on specific leaves. Future research should 

investigate the earliest possible detection point with earlier imaging and determine a reliable 

precision metric using control samples.  

 

The current method of scouting for disease in orchards is sporadic, infrequent, and expensive, 

which limits targeted control strategies and promotes mass pesticide spraying. Fine-tuning CNN 

models with multispectral imagery can allow for the early detection of apple scab infection using 

high-resolution multispectral sensors. Applying these methodologies to commercial orchards 

could better inform scab forecasting models and enable site-specific spray decisions across 

whole orchards, reducing the spread of disease epidemics, pesticide use, and yield losses. The 

success of the lightweight MobileNetV2 models and the low-cost multispectral imaging 

technique indicated that this technology would be accessible to orchards worldwide, potentially 

leading to widespread environmental and economic benefits.  
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5 Monitoring Apple Scab Progression from 
Visible and Near-Infrared Time Series 
Imagery with Convolutional Neural 
Networks  

  
Abstract  
  
Apple scab (Venturia inaequalis) and other fungal pathogens are major threats to apple 

production. Early disease detection can inform effective and efficient control measures, but 

rapid, accurate assessments are challenging when monitoring tree health within real-world 

conditions. High-resolution near-infrared (NIR) imaging has the potential to detect apple scab 

earlier than visible (RGB) imagery under natural illumination. Classification of this multispectral 

imagery can be automated accurately and rapidly through Convolutional Neural Network (CNN) 

models. The aim is to study the effectiveness of CNNs in classifying apple scab through the early- 

to late stages of infection from a large time series dataset containing RGB and NIR imagery.  
  
105 apple plants were cultivated from seed, and experimental samples were artificially 

inoculated with apple scab. Images were acquired daily to produce a large primary dataset of 

RGB and NIR time series imagery. Secondary data was used to supplement training and validate 

model classification abilities. Three CNN models, MobileNetV2, InceptionResNetV2, and 

EfficientNetV2L, were fine-tuned, and a training set of primary and secondary data was used to 

classify healthy and scab-infected samples, as well as other common apple diseases using a 

multi-label classification strategy. EfficientNetV2L was the best-performing model, achieving an 

overall accuracy of 98.6% in the secondary validation data and 85.4% in the primary 

multispectral data. Further investigation revealed that infection severity, specifically the ratio of 

healthy-to-infected leaves on a sample, caused a bias towards healthy predictions. Adjusting the 

testing set to localise imagery around infection symptoms improved the overall accuracy of 

classifying both RGB imagery (90.3%) and NIR imagery (95.4%). All CNN models consistently 

classified apple scab earlier, more accurately and with a greater precision and recall in NIR 

imagery than in RGB imagery.  
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5.1 Introduction  
 
Accurate monitoring of crop diseases is fundamental for effective and sustainable crop 

protection. Early detection of plant pathogens can improve the efficiency of disease control by 

facilitating site-specific management strategies through targeted fungicide application and 

sanitation techniques. Remote sensors offer a powerful, cost-effective method for rapid, large-

scale, non-invasive assessment of plant disease detection in agriculture (Mahlein, 2017; Khanal, 

2017). Remote sensing for plant pathology uses non-contact measurements of electromagnetic 

radiation interactions between plant tissue and pathogenic material (Mulla, 2013). The most 

commonly used sensing methods in disease detection studies are RGB, multispectral, 

hyperspectral, chlorophyll fluorescence, and thermal imaging, which enable the characterisation 

of different plant parameters to identify early signs of stress (Li et al., 2014; Mahlein, 2016; 

Zhang et al., 2019). Demonstrating early disease detection capabilities is a key objective of 

remote sensing studies. However, achieving early detection can be difficult in the field due to 

complex environmental interactions and external influences from acquisition conditions (Kuska 

et al., 2018). Additionally, plant pathogens in the early stages of infection are often 

heterogeneously distributed throughout the field, so remote sensors need to be able to detect 

small symptoms at low severities while also providing wide coverage in order to implement site-

specific treatment effectively (Oerke et al., 2020).  

 

Apple scab is widely considered to be the most important disease of apples, where losses impact 

entire orchards if left untreated (MacHardy, 1996). Apple scab causes substantial losses of yield 

and income due to the presence of lesions on fruit, rendering them unmarketable. Apple scab 

infections develop in spring from the pathogen overwintering on leaf litter, infecting young apple 

leaves. Symptomatic scab lesions on leaves and fruits act as secondary sources of infections, 

which continue to infect and spread rapidly throughout the orchard during the growing season 

and develop on fruits in storage (Bowen et al., 2011). Due to the polycyclic nature of the 

pathogen, an average of 13 fungicidal sprays are applied to orchards each season, approximately 

every 10 days (Berrie & Xu, 2003; Ridley et al., 2024). This intensive fungicide application 

accounts for a significant portion of production costs, with total scab fungicides accounting for 

up to 50% of the total chemical costs (MacHardy, 2000). Furthermore, the widespread 

application of large quantities of fungicides for apple scab control has adverse consequences on 

terrestrial and aquatic ecosystems (Hamed et al., 2022). Detecting apple scab earlier can 

increase the efficiency of fungicide application and sanitation treatments, improving the 

sustainability and reducing the economic cost of disease management (Delalieux et al., 2007).  
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Numerous sensors have been utilised in studies of early scab infection. Thermography (Oerke et 

al., 2011), hyperspectral sensing (Delalieux et al., 2007; Delalieux et al., 2009a; Gorretta et al., 

2019), and fluorescence imaging (Delalieux et al., 2009b.; Belin et al., 2013) have previously 

been shown to discriminate between scab-infected and healthy samples in the early stages of the 

disease. Despite the successes of these studies, they have not been transferred to field 

environments because they require large, specialist equipment operating within controlled 

environments to detect diseases accurately. Bleasdale et al. (2022) demonstrated the feasibility 

of using low-cost sensors under natural illumination conditions, showing that high-resolution 

multispectral (VIS-NIR) imaging, specifically near-infrared (NIR) imagery, could be used to 

discriminate between healthy and scab-infected samples, with NIR imagery displaying scab 

symptoms as dark lesions comprising conidial structures against bright, healthy leaf tissue.  The 

significant contrast between infected and healthy tissue under natural illumination allowed for 

reliable identification in NIR imagery up to three days before RGB-based assessments. These 

multispectral sensors show great potential for application in orchards due to their ability to 

detect early symptoms under a range of natural illumination conditions.  

 

Deep learning Convolutional Neural Networks (CNNs) are a class of feed-forward artificial neural 

networks popular in plant disease classification studies due to their high performance and 

limited pre-processing requirements compared to traditional classification methods (Hasan et 

al., 2020). They display far superior classification speeds and accuracies in real-world 

illumination conditions, with considerable symptom variance and do so without requiring time-

consuming preprocessing, feature selection or background removal steps. CNNs have been 

widely implemented for various agricultural tasks (Kamilaris & Prenafeta-Boldú, 2018), with 

specific attention dedicated to disease detection studies (Boulent et al., 2019). CNNs comprise 

image filters and feature maps within convolutional layers, along with pooling and fully 

connected layers representing learning features from the data (Yamashita et al., 2018). CNNs 

solve classification problems by learning directly from training datasets through these layers, 

unlike traditional machine learning techniques that rely upon hand-crafted feature extraction 

(Toda & Okura, 2019). Numerous CNN model architectures are available, differing from each 

other depending on the number and arrangements of layers and additional processing units 

utilised (Alzubaidi et al., 2021; Taye, 2023). CNNs have previously been used to accurately 

classify apple scab from numerous other pathogens (Turkoglu et al., 2019; Zhong & Zhao, 2020; 

Kodors et al., 2021; Yadav et al., 2022); however, these studies largely use RGB imagery of 

individual leaves showing late stages of the disease. Applying CNNs to multispectral data could 

enable the classification of plant diseases much earlier in their life cycle (Hasan et al., 2020). 

Furthermore, disease symptoms change as the infection progresses and increases in severity, 
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and CNNs should be capable of accurately classifying these symptoms at all infection stages 

(Saleem et al., 2019). Despite previous research dedicated to classifying apple scab, neither early 

detection from multispectral imaging nor performance assessments of infections within a time 

series have been undertaken.  

 

Chapter 4 demonstrated that it was possible to use CNNs to classify NIR imagery, providing 

promising results when CNNs were used to monitor early-to-late scab symptoms on seedlings 

within a multispectral time series. The results showed that it was feasible to classify both RGB 

and NIR imagery concurrently and that scab could be classified earlier and more accurately with 

NIR imagery rather than RGB imagery. The performance of these CNNs in classifying 

multispectral imagery was considerably lower than the results published in previous literature. 

This was attributed to several experimental limitations, including the size and the degree of 

symptom variation within the NIR training set and the robustness of CNN fine-tuning. CNNs 

require a large quantity of varied samples to be trained to reduce the risk of underfitting or 

overfitting predictions, but obtaining training data can be time-consuming and expensive. Large 

datasets of apple diseases are publicly available, including PlantVillage (Hughes & Salathe, 2015) 

and PlantPathology (Thapa et al., 2020), but these only contain RGB images of late-stage diseases 

focussing on specific leaves or organs. There is currently an absence of spectral image datasets 

for plant disease studies (Wang et al., 2021). Furthermore, due to the experiment being based on 

a time series, the imagery of individual plants used in training and testing data had to be 

completely separated, leading to a limited number of test samples to analyse.  

 

The experiment performed in Chapter 4 relied on time series imagery for training and testing 

CNN models. Due to the novelty of the data, a high proportion of the imagery was dedicated to 

CNN training, leaving few plant samples to assess for early detection of apple scab. Initial results 

suggested that CNNs were superior to manual classification techniques, detecting apple scab 

earlier and in more samples than those manually labelled, leading to low accuracy and precision 

metrics. This study lacked the use of control samples, which made it difficult to determine bias 

towards positive scab predictions in the absence of visible symptoms. To successfully 

demonstrate the potential of CNNs to classify and monitor scab progression over time, longer 

experiments with multispectral imaging beginning earlier and acquired from control and 

experimental samples are needed to provide the necessary training and testing data.  

 

The aim of this chapter is to investigate the effectiveness of NIR and RGB imagery, classified 

using fine-tuned CNN models, to monitor apple scab infections over time. To achieve this, a high 

number of control and artificially-inoculated experimental apple plants are imaged daily with 
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RGB and NIR imaging sensors to acquire a large time series dataset covering presymptomatic, 

early and late stages of infection. Three pre-trained CNN architectures, MobileNetV2, 

InceptionResNetV2, and EfficientNetV2L, are then fine-tuned on the primary multispectral 

dataset, and supplementary data from secondary sources. A multi-label classification approach is 

then used to identify apple scab alongside four further distinct disease classes: frogeye leaf spot, 

healthy, powdery mildew, and cedar-apple rust. The classification capabilities of CNNs are then 

assessed based on their confidence score outputs across each class. These confidence scores are 

then used to generate confusion matrices and calculate performance metrics. Variability in 

confidence score is also assessed over time through time series analysis. Further investigation 

into the acquisition, illumination and plant physiological conditions influencing classification 

accuracy provides recommendations for future practical use. 

 

5.2 Materials and Methods  
  
5.2.1 Apple Plant Material  
  
5.2.1.1 Apple Cultivation  

 

For robust training and testing of CNN models for apple scab detection, a wide range of plant 

physiologies and symptom variance was necessary, which required a large number of apple 

plants to image. All plant material was cultivated within two glasshouses at Hazelrigg field 

station at Lancaster University (Lancaster, UK). The illumination, humidity, and temperature 

conditions were uncontrolled, aside from the use of extractor fans for ventilation and to 

constrain extreme temperatures. For the experiment, 105 apple saplings of various ages were 

cultivated from the seeds of commercially important apple varieties (Gala, Braeburn, and Cox), 

although seedlings these were genetically distinct from these parent plants. Each seedling was 

grown in a standard potting mix and transplanted into larger pot sizes corresponding to age. 

Plants over two years old were grown in large (4 L) pots, plants aged between one and two years 

were grown in medium (3 L) pots, and the remaining younger plants were grown in small (2 L) 

pots. Plants received minor pruning during dormancy to develop various structural shapes. By 

the time of the experiment, plant heights ranged from 0.3 m to 1.2 m while still actively growing. 

Tall, top-heavy plants were supported using 0.9 m green plastic stakes.  

 

During the apple cultivation period, actions were taken to control powdery mildew (Podosphaera 

leucotricha) infections which developed in the conducive environment of the glasshouses. These 

control measures included sanitation by the physical removal of infected tissue from the growing 
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environment and the application of fungicidal sprays. The application of fungicides ended the 

month prior to scab inoculation. At the start of the experiment, the plants were actively growing 

new leaves, and no symptoms of powdery mildew were visible at that time, although pesticide 

residue could be observed on some leaves. The 105 apple saplings were proportionally divided 

into control and experimental samples at a ratio of 1:3, with 27 control and 78 experimental 

samples (Table 5.1)  

 

Plant Size  Control  Experimental  
Small  16  45  

Medium  3  9  
Large  8  24  

Table 5.1 Quantity of each plant size across control and experimental samples 
 

5.2.1.2 Apple Scab Inoculation Procedure  

  
Experimental plants were artificially inoculated with apple scab using a suspension of V. 

inaequalis conidia. Inoculum was harvested from infected leaves gathered from commercial 

orchards in Herefordshire, UK, in October 2020 (see Chapter 3.2.1). All collected leaves were 

placed in a paper bag to minimise condensation and frozen at -20 °C in a sealed container 

(Szkolnik, 1978). The inoculum suspension was produced by shredding 50 g of infected leaves 

and placing them in a container with 500ml of distilled water and shaking vigorously, a 

simplified approach adapted from the methods used by Barbara et al. (2008) and Xu et al. 

(2008). This suspension was then immediately applied to leaves, which avoided the need to 

germinate conidial spores on agar. The inoculum was applied via an atomiser, homogenously 

spraying the suspension across all leaves until their surfaces were saturated (Delalieux et al., 

2007). Due to the size and number of the plants, as well as the location of the experiment, 

control over humidity, temperature, and illumination was limited. The inoculant was sprayed 

abundantly on all apple plants after sunset during a prolonged period of wet weather occurring 

on 23rd August 2023. These environmental conditions allowed free water to remain on leaves 

with temperature and humidity conditions conducive to scab germination over the following 36 

hours. The weather conditions recorded during the experiment are provided in Appendix A. 

After three weeks, only ten samples displayed initial symptoms of apple scab, indicating a 

potential low inoculation success rate. To increase the number of experimental samples with 

scab symptoms for training and testing, a second round of artificial inoculation was conducted at 

21 d.p.i. By 56 d.p.i., 43 plants developed visual symptoms of scab, demonstrating a 54% 

inoculation success rate. Throughout the experiment, control samples were manually inspected 

for scab infection. All control samples remained scab-free during the experiment until leaf drop 

in December 2023.  
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5.2.2 Multispectral (VIS-NIR) Time Series Imagery  
  

5.2.2.1 Multispectral (VIS-NIR) Imaging System  

  

High-resolution multispectral imaging was achieved by modifying commercial digital cameras to 

become sensitive to NIR wavelengths (Verhoeven, 2008; LeBourgouis et al., 2008). The 

technique was developed from the stereoscopic VIS-NIR multispectral sensor utilised in 

Bleasdale et al. (2022). Two Canon EOS RP cameras (Canon Inc., Tokyo, Japan) with 26.2 MP full-

frame CMOS sensors (5.75 µm pixel pitch) were fitted with short focal length 50 mm lenses. 

While one camera retained standard RGB Recall, the second was converted by removing the 

internal infrared filter and replacing it with an external infrared longpass filter (Midwest Optical 

Systems, Palatine, United States) that enabled near-infrared detection between 800-1000 nm 

(see Chapter 3.2.2.1). Both sensors were co-aligned and fixed 200 mm apart on a stereoscopic 

camera bracket. Both sensors had their exposure settings manually adjusted via remote 

operation through EOS Utility Software (Canon Inc., Tokyo, Japan) and were operated 

simultaneously through a wireless shutter release remote control.  

  

5.2.2.2 Time series Acquisition Procedure  

  

The primary dataset collected in this study was a time series of RGB and NIR imagery for each 

individual plant from 1 d.p.i. to 56 d.p.i. Individual plants were placed in the centre of a black 

imaging surface two metres below the stationary multispectral camera system. Each camera was 

manually calibrated at the beginning of the experiment on a mid-sized reference plant, adjusting 

the exposure and focus according to the illumination conditions. A low aperture setting was used 

to achieve a deep depth of field and keep most leaves within the image in focus, although this did 

result in darker imagery overall. The camera settings were not readjusted and remained 

constant for the remainder of the daily imaging regardless of plant size or illumination 

condition. Imaging occurred daily, between 10 am and 2 pm, for 56 days. All images were 

acquired within the experimental glasshouse, with illumination conditions varying over time.  

 

Images were taken directly above the plants to recreate a nadir perspective. Control plants were 

always imaged first, brought into the experimental environment individually and then swiftly 

removed to minimise exposure to V. inaequalis. Due to unforeseen circumstances, images could 

not be acquired at 44 d.p.i. After 56 days of imaging, 5775 RGB and 5775 NIR (JPG format) 

images were collected. The time series imagery captured the growth of apple plants and the 
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development of apple scab over the course of the experiment (Figure 5.1). Examples of the full-

time series imagery for large, medium and small plants are provided in Appendix D. 

 

 
Figure 5.1 RGB and NIR time series imagery displaying examples of control (C16) and experimental (E08) samples at an 

early and late stage of the experiment. 
 

5.2.3 Apple Disease Dataset  
 

5.2.3.1 Primary Multispectral Data   

 

A total of 11,550 images were acquired as the primary dataset for the experiment, which 

required preprocessing and annotating for training and testing the CNN models. All images were 

manually cropped into a 1:1 frame around the entire plant and scaled to 1500x1500 pixels via 

compression and expansion methods. NIR images were converted to monochrome to display NIR 

reflectance as overall brightness rather than across individual red, green, and blue bands. The 

imagery was organised by plant sample number, date of acquisition and waveband (RGB or NIR) 

to produce 210 individual time series. The lead author manually annotated each time series, 

tracking infection backwards from 56 d.p.i. to the earliest point of infection. Scab in RGB imagery 

was identified by the characteristic olive-brown lesions present on the leaves (Belete & Boyraz, 

2017). Scab in NIR imagery was identified by the dark lesions on healthy white tissue, indicative 

of infection (Bleasdale et al., 2022), which was then cross-referenced against RGB imagery to 

identify known sites of infection. It was assumed that once the scab had been detected in the 

earliest image, all subsequent imagery was considered scab-infected, irrespective of symptom 

absence. RGB and NIR time series imagery were classified independently of each other due to 
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apple scab symptoms presenting earlier in the NIR time series than in RGB, previously 

demonstrated through manual identification (see Chapter 3.3.1) and CNN-based classification 

(see Chapter 4.3.4). Other signs of stress from abiotic factors, such as heat, drought, and 

mechanical damage, were ignored. All images were annotated using a multilabel classification 

approach, attributing a class label of ‘HEALTHY’, ’SCAB’, and ‘MILDEW’ to the corresponding 

filename in a CSV workbook. Due to the multi-labelling strategy, images could contain both 

‘SCAB’ and ‘MILDEW’ concurrently, but ‘HEALTHY’ remained independent (Table 5.2).  

 

Labels  HEALTHY  MILDEW SCAB  
RGB  4717  1035 1103  
NIR  4725  0 1095  

Table 5.2 Quantity of ‘HEALTHY’, ‘MILDEW’ and ‘SCAB’ label classes in the RGB and NIR imagery in the primary dataset 
 

 

5.2.3.2 Secondary Supplementary Data 

  
The use of supplementary data was necessary as CNNs require a large amount of training data to 

be capable of providing accurate, unbiased predictions of disease classes. Secondary data from 

publicly available sources provided image classes of multiple disease categories with varied 

symptom presence and acquisition conditions. These images were used to improve training 

robustness by introducing multiple potential diseases, thus reducing biases caused by the 

imbalance of ‘HEALTHY’ and ‘SCAB’ samples in the primary data. Additionally, the secondary 

data provided independently annotated images that could be used to validate CNN model 

performance on standard RGB apple disease imagery. The secondary, publicly-available datasets 

obtained were PlantVillage (Hughes & Salathe, 2015), PlantPathology2020, PlantPathology2021 

(Thapa et al., 2020), and AppleScabLDs (Kodors et al., 2020). These datasets contained localised 

imagery of multiple apple diseases in controlled (PlantVillage) and real-world orchard 

environments (PlantPathology2020, PlantPathology2021, AppleScabLDs) which, when 

combined, produced a highly varied dataset with varying image qualities, illumination 

conditions, and viewing angles.  

 

These secondary data images are intended to supplement the primary dataset imagery for CNN 

training, enhancing generalisation capabilities in classification tasks. The secondary data 

covered five disease classes ‘FROGEYE’ (Botryosphaeria obtusa), ‘HEALTHY’, ‘MILDEW’ (P. 

leucotricha), ‘RUST’ (Gymnosporangium juniperi-virginianae), and ‘SCAB’ (V. inaequalis), as well 

as leaves containing combinations of symptoms from these pathogens (Figure 5.2). All datasets 

contained RGB imagery, localised on unique apple leaves containing well-defined symptoms of 
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the diseases. Further supplementary multispectral data of apple scab on seedlings, previously 

acquired by Bleasdale et al. (2022), was also used. This provided an extra 1,600 images of 

healthy and scab-infected seedlings from high-resolution RGB and NIR sources.  

 

 
Figure 5.2 Example imagery for each disease class from the secondary validation (public - PlantPathology2021) data. The 

three lower images display examples of multiple diseases occurring within a single leaf. 
 
5.2.3.3 Training and Testing Set Partition  

  
The fully annotated primary and secondary datasets had to be divided into separate test and 

training sets. As all primary dataset images were obtained from time series, randomly dividing 

the dataset was not feasible. If the same plant were included in both training and testing sets, the 

physical similarities of plant and symptom features between days would introduce unfair biases 

towards correct classification. All plant samples in the testing set had to be completely 

independent of the training set. For the purposes of the performance assessment, all 

experimental samples selected displayed symptoms of scab by the end of the experiment; no 

samples that may have had latent infections were tested. As only 43 of the 78 plants developed 

infection, a reduced number of testing plants had to be compromised to achieve a sufficient 

training set. An approximate 60:40 split between training and testing sets was used. For the 

testing set, 20 control samples and 20 experimental samples were selected, with variations in 

pot size, plant physiology, and symptom severity. This produced a total of 4,400 testing images, 

2,200 RGB, and 2,200 NIR evenly split between control and experiment samples. To validate the 

models and compare performance to previous literature, an equal quantity of secondary data 

from public sources was used, with the 4,400 images selected randomly among the five classes.  
The most challenging issue for CNN training is the lack of adequate training samples with 

annotations, so augmentation is often used to solve these dataset limitations (Hasan et al., 2020).  
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The primary dataset displayed considerable variation in plant structure and physiology, 

symptom size, shape and severities, and illumination conditions. Despite these variabilities, the 

stationary imaging angle, homogenous black background, and similarity of symptoms day-to-day 

would increase the likelihood of CNN overfitting, especially within the NIR time series. The 

primary training set was artificially inflated by dividing imagery into multiple locations 

containing symptom features to add a greater diversity of scab symptoms used for training. This 

helped address the imbalance between ‘HEALTHY’ and ‘SCAB’ samples that could lead to 

prediction biases (Wang et al., 2021). As with preprocessing, this localisation technique had to 

be performed manually. The low severity of the symptoms meant that automated localisation 

could miss key symptom features and introduce training errors (Alomar et al., 2023). The 

localisation method was not necessary for images from secondary sources, as they were mainly 

localised during acquisition and had a much greater diversity of disease symptoms.  

 

Additional augmentation through geometric transformations was applied to all training images 

to enlarge the datasets for recognition and decrease the chance of overfitting. Geometric 

transformations alter the image to make the CNN invariant to changes in position and 

orientation (Taylor & Nitschke, 2018). These augmentations included random rotations, 

translations, zoom scaling, and inversions for data variation enhancement during training and to 

mitigate the risk of overfitting the test predictions. Multispectral images that could not be 

classified confidently, whether through the uncertainty of earliest infection date or lack of visible 

symptoms post infection, were not included in the training set. These could have introduced a 

bias towards scab in the early stages of infection and the control samples. The final training set 

contained a range of imagery for the ‘HEALTHY’ and ‘SCAB’ classes in both RGB and NIR imagery 

(Figure 5.3) as well numerous examples and combinations for ‘FROGEYE’, ‘MILDEW’, and 

‘RUST’.  
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Figure 5.3 Example images within the training set from primary and secondary sources demonstrating the variance 

within the ‘HEALTHY’ and ‘SCAB’ classes in RGB and NIR imagery 
 

All images in both sets were resized to 1200 x 1200 pixels, and their filenames were randomised 

to reduce further chances of bias. In total, 20,000 training images and 8,800 testing images were 

used in this study (Figure 5.4). These sets had a greater quantity of ‘HEALTHY’ samples than all 

other classes, followed by ‘SCAB’. As both datasets were fully annotated for an in-depth 

performance assessment, no validation set was required; instead, all train set images were 

dedicated to training.  
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Figure 5.4 The class label distribution across the training and testing sets of the apple disease dataset 

 

5.2.4 Convolutional Neural Networks  
 

5.2.4.1 Fine-Tuning Convolutional Neural Networks 

 

Three pre-trained models: MobileNetV2 (Sandler et al., 2018), InceptionResNetV2 (Szegedy et 

al., 2016), and EfficientNetV2L (Tan & Le, 2021) were fine-tuned to classify the testing set. As 

most of the CNN models used in previous apple disease classification studies have proven 

successful, they were adopted here based on their differing architectures and resource 

requirements.  Each model could be compared against the others to establish which performed 

best and to ascertain whether the classification of multispectral imagery would work regardless 

of the architecture. Each model was fine-tuned on the primary and secondary data within the 

training set, until model convergence. Throughout the training, the output for training time, 

training accuracy and training loss were displayed per epoch. After training, each fine-tuned 

model and their weights were saved as hdf5 files. This allowed the fine-tuned models to be 

readily available for future classification without requiring retraining. Upon training, each model 

immediately classified the testing set, and provided a confidence score output for each training 

image in a CSV folder. The full fine-tuning and classification process is shown in Figure 5.5.  
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Figure 5.5 Flow diagram of the apple disease dataset multi-label classification process 

 

All three models were downloaded from the Keras library, having already been pre-trained on 

millions of annotated images from ImageNet (Deng et al., 2009). Transfer learning is a technique 

that leverages the knowledge of a pre-trained model as the foundation for a new classification 

model, requiring less data for the new training phase, thereby reducing training time and 

mitigating overfitting (Zhuang et al., 2019). Fine-tuning, a key transfer learning method, involves 

using the weights of a pre-trained model to initialise the model before retraining either all or 

part of these weights on the target training set (Boulent et al., 2019). This approach significantly 

enhances the adaptability of a CNN classifier compared to the direct application of a pre-trained 

network (Radenović et al., 2018; Dhaka et al., 2021). For this study, all model weights were 

frozen except for the final fully connected layer, which remained unfrozen and was retrained on 

the training set to produce three fine-tuned CNN models for apple scab classification (Figure 

5.6).  
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Figure 5.6 Process of fine-tuning the final fully-connected layer of the pre-trained MobileNetV2, InceptionResNetV2, and 

EfficientNetV2L models 
 

5.2.4.2 Operational Environment and Hyperparameter Adjustment   

  
For optimal training and classification, CNN architectures must use appropriate 

hyperparameters that balance high performance with hardware utilisation and training times 

(Ang et al., 2023). Hyperparameter adjustments for each model were tuned based on the 

hardware resources available (Table 5.3) and the performance assessment of the validation 

testing set. All CNN models were trained and classified in Python on the PyCharm IDE. Each 

model was trained until convergence at epoch 12 with a decremental learning rate for each 

epoch. For the computing resources available, batch sizes of 40, 30, and 6 were optimal for 

MobileNetV2, InceptionNetV2, and EfficientNetV2L. For multi-label classification, the Sigmoid 

activation function and BinaryCrossentropy loss function were most appropriate. The complete 

model fine-tuning and classification code has been provided in Appendix B.  
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Hardware Configuration Parameters  
CPU  AMD Ryzen 7 5800H 3.2GHZ  
GPU  Nvidia GeForce RTX 3070 Laptop GPU (8Gb)  
RAM  64Gb  

Hard Disk  1Tb  
Operating System  Windows 11 Home OS Build 22000.1455  

Table 5.3 Hardware configuration parameters 
 

5.2.5 CNN Classification Performance Evaluation  
  
The performance of each CNN model was assessed in terms of their confidence score outputs for 

each disease class, specifically ‘SCAB’. Due to the presence of multiple diseases in the dataset, 

which is also a common occurrence in real-world orchards, a multilabel classification approach 

was adopted. This multilabel approach means that CNN classification output predictions for each 

individual class can have a maximum confidence score of 1.00. A threshold score of 0.5 was used, 

and values over this threshold were considered a positive prediction for that class. As a leaf 

could not be both healthy and infected simultaneously, prediction outputs that contained a 

disease class alongside ‘HEALTHY’ had the latter class ignored. Individual-label binary confusion 

matrices were used as the basis for performance assessments, with true and false positives and 

negatives based on the manually annotated labels. From these confusion matrices generated, 

metrics for accuracy, recall (sensitivity), specificity, precision, and F1 Score were calculated for 

each model (see Chapter 4.2.3). The performance assessments of multispectral data were 

focused only on ‘SCAB’ classifications. These assessments were made on the overall dataset of 

RGB and NIR imagery on a sample-by-sample basis.  

  

For the time series analyses, the confidence scores attributed to the ‘SCAB’ class for each day 

were used. These scores were used to generate a heatmap using the Plotly graphing library in 

Python, where the value of each cell represents the confidence score for one image of one plant 

on one day. The heatmaps for RGB and NIR time series were assessed and compared against 

each other to determine the key features, trends, and discrepancies from the manual 

classification. These include the earliest points of detection, the presence of noise, and plant 

physiology or illumination conditions that may influence false results. To finalise the comparison 

of RGB and NIR imagery for scab detection, a time series of cumulative confidence was 

produced.  
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5.3 Results  
  

5.3.1 CNN Model Training Convergence   
  
The MobileNetV2, InceptionResNetV2, and EfficientNetV2L architectures underwent training 

until convergence was achieved at epoch 12. Following the final training epoch, the CNNs 

exhibited training accuracies of 0.9524, 0.9772, and 0.9740 with corresponding training losses 

of 0.0469, 0.0102, and 0.0176 for MobileNetV2, InceptionResNetV2, and EfficientNetV2L, 

respectively (Figure 5.7). These preliminary results suggested that InceptionResNetV2 had the 

best performance in classifying the training dataset. EfficientNetV2L incurred the longest 

training duration, taking 67.8% longer to train all 20,000 images than MobileNetV2. Despite the 

extended training duration, the classification of all 8,800 test images by EfficientNetV2L took 

only slightly longer than MobileNetV2 (Table 5.4). The training performance metrics, including 

training accuracy, training loss, and the training time recorded after each epoch, as well as 

overall classification (testing) time, are provided in Appendix C.  

 

 
Figure 5.7 Convergence in training accuracy (left) and training loss (right) for MobileNetV2, InceptionNetV2 and 

EfficientNetV2L models 
 

Model Training Time Time per Epoch Testing Time 
MobileNetV2 9159s 763s 336s 

InceptionResNetV2 9500s 792s 331s 
EfficientNetV2L 15370s 1281s 353s 

Table 5.4 Training and testing runtimes for MobileNetV2, InceptionNetV2 and EfficientNetV2Lmodels 
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5.3.2 CNN Classification Performance  
  
5.3.2.1 Validating CNN Performance on Secondary Data  

  
The three models were validated based on their classification performance for all five classes 

across the 4,400 images from the public sources in the secondary data. This validation approach 

was chosen due to the limited number of classes within the primary dataset, which exhibited a 

bias towards healthy samples and in which only binary classification would be feasible. Thus, 

potentially overlooking the CNNs discriminatory capabilities in classifying scab, among other 

diseases. The classification results derived from confusion matrices demonstrated strong 

performances across each model, with high accuracies maintained across all five classes (Table 

5.5). The overall F1 Scores calculated were 0.9428, 0.9557, and 0.9662, with ‘SCAB’ class scores 

of 0.9528, 0.9516, and 0.9644 for MobileNetV2, InceptionResNetV2, and EfficientNetV2L, 

respectively. EfficientNetV2L exhibited the highest overall performance, demonstrating a 

modest 0.66% improvement over MobileNetV2 and 0.43% over InceptionResNetV2. This 

improvement was more pronounced in the ‘SCAB’ class, with a 1.45% and 0.89% increase in 

accuracy. The ’MILDEW’ class received the highest validation accuracies, followed by ‘RUST’, 

with ‘SCAB’ receiving the lowest. This was attributed to the imbalance in class labels in the 

testing dataset, as accuracy measurements are greatly influenced by the number of true negative 

predictions. Investigation of the F1 Scores demonstrates high performance in both ‘HEALTHY’ 

and ‘SCAB’ classes, even with the influence of the RGB and NIR time series imagery in the 

training set. These results underscore the effectiveness of the CNNs and their ability to 

accurately identify multiple diseases even under challenging illumination conditions and 

combined disease symptoms.  
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Model  Metric  FROGEYE  HEALTHY MILDEW  RUST  SCAB  Total  

MobileNetV2  

ACC  0.9789  0.9791  0.9923  0.9852  0.9611  0.9793  
REC  0.9421  0.9712  0.9150  0.9376  0.9393  0.9473  
SPE  0.9881  0.9823  0.9969  0.9936  0.9724  0.9877  
PRE  0.9518  0.9578  0.9456  0.9625  0.9463  0.9529  
F1  0.9469  0.9644  0.9300  0.9499  0.9428  0.9501  

InceptionResNetV2  

ACC  0.9777  0.9800  0.9966  0.9864  0.9675  0.9816  
REC  0.9432  0.9790  0.9636  0.9482  0.9367  0.9529  
SPE  0.9864  0.9804  0.9986  0.9931  0.9834  0.9892  
PRE  0.9454  0.9537  0.9754  0.9599  0.9670  0.9584  
F1  0.9443  0.9662  0.9695  0.9541  0.9516  0.9557  

EfficientNetV2L  

ACC  0.9827  0.9886  0.9930  0.9895  0.9757  0.9859  
REC  0.9705  0.9696  1.0000  0.9665  0.9653  0.9696  
SPE  0.9858  0.9965  0.9925  0.9936  0.9810  0.9902  
PRE  0.9448  0.9912  0.8885  0.9636  0.9634  0.9628  
F1  0.9574  0.9803  0.9410  0.9650  0.9644  0.9662  

Table 5.5 CNN prediction accuracies for each class in the test set from secondary (public) data sources.  
 (ACC – Accuracy, REC – recall, SPE – specificity, PRE – precision, F1 – F1 score)  

 
 
Having assessed the ability of each CNN to classify imagery from public sources within the 

secondary data, it was possible to compare performance more broadly against similar metrics 

reported in earlier studies. All three CNNs outperformed the VGG_INCEP model (97.1%) the 

model developed by Jiang et al. (2018), as well as the InceptionResNetV2 model (88.6%) 

employed by Turkoglu et al. (2022). Only EfficientNetV2L achieved performance comparable to 

XDNet (98.4%) by Chao et al. (2020) and an EfficientNetV2 model (98.8%) by Xiao et al. (2023). 

The only model in the literature to surpass the EfficientNetV2L performance was an SE_Xception 

model (99.4%) trained by Chao et al. (2021). The results from the validation data suggest 

comparable performance with previous studies against previous research, although direct 

comparisons can be drawn against studies utilising the same public datasets: PlantVillage and 

PlantPathology datasets. For instance, Mohanty et al. (2016) achieved an accuracy of 0.99 

through transfer learning on GoogleNet, while Vishnoi et al. (2023) achieved an accuracy of 0.98 

and recall of 0.94 on scab with images from PlantVillage. While these studies show higher 

performance, the PlantVillage dataset was simple, localised entirely on individual leaves with 

late-stage symptoms under controlled illumination conditions with high-contrast black 

backgrounds.  

 

The PlantVillage dataset presents ideal acquisition and classification conditions rather than the 

practical, real-world conditions this study chooses to replicate (Saleem et al., 2019). All models 

in our study outperformed the ResNet50 model used on PlantPathology2020, which attained a 

97.0% accuracy (Thapa et al., 2020), and the AFD_Net model, which achieved an accuracy of 

92.6% on PlantPathogy2021 (Yadav et al., 2022). The performances of all three CNNs display a 
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marked improvement over the previous fine-tuned MobileNetV2 and EfficientNetV2L in Chapter 

4, which achieved F1 scores of 0.911 and 0.914, respectively. This improvement in accuracy is 

attributed to adopting a multi-label classification approach instead of a multi-class approach. 

The inclusion of a multiple disease ‘COMPLEX’ class adversely impacted the training and 

classification of each individual disease within these class images. These comparative analyses 

highlight the effectiveness of CNN models trained on this study dataset to accurately distinguish 

late-stage apple scab and healthy leaves from other foliar diseases from localised leaf imagery 

under the challenging conditions encountered in real-world scenarios.  

  

5.3.2.2 Scab Classification Performance on Multispectral Imagery  

  

Having demonstrated the diagnostic abilities of CNNs to distinguish the ‘HEALTHY’ and ‘SCAB’ 

classes from other disease types, the same assessment methodology was applied to the 4,400 

multispectral images in the primary dataset. Although overall accuracies showed that ‘SCAB’ 

predictions were statistically significant, there was a major drop in performance for this dataset 

compared to the validation data (Table 5.6). The high accuracies and specificities suggested 

minimal false positives in experimental or control samples. The F1 scores are not discussed 

because there were no true positive samples for the control set, which did not allow precision 

metrics to be calculated for these samples. The mean accuracy scores across NIR and RGB 

imagery were 0.807, 0.829, and 0.854 from MobileNetV2, InceptionResNetV2, and 

EfficientNetV2L, a significant improvement over the mean accuracies of 0.7714 and 0.7764 from 

MobileNetV2 and EfficientNetV2L reported in Chapter 4. However, the mean recall score, the 

proportion of true positives identified correctly, was significantly worse, with scores of 0.418, 

0.486, and 0.607 from MobileNetV2, InceptionResNetV2, and EfficientNetV2L compared to 

scores of 0.795 and 0.670 presented in Chapter 4. MobileNetV2 and InceptionResNetV2 models 

misclassified ‘SCAB’ as ‘HEALTHY’ more often than correctly identifying them as infected. This 

indicates an overwhelming bias towards ‘HEALTHY’ when classifying the test data. Only 

EfficientNetV2 predicted true positives more often than false negatives to achieve a statistically 

significant recall score of over 50%.  

 

The disparity between high accuracies and low sensitivities is caused by the imbalance between 

the ‘HEALTHY’ and ‘SCAB’ classes in the test dataset, where a bias towards the former can lead 

to high true negative classifications in the latter, skewing accuracy results. All models showed 

superior performance in classifying ‘SCAB’ when using NIR imagery compared to RGB. The 

overall accuracy of NIR imagery was 7.3% higher, and its recall was 23.1% greater than that of 

RGB imagery. As only EfficientNetV2L displayed a reliable classification of scab in both sets of 
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imagery, further classification performance assessments will only consider results from 

EfficientNetV2L going forward.  

 

Labels  Accuracy  Recall  Scab Count  
RGB  NIR  RGB  NIR  TP  FN  

MobileNetV2  0.7827  0.8318  0.3650  0.4718  516  716  
InceptionResNetV2  0.7968  0.8618  0.4206  0.5523  600  632  

EfficientNetV2L  0.8236  0.8846  0.5696  0.6447  749  484  
Table 5.6 Model prediction accuracy and recall for the ‘SCAB’ class for RGB and NIR imagery and the total count of ‘SCAB' 

predictions (True Positives (TP) and False Negatives (FN)) 
 
Further assessment of the classification results by assessing the classification of each plant 

sample individually provided useful information on the sources of the poor sensitivities (Table 

5.7). While overall performance in the experimental set was modest, the classification 

performance of control samples was high, with few instances of false positives across all 20 

control samples in RGB and NIR imagery. The CNN specificity was calculated to be 0.9218 and 

0.9800 for RGB and NIR, showing a greater ability to predict a true negative of scab within the 

latter imagery. It was noteworthy that other studies lack control samples for comparison 

purposes. For instance, Yadav et al. (2022) reported high specificities of up to 0.99 but did not 

include control samples. Similarly, the previous chapter lacked a well-defined control set but 

achieved specificities up to 0.8186, with higher specificities observed in RGB imagery than in 

NIR imagery. These results show that the risk of false positive predictions of scab is low, 

especially from NIR imagery.  

  

Analysing the classification of scab on each individual plant revealed that even the best-

performing and most stable EfficientNetV2L model exhibited notable performance variations in 

the cumulative predictions of experiment samples. Classification sensitivities ranged from 0.277 

to 0.917 in RGB and 0.111 to 0.869 in NIR. There was no discernible correlation between the 

initial infection date and prediction recall despite the greater length of time for scab infections to 

mature and spread. In the NIR imagery, four of the five lowest-ranking accuracy and sensitivities 

occurred when classifying the oldest plants in large pots (E01 to E05). These samples were the 

largest plants classified, with the most complex structures. They were also the most resilient to 

scab infections due to their maturity and had low infection severities by the end of the 

experiment. There was a clear relationship between plant size and recall ability, with the larger 

plants influencing poorer ‘SCAB’ classification performance likely due to the lower infection 

severities compared to smaller, more susceptible plants with fewer leaves.  
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Control  RGB  NIR  Experiment  RGB  NIR  
Labels  Accuracy  Accuracy  Labels  Accuracy  Recall  Accuracy  Recall  

C01  1.0000  1.0000  E01 (12 d.p.i.)  0.4909  0.3636  0.5636  0.4545  
C02  0.9636  0.9273  E02 (38 d.p.i.)  0.5091  0.5556  0.7091  0.1667  
C03  0.9091  1.0000  E03 (33 d.p.i.)  0.6545  0.7391  0.7091  0.4348  
C04  0.7273  0.9636  E04 (38 d.p.i.)  0.6545  0.2778  0.7091  0.1111  
C05  0.9636  1.0000  E05 (34 d.p.i.)  0.7818  0.6364  0.7818  0.5652  
C06  0.9636  1.0000  E06 (23 d.p.i.)  0.7636  0.6364  0.8909  0.8485  
C07  0.8909  1.0000  E07 (12 d.p.i.)  0.7455  0.6744  0.8909  0.8636  
C08  0.7818  0.9636  E08 (21 d.p.i.)  0.8182  0.7143  0.8364  0.8000  
C09  0.8727  0.9636  E09 (19 d.p.i.)  0.7091  0.5556  0.9091  0.8649  
C10  1.0000  1.0000  E10 (17 d.p.i.)  0.6182  0.4615  0.6000  0.4359  
C11  1.0000  1.0000  E11 (33 d.p.i.)  0.7273  0.3478  0.8545  0.6522  
C12  0.9455  1.0000  E12 (37 d.p.i.)  0.8727  0.7778  0.8727  0.6842  
C13  1.0000  1.0000  E13 (14 d.p.i.)  0.7091  0.6000  0.7455  0.6667  
C14  0.9818  1.0000  E14 (18 d.p.i.)  0.8364  0.7500  0.8364  0.7632  
C15  1.0000  1.0000  E15 (32 d.p.i.)  0.7455  0.3913  0.9455  0.8696  
C16  0.9636  0.9455  E16 (33 d.p.i.)  0.7091  0.3043  0.8364  0.6087  
C17  0.9273  1.0000  E17 (13 d.p.i.)  0.7091  0.6279  0.8182  0.7674  
C18  0.8727  0.8909  E18 (32 d.p.i.)  0.9455  0.9167  0.8727  0.7083  
C19  0.9636  0.9636  E19 (19 d.p.i.)  0.6364  0.4118  0.7091  0.5946  
C20  0.9074  0.9636  E20 (21 d.p.i.)  0.7273  0.5833  0.7091  0.5429  
TN  996  1024  TP  348  401  
FP  75  23  FN  263  220  

Table 5.7 EfficientNetV2L prediction accuracy and recall for the ‘SCAB’ class for RGB and NIR imagery for each plant 
samples and the total count of ‘SCAB' predictions (True Negative (TN), False Positives (FP), True Positives (TP) and False 

Negatives (FN)) 
 

5.3.3 Enhancing Classification Performance Through Localisation  
  
5.3.3.1 Image Localisation Rationale and Methodology  

  
A further qualitative investigation into the classification performance of each sample revealed 

two major trends affecting classification recall. First, larger plants with a greater number of 

leaves were misclassified more often, as well as images where symptoms were sparse with small 

lesions on a few leaves. Second, there was a clear influence of infection severity on the 

classification performance through all stages of apple scab progression. Plants with a lower 

percentage of leaf cover displaying symptoms were more likely to be misclassified as healthy. 

Even during early-stage infections, plants with scab lesions spread across numerous leaves had 

greater sensitivities than late-stage infections of single lesions. This offers a major explanation 

as to why the classification performance was higher in the validation data than in the 

multispectral data. In the secondary data, image acquisition was focused on individual leaves 

displaying the recognisable features of infection classes, with the clear aim of robust CNN 

training. The key difference between the secondary data and the primary data collected was that 
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in this study, whole plants were imaged, not just specific focal regions. This caused a higher ratio 

of healthy-to-infected tissue in ‘SCAB’ positive imagery, causing the bias towards ‘HEALTHY’ 

predictions. It was clear that the primary data within the testing set, containing multispectral 

images of whole plants, was unsuitable for accurately classifying apple scab, especially at early 

stages and low severities. Acquisition of more multispectral imagery to improve CNN training 

was unfeasible. The primary data within the testing set was therefore augmented by localising 

the images onto the regions displaying scab symptoms identified during the manual dataset 

annotation. Image localisation has previously been demonstrated to improve image 

classification (Barbedo, 2019a). Localisation of imagery was performed manually by cropping 

each training image labelled scab to zoom into smaller regions that contained symptoms and 

their surroundings. This technique reduced the ratio of healthy to scab-infected leaves within 

the multispectral images. This approach was somewhat subjective but aimed to maintain a 

combination of infected, healthy and background features within each image (Figure 5.8). As 

healthy samples did not contain scab symptoms, and the overall model performance on these 

images was acceptable, these images did not need to be localised. Cropping transformed the 

multispectral imagery to levels of localisation similar to those exhibited in the public datasets.  
 

 

 
Figure 5.8 Example of whole-plant and localised images of experimental samples E01 and E13 in RGB and NIR imagery 

 
5.3.3.2 Classification Performance on Localised Multispectral Imagery  

 

The previously fine-tuned EfficientNetV2L model reclassified all images within the new localised 

testing set. This methodology significantly improved classification performance, with an overall 

42.19% increase in true positives and a 34.5% decrease in false negatives compared to the 
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original whole-plant imagery in the testing set (Table 5.8). Recall scores ranged from 0.590 to 

1.000 in RGB and 0.714 to 1.000 in NIR imagery. Again, NIR was superior to RGB, with 6.4% 

more true positives and 31.2% fewer false negatives, but the difference in performance was 

reduced as the RGB imagery experienced a greater overall improvement as a result of the manual 

localisation. All samples that had previously performed poorly, especially the larger plants and 

with low-severity infections, achieved greater ‘SCAB’ prediction sensitivities, with only 3 samples 

scoring below 0.8 in NIR imagery. These results demonstrated that the classification of apple 

scab was improved when localised imagery was used in preference to whole-plant imagery.  

 

Experiment  RGB  NIR  
Labels  Accuracy  Recall  Accuracy  Recall  

E01  0.8909  0.8636  0.8546  0.8182  
E02  0.5818  0.9444  0.9818  0.9444  
E03  0.8182  0.8696  0.8909  0.9565  
E04  0.8909  1.0000  0.9818  0.9444  
E05  0.9091  0.7727  0.9818  0.9565  
E06  0.8909  0.8788  0.9818  1.0000  
E07  0.9636  0.9535  1.0000  1.0000  
E08  0.9091  0.8571  0.8909  0.8571  
E09  0.9091  0.8611  0.9455  0.9189  
E10  0.7091  0.5897  0.8909  0.8462  
E11  0.9636  0.9130  0.9455  0.9130  
E12  0.9091  0.9444  0.9636  0.8947  
E13  0.8727  0.8250  0.8182  0.7619  
E14  0.9091  0.8611  0.9818  0.9737  
E15  0.8909  0.7826  1.0000  1.0000  
E16  0.8546  0.6957  0.9273  0.8261  
E17  0.9273  0.9070  0.9273  0.9070  
E18  0.9636  0.9583  0.9273  0.8333  
E19  0.8364  0.7647  0.8182  0.7568  
E20  0.8546  0.7778  0.8182  0.7143  

TOTAL  0.8727  0.8510  0.9264  0.8912  
TP  516  549  
FN  95  72  

Table 5.8  Cumulative EfficientNetV2L prediction accuracies and sensitivities for the ‘SCAB’ class for RGB and NIR imagery 
and the total count ‘SCAB’ predictions (True Positives (TP) and False Negatives (FN)) 

 

To further reiterate the effectiveness of this localisation technique for enhancing classification 

accuracy, the pre-trained MobileNetV2 and InceptionResNetV2 models were also used to 

reclassify the new test set. Cumulatively, accuracies and recall scores were 13.3% and 53.0% 

greater than whole-plant imagery, despite an outlier in the low performance of 

InceptionResNetV2 classification of RGB imagery (Table 5.9). EfficientNetV2L still performed 

best of the three, achieving accuracies of up to 95.4% in the classification of ‘SCAB’ from NIR 

imagery comparable to accuracies achieved in previous literature. MobileNetV2, 
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InceptionResNetV2, and EfficientNetV2L achieved the final F1 scores in RGB of 0.6972, 0.7143, 

and 0.8245, respectively, and 0.8816, 0.8745, and 0.9150 in NIR imagery. After improving the 

classification of apple scab from multispectral imagery with three CNNs, the evidence shows that 

the classification of ‘SCAB’ is more accurate, sensitive, and precise from NIR images than RGB.  

 

Labels Accuracy Recall Scab Count 
RGB NIR RGB NIR TP FN 

MobileNetV2 0.85318 0.93636 0.60884 0.83897 893 339 
InceptionResNetV2 0.86909 0.92864 0.58920 0.88084 907 325 

EfficientNetV2L 0.90273 0.95364 0.84452 0.88406 1065 167 
Table 5.9 Model prediction accuracies and recall scores for the ‘SCAB’ class for cropped RGB and NIR imagery. The total 

count of ‘SCAB’ labels True Positives (TP) and False Negatives (FN) are also displayed. 
 

5.3.4 Time Series Assessment  
  

To assess the capabilities of the CNNs to monitor scab progression over time, heatmaps of scab 

predictions were produced for overall manual identification (Figure 5.9) and EfficientNetV2L 

classifications across the RGB (Figure 5.10) and NIR (Figure 5.11) time series. The heatmap of 

manually classified images shows the expected pattern to be observed. The manual classification 

was considered the ground truth, hence any classification of ‘SCAB’ predicted earlier than the 

first date of infection in the manual time series was considered to be a false positive in the 

predicted data. Control samples C01 to C20 in the top half of the heatmap should have a zero-

confidence score for ‘SCAB’ throughout the 56 days of the experiment. The experimental 

samples display a large variation in earliest infection points, ranging from 12 to 38 d.p.i. This 

variation makes it difficult to determine the true earliest points of infection between NIR and 

RGB imagery and displays the inconsistency with inoculation and latency periods of scab 

infection across the test set samples.  

  

The CNN-based confidence outputs for each image were used to convert the results to heatmaps. 

As EfficientNetV2 was consistently the most accurate, only results from this model have been 

further assessed. The confidence threshold of 0.5 was maintained, with any value below 

considered a null classification. Apple scab was classified 1.4 days earlier in the NIR time series 

than in RGB, on average. Out of the 20 experimental samples, ‘SCAB’ was classified on the same 

day in RGB and NIR imagery in 12 plants, with samples E13 and E14 being detected two days 

earlier and E19 detected three days earlier in the NIR time series. Plant sample E20 was an 

outlier, being the only sample manually classified earlier in RGB than in NIR by one day. Of all 

the plants, E01 and E07 had the earliest detection date, at 12 d.p.i. Overall, NIR matched manual 

classifications better, being detected on the date of manual classification in 17 samples, unlike 
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RGB, where only 10 samples achieved this. There was considerable variation in early 

classification between samples between the RGB and NIR datasets. The greatest difference 

occurred in E19, which was classified nine days earlier in NIR than RGB, followed by E10, being 

classified seven days earlier. E01, E16, E18 and E20 were classified one day earlier in RGB than 

NIR and E02, E03, E04 and E08 on the same day. The remainder of the samples classified ranged 

between one-to-three days earlier. These results provide further support to the classification 

performance assessments in the use of NIR imagery to detect apple scab.  

  

These heatmaps can also be used to discriminate between extraneous noise and direct 

influences of misclassifications. In the RGB dataset, many false positives were predicted on the 

sample plant over consecutive days, indicating specific features that were not detectable in NIR 

imagery. Investigation into these causes revealed that these influences were largely the result of 

abiotic damage to leaves, occurring in both control and experimental imagery. There were also 

trends in false negatives occurring on specific days, at 31, 43 and 49 d.p.i. in RGB and 49, 51 and 

53 d.p.i. in NIR. These can be attributed to the acquisition on the specific day of imaging, due to 

the sensor exposure settings not being fully optimised to the illumination conditions. These 

features were more pronounced in NIR imagery, where strong solar insolation directly on the 

leaf surface caused a higher likelihood of ‘HEALTHY’ predictions.  

 

 
Figure 5.9 Time series of manually classified data (Yellow – Healthy; Aqua/Blue – Scab) for control (C01-C20) and 

experimental (E01-E20) samples 
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Figure 5.10 Time series heatmap of ‘SCAB’ confidence scores for RGB imagery. (Yellow – Healthy; Aqua/Blue – Scab) for 

control (C01-C20) and experimental (E01-E20) samples 
 

 
Figure 5.11 Time series heatmap of ‘SCAB’ confidence scores for NIR imagery. (Yellow – Healthy; Aqua/Blue – Scab) for 

control (C01-C20) and experimental (E01-E20) samples  
  
Due to the inconsistencies in the dates of the initial infection, noise, and other influences from 

plant physiology and acquisition conditions, it was difficult to interpret the differences between 

RGB and NIR imagery for monitoring scab progression over the duration of the experiment. To 

reduce these effects, a 3-day smoothed time series of cumulative scores for the control and 
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experimental samples was produced (Figure 5.12). This time series displays the precision of 

scab detection across all samples over time, following the sum of confidence scores with 

minimal false positives across all 20 experimental samples. The model has high precision for 

apple scab predictions. For RGB imagery, the greatest overprediction of scab occurred on day 15, 

with a score of 4.76 rather than 4.00. There were no overall over-predictions in NIR imagery. 

The mean confidence difference for scab predictions was 12.12% for NIR and 19.49% for RGB. 

In the early stages and control samples, there are varying levels of specificity where confidence 

scores for ‘SCAB’ exist in the absence of symptoms. The specificity for control samples in the NIR 

imagery is lower and more stable, with less fluctuation than RGB imagery.   

 

In the late stages of the disease, at 38 d.p.i., all 20 samples are infected, and a maximum 

confidence score of 20 can be achieved. Initially, NIR imagery performs better than RGB imagery, 

with a higher confidence score than RGB. However, a notable deviation occurred around day 48, 

attributed to higher illumination levels in the imagery from 49 d.p.i to 51 d.p.i., which brought 

down the mean confidence. This had a much greater effect on the NIR imagery, leading to 

cumulative accuracies between both image types being comparable in the late stages. The 

smoothed moving-mean time series analysis clearly illustrates that the EfficientNetV2L model 

classifies apple scab earlier and more confidently and with greater stability in NIR imagery than 

in RGB imagery under most natural illumination conditions.  

 

 
Figure 5.12 Smoothed 3-day moving mean time series of the sum of manual classification scores (green) and confidence 

scores of all 40 experimental and control samples in RGB (light blue) and NIR (dark blue) imagery from 1 to 56 days post-
inoculation.  
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5.4 Discussion  
  

5.4.1 CNN Classifiers for Apple Scab Monitoring  
  
The aim of this study was to investigate whether NIR and RGB imagery could be used to reliably 

detect and monitor apple scab over a time series under natural illumination conditions. Three 

important results emerged from the assessment of the CNN-based classification. The first was 

that apple scab classification was superior in NIR imagery than in RGB imagery in almost every 

regard, with greater numbers of true predictions and fewer false predictions in both 

experimental and control samples. The second was that classifying apple scab on images of 

whole plants led to poor Recall of ‘SCAB’ predictions, but that classification performance could 

be enhanced by localising imagery on a smaller leaf area. This issue would be greater if the 

current acquisition method were scaled up to larger adult trees in orchards. The third and final 

result was that while NIR imagery outperformed RGB in most cases, strong direct sunlight could 

cause a bias towards ‘HEALTHY’ predictions if exposure settings are not optimised; these are 

circumstances where RGB imagery would be better suited.  

  

Of all CNNs fine-tuned on multispectral data, the EfficientNetV2L model consistently performed 

best across primary and secondary data in the testing set. Despite a longer training time, the 

marginal difference in testing time, considering the improvements in precision and recall, makes 

EfficientNetV2L a recommended architecture for studies of this nature. While MobileNetV2 and 

InceptionResNetV2 had improved classification performance through localisation, their recall 

capabilities, specifically for RGB imagery, are not high enough to reliably monitor for scab. A key 

goal of this research was to provide an accurate estimation of scab that balances precision and 

recall so that few false positives would overinfluence spray or false negatives, leading to disease 

epidemics. This study used a confidence score of 0.5 as a reasonable threshold to achieve this 

balance. Practical use in orchards would likely be more risk-averse, preferring to over-spray 

than to chance epidemics; in these situations, reducing threshold values to 0.3 would reduce 

false negative healthy predictions and provide greater recall at a minor expense to overall 

precision. Conversely, if over-spraying must be avoided, increasing the threshold value can 

reduce the number of false positive scab predictions, improving overall precision. Multispectral 

imaging for apple scab monitoring within orchards would result in thousands of images 

acquired daily, with a proportion of these expected to produce false positive results. Ensuring 

high classification accuracy, coupled with methods to mitigate the influence of noise, will be 
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essential for providing appropriate disease management within orchards without risking 

widespread epidemics or overuse of fungicide sprays.  

  

Chapter 4 recommended using a control set for future studies of apple scab detection, as there 

was uncertainty in numerous healthy samples where CNNs predicted scab. Due to the 

limitations of the experimental procedure, it was uncertain whether CNNs were detecting latent 

infections or whether these were false positives. The classification of control samples in this 

study demonstrates an extremely low false positive rate for control samples, especially when 

observed in near-infrared imagery. Furthermore, scab classification of experimental samples by 

EfficientNetV2L rarely occurred earlier than the manually classified time series, except in 

circumstances that could be attributed to noise. This is in contrast to the previous chapter 

demonstrated that CNNs could detect apple scab earlier than manual techniques. Based on the 

results of this study, it is unlikely CNNs would classify apple scab earlier than a manual 

assessment of both RGB and NIR time series that is performed thoroughly.  

 
5.4.2 Multispectral Imagery for the Early Detection of Apple Scab  
 
The detection of apple scab from NIR imagery was, on average, one day earlier than in RGB 

imagery, only a marginal improvement, unlike the earlier studies in Chapters 3 and 4. This is 

likely due to a reduction in the imaging scale caused by including larger plants at a greater 

imaging distance, reducing the relative pixel size between studies. Despite this, the automated 

detection of apple scab symptoms from NIR imagery was considerably more accurate compared 

to RGB imagery, especially in the early stages of infection. The superior detection sensitivity is 

due to the high contrast between symptomatic lesions and healthy leaf tissue. Direct sunlight 

exerted a major influence on the presence of scab in the imagery. Near-infrared wavelengths 

have a strong reflection in healthy leaf tissue, as the light is refracted through the spongy 

mesophyll layer with minimal absorption. The dense layers of conidia in scab lesions increase 

the absorption potential of the surface, resulting in a strong contrast between healthy and 

infected tissue (Bleasdale et al., 2022). When insolation is high, the reflectance difference 

between infected and healthy tissue is lower, causing lesions to fade and masking the key 

features used to classify scab (Figure 5.13). Specular lighting also caused some masking effects 

in RGB imagery, but the impacts on scab classification were less severe.  

  

One explanation for the effects of strong insolation on classification results was the fixed 

exposure settings of the NIR camera. Modifying the commercial camera required removing the 

internal infrared filter and dust reduction system. The removal of these components affected the 

calibration between the lens and the sensor, affecting the autofocus and autoexposure 
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adjustment settings. All focus and exposure settings were set for the first plant sample; however, 

the weather conditions varied throughout the daily image acquisition phase. Changes in weather 

conditions and cloud cover led to certain images being under or overexposed. The effects of 

varying illumination conditions could be mitigated if exposure settings were adjusted 

automatically in real-time. Additional methods to reduce these impacts could include imaging 

earlier in the day for better lighting conditions or incorporating a greater quantity of high-

exposure imagery into the training dataset. Direct sunlight had less influence over RGB-based 

classification so in cases where high exposure is unavoidable, RGB sensors may be used as an 

alternative.  

 

 
Figure 5.13 The influence of strong sunlight on apple scab prominence in sample E09. Lesions on leaves marked 1 and 2 

become visible at 49 d.p.i. compared to the previous day 
 

While apple scab could also be classified from RGB imagery, these classifications were less 

precise and sensitive than NIR imagery despite a more substantial training set from secondary 

data sources. A key difference revealed in the results was the trend of false positives in the 
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control samples. The main hypothesis for this was the presence of abiotic symptoms caused by 

heat damage within the glasshouses. Abiotic stress presented itself as dark brown areas of 

necrotic tissue (Figure 5.14). These symptoms, while not similar to apple scab, were distinct 

from most of the ‘HEALTHY’ labelled training images. Abiotic symptoms were ignored because 

they were not caused by fungal pathogens. However, this decision may have had an adverse 

impact on classification. One interesting finding is that these dark abiotic symptoms were much 

less severe in NIR imagery, which made the identification of scab more precise. These abiotic 

symptoms, either from heat stress, water stress, or mechanical stresses, would likely be present 

in all real-world conditions, and it is vital that these are not misclassified as a fungal disease as 

this would lead to incorrect management and spray decisions. Increasing the training dataset 

with more instances of healthy leaves containing abiotic symptoms could solve this issue, as 

could introducing a further ‘ABIOTIC’ category.  

 

 
Figure 5.14 Example of abiotic (heat) stress on control sample C04 in RGB and NIR imagery. Characteristic symptoms of 

damaged leaf tissue are present on leaves marked 1, 2 and 3 
 

Although efforts to control powdery mildew were made before the experiment, the 

environmental conditions under which experimental samples were kept caused symptoms to 

return at 12 d.p.i. until the end of the experiment. Assessment of the imagery revealed that 

powdery mildew could be clearly identified in the RGB imagery but was undetectable in NIR 

imagery (Figure 5.15). There were no changes in leaf brightness or texture that indicated the 

presence of powdery mildew, even in severe infections. Classification of the test dataset by 

EfficientNetV2L produced ‘MILDEW’ predictions in 231 RGB images but 0 NIR images. 

Furthermore, the presence of powdery mildew masked underlying scab lesions in RGB imagery 

but had little impact in NIR imagery. This finding has two important implications. Firstly, NIR 
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imagery can be used to detect apple scab in the presence of other diseases or stress symptoms, 

even when these symptoms cover the same leaf area. Secondly, it has revealed a limit to the 

diagnostic potential of fungal disease detection using NIR imagery. It is possible that NIR 

imagery may be capable of diagnosing other fungal diseases such as frogeye leaf spot and cedar-

apple rust successfully, as with apple scab, but not powdery mildew. Due to the novelty of near-

infrared imaging for stress detection in apple scab, further investigation into the interactions 

between powdery mildew and heat-damaged leaves with near-infrared radiation should be 

performed.  

 

 
Figure 5.15 Example of powdery mildew (white fungal mycelium on leaf surface) and scab on experimental sample E09. 

While characteristic scab lesions are clearly visible in the NIR imagery, powdery mildew cannot be detected. 
 

5.4.3 Experimental Challenges and Limitations  
  
The semi-controlled nature of the experiment introduced numerous challenges to accurately 

monitoring apple scab progression from early to late stages using CNNs. Reliably determining 

the earliest point of detection was a desirable outcome of this research, as this could effectively 

demonstrate the use of multispectral remote sensing to inform disease control methods. 

Achieving this required a large number of plants of different physiologies to calculate the mean 

date of early detection robustly. The moderate (54%) success rate of inoculation reduced the 

quantity of plant samples for training and testing. In the earliest stages of the experiment, this 

success rate was much lower, with only 10% of experimental plants developing infection within 

the first 21 days. There was clearly an issue regarding the inoculation process that could be 

attributed to any of the four following causes. Firstly, the pathogen had been stored in a freezer 

for approximately three years. Although V. inaequalis could remain dormant in storage at these 

temperatures (Szkolnik, 1978), there was a risk that the conidia may have denatured, and that 
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the strength of the inoculum applied to leaves was lower than anticipated. Secondly, the 

experiment took place between late summer and early autumn when many of the leaves of the 

plants were mature. Mature leaves, with tougher cuticles, are much less susceptible to scab 

infection than younger leaves (Bowen et al., 2011), and it is possible that the conidia would fail 

to germinate in the subcuticular region. Thirdly, inoculation was carried out in a glasshouse 

under warm temperatures. The date of inoculation was intentionally selected due to the 

foreseen period of overcast, wet weather, as temperature, humidity, and illumination could not 

be controlled. The environmental conditions were warmer than the optimal inoculation 

conditions for scab germination according to the revised Mills criteria (MacHardy & Gadoury, 

1989). The inoculum suspension may not have remained as free water on the surface for a 

sufficient length of time to develop a rapid onset of symptoms. Furthermore, a heatwave 

occurred between 9 and 17 d p.i, and the elevated temperatures could have adversely affected 

scab development. The fourth and final cause of poor inoculation could have been due to the 

control methods of powdery mildew prior to the experiment. Fungicidal sprays had been 

applied to treat powdery mildew in the months before the experiment, and despite all leaves 

being rinsed, this fungicide may have left residual protectant capabilities.  
  
In plants that did develop scab symptoms, the rate of severity increase was also much lower 

than anticipated and, in some cases, even regressed. The glasshouse environment was not 

conducive to scab germination, and elevated surface temperatures during days with high 

sunshine likely affected its progression and spread. Management of powdery mildew during the 

experiment also affected scab presence. Active fungicidal treatment was avoided. Instead, a leaf 

wash was applied to reduce powdery mildew spored on the leaf surfaces. The intensive 

application of this leaf wash on certain plants further impacted scab development. The 

inoculation and disease development issues ultimately led to fewer, less varied multispectral 

images of scab than anticipated, causing a greater bias towards ‘HEALTHY’ samples and a 

reduced quantity of training and testing data. Future experiments should consider exercising 

greater control of the growing environment, especially during inoculation, to increase the 

success rate of scab infection and reduce the risk of plant stress from abiotic sources, or other 

plant pests and pathogens.  
  
The low development of the scab also affected classification performance analysis as symptom 

presence and progression were inconsistent. Image annotation relied on tracing symptoms back 

to the earliest point of detection and considering all images after this to be infected. In reality, 

there were several instances where both RGB and NIR images labelled ‘SCAB’ contained no clear 

symptoms on a specific day, despite being present earlier in the time series. These cases were 
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ignored for plant imagery used in the training set due to the adverse effect on accurate 

‘HEALTHY’ predictions. CNN predictions of these images occurring in the test set often manifest 

as false negatives. In the EfficientNetV2L predictions of the localised dataset, there were 167 

false negatives: 95 for RGB imagery and 72 in the NIR imagery. A qualitative visual assessment 

was performed on the potential causes of these. While there were 14 cases of there being no 

discernible reason why the scab was not detected, most could be attributed to a potential cause 

by a lack of apple scab features. Occlusions were the greatest cause of misclassifications, where 

scab symptoms were masked by overlying leaves (Figure 5.16). The influence of direct sunlight 

was another common cause of misclassification. In some samples, scab severity was reduced, 

and symptoms became fainter over time due to the reduction of conidial density in the lesions, 

either due to adverse environmental conditions or the management of powdery mildew. 
 

 
Figure 5.16 Occlusion of scab lesions on Sample E13 in both the RGB and NIR time series. Scab lesions on leaf 1 at 52 d.p.i. 

are masked by the overlaying leaf 2 at 53 d.p.i., presenting no scab symptoms in the whole-plant imagery. 
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This discussion has identified the limitations and challenges of using CNNs to monitor apple 

scab. Recommendations for future experiments include exercising greater control over the 

growing environment, specifically the temperature and humidity during the inoculation period, 

which would have mitigated many of the adverse effects that influenced scab development. 

Furthermore, this would have reduced the risk of further stress from abiotic sources or powdery 

mildew disease. While these solutions may have allowed for earlier detection and higher 

classification accuracies, the imagery acquired under these conditions would not have 

demonstrated the potential of both multispectral imagery and CNNs to classify apple scab in 

complex scenarios. Commercial orchards will have inconsistent illumination, occlusions, 

concurrent symptom presence, unknown infection ages and disease management routines. 

Despite the challenges faced, the experiment produced varied multispectral datasets for robust 

training of CNNs to classify apple diseases and demonstrated the effectiveness of NIR imagery 

for classifying apple scab symptoms throughout all stages of infection.  

  

5.4.4 Recommendations for Future Research  
  

5.4.4.1 Large Multispectral Dataset Acquisition  

  

In this study, a multispectral dataset of 28,800 images was created from public datasets 

containing five disease classes, and RGB and NIR time series imagery of healthy and scab-

infected plants was captured in an experimental environment. This combined training set was 

sufficient for the study, as the primary data testing set had consistent acquisition angles and 

high-contrast backgrounds. However, to improve classification potential in commercial 

orchards, more multispectral imagery, specifically NIR imagery, is required. This imagery should 

be taken on adult trees in real-world conditions and of other diseases, specifically powdery 

mildew, frogeye leaf spot and cedar apple rust. This dataset should reflect the aims of 

PlantPathology, where field scenarios were represented by leaf imagery taken at different 

maturity stages across varying sensor settings and with further variations arising from 

differences in plant physiology and acquisition conditions (Thapa et al., 2020).  

 

The secondary public datasets trained and tested on images acquired under these conditions 

achieved more accurate classifications than those from the primary multispectral dataset 

despite consisting only of RGB imagery. The performance metrics used to assess CNN 

performance are not best suited to time series imagery; instead, having a large, varied dataset 

containing localised leaf symptoms in corresponding RGB and NIR imagery may lead to more 



 
148 

 

robust training and testing. Imaging additional diseases could help determine the diagnostic 

potential of NIR imagery. Performance assessments on a dataset of this nature could provide 

better comparisons to other CNN-based classifications in previous literature.  

 

5.4.4.2  Automated Localisation, Segmentation and Quantification  

  

Further research is needed into the classification of apple scab at different severities of infection 

in order to determine how this affects classification accuracy. The results showed that 

sensitivities were much lower in plants with high healthy-to-infected leaf ratios. Imaging 

individual leaves would likely provide the highest accuracy results, but the acquisition time and 

computational costs of imaging and classifying all leaves in an orchard would be unfeasible. A 

compromise between adequate coverage and accurate classification should be found by 

quantifying severity on an ordinal scale, either based on categorical intensity level (Rexhepi et 

al., 2018) or percentage area infected using standard area diagrams (Bock, 2020). Deep learning 

CNNs have demonstrated the potential to classify frogeye leaf spot intensities based on infection 

stage categories (Wang et al., 2017) and other plant diseases (Ji & Wu, 2022) in PlantVillage. 

Utilising CNNs to calculate the percentage of infected areas covered (Gonçalves et al., 2021) 

would provide more detailed information for identifying the influence of severities.  

  

The optimal pixel sizes and focal levels that accurately classify early apple scab symptoms at low 

severities must be determined. Understanding these will then allow for the automation of the 

localisation process, avoiding the need for labour-intensive manual techniques used in this 

study. These localisation methods may be as simple as random cropping or dividing by a grid-

based system (Kodors et al., 2022) or the use of Mask R-CNNs for the automated segmentation of 

leaves (Yang et al., 2020; Storey et al., 2022). Automated localisation, segmentation and 

quantification could not only enable more accurate classification of apple scab but could be used 

to map infections and provide severity values for precision control techniques and threshold-

based spraying methods.  

  

5.4.4.3 Reliable Early Detection through Multispectral Time Series Assessment.  

  

The recommendations provided throughout this discussion are intended to improve the 

experimental procedure, create a substantial multispectral training set, and provide an 

automated solution to quantifying disease progression. These will be vital for a large-scale study 

to determine the earliest detection of apple scab by NIR imagery. Understanding the extent of 

early detection from multispectral imagery is essential to determine the level of decision-making 
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that can be achieved by using multispectral imaging and CNN-based classification. This can 

provide an understanding of whether using curative fungicides in a reactive disease 

management method is feasible. Controlling the humidity, temperature, and illumination 

conditions, as well as the aggressiveness of scab isolates and strength of suspension, can provide 

information on the earliest detection points for imaging systems (Oerke et al., 2011). 

Furthermore, continual monitoring of infection progression at a shorter imaging frequency 

could provide real-time detection of diseases within orchards and smoothing the rate of false 

predictions per sample due to extraneous noise and illumination conditions of non-biotic stress 

symptoms.  

  

5.5 Conclusions  
  

This study aimed to investigate the effectiveness of apple scab monitoring in natural 

illumination conditions using CNN classification on RGB and NIR time series imagery. A large, 

multispectral time series dataset of scab infections was acquired across 105 plants daily from 

one day post inoculation for eight weeks. This generated a substantial training and testing set 

containing variations in symptom appearance, plant physiology, and illumination conditions. 

Supplementary images from secondary data sources were used to increase the number of 

disease classes for more robust training and validation of classification performance. Three 

CNNs, MobileNetV2, InceptionResNetV2, and EfficientNetV2L, were trained to classify apple scab 

from five distinct disease categories via a multilabel approach. The CNN performances were 

assessed by analysing the confidence of output predictions by label and over a time series. 

Further investigation showed that localising imagery down from whole plants to infected 

regions improved CNN classification of scab. The EfficientNetV2L model provided superior 

classification results to the other fine-tuned CNN models. Despite the long training times, the 

increase in classification performance is vital for appropriate use in commercial orchard 

applications.  

  

CNNs consistently classified ‘SCAB’ in NIR imagery earlier and more confidently than in RGB 

imagery. NIR-based classification also received more true predictions and fewer false 

predictions overall, showing greater performance. This greater level of true predictions was due 

to the high contrast distinguishing between healthy and infected leaf tissue; however, the Recall 

was reduced in strong sunlight. RGB had more false positives, especially within the control set, 

likely caused by misclassifying abiotic symptoms of scab. Despite this, RGB could detect powdery 

mildew present in the dataset, unlike NIR. Further research was recommended to create a larger 



 
150 

 

multispectral dataset, including other diseases, to assess the diagnostic capabilities of NIR and 

determine whether this is scab-specific. Classification sensitivity was poor for whole-plant 

imagery but can be enhanced through manual localisation around detected scab symptoms. This 

was considered to be related to the ratio of healthy leaf tissue to infected leaf tissue. Detecting 

scab infection in the early and low severity stages is necessary for precision disease 

management to reduce pesticide use. Utilising the recommendations of a controlled inoculation 

procedure and a temperature-controlled environment while maintaining natural light 

conditions and CNNs trained on the current dataset would help achieve this. Determining the 

earliest point of infection by NIR imagery could let researchers know the decision-making level 

this technology could help achieve. Ultimately, this research has demonstrated the capability of 

multispectral imagery, specifically in the NIR band, when classified by CNNs, to provide rapid, 

accurate detection of apple scab infections throughout the developmental cycle on leaves.  
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6 General Discussion  
  
6.1 Introduction  
 

Early detection and accurate identification of plant pathogens are essential for precision 

agriculture systems to inform appropriate disease management strategies. Remote sensing and 

classification systems must be effective in complex environments where crops are grown, and 

multiple diseases proliferate. There has been significant previous research into the early 

detection of apple scab using remote sensors, however, these studies have been limited to 

seedlings cultivated and imaged in controlled laboratory environments with specialised imaging 

setups (Delalieux et al., 2007; Oerke et al., 2011; Belin et al., 2013). Recent studies on apple 

disease classification have demonstrated the capabilities of deep learning Convolutional Neural 

Networks (CNNs) to automate the identification of apple scab infections from RGB imagery 

acquired in commercial orchards (Thapa et al., 2020; Wang et al., 2021; Turkoglu et al., 2022). 

Although these studies achieved highly accurate identification, they were based on manually 

captured imagery localised on individual leaves on trees that displayed characteristic late stages 

of the disease. The aim of this thesis was to develop a remote sensing strategy capable of 

detecting and classifying early-stage apple scab symptoms under complex, real-world conditions 

where plant morphology, illumination, and additional stress factors are uncontrolled. To achieve 

this, a novel experiment was designed in which apple plants were cultivated in semi-controlled 

glasshouse environments, and multispectral (VIS-NIR) time series imagery was acquired under 

natural illumination conditions. CNNs were employed to rapidly and objectively classify apple 

scab-infected plants from healthy samples and other disease classes. The results presented in 

earlier chapters demonstrate the effectiveness of CNN-classified NIR-based multispectral 

imaging for the early detection of apple scab disease under natural illumination conditions.  

  

This chapter provides a comprehensive discussion of the novelties, successes, challenges, and 

limitations of the methods and results encountered in achieving early detection of apple scab 

infections under natural illumination conditions. Each section addresses the key novel elements 

of the study. Section 6.2 evaluates the experimental environment, including the cultivation of 

apple plants and the inoculation procedure. Section 6.3 details the high-resolution multispectral 

imaging system and acquisition techniques. Section 6.4 evaluates the multispectral imagery 

dataset and the application of NIR imaging. Section 6.5 reviews the use of CNN models for 

classifying apple scab symptoms. Section 6.6 appraises the effectiveness of NIR imagery for the 
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early detection of apple scab infections. Finally, Section 6.7 synthesises the strengths and 

weaknesses of the research methodology to provide clear recommendations for further work.  

 

6.2 Apple Plant Samples  
  
A total of 150 apple plants were cultivated for the purpose of this study. Grown from seedlings 

over three years, these plants exhibited a wide range of structural characteristics and 

physiologies. When inoculated, these plants produced a wide range of scab symptoms that could 

be used to assess the early detection and classification capabilities of the remote sensing 

strategy. All apple plant material was cultivated at Hazelrigg field station at Lancaster University 

(Lancaster, UK). To provide a semi-controlled environment for the experiment, two SolarDome 

glasshouses were utilised: one experimental, where samples were grown, inoculated and imaged 

and the second, where control, storage, and management activities took place (Figure 6.1). The 

ambient air temperatures within the glasshouses were consistently higher than temperatures 

recorded outdoors at Hazelrigg field station year-round (Table 6.1). The cool, wet spring months 

in Lancaster caused consistently high humidity within the SolarDomes, which, when combined 

with limited airflow and closely spaced plants, caused environmental conditions that were 

conducive to powdery mildew infestations. During summer, the elevated ambient air 

temperatures, surface temperatures, and low humidity promoted drought and heat stress in 

apples, causing damage to leaf tissue. Conditions recorded inside and outside the SolarDome 

glasshouses during the experiments are provided in Appendix A. Maintaining greater control 

over temperature, airflow, and illumination during the cultivation period would have made 

cultivating healthier, stress-free plants easier. Despite this, the glasshouses satisfied the wind 

protection, illumination, and power requirements necessary to monitor the apple plants.  
 

 
Figure 6.1 Control and Experimental SolarDome Glasshouses 
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Temperature  JAN  FEB  MAR  APR  MAY  JUN  JUL  AUG  SEP  OCT  NOV  DEC  

Outdoor (°C)  5.3  4.7  6.8  6.6  9.8  14.7  17.1  15.3  15.4  11.4  7.5  5.9  
Indoor (°C)  7.2  8.7  12.8  20.4  17.3  23.5  24.8  24.0  21.2  14.3  9.9  6.7  
Table 6.1  Average monthly temperatures over 2021 recorded at Hazelrigg Field Station (Outdoor) and SolarDome 

(Indoor) 
 

Due to space and cost constraints of the project, apple plants were grown from seeds of 

commercially important, scab-susceptible cultivars (Gala, Braeburn, and Cox). Unlike grafted 

apple trees traditionally cultivated in commercial orchards, seed-born apple trees are 

genetically distinct from their parents (Jensen et al., 2010). Each seedling exhibited unique 

physiological characteristics, influencing its morphology, heat and drought tolerance, and 

disease resistance. Growing these apple plants from seed resulted in unique branching 

structures, creating visually distinct plant material that would improve generalisation when 

used to train CNNs. This approach led to significant variation in plant tissue and apple scab 

features within the multispectral dataset. However, it also resulted in some plants being less 

tolerant to heat stress, more susceptible to powdery mildew, or more resistant to apple scab, 

which introduced additional stress symptoms and slowed the progression of scab development. 

Conducting experiments on grafted plants of economically important, highly susceptible 

cultivars, such as Gala and Braeburn, could provide further insights into plant disease 

development in commercial varieties. This method would likely yield more consistent and 

relevant data for practical applications in commercial orchards.  

  

To determine the effectiveness of remote sensors for the early detection of apple scab, apple 

plants were artificially inoculated with a suspension of V. inaequalis conidia. Given the scale of 

the experiment involving a large number of sizable apple plants, inoculation was carried out in 

situ within the experimental glasshouse. A novel inoculation method was developed based on 

methodologies from previous studies (Szkolnik, 1978; Delalieux et al., 2007; Xu et al., 2008; 

Oerke et al., 2011). The inoculant was prepared by placing infected leaf tissue directly into 

distilled water and applying it immediately to the apple plants, thereby avoiding the need for 

complex in vitro cultivation of V. inaequalis conidia (Barbara et al., 2011). This inoculation 

approach achieved a moderate success rate, with a 56% infection rate in the large-scale 

Experiment 2 (Chapter 5). As discussed in Section 5.4.3, several factors may have contributed to 

the lower-than-expected infection rate. Firstly, the inoculant concentrations and aggressiveness 

might have been lower than anticipated. Additionally, the potential ontological resistance of 

apple leaves, due to maturity or unknown resistance characteristics (Bowen et al., 2011), may 

have reduced infection germination. Secondly, the environmental conditions within the 

glasshouses were not consistently conducive to apple scab development; high temperatures, low 
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humidity, and long daylight hours during the experiment may have hindered conidial 

germination and development. Moreover, the treatment of powdery mildew may have 

negatively impacted apple scab development. The management of powdery mildew involved 

chemical control through active fungicidal sprays and sanitation through removing infected 

tissue, thinning foliage and sulphur burning. Although these measures reduced inoculum for 

several weeks prior, powdery mildew symptoms reappeared during the time series acquisition. 

To mitigate the severity of infections and to prevent significant foliar stunting and damage, 

leaves were regularly rinsed with a non-fungicidal leaf wash to reduce surface mycelium and 

germination. While this approach maintained powdery mildew severity at controllable levels, 

residual symptoms persisted. Additionally, this sanitation method may have inadvertently 

affected the germination and development of V. inaequalis on the leaves.  

  

The number of plant samples and acquired images displaying apple scab symptoms was lower 

than anticipated in Experiment 2. CNN models require a large quantity of training data to 

classify new imagery accurately. To ensure a sufficient training set, a second round of 

inoculation was conducted at 21 days post-inoculation (d.p.i.), resulting in greater success. 

However, this issue led to fewer sample time series available for the final testing set, and the 

earliest detection dates were later than expected, especially compared to previous small-scale 

Experiment 1. Exercising greater control over the environmental and inoculation conditions is 

essential to enhance the overall health and infection rates in future studies. Conducting 

experiments in climate-controlled environments would mitigate the risk of abiotic stress and 

powdery mildew developing in situ. Maintaining optimal temperatures (17-23 °C) and high 

humidity with leaf wetness during inoculation, as recommended by the Mills’ infection period 

table (Table 6.2), can improve germination likelihood, and reduce the time before initial 

symptoms develop. Additionally, testing earlier in the season on grafted plants with known 

traits can help observe pathogen development on susceptible and resistant cultivars (Papp et al., 

2021). Furthermore, controlling inoculant concentrations through measurement with a 

Neubauer counting chamber (Delalieux et al., 2007) or a Fuchs-Rosenthal haemocytometer 

(Oerke et al., 2011), as well as specifying the isolates applied, would better inform the 

inoculation process. This would result in faster and more severe infections, creating a greater 

variance in symptoms for imaging data collection and training and testing CNN models for apple 

scab detection. Detailed information about these parameters would also benefit early detection 

tests, where differences between NIR, RGB, and human observation may be pronounced.  
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Average Temperature (°C)  Leaf Wetness (hours)  Lesion Appearance (days)  
1  40.5  N/A  
2  34.7  N/A  
3  29.6  N/A  
4  27.8  N/A  
5  21.2  N/A  
6  18  17  
7  15.4  17  
8  13.4  17  
9  12.2  17  

10  11  16  
11  9  15  
12  8.3  14  
13  8  14  
14  7  13  
15  7  12  
16  6.1  10  

17 - 23  6  9 - 10  
24  6.1  N/A  
25  8  N/A  
26  11.3  N/A  

Table 6.2 Mills’ infection period table showing temperature and hours of leaf wetness required for scab germination. 
(Adapted from Stensvand et al., 1997) 

 

One of the main objectives of this research was to produce a large number of plant samples for 

reliable assessment of the early detection of apple scab. A low-cost, non-laboratory method for 

growing and inoculating was employed. This methodology resulted in a diverse array of apple 

plants with structural differences, various developmental stages, and distinct leaf physiologies. 

Additionally, the inoculation process induced various scab symptoms on the plants. This 

diversity provided extensive data for training, improving the generalisation of CNN models, and 

demonstrating the robustness of their predictions. However, the limitations of the study, such as 

plant stress and the resultant variability in scab development, ultimately led to a reduced 

number of scab images, complicating early detection studies and the training, and testing of CNN 

models. Nonetheless, the presence of powdery mildew and abiotic stress, common in 

commercial orchards, allowed for the demonstration of early detection capabilities despite these 

complexities. This further highlighted the effectiveness of the high-resolution multispectral 

sensors in real-world conditions.  
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6.3 High-Resolution Multispectral Sensing  
  
This study revealed that high-resolution multispectral imaging, specifically NIR imaging, is an 

effective method for accurately detecting early apple scab symptoms under natural illumination 

conditions. Extensive research demonstrated that NIR-based imagery can detect apple scab 

earlier and more accurately than conventional RGB imaging, using manual and automated 

classification techniques. The imagery acquired over a time series showed that symptoms in NIR 

imagery could be clearly observed throughout the development cycle of apple scab. The high 

resolution of the imagery allowed for the observation of initial scab infections through well-

defined symptoms, providing a detailed understanding of the spread of fungal mycelium within 

lesions (Section 3.4.1). This high-resolution multispectral imaging technique has been 

previously applied to monitoring fireblight in apple orchards. However, this study represents 

the first time such imagery has been utilised for the detection of apple scab in a way that could 

be practically scaled up for use in commercial orchards.  

  

Previous studies have identified that hyperspectral, thermal, and fluorescence imaging sensors 

demonstrate potential for the early detection of apple scab. While these three types of sensors 

are capable of presymptomatic stress detection due to apple scab, successful detection has 

typically relied on controlled environmental conditions and specialist systems. Before this 

research, multispectral cameras had not been applied specifically to apple scab detection, 

although they have been widely used in agriculture for various purposes (Jameel et al., 2020). 

Multispectral imagery is extensively used in satellite, aeroplane, and Unmanned Aerial Vehicle 

(UAV) based remote sensing, offering significant benefits for crop health monitoring compared 

to conventional visible-spectrum imagery (Maes & Steppe, 2019). Rapid technological advances 

have increased the affordability and practicality of lightweight multispectral sensors for UAVs, 

such as the Parrot Sequoia and MicaSense Red-Edge, facilitating their use in real-world 

applications (Assman et al., 2018). These aerial imaging systems have also been applied to 

disease detection, providing valuable information on vegetation indices and other health factors 

for diseases such as fireblight in apple (Jarolmasjed et al., 2019) and other orchard crops like 

citrus (DadrasJavan et al., 2019; Pourazar et al., 2019). Despite being affordable options, these 

commercial multispectral cameras have limitations in terms of resolution and focal length (Cao 

et al., 2019; Fawcett et al., 2020). These systems are more suited to detecting tree crop diseases 

with symptoms that significantly affect the tree canopy. However, apple scab lesions, 

particularly in its early stages of infection, are only several millimetres in diameter, rendering 

these commercial multispectral systems unsuitable for early detection, especially via UAV-based 

acquisition.  
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Modifying digital camera systems to become NIR-sensitive presents an alternative approach to 

multispectral imaging for plant phenotyping (Lebourgois et al., 2008). By removing the internal 

NIR filter overlaying the CMOS sensors, standard RGB cameras can be adapted to detect 

wavelengths up to 1000 nm. This technique has gained popularity in various studies due to its 

ability to provide low-cost, high-resolution near-infrared sensitive imagery (Nijland et al., 2020). 

It has been employed in orchards to monitor abiotic stress (Jarolmasjed et al., 2018) and 

fireblight (Jarolmasjed et al., 2019). Additionally, these modified multispectral sensors have 

been effectively integrated into UAV platforms, enhancing the capability for extensive 

monitoring coverage (Berra et al., 2020). For this study, a stereoscopic imaging approach was 

utilised for high-resolution multispectral imaging. One camera was modified by removing the 

internal NIR filter and replacing it with an NIR long-pass filter (+800 nm), enabling detection of 

reflectance in the NIR spectrum (800-1000 nm). This camera was used alongside a conventional 

RGB camera to capture information from blue, green, red, and near-infrared wavebands. While 

the methodology remained consistent, the technology used differed between the small-scale 

Experiment 1 and the large-scale Experiment 2.  

  

The small-scale experiment utilised a low-cost, open-source system developed on a Raspberry Pi 

(Raspberry Pi Foundation, Cambridge, UK). Full details of the setup are provided in Section 

3.2.2.1. Raspberry Pi-based systems are well-established as low-cost imaging solutions, with 

available information on calibration protocols for scientific studies (Pagnutti et al., 2017). These 

systems have been previously used for plant imaging and phenotyping studies (Tovar et al., 

2018), with several solutions available for calibrating and converting them to multispectral 

imagers (Lopez-Ruiz et al., 2017; Valle et al., 2017). These multispectral systems are powered 

through low-cost microcomputers, which, when utilised within IoT frameworks, can allow for 

fixed, continual real-time monitoring in field environments. Furthermore, their low weight, 

customisation, and calibration capabilities have led to successful applications on UAV systems 

(Belcore et al., 2019; Barjaktarovic et al., 2024). Despite these benefits, these sensors require 

development by the end user before operation. 

 

 The time-consuming and labour-intensive nature of imaging, along with a lack of portability 

experienced in Experiment 1, necessitated an alternative imaging approach for larger-scale 

testing. The second method, employed for large-scale Experiment 2, used commercial Canon EOS 

RP digital cameras (Canon Inc., Tokyo, Japan) to provide easier operation and superior image 

quality. Full details of this sensing setup are provided in Section 5.2.2.1. The improvements in 

image quality and ease of operation came at the cost of higher expenses and increased weight. 
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The difference in CMOS sensors and overall system size between the open-source and 

commercial camera methods is presented in Figure 6.2. Despite the higher costs, similar 

commercial camera-based systems have also been applied to UAV platforms for plant health 

monitoring (Jewan et al., 2022).  

 

 
Figure 6.2 Comparison of sizes of Raspberry Pi (Sensor 1) and Canon (Sensor 2) systems. A) Size of stereoscopic sensing 

system. B) CMOS sensor size 
 

The acquisition procedures used in this study were sufficient to collect the data necessary to 

demonstrate the potential of multispectral-based imagery. Full details of the image acquisition 

for Experiment 1 and Experiment 2 are presented in Section 3.2.2.4 and Section 5.2.2.2, 

respectively. The nadir-view nature of the imagery simulates aerial imagery that would be 

acquired from UAVs, providing extensive coverage of leaf areas that may display symptoms of 

apple scab despite potential occlusions of underlying leaves. It was observed in Section 3.3.1 and 

Section 5.3.4 that strong illumination reduces the visibility of scab symptoms in NIR imagery, 

leading to a bias towards healthy predictions. This issue arises due to overexposure of the 
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imagery, where bright and healthy leaf tissue masks critical scab symptoms. To address this, 

remote sensors must be developed to perform real-time adjustments of exposure settings 

(Figure 6.3) to optimise image acquisition under varying natural illumination conditions. Both 

appropriate exposure settings and camera hardware are essential for reliable image capture 

from aerial platforms (O'Connor et al., 2017). Since early apple scab symptoms can only be 

detected on a sub-leaf scale, the use of long focal length lenses and high-resolution CMOS sensors 

will be required to achieve this imaging scale.  

 

 
Figure 6.3 Exposure Triangle 

 

Further research and development can enhance the performance and practicality of 

multispectral imagers, facilitating their application in orchards via UAVs or handheld devices. 

Advances in this area could enable simultaneous acquisition on a single sensor (Sadeghipoor et 

al., 2013), reducing weight and allowing the collection of vegetation indices. Commercial digital 

cameras hold the potential for widespread implementation in commercial orchards. Crop scouts 

could readily use handheld NIR imagery to aid early scab classification and collect training data 

for CNN models. For automated orchard monitoring, developing open-source methods that can 

be integrated into UAV-based platforms would be preferable. This study demonstrates that 

remote sensing systems, specifically those based on NIR imagery, have significant potential as a 

portable method for the early detection of apple scab under natural illumination conditions.  
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6.4 Multispectral Apple Disease Dataset  
 

A large multispectral time series dataset, comprising 300 individual time series of each plant 

sample in RGB and NIR imagery, was acquired using the high-resolution multispectral imaging 

system. This dataset was novel in three significant ways: 1) It was the first study to use NIR 

imagery for apple scab detection. 2) It was the first study to achieve early detection of scab in 

uncontrolled settings. 3) It was the first study to image whole plants within a time series for 

training and testing CNNs to classify apple scab. All imagery was captured under semi-controlled 

conditions, with varying illumination, on apple plants exhibiting complex physiologies and a 

range of symptoms, including healthy apple scab and other stress features. Manual assessment 

and CNN-based classification of this dataset confirmed that the capability for early detection of 

apple scab was superior in NIR imagery compared to RGB imagery. The imagery included 

control samples, latent stages, early symptoms, and late-stage symptoms of apple scab at various 

severities. Additional stress features, such as abiotic and powdery mildew symptoms, were also 

observed. Due to the novelty of this dataset, this section aims to provide examples and 

descriptions of key health indicators featured in NIR imagery compared to RGB imagery.  

  

NIR imagery was capable of strong detection due to the distinct differences observed between 

healthy and scab-infected tissue (Figure 6.4). Healthy green leaves typically display high 

brightness in NIR imagery, indicating the high reflectivity of the plant tissue. Within this 

imagery, key leaf texture features are discernible, with veins and venules visible. Other plant 

tissues, including petioles and stems, also appear white but are generally less bright than the 

foliar tissue. Inorganic matter in the background is considerably darker than the plant tissue in 

the foreground. Apple scab infections can be clearly identified in NIR imagery due to the high 

contrast between infectious lesions and healthy tissue. The conidial structures that cause the 

lesions have higher absorbance than healthy leaf tissue, causing a significant difference in the 

appearance of healthy and infected tissue. The distinct brightness, shape, and texture features of 

scab infections make detection through NIR imagery highly effective. These scab lesions have 

defined structures in NIR imagery and do not reduce leaf reflectance where Venturia inaequalis 

conidia are not present.  
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Figure 6.4 Above) Example of healthy image (Sample C07 at 47 d.p.i.). Below) Example of Scab imagery (Sample E13  

at 30 d.p.i.) 
 

Due to the uncontrolled temperature and humidity conditions in which the apple plants were 

cultivated, additional stress factors such as abiotic damage and powdery mildew were present in 

some of the time series imagery (Figure 6.5). The characteristics of these stress factors have not 

been fully explored. Abiotic tissue damage was common, particularly on mature leaves later in 

the time series. Heat stress typically caused brown necrotic tissue that contrasted heavily 

against green leaf tissue, leading to false positives in control samples. In NIR imagery, abiotic 

symptoms were much less pronounced, with only the damaged regions observable on severely 

stressed leaves. High-temperature stress can cause significant damage to mesophyll layers in 

leaves (Djanaguiraman et al., 2011), resulting in lower reflectance in these damaged tissues.  

  

Biotic stress from powdery mildew was also present on experimental apple leaves during large-

scale Experiment 2. The primary symptoms of the disease were observed as white, powdery 

mycelium accumulated on the leaf surfaces. Due to sanitation measures applied, this mycelium 

did not completely cover the leaves, and infected plants experienced only minor stunted foliar 
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growth. When observed through NIR imagery, there were no visible symptoms of the white 

fungus against the white leaf tissue, nor were there any discernible variations in leaf surface 

texture. These features were observed in 40 out of 150 plant samples that developed powdery 

mildew symptoms, indicating that NIR imagery has limited diagnostic capabilities for detecting 

powdery mildew.  

 

 
Figure 6.5 Above) Examples of brown necrotic tissue damage due to heat stress in the imagery, which are identifiable on 

leaves labelled 1, 2, and 3 (Sample C03 at 14 d.p.i.). Below) Examples of white fungal mycelium of powdery mildew in 
imagery (Sample T69 at 45 d.p.i.).  

 

As the experiment progressed, powdery mildew and apple scab became increasingly prevalent, 

with distinct symptoms presented on individual leaves (Figure 6.6). Unlike powdery mildew, 

which develops on the leaf surface, apple scab develops in the subcuticular region of the leaf. 

Powdery mildew symptoms can overlay apple scab symptoms, posing a risk of masking them 

during visual assessments. Although this issue occurred in some RGB imagery, the extent of scab 

infections was clearly identifiable in NIR imagery. In orchards with both diseases, mapping apple 

scab and quantifying its severity would be much more precise using NIR imagery. The presence 
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of apple scab, powdery mildew, and other abiotic stress factors can exert significant stress on 

leaves. During the experiments, some plants displayed both symptoms along with extensive leaf 

damage. Despite the influence of multiple stress factors, individual lesions of apple scab were 

clearly visible. While both scab lesions and abiotic tissue damage impacted the reflectance of 

healthy leaves, the influence of scab lesions on reflectance was significantly greater than that of 

abiotic damage. In natural orchard conditions, where apple scab, powdery mildew, and abiotic 

stress factors often coexist, NIR imagery would likely provide more accurate assessments and 

precise quantification, as powdery mildew does not occlude lesion boundaries. This reduces the 

likelihood of misdiagnosis. The examples provided briefly discuss stress symptom features, 

which may aid in future image acquisition and dataset annotation. Further research into the 

impact of these stress factors on leaf structure and reflectance characteristics would be 

beneficial for future studies.  

 

 
Figure 6.6 Above) Combination of apple scab and powdery mildew in imagery (Sample E08 at 45 d.p.i.). Below) Example 

of Apple Scab, powdery mildew, and heat stress (Sample T75 at 56 d.p.i.) 
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After both Experiment 1 and Experiment 2, the final dataset comprised 30,000 images, with 

11,053 obtained from the primary experiments and the remainder from public sources (Figure 

6.7). Although this final dataset contained many images from each category, the 'HEALTHY' and 

'SCAB' classes were the most critical for this research. The final dataset included 9,923 

'HEALTHY' and 7,990 'SCAB' images for RGB imagery, but only 3,775 'HEALTHY' and 1,632 

'SCAB' images for NIR imagery. This dataset, enhanced via augmentation techniques, was 

effective enough for classification in semi-controlled settings but may be insufficient for applying 

CNN models trained on this data directly to orchards. The heterogeneity of orchard 

environments and the need for more accurate estimations necessitate a larger dataset. While 

this experiment provided greater variations in illumination conditions, plant morphology and 

symptom developmental stages, imaging angles and backgrounds were kept constant. One major 

limitation of training CNNs on simple imagery, such as that of the PlantVillage dataset, is that 

these individual leaves and homogenous backgrounds do not accurately represent true orchard 

scenarios (Mohanty et al., 2016). Applying models trained purely on the current dataset may 

result in decreased accuracy if applied directly to images collected via automated acquisition 

techniques in orchards.  

 

 
Figure 6.7 Label distribution in the Final Apple Disease Dataset generated over Experiment 1 and Experiment 2 

 
More multispectral data should be collected to capture the variations in natural environments. 

Imaging leaves of different cultivars, colours, and morphologies, with various ages of infected 

tissues, image backgrounds, and illumination at different angles, is essential (Thapa et al., 2020). 

As previously stated, handheld-based acquisition methods are readily available for the current 

system and demonstrate considerable potential for detecting apple scab infections on leaves and 



 
165 

 

fruits in real-world environments (Figure 6.8). Additionally, collecting NIR imagery of disease 

symptoms can improve the diagnostic capabilities of CNNs. The collection of imagery from UAV 

platforms is recommended, as UAVs are the most likely platform for orchard monitoring using 

sensors. Understanding the capabilities of NIR imagery acquired from UAVs and training CNNs 

on these images is vital to ensure practical application and accurate monitoring in the future.  

 

 
Figure 6.8 Apple scab symptoms on leaves and fruits in multispectral imagery acquired by handheld means from orchards 

around Lancaster, UK 
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6.5 Automated Classification of Apple Scab  
 

Manual classification of remote sensing data is impractical to implement on a large scale due to 

the time-consuming nature of processing the high quantity of images collected. CNNs are now 

the most commonly used classification method in plant disease detection studies, demonstrating 

high accuracies and rapid diagnosis of diseases in both controlled and real-world environments 

(Jiang et al., 2019; Li & Li, 2020; Chao et al., 2021). In order for the practical application of NIR-

based monitoring in orchards, CNNs must be capable of accurately detecting apple scab 

infections despite the presence of extrinsic and intrinsic factors that may affect accuracy 

(Section 2.6.2). Three pre-trained CNN models were fine-tuned on the multispectral training set 

for the classification of apple scab: MobileNetV2, InceptionNetV2, and EfficientNetV2L. These 

models were selected due to their high accuracies and differences in model size. Demonstrating 

effectiveness across three CNNs provides stronger support for the use of novel NIR imagery than 

relying on a single model. Due to the novelty of both multispectral imagery and time series data, 

the CNNs were validated by classifying apple diseases collected from secondary public datasets. 

The successful demonstration of CNNs to classify testing datasets with up to 0.986 accuracy, and 

F1 scores of 0.989 and 0.990 for the 'HEALTHY' and 'SCAB' classes respectively, placed the 

trained models on par with some of the best in existing literature. This demonstrated the 

effectiveness of classification across multiple symptoms and could be readily applied in real-

orchard conditions.  

  

For the primary multispectral datasets acquired in both Experiment 1 and Experiment 2, the 

results clearly showed that CNNs classified apple scab more accurately from NIR imagery than 

from RGB imagery. All performance metrics for the classification of imagery collected in 

Experiment 1 and Experiment 2 supported this conclusion. The initial use of CNNs, trained on a 

much smaller dataset and presented in Chapter 4, yielded some unforeseen results. The 

predictions from the MobileNetV2 and EfficientNetV2L models were comparable, though 

MobileNetV2 showed much greater performance with RGB data. Another key result was that the 

specificity of predictions in NIR imagery was lower, which was attributed to the detection of 

symptoms earlier and in more samples than were classified manually. It was recommended that 

a larger quantity of training data and control samples be used to enhance the reliability of 

testing. Implementing these recommendations clearly improved the training and analysis 

process. EfficientNetV2L proved to be superior to all other fine-tuned CNNs, detecting apple scab 

more accurately in both primary and secondary testing sets. The inclusion of a control category 

also demonstrated the high specificity of the models, with few false-positive scab predictions in 
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both RGB and NIR imaging but considerably fewer in NIR imaging. Applying a multi-labelling 

strategy, combined with a significantly larger multispectral training set, vastly improved overall 

performance. This approach allowed the models to better generalise and increased their 

classification accuracy. As noted, further studies should focus on expanding the training set to 

continue improving the generalisation capabilities and classification accuracies of CNN models. 

This would involve capturing more diverse and representative samples of apple scab and other 

stress conditions under various environmental conditions.  

  

Unlike other studies, this study initially utilised whole-plant imagery rather than focusing solely 

on disease symptoms localised on leaves. While the classification of secondary data was 

comparable to other literature, this was not the case for multispectral imagery. This discrepancy 

was attributed to the use of whole-plant imagery rather than limitations in the training set for 

two reasons. Firstly, classification accuracies were poorer in RGB than in NIR data, despite the 

extensive quantity of RGB images of apple scab available in public datasets used to train the CNN 

models. Secondly, an evaluation of each plant sample revealed a correlation between larger 

plant samples and poorer classification scores. Larger plants had a higher ratio of healthy leaf 

tissue to infected tissue, resulting in lower percentage severities overall. To test this hypothesis 

and improve prediction performance, the primary testing set was augmented to localise imagery 

onto smaller regions where symptoms were present. The previously fine-tuned CNN models 

were then used to reclassify this data with much greater success. This finding underscores the 

need to further assess the impact of infection severity on apple scab prediction, as it significantly 

influences early disease monitoring in orchards. Additionally, there is a need to develop an 

automated method for localising imagery. The manual technique used in this study is unsuitable 

for widespread application in orchards, and an automated approach must be devised to 

appropriately divide imagery of a single tree, thereby reducing the risk of biased healthy 

predictions.  

 

Alongside the low severity of imagery causing biases towards healthy predictions, capturing NIR 

imagery in direct sunlight also contributed to classification challenges. This issue primarily 

stems from overexposed imagery during the acquisition stage. Improving NIR image acquisition 

through real-time exposure adjustment would enhance the classification capabilities of CNNs in 

bright conditions. Additionally, increasing the amount of imagery acquired under these 

conditions in the training set would further improve performance. Due to the rapid spread of 

apple scab throughout orchards if untreated, practical applications of automated detection and 

classification methods must minimise false negative predictions as much as possible. For this 

experiment, a threshold confidence score of 0.5 was set to balance precision and recall, ensuring 
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overall accurate results. In scenarios where scab tolerance is lower and the risk of potential 

over-spraying is acceptable, lowering these threshold values can provide greater recall, albeit at 

the expense of a minor drop in overall accuracy (Table 6.3). Implementing these adjustments is 

crucial for enhancing the reliability and effectiveness of early disease detection systems in 

orchards. The ability to detect apple scab accurately in various lighting conditions and at 

different severity levels will significantly reduce the risk of undetected infections, ultimately 

protecting crop yields and reducing economic losses.  

 

Labels 
Whole-Plant Imagery Localised Imagery 

THRESHOLD (0.5) THRESHOLD (0.3) THRESHOLD (0.5) THRESHOLD (0.3) 
Accuracy Recall Accuracy Recall Accuracy Recall Accuracy Recall  

RGB 0.8859 0.7987 0.8809 0.8232 0.9027 0.8445 0.8905 0.8560  

NIR 0.9482 0.8792 0.9432 0.8939 0.9536 0.8841 0.9505 0.8969  

Total 0.9171 0.8390 0.9121 0.8586 0.9282 0.8643 0.9205 0.8765  

TP 749 798 1065 1080 
FN 484 434 167 152 

Table 6.3 Impact of threshold value on classification performance of Chapter 5 dataset 
 

Conversely, too many false positives would result in the unnecessary spraying of pesticides, 

negatively impacting the economic and environmental benefits of targeted site-specific control. 

Although specificities were low for RGB imagery and considerably lower for NIR imagery, these 

issues could lead to problematic levels of false positives if scaled up to commercial orchards. One 

method to reduce the rate of false positives is to combine the prediction results of both RGB and 

NIR data into a single multispectral image. Averaging the mean confidence reduces the impact of 

noisy false positive predictions in both the acquisition and classification of the imagery. 

Implementing this approach in the existing time series of Experiment 2 produces less noisy 

heatmaps and overall confidence levels that closely match manual classifications (Figure 6.9 and 

Figure 6.10).  
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Figure 6.9 Heatmap of confidence prediction of combined multispectral (RGB+NIR) imagery 

 

 
Figure 6.10 Smoothed 3-day moving mean time series of the sum of manual classification scores (green) and confidence 

scores of all experimental and control samples in combined multispectral (RGB+NIR) imagery 
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6.6 Early Detection of Apple Scab  
 
This is the first study to use novel remote sensing systems to assess the early detection of apple 

scab symptoms under natural illumination rather than controlled laboratory conditions. Small-

scale (Experiment 1) and large-scale (Experiment 2) trials were conducted to test the 

multispectral sensing and CNN-based classification methods for early detection. The results 

from both experiments were conclusive: NIR imagery allowed for easier and more reliable 

detection, both manually and through automated classification. Due to the semi-controlled 

nature of the experiments, there was significant variation in early detection (Table 6.4). In 

Experiment 1, where seedlings were imaged from a closer distance, early detection was achieved 

as early as 7 d.p.i., with an average detection range of 9-18 d.p.i. RGB imagery detected 

symptoms on average between 11-21 d.p.i. However, in Experiment 2, detection occurred later 

in general, with less difference between manual detection of scab using RGB and NIR time series 

(Figure 6.11). This delay is partially attributed to the challenges of inoculation discussed in 

Section 6.2, as well as the greater imaging distances, which reduced the resolution of initial 

symptoms. Nevertheless, when these time series were classified via CNNs, the models could 

detect apple scab earlier in NIR imagery than in RGB imagery, with a greater time difference 

between the two methods. This demonstrates the potential of NIR imagery and CNN-based 

classification for more effective early detection of apple scab infections in real-world orchard 

conditions.  

  

Due to these issues, it is difficult to reliably determine the absolute earliest point of detection 

through RGB imagery, as the variation is too high between samples and dependent on many 

uncontrolled variables. A better understanding of early detection may help improve apple scab 

treatment in alternative ways. Decision-making based on multispectral imaging could determine 

whether curative spraying can be achieved. Additionally, it may be beneficial in plant 

phenotyping studies to breed resistant varieties or develop alternative control measures by 

clearly observing changes in fungal structures more accurately than in RGB imagery. Stronger 

assessments for early detection of apple scab infections should exercise greater control over 

environmental conditions and inoculant strength and image plants at a finer frequency than 

daily imaging.  
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Earliest Detection of Apple Scab (d.p.i.)  
Experiment 1  Experiment 2  

Sample  RGB  NIR  Sample  RGB  NIR  
S5  19  16  E1  11  11  
S7  19  16  E2  37  37  
S22  15  12  E3  32  32  
S23  14  10  E4  37  37  
S24  16  12  E5  33  32  
S25  16  11  E6  22  22  
S26  21  18  E7  12  11  
S29  16  10  E8  20  20  
S31  17  17  E9  19  18  
S34  30  32  E10  16  16  
S35  11  7  E11  32  32  
S36  16  18  E12  37  36  
S38  16  16  E13  15  13  
S39  16  11  E14  19  17  
S40  19  17  E15  32  32  
S41  13  11  E16  32  32  
S42  11  9  E17  12  12  
S43  12  9  E18  31  31  
S44  14  11  E19  21  18  

  E20  19  20  
Mean  16.37  13.84   Mean 24.74  24.16  

Table 6.4 The earliest detection dates of each positively tested plant sample in Experiment 1 and Experiment 2. The 
overall earliest date of detection is highlighted in yellow 

 

 
Figure 6.11 Early detection of scab time series from RGB and NIR imagery in Experiment 1 and Experiment 2 
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6.7 Recommendations for Further Work  
  
Novel methodologies were applied throughout this study to achieve the early detection of apple 

scab: cultivation of plant material, development of a multispectral remote sensing system, 

generation and interpretation of a novel multispectral dataset, and classification using CNNs. 

The strengths, weaknesses, and numerous challenges faced within this research have been 

identified and discussed. Ultimately, this thesis clearly demonstrates that apple scab infections 

can be detected early using high-resolution multispectral imagery. Automated classifications of 

apple scab infection can be rapidly and accurately achieved based on NIR imagery. Classification 

under natural illumination conditions and scab severities is achievable and can be enhanced by 

optimising image acquisition. Further work is recommended to develop this system for practical 

application in commercial orchard settings. The following recommendations identify the key 

areas for the next stages of research.  

  
6.7.1 Designing a Practical High-resolution Multispectral Imaging 

System  
  
This experiment utilised two high-resolution sensing systems as a proof of concept that, while 

suitable for experimental analysis, would require further development before being 

operationalised within orchards. Whether the multispectral system is used via handheld 

acquisition or integrated onto UAV platforms, the following criteria are essential. The sensors 

must be high resolution, with a pixel area fine enough to detect apple scab symptoms from initial 

infection points. Using larger CMOS sensors with telephoto lenses may help achieve this. These 

sensors must also be lightweight, enabling portability and easy application onto mobile 

platforms. Finally, they must be capable of rapid, simultaneous RGB and NIR image acquisition 

and automated, real-time exposure settings adjustment. Using open-source, low-cost, 

lightweight technology from Raspberry Pi may be the most suitable hardware for developing 

this system.  
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6.7.2 Collecting and Annotating a Large Multispectral Apple 
Disease Dataset  

  
Multispectral imaging is a novel approach to apple disease detection, and currently, there are no 

existing NIR datasets available to train CNN models. While this study acquired a large quantity of 

data, the homogeneous acquisition routine and time series nature of the experiment may have 

led to lower generalisation capabilities of the CNN, potentially limiting its direct application in 

orchards. Furthermore, this research has only demonstrated the capability of distinguishing 

apple scab from healthy tissue using NIR imagery, whereas RGB imagery has been used to 

diagnose five distinct disease classes. Therefore, collecting more varied training data from real-

world orchards is recommended. Gathering and annotating data on apple scab and other disease 

symptoms in these conditions can improve CNN training and expand the diagnostic capabilities 

of CNNs beyond just apple scab detection.  

  
6.7.3 Enhancing Apple Scab Classification Methods 
  
Deep learning CNNs offer an accurate method for automating the classification of apple scab 

disease. As CNN-based classification performed better on localised imagery rather than whole-

plant imagery, performing severity assessments on the testing dataset should be considered. 

This would quantitatively inform how CNN classification capabilities vary based on severity 

increase from initial symptoms to late stages of infection. While the CNNs used in this study 

were designed for simple classification across multiple classes, a greater range of features can 

also be applied. Several specific techniques can be employed to enhance CNN-based 

classification. Firstly, providing estimates of disease severity through categorical or percentage 

scales can help establish thresholds before fungicide application.  

 

Techniques such as pixel-wise segmentation and object detection can be used to quantify the 

extent of infection on individual leaves, offering detailed severity metrics. Additionally, mapping 

disease hotspots can aid in the precise localisation of symptoms and visualise the spatial 

distribution of infections within an orchard, enabling targeted treatment. One major opportunity 

is to aid crop scouts in monitoring early apple scab through CNNs, which have the potential to 

provide real-time classifications from a live image feed. Furthermore, continual training using 

data captured in real-world conditions will likely improve classification accuracies. This 

approach can reduce the labour-intensive nature of crop monitoring and support rapid decision-

making for crop treatment. Incorporating more detailed information into the classification 

process, such as performing severity assessments and spatial mapping, can enhance the overall 

effectiveness of CNN-based methods for disease detection and management in orchards.  
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6.7.4 Performing Controlled Early Detection of Apple Scab 
Assessments  

  
NIR-based imagery was found to be effective for the early detection of apple scab in semi-

controlled environmental conditions and natural illumination. This represents a step towards 

practical application, as previous research on early detection of apple scab was limited to 

laboratory environments. While the results successfully demonstrated early detection 

capabilities, the variability in the earliest feasible detection made it difficult to determine the 

potential benefits of targeted spraying. Implementing this technology in controlled laboratories 

for plant phenotyping may provide more detailed information on the differences. Continual 

monitoring of apple scab development and imaging at finer temporal resolutions, with greater 

control over environmental conditions and inoculant, could yield results comparable to those of 

previous studies. Furthermore, an in-depth analysis of NIR-based imagery could support the 

hypothesis of the absorption potential of scab and help determine the effectiveness of NIR 

imagery for detecting other stress symptoms, as well as understand why the diagnostic 

capabilities are absent for powdery mildew. Imaging within the controlled environments could 

also be used to calibrate and optimise sensors, exposure settings, and acquisition methods to 

ensure the earliest feasible detection of apple scab across a range of illumination conditions.  
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7 Conclusions and Future Research 
 

7.1 General Conclusion 
 

The early detection of plant pathogens is essential for sustainable disease control. Apples, one of 

the most extensively cultivated fruit crops, are associated with significant environmental impacts 

due to the intensive use of pesticides in disease management practices. Among all the diseases 

affecting apples, apple scab is the most critical, resulting in substantial yield losses, high control 

costs, and extensive fungicide application. Detecting apple scab symptoms in the early stages of 

infection can enhance decision-making in disease management, thereby reducing fungicide 

usage and mitigating yield losses. Despite the substantial body of research dedicated to remote 

sensing for early apple scab detection, existing solutions have been evaluated primarily in 

controlled environments, utilising specialist equipment impractical for deployment in real-world 

conditions. 

 

The aim of this thesis was to develop a remote sensing strategy capable of detecting the early 

stages of apple scab under natural illumination conditions. Demonstrating detection capabilities 

from imagery acquired in semi-controlled environments represents a significant advancement 

toward developing a practical system for application in commercial orchards. To this end, a high-

resolution multispectral imaging system was developed by modifying traditional RGB cameras to 

be sensitive to near-infrared (NIR) radiation. This system was highly effective for apple scab 

detection, displaying infections from the initial stages to well-developed symptoms under a 

range of illumination conditions. RGB and NIR time series datasets comprising 150 individual 

plants were acquired and manually classified, revealing that apple scabs could be detected 

several days earlier in NIR imagery than in RGB imagery. In NIR imagery, apple scab can be 

clearly identified by the lesions on infected tissue, which exhibit high absorbance potential, 

contrasting sharply with the high reflectance of healthy tissue. Consequently, this system 

demonstrated significant potential for the early detection of disease through manual assessment 

approaches in Chapter 3. 

 

Manual assessments of disease, both in-field and in laboratory settings, are time-consuming and 

labour-intensive. Thus, the diagnosis of early apple scab from multispectral imagery necessitates 

rapid and accurate identification through automated classification techniques. Convolutional 

Neural Networks (CNNs) have previously been used to identify well developed symptoms of 

apple diseases from RGB imagery acquired in commercial orchards. This study applied three pre-
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trained classification models to assess their ability to classify early stages of apple scab in NIR 

imagery: MobileNetV2, InceptionResNetV2, and EfficientNetV2L. Given the novelty of this 

problem, the CNNs were fine-tuned on a training set derived from the primary data containing 

multispectral time series imagery and secondary data from public sources. CNN performance 

was evaluated using metrics calculated from their prediction outputs and validated against 

secondary data from public sources. The classification of multispectral imagery proved 

successful in both Chapter 4 and Chapter 5, achieving rapid and accurate identification of early 

apple scab. Overall, the classification of apple scab was consistently superior in NIR-based 

imagery compared to RGB imagery, with the former detecting scab earlier and yielding fewer 

false positive and negative predictions. Ultimately, the heavyweight EfficientNetV2L showed the 

greatest performance of all three. 

 

While the results of this study have clearly demonstrated that CNN-based classification 

techniques can be used to detect early apple scab on NIR imagery, several challenges affecting 

the performance of this system were identified. Although apple scab was precisely classified 

from early to late stages, CNNs struggled with low-severity infections spread across the plant. 

The ratio of healthy to infected tissue caused a bias towards healthy predictions by the 

classifiers. Classification performance improved significantly when the testing data was localised 

to smaller regions where apple scab symptoms were present. Successful classification was 

achieved under various illumination conditions; however, on days with high sunlight combined 

with sub-optimal acquisition settings, high-exposure images reduced the detection capabilities 

of both CNN and manual-based classification. In order to adapt to the highly variable weather 

conditions experienced within orchards, the real-time adjustment of exposure settings is crucial. 

Moreover, while NIR imagery effectively distinguished between healthy and scab-infected 

samples, it did not display symptoms of heat stress and powdery mildew clearly. Nevertheless, 

NIR imagery demonstrated a greater ability to distinguish apple scab infections from these 

symptoms than RGB imagery. Collecting more multispectral imagery from commercial orchards 

to train CNNs would inevitably improve their generalisation capabilities and help address the 

issues affecting classification performance. 

 

The high-resolution multispectral imaging system, combined with the deep learning CNN 

classifiers developed in this thesis, offers a cost-effective and labour-saving solution for 

monitoring apple orchards for apple scab infections. This study is the first to demonstrate the 

effectiveness of NIR imagery for apple scab detection and to explore the capabilities of CNNs in 

classifying early-stage symptoms from a novel multispectral time series. This research serves as 

a proof of concept for the proposed sensing strategy and provides recommendations for further 
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development to facilitate the implementation of remote sensing-based disease monitoring in 

orchards. The goal is to provide ancillary technology to complement traditional crop scouting, 

thereby improving the frequency and coverage of disease monitoring. The information acquired 

can be used to inform site-specific management of apple scab epidemics, reducing reliance on 

costly and environmentally damaging mass spraying of fungicides, and improving the control of 

apple scab epidemics. 

 

7.2 Future Research for Disease Monitoring in Orchards 
 

The rationale behind this research was to enhance the efficiency of disease control in orchards, 

thereby contributing to the sustainable intensification of agriculture. This can be achieved by 

implementing precision agriculture technologies that enable site-specific control of apple scab 

infections. Central to precision agriculture methodologies are remote sensing systems capable of 

providing accurate information on crop health, even under the complex real-world conditions of 

orchards. This thesis successfully addressed the aim of early detection of apple scab infection 

under natural illumination conditions. In Section 6.7 four recommendations for further research 

were identified to improve the early detection of apple scab under natural illumination 

conditions. These include: 

 

(1) Develop an effective sensing system for image acquisition within orchards.  

(2) Build a large multispectral training set to enhance CNN training.  

(3) Improve the information output from automated CNN models for apple scab detection.  

(4) Establish the capabilities of early detection by NIR imagery in controlled environments  

 

By following these recommendations, the high-resolution NIR-based imaging and classification 

strategy developed within this thesis can be enhanced in order to enable a practical disease-

monitoring strategy for outdoor use. Applying these systems in commercial orchards will 

improve the sustainability of disease management. The final section of this chapter offers three 

opportunities for future research that may build upon the novel multispectral sensing system 

developed in this study for precision agriculture within commercial orchards for the sustainable 

intensification of apple production. 
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7.2.1 Assessment of Acquisition and Classification in High-Density 
Orchards 

 

This research represents a significant step towards automated disease monitoring in orchards by 

transitioning early detection studies from controlled laboratory settings to semi-controlled 

environments. The next phase involves deploying the high-resolution multispectral sensor for 

detecting apple scab infections in commercial orchards. These sensing methods are particularly 

well-suited for deployment on UAV platforms, enabling aerial imaging of plants across extensive 

areas. However, classifying apple scab becomes increasingly challenging at greater imaging 

distances between the sensor and target, as symptoms appear smaller, and the presence of 

numerous healthy leaves can influence predictions. To address these challenges, field trials in 

scab-infested orchards must acquire additional training data and fine-tune CNN models. 

Furthermore, developing appropriate acquisition and classification procedures is crucial before 

commercial implementation. This process will involve scaling up the imaging from small plants 

to adult trees and entire orchards and determining an appropriate return frequency to monitor 

for apple scab throughout the season.  

 

Accurate diagnosis of apple scab is crucial to prevent potentially devastating consequences from 

misdiagnosis, highlighting the need for safe, accurate, reliable, and robust field trials prior to 

adoption in commercial disease management practices. To ensure practical implementation, 

further research must establish strong connections with commercial agriculture and real 

orchard management. Understanding the capability of these systems to accurately monitor the 

early stages of apple scab across orchards is essential for their successful application in precision 

agriculture. This approach will ultimately enhance disease management, reduce chemical usage, 

and promote sustainable apple production. 

 

7.2.2 Informing Integrated Pest and Disease Management 
Strategies 

 
Integrated Pest Management (IPM) is regarded as the best practice for disease control in 

orchards; however, its effectiveness is constrained by the labour-intensive nature of orchard 

monitoring through crop scouting. The remote sensing system developed in this study has the 

potential for automation, enabling more frequent orchard monitoring during the intervals 

between scouting visits. Increased frequency and broader coverage of monitoring enhance 

decision-making capabilities for disease control. A significant benefit of this approach is the 
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potential for targeted pesticide application. Precise mapping and severity assessments of apple 

scab infections across individual trees can inform site-specific applications of curative fungicides 

based on the location and threshold levels of the pathogen. This targeted approach reduces the 

need for uniform spraying, decreasing fungicide volume while maintaining adequate disease 

protection. Additionally, continuous orchard monitoring provides critical data on the presence of 

V. inaequalis, which can be used to enhance existing scab risk models. Understanding the risk 

posed to specific orchard regions, based on scab presence in surrounding areas or historical 

data, can improve the accuracy of risk predictions. This information can better inform the use of 

protective fungicides based on risk assessments rather than routine, homogeneous sprays. 

Furthermore, site-specific spray adjustments can be made in real time by integrating this 

information with the variable rate spray technologies currently available. 

 

Applying high-resolution multispectral imaging sensors with CNNs offers significant benefits for 

precision agriculture and supports low-cost, high-throughput phenotyping in laboratory and 

field settings. Monitoring plant responses to disease and abiotic stresses is crucial for 

characterising disease-resistant and abiotic-resistant varieties. Rapid acquisition and accurate 

classification of novel apple varieties can facilitate the identification of new cultivars with 

enhanced resistance to apple scab infection. Although this represents only a small part of the 

breeding process, it can significantly contribute to the introduction of scab-resistant cultivars 

into mainstream agriculture, thereby reducing the global volume of fungicides required. 

 

7.2.3 Understanding the Impact on Sustainable Intensification of 
Apple Production 

 

Throughout this research, the primary assumption has been that early detection of apple scab 

will contribute to the sustainable intensification of agriculture. Successful integration of this 

technology into commercial orchards will facilitate further exploration of its benefits, with field 

trials crucial for fully understanding and quantifying these potential advantages. Several key 

parameters should be investigated to assess the benefits of precision agriculture-based apple 

scab management. Research should focus on identifying the reduction in fungicide volume 

compared to conventional techniques, evaluating the impact of targeted pesticide application on 

epidemic severity, and studying the effects on marketable apple yields. This information will also 

contribute to assessing the cost-effectiveness of implementing these techniques. Ultimately, the 

aim of this research is to enhance the sustainability of apple production worldwide. Future 

studies should investigate how reducing pesticide applications can positively impact the 

environment and ecosystems surrounding commercial orchards. 
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9 Appendices 
 

9.1 Appendix A – Experimental Weather Conditions 
 
The experiments conducted throughout this thesis were performed in a semi-controlled 

environment that was significantly influenced by external weather conditions. The following 

section provides information collected during the experimental process. Figure 9.1 displays the 

temperature recorded within the experimental glasshouse from February 2021 to January 2022. 

Figure 9.2 shows the humidity levels recorded within the experimental glasshouse over the same 

period. Tables 9.1 and 9.2 present the external weather conditions recorded on-site at the 

Hazelrigg Field Station during both rounds of time series acquisition in Experiment 1. Table 9.3 

displays the weather conditions recorded on-site during the imaging trials of Experiment 2. Due 

to technical issues with the TinyTag Data Logger, internal glasshouse conditions were not 

recorded during 2023. 
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Figure 9.1 Temperature within the Experimental Dome (Feb 2021- Jan 2022) captured by TinyTag Data Logger (Gemini 
Data Loggers, Chichester, UK) 

 
 

 
Figure 9.2 Humidity within the Experimental Dome (Feb 2021- Jan 2022) captured by TinyTag Data Logger (Gemini Data 

Loggers, Chichester, UK) 
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Date Total 
cloud 

Present 
weather 

Dry bulb 
(°C) 

Wet bulb 
(°C) 

Max 
(°C) 

Min 
(°C) 

Rainfall 
(mm) 

Sunshine 
(h) 

12/08/21 7 02 15.0 13.7 18.7 13.1 0.0 5.1 
13/08/21 4 01 15.9 13.3 18.4 13.2 0.0 10.9 
14/08/21 7 02 15.7 14.9 16.6 14.5 4.3 1.5 
15/08/21 8 02 16.2 14.6 17.3 12.9 0.0 0.9 
16/08/21 8 60 13.9 12.3 16.8 13.0 1.7 4.6 
17/08/21 8 53 14.5 14.4 17.4 13.4 1.2 2.3 
18/08/21 8 51 13.9 13.8 15.2 13.1 3.7 0.0 
19/08/21 7 02 15.2 14.4 17.3 13.2 0.3 0.0 
20/08/21 7 02 17.3 16.0 20.0 14.0 1.5 0.0 
21/08/21 8 03 16.5 16.0 19.0 15.9 7.8 0.0 
22/08/21 7 50 15.8 15.8 19.5 14.8 0.0 5.2 
23/08/21 3 03 18.4 15.5 21.8 13.7 0.0 8.4 
24/08/21 7 03 16.0 14.4 20.6 11.4 0.0 6.5 
25/08/21 3 02 17.3 15.4 19.5 10.8 0.0 10.2 
26/08/21 2 02 16.9 14.5 19.4 13.9 0.0 12.2 
27/08/21 6 02 13.3 11.4 18.5 7.7 0.0 7.7 
28/08/21 1 01 15.8 12.1 18.5 7.9 0.0 11.4 
29/08/21 2 03 15.5 13.4 17.7 10.1 0.0 6.9 
30/08/21 8 02 14.0 12.0 17.9 12.2 0.0 1.9 
31/08/21 7 02 12.9 10.7 16.7 11.4 0.0 0.3 
01/09/21 8 02 13.2 12.3 18.6 9.6 0.0 5.3 
02/09/21 7 02 14.5 12.4 20.0 10.1 0.0 7.8 
03/09/21 8 02 13.1 11.8 15.1 11.2 0.0 0.0 
04/09/21 8 02 14.2 12.4 17.7 12.3 0.0 0.3 
05/09/21 2 01 17.7 14.9 22.1 12.8 0.1 8.9 
06/09/21 8 01 17.3 16.2 20.5 14.8 0.0 2.9 
07/09/21 0 02 20.5 18.2 26.2 12.2 0.0 10.9 
08/09/21 3 02 23.5 18.4 27.3 18.7 0.0 10.6 
09/09/21 8 02 18.5 17.2 21.4 16.2 3.6 0.7 
10/09/21 8 02 17.2 17.1 21.3 15.0 0.0 1.5 
11/09/21 7 02 17.1 15.9 17.8 15.8 0.0 1.9 
12/09/21 8 02 13.4 12.0 16.5 11.6 0.0 0.0 
13/09/21 8 15 13.2 11.6 15.1 11.8 0.2 0.0 
14/09/21 7 60 14.0 13.0 18.9 13.1 0.0 5.1 
15/09/21 1 02 14.9 13.4 18.7 8.6 3.4 10.0 

Table 9.1 Weather conditions regarded at 10AM from Hazelrigg Field Station (UK Meteorological Office - Climatological 
Station Number 7236) during Experiment 1 – Round 1 
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Date Total 
cloud 

Present 
weather 

Dry bulb 
(°C) 

Wet bulb 
(°C) 

Max 
(°C) 

Min 
(°C) 

Rainfall 
(mm) 

Sunshine 
(h) 

08/10/21 6 02 15.5 13.2 18.5 12.8 0.0 5.5 
09/10/21 8 51 13.3 13.2 15.1 13.3 2.0 0.0 
10/10/21 1 02 11.8 11.1 13.9 9.4 0.0 7.1 
11/10/21 2 02 12.2 10.8 14.5 8.4 0.2 6.4 
12/10/21 7 01 13.9 13.0 15.2 11.6 0.6 0.0 
13/10/21 8 20 12.9 12.4 13.4 11.3 0.1 0.1 
14/10/21 8 02 12.2 11.2 13.6 11.4 1.2 0.0 
15/10/21 1 02 8.8 6.6 12.2 3.7 0.0 9.3 
16/10/21 7 20 8.6 8.0 13.8 6.1 6.2 0.3 
17/10/21 8 60 11.9 11.8 14.0 8.6 4.3 0.0 
18/10/21 8 02 12.3 11.1 15.8 11.0 7.6 0.0 
19/10/21 8 53 15.4 15.4 16.9 12.3 5.7 0.0 
20/10/21 8 16 10.8 10.3 11.1 9.0 5.8 0.5 
21/10/21 1 02 6.4 4.6 10.4 3.2 6.5 8.7 
22/10/21 7 81 9.0 8.8 11.4 6.4 0.4 1.6 
23/10/21 6 01 10.0 8.5 12.0 8.6 0.4 0.1 
24/10/21 8 62 10.0 9.1 12.6 9.4 3.9 0.8 
25/10/21 7 15 10.5 10.1 12.6 8.8 5.6 2.4 
26/10/21 7 50 10.1 10.0 15.5 8.0 15.6 0.8 
27/10/21 8 59 13.5 13.5 15.4 10.0 23.2 0.0 
28/10/21 8 03 13.9 12.7 14.8 12.2 9.3 0.0 
29/10/21 7 25 13.3 12.2 14.3 11.2 22.6 2.1 
30/10/21 7 61 8.5 8.5 11.9 8.0 14.2 2.4 
31/10/21 8 63 9.6 8.9 11.4 7.1 32.9 0.1 
01/11/21 7 81 9.8 9.3 10.5 7.5 2.9 0.8 
02/11/21 7 80 7.4 7.0 10.3 5.5 0.6 2.6 
03/11/21 2 02 6.6 5.7 10.0 5.1 0.0 3.9 
04/11/21 1 02 4.8 3.4 8.3 2.2 0.0 8.6 
05/11/21 8 45 6.2 6.2 11.3 1.5 0.0 0.2 
06/11/21 8 02 10.7 9.5 12.3 6.2 4.2 0.0 
07/11/21 6 01 9.4 7.4 10.5 7.8 0.1 0.2 
08/11/21 8 51 8.0 8.0 13.0 7.5 3.0 0.0 
09/11/21 8 53 11.5 11.3 12.7 8.0 10.0 0.0 
10/11/21 7 01 9.3 9.3 11.2 8.6 0.2 0.1 
11/11/21 6 01 9.6 9.0 11.7 7.6 4.7 1.0 

Table 9.2 Weather conditions regarded at 10AM from Hazelrigg Field Station (UK Meteorological Office - Climatological 
Station Number 7236) during Experiment 1 – Round 2 
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Date Total 
cloud 

Present 
weather 

Dry bulb 
(°C) 

Wet bulb 
(°C) 

Max 
(°C) 

Min 
(°C) 

Rainfall 
(mm) 

Sunshine 
(h) 

23/08/23 8 02 16.0 14.0 18.7 14.1 5.2 1.8 
24/08/23 7 01 15.4 14.6 17.4 14.8 1.7 8.4 
25/08/23 6 15 14.7 13.3 16.7 11.8 10.3 5.4 
26/08/23 7 02 13.8 12.5 17.6 10.1 0.1 3.1 
27/08/23 8 02 14.2 13.2 15.6 10.5 0.0 0.2 
28/08/23 6 15 14.4 11.9 16.1 12.0 1.5 2.2 
29/08/23 7 21 14.7 13.4 16.9 13.1 5.1 6.2 
30/08/23 3 02 12.9 11.5 16.7 11.1 0.0 9.8 
31/08/23 5 03 14.8 13.4 18.8 9.6 0.2 5.0 
01/09/23 7 03 15.4 13.9 18.6 13.0 0.0 0.3 
02/09/23 1 03 18.8 15.4 20.7 13.1 0.0 10.9 
03/09/23 3 05 17.5 16.2 21.1 13.5 0.0 11.1 
04/09/23 1 02 21.1 17.8 25.6 12.2 0.0 11.9 
05/09/23 1 02 23.0 16.6 26.3 16.8 0.0 10.0 
06/09/23 1 02 21.8 18.1 24.6 15.4 0.0 9.6 
07/09/23 8 03 21.7 18.7 25.1 17.6 0.0 0.1 
08/09/23 7 02 22.2 18.8 26.4 15.9 0.0 8.1 
09/09/23 7 02 20.1 19.0 23.3 17.9 0.5 3.7 
10/09/23 5 02 23.0 18.6 23.5 14.7 2.5 2.1 
11/09/23 8 50 17.2 17.0 17.3 17.1 7.1 0.0 
12/09/23 7 01 14.8 13.4 16.0 13.0 0.4 0.0 
13/09/23 1 02 14.6 11.3 17.5 7.6 10.3 7.6 
14/09/23 6 03 15.2 14.0 17.9 12.2 7.6 5.9 
15/09/23 7 01 16.8 15.6 18.5 11.3 0.0 0.0 
16/09/23 5 01 15.4 13.2 17.5 12.6 0.0 3.0 
17/09/23 8 02 15.7 14.1 18.0 13.6 22.4 0.0 
18/09/23 8 65 13.5 13.3 16.2 13.4 18.3 3.2 
19/09/23 8 63 16.2 15.5 17.2 9.6 11.0 0.0 
20/09/23 8 63 15.6 15.4 16.6 15.2 13.4 3.5 
21/09/23 2 02 12.9 11.3 15.2 9.3 10.3 8.7 
22/09/23 8 21 11.5 11.0 14.5 9.0 8.0 0.6 
23/09/23 7 60 11.3 10.1 16.3 8.6 0.4 4.7 
24/09/23 8 02 16.4 15.4 18.4 8.7 4.3 0.1 
25/09/23 8 03 16.0 13.9 17.7 12.5 0.0 5.8 
26/09/23 6 02 15.7 14.0 17.9 12.4 1.9 6.0 
27/09/23 8 15 13.4 11.7 18.0 11.1 8.8 0.5 
28/09/23 8 15 14.2 12.4 14.8 13.4 2.2 0.0 
29/09/23 6 03 14.0 12.3 15.8 12.0 0.0 7.1 
30/09/23 8 02 12.9 11.8 16.3 10.4 7.5 0.0 
01/10/23 8 02 16.1 15.8 16.6 10.7 0.0 0.3 
02/10/23 7 02 14.0 13.2 14.9 12.2 10.6 0.1 
03/10/23 6 03 12.9 11.2 14.5 9.7 0.6 3.6 
04/10/23 8 80 13.7 12.2 16.1 12.4 4.7 2.1 
05/10/23 8 60 14.0 13.2 15.8 12.8 30.6 0.0 
06/10/23 8 02 15.8 15.6 16.6 13.3 2.0 0.0 
07/10/23 8 02 15.7 15.0 17.5 15.0 0.0 0.1 
08/10/23 8 02 14.9 13.9 19.5 13.2 0.0 Tr 
09/10/23 8 46 15.4 15.4 16.5 14.7 0.1 0.1 
10/10/23 7 03 16.2 13.2 19.0 12.8 8.0 1.4 
11/10/23 8 51 11.2 9.9 11.9 10.2 0.0 0.0 
12/10/23 1 02 8.1 6.5 12.7 3.1 7.4 9.1 
13/10/23 8 60 10.7 10.6 12.3 8.1 3.3 3.9 
14/10/23 4 03 8.9 6.0 10.4 6.6 1.8 6.7 
15/10/23 1 02 6.1 3.5 10.8 2.3 0.0 8.2 
16/10/23 7 02 7.9 6.1 11.9 3.5 0.0 5.2 
17/10/23 6 02 9.6 8.4 13.0 5.7 0.0 3.2 
18/10/23 7 02 11.2 9.4 15.6 9.6 7.8 1.7 
19/10/23 8 53 13.7 13.4 17.6 11.2 15.6 2.5 

Table 9.3 Weather conditions regarded at 10AM from Hazelrigg Field Station (UK Meteorological Office - Climatological 
Station Number 7236) during Experiment 2 
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9.2 Appendix B – Convolutional Neural Network Model 
Code Structure 

 

9.2.1 Chapter 4 Model Code 
 
The following code was used in Chapter 4 to train MobileNetV2 and EfficientNetV2L models to 

classify the ADID dataset. The pre-trained models are imported from the Keras packages and 

fine-tuned on the ADID training set. The retrained model is employed to classify all images in the 

ADID testing set and provide confidence values in a CSV-format spreadsheet. All 

hyperparameters were optimised by trial and improvement by assessing performance on a 

validation dataset of publicly sourced imagery.  

 
import numpy as np 
import pandas as pd 
from sklearn.preprocessing import MultiLabelBinarizer 
import tensorflow as tf 
from tensorflow.keras.layers import BatchNormalization, 
GlobalAveragePooling2D, Input, GlobalMaxPooling2D 
import keras 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
import tensorflow.keras.layers as L 
from keras.models import Sequential, Model 
 
 
strategy = tf.distribute.get_strategy() 
 
# variables 
 
depth = 3 
EPOCHS  = 20 
BS = 6 
IMG_SHAPE = (1200, 900, 3) 
SEED = 100 
 
 
# pathways 
train_paths = r"C:\Users\bleas\Documents\CHAPTER4\ADID\ADID_Train" 
train = 
pd.read_csv(r"C:\Users\bleas\Documents\CHAPTER4\ADID\ADID_Train.csv") 
test_paths = r"C:\Users\bleas\Documents\CHAPTER4\ADID\ADID_Test" 
test = pd.read_csv(r"C:\Users\bleas\Documents\CHAPTER4\ADID\ADID_Test.csv") 
 
label_split = train.labels_mc.apply(lambda x: x.split()) 
trans_label = MultiLabelBinarizer().fit(label_split) 
labels_mc = pd.DataFrame(trans_label.transform(label_split), 
columns=trans_label.classes_) 
labels_mc.head() 
print() 
 
 
 
# multilabel 
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train['labels_mc'] = train['labels_mc'].apply(lambda string: string.split(' 
')) 
train 
s = list(train['labels_mc']) 
mlb = MultiLabelBinarizer() 
trainx = pd.DataFrame(mlb.fit_transform(s), columns=mlb.classes_, 
index=train.index) 
#trainy = trainx.sum() 
print(trainx.columns) 
print(trainx.sum()) 
print() 
 
labels_mc = pd.concat([train['image_id'], labels_mc], axis=1) 
labels_mc.head() 
print() 
 
label2id = { 
    'complex' : 0, 
    'frogeye_leaf_spot' : 1, 
    'healthy' : 2, 
    'powdery_mildew' : 3, 
    'rust' : 4, 
    'scab' : 5 
} 
 
NUM_CLASS = len(label2id) 
 
datagen = ImageDataGenerator( 
    rescale=1 / 255.0, 
    preprocessing_function=None,  # You can add your custom preprocessing 
function here if needed 
    data_format=None, 
    validation_split=0.0,  # Set the validation_split to the desired value 
for splitting your data 
    rotation_range=20,      # Random rotation of the image in the range of 
-30 to 30 degrees 
    width_shift_range=0.1,  # Random horizontal shift of the image 
    height_shift_range=0.1, # Random vertical shift of the image 
    shear_range=0.1,        # Shear transformations 
    zoom_range=0.1,         # Random zooming inside the image 
    horizontal_flip=True,   # Randomly flip the image horizontally 
    vertical_flip=True # Don't flip the image vertically 
) 
 
train_data = datagen.flow_from_dataframe( 
    train, 
    directory=train_paths, 
    x_col="image_id", 
    y_col='labels_mc', 
    color_mode="rgb", 
    class_mode="categorical", 
    batch_size=BS, 
    shuffle=True, 
    seed=100, 
    image_size=(1200,900)) 
 
def build_lrfn(lr_start=0.0001, lr_end=0.00001, num_epochs=9): 
    def lrfn(epoch): 
        if epoch < num_epochs: 
            lr = lr_start - (lr_start - lr_end) * epoch / num_epochs 
        else: 
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            lr = lr_end 
        return lr 
 
    return lrfn 
 
lrfn = build_lrfn() 
STEPS_PER_EPOCH = labels_mc.shape[0] // BS 
lr_schedule = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=1) 
 
 
class_count = len(list(train_data.class_indices.keys())) # to define number 
of classes in dense layer 
 
 
from tensorflow.keras.applications import EfficientNetV2L 
 
 
base_model = EfficientNetV2L(include_top= False, weights= "imagenet", 
input_shape= IMG_SHAPE, input_tensor=Input(shape=(1200, 900, 3))) 
 
model = Sequential([ 
    base_model, 
    L.GlobalAveragePooling2D(), 
    L.BatchNormalization(), 
    L.Dense(NUM_CLASS, 
            kernel_initializer=keras.initializers.RandomUniform(seed=SEED), 
            bias_initializer=keras.initializers.Zeros(), name='dense_top', 
activation='softmax') 
]) 
 
 
metrics = [ 
        keras.metrics.CategoricalAccuracy(name='accuracy'), 
        keras.metrics.Precision(name='precision')] 
 
 
 
model.compile(optimizer='adam',loss= 'categorical_crossentropy', metrics= 
[metrics]) 
 
# Freezing the weights 
for layer in model.layers[:-1]: 
    layer.trainable=False 
 
model.summary() 
 
history = model.fit(train_data, 
                    epochs=EPOCHS, 
                    steps_per_epoch=train_data.samples//BS, 
                    callbacks=lr_schedule, 
                    validation_data=validation_data) 
 
 
datagen_test = ImageDataGenerator( 
    rescale=1 / 255.0, 
    preprocessing_function=None,  # You can add your custom preprocessing 
function here if needed 
    data_format=None, 
 ) 
 
test_data = datagen_test.flow_from_dataframe( 
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    test, 
    directory=test_paths, 
    x_col="image_id", 
    y_col="labels_mc", 
    color_mode="rgb", 
    class_mode="categorical", 
    batch_size=BS, 
    shuffle=False, 
    seed=100, 
    image_size=(1200,900)) 
 
probabilities = model.predict(test_data, steps=len(test_data)) 
 
preds = model.predict(test_data) 
preds = preds.tolist() 
y_pred = np.argmax(preds, axis=1) 
 
indices = [] 
for pred in preds: 
    temp = [] 
    for category in pred: 
        if category >= 0.5: 
            temp.append(pred.index(category)) 
    if temp != []: 
        indices.append(temp) 
    else: 
        temp.append(np.argmax(pred)) 
        indices.append(temp) 
 
print(indices) 
 
labels_mc = (train_data.class_indices) 
labels_mc = dict((v, k) for k, v in labels_mc.items()) 
 
testlabels_mc = [] 
 
for image in indices: 
    temp = [] 
    for i in image: 
        temp.append(str(labels_mc[i])) 
    testlabels_mc.append(' '.join(temp)) 
print(testlabels_mc) 
df = test 
 
res = pd.DataFrame() 
res['NUM_ID'] = df['num_id'] 
res['image_id'] = test['image_id'] 
res['SOURCE'] = test['source'] 
res['TRUE_labels_mc'] = test['labels_mc'] 
res['CNN_labels_mc'] = testlabels_mc 
res['complex'] = probabilities[:, 0] 
res['frogeye_leaf_spot'] = probabilities[:, 1] 
res['healthy'] = probabilities[:, 2] 
res['powdery_mildew'] = probabilities[:, 3] 
res['rust'] = probabilities[:, 4] 
res['scab'] = probabilities[:, 5] 
 
model.save("CHAPTER4_EfficientNetV2L_labels_mc.hdf5") 
 
res.to_csv("CHAPTER4_EfficientNetV2L_labels_mc_Predictions.csv", 
index=False) 
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9.2.2 Chapter 5 Model Code  
 

9.2.2.1 Model Fine-Tuning 

 

The following code was used in Chapter 5 to train MobileNetV2, InceptionResNetV2 and 

EfficientNetV2L models to classify the final apple disease dataset. The pre-trained models are 

imported from the Keras packages and fine-tuned on the training set. The retrained model is 

employed to classify all images in the testing set and provide confidence values in a CSV-format 

spreadsheet. All hyperparameters were optimised by trial and improvement by assessing 

performance on a validation dataset of publicly sourced imagery.  

 
#IMPORT PYTHON PACKAGES 
import numpy as np 
import pandas as pd 
from sklearn.preprocessing import MultiLabelBinarizer 
import tensorflow as tf 
from tensorflow.keras.layers import BatchNormalization, GlobalAveragePooling2D, 
Input, GlobalMaxPooling2D 
import keras 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
import tensorflow.keras.layers as L 
from keras.models import Sequential 
 
# INITIAL MODEL PARAMETERS 
strategy = tf.distribute.get_strategy() 
depth = 3 
EPOCHS  = 12 
BS = 6 
IMG_SHAPE = (1200, 1200, 3) 
SEED = 1000 
 
 
# DATASET PATHWAYS 
train_paths = r"C:\Users\bleas\Documents\TRIALS\FINAL\TOTAL\TRAIN" 
train = pd.read_csv(r"C:\Users\bleas\Documents\TRIALS\FINAL\TOTAL\TRAIN.csv") 
test_paths = r"C:\Users\bleas\Documents\TRIALS\FINAL\TOTAL\TEST" 
test = pd.read_csv(r"C:\Users\bleas\Documents\TRIALS\FINAL\TOTAL\TEST.csv") 
 
#READ TRAINING DATASET ANNOTATIONS 
label_split = train.labels.apply(lambda x: x.split()) 
trans_label = MultiLabelBinarizer().fit(label_split) 
labels = pd.DataFrame(trans_label.transform(label_split), 
columns=trans_label.classes_) 
labels.head() 
print() 
 
train['labels'] = train['labels'].apply(lambda string: string.split(' ')) 
train 
 
s = list(train['labels']) 
mlb = MultiLabelBinarizer() 
trainx = pd.DataFrame(mlb.fit_transform(s), columns=mlb.classes_, 
index=train.index) 
print(trainx.columns) 
print(trainx.sum()) 
print() 
 
#DISPLAY LABEL DISTRIBUTION 
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labels = pd.concat([train['image_id'], labels], axis=1) 
labels.head() 
print() 
 
label2id = { 
    'FROGEYE' : 0, 
    'HEALTHY' : 1, 
    'MILDEW' : 2, 
    'RUST' : 3, 
    'SCAB' : 4 
} 
NUM_CLASS = len(label2id) 
 
#TRAINING DATASET AUGMENTATION 
datagen = ImageDataGenerator( 
    rescale=1 / 255.0, 
    preprocessing_function=None, 
    data_format=None, 
    validation_split=0.0,  # NO VALIDATION SPLIT 
    rotation_range=20,      # RANDOM ROTATION OF THE IMAGE 
    width_shift_range=0.1,  # RANDOM HORIZONTAL SHIFT OF THE IMAGE 
    height_shift_range=0.1, # RANDOM VERTICAL SHIFT OF THE IMAGE 
    shear_range=0.1,        # RANDOM SHEAR TRANSFORMATIONS 
    zoom_range=0.1,         # RANDOM ZOOM TRANSFORMATIONS 
    horizontal_flip=True,   # RANDOMLY FLIP IMAGE HORIZONTALLY 
    vertical_flip=True # RANDOMLY FLIP IMAGE VERTICALLY 
) 
 
#TRAINING DATASET GENERATOR 
train_data = datagen.flow_from_dataframe( 
    train, 
    directory=train_paths, 
    x_col="image_id", 
    y_col='labels', 
    color_mode="rgb", 
    class_mode="categorical", 
    batch_size=BS, 
    shuffle=True, 
    seed=1000, 
    image_size=(1200,1200)) 
 
#VALIDATION DATASET GENERATOR (FOR HYPERPARAMETER ADJUSTMENT) 
validation_data = datagen.flow_from_dataframe( 
    train, 
    directory=train_paths, 
    x_col="image_id", 
    y_col='labels', 
    color_mode="rgb", 
    class_mode="categorical", 
    batch_size=BS, 
    shuffle=True, 
    seed=1000, 
    image_size=(1200,1200)) 
 
 
#BUILD LEARNING RATE 
def build_lrfn(lr_start=0.0001, lr_end=0.00001, num_epochs=9): 
    def lrfn(epoch): 
        if epoch < num_epochs: 
            lr = lr_start - (lr_start - lr_end) * epoch / num_epochs 
        else: 
            lr = lr_end 
        return lr 
    return lrfn 
 
lrfn = build_lrfn() 
STEPS_PER_EPOCH = labels.shape[0] // BS 
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lr_schedule = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=1) 
 
class_count = len(list(train_data.class_indices.keys())) # to define number of 
classes in dense layer 
 
#IMPORT PRE-TRAINED MODEL FROM KERAS 
from tensorflow.keras.applications import EfficientNetV2L 
 
# BUILD PRE-TRAINED MODEL FOR FURTHER TRAINING 
base_model = EfficientNetV2L(include_top= False, weights= "imagenet", input_shape= 
IMG_SHAPE, input_tensor=Input(shape=(1200, 1200, 3))) 
 
model = Sequential([ 
    base_model, 
    L.GlobalMaxPooling2D(), 
    L.Dense(NUM_CLASS, 
            kernel_initializer=keras.initializers.RandomUniform(seed=SEED), 
            bias_initializer=keras.initializers.Zeros(), name='dense_top', 
activation='sigmoid') #SIGMOID FUNCTION FOR MULTILABEL APPROACH 
]) 
 
#TRAINING PERFORMANCE METRICS PER EPOCH 
metrics = [ 
        keras.metrics.CategoricalAccuracy(name='accuracy'), 
        keras.metrics.Precision(name='precision')] 
model.compile(optimizer='adam',loss= 'binary_crossentropy', metrics= [metrics]) 
 
# FREEZE MODEL WEIGHTS (FOR TRANSFER LEARNING) 
for layer in model.layers[:-1]: 
    layer.trainable=False 
model.summary() 
 
#DISPLAY PERFORMANCE METRICS PER EPOCH 
history = model.fit(train_data, 
                    epochs=EPOCHS, 
                    steps_per_epoch=train_data.samples//BS, 
                    callbacks=lr_schedule, 
                    validation_data=validation_data) 
 
#TEST DATASET GENERATOR 
datagen_test = ImageDataGenerator( 
    rescale=1 / 255.0, 
    preprocessing_function=None,   
    data_format=None,) 
 
test_data = datagen_test.flow_from_dataframe( 
    test, 
    directory=test_paths, 
    x_col="image_id", 
    y_col="labels", 
    color_mode="rgb", 
    class_mode="categorical", 
    batch_size=BS, 
    shuffle=False, 
    seed=1000, 
    image_size=(1200,1200)) 
 
# CNN PREDICTION OUTPUT FOR TEST DATASET 
probabilities = model.predict(test_data, steps=len(test_data)) 
preds = model.predict(test_data) 
preds = preds.tolist() 
y_pred = np.argmax(preds, axis=1) 
 
# PREDICTION THRESHOLD SET TO CONFIDENCE 0.5 
indices = [] 
for pred in preds: 
    temp = [] 
    for category in pred: 
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        if category >= 0.5: 
            temp.append(pred.index(category)) 
    if temp != []: 
        indices.append(temp) 
    else: 
        temp.append(np.argmax(pred)) 
        indices.append(temp) 
print(indices) 
 
labels = (train_data.class_indices) 
labels = dict((v, k) for k, v in labels.items()) 
testlabels = [] 
 
for image in indices: 
    temp = [] 
    for i in image: 
        temp.append(str(labels[i])) 
    testlabels.append(' '.join(temp)) 
print(testlabels) 
df = test 
 
#CSV FILE FORMAT 
res = pd.DataFrame() 
res['NUM_ID'] = df['NUM_ID'] 
res['IMAGE_ID'] = test['image_id'] 
res['SOURCE'] = test['SOURCE'] 
res['TRUE_LABELS'] = test['labels'] 
res['CNN_LABELS'] = testlabels 
res['FROGEYE'] = probabilities[:, 0] 
res['HEALTHY'] = probabilities[:, 1] 
res['POWDERY_MILDEW'] = probabilities[:, 2] 
res['RUST'] = probabilities[:, 3] 
res['SCAB'] = probabilities[:, 4] 
# PREDICTIONS SAVED TO CSV FILE 
res.to_csv("EfficientNetV2L_MULTISPECTRALAPPLEDISEASE_Predictions.csv", 
index=False) 
 
# TRAINED MODEL SAVED 
model.save("EfficientNetV2L_MULTISPECTRALAPPLEDISEASE.hdf5") 
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9.2.3 Pre-Trained CNN Classifier 
 
The following code loaded a pre-trained model to classify imagery within a new dataset. It was 

used specifically in Chapter 5 to classify localised imagery in Section 5.3.3. 

 
#IMPORT PYTHON PACKAGES 
import numpy as np 
import pandas as pd 
import tensorflow as tf 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras.models import Sequential, load_model 
 
# INITIAL MODEL PARAMETERS 
strategy = tf.distribute.get_strategy() 
depth = 3 
EPOCHS  = 12 
BS = 6 
IMG_SHAPE = (1200, 1200, 3) 
SEED = 1000 
 
# DATASET PATHWAYS 
test_paths = r"C:\Users\bleas\Documents\TRIALS\FINAL\TOTAL\TEST_CROPPED" 
test = pd.read_csv(r"C:\Users\bleas\Documents\TRIALS\FINAL\TOTAL\TEST.csv") 
 
#LOAD PRE-TRAINED MODEL FROM FILE 
loaded_model = 
load_model(r"C:\Users\bleas\PycharmProjects\GPU\EfficientNetV2L_MULTISPECTRALAPPLED
ISEASE.hdf5") 
 
#TEST DATASET GENERATOR 
datagen_test = ImageDataGenerator( 
    rescale=1 / 255.0, 
    preprocessing_function=None,  
    data_format=None, ) 
 
test_data = datagen_test.flow_from_dataframe( 
    test, 
    directory=test_paths, 
    x_col="image_id", 
    y_col="labels", 
    color_mode="rgb", 
    class_mode="categorical", 
    batch_size=BS, 
    shuffle=False, 
    seed=1000, 
    image_size=(1200, 1200)) 
 
# CNN PREDICTION OUTPUT FOR TEST DATASET 
probabilities = loaded_model.predict(test_data, steps=len(test_data)) 
preds = loaded_model.predict(test_data) 
preds = preds.tolist() 
y_pred = np.argmax(preds, axis=1) 
 
indices = [] 
for pred in preds: 
    temp = [] 
    for category in pred: 
        if category >= 0.5: 
            temp.append(pred.index(category)) 
    if temp != []: 
        indices.append(temp) 
    else: 
        temp.append(np.argmax(pred)) 
        indices.append(temp) 
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print(indices) 
labels = (train_data.class_indices) 
labels = dict((v, k) for k, v in labels.items()) 
testlabels = [] 
 
for image in indices: 
    temp = [] 
    for i in image: 
        temp.append(str(labels[i])) 
    testlabels.append(' '.join(temp)) 
print(testlabels) 
df = test 
 
#CSV FILE FORMAT 
res = pd.DataFrame() 
res['NUM_ID'] = df['NUM_ID'] 
res['IMAGE_ID'] = test['image_id'] 
res['SOURCE'] = test['SOURCE'] 
res['TRUE_LABELS'] = test['labels'] 
res['CNN_LABELS'] = testlabels 
res['FROGEYE'] = probabilities[:, 0] 
res['HEALTHY'] = probabilities[:, 1] 
res['POWDERY_MILDEW'] = probabilities[:, 2] 
res['RUST'] = probabilities[:, 3] 
res['SCAB'] = probabilities[:, 4] 
 
# PREDICTIONS SAVED TO CSV FILE 
res.to_csv("EfficientNetV2L_MULTISPECTRALAPPLEDISEASE_Predictions_2.csv", 
index=False) 
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9.3 Appendix C – Convolutional Neural Network 
Classification Results 

 

9.3.1 Model Training Metrics 
 
Each model was fine-tuned on the primary and secondary data within the training set until it 

reached convergence. During the training process, the output for learning rate, loss, accuracy, F1 

score, and training duration was provided for each epoch. Tables 9.4 and 9.5 display the training 

metrics for fine-tuning the MobileNetV2 and EfficientNetV2L models, as discussed in Chapter 4. 

Tables 9.6, 9.7, and 9.8 present the training metrics for fine-tuning the MobileNetV2, 

InceptionResNetV2, and EfficientNetV2L models, as discussed in Chapter 5. 

 

Chapter 4 MobileNetV2 Training Metrics 
Epoch Learning Rate Loss Accuracy F1 Score Duration (s) 

1 1.00E-07 1.878 0.2713 0.1231 428 
2 7.60E-07 1.7275 0.3123 0.1633 405 
3 1.42E-06 1.4426 0.4382 0.2904 397 
4 2.08E-06 1.148 0.5863 0.484 403 
5 2.74E-06 0.8877 0.6971 0.6466 396 
6 3.40E-06 0.6989 0.7646 0.7334 386 
7 4.06E-06 0.5704 0.8061 0.7801 388 
8 4.72E-06 0.4876 0.8325 0.8106 384 
9 5.38E-06 0.4217 0.8543 0.8351 387 

10 6.04E-06 0.3685 0.8747 0.857 391 
11 6.70E-06 0.3242 0.8883 0.8713 388 
12 7.36E-06 0.2865 0.9024 0.8888 389 
13 8.02E-06 0.25 0.9166 0.9026 391 
14 8.68E-06 0.2176 0.9294 0.9174 390 
15 9.34E-06 0.1898 0.9377 0.9263 393 
16 1.00E-05 0.162 0.9485 0.9393 394 
17 8.02E-06 0.1359 0.9593 0.9515 394 
18 6.44E-06 0.1174 0.966 0.9588 392 
19 5.17E-06 0.1036 0.9704 0.965 389 
20 4.16E-06 0.0943 0.9739 0.9683 389 

Table 9.4 MobileNetV2 training metrics (Chapter 4) 
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Chapter 4 EfficientNetV2L Training Metrics 
Epoch Learning Rate  Loss Accuracy F1 Score Time per Epoch (s) 

1 1.00E-07 1.7731 0.217 0.1884 1727 

2 7.60E-07 1.3408 0.5185 0.4218 1759 

3 1.42E-06 0.8406 0.7091 0.6383 1784 

4 2.08E-06 0.5796 0.8019 0.7735 1842 

5 2.74E-06 0.451 0.8456 0.8223 1945 

6 3.40E-06 0.3536 0.8832 0.8613 1780 

7 4.06E-06 0.2802 0.9076 0.8893 1740 

8 4.72E-06 0.2097 0.9318 0.917 1694 

9 5.38E-06 0.1636 0.9472 0.9343 1685 

10 6.04E-06 0.1262 0.9584 0.948 1672 

11 6.70E-06 0.0967 0.9691 0.9617 1670 

12 7.36E-06 0.0787 0.9744 0.9684 1680 

13 8.02E-06 0.0677 0.979 0.9746 1671 

14 8.68E-06 0.0587 0.9809 0.9767 1673 

15 9.34E-06 0.0544 0.9825 0.978 1679 

16 1.00E-05 0.0479 0.9838 0.9796 1683 

17 8.02E-06 0.0364 0.9875 0.9846 1682 

18 6.44E-06 0.0276 0.9903 0.9883 1679 

19 5.17E-06 0.0229 0.9912 0.9893 1676 

20 4.16E-06 0.0174 0.9933 0.9917 1686 
Table 9.5 EfficientNetV2L training metrics (Chapter 4) 

 

Chapter 5 MobileNetV2 Training Metrics 
Epoch Learning Rate Loss Accuracy Precision Time per Epoch (s) 

1 0.0001 0.2817 0.7557 0.7501 796 
2 9.00E-05 0.1548 0.8659 0.8697 781 
3 8.00E-05 0.1153 0.8986 0.9055 758 
4 7.00E-05 0.0951 0.9154 0.923 764 
5 6.00E-05 0.0846 0.9248 0.933 761 
6 5.00E-05 0.0761 0.9295 0.9393 749 
7 4.00E-05 0.0651 0.9394 0.9485 749 
8 3.00E-05 0.0591 0.9415 0.9536 749 
9 2.00E-05 0.0531 0.9482 0.9585 749 

10 1.00E-05 0.0497 0.9507 0.9597 770 
11 1.00E-05 0.0471 0.9527 0.9635 780 
12 1.00E-05 0.0469 0.9524 0.9626 753 

Table 9.6 MobileNetV2 training metrics (Chapter 5) 
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Chapter 5 InceptionResNetV2 Training Metrics 
Epoch Learning Rate Loss Accuracy Precision Time per Epoch (s) 

1 0.0001 0.1659 0.8445 0.8562 814 
2 9.00E-05 0.0875 0.9195 0.9314 800 
3 8.00E-05 0.0657 0.9379 0.9499 783 
4 7.00E-05 0.0527 0.9479 0.9603 796 
5 6.00E-05 0.0437 0.9534 0.967 791 
6 5.00E-05 0.0345 0.9614 0.9748 786 
7 4.00E-05 0.0277 0.9657 0.9797 787 
8 3.00E-05 0.0208 0.9699 0.9839 787 
9 2.00E-05 0.0163 0.9716 0.9872 789 

10 1.00E-05 0.0131 0.9766 0.99 786 
11 1.00E-05 0.0116 0.9763 0.9921 792 
12 1.00E-05 0.0102 0.9772 0.9927 789 

Table 9.7 InceptionResNetV2 training metrics (Chapter 5) 
 

Chapter 5 EfficientNetV2L Training Metrics 
Epoch Learning Rate Loss Accuracy Precision Time per Epoch (s) 

1 0.0001 0.1754 0.8347 0.865 1345 
2 9.00E-05 0.1067 0.904 0.9221 1277 
3 8.00E-05 0.0857 0.9214 0.9375 1276 
4 7.00E-05 0.0699 0.9357 0.9497 1275 
5 6.00E-05 0.0585 0.9429 0.9577 1275 
6 5.00E-05 0.0477 0.9499 0.9667 1276 
7 4.00E-05 0.0402 0.9548 0.9705 1278 
8 3.00E-05 0.0329 0.9627 0.9771 1274 
9 2.00E-05 0.0269 0.9675 0.981 1272 

10 1.00E-05 0.0219 0.9711 0.9844 1271 
11 1.00E-05 0.019 0.9729 0.9865 1278 
12 1.00E-05 0.0186 0.974 0.9868 1273 

Table 9.8 EfficientNetV2 training metrics (Chapter 5) 
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9.3.2 Classification Results 
 

9.3.2.1 Chapter 4 Classification Results 

 

Label MobileNetV2 EfficientNetV2L 
TP TN FP FN TP TN FP FN 

Complex 527 5059 121 93 549 5051 129 71 
Frogeye Leaf Spot 655 5055 54 36 666 5060 49 25 

Healthy 1885 3646 126 143 1897 3624 148 131 
Powdery Mildew 209 5568 9 14 206 5572 5 16 

Rust 556 5151 64 29 555 5155 60 30 
Scab 1539 3904 243 114 1498 3967 180 155 

Table 9.9 Classification results for the full ADID Dataset 
 

Label 
MobileNetV2 EfficientNetV2L 

TP TN FP FN TP TN FP FN 
RGB 97 306 76 33 65 332 50 65 
NIR 135 252 98 27 130 268 82 32 

Table 9.10 Classification results for the multispectral ADID subset 
 

9.3.2.2 Chapter 5 Classification Results 
 
 

Validation Data 
Model MobileNetV2 InceptionResNetV2 EfficientNetV2L 
Label TP TN FP FN TP TN FP FN TP TN FP FN 

FROGEYE 830 3477 42 51 831 3471 48 50 855 3469 50 26 
HEALTHY 1247 3061 55 37 1257 3055 61 27 1245 3105 11 39 
MILDEW 226 4140 13 21 238 4147 6 9 247 4122 31 0 

RUST 616 3719 24 41 623 3717 26 34 635 3719 24 22 
SCAB 1409 2820 80 91 1405 2852 48 95 1448 2845 55 52 

Table 9.11 Classification results for the validation data 
 

Multispectral Data (Whole-Plant) 
Model MobileNetV2 InceptionResNetV2 EfficientNetV2L 
Label TP TN FP FN TP TN FP FN TP TN FP FN 

RGB Control 0 1036 64 0 0 1022 78 0 0 1022 78 0 
RGB Experimental 223 463 26 338 257 474 15 354 348 442 47 263 

NIR Control 0 1064 36 0 0 1078 22 0 0 1078 22 0 
NIR Experimental 293 473 6 328 343 475 4 278 401 467 11 221 

Table 9.12 Classification results of fine-tuned CNN for multispectral imagery (whole-plant) 
  



 
228 

 

 
 

Multispectral Data (Localised) 
Model MobileNetV2 InceptionResNetV2 EfficientNetV2L 
Label TP TN FP FN TP TN FP FN TP TN FP FN 

RGB Control 0 1041 59 0 0 1068 32 0 0 1026 74 0 
RGB Experimental 352 464 25 239 360 484 5 251 516 444 45 95 

NIR Control 0 1065 35 0 0 1032 68 0 0 1079 21 0 
NIR Experimental 521 474 5 100 547 464 15 74 549 470 9 72 

Table 9.13 Classification results for multispectral imagery (localised) 
 

EfficientNetV2L Control 

Sample 
RGB NIR 

TP TN FP FN TP TN FP FN 
C01 0 55 0 0 0 55 0 0 
C02 0 53 2 0 0 51 4 0 
C03 0 50 5 0 0 55 0 0 
C04 0 40 15 0 0 53 2 0 
C05 0 53 2 0 0 55 0 0 
C06 0 53 2 0 0 55 0 0 
C07 0 49 6 0 0 55 0 0 
C08 0 43 12 0 0 53 2 0 
C09 0 48 7 0 0 53 0 0 
C10 0 55 0 0 0 55 0 0 
C11 0 55 0 0 0 55 0 0 
C12 0 52 3 0 0 55 0 0 
C13 0 55 0 0 0 55 0 0 
C14 0 54 1 0 0 55 0 0 
C15 0 55 0 0 0 55 0 0 
C16 0 53 2 0 0 52 3 0 
C17 0 51 4 0 0 55 0 0 
C18 0 48 7 0 0 49 6 0 
C19 0 53 2 0 0 53 2 0 
C20 0 49 5 0 0 53 2 0 

Table 9.14 EfficientNetV2L classification results for Control samples 
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EfficientNetV2L Experimental (Full-Scale) 

Sample 
RGB NIR 

TP TN FP FN TP TN FP FN 
E01 16 11 0 28 20 11 0 24 
E02 10 18 19 8 3 36 1 15 
E03 17 19 13 6 10 29 3 13 
E04 5 31 6 13 1 37 0 16 
E05 14 29 4 8 13 30 2 10 
E06 21 21 1 12 28 21 1 5 
E07 29 12 0 14 38 11 0 6 
E08 25 20 0 10 28 18 2 7 
E09 20 19 0 16 32 18 0 5 
E10 18 16 0 21 17 16 0 22 
E11 8 32 0 15 15 32 0 8 
E12 14 34 3 4 13 35 1 6 
E13 24 15 0 16 28 13 0 14 
E14 27 19 0 9 29 17 0 9 
E15 9 32 0 14 20 32 0 3 
E16 7 32 0 16 14 32 0 9 
E17 27 12 0 16 33 12 0 10 
E18 22 30 1 2 17 31 0 7 
E19 14 21 0 20 22 17 1 15 
E20 21 19 0 15 19 20 0 16 

Table 9.15 EfficientNetV2L classification results for Experimental samples (whole-plant) 
 

 
EfficientNetV2L Experimental (Localised) 

Sample 
RGB NIR 

TP TN FP FN TP TN FP FN 
E01 38 11 0 6 36 11 0 8 
E02 17 15 22 1 17 37 0 1 
E03 20 25 7 3 22 27 5 1 
E04 18 31 6 0 17 37 0 1 
E05 17 33 0 5 22 32 1 1 
E06 29 20 2 4 33 21 0 0 
E07 41 12 0 2 44 11 0 0 
E08 30 20 0 5 30 19 1 5 
E09 31 19 0 5 34 18 0 3 
E10 23 16 0 16 33 16 0 6 
E11 21 32 0 2 21 31 1 2 
E12 17 33 4 1 17 36 0 2 
E13 33 15 0 7 32 13 0 10 
E14 31 19 0 5 37 17 0 1 
E15 18 31 1 5 23 32 0 0 
E16 16 31 1 7 19 32 0 4 
E17 39 12 0 4 39 12 0 4 
E18 23 30 1 1 20 31 0 4 
E19 26 20 1 8 28 17 1 9 
E20 28 19 0 8 25 20 0 10 

Table 9.16 EfficientNetV2L classification results for Experimental samples (localised) 
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9.4 Appendix D - Multispectral Time Series Imagery 
 
The aim of this research was to develop a remote sensing system capable of detecting apple scab 

infections early under natural illumination conditions. Through the acquisition of time series 

imagery, it was demonstrated that high-resolution multispectral imagery (VIS-NIR) had 

significant diagnostic potential throughout the development of apple scab symptoms on plants. 

The following figures (Figure 9.3 – Figure 9.20) provide examples of apple scab symptom 

development and progression on seedling S17 in Experiment 1, as well as a range of examples 

for control (C07), training (T23) and experimental (E06 and E09) samples from ‘large’, ‘medium’ 

and ‘small’ sizes in Experiment 2.   
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Figure 9.3 Experiment 1 ‘Sample (S)’ time series 7-21 d.p.i. (Sample S17) 
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Figure 9.4 Experiment 1 ‘Sample (S)’ time series 22-35 d.p.i. (Sample S17) 
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Figure 9.5 Experiment 2 'Control (C) - large' time series 1-14 d.p.i. (Sample C07) 
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Figure 9.6 Experiment 2 'Control (C) - large' time series 15-28 d.p.i. (Sample C07) 
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Figure 9.7 Experiment 2 'Control (C) - large' time series 29-42 d.p.i. (Sample C07) 
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Figure 9.8 Experiment 2 'Control (C) - large' time series 43-56 d.p.i. (Sample C07) 
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Figure 9.9 Experiment 2 'Training (T) - large' time series 01-14 d.p.i. (Sample T23) 
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Figure 9.10 Experiment 2 'Training (T) - large' time series 15-28 d.p.i. (Sample T23) 
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Figure 9.11 Experiment 2 'Training (T) - large' time series 29-42 d.p.i. (Sample T23) 
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Figure 9.12 Experiment 2 'Training (T) - large' time series 43-56 d.p.i. (Sample T23) 
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Figure 9.13 Experiment 2 'Experimental (E) – medium' time series 01-14 d.p.i. (Sample E06) 
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Figure 9.14 Experiment 2 'Experimental (E) – medium' time series 15-28 d.p.i. (Sample E06) 
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Figure 9.15 Experiment 2 'Experimental (E) – medium' time series 29-42 d.p.i. (Sample E06) 
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Figure 9.16 Experiment 2 'Experimental (E) – medium' time series 43-56 d.p.i. (Sample E06) 
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Figure 9.17 Experiment 2 'Experimental (E) - small' time series 01-14 d.p.i. (Sample E09) 
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Figure 9.18 Experiment 2 'Experimental (E) - small' time series 15-28 d.p.i. (Sample E09) 
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Figure 9.19 Experiment 2 'Experimental (E) - small' time series 29-42 d.p.i. (Sample E09) 
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Figure 9.20 Experiment 2 'Experimental (E) - small' time series 43-56 d.p.i. (Sample E09) 
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