
An Online Incremental Learning Approach for
Configuring Multi-arm Bandits Algorithms

Mohammad Essa Alsomalia,*, Roberto Rodrigues-Filhob, Leandro Soriano Marcolinoa and Barry Portera

aSchool of Computing and Communications, Lancaster University, United Kingdom
bDepartment of Computing, Federal University of Santa Catarina, Brazil

Abstract. This paper introduces Dynamic Bayesian Optimisation
for Multi-Arm Bandits (DBO-MAB), an algorithm that dynamically
adapts hyperparameters of multi-arm bandit algorithms using incre-
mental Bayesian optimisation. DBO-MAB addresses the challenge
of tuning hyperparameters in uncertain and dynamic environments,
particularly for applications like web server optimisation. It uses a
dynamic range adjustment approach based on the interquartile mean
(IQM) of observed rewards to focus the search space on promising
regions. Evaluated across diverse static and dynamic environments,
DBO-MAB outperforms state-of-the-art algorithms such as Boot-
strapped UCB and f-Discounted-Sliding-Window Thompson Sam-
pling, reducing average response time by ≈ 55%.

1 Introduction

The multi-armed bandit (MAB) model is a well-established
paradigm for making decisions under uncertainty [15]. In this model,
a set of available actions is represented as ‘arms’ that can be pulled.
Each arm has an unknown reward distribution, so each repeated pull
of the same arm provides an additional data point in the likely reward
distribution of that arm. MAB models are appealing as control sys-
tems because their behavior has well-understood statistical bounds,
and they have been used in optimisation problems for large-scale in-
ternet systems [6].

Numerous MAB algorithms are available, including Upper Con-
fidence Bound (UCB1) [3], Sliding-Window UCB [11], Discounted
UCB [11], and f-Discounted-Sliding-Window Thompson Sampling
(f-dsw TS) [5]. However, applying these MAB algorithms in real-
world systems presents challenges. For instance, UCB1 typically as-
sumes rewards are normalized to the [0, 1] or [−1, 1] range. Factors
like reward distribution, variance across arms, and differences be-
tween arm values make setting suitable hyperparameters for MAB
algorithms (such as the window size, and discount factor) difficult
when rewards may fall outside the usual ranges or in non-stationary
environments. Converting real-world metrics like milliseconds or
kilowatts into the [0, 1] range is required for proper statistical be-
havior, but makes tuning difficult in the context of deployment envi-
ronments for which we have real uncertainty, including uncertainty
around likely reward distributions.

Manual tuning requires extensive system observation and is in-
efficient in changing environments, as new observations necessitate

∗ Corresponding Author. Email: {m.alsomali, l.marcolino,
b.f.porter}@lancaster.ac.uk, roberto.filho@ufsc.br

re-tuning. As Xie et al. [34] pointed out identifying the best MAB al-
gorithm and tuning its hyperparameters is very time-consuming and
heavily reliant on human expertise if done manually.

Existing hyperparameter tuning methods have limitations. For in-
stance, the Population-Based Bandit (PB2) [28] algorithm optimizes
scheduler hyperparameters and enables parallel execution. However,
PB2 can be computationally demanding due to its reliance on a pop-
ulation of agents, each requiring significant resources. In the multi-
armed bandit domain, Bootstrapping Upper Confidence Bound [14]
presents a nonparametric, data-dependent UCB algorithm. It uses
multiplier bootstrap to create tighter confidence bounds for better ex-
ploration and exploitation. However, it lacks dynamic adaptation of
exploration constants based on system characteristics, making it less
suited for deployment in uncertain conditions.

To address this limitation, firstly, we introduce a novel algorithm
Dynamic Bayesian Optimisation Multi-arm Bandit (DBO-MAB). It
is a tailored meta-learning algorithm for online and autonomous
MAB hyperparameters adaptation based on Bayesian optimisation.
Secondly, we enhances its performance through dynamic range ad-
justment using the interquartile mean (IQM) of observed rewards, a
metric highlighted by Agarwal et al. [1] for its robustness, to focus
the search space on promising regains. Our proposed method dynam-
ically adjusts the hyperparameters of MAB algorithms at execution
time, without the need for offline or manual tuning. The key ideas be-
hind DBO-MAB are: (i) model the objective function using a Gaus-
sian Process surrogate to represent uncertainty, (ii) employ Bayesian
optimisation on the Gaussian Process to balance exploration and
exploitation in hyperparameter selection, (iii) maintain fixed pillar
points and the most recent points to capture changes as the hyperpa-
rameters are dynamically adjusted, (iv) dynamically adapt the MAB
hyperparameters based on observed rewards, and (v) adjust the range
for MAB hyperparameters dynamically.

The main contributions of this work are: (i) the novel DBO-MAB
algorithm for online MAB hyperparameters adaptation, (ii) an exten-
sive experimental evaluation highlighting the benefits of DBO-MAB,
(iii) insights into preserving prior knowledge during online adapta-
tion without restarting MAB algorithms each time a new parameter is
tested (incremental learning process), and (iv) evaluation in dynamic
environments where reward distribution changes over time.

Our experiments, conducted on a simulated web server compo-
sition optimisation problem, demonstrate that DBO-MAB reduces
average response time by ≈ 55% compared to Bootstrapped UCB.

2 Methodology

In this section, the UCB1 algorithm serves as a key example in
our proposed approach. However, the underlying technique demon-
strated is general and can be applied to other multi-armed bandit
(MAB) algorithms as we will demonstrate later.

The UCB1 algorithm [3] is an online learning approach where
the learning agent pulls arms (actions) in a sequential manner. The
agent’s goal is to maximise its cumulative expected reward over time.
While UCB1 does not assume knowledge of the exact expected val-
ues of the arms, it makes some assumptions about the distribution
from which these rewards are drawn. It is an algorithm to handle the
exploration-exploitation trade-off when taking decisions under un-
certainty. Exploration means that the learning agent should gather
more information about the available arms (actions), whereas ex-
ploitation is the process of selecting the arm with the highest esti-
mated return. The selection strategy for the best action is governed

by: at = argmax
a

[
Qt(a) + c

√
2 log t
kt(a)

]
, where Qt(a) is the esti-

mated reward of action a at iteration t, c controls the exploration-
exploitation balance, and kt(a) is the number of times action a has
been selected. Using this equation, the UCB1 will typically begin by
attempting each action at least once and then start concentrating on
the actions with the best score.

Although UCB1 was originally studied without the exploration
constant c (assuming c = 1) [3], it is commonly used with this hy-
perparameter in practice due to the need to control the exploration-
exploitation trade-off in different environments and problem settings.
Several studies have shown the effectiveness of applying the c param-
eter with the UCB1 [19, 34, 22]. Therefore, in this paper, we focus
on dynamically learning it. Additionally, for non-stationary environ-
ments, we explore the adaptation of other hyperparameters, such as
exploration constant α, discount factor γ, and the window size for
Sliding-window UCB, Discounted UCB, and Mean f-dsw TS [11, 5].

2.1 Dynamic Bayesian Optimisation for Multi-Arm
Bandits (DBO-MAB)

Before discussing the details of our proposed DBO-MAB approach,
we introduce a simulation to serve as a consistent example through-
out our explanation. In this simulation, we model a system where
each arm corresponds to a specific server composition (configura-
tion), resulting in different response times. These response times,
with varying means and variances based on the server compositions,
are then used to derive the rewards. The primary objective of this
simulation is to identify the server composition (or arm) that yields
the highest cumulative reward by dynamically optimizing the ex-
ploration constant. Essentially, we aim to pinpoint the best explo-
ration constant that maximizes the probability of selecting this op-
timal server composition. Central to our problem setting is the cost
function, denoted as f(c). This function represents the response time
or similar metric that we aim to minimize in the given context, such
as a web server’s performance optimisation. The exploration constant
c within our algorithm directly influences this cost function, and our
goal is to find the value of c that minimizes f(c). In different con-
texts, the cost function could also take the form of a reward function,
where the objective would be to maximize it.

DBO-MAB is a meta-algorithm that dynamically adapts the explo-
ration constant hyperparameter of the UCB1 bandit algorithm in par-
ticular and other MAB algorithms in general. It consists of two key
phases: initializing UCB1 with different exploration constant values

and evaluating their performance, followed by a Bayesian optimi-
sation process to refine the exploration constant based on observed
rewards.

UCB1 with Dynamic Exploration: At the outset, the learning
agent is introduced to a specific workload (environment). To initi-
ate the exploration, define the search space boundaries by sampling
from a uniform distribution. This sets the UCB1 algorithm’s initial
hyperparameters. As the agent starts its exploration, each exploration
constant value is tested for a span of z time steps to estimate the ex-
pected rewards. In our web server example, the reward mechanism
is designed such that actions leading to lower means offer higher re-
wards (reward signal: −cost).

Bayesian optimisation (BO): In this phase, we apply the BO tech-
nique to find an optimal hyperparameter value (or set of values, in the
case of multiple hyperparameters) for the MAB algorithm. This pro-
cess aims to improve the running system by fitting it with new, opti-
mized hyperparameter(s). The MAB agent then runs with these new
input(s) to update its process and improve its overall behavior. We
denote the search space of possible hyperparameter values as S, and
the history of sampled values and their corresponding performance
as H . Figure 1 depicts this process, where BO analyzes the reward
feedback (represented as ‘Cost’) to dynamically adjust the hyperpa-
rameter values. This section elaborates on the components of BO and
their roles in refining the agent’s decision-making process.

Gaussian Process (GP): The statistical model used in BO to ap-
proximate our unknown objective function is the Gaussian process.

The GP is defined by two components [32] (i) a mean function
m(s) that gives the expected value for f(s). This represents our cur-
rent best guess. (ii) A covariance function k(s, s′) that defines the
covariance between points. This captures uncertainties. We denote
Gaussian process as: f(s) ∼ GP (m(s), k(s, s′)). The Gaussian
process predicts f(s′) at unseen points s′. Its posterior distribution
captures what we estimate (mean) and our uncertainty (variance) at
s′. Crucially, the GP adapts its surrogate model as we sample more
points. By continuously updating its posterior, it refines its approxi-
mation of f(s) based on new data.

Acquisition Functions: To propose the candidate points inside the
search space we use metric functions (acquisition functions) which
estimate which value of the parameter may return the function’s best
result [23].

Minimising the acquisition function to determine the next sample
point is the objective. More formally, the objective function f(s) will
be sampled at st = argminsacq(s|Ht−1), where acq is the acquisi-
tion function and Ht−1 = {(s1, f1), ..., (st−1, ft−1)} refers to the
t − 1 samples drawn from the objective function f(s) so far. Pop-
ular acquisition functions are the Probability of Improvement (PI),
Expected Improvement (EI) and Lower Confidence Bound (LCB).
For our analysis, we will use the Lower Confidence Bound (LCB)
as it explores more diverse input space regions and tries to guide the
search from an optimistic perspective [35]. The corresponding for-
mulation is LCB(s) = µ(s)− βσ(s), where µ(s) and σ(s) are the
mean and the standard deviation, respectively, of the GP posterior
predictive at s, and β is the coefficient factor.

As shown in Algorithm 1, we sample an initial sample size n of
hyperparameter values s from a distribution (for instance, uniform),
and each point leads to a certain cost. In each iteration of the process,
the learning agent adds a new point, which is determined through the
Bayesian optimisation (BO) process, and removes the oldest point.
However, some M pillar points (chosen with uniform spacing) are
kept fixed and revisited during the process, ensuring they are never
removed. These pillar points serve as reference points to help main-

tain diversity and stability in the search space. As the agent contin-
ues learning, we re-evaluate those pillar points every x time steps
to update their values, allowing the optimisation process to incor-
porate new information and adapt accordingly. Moreover, for every
new point introduced from the GP, the oldest non-pillar point is dis-
carded. Notably, the algorithm does not return a final best point but
continually updates the model and hyperparameters dynamically.

Our optimisation task has two major elements: the predicted objec-
tive function f(s) (for predicting the unknown function f(.)) and a
set H , which represents the set of values that we have so far. This set
H is updated during the algorithm’s execution by adding new points
and removing old ones. At each time step t, the algorithm chooses
an exploration constant st ∈ S as a new input ft(st), which is com-
puted based on the predicted objective function defined over S. The
goal of the learning algorithm is to choose a sequence of decisions
s1, s2, ... such that ft(st) can be minimised. In other words, the algo-
rithm aims to achieve a low cost f(s∗) after T rounds, where s∗ is the
optimal point that the system has experienced so far that minimizes
the objective function ft(s) over S. At iteration t, given the previous
observation that Ht−1 = {(s1, f(s1)), . . . , (st−1, f(st−1))}, func-
tion f is inferred at points s /∈ Ht−1 (which have not yet been tried
out) via Gaussian Processes. Then, decide on the next point st via
BO and finally run the MAB again with the updated hyperparame-
ters. Figure 2 shows how the model attempts to predict the function
over certain candidates of inputs s.

Dynamic Range Adjustment Using Inter-Quartile Mean (IQM): To
focus the search on promising regions of the input space, DBO-MAB
dynamically adjusts the range for s, based on the distribution of ob-
served rewards or costs. Let H denote the set of hyperparameter val-
ues that have been evaluated so far, and R(s) denote the correspond-
ing set of observed rewards/costs for these hyperparameter values.
The process for dynamically adjusting the search range is as follows:
(i) Identify the first quartile (Q1) and third quartile (Q3) of the re-
wards/costs R(s), (ii) from R(s), select the rewards/costs RIQR that
lie within the IQR, and correspondingly select the subset of hyper-
parameter values HIQR ⊂ H associated with RIQR, (iii) and compute
the Inter-Quartile Mean (IQM) as the mean of the hyperparameter
values in HIQR IQM = 1

|HIQR|
∑

s∈HIQR
s. We will refer to our ap-

proach as BO-MAB when this dynamic adjustment is not applied.
Multiple Hyper-parameter Optimisation: When dealing with our

MAB algorithms that have multiple hyper-parameters, our DBO-
MAB approach applies the optimisation process independently for
each hyper-parameter.

3 Experimental Results
In this section we assess our agent’s effectiveness using simula-
tions of a webserver environment. Faster response times correspond
to higher rewards for the agent, as they indicate better server per-
formance. The agent’s goal is to maximize cumulative reward by
minimizing response times, which are treated as costs. This forms
the core of our analysis where we investigate the agent’s decision-
making prowess and its adaptability across varying environments.
For each action i, the associated cost is modeled by a normal dis-
tribution N∼(µi, σi). Consequently, in our experimental framework,
the reward is inversely related to the cost, defined as the negative of
the cost (−cost), implying that a lower cost yields a higher reward
for the agent. Hence, the agent’s pursuit to minimize this cost can be
equivalently seen as its endeavor to maximize the cumulative reward.
The effectiveness of the proposed method, alongside other baseline
approaches, is evaluated through two primary metrics: the cumula-

Algorithm 1: DBO-MAB

1 Input: Number of iterations T, n, z, x
2 Initialize:

1. Sample points s ∼ U n times, forming H
2. Run MAB with each point for z iterations
3. Select M uniform pillars points
4. Build initial GP model

for t = 1 to T:

1. Select next point to evaluate, st, using the GP model and the
LCB acquisition function

2. Continue run MAB(st) for z iterations, compute f(st)
3. Update the GP model with (st, f(st))
4. Remove the oldest non-pillar point
5. Re-evaluate all selected M after x iterations
6. If Q1 and Q3 are defined:

• Compute IQM

• Dynamically adjust search range (st)

 Agent

 BO
 MAB

 Env.

 Select action

 Meta
 learner

 Cost

 Updates
s
s
s
s

s

Figure 1: Architecture of the proposed DBO-MAB method. Meta
Learner (Bayesian optimisation, BO) dynamically fine-tunes param-
eters for the MAB agent. The agent selects server configurations (ac-
tions). Env (Environment) refers to the workload pattern, which can
be an image, text, or both, with varying sizes. The “Cost” represents
the average response time for each point and the feedback that is used
to enhance parameter selection iteratively.

tive average response time (CART) and the probability of selecting
the best action (Pbest). Specifically, we define CART for a given al-
gorithm A as CART(A) = 1

T

∑T
t=1 rt(A), where rt(A) represents

the response time observed at time t and T is the total number of
time steps. Additionally, the agent’s efficiency in selecting the opti-
mal action is quantified by the probability of selecting the best action
(Pbest), expressed as Pbest(A) = 1

T

∑T
t=1 I(a

∗
t = at(A)), where

a∗
t is the optimal action at time t, and I(.) is the indicator function,

which equals 1 if the action chosen by algorithm A at time t is the
best possible action, and 0 if not.

We benchmark our agent against a gamut of baselines. Including
UCB1 [3], parameter-free algorithms including Thompson sampling
(TS) [6] and Bootstrapping Upper Confidence Bound (Boots-UCB),
and scheduling algorithms PB2 [28] and PBT [16]. Our code is pub-
licly available on GitHub1.

For dynamic environments, where the reward distribution changes
over time, we employ the following: (i) Sliding-Window UCB [11]
with windowsize = 100 that captures the most recent actions and

1 https://github.com/lsmcolab/DBO-MAB/tree/master

https://github.com/lsmcolab/DBO-MAB/tree/master

 BO() Pillar points ()

Omit point

Add point

Cost
Q1 Q3

IQR

IQM

 Dynamic sub-sample space

 (a) Hyperparameter values

C

o
st

 Initial samples ()

 (b) Hyperparameter values

 Predicted function (GP)

 Unknown function

 (c) Hyperparameter values

C

o
st

Figure 2: Evolution of the model with the incorporation of new sam-
ples of the hyper-parameter values s. (b) DBO-MAB initially uses
the original range space and then adjusts the range based on IQM.

0 200 400 600 800 1000 1200 1400
Time step

5
10
15
20
25
30
35
40

Be
st

 c
 V

al
ue

Best c Values Over Time (4-40) i = 20

(a) Dynamic environment with i =
20.

0 200 400 600 800 1000 1200 1400
Time step

5
10
15
20
25
30
35
40

Best c Values Over Time (4-40) i = 40

(b) Dynamic environment with i =
40.

Figure 3: Variation of optimal c values over time in a stochastic re-
ward environment for a different number of actions i and c value
range 4− 40.

rewards observed, and α = 1 which represents the exploration con-
stant, (ii) Discounted UCB [11] with γ = 0.99: discount factor with
0 < γ ≤ 1, α = 1, (iii) Mean f-dsw TS (with mean as an aggre-
gation function) [5] with windowsize = 100 and γ = 0.9, and
(iv) Sliding-Window TS [29] with windowsize = 100.

We will start by studying how the optimal c value changes over
time, before presenting the rest of our experimental analysis.
Analysis of Optimal c Values: Figure 3 illustrates the fluctuations in
optimal c values over time, indicating that a static c parameter may
not be universally applicable across different workloads. Instead, a
dynamic approach to tuning c is necessary to optimize performance.
The variability in the environment’s reward distribution likely im-
pacts the choice of the optimal c value.
Baselines: In the case of UCB1, the learning agent maintains a con-
stant exploration factor (with a default value = 1) throughout its ex-
ecution. Moreover, we applied the following baselines to adjust the
UCB1 hyperparameters dynamically: PBT (Population Based Train-
ing), and PB2 (Population Based Bandit optimisation) is an extension
of PBT that incorporates Bayesian optimisation into the process.

Environments: We tested our proposed online incremental learn-
ing algorithms in different static and dynamic random environments.
In this simulation, these environments represent a variation of work-
load requests size using the Gaussian reward distributions with the
parameters µ (mu) and σ (sigma). In each environment, the tasks
take the form of MAP problems with multiple actions (arms) spaces

(20, 40, 60, 80, 100, 120, 140 and 160) and the number of time-
steps to 4000-10000, for every randomly generated environment. We
will examine the following environments or workloads: (i) Diverse
Mean Response Times with high Variance (random µs and σs scaled
0 − 1); (ii) Small Mean Response Times with High Variance (ran-
dom µs and σs scaled 0 − 0.1). (iii) High Mean Response Times
with High Variance.

Average response time workload between 0 and 1: Each action
available to the learning agent is associated with a specific mean re-
sponse time, denoted by the value of µ. The optimal action is the
lowest µ, and the best method should assign a high probability of se-
lecting actions with low µ. We define it as: µs range (0.2 - 0.7), σs

range (0.1 - 0.25), optimal action: µ = 0.1 with high σ = 0.2.

Average response time workload between 0 and 0.1: The char-
acteristics of this environment are as follows: µs range (0.02 - 0.07),
σs range (0.01 - 0.025), optimal action: µ = 0.01 and (σ = 0.02).

Average response time in a high workload environment: The
characteristics of this environment are as follows: µs range (60−98),
σs range (70 − 95). However, there is a dominant action with µ =
60.0 and σ = 95.0, introducing a distinct reward distribution.

Baselines study: We will undertake a comprehensive analysis of
the DBO-UCB (DBO-MAB applied to the UCB1 algorithm) strat-
egy and its variant in contrast to several baseline methods. For work-
load between 0 and 1 and as depicted in Figure 4 and 5, there is a
noticeable trend in the mean response time and the probability of
selecting the best action, with DBO-UCB consistently outperform-
ing other baselines. For scenarios involving 20 actions, DBO-UCB
exhibits a ≈ 20% reduction in response time and around 95% for
the Pbest and for a higher number of actions (i = 160), it shows
a constant performance by achieving ≈ 25% regarding to CART
and ≈ 80% of Pbest. For the same number of actions, BO-UCB
(no dynamic range adjustment) demonstrates a similar behavior. In
contrast, standard methodologies such as the UCB1 showed a signif-
icant drop in the Pbest, from about 45% for i = 20 down to 10%
for i = 160. Similarly, Thompson Sampling (TS) and Bootstrapping
UCB (Boots-UCB), despite starting with high Pbest values around
90%, experienced significant decreases as the number of actions in-
creases, dropping to ≈ 20% and 15% respectively, for i = 160.
Notably, Figure 5 reveals that within an environment with a reward
range of [0, 1], the UCB1 algorithm, with its default exploration pa-
rameter, fails to reach the level of efficiency demonstrated by the
proposed method (DBO-UCB). This contrast demonstrates the value
of dynamically learning the exploration parameter, hence improving
decision-making.

For Figure 6 and 7 we show the results for the workload average
response time [0 − 0.1]. Again, the DBO-UCB obtained the best-
performing method which achieved the lowest average response time
across all number of actions and ≈ 95% of the Pbest and stays con-
stantly above 80%. This approach maintains a response time that is
nearly 22% lower than the PB2 method (i = 20) and around 18%
lower for i = 160. In this environment, the BO-UCB shows good
performance as the number of actions increases and scores a response
time around 15% lower than the PBT for i = 160. Also, Thompson
Sampling (TS), Bootstrapping UCB (Boots-UCB), and UCB1 show
a decline in Pbest when i is increasing, going from a ≈ 15%, at
i = 40, to below 10%, at i = 160.

For a high workload environment with 160 actions (Figures 8a
and 8b), UCB1 and Boots-UCB maintain a high response time with
a low Pbest ≈ 35%, whereas the DBO-UCB shows lower response
time after an initial learning phase with higher Pbest around 60%.

In addition, as we can see from Table 1, DBO-UCB showed
a lower time budget, particularly when compared to Boots-UCB.
DBO-UCB has a nearly 99% (Table 2) lower time budget than Boots-
UCB, suggesting a reasonable computational cost for real-world
problems.

20 40 60 80 100 120 140 160
Number of Actions

0.200
0.225
0.250
0.275
0.300
0.325
0.350

M
ea

n
Re

sp
on

se
 T

im
e DBO-UCB

BO-UCB
PBT
PB2

(a) Average performance (lower
is better) (baselines and proposed
method)

20 40 60 80 100 120 140 160
Number of Actions

0.2

0.4

0.6

0.8

P b
es

t

(b) Probability of best action (higher
is better)

Figure 4: Comparing best-performing agent across multiple actions
using different hyperparameter optimisation methods for average
workload between 0-1.

20 40 60 80 100 120 140 160
Number of Actions

0.20

0.25

0.30

0.35

0.40

M
ea

n
Re

sp
on

se
 T

im
e

DBO-UCB
BO-UCB
UCB1

TS
Boots-UCB

(a) Average performance

20 40 60 80 100 120 140 160
Number of Actions

0.0

0.2

0.4

0.6

0.8

1.0

P b
es

t

(b) Probability of best action

Figure 5: Comparison of the proposed method against parameter-free
strategies and UCB1 with c value of 1, across an average workload
range of 0− 1.

20 40 60 80 100 120 140 160
Number of Actions

0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350

M
ea

n
Re

sp
on

se
 T

im
e

DBO-UCB
BO-UCB

PBT
PB2

(a) Average performance

20 40 60 80 100 120 140 160
Number of Actions

0.2

0.4

0.6

0.8

1.0

P b
es

t

(b) Probability of best action

Figure 6: Comparing agents across multiple actions for average work-
load between 0− 0.1.

Average response time for dynamic environments: In this exper-
iment, we evaluate the performance of our proposed method, DBO-
UCB, and its variant in environments where the reward distributions
are non-stationary (i.e., they change over time). The reward distribu-
tions remain constant over τ = 2000 time steps before transitioning
to a new distribution.

As shown in Figure 9a, initially, Mean d-sw TS and SW-TS are
the best-performing algorithms, particularly for i = 20 and i = 40.
However, as the number of actions increases, they experience a

20 40 60 80 100 120 140 160
Number of Actions

0.020

0.025

0.030

0.035

0.040

0.045

M
ea

n
Re

sp
on

se
 T

im
e

DBO-UCB
BO-UCB

UCB1
TS

Boots-UCB

(a) Average performance

20 40 60 80 100 120 140 160
Number of Actions

0.0

0.2

0.4

0.6

0.8

1.0

P b
es

t

(b) Probability of best action

Figure 7: Comparison between the proposed method, parameter-free
methods, and the UCB1 across multiple actions for average workload
between 0− 0.1.

Table 1: Computational Efficiency (s) for MAB
Method Num. of Actions

80 100 120 140 160
DBO-UCB 439 470 441 466 490
UCB1 82 94 106 120 132
Boots-UCB 34253 36336 38455 41119 47840

notable increase in their mean response time at around 0.35 for
i = 160. In contrast, DBO-UCB demonstrates a more stable result as
the number of actions increases and scored around 0.25 for i = 160.

For dynamic average workloads between 0 and 0.1 (Figure 11a),
DBO-UCB’s average response time is approximately 33% lower
than Mean d-sw TS when the number of actions is i = 20, and this
performance gap widens to around 45% lower than Mean d-sw TS
for i = 160.

In this part, we extend the dynamic parameter optimization ap-
proach, foundational to the DBO-MAB method, to other bandit
strategies. Specifically, we focus on learning the α parameter of both
SW-UCB (DBO-SW-UCB) and Discounted UCB (DBO-Dis-UCB),
and the discount factor γ and window size of the Mean d-sw TS
(DBO-Mean d-sw TS) dynamically. As illustrated in Figure 10a,
an improvement arises when we integrate the DBO-MAB approach
into the SW-UCB. This dynamic optimization results in a noticeably
lower response time around 14% lower than the standard SW-UCB
for i = 100 and about 20% lower for i = 160. For an average work-
load [0-0.1] as shown in Figure 12a, achieved lower response time
around 40% for i = 20 and 50% for i = 160.

DBO-Dis-UCB (Figure 12a) achieves a lower response time 28%
for i = 20 and around 35% with i = 160 compared to standard
Discounted UCB. In contrast, the DBO-Mean d-sw TS displays a
moderate improvement in Pbest.

Here, we extend the proposed method’s ability to dynamically ad-
just various parameters of Multi-Armed Bandit (MAB) algorithms.
For instance, as shown in Figure 13, DBO-SW-UCB dynamically
adjusts the α parameter and windowsize. The optimized algorithm
outperforms SW-UCB, demonstrating ≈ 30% lower mean response
time for i = 160 in sudden and incremental environmental changes.
For further results and the specific parameters used, you may refer
to the technical appendix (https://github.com/lsmcolab/DBO-MAB/
blob/master/Technical_Appendix.pdf).

Table 2: Efficient Time Summary
Method DBO-UCB %
BO-Update 48.97%
BO-Discard -24.38%
BO-UCB -4.11%
UCB1 -331.84%
Boots-UCB 98.84%

https://github.com/lsmcolab/DBO-MAB/blob/master/Technical_Appendix.pdf
https://github.com/lsmcolab/DBO-MAB/blob/master/Technical_Appendix.pdf

0 1000 2000 3000 4000 5000 6000 7000 8000
Time step

85.0

87.5

90.0

92.5

95.0

97.5

100.0

102.5

M
ea

n
Re

sp
on

se
 T

im
e

(a) Mean response time

0 1000 2000 3000 4000 5000 6000 7000 8000
Time step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P b
e
st

DBO-UCB
BO-UCB

UCB1
Boots-UCB

(b) Probability of best action

Figure 8: Comparison of the proposed method against parameter-free
strategies and UCB1 with c default value, across an average workload
range of 75− 100 (160 actions).

20 40 60 80 100 120 140 160
Number of Actions

0.15

0.20

0.25

0.30

0.35

M
ea

n
Re

sp
on

se
 T

im
e

(a) Average performance

20 40 60 80 100 120 140 160
Number of Actions

0.0

0.2

0.4

0.6

0.8

P b
es

t

DBO-UCB
BO-UCB
SW-UCB

Dis-UCB
SW-TS
Mean d-sw TS

(b) Probability of best action

Figure 9: Comparing best performing agent across multiple actions
for dynamic average workload between 0− 1.

Ablation study: To assess the efficacy of our proposed approach,
we devised a series of experiments that included modifying aspects
of the learning agent. The goal of these experiments was to determine
how the changes to these aspects would affect the overall functional-
ity of the system. There are two methods that have been studied:

(i) BO-Update method, which is an incremental approach that
keeps every single point during the execution. It starts with some
initial samples, then applies BO to select the new hyperparameter
configurations for the models, and (ii) BO-Discard approach, dis-
tinct from other incremental learning methods, does not retain pillar
points. Instead, it starts with initial samples and applies BO, with the
model focusing on more current and potentially relevant data by dis-
carding the oldest points during the optimisation process. In general,
all methods perform well in most cases. However, as shown in Figure
14, DBO-UCB and its variant BO-UCB outperform the other meth-
ods, especially in more complex situations, such as workloads with
small means (µ) and high variance (σ).

Though BO-Update and BO-Discard provide meaningful compar-
isons against the baselines, DBO-UCB and BO-UCB consistently
outperform them by achieving a reduced response time and a higher
likelihood of choosing the best action. For example, in the smaller
workload environment with 120 actions, as illustrated in Figure 14b,
BO-UCB is ≈ 40% more likely to select the optimal action than
BO-Update and BO-Discard. For the same environment, DBO-UCB
appears to be the best-performing method and achieves the maxi-
mum for lower actions (i = 20 with Pbest of 90%), while it stays
constantly above 80% for all the considered values of i.

Overall, it is evident that parameterization plays a significant role
in the performance of the algorithms. Choosing the right parame-
terization method, like DBO-MAB in this case, can lead to better
performance in terms of mean response time.

20 40 60 80 100 120 140 160
Number of Actions

0.15

0.20

0.25

0.30

0.35

M
ea

n
Re

sp
on

se
 T

im
e

(a) Average performance

20 40 60 80 100 120 140 160
Number of Actions

0.0

0.2

0.4

0.6

0.8

P b
es

t

SW-UCB
DBO-SW-UCB

Dis-UCB
DBO-Dis-UCB

Mean d-sw TS
DBO-Mean d-sw TS

(b) Probability of best action

Figure 10: Comparing best performing agent across multiple actions
for dynamic average workload between 0− 1 applying DBO-UCB.

20 40 60 80 100 120 140 160
Number of Actions

0.020

0.025

0.030

0.035

0.040

0.045

M
ea

n
Re

sp
on

se
 T

im
e

DBO-UCB
BO-UCB

SW-UCB
Dis-UCB

SW-TS
Mean d-sw TS

(a) Average performance

20 40 60 80 100 120 140 160
Number of Actions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P b
es

t

(b) Probability of best action

Figure 11: Comparing best performing agent across multiple actions
for dynamic average workload between 0− 0.1.

4 Related Works
Our approach intersects the concepts of continual learning and meta-
learning. In this section, we discuss the prior research and current
best practices for each of these areas.

Incremental/Continual learning: A significant amount of work
on supervised continuous learning has been assessed, as a result of
the growing interest in continuous learning research [27, 7, 13]. Most
of the studies covered task-incremental learning scenarios, but the
initial learning was followed by either restricted or complete lack
of access to data from earlier tasks. In contrast, while our learning
agent adapts sequentially in an online way, it is important for us to
maintain the performance of the previous tasks, which may lead to
fast convergence.

The study of [18] focused on continual reinforcement learning and
its natural fit to the study of continuous learning and consequently, to
lifelong improvement. Recent work by Kessler et al. [17] on contin-
ual learning introduced the OWL (COntinual RL Without ConfLict)
method. In their approach, they framed the policy selection as a
multi-armed bandit (MAB) problem during the test time to choose
the optimal strategy for achieving the highest reward on a particular
test task. Furthermore, the authors highlighted that sequential learn-
ing may be susceptible to catastrophic forgetting and interference.
However, the DBO_MAB method is adept at retaining and building
upon past experiences.

Bayesian optimisation: In the field of optimisation, Bayesian op-
timisation is a powerful technique for addressing problems with ex-
pensive and noisy evaluations. It is particularly useful in scenarios
where the function to be optimized is expensive to evaluate, such as
in reinforcement learning (RL) where evaluating a policy can require
many episodes of interaction with the environment. Bayesian optimi-
sation works by building a probabilistic model of the function to be
optimized, and updating it as new data is acquired. The probabilis-

20 40 60 80 100 120 140 160
Number of Actions

0.020

0.025

0.030

0.035

0.040

0.045

M
ea

n
Re

sp
on

se
 T

im
e

SW-UCB
DBO-SW-UCB

Disd-UCB
DBO-Dis-UCB

Mean d-sw TS
DBO-Mean d-sw TS

(a) Average performance

20 40 60 80 100 120 140 160
Number of Actions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P b
es

t
(b) Probability of best action

Figure 12: Comparing best performing agent across multiple actions
for dynamic average workload between 0 − 0.1 by applying DBO-
UCB method.

20 40 60 80 100 120 140 160
Number of Actions

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
Re

sp
on

se
 T

im
e

SW-UCB
DBO-SW-UCB

Dis-UCB
DBO-Dis-UCB

Mean d-sw TS
DBO-Mean d-sw TS

(a) Sudden changes

20 40 60 80 100 120 140 160
Number of Actions

0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400

M
ea

n
Re

sp
on

se
 T

im
e

(b) Incremental changes

Figure 13: Scalability of MAB algorithms under sudden and incre-
mental environmental changes.

tic model, typically a Gaussian process, is used to make predictions
about the function’s behavior, and an acquisition function is used to
determine the next point to evaluate. The acquisition function bal-
ances exploration, to improve the model’s understanding of the func-
tion, and exploitation, to find the optimal point [4, 26].

Meta-learning: This is rapidly growing in importance as an area
of machine learning research. Meta-learning, or the notion of learn-
to-learn [21], is a branch of machine learning that autonomously
changes an existing learning mechanism based on previous experi-
ences and prior knowledge to swiftly learn new tasks [24]. Assuming
that new tasks are connected to prior tasks, cumulative knowledge
should be acquired in such a way that it retains the common struc-
ture of previously learned tasks [2]. As our approach is conducted
in realtime we mainly focus on online meta-learning, in which tasks
occur sequentially at the runtime, and on finding a way to learn from
past experience and then apply that to the new task to avoid learning
from scratch. Meta-learning is comparable to multi-task learning in
that the learner has to perform a large number of tasks. Nonetheless,
meta-learning requires the learning process to prepare for any new
tasks while, as in multi-task learning, the learner is presented with a
set number of tasks and is able to discover the relationships between
them [24].

A recent research [12] showed that meta-RL algorithms benefit
from prior learning to gain proficiency in learning new tasks rapidly.
However, to perform this approach, a huge amount of meta-training
tasks must be offered to the meta-learning. Meta-learning tries to dis-
cover which learning approaches perform best on various types of
data [30]. In sum, we acquire the ability to learn throughout tasks.
However, the difficulty with meta-learning is that it must be done in
a methodical, data-driven manner. To begin, we must collect meta-
data describing previously learned tasks and models. They include
the precise configurations of the algorithms that are used for model
training, particularly hyper-parameter values. Second, we must ex-

20 40 60 80 100 120 140 160
Number of Actions

0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325

M
ea

n
Re

sp
on

se
 T

im
e

BO-Update
BO-Discard

DBO-UCB
BO-UCB

(a) Average performance

20 40 60 80 100 120 140 160
Number of Actions

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P b
es

t

(b) Probability of best action

Figure 14: Comparing best performing agent across multiple actions
for static average workload between 0− 0.1.

tract and transmit information from these past meta-data to drive the
search for optimum models for the new tasks [31].

Meta-learning can be approached in a variety of ways, resulting in
a variety of possible applications, including Reinforcement Learning
[9, 25, 10], acquiring knowledge from a related task, transfer of meta-
knowledge between tasks and recommendation of items [31]. Azar et
al. [20] investigated sequential multitask learning in MABs.

Moreover, Duan et al. (2016) [8] proposed a comprehensive strat-
egy for strengthening RL that involves the task-specific rapid Rein-
forcement Learning algorithms led by the slow meta-RL approach.
Wang et al. (2016) [33] suggested using a deep RL algorithm to train
an RNN on the previous interval’s actions and rewards for it to learn a
base-level reinforcement learning algorithm for specific tasks. Rather
than employing tasks that are relatively unstructured, such as random
MDPs, they concentrate on task distributions that are structured (e.g.,
dependent bandits), allowing the meta-RL method to leverage the un-
derlying task structure.

The recent method PB2 (Population-Based Bandit) [28] for online
hyperparameter optimisation focuses on scheduler hyper-parameter
optimisation and parallel execution in RL setting, and it uses the
Bayesian optimisation to select the hyperparameters for the next
generation of models in the population. This leads to a more effi-
cient search of the hyperparameter space, which in turn results in
better performance. Another notable work in the context of UCB
algorithms is the Bootstrapped UCB (Bootstrapping Upper Confi-
dence Bound) [14]. That paper proposes a non-parametric, data-
dependent UCB algorithm based on multiplier bootstrap. The Boot-
strapped UCB method focuses on constructing tighter confidence
bounds using multiplier bootstrap to improve exploration and ex-
ploitation in the context of bandit problems. While our DBO-MAB
approach combines Bayesian optimisation with MAB algorithms.

5 Conclusion

In this work, we considered the challenge of an unknown reward
range in static and dynamic environments. The DBO-MAB algo-
rithm continuously learns effectively and maintains its performance
on previous tasks. This approach utilizes the MAB algorithms and
Bayesian optimisation (BO) to select new hyperparameter configu-
rations for the models, allowing for more efficient exploration of the
hyperparameter space dynamically. We evaluated our method on var-
ious workloads, and the results demonstrated significant performance
improvements compared to existing approaches. Through optimizing
the hyperparameter values dynamically, the algorithm was able to
achieve better results more quickly, enhancing its overall efficiency.

Acknowledgments

This work was supported by the Saudi Arabian Ministry of Edu-
cation, the Saudi Arabian Cultural Bureau in London, and Qassim
University. We also wish to thank the High-End Computing cluster
support team at Lancaster University. We would like to thank Dr.
Matheus Alves and Gao Peng for their valuable feedback.

References
[1] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Belle-

mare. Deep reinforcement learning at the edge of the statistical
precipice. Advances in neural information processing systems, 34:
29304–29320, 2021.

[2] R. Amit and R. Meir. Meta-learning by adjusting priors based on
extended pac-bayes theory. In International Conference on Machine
Learning, pages 205–214. PMLR, 2018.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47(2):235–256, 2002.

[4] J. C. Barsce, J. A. Palombarini, and E. C. Martínez. Towards
autonomous reinforcement learning: Automatic setting of hyper-
parameters using bayesian optimization. In 2017 XLIII Latin American
Computer Conference (CLEI), pages 1–9. IEEE, 2017.

[5] E. Cavenaghi, G. Sottocornola, F. Stella, and M. Zanker. Non stationary
multi-armed bandit: Empirical evaluation of a new concept drift-aware
algorithm. Entropy, 23(3):380, 2021.

[6] O. Chapelle and L. Li. An empirical evaluation of thompson sampling.
In Proceedings of the 24th International Conference on Neural Infor-
mation Processing Systems, NIPS’11, page 2249–2257, Red Hook, NY,
USA, 2011. Curran Associates Inc. ISBN 9781618395993.

[7] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars. Continual learning: A comparative
study on how to defy forgetting in classification tasks. arXiv preprint
arXiv:1909.08383, 2(6):2, 2019.

[8] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel. Rl2: Fast reinforcement learning via slow reinforcement
learning. arXiv preprint arXiv:1611.02779, 2016.

[9] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine
Learning, pages 1126–1135. PMLR, 2017.

[10] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-
learning. arXiv preprint arXiv:1806.02817, 2018.

[11] A. Garivier and E. Moulines. On upper-confidence bound policies for
non-stationary bandit problems. arXiv preprint arXiv:0805.3415, 2008.

[12] A. Gupta, B. Eysenbach, C. Finn, and S. Levine. Unsupervised meta-
learning for reinforcement learning. arXiv preprint arXiv:1806.04640,
2018.

[13] R. Hadsell, D. Rao, A. A. Rusu, and R. Pascanu. Embracing change:
Continual learning in deep neural networks. Trends in cognitive sci-
ences, 24(12):1028–1040, 2020.

[14] B. Hao, Y. Abbasi Yadkori, Z. Wen, and G. Cheng. Bootstrapping upper
confidence bound. Advances in neural information processing systems,
32, 2019.

[15] E. Hazan. Introduction to online convex optimization. arXiv preprint
arXiv:1909.05207, 2019.

[16] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Don-
ahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan,
et al. Population based training of neural networks. arXiv preprint
arXiv:1711.09846, 2017.

[17] S. Kessler, J. Parker-Holder, P. Ball, S. Zohren, and S. J. Roberts. Same
state, different task: Continual reinforcement learning without interfer-
ence. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 7143–7151, 2022.

[18] K. Khetarpal, M. Riemer, I. Rish, and D. Precup. Towards contin-
ual reinforcement learning: A review and perspectives. arXiv preprint
arXiv:2012.13490, 2020.

[19] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
European conference on machine learning, pages 282–293. Springer,
2006.

[20] A. Lazaric, E. Brunskill, et al. Sequential transfer in multi-armed bandit
with finite set of models. Advances in Neural Information Processing
Systems, 26, 2013.

[21] J. Li and M. Hu. Continuous model adaptation using online meta-
learning for smart grid application. IEEE Transactions on Neural Net-
works and Learning Systems, 2020.

[22] N. Manome, S. Shinohara, and U.-i. Chung. Simple modification of the
upper confidence bound algorithm by generalized weighted averages.
arXiv preprint arXiv:2308.14350, 2023.

[23] O. Martin. Bayesian Analysis with Python: Introduction to statisti-
cal modeling and probabilistic programming using PyMC3 and ArviZ.
Packt Publishing Ltd, 2018.

[24] D. Meunier and P. Alquier. Meta-strategy for learning tuning parameters
with guarantees. arXiv preprint arXiv:2102.02504, 2021.

[25] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural
attentive meta-learner. arXiv preprint arXiv:1707.03141, 2017.

[26] S. Müller, A. von Rohr, and S. Trimpe. Local policy search with
bayesian optimization. Advances in Neural Information Processing Sys-
tems, 34:20708–20720, 2021.

[27] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks,
113:54–71, 2019.

[28] J. Parker-Holder, V. Nguyen, and S. J. Roberts. Provably efficient online
hyperparameter optimization with population-based bandits. Advances
in Neural Information Processing Systems, 33:17200–17211, 2020.

[29] F. Trovo, S. Paladino, M. Restelli, and N. Gatti. Sliding-window thomp-
son sampling for non-stationary settings. Journal of Artificial Intelli-
gence Research, 68:311–364, 2020.

[30] J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. The online
performance estimation framework: heterogeneous ensemble learning
for data streams. Machine Learning, 107(1):149–176, 2018.

[31] J. Vanschoren. Meta-learning: A survey. arXiv preprint
arXiv:1810.03548, 2018.

[32] N. A. Vien, H. Zimmermann, and M. Toussaint. Bayesian functional
optimization. In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 32, 2018.

[33] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo,
R. Munos, C. Blundell, D. Kumaran, and M. Botvinick. Learning to
reinforcement learn. arXiv preprint arXiv:1611.05763, 2016.

[34] M. Xie, W. Yin, and H. Xu. Autobandit: A meta bandit online learning
system. In IJCAI, pages 5028–5031, 2021.

[35] S. Zhang, F. Yang, C. Yan, D. Zhou, and X. Zeng. An efficient batch-
constrained bayesian optimization approach for analog circuit synthe-
sis via multiobjective acquisition ensemble. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 41(1):1–
14, 2021.

	Introduction
	Methodology
	Dynamic Bayesian Optimisation for Multi-Arm Bandits (DBO-MAB)

	Experimental Results
	Related Works
	Conclusion

