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Abstract—Pedestrian safety is a huge concern for deploying
autonomous vehicles in urban environments. Accidents involving
pedestrians pose a higher degree of severity, sometimes causing
serious injuries and fatalities [1]. It’s a challenging task to
predict whether a pedestrian will cross the road since they
can move in any direction and change motion suddenly. The
inherent uncertainty in pedestrian motion has been addressed
with probabilistic models in previous works. However, these mod-
els are too computationally expensive for real-time predictions.
In this paper, we propose a novel reinforcement learning (RL)
framework which produces soft labels for the training dataset
in order to address the observed data uncertainty. We formulate
novel state representations incorporating predictive uncertainty
to learn more informative soft labels that improve the model
performance and reliability. Finally, we validate the proof of
concept with two benchmark datasets and show with extensive
experiments on competitive prediction models that our method
(even using fewer input modalities) significantly improves the
accuracy and f1 score by up to 12% and 13% respectively. We
also show that soft labeling as a form of regularization increases
model reliability where the model is more accurate when the
confidence level is high and more aware of its limitations with
indication of low confidence.

Index Terms—Pedestrian action prediction, autonomous vehi-
cle, reinforcement learning, uncertainty estimation.

I. INTRODUCTION

IN urban traffic, pedestrians are a major source of concern
for autonomous vehicles with the potential to cause severe

accidents. According to the Global status report on road
safety 2023 [2], Pedestrians constitute a significant portion
of traffic-related fatalities worldwide, at a rate of 23%. Road
traffic injuries are the leading cause of death for children and
young adults aged 5-29 years, according to 2019 data. For
autonomous vehicles to be deployed in urban environments, it
is crucial to predict pedestrian motion accurately and reliably.

Pedestrian motion prediction is a special case of human
motion prediction [3]–[8]. Recently, many studies have been
conducted for pedestrian motion prediction, such as [9]–[15]
for crossing prediction and [16]–[24] for trajectory prediction.
In this paper, we focus on pedestrian crossing prediction,
which is a binary classification problem that predicts whether
a pedestrian will cross the road at some point in the future.
Specifically, the inputs to the prediction model are bounding
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Fig. 1: Example of uncertain pedestrian motion. The pedestrian
is walking towards the road during observation but finally turns
away thus is labeled not crossing.

box, pose, and visual features of the pedestrian as well as
vehicle speed in a time sequence, and the output is a binary
label indicating whether the pedestrian will cross the road or
not. What makes it a challenging problem is the observed
multi-modal sensory data including RGB camera, LiDAR and
vehicle odometry; and the data pre-processing in the prepara-
tory tasks i.e. pedestrian detection or identification [25]–[27]
and pose estimation [28]–[30]. Both the observed and post-
processed data contain considerable amount of variability and
noise that leads to uncertainty in prediction. The type of
uncertainty that captures inherent noise in the observed data
is named aleatoric (data) uncertainty [31], which we target to
address in this paper.

The aleatoric uncertainty in pedestrian crossing prediction
mainly comes from two sources. The first source is sample
hardness [32], [33] which is inherent in the ambiguous motion
features. For example, the intention of a pedestrian standing
near the crosswalk but not looking in the direction of oncom-
ing traffic is hard to infer. Soft labeling for the hard samples
provides a form of regularization helping the prediction model
better handle the ambiguous samples [34]. The second source
is the noisy (incorrect) labels which disagree with the motion
features [35]–[37]. For example, a pedestrian could be walking
towards the road but turn away at the last moment as illustrated
in Fig. 1. The assigned label for this pedestrian is not crossing
according to his ending action even though the observation
exhibits crossing characteristic. The contradiction between
observation and label (even for a small portion of the dataset)
can confuse the prediction model and lead to a degraded
performance as discussed in the beginning of Sec. III. We
also notice inconsistent labeling in the Pedestrian Intention
Estimation (PIE) dataset [20], which provides two types of
labels: intention and action. For intention labeling, human
subjects were asked to rate a pedestrian’s crossing intention by
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Fig. 2: Inconsistency between ”intention” and ”action” labels
provided by PIE dataset [20].

viewing an initial footage of the pedestrian. Action label is the
ending action given the complete observation of the pedestrian.
When comparing intention to action labels illustrated in Fig. 2,
we find that half of the pedestrian samples have inconsistent
labels and the majority of them are labeled to have intention
to cross but not cross in the end. This finding suggests the
existence of inherent uncertainty in the dataset.

Most of the existing works concentrate on designing network
architectures and use the given labels as is. However, aleatoric
uncertainty is inherent in the observed data and cannot be
eliminated by changing networks. To solve this issue, we
directly work on the dataset by soft labeling the uncertain
samples with a reinforcement learning framework which is
guided by the predictive uncertainty as part of the state
representation. In summary, our main contributions are: 1. We
propose a novel reinforcement learning framework where soft
labels are learned with hidden features from the prediction
model and used to train the model itself, with the RL network
using the model’s performance change as a reward signal,
creating a continuous improvement loop. 2. We formulate
novel state representations by incorporating an uncertainty
metric, leading to better selection of uncertain samples and
improvement of model reliability with uncertainty estimation.
3. When applied to competitive models for pedestrian crossing
prediction, our framework (even using fewer input modalities)
makes significant improvements over the original models on
two benchmark datasets.

II. RELATED WORK

A. Pedestrian crossing prediction

Pedestrian crossing prediction is a binary classification
problem which predicts whether a pedestrian is going to
cross the road at some point in the future. Many prior
works [11], [12], [38]–[41] employ RNN based methods to
process temporal inputs of different modalities followed by
a fully connected layer to predict crossing action. [9] and
[42] both use hierarchical GRU layers to fuse input features
for prediction. A few convolutional methods are attempted
such as ConvLSTM for intention prediction [20], and graph
convolutional network for reasoning changes in pedestrian
pose over time [21]. The hybrid method in [10] encodes
visual features by a 3D convolutional network and other input
modalities by RNNs followed by a temporal attention module.

All encodings are then concatenated and fed into a spatial
attention module for prediction. Our method is not limited
to input modalities or model architectures while we adapt
to existing models to further improve their performance and
reliability by considering data uncertainty.

B. Uncertainty in pedestrian motion prediction

A few works have addressed uncertainty in pedestrian
motion prediction categorized into two groups: crossing pre-
diction and trajectory prediction. [43] is a close match to
our problem as it uses uncertainty estimation to improve
robustness of crossing predictions. However, the author uses
Monte Carlo dropout to estimate epistemic (model) uncertainty
while we use soft labels to handle aleatoric (data) uncertainty.
[15] models uncertainty with conditional generative model to
conduct probabilistic predictions. We instead work on deter-
ministic models with the goal of producing better labels lever-
aging observed uncertainty. For trajectory prediction which is
a different problem from ours, [23] addresses the uncertainty
in pedestrian trajectory by a Bayesian approach and estimates
an empirical error bound for the predictive distribution. [18]
uses Monte Carlo dropout to quantify the uncertainty in
pedestrian trajectory prediction. [17] estimates uncertainty of
the trajectory by applying a Kalman Filter with a dynamically
adjusted process noise matrix. There are a few works on the
uncertainty in general human motion prediction. [44] predicts
motion uncertainty by learning a distribution of possible future
destinations. [45] employs latent space to capture the inherent
uncertainty for predicting multiple feasible trajectories. [46],
[47] solve action prediction by estimating soft labels for
subsequences at different progress levels using soft regression.
[48] also learns soft labels but with a novel annotation strategy
allowing the annotator to assign multiple weighted labels. Our
novel RL framework with aleatoric uncertainty incorporated
into soft label learning is the first of its kind in crossing
prediction.

C. Reinforcement learning

Reinforcement learning (RL) is a learning paradigm that
learns to take actions in an environment to maximize a reward
signal. We find some works in computer vision [49]–[52]
which deal with region selection in the object detection task.
In action prediction, [53] learns a policy to activate action-
related skeleton proposals with deep reinforcement learning.
In active learning, [54] and [55] adopt the Deep Q-Learning
(DQN) [56] to actively learn an annotation policy for the task
of semantic segmentation and pose estimation respectively.
[57] applies a policy gradient method named Reinforce [58]
to learn an acquisition function. We evaluated both DQN and
Reinforce and found they are not suitable for our task. DQN
works only with discrete action space and is not friendly to
a multi-action setting. Reinforce has high variance and noisy
gradients. Our method leverages Deep Deterministic Policy
Gradient (DDPG) [59] which can handle continuous action
space and multi-action outputs. Moreover, the use of target
networks leads to more stable policy learning.
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Fig. 3: Workflow of our reinforcement learning framework in selecting and soft labeling uncertain pedestrian samples. Orange
line indicates the generation of similarity features; Green line represents training of the RL framework; blue line is training of
the prediction model. The detailed procedures are as follows. 1. Split training set Dtrain into candidate set Dcand and certain
set DC as described in Sec. III-A Candidates selection. 2. Compute state st for the similarity feature by calculating cosine
similarities between individual candidate and respective crossing and not crossing samples in DC (indicated by orange lines)
; predictive entropy feature is computed from prediction model ft−1; one-hot label and progress level features are from the
annotation. 3. Learn dual-action i.e. selection and soft labeling (aSt , a

L
t ) by the Actor network and apply actions to Dcand to

yield two subsets: one is updated with soft labels and the other remains with one-hot labels. 4. Use updated Dtrain to train
ft−1 and obtain model ft. 5. Compute reward rt on a held-out validation set Dval by comparing the sum of accuracy and f1
between ft and ft−1. Repeat procedure 2-5 for T steps to complete one episode of the RL process.

TABLE I: Illustration of the effect on prediction model PCPA
after removing uncertain (simulated with top-loss) samples
from the PIE dataset

Method acc auc f1
PCPA [10] 0.87 0.86 0.77
PCPA w/o high-loss samples 0.89 0.87 0.81

III. METHOD

To show that uncertain samples (e.g. Fig. 1) can degrade
model performance, we define a hand-crafted rule to filter
uncertain samples by using the top-loss samples [32] (since
high loss means difficulty to fit the sample indicating am-
biguity). We use an empirical 10% as the removal rate and
show a comparison of prediction model PCPA [10] trained
with and without high-loss samples in Tab. I. We observe an
improvement in model performance by 2% gain in accuracy
and 4% in f1 score. This simple experiment shows that
uncertain samples are indeed harmful.

Instead of simply removing the samples, we handle un-
certainty in pedestrian motion by soft labeling. We choose
reinforcement learning for generation of soft labels because
the RL agent can adapt to the prediction model through
maximizing the reward signal which directly links to model
performance. In the following subsections, we show how we
quantify uncertainty for candidate selection and measuring re-
liability of prediction models in Sec. III-A, then we discuss the
formulation of RL steps as a Markov decision process (MDP)
inspired by [54], [55] and how we adopt an Actor-Critic based
RL method to solve the MDP problem in Sec. III-B.

A. Quantification of uncertainty

Predictive entropy. In order to select the most uncertain
samples for soft labeling, we need to quantify uncertainty
of the dataset, indicated by the model confidence. In this
paper, we take predictive entropy as the uncertainty metric to
represent aleatoric uncertainty. It is defined as the entropy of
predicted probability distribution over classes. For each input
sample x, the predicted entropy is calculated with Eq. (1)
where ŷx is the prediction.

ux = −
∑
k

p(ŷx = k|x) log p(ŷx = k|x) (1)

The key idea of quantifying uncertainty for a safety-critical
application, such as pedestrian crossing prediction, is to
increase robustness and reliability of the model, which is
expected to be accurate when it’s certain about the predictions,
and to indicate high uncertainty when making wrong predic-
tions. The former means the model is reliable given that it is
certain about the predictions and therefore more trustworthy.
The latter means the model is more likely to be aware of
its limitations and not provide overconfident predictions. This
is especially important for safety-critical applications, where
misleading predictions can result in severe consequences.
Based on the aforementioned, we use two conditional proba-
bilities P (accurate|certain) and P (uncertain|inaccurate)
to measure the quality of uncertainty estimates across various
entropy thresholds as proposed in [60]. The effectiveness of
our method is evaluated on both metrics in Sec. IV.

Candidates selection. In Fig. 3, we first split the training
data into candidate set Dcand and certain set DC . Then Dcand
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is fed to the reinforcement learning network for soft labeling.
This step narrows down the sample range for the RL network,
enabling more efficient training. We filter the candidate set
Dcand based on the uncertainty level and accuracy of the
prediction model. The first rule is to select samples that are
highly uncertain, following the idea from the active learning
strategy [54], [61], [62]. Those samples with high uncertainty
are expected to contain more ambiguous features, and can
serve as suitable candidates for soft labeling. Using predictive
entropy as the uncertainty metric, we select samples with
high entropy scores as candidates, i.e. {x ∈ Dtrain : ux >
uhigh}. Secondly, as mentioned before, our target is to be
more confident with accurate predictions and more uncertain
about inaccurate ones. Therefore, samples that are inaccurately
predicted with a high confidence i.e. low uncertainty (lower
than ulow) are contrary to our target. These samples are also
included as candidates for soft labeling, i.e. {x ∈ Dtrain :
ŷx 6= yx ∧ ux < ulow}. The entropy thresholds ulow and
uhigh are hyperparameters that can be tuned empirically.

B. Dual-action reinforcement learning

The core of our method is a reinforcement learning network
g that learns to select the most uncertain samples and assign
soft labels for training the prediction model f as depicted
in Fig. 3. The process is iterated until f maximizes its
performance on the validation set.

The reinforcement learning steps (in Alg. 1) cast in an MDP
formulation (st, at, rt, st+1) are detailed at each iteration t
as: 1) Compute the state st for each candidate sample, which
characterizes the sample’s ambiguous features, uncertainty and
other information. 2) Evaluate the state st with Actor network
µ to generate dual-action (aSt , a

L
t ) for all candidates and assign

the learned soft labels aLt to samples whose selection action
aSt = 1 3) Re-train the prediction model ft−1 on the updated
training set where selected samples are re-labeled with aLt
and obtain ft. 4) Update the state to st+1 based on ft. 5)
Compute the reward rt as the performance change between
ft and ft−1 evaluated on a held-out validation set Dval. In
following sections, we will elaborate on the RL algorithm used
to solve the MDP problem followed by a detailed definition
for state, action and reward.

Deep deterministic policy gradient. We take the Actor-
Critic based DDPG [59] as our reinforcement learning algo-
rithm for its continuous action space and stable performance.
To evaluate action at, the Critic Q(st, at|φQ) produces a Q-
value by taking as input the state-action pair (st, at). Target
networks Q′ and µ′ are used to update the Critic by computing
a target Q-value yt with Eq. (2) then minimizing a temporal
difference (TD) loss in Eq. (3).

yt = rt + γQ′(st+1, µ
′(st+1|φµ

′
)|φQ

′
) (2)

LCritic =
1

N

∑
t

(yt −Q(st, at|φQ))2 (3)

Algorithm 1 Dual-action reinforced learning
Input: behaviour prediction model finit, training set Dtrain,
validation set Dval, Actor µinit, Critic Qinit
Output: Updated prediction model fT
Function:
def UPDATE(f,D):

return trained f on D
def COMPUTE(Dcand, DC , f):

simcross = hist(Dcand
x ·DC

cross)
simnocross = hist(Dcand

x ·DC
noross)

pred entropy = Eq. (1)
st = concat(simcross, simnocross, pred entropy, gt label,
progress level)
return st for each candidate sample x

Init: f0 ← UPDATE(finit, Dtrain); Dcand, DC ← SPLIT
(Dtrain); µ0 ←COLDSTART(µinit); Q0 ← Qinit
for each episode do

for each t in (0, T − 1) do
st ← COMPUTE(Dcand, DC , ft−1)
aSt , a

L
t ← µt(st) for each sample x

Update DU
t , DC

t , ft and st+1:
DU
t ← samples whose aSt = 1; re-label with aLt

DC
t ← augment DC with samples whose aSt = 0

ft ← UPDATE(ft−1, (DU
t , D

C
t ))

st+1 ← COMPUTE(Dcand, DC , ft)
Compute reward on Dval:
rt = Score(ft)− Score(ft−1)

Push transition (st, at, rt, st+1) to Replay Buffer R
Update µt and Qt following Eq. (3) and Eq. (4)

end
end

N in Eq. (3) is the size of the mini-batch sampled from the
replay buffer R and target Q-value yt in Eq. (2) is calculated
as the sum of the reward signal rt and the output Q′ of the
target Critic network multiplied by a discount factor γ. Q′ is
derived from the next state st+1 and next action µ′(st+1|φµ

′
)

by the target Actor network.

The Actor network is then updated by taking as loss the
negative Q-value in Eq. (4), which drives the policy learning
to select the most uncertain samples for soft labeling.

LActor = −Q(st, at|φQ) (4)

For updating parameters of target networks Q′ and µ′, we
use Eqs. (5) and (6) i.e. weighted sum of the updated net-
work parameters φQ and φµ and the targets’ last parameters.
Following [59], we put more weight on the target itself i.e.
τ � 1.

φQ
′
= τφQ + (1− τ)φQ

′
(5)

φµ
′
= τφµ + (1− τ)φµ

′
(6)

State. The state st for each sample x in the candidate set
Dcand serves as input to the policy network i.e. the Actor,
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which generates dual-action output. To learn useful sample
selection and soft labeling actions, we formulate four state
features: 1) the similarity of x in hidden features with the
respective crossing and not crossing samples from the certain
set DC ; 2) the predictive entropy with respect to the prediction
model. 3) the original one-hot label; 4) the progress level
i.e. temporal position of the subsequence; These four features
need to support sample selection aS and provide cues for soft
labeling aL.

The first state we choose is based on the requirement to
capture the most representative information of sample x in dis-
criminating the crossing and not crossing features. Instead of
directly using hidden features before the classification layer of
the prediction model, which has been verified in experiments
not a useful indicator for class discrimination, we choose
to use the closeness in hidden features of sample x to the
respective crossing and not crossing samples from the certain
set DC . As the certain set DC are guaranteed to have the most
representative crossing and not crossing features, comparing
candidate sample x to the respective classes of DC can straight
away tell the bias in hidden features for x. Specifically,
we compute the cosine similarity between x and individual
samples in DC and group the cosine similarities by class. To
obtain a compact representation, instead of taking the average
for all similarity values for each class, we compute a histogram
of similarities, which is more informative. For instance, a right
skewed distribution indicates that x is closer in hidden features
to the particular class it is compared with and vice versa. The
similarity state feature makes a significant contribution to soft
label learning since it’s directly dealing with motion features.
It also incorporates the important features of the certain set
DC by correlating the hidden features of candidate samples
with the certain set.

The second state feature is the predictive entropy. As dis-
cussed in Sec. III-A, predictive entropy is a good indicator
of uncertainty in the prediction model output. The rationale
behind including predictive entropy in the state representation
is to provide a measure of uncertainty in the prediction
model, which is crucial for selecting uncertain samples for
soft labeling. According to Eq. (1), the maximum entropy is
1 when the predicted probability is 0.5, indicating complete
uncertainty in the prediction. Towards the extremes (0 or
1), the entropy decreases to lowest, implying the model is
certain about the prediction. Predictive entropy can guide the
agent to produce soft labels that accounts for the uncertainty
in the prediction model (e.g. if the model produces a high
entropy, the RL agent can then learn a soft label that is
more evenly distributed across classes). Predictive entropy also
encourages exploratory actions which the prediction model is
less confident about. The experience from these exploratory
actions can potentially improve the quality of the soft labels
learned.

The third state feature is the original one-hot label. Together
with the similarity feature, one-hot labels can assist in iden-
tification of noisy samples that either have a disagreement
between motion features and the one-hot label or exhibit hard

features. For instance, if the hidden features of a candidate
sample x whose one-hot label is crossing appears more similar
to the not crossing samples in the certain set DC , sample x
may be having an inaccurate one-hot label. If x doesn’t show
an evident bias in hidden features to either class, it’s likely to
have ambiguous features. Both cases should be selected for
soft labeling.

We take candidate sample x’s progress level as the final state
feature. The position of subsequence x in the entire observa-
tion time of a pedestrian reflects his uncertainty in action.
Intuitively, as the observation draws closer to a pedestrian’s
final action (which defines the one-hot label), it should be
more obvious to conclude his crossing intention.

Action. In this paper, we define a dual-action game in the
reinforcement learning setting. The first action aS is used
to select uncertain samples from candidate set Dcand; and
the second action aL is used to provide soft labels. aS is a
binary value obtained by thresholding a sigmoid output; and
aL is a continuous real-valued output ∈ (0, 1) produced by
sigmoid. Initially, we consider two ways to learn the actions,
i.e. sequentially and simultaneously. In sequential manner, we
are faced with selecting inappropriate samples, and regardless
of the soft labels assigned, they are not useful for training.
Therefore, we choose to learn both selection and soft labeling
actions simultaneously and through re-training the prediction
model with both actions applied, we are able to identify the
most appropriate action pairs guided by the reward signal.

At the beginning of each RL episode, we initialize the envi-
ronment by using the same candidate set Dcand and original
weights for the prediction model to ensure stability and same
initial states. As we step through an episode, we practice
Alg. 1, to produce two actions aSt and aLt at t-th iteration for
each sample in the candidate set. We introduce more drastic
changes to the actions by applying exploration noise at random
times (a tunable hyperparameter). In conclusion, we ensure
stability and exploration at the same time during training of
the RL network.

Reward. We use the reward as feedback to the RL network
to guide its dual-action learning. Since our goal is to enhance
performance of the prediction model, we use accuracy and
f1 score to achieve balanced performance for both positive
and negative classes while keeping a high overall accuracy.
The dataset used for reward calculation is the validation set
following data split rules from the PIE [20] and JAAD [63]
datasets respectively. The reward is calculated as the difference
in the sum of accuracy and f1 score between ft and ft−1. Note
that the validation set is not involved in any training process.
We pass the performance change of the prediction network
to the RL network as a reward signal which the latter tries
to maximize by generating more promising actions to further
boost the former’s prediction performance.

C. Cold start for the actor network

Due to the dual-action setup and the continuous action for
soft labeling, we have a large action space to search from,
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TABLE II: Performance of the proposed method on original
prediction models on PIE and JAADbeh datasets. Last four
rows show our reinforcement learning approach applied to the
original models. For modality, I: image, B: bounding box, P:
pose, S: vehicle speed.

Method Modality PIE JAADbeh

acc auc f1 acc auc f1
C3D [64] I 0.77 0.67 0.52 0.61 0.51 0.75
SF-GRU [9] I,B,P,S 0.84 0.83 0.72 0.51 0.45 0.63
PCPA [10] I,B,P,S 0.87 0.86 0.77 0.58 0.5 0.71
VMI [65] I,B,P,S 0.92 0.91 0.87 0.62 0.53 0.73
Ours (C3D) I 0.8 0.76 0.65 0.63 0.5 0.77
Ours (SF-GRU) B,P,S 0.88 0.86 0.8 0.63 0.52 0.76
Ours (PCPA) B,P,S 0.91 0.88 0.83 0.64 0.55 0.76
Ours (VMI) B,P,S 0.93 0.92 0.89 0.66 0.56 0.76

and it can be very time-consuming for the RL framework to
converge. To be more efficient, we propose to cold start the
Actor network in a supervised fashion.

Inspired by state features discussed in Sec. III-B, we create
a small dataset for supervised learning of the Actor network.
Initially, we choose the small dataset to roughly contain 50%
negative and 50% positive samples by ranking the training
loss of model f0 (the bottom 50% low-loss samples are taken
as certain set, the next 10% higher-loss samples negative set
and top 10% high-loss samples positive set). For the negative
set, we assign action aS = 0 and action aL the same as
their one-hot labels. For the positive set, we evaluate their
cosine similarity of hidden features with crossing and not
crossing samples from the certain set. We define rules below
based on similarity features and one-hot labels to decide on
supervised signals. We introduce a distribution measure called
skewness to tell whether a sample is more similar to crossing
or not crossing features. A negative skewness means there is
more weight in the right tail of the distribution, indicating
that more samples agree with the given sample in hidden
features than those disagree. Through comparing skewness
values in similarity distributions with each class, we can
tell the similarity signature for each candidate sample. For a
candidate sample whose hidden features are more similar to a
particular class, if that class is the same with the sample’s one-
hot label, we assign for the sample supervised actions aS = 0
and aL = one-hot label (no change is applied). If the class is
different from the given sample’s one-hot label, we consider
the sample to be uncertain and assign aS = 1. As for aL,
depending on which class the sample is skewed to, we assign
a random scalar in the range (0.5, 1) if the sample is biased to
crossing features and use the range (0, 0.5) for not crossing.
For all other cases, we assign aS = 1 and aL to be a random
scalar around 0.5.

IV. EXPERIMENT

We conduct extensive experiments on two benchmark
datasets PIE and JAAD for pedestrian crossing prediction to
evaluate the effectiveness of our uncertainty-aware approach.
For each dataset, we perform the reinforcement learning steps
illustrated in Fig. 3 on three prediction models: C3D [64], SF-
GRU [9] and PCPA [10]. We are able to boost the performance

of all three models and improve their reliability as elaborated
in the following sections.

A. Experimental setup

We follow the same experimental settings with [10] in
formulating the pedestrian crossing prediction as a binary
classification problem. The objective is to predict whether a
pedestrian will start crossing the street at some future time.
The prediction relies on observed features including RGB
image, bounding box locations, pedestrian pose and ego-
vehicle speed. The input modalities used also depend on the
model architecture.

Datasets. In this paper, we use two public datasets which
are created for studying pedestrian behaviour in traffic: Pedes-
trian Intention Estimation (PIE) [20] and Joint Attention for
Autonomous Driving (JAAD) [63]. PIE contains 6 hours
of HD videos recorded in urban environments of Toronto
with per-frame behavioural annotations for 1842 pedestrians.
PIE also provides bounding box annotations and ego-vehicle
information such as speed and heading direction. We follow
the same data splits as [10]. Specifically, we take videos from
set01, set02 and set04 as training set; for reward calculation,
we use the validation set videos from set05 and set06; finally
for measuring performance, we use videos from set03 as
testing set. JAAD, on the other hand, contains 346 HD
videos filmed in North American and Eastern Europe with
a focus on pedestrian detection task. Behavioural annotations
are also provided but only for 25% of all pedestrians, who
are close to the road and will potentially interact with drivers.
Further-away pedestrians without behavioural annotations are
implicitly considered as not crossing the road. To this end, we
use JAADbeh to represent the subset of JAAD with behavioural
annotations. In this paper, we only report experimental results
on JAADbeh since they are more relevant in the autonomous
driving context. Learning soft labels for pedestrians far away
from roads doesn’t contribute much to the theory this paper is
trying to prove. We use the same data splits as [66]: 324, 48
and 276 pedestrian tracks for training, validation and testing
set respectively.

To break down a pedestrian track into subsequences, we
follow the same observation length, overlap ratio and time-
to-event (TTE) configurations from [10]. In particular, we
set subsequence length to 16 frames for both datasets. A
subsequence is sampled such that its last observed frame falls
between 1 and 2 seconds prior the event frame (the frame
a pedestrian starts to cross or the third to last frame for not
crossing cases) and using an overlap ratio 0.6 for PIE and 0.8
for JAAD. This results in 6 and 11 subsequences per pedestrian
track for PIE and JAAD respectively.

Implementation details. For model training, we take differ-
ent input features for C3D, SF-GRU and PCPA. As discussed
in a few studies [9], [23], [71] on pedestrian crossing predic-
tion, the input features have various choices and combinations
out of which visual features, pedestrian bounding box &
pose, ego-vehicle speed are commonly used. In this paper,
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TABLE III: Performance of the proposed method compared
with state-of-the-art methods on PIE and JAADbeh datasets.
Last row shows our best result which is applied to VMI model.

Method PIE JAADbeh

acc auc f1 acc auc f1
BiPed [67] 0.91 0.9 0.85 - - -
MMH [68] 0.89 0.88 0.81 - - -
STA [69] - - - 0.62 0.54 0.74
IntFormer [70] 0.89 0.92 0.81 0.59 0.54 0.69
CIA [13] 0.84 0.88 0.9 - - -
ATBB [14] 0.91 0.91 0.83 - - -
Ours (VMI) 0.93 0.92 0.89 0.66 0.56 0.76

considering training with reinforcement learning is more time-
consuming since each step in an episode requires re-training
of the prediction model, we decide to reduce the complexity
by removing visual features for the SF-GRU and PCPA
models. Though fewer input modalities are used, we prove our
uncertainty-aware approach can boost both models compared
to the originally trained models with visual inputs. While for
C3D, we keep the same visual inputs since the network is
intended to process RGB frames.

For candidates selection (first step in Fig. 3), we empirically
set the thresholds for predictive entropy ulow and uhigh as
0.2 and 0.9 respectively, for both PIE and JAADbeh datasets.
These thresholds are chosen to ensure a balanced number of
samples for soft labeling and to prevent the over-selection of
samples with low uncertainty. We include ablation studies in
Tab. V and Tab. VI to show the effects of different values
of ulow and uhigh. We take the entropy and accuracy from
training a randomly initialized model finit by using the same
configurations as the original papers.

For all models, we extract the feature map just before
the fully connected classification layer as hidden features,
in particular a 256-D feature vector for SF-GRU and PCPA
and 4096-D for C3D, to compute the cosine similarity for
states. The two state features i.e. one-hot label and progress
level are directly obtained from annotations. Predictive entropy
is obtained from training the model ft−1, for individual
candidate sample.

We compute a 16-bin histogram for similarities to the
respective crossing and not crossing hidden features per
candidate sample. For both Actor and Critic networks, we
take as input the two 16-D vectors and process with batch
normalization followed by 1D convolution to output two 1-D
similarity values. We then concatenate the two outputs and
rest of the state features for the Actor and additional dual-
action values produced by the Actor for the Critic (illustrated
in Fig. 3). Finally we pass the concatenated features to three
fully connected layers containing 64, 32, 16 hidden neurons
respectively to yield two action outputs for the Actor and one
output for Critic i.e. the Q-value. We start with a randomly
initialized Critic network Q0 and a cold started Actor network
µ0 described in Sec. III-C and train with a learning rate
α = 10−5 for the Actor and β = 2.0 × 10−5 for the Critic.
The discount factor γ in Eq. (2) is set to 0.99 We sample 128-
sized mini batch from the Replay Buffer of capacity 105 for
the learning of Actor and Critic networks.

(a) Accurate when certain (b) Uncertain given inaccurate

Fig. 4: Uncertainty evaluation on prediction models. The
higher the metrics, the more reliable the model is.

For training, we set T = 10 steps for the agent to explore
action space in one game episode. We use 50 episodes which
is sufficiently high for training the Actor and Critic networks
to convergence. In each step, we re-train the prediction model
with the respective hyperparameters specified in each model,
but we reduce the epoch size to 10 for faster feedback. We
use standard metrics for classification problems: accuracy, auc
and f1 to measure the performance of pedestrian crossing
prediction.

Results. Tab. II shows the performance of our method
on all four prediction models and in Tab. III we compare
with other state-of-the-art methods on both PIE and JAADbeh
datasets. Our results are obtained by training the model with
the updated soft labels which yield the best performance on
validation set Dval. The results from the original C3D, SF-
GRU, PCPA and VMI methods trained with one-hot labels
are reported based on [9], [10], [65]. Our method significantly
boosts the performance on the original models by a gain
of 3%, 4%, 3% in accuracy for C3D, SF-GRU and PCPA
respectively on the PIE dataset. For JAADbeh, the gains are
2%, 12%, 6% for C3D, SF-GRU, PCPA respectively. It’s worth
noting that improvements in f1 score (13%, 8%, 6% for PIE
and 2%, 13%, 5% for JAADbeh) are more significant than
accuracy especially for PIE, which shows our method can
better handle the imbalanced dataset (not crossing samples
are 3 times of crossing samples for PIE dataset). Though we
achieve a smaller gain in accuracy (1%) and f1 score (2%) for
VMI on the PIE dataset, we believe it’s more challenging to
further improve an already strong model such as VMI (0.92 in
accuracy and 0.87 in f1). For the JAADbeh dataset, we achieve
significant improvement in accuracy (4%) and f1 score (3%)
for VMI since the space for improvement is larger. It’s worth
noting that we use fewer input modalities for SF-GRU, PCPA
and VMI models while achieving better performance. This
further demonstrates the effectiveness of our method.

In Tab. III, we also compare our results with other methods
i.e. BiPed [67], Multi-Model Hybrid [68], Spatio-Temporal
Attention [69], IntFormer [70], Coupling Intent & Action [13]
and Attention-to-Bounding-Box [14]. Due to the lack of public
code, we are unable to reproduce the results of these models
and cannot verify the boosting effects our method could bring
to them. Our method achieves better and on par performance in
accuracy and AUC on the PIE dataset and performs the best on
the JAADbeh dataset across all metrics. Even though we don’t



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, AUGUST 2021 8

TABLE IV: Ablation study (for PCPA model trained on PIE
dataset) on the effects of different state features. We compare
the model performance by removal of each state feature.
Abbreviations - sim: similarity with crossing & not crossing
hidden features, oh: one-hot label, pl: progressive level, en:
entropy.

State features acc auc f1
oh+pl+en 0.87 0.86 0.79
sim+oh+pl 0.88 0.87 0.81
sim+pl+en 0.89 0.86 0.80
sim+oh+en 0.90 0.87 0.82
sim+oh+pl+en 0.91 0.88 0.83

TABLE V: Ablation study on ulow and uhigh for dataset PIE
trained on PCPA model.

u low, u high acc auc f1

0.1, 0.9 0.91 0.86 0.79
0.1, 0.8 0.88 0.87 0.82
0.2, 0.8 0.89 0.88 0.83
0.2, 0.9 0.91 0.88 0.83

achieve the best f1 score (which is from CIA [13]) on the PIE
dataset, we significantly outperform CIA in terms of accuracy
(0.93 vs 0.84) and AUC (0.92 vs 0.88). Therefore, the overall
performance of our method is better. In an imbalanced dataset
like PIE, it’s possible that a model like CIA maintains a better
balance between precision and recall which results in a high
f1 score. However, our method is focusing on improving the
overall performance of the model and making it more reliable
by learning soft labels for uncertain samples.

We show the improvement of model reliability over
the original prediction models in Fig. 4. We present the
plots for two metrics on quality of uncertainty estimates
P (accurate|certain) and P (uncertain|inaccurate) as ex-
plained in Sec. III-A. It’s shown in Fig. 4a that for all three
prediction models, our method (solid line) achieves higher
accuracy when the model predictions are certain for different
uncertainty thresholds. This means we can trust the correctness
of those predictions when the model has high confidence in
the predictions. Fig. 4b shows higher uncertainty in the inaccu-
rately predicted samples using our method. It suggests that the
model is more responsible in its predictions and less likely to
make wrong or harmful predictions. The improvement on these
two metrics confirms the effectiveness of our uncertainty-
aware method. Furthermore, models re-trained with soft labels
yield more responsible predictions and are more aware of
their limitations on those samples incorrectly predicted than
TABLE VI: Ablation study on ulow and uhigh for dataset
JAADbeh trained on PCPA model.

u low, u high acc auc f1

0.1, 0.9 0.64 0.54 0.75
0.1, 0.8 0.62 0.53 0.74
0.2, 0.8 0.63 0.52 0.76
0.2, 0.9 0.64 0.55 0.76

the original models. Out of all incorrectly predicted samples
by the re-trained models after applying our method, 82%
are having high-entropy (above 0.7) While for the original
models, only 56% of the incorrectly predicted samples have
high-entropy. This indicates our model is more responsible in
making inaccurate predictions than the original models.

To illustrate the improvement in model reliability, we take
the pedestrian in Fig. 1 as an example. The sample pedestrian’s
one-hot label is 0 (not crossing), and we learn a soft label of
0.64 which better represents the observed crossing cues of the
pedestrian. After re-training the model with the soft labels, the
probability of the pedestrian crossing is decreased from 0.9
to 0.64, which corresponds to a higher entropy. This shows
that the model re-trained with soft labels is more aware of
its limitations on those samples incorrectly predicted than the
original model.

On computational performance, compared to other proba-
bilistic methods like Monte Carlo Dropout [18], [43] which re-
quire multiple forward passes for each sampled dropout mask;
and Bayesian Neural Networks [23] which require drawing
samples from posterior distributions of weights, our method
is more efficient in directly improving the prediction model’s
performance and reliability through reinforcement learning
without adding extra computational cost during inference.

B. Ablation study

This section presents the ablation study of our method. We
take PCPA model trained on the PIE dataset as an example to
demonstrate the effects of different settings.

Ablation on state features. Tab. IV summarizes the results
with individual feature removed from state st. We have the
best performance with full state features namely similarity
features, one-hot label, predictive entropy and progress level.
Removing similarity features from state st leads to a big drop
in performance since similarities are computed from the last
hidden layer of the prediction model thus are directly related
to the quality of soft labels learned. That’s also the reason we
use similarities in cold start of the Actor network. Similarly,
predictive entropy contributes significantly to the performance
as it indicates the uncertainty of the candidate samples. When
removing one-hot label, we see a performance drop because
when combined with similarity features, one-hot label assists
with indicating mismatch between feature and label to some
extent. With removal of progress level, the performance is just
slightly worse than the full features. The reason is perhaps the
overlapping between subsequences are big for PIE dataset thus
not significant for learning soft labels.

Ablation on ulow and uhigh. We also conduct ablation
studies on the effects of different values of ulow and uhigh
for both PIE and JAADbeh datasets. In Tab. V and Tab. VI,
we show the performance of the PCPA model with different
combinations of ulow and uhigh. It turns out that when
ulow = 0.2 and uhigh = 0.9 the performance is the best for
both datasets.
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TABLE VII: Comparison of different reinforcement learning
algorithms for dataset PIE trained on PCPA model.

RL algorithm acc auc f1

DQN [56] 0.87 0.85 0.79
Reinforce [58] 0.89 0.86 0.81

DDPG [59] 0.91 0.88 0.83

C. Other reinforcement learning algorithms

We also compare our method with other reinforcement
learning algorithms: DQN [56] and Reinforce [58]. Since
DQN is not designed for continuous action space, we use
a discretized version of the action space for DQN. DQN
optimizes the Q-value function by minimizing the temporal
difference error which is similar to the Critic network in our
method. Reinforce is a policy gradient method which directly
optimizes the policy function, which is similar to the Actor
network in our method. In Tab. VII, we show the performance
of the PCPA model trained with our method and the other
two algorithms. We show that our method outperforms the
other two algorithms in terms of accuracy, auc and f1 score.
This demonstrates the effectiveness of utilizing both Actor and
Critic networks of DDPG to learn soft labels for uncertain
samples.

V. CONCLUSION

In this paper we present uncertainty-aware pedestrian cross-
ing prediction by a reinforcement learning approach. We
propose a novel state representation and an adaptation of
the Actor-Critic framework to select and learn soft labels
for uncertain pedestrian samples. By maximizing the reward
signal which directly reflects the prediction model’s perfor-
mance, the RL agent is able to produce informative soft labels
for the prediction model. We conduct extensive experiments
on two pedestrian datasets and demonstrate that our method
(even with fewer input modalities) outperforms the original
models. Moreover, our method leads to more reliable and
trustworthy models for providing higher accuracy when the
model is certain and higher uncertainty when the model is
inaccurate. The uncertainty estimates enable safer decision-
making for autonomous vehicles for being more responsible
in complex traffic scenarios.

As future work, we believe our method can be extended
to other tasks in computer vision, such as weakly supervised
learning. It is possible to apply our uncertainty-aware learning
to other tasks such as object detection [72], [73] and action
recognition [74], where reinforcement learning agent can be
guided by uncertainty level to search for more fine-grained
labels given weak labels.
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