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Cross-Modal Contrastive Pre-training for Few-Shot
Skeleton Action Recognition
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Abstract—This paper proposes a novel approach for few-
shot skeleton action recognition that comprises of two stages:
cross-modal pre-training of a skeleton encoder, followed by fine-
tuning of a cosine classifier on the support set. The pre-training
and fine-tuning approach has been demonstrated to be more
effective for handling few-shot tasks compared to utilizing more
intricate meta-learning methods. However, its success relies on
the availability of a large-scale training dataset, which yet is
difficult to obtain. To address this challenge, we introduce a
cross-modal pre-training framework based on Bootstrap Your
Own Latent (BYOL), which considers skeleton sequences and
their corresponding videos as augmented views of the same action
in different modalities. By utilizing a simple regression loss, the
framework is able to transfer robust and high-quality vision-
language representations to the skeleton encoder. This allows
the skeleton encoder to gain a comprehensive understanding of
action sequences and benefit from the prior knowledge obtained
from a vision-language pre-trained model. The representation
transfer enhances the feature extraction capability of the skele-
ton encoder, compensating for the lack of large-scale skeleton
datasets. Extensive experiments on the NTU RGB+D, NTU
RGB+D 120, PKU-MMD, NW-UCLA, and MSR Action Pairs
datasets demonstrate that our proposed approach achieves state-
of-the-art performances for few-shot skeleton action recognition.

Index Terms—Few-shot skeleton action recognition, contrastive
learning, knowledge distillation.

I. INTRODUCTION

Skeleton-based action recognition has gained widespread
popularity due to its advantages in terms of computational ef-
ficiency, robustness, and privacy protection. Current skeleton-
based action recognition algorithms [1]-[5] mainly focus on
the many-shot classification problem, where multiple labeled
training samples are available for each category. However, the
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acquisition of skeleton sequences is not as convenient as that
of images, and requires the utilization of depth cameras or
pose estimation algorithms. In low-data scenarios, the few-
shot approaches show great potential for both development
and practical applications. While the field of few-shot skeleton
action recognition is still in its early stages, previous research
has primarily adopted classic few-shot algorithms, such as
ProtoNet [6] for images and DTW [7] for videos. Skeleton-
DML [8] transforms skeleton data into images, while the
DTW-based JEANIE [9] addresses view alignment challenges.
The recent DASTM [10] method employs Soft-DTW [11]
for temporal alignment and still relies on ProtoNet to assess
the similarity between query samples and prototypes. Our
approach departs from prior methods by attempting to tackle
the challenge of few-shot skeleton action recognition in a
straightforward manner.

In this paper, we introduce a novel ‘“Pre-training and Fine-
tuning” approach for few-shot skeleton action recognition.
Similar to the ImageNet [12] pre-trained model in the image
domain and BERT [13] in the natural language processing
domain, pre-trained encoders have a vital function in feature
extraction in this approach. However, there is currently a lack
of substantial pre-trained models in the skeleton-based action
recognition field. Considering the success of vision-language
pre-training models [14], we explore the feasibility of utilizing
the vision-language contrastive learning training scheme to
skeleton encoders. Nevertheless, this is not a direct option due
to the scarcity of a large-scale dataset containing skeleton-text
pairs and the high cost of training a skeleton-language model
(which requires significant GPU resources). Moreover, directly
transferring representational knowledge from images to skele-
tons is challenging due to the sparse and non-uniform distribu-
tion of skeleton data. To address these challenges, we propose
a novel cross-modal contrastive pre-training framework that
exploits a vision-language pre-trained model to transfer high-
quality representations to skeleton encoders. Skeleton data,
whether acquired through a depth camera or a pose estimation
algorithm, is usually accompanied by RGB video that depicts
the same action and is closely related. Inspired by image-based
self-supervised learning, we view the video as an augmentation
of the skeleton over different modalities.

Self-supervised learning is a technique of representation
learning that leverages unlabeled data. The state-of-the-art
contrastive approaches [15]-[17] seek to minimize the dis-
similarity between representations of the same image under
different augmentations and maximize the difference between
representations of different images.

Mainstream methods in self-supervised learning aim to
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The overall architecture of our model. Given the scarcity of large-scale skeleton pre-training datasets, we adopt a two-stage approach to pre-train

the skeleton encoders using a vision-language pre-trained model (VL-PTM). The two stages involved are representation transfer and episode training. After
pre-training, the skeleton encoder remains fixed, and the weights (W) and biases (b) of classifier are fine-tuned using the support samples as training data.

Compare the right figure to highlight the innovations in our approach.

optimize the transfer of instructor expertise to students by
enforcing alignment between the final embeddings of the stu-
dent and teacher models. Some self-supervised techniques for
representation learning use knowledge distillation to boost the
efficacy of student models. SImCLR-V2 [18] employs logits
during fine-tuning to convey task-specific knowledge. SEED
[19] mimics the distribution of similarity scores between
teacher and student models using a dynamically maintained
queue. However, SEED heavily depends on the MoCo [16]
framework, suggesting the continuous need to maintain the
memory bank during distillation. In contrast, the Bootstrap
Your Own Latent (BYOL) approach [20] closely adheres to
knowledge distillation, reducing the gap between teacher and
student representations. BYOL trains an online network to
predict the representations of the same image under different
augmentations, without the requirement of explicit negative
samples. Inspired by this, we present a cross-modal repre-
sentation transfer framework, which utilizes pairs of skeleton
sequences and RGB videos as two augmented views of the
same action. The skeleton encoder learns to identify distinctive
features by predicting the embeddings generated by a pre-
trained vision-language model. Our framework is motivated
by the need for few-shot learning, which attempts to learn
instead of merely recognizing samples in the training set. The
vision-language pre-trained model provides a comprehensive
understanding of skeleton sequences, and we leverage this
knowledge for representation transfer, enabling the skeleton
encoder to extract features more effectively and distinguish
between samples. BYOL is chosen as the preferred method,
as it can learn modality-independent representations with a
simple regression loss.

The main contributions of this paper are: (1) a novel cross-
modal contrastive pre-training approach for few-shot skeleton
action recognition; (2) a representation transfer framework
that leverages vision-language pre-trained models for scenarios
lacking large-scale pre-training datasets; (3) our proposed
approach outperforms the state-of-the-art on NTU RGB+D,
NTU RGB+D 120, PKU-MMD, NW-UCLA, and MSR Action

Pairs datasets.

II. RELATED WORK
A. Skeleton-based Action Recognition

Inspired by the observation that the human skeleton is
naturally a topological graph, GCNs have attracted increasing
attention in skeleton-based action recognition. ST-GCN [4]
leveraged spatiotemporal GCN to capture human joint rela-
tionships in both spatial and temporal dimensions. Building
upon ST-GCN, Shi et al. proposed 2s-AGCN [5], which is
capable of dynamically learning graph topology in an end-to-
end manner. CTR-GCN [3] employed refined spatial attention
in the channel dimension to learn the dynamic features of
different channels. Shao et al. [21] utilized a multi-stream
neural network for cross-view action recognition from skeleton
data. MCMT-Net [22] captured the relationships within skele-
ton sequences through an efficient decomposition of spatio-
temporal graphical models. Recently, self-supervised skeleton-
based action recognition has emerged as a promising direction.
Yang et al. [23] proposed representing skeleton sequences as
skeleton clouds to learn their spatial and temporal information
by solving the skeleton cloud coloring problem. CrosSCLR
[24] learned skeleton sequence representations using a mo-
mentum contrast framework, while AimCLR [25] built upon
CrosSCLR and incorporates an energy-based attention-guided
dropout module and nearest neighbor mining. Moliner et
al. [26] applied BYOL to skeleton-based action recognition
using two very different pipelines of conservative and ag-
gressive enhancements. In contrast to existing approaches,
our approach utilizes the representation transfer framework
to extract discriminative features from vision-language pre-
trained models, thereby facilitating skeleton representation
learning. This unique approach sets our approach apart from
others in the field.

B. Few-Shot Learning

Few-shot learning is a technique that uses a limited amount
of labeled data to classify query samples. In the field of few-
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shot learning, meta-learning has been the dominant approach,
with a majority of studies focusing on image classification
[27]-[30]. ProtoNet [6] computed the distance between sam-
ples and class prototypes, while FEAT [31] defined a set-to-set
transformation for learning task-specific feature embeddings.
Simon et al. [32] used a subspace approach as the central
block of a dynamic classifier. MSML [33] extracted multi-
scale features and learns multi-scale relationships between
samples, and Zhang et al. [34] optimized the model by
formulating it as a variational inference problem Recently,
researchers have shown that embedding models pre-trained
on a large pre-training dataset can achieve comparable results
to many state-of-the-art meta-learning algorithms [35]-[38].
Few-shot action recognition has also become a topic of interest
due to the need to identify emerging new actions [39]-[43].
Several works [44]-[47] have adopted the ProtoNet scheme to
compute the similarity between video samples. However, these
methods cannot be directly applied to few-shot skeleton action
recognition tasks since they rely on RGB images or videos
with richer data meaning than skeleton sequences. Therefore,
our work takes a different approach, starting with the simple
method of pre-training and fine-tuning, and attempting to solve
the few-shot skeleton action recognition problem through a
few-shot learning baseline. However, the lack of a large-
scale skeleton dataset presents a significant challenge for pre-
training. To address this issue, we propose a representation
transfer framework that leverages the power of large-scale
vision-language pretrained models.

C. Few-Shot Skeleton Action Recognition

Leveraging the NTU RGB+D 120 dataset, Liu er al
[48] first presented an Action-Part Semantic-Relevance aware
(APSR) approach for one-shot skeleton action recognition.
Sabater et al. [49] employed a Temporal Convolutional
Network (TCN) to extract skeleton features and calculates
the cosine similarity between query and support features.
Memmesheimer et al. [8], [50] transformed the skeleton
sequence into images and performs classification based on
metric learning. JEANIE [9] proposed the temporal and view-
point alignment of support and query samples. SMAM [51]
proposed an adaptive matching module for similarity measure.
The most recent work DASTM [10] adopted the Prototypical
Networks architecture and performs spatial alignment through
rank-maximization and temporal alignment based on DTW.
According to DASTM, compared to ProtoNet-based methods,
meta-learning methods such as MAML [28] required large
memory overhead to memorize multiple gradient steps and
cannot effectively incorporate larger encoders like ST-GCN.

III. PROBLEM DEFINITION

This paper addresses the challenge of few-shot skeleton-
based action recognition. The skeleton data set D =
{(xs,y: | yi € Cp)} contains Np categories, which are di-
vided by category into a base set D = {(z;,y; | v: € Cg)}
and a novel set Dxy = {(zi,y; | y: € Cn)}, where Cg N
Cn = @ and Cg U Cy = Cp. The novel set Dy is composed
of N categories, with each category containing K labeled
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Fig. 2. Illustration of the representation transfer framework

sample, forming the support set S, in a K-shot scenario. Our
approach involves training the skeleton encoder on the base set
Dg using a vision-language pre-trained model and fine-tuning
the classifier on the support set S.

IV. APPROACH

As there is a limited number of labeled novel set samples,
the pre-training and fine-tuning manners in our approach
should be different from that in traditional transfer learning.
Due to the scarcity of large-scale skeleton-text pre-training
datasets, we adopt a two-stage approach to pre-train the
skeleton encoders by leveraging a pre-trained vision-language
model. These two stages consist of representation transfer
and episode training, as shown in Figure 1. Once the pre-
training is complete, the skeleton encoder remains fixed, and
the support samples are used as training data, with only the
weights W and biases b in the classifier being fine-tuned.
During forward propagation, the model calculates the cosine
similarity between the support and query samples to perform
classification.

A. Vision-Language Representation

As shown in Figure 2, we leverage the X-CLIP [52] as
the video-text embedding model. X-CLIP [52] is a video-
text pre-training model based on CLIP [14], comprising of
a video encoder and a text encoder, which creates dense
connections between text and video through inner product
contrast, demonstrating that the features of both modalities are
well aligned in the same feature embedding space. The em-
bedded video features and text features are represented as f,
and f; respectively, and the vision-language features fy; are
obtained as fyr = f, + fi. This pre-trained vision-language
knowledge is then transferred to the skeleton encoder through
our proposed framework. During training, the parameters of
the X-CLIP encoders are frozen while the skeleton encoder is
made learnable.

B. Pre-training of Skeleton Encoder

We introduce a representation transfer framework for pre-
training the skeleton encoder. Our methodology is built on
BYOL [20], which employs two views of the same input
to train an online network to predict the representation of a
target network. However, our approach differs from BYOL
in several crucial aspects. As illustrated in Figure 2, the rep-
resentation transfer framework consists of two networks: the
skeleton network and the vision-language network, with the
latter providing the regression target for training the former.
Specifically, we treat skeleton and vision-language information
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as two separate views and transfer representation from a pre-
trained vision-language model to a skeleton encoder. The
skeleton encoder Fg extracts features fs¢ = Eg(x) from a
skeleton sequence x, while the vision-language pre-trained
model Eyp is used to extract vision-language features fy .
The parameters of the vision-language pre-trained model are
frozen during representation transfer. Projectors gy and g¢.
are defined to obtain skeleton embeddings (s = gs (fs) and
vision-language embeddings (v, = ge (fv ), which are used
by the predictor gy to make predictions gy (s) and regress
the vision-language embedding (y -, using the loss Lg_,y1:
2 < g (CS)aCVL>

Lo = [ Gs) - i, =2 =2 e [

In the iterative training phase, the gradients are only back-
propagated through the skeleton network, and the vision-
language projector is updated using the exponential moving
average of the skeleton projector weights:

€ M+ (1=N0,xe0,1]. )

Our approach differs from BYOL in that it adopts a unidi-
rectional regression learning from skeleton to vision-language.
The Multi-Layer Perceptron (MLP) architecture used in our
work is identical to the one used in the original BYOL and
consists of a linear layer with an output size of 4096, followed
by batch normalization, a rectified linear unit, and a final
linear layer that generates a 256-dimensional embedding. Our
experiments show that the incorporation of predictors into the
skeleton network and the utilization of moving averages for
updating the vision-language projector leads to an increased
encoding of vision-language information within the skeleton
projections. After representation transfer, only the skeleton
encoder is retained and its weights are initialized using the
learned weights from the transfer process. The skeleton en-
coder is then further trained through episodic training on
a skeleton base set, which is a conventional meta-learning
training method for few-shot tasks that minimize covariate
shifting.

C. Fine-tuning of Cosine Classifier

After pre-training the skeleton encoder on the base set, we
fine-tune the cosine classifier using the support set to enhance
performance. For each sample (z;,y;) in the support set,
where 1 < j < N, the feature vector Eg (z,) is extracted
from the pre-trained skeleton encoder Eg and fed into the
softmax classifier. The resulting output probability distribution
is represented as p; = softmax (W Eg (z;) + b), where W
and b represent the weights and biases of the softmax classifier,
respectively.

Given the limited sample size in the support set, we employ
a weight initialization method from Tian et al. [38] instead of
utilizing a random initialization. The weights W are initialized
as M = [Eg(21),---,Eg(x;), -, Es (zn)]", and the
biases b are initialized as a zero vector. In this case, the
elements of the classifier output vector p; reflect the degree
of similarity between the features ¢ of the query sample
and the features of each individual class in the support set.

Additionally, we employ the cosine similarity simcos (w;, q)
between w; and ¢ in the softmax classifier, which forms a
cosine classifier, to minimize the intra-class variance among
features:

Simcos (wla Q) + bl

p = softmax sitcos (Wj,q) + b; ) 3)

SiMeos (wN7 Q) + by

. wlq
where simcos (w;,q) = m.

The objective of the fine-tuning stage is to optimize the
parameters W and b of the softmax classifier on the support
set. For each sample (x;,y;) in the support set, we calculate
the Cross-Entropy of the output p; and the label y;. The
mean of the Entropy of the output p, H(p), is also calculated
and added to the fine-tuning cross-entropy loss as an entropy

regularization to prevent overfitting:

N
Linewne = Lop + H(p) = Lop — Y pjlogp;.  (4)
j=1
V. EXPERIMENTS
A. Dataset and Evaluation Protocol

We conduct experiments on five public datasets: NTU RGB
+ D 60 [53], NTU RGB + D 120 [48], PKU-MMD [54], NW-
UCLA [55], and MSR Action Pairs [56]. More details about
the exemplars are provided in the appendix.

NTU RGB+D 60/120. NTU RGB+D 60 [53] is a skeleton-
based action recognition dataset with 60 different categories,
including daily actions, interactive actions, and health-related
actions. The dataset comprises 56,880 video samples per-
formed by 40 different subjects, and each body skeleton
contains 3D coordinates for 25 joints. NTU-120 [48] is an
expansion of NTU-60 that consists of 120 action classes
(daily/health-related) and 114,480 RGB + D video samples
taken with 106 unique human participants. According to its
official protocol [48], NTU-120 is split into a 100-class aux-
iliary set and a 20-class evaluation set with non-overlapping
classes. Each class in the evaluation set contains only one
reference sample serving as the exemplar. We employ the 100-
class auxiliary set to train the models for general performance
assessment. For the auxiliary reduction experiment, aligning
with the benchmarks in [48], we apply a variable control on the
auxiliary class size range of 20, 40, 60, 80, and 100. Following
dataset splitting in NTU-120 [48], we introduce a one-shot
skeleton action recognition setting on NTU-60. The one-shot
evaluation set includes 10 novel classes whereas the auxiliary
set has 50 classes. Al, A7, A13, A19, A25, A31, A37, A43,
A49 and ASS5 are chosen as novel classes.

PKU-MMD [54] is a benchmark dataset widely used for
human behavior analysis, comprising two subsets. In our
study, we select the first subset, PKU-MMD Part-I, which
consists of 1,076 untrimmed video sequences with 51 action
categories performed by 66 subjects. After removing 6 invalid
samples without skeletal frames, we obtain 21,545 valid ac-
tion sequences with 51 annotated action categories. For our
experiments, we choose 11 action categories for testing and
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40 for training. The test categories are A01, A06, All, Al6,
A21, A26, A31, A36, A41, A46, and A51. To perform 1-shot
and 5-shot testing, we select one or five samples, respectively,
from each test category to serve as the exemplar.

NW-UCLA dataset [55] comprises 1,494 video clips cov-
ering 10 action categories. Each action is performed by 10
different subjects. We randomly select 5 action classes for
training and the remaining classes for testing in the NW-
UCLA dataset. Due to the dataset’s limited size, we perform
20 train/test splits to minimize errors. We adopt the 1-shot and
5-shot evaluation protocols, averaging the results over all 20
splits.

MSR Action Pairs [56] is a dataset containing 360 video
clips of 6 action pairs (12 action categories), including pick
up/put down box, lift/place box, push/pull chair, wear/take off
hat, put on/take off backpack, and stick/remove poster. Each
action pair has very similar motion trajectories, and the actions
are performed three times by 10 subjects, resulting in 353
activity samples. We randomly select 3 action pairs for the
training set (6 classes) and the remaining 3 action pairs (6
classes) for the test set, resulting in 20 different train/test split
combinations. The use of action pairs in our train/test split
enables us to test whether the algorithm can classify unseen
action pairs with similar motion trajectories. We evaluate our
model using the 1-shot and 5-shot protocols, averaging over
all 20 splits.

B. Implementation Details

The selected skeleton encoder for this study is AGCN [5],
with data preprocessing techniques aligned with CTR-GCN
[3]. The default vision-language pre-trained model is X-CLIP
[52] (VIT-B/16 [57]).We sparsely sample 8 frames from the
RGB videos corresponding to each segment in the skeleton
dataset and perform spatial cropping based on human joint
coordinates. In the representation transfer framework, we only
train the skeleton encoder, projectors, and predictor. We use
the Adam optimizer with an initial learning rate of 0.1 and a
target decay rate of 0.99 for 100 epochs of training. The batch
size is set to 128, with a weight decay of 0.01. Specifically, for
the predictor, its learning rate is multiplied by 10. During this
process, the vision-language encoders remain frozen. Episodic
training is used to continue training the skeleton encoder
connected to a cosine classifier on the skeleton base set, with
training data composed into episodes. For the N-way K-shot
setting, N classes are randomly sampled, each class with
K examples, to form the support set, and each sample in
the query set belongs to one of the N classes. SGD with
a momentum of 0.9 and weight decay of 0.0001 is used as
the optimizer. The initial learning rate is set to 0.001 and the
cosine annealing strategy is employed. The cosine classifier
is fine-tuned on the support set for 20 epochs, and the initial
learning rate is set to 0.0005. All experiments are conducted
on a GTX 3090 GPU.

C. Comparison Results

We evaluate our approach against several competing meth-
ods on five benchmark datasets, namely NTU RGB + D

120, NTU RGB + D 60, PKU-MMD, NW-UCLA, and MSR
Action Pairs, as presented in Tables I, II, III, IV, V, and
VI. Among these methods are SL-DML [50] and Skeleton-
DML [8], which are metric learning-based approaches that
transform skeleton data into images. SMAM [51] introduces
an adaptive module that utilizes a metric matching mechanism.
DASTM [10] uses the prototype network as the basic few-shot
solution and employs Soft-DTW [11] to align the skeleton
sequences. Additionally, we compare our approach with sev-
eral image-based few-shot methods, including ProtoNet [0],
FEAT [31], and Subspace [32]. All the skeleton encoders in
the comparison default to AGCN. As shown in Tables I, II,
III, TV, V and VI, our proposed approach outperforms the
state-of-the-art methods by a large margin on all five datasets,
indicating the effectiveness of the proposed method on few-
shot skeleton action recognition. Note that, the one-shot/five-
shot experimental results for [8], [50] on PKU-MMD and
five-shot performances for [8], [49], [50], [58], [59] on NTU
RGB+D and NTU RGB+D 120 are from SMAM [51].

TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE NTU-120
DATASET
Method [ T-shot | 5-shot
Attention [58] 41.0 -
Fully Connected [58] 42.1 52.4
Average Pooling [59] 429 51.1
APSR [48] 45.3 -
TCN-Oneshot [49] 46.5 60.3
SL-DML [50] 50.9 64.0
Skeleton-DML [8] 54.2 65.5
JEANIE [9] 57.0 -
Soft-DTW [11] 56.9 67.1
ProtoNet [6] 58.8 68.6
FEAT [31] 58.1 66.9
Subspace [32] 59.7 69.8
SMAM [51] 56.4 65.9
DASTM [10] 60.1 69.3
Ours(AGCN) 70.4 79.5
Ours(CTR-GCN) 71.0 79.7
TABLE 11
EVALUATION OF DIFFERENT TRAINING SET SIZES ON THE NTU-120
DATASET
Training Classes | 20 | 40 [ 60 | 80 [ 100
APSR [48] 29.1 34.8 39.2 42.8 45.3
SL-DML [50] 36.7 42.4 49.0 46.4 50.9
Skeleton-DML [8] 28.6 37.5 48.6 48.0 54.2
JEANIE [9] 38.5 44.1 50.3 51.2 57.0
Soft-DTW [11] 34.5 42.9 48.6 514 56.9
ProtoNet [6] 35.8 44.5 50.7 52.1 58.8
FEAT [31] 37.1 44.1 47.2 53.7 58.1
Subspace [32] 36.4 43.9 52.9 54.1 59.7
SMAM [51] 35.8 46.2 51.7 52.2 56.4
DASTM [10] 36.5 43.1 51.0 53.9 60.1
Ours(AGCN) 43.3 | 54.5 | 62.1 65.7 70.4
Ours(CTR-GCN) 43.0 54.5 61.9 66.0 | 71.0

D. Model Analysis

Attribution Visualization. To validate the efficacy of our
approach, we present the results of ProtoNet, DASTM, and our
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Fig. 3. Illustration of Joint-frame heatmaps for the “drink water” action. The RGB frames reveal that the most prominent features of the ”drink water” action
are present in frames 3, 4, 5, 6, 13, and 14. However, ProtoNet only considers the initial few frames and neglects the equally crucial frames 13 and 14. In
contrast, our approach can effectively identify the two most critical moments in the action, as demonstrated by the clear hand movement captured in frames
13 and 14. In the spatial dimension, our approach precisely focuses on all the skeleton points relevant to the action of drinking, including the (4) head, (5)
left shoulder, (6) left elbow, (7) left wrist, (21) spine, and (22) tip of the left hand, thereby offering a more comprehensive representation of the action (best

viewed in color).

TABLE III
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE NTU-60
DATASET.
Method [ I-shot | 5-shot
Fully Connected [58] 60.9 64.2
Average Pooling [59] 59.8 61.2
TCN-Oneshot [49] 64.8 66.8
SL-DML [50] 71.4 77.0
Skeleton-DML [8] 71.8 77.6
Soft-DTW [11] 72.8 79.4
ProtoNet [6] 74.7 81.1
FEAT [31] 73.4 78.9
Subspace [32] 75.6 82.6
SMAM [51] 73.6 79.0
DASTM [10] 76.9 83.1
Ours(AGCN) 83.9 89.8
Ours(CTR-GCN) 83.7 90.0

approach on NTU-120 using visualization techniques, which
enable a more comprehensive examination of the learned
representations. We employ the attribution algorithm BIG [60]
to interpret the model predictions, and the resulting attribution
scores are presented as joint-frame heatmaps, as depicted in
Figure 3 and 4. Generally, higher scores indicate the stronger
relevance of the corresponding input features to the prediction.
The brightness of the grids in the heatmap corresponds to
their level of importance in the prediction. Compared to prior
previous methods, BIG provides a more precise interpretation
while also mitigating the issue of baseline sensitivity. As de-
picted in Figure 4, the learned representations in our approach
demonstrate a higher degree of discriminative ability compared
to those generated by ProtoNet and DASTM. This observation

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE
PKU-MMD DATASET.

Method [ T-shot [ 5-shot
SL-DML [50] 67.0 73.0
Skeleton-DML [8] 68.6 73.7
Soft-DTW [11] 73.5 80.0
ProtoNet [6] 77.2 83.3
FEAT [31] 74.6 80.3
Subspace [32] 75.1 82.2
SMAM [51] 70.4 74.2
Ours(AGCN) 87.3 92.8
Ours(CTR-GCN) 86.7 92.3
TABLE V

COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE
NW-UCLA DATASET.

Method [ T-shot [ 5-shot
SL-DML [50] 66.2 76.1
Skeleton-DML [8] 69.6 77.9
Soft-DTW [11] 71.1 81.0
ProtoNet [6] 73.6 81.6
FEAT [31] 71.7 80.2
Subspace [32] 72.4 81.0
Ours(AGCN) 82.1 88.9
Ours(CTR-GCN) 82.5 89.5

indicates the superior capacity of our approach in the realm
of few-shot skeletal action representation learning.

Failure Cases. Figure 5 illustrates instances of failure in rec-
ognizing skeleton actions using the proposed method, namely
A067 "hush” and A103 “yawn”. Additionally, AOO1 “drink
water” and AO085 “apply cream on face”, as well as A055
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TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE MSR
ACTION PAIRS DATASET.

Method [ T-shot | 5-shot
SL-DML [50] 70.1 76.2
Skeleton-DML [8] 71.7 78.7
Soft-DTW [11] 73.8 80.6
ProtoNet [6] 79.3 84.9
FEAT [31] 75.4 82.1
Subspace [32] 74.5 81.0
Ours(AGCN) 86.2 91.1
Ours(CTR-GCN) 86.0 87.7
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Frames.

(ii) DASTM

(a) “drink water”
24
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(c) “grab other person’s staff” (second person).

Fig. 4. Joint-frame heatmaps for (a) “drink water”, (b) “apply cream on
face” and (c)“grab other person’s staff”(best viewed in color).

“hugging” and A109 “grab stuff”’, are also prone to mutual
confusion. We analyze the reasons for these prediction failures
to be the lack of dense spatial cues from RGB images, as only
sparse skeleton modalities are utilized, resulting in significant
similarities between these actions. Taking Figure 5 as an
example, the nearly identical trajectories of the left and right
hands make it challenging to distinguish between “hush” and
“yawn”.

Different Pre-training Strategies. The pre-training phase
plays a crucial role in extracting discriminative features for
few-shot skeleton action recognition from sparse skeleton data.
In this section, we delve into the pre-training strategy and
investigate five additional methods in addition to the proposed
representation transfer framework, as follows:

“Ours (traditional training)” only performs batch training
on the base class skeleton data; “Ours (episodic training)”
performs episodic pre-training on the base class skeleton
data; “Skeleton_BYOL” pre-trains on unlabeled base class
skeleton data using Moliner et al. [26] method without a meta-
learning stage; “Skeleton_BYOL-Meta” and “AimCLR-Meta”,

(a) “hush”

ERERR!

(b) “yawnn

i
X

Fig. 5. Failure cases for few-shot skeleton action recognition (a) “hush” and
(b)“yawn”(best viewed in color).

TABLE VII
COMPARISON OF DIFFERENT PRE-TRAINING STRATEGIES USING
ONE-SHOT EVALUATION PROTOCOL.

Training Strategy [ NTU-120 | NTU-60 [ PKU-MMD

w/o cross-modal pre-training
Soft-DTW [11] 56.9 72.8 73.5
ProtoNet [6] 58.8 74.7 77.2
FEAT [31] 58.1 73.4 74.6
Subspace [32] 59.7 75.6 75.1
Skeleton_BYOL [26] 50.6 67.8 70.0
Skeleton_BYOL-Meta 62.1 74.1 78.8
AimCLR-Meta [25] 64.3 76.4 80.4
Ours(traditional training) 53.4 70.2 72.1
Ours(episodic training) 57.0 73.1 74.9
w/ cross-modal pre-training
Soft-DTW [11] 64.0 78.7 80.3
ProtoNet [6] 66.5 80.2 84.3
FEAT [31] 66.8 79.7 82.7
Subspace [32] 67.8 82.4 83.0
Ours 70.4 83.9 87.3

respectively, represent using Moliner et al. [26] and AimCLR
[25] to conduct self-supervised learning on unlabeled base
class skeleton data before episodic training.

We also compare the performance of classic algorithms,
including Soft-DTW, ProtoNet, FEAT, and Subspace, on three
datasets under two conditions: with and without cross-modal
pre-training. The term “w/ cross-modal pre-training” denotes
the usage of the cross-modal pre-trained skeleton encoder
as the initialization for the encoders of each algorithm. It
is evident that our proposed pre-training framework signif-
icantly enhances the classification performance for different
algorithms, showcasing its universality.

As shown in Table VII, our proposed representation trans-
fer framework for pre-training outperforms these pre-training
strategies significantly. Although self-supervised learning is
only performed on unlabeled skeleton data, it brings consider-
able gains to skeleton representation learning. Results in Table
7 demonstrate the effectiveness of our proposed representation
transfer framework.

Different Representations. We evaluate the impact of three
different representations (f;: text-only, f, : video-only, and
ft + fo: video-text) from the vision-language pre-trained
model, and the comparison results are shown in Table VIII. It
is worth noting that we only utilize the vision-language pre-
trained model during the pre-training phase. The experimental
results demonstrate that the skeleton encoder can benefit from
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TABLE VIII
COMPARISON OF DIFFERENT REPRESENTATIONS IN TRANSFER USING
ONE-SHOT EVALUATION PROTOCOL.

Representation [ NTU-120 [ NTU-60 | PKU-MMD

None 58.0 74.1 75.9
It 62.3 77.4 79.3
fo 67.1 80.8 84.9

ft + fo 70.4 83.9 87.3
TABLE IX

COMPARISON OF DIFFERENT INITIALIZATIONS USING ONE-SHOT
EVALUATION PROTOCOL.

Initialization [ NTU-120 [ NTU-60 [ PKU-MMD
Random 41.6 60.1 58.8
ImageNet pre-trained 54.2 71.8 68.6
Representation Transfer 61.3 75.0 71.2

both visual and linguistic representation sources. Unlike labels,
videos have a one-to-one correspondence with skeleton se-
quences, indicating the dominant role of visual representations
in the transfer learning framework. Moreover, the textual
features generated by the vision-language pre-trained model
complement and enhance the overall representations.
Different Initialization. We conduct ablation studies on dif-
ferent Initialization for ResNet-18 [61] based Skeleton-DML.
Skeleton-DML [8] transforms skeleton sequences into images.
By default, ResNet-18 is initialized with the ImageNet pre-
trained model. As shown in Table IX, the final accuracy of
the randomly initialized ResNet-18 is only 41.6%, significantly
lower than the results obtained from both the ImageNet pre-
trained model initialization and the representation transfer
initialization. These differences in performance emphasize the
importance of pre-training and demonstrate that our repre-
sentation transfer framework is particularly valuable in the
absence of large skeleton datasets. While representation trans-
fer significantly improves the performance of the ResNet-
based skeleton encoder, the transformation of 3D skeleton
sequences into 2D image results will lose the important spatial
depth information, leading to a decline in performance when
compared to GCN-based models.

Framework Design. We delve deeper into the structural
design of the representation transfer framework. Specifically,
we examine the impact of removing the moving average
target, which sets the target decay rate to 0. Our findings,
as presented in Table X, demonstrate that the target weight
and online weight instant update result in a slight degradation
in performance compared to the default setting. This suggests
that the representation transfer framework still relies on the
guided behavior of BYOL to learn skeleton representations.
Furthermore, we investigate the impact of eliminating the pre-
dictor from the framework, which is incorporated in BYOL to
prevent network collapse. The results in Table X demonstrate
that the representation transfer performance drops significantly
without the predictor. These findings emphasize the significant
impact of cross-modal representation transfer on enhancing
overall performance improvement and highlight the crucial
role of BYOL’s structure configuration in learning skeleton
representations.

TABLE X
COMPARISON OF DIFFERENT FRAMEWORK DESIGNS USING ONE-SHOT
EVALUATION PROTOCOL.

Framework [ NTU-120 [ NTU-60 | PKU-MMD
Without moving average target 68.0 80.2 84.3
Without predictor 63.8 76.6 81.1
Default 70.4 83.9 87.3
TABLE XI
COMPARISON OF DIFFERENT CLASSIFIERS USING ONE-SHOT EVALUATION
PROTOCOL

Classifier | NTU-120 | NTU-60 | PKU-MMD

NN 66.7 80.2 84.5
LC 68.1 81.4 85.6
cC 70.4 83.9 87.3

Different Classifiers. We perform ablation experiments with
different classifiers. As shown in Table XII, “/NN” represents
the nearest neighbor classifier, and “LC” represents the linear
classifier, while “C'C” stands for the cosine classifier. In the
nearest neighbor classifier, the Euclidean distance is employed
to measure the similarity between feature vectors and classify
them. However, as the feature extraction of the skeleton graph
using graph convolution occurs in a non-Euclidean space,
it may not be optimal to utilize the Euclidean distance, as
evidenced by its effect on the accuracy rate. The cosine
classifier, on the other hand, employs cosine similarity. With
limited support set samples, reducing the intra-class variance
results in an improvement in accuracy compared to the linear
classifier.

Different Video-Text Models. In addition to X-CLIP, we
conduct experiments using different video-text models in the
representation transfer framework to explore their impact.
ActionCLIP [62], based on CLIP, employs a retrieval-based
approach for video action recognition. Florence [63] further
extends the CLIP method by leveraging a unified contrastive
objective. As shown in Table XII, our method yields significant
performance gains for the skeleton encoder by leveraging
large-scale vision-language models, with the influence of more
powerful video-text models becoming increasingly apparent.
Different Hyperparameters. We investigate the impact of
hyperparameter modifications on the representation transfer
framework using the one-shot evaluation protocol on the NTU-
120 dataset. The vision-language embedding serves as the
predictive target for the skeleton network during transfer, with
its weight being determined as an exponential moving average
of the skeleton projector weights. As shown in Figure 6, we
can find that when the target decay rate is set to 1, the vision-
language projector remains fixed to its initial random weights,
leading to stable training but reducing the efficacy of pre-
training. On the other hand, a target decay rate of O results
in the immediate updating of the vision-language projector
weights, causing instability during pre-training and a subse-
quent decline in the model performance. Intermediate values
of the target decay rate (e.g., 0.5 and 0.999 ) also produce
unsatisfactory results. It is worth noting that the proposed
method achieves the best performance when A is set to 0.99.
Thus we set A = 0.99 in the main experiment in our paper. The
results further demonstrate that supervision from the vision-
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TABLE XII

COMPARISON OF DIFFERENT VIDEO-TEXT MODELS USING ONE-SHOT

EVALUATION PROTOCOL

Model [ NTU-120 [ NTU-60 [ PKU-MMD

X-CLIP 70.4 83.9 87.3
ActionCLIP [62] 70.8 84.0 87.6
X-Florence [52] 71.6 84.4 88.3

language pre-trained model enhances the performance of the
skeleton encoder, with the greatest improvement observed at
the BYOL default value.

Accuracy

70
69
68
67
66
0 0.5 0.9 0.99 0.999 1.0
Decay_rate

Fig. 6. Accuracy variation with different target decay rate

VI. CONCLUSION

This paper presents a novel cross-modal contrastive pre-
training approach for few-shot skeleton action recognition.
To address the challenge of pre-training stemming from the
scarcity of large-scale skeleton datasets, we propose the
representation transfer framework, which leverages the well-
embedding text and video features from the vision-language
pre-trained models to guide the learning of the skeleton
encoder. Extensive experiments over different datasets demon-
strate that our proposed method achieves superior few-shot
skeleton action recognition performance.
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