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ABSTRACT  
 
Wave energy shows potential to provide electricity in a renewable manner. The TALOS WEC (Wave Energy Converter) is a unique design 
with six PTO (Power Take-Off) elements to provide six Degrees of Freedom (DOFs). It is potentially able to harvest energy more efficiently 
than traditional single-DOF devices. As a step towards its optimisation and control, a power prediction model is developed, using the wave 
elevation and motions of the WEC to predict the power output of each PTO. The results show that using LSTM (Long-Short Term Memory) 
has a higher prediction accuracy than the other approaches considered. 
 
KEY WORDS:  TALOS, WEC, Power Prediction, Machine 
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INTRODUCTION 
 
Much research has been done on energy harvesting technologies over 
the past few decades, in part due to the incoming energy crisis. As a 
type of renewable energy, ocean waves provide significant energy via 
a sustainable and reliable approach. As a result, many different types 
of WECs have been designed and tested to produce clean and 
renewable energy (Li et al., 2012). Examples include Lancaster 
University’s PS Frog (Taylor et al., 2002; McCabe et al., 2006), 
AquaBuOy (AquaBuOy, 2016), and Powerbuoy (Powerbuoy, 2016).  
 
In general, WECs can be categorised as point absorbers, oscillating 
water columns, terminators, oscillating wave surge converters, 
attenuators, and submersed pressure differential devices (Aggidis and 
Taylor, 2017; Darwish and Aggidis, 2022). The majority of WECs are 
single-DOF devices, which means they could only extract energy from 
one direction of motion. Based on the single-DOF method, prototypes 
have been designed such as the Carnegie Wave Energy Limited 
prototypes (Wave Hub, 2016), the Archimedes Wave Swing (AWS 
Ocean, 2016), Oregon Limited’s multi-resonant chamber (Orecon, 
2009), and Salter’s Duck (Salter, 1974). However, the kinetic power 
contained in the waves is in multiple directions. In hydrodynamic 
analysis, the waves have yaw, roll, and pitch motions in heave, surge, 
and sway axes, respectively. In total, there are six degrees of freedom 
in WECs that would be affected by the waves. Theoretically, if the 
device can extract energy from multiple DOFs, more energy can be 
thus generated.  
 

Despite most designs being single-DOF, few multi-DOF WECs have 
been developed to date. One of the most famous designs is Pelamis, 
which is a snake shape device with several tubes that are connected by 
hydraulic rams. The electricity is generated from the hydraulic rams 
that connect the moving tubes. Pelamis prototypes have been deployed 
in Portugal and Scotland and fed electricity in national grids (Boyle 
and Duckers, 2012).  
 
Compared with single-DOF devices, multi-DOF WECs have seen 
much less research and prototype design. Development of Pelamis, for 
example, was cancelled because the company went into administration 
after being unable to secure the level of additional funding required 
for the further development of their technology (Wave power firm 
Pelamis calls in administrators, 2014). NHP-WEC (Novel High-
performance Wave Energy Converter) is an ongoing project that aims 
to design a novel multi-DOF point absorber style WEC, called 
TALOS, built as a 1/100th scale representation, with a solid outer hull 
containing all the moving parts. These include a ball mass and 
dampers (PTOs) that connect the ball and the hull, as shown in Fig. 1.  
 
During the development of the prototype, ocean uncertainties threaten 
the reliability and stability of the ocean energy system, especially for 
WECs (Sanchez et al., 2018). Hence, it is necessary to forecast ocean 
wave energy to save construction and pilot project costs (Reikard et 
al., 2015). Prediction of WEC power output can bring the following 
benefits: 

• Improve the design of the control system. 
• Improve power management abilities. 
• Improve the reliability of the condition monitoring system.  

 



 
Fig. 1 TALOS I photograph (left) and TALOS II prototype diagram, 
with cut away section to show the internal PTO components (from 
Bhatt et al., 2016).  
 
Machine learning algorithms, integral to the field of artificial 
intelligence (AI), are developed to recognize patterns in data, enabling 
predictive analytics and enhancing their performance through learning 
from experience. These algorithms are primarily categorised based on 
their learning approach and the nature of the data they are trained on. 
 
Supervised learning algorithms are trained using data that is labelled, 
meaning each data point is associated with a known output. This type 
of learning is akin to a student learning under the guidance of a 
teacher, where the algorithm learns to map inputs to the given outputs 
(Cunningham and Delany, 2008). Linear Regression and Logistic 
Regression are examples of supervised learning algorithms, with the 
former used for continuous outcome prediction and the latter for 
categorical outcome prediction. Specific algorithms like Support 
Vector Regression (SVR), Artificial Neural Networks (ANN), and 
Regression Trees also play a significant role in machine learning. SVR 
is used in cases where the goal is to predict continuous values, but 
unlike traditional regression, it focuses on minimizing error margins 
and is particularly effective in high-dimensional spaces. ANNs, 
inspired by biological neural networks, consist of interconnected 
nodes or neurons and are particularly adept at processing complex 
patterns in large-scale data. They are widely used in image and speech 
recognition, among other applications. Regression Trees, a part of the 
decision tree algorithm family, are used for predicting continuous 
target variables. They split the data into subsets based on certain 
criteria, making them valuable for tasks that require a hierarchical, 
decision-making approach (Xiang et al., 2018). 
 
Unsupervised learning, in contrast, deals with unlabelled data. The 
algorithms in this category aim to identify hidden patterns or intrinsic 
structures within the data. They are not provided with correct answers 
but must find the structure and relationships in the data on their own. 
K-Means Clustering and the Apriori algorithm are prime examples of 
unsupervised learning algorithms, used for clustering and association 
rule mining, respectively (Yürüşen, 2021). 
 
Reinforcement learning is a distinct category where an agent learns to 
make decisions by performing actions within an environment. It is 
guided by feedback in the form of rewards or penalties. Q-Learning is 
a popular algorithm in this category, employed in scenarios where 
sequential decision-making is crucial under uncertain conditions 
(Arulkumaran, 2017). 
 
Machine learning (ML) is becoming increasingly integral to industry. 
ML algorithms have been widely applied in various sectors, including, 
for example, the water turbine business, wind turbine efficiency 

analysis, and ship hull overload prediction. In the water industry, ML 
is utilized for water quality monitoring, leakage detection, and 
network optimization. Melbourne Water has employed a Python-based 
AI and ML system to significantly reduce energy costs in treatment 
plant pump-stations (Joseph, 2022). Sydney Water has developed 
‘Sewer Scout’, a tool for accurately locating maintenance chambers 
and identifying sewer system defects. Additionally, ML applications 
in the wind energy sector include predictive maintenance and power 
generation optimization, enhancing operational efficiency and energy 
output. In the context of ship hull overload prediction, ML is 
employed to analyse structural integrity and predict potential failures, 
thus improving maritime safety and efficiency (Benbouzid, 2021). 
 
In the realm of ocean energy, most existing research focuses on wave 
prediction. A notable study by Desouky and Abdelkhalik (2019) 
employs an ANN and NARX (nonlinear autoregressive network with 
exogenous inputs) for predicting wave surface elevation. Zhang et al. 
(2022) introduced a variational Bayesian machine learning method to 
predict wave elevation, uncertainty, and the predictable zone, 
demonstrating lower prediction errors compared to linear wave theory 
and deterministic machine learning approaches. 
 
However, predicting the power output of WECs presents more 
complex challenges due to the intricate boundary condition equations 
involved. To address this, Mousavi et al. (2021) explored ML-based 
solutions as alternatives to traditional numerical methods. The 
adoption of genetic algorithms for creating prediction models using 
various wave periods, heights, and water depths has been investigated 
by Liu et al. (2020). Additionally, other ML methods such as 
reinforcement learning, K-means clustering, and Convolutional Neural 
Networks (CNNs) have been utilized for predicting electricity 
generation from WECs, as reported in studies by Zou et al. (2022), 
Wang (2020), and Ni et al. (2018). 
 
In the quest to model the TALOS WEC, the integration of Kernel 
Principal Component Analysis (KPCA) with Long Short-Term 
Memory (LSTM) networks, alongside SVR, ANN, and Regression 
Trees, constitutes a robust, strategic algorithmic ensemble. SVR’s 
prowess in tackling non-linear data is indispensable for modelling the 
intricate dynamics present in wave energy systems. ANN’s are 
invaluable for their capacity to approximate complex and non-linear 
interdependencies that are characteristic of wave energy converters’ 
behaviours. Regression Trees provide an interpretable structure that is 
beneficial for elucidating the reasoning behind the optimisation 
strategies of the converters. LSTM networks are specialised for their 
proficiency in time-series analysis, capturing the temporal correlations 
that are essential in wave energy predictions. 
 
The addition of KPCA to LSTM networks (KPCA-LSTM) brings a 
novel dimension to the modelling toolkit. KPCA’s capability for 
feature extraction, particularly in identifying non-linear patterns, 
complements LSTM’s strength in sequential data prediction. This 
synergy enhances the model’s ability to capture the nuanced patterns 
and long-term dependencies found in wave energy data. When 
combined, KPCA-LSTM augments the predictive accuracy, offering a 
potent solution for handling the complex and multi-faceted nature of 
wave energy conversion with improved precision and reliability. 
 
TALOS WEC POWER GENERATION PREDICTION MODEL  
 
TALOS WEC model 
 
Fig. 2 demonstrates the PTO structure of TALOS. The PTO system is 
composed of a heavy ball at the centre. Six dampers (PTOs) are used 



to connect the outside hull and the ball inside. Due to the weight of the 
ball, the ball would have relative motions to the hull when the 
incoming wave hits the WEC. Hence, motions coming from different 
directions will cause tension and compression forces on the dampers. 
 
TALOS numerical modelling is based on a full-sized physical model 
of the device (Sheng et al., 2022a). The incoming long-crest irregular 
wave is generated with an average 10s period. A total of 20 variables 
are monitored, including water surface elevation, surge motion, heave 
motion, pitch motion, PTO force in the x direction, PTO force in the z 
direction, PTO moment in the y direction, forces applied on six PTOs, 
electric power generated by six PTOs, and total power.  
 
Prediction algorithm selection 
 
Addressing the complexity of forecasting the output of a two-body 
(hull and ball) WEC system like TALOS, requires a nuanced 
understanding of both traditional and modern forecasting 
methodologies. Traditional forecasting methods, such as 
Autoregressive Integrated Moving Average (ARIMA) and 
Exponential Smoothing (ES), have been widely used for their 
simplicity and effectiveness in predicting linear time series data 
(Elsaraiti & Merabet, 2021; Pierre et al., 2023). However, the TALOS 
WEC system, characterized by its interaction between two bodies in a 
dynamic marine environment, presents a challenge that goes beyond 
the capabilities of linear prediction models. These traditional methods 
often fall short when dealing with the non-linear, multi-dimensional, 
and stochastic nature of wave energy data, where the relationship 
between input variables and power output can be highly complex and 
time dependent. 
 
In contrast, ML-based methods like SVM, ANN, and LSTM networks 
offer a more sophisticated approach to capturing the intricate patterns 
inherent in wave energy conversion processes (Xiang et al., 2018). 
SVM, for example, can handle non-linear data effectively using kernel 
functions, but it may struggle with large-scale datasets and multi-
dimensional inputs. ANNs are capable of modelling complex non-
linear relationships through their layered structure, yet they often 
require extensive data for training and can be prone to overfitting.  
 
Table 1 outlines the strengths and limitations of these forecasting 
methods in the context of predicting the power output of a two-body 
WEC system. 
 

 
Fig. 2 TALOS II PTO system with six-degrees of freedom. 

Table.1 Comparison of prediction algorithms. 
 

Method Strengths Limitations 
ARIMA Simple to implement. 

Effective for linear series. 
Struggles with non-linear 
data. 
Limited in capturing long-
term dependencies. 

ES Adapts well to data with 
trends and seasonality 

Non-linear data challenges. 
Limited complexity 
handling. 

SVM Handles non-linear data 
well. 
Effective in high-
dimensional spaces. 

Scaling issues with large 
datasets 
Limited interpretability. 

ANN Models complex non-
linear relationships. 
Adaptable to various types 
of data. 

Requires extensive data for 
training. 
Risk of overfitting. 

LSTM Excellent at learning long-
term dependencies. 
Effective for sequential, 
time-series data. 

Computationally intensive. 
Requires careful tuning of 
parameters. 

 
Given the TALOS WEC's operational complexity and the stochastic 
nature of wave energy, LSTMs stand out as the most robust method 
for forecasting its power output. Their ability to process and remember 
information over extended sequences, directly addresses the 
challenges posed by the dynamic and interdependent factors 
influencing WEC performance. Consequently, LSTMs offer a 
promising avenue for developing accurate and reliable predictive 
models for such advanced energy systems. 
 
LSTM  
 
The LSTM network consists of stacks of LSTM nets. The basic 
structure of the LSTM network is shown in Fig. 3 (Liu et al., 2019). 
One LSTM net includes input gates, forget gates, cell state, output 
gates, sigmoid gates, and tanh gates. Unlike other ML algorithms, 
LSTM emphasises the importance of the relationship between the 
previous and current states. The output of the current state is 
determined using the current input Xt and the previous outputs, ht-1 and 
ht-2, i.e. the output from the previous states. The previous cell (Ct-1) 
and hidden state (ht-1) are preserved and passed to the current cell state 
(Ct) and hidden state (ht) without any losses. The sigmoid function (σ), 
which connects the previous states and current states, is used to decide 
which input data needs to be added or removed from the cell state. 
Thus, long-term dependency problems can be avoided. 
 
To determine whether to keep or remove the input (Xt), the decision 
function of the forget gate (ft) is used. The decision function ranges 
from 0 to 1, corresponding to the numbers in the cell state Ct-1, where 
the Wf and bf  are the weight and bias of the forget gate, respectively. 
 
𝑓𝑓𝑡𝑡 = σ（𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                                               (1) 
 
Subsequently, the sigmoid function is employed to decide whether the 
new information needs to be preserved or forgotten. Contrasting with 
the sigmoid function, the tanh function is used to determine the 
importance of the information to be transmitted from the previous 
state. By multiplying the results from the sigmoid and tanh functions, 
the new current state Ct is constructed from Ct-1, as follows, 
 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                                                          (2) 
𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡−1𝑓𝑓𝑡𝑡 + 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑛𝑛[ℎ𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑛𝑛)𝑖𝑖𝑡𝑡                                            (3)  



 
Fig. 3 LSTM structure. 
 
The input gate it is constructed from a sigmoid function calculated 
from the previous hidden state and input, where the Wi and bi are the 
weight and bias of the input gate. The cell state Ct is determined using 
the previous cell state Ct-1, forget gate ft and tanh function.  
 
The output of the LSTM is computed from the hidden state (ht) at the 
current time t based on the output gate Ot, 
 
𝑂𝑂𝑡𝑡 = σ（𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜)                                                              (4) 
ℎ𝑡𝑡 = 𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)                                                                                                   (5) 
 
The output cell state is calculated from the sigmoid function of the 
previous hidden state ht-1 and Xt, where Wo and bo are the weight and 
bias of the output gate, respectively. The output hidden state is 
decided using the output gate Ot and tanh function of the cell sate Ct.  
 
LSTM networks are developed from RNNs (Recurrent Neural 
Networks). Thus, it has advantages in linking previous information to 
the current state, compared with other ML algorithms such as 
regression trees, SVR and ANN. Due to this characteristic, LSTM is 
suitable for regression modelling, for predicting and processing long-
term time series data, as discussed by many researchers (Jalayer et al., 
2021; Abdul et al., 2020; and Zhao et al., 2016). 
 
KPCA 
 
Kernel Principal Component Analysis (KPCA) is a multivariate 
statistical method. It extends traditional Principal Component Analysis 
(PCA) by employing a kernel function, allowing the originally linear 
operations to take place in a reproducing kernel Hilbert space (Abdi, 
2010). PCA is a technique that transforms a group of correlated 
variables into a new set of linearly uncorrelated variables, termed 
principal components (PCs). It is a popular method for visualizing 
relationships and genetic distances between variables. This is typically 
achieved by calculating the eigenvalues of the data's covariance matrix 
or the singular values in cases of non-orthogonal matrix conditions. 
PCA is highly effective in reducing dimensions and has been validated 
across various research fields. By choosing the initial few PCs, the 
primary information is preserved while significantly reducing the 
dataset's dimensionality. Therefore, PCA is extensively used in feature 
extraction and integrated with ML algorithms like ANN, for 
applications such as monitoring and predicting wind turbine 
performance (Skittides, 2014 and Ata, 2015, Wang et al., 2016). 
 
To extract PCs from a dataset X, eigen-analysis of the dataset's 
covariance matrix Σ is performed. Initially, dataset X is standardized: 

 
𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖

𝜎𝜎𝑥𝑥𝑖𝑖
            (𝑖𝑖 ≠ 𝑗𝑗, 𝑖𝑖 = 𝑗𝑗 = 1,2, … , 𝑝𝑝)                                       (6) 

where xj is the mean of Xj, σxj is the standard deviation of Xj, and Z is 
the standardized dataset (Zij)n×p. The covariance matrix Σ of Z is: 
 
Σ𝑖𝑖,𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑖𝑖� = 𝐸𝐸�(𝑍𝑍𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑍𝑍𝑖𝑖 − 𝜇𝜇𝑖𝑖��  = 𝐸𝐸�𝑍𝑍𝑖𝑖𝑍𝑍𝑖𝑖� − 𝜇𝜇𝑖𝑖𝜇𝜇𝑖𝑖        (7) 
 
where μi=E(Zi) is the mean of the i-th row vector in dataset Z. PCs are 
derived from the covariance matrix using singular value 
decomposition (SVD), where the singular values of Σ are: 
 
𝛴𝛴 = 𝑈𝑈𝑈𝑈𝑊𝑊𝑇𝑇                                                                                           (8) 
 
Here, S is an n-by-p matrix containing the i-th singular values of Σ, U 
is an n-by-n matrix (the left singular vectors of Σ), and WT is a p-by-p 
matrix (the right singular vectors of Σ). The i-th PC is obtained by: 
 
𝑌𝑌𝑖𝑖 = 𝑈𝑈𝑖𝑖1𝑧𝑧1 + 𝑈𝑈𝑖𝑖2𝑧𝑧2 + ⋯+ 𝑈𝑈𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖       (𝑖𝑖 = 1,2, … , 𝑝𝑝)                          (9) 
 
The singular values of Σ represent the variances of their corresponding 
PCs, indicating the weighted information from the original dataset. To 
choose the number of PCs, one calculates the cumulative variance 
contribution of each PC. The contribution of the i-th PC is:  

 
𝛼𝛼𝑘𝑘 = 𝑠𝑠𝑘𝑘

∑ 𝑠𝑠𝑘𝑘
𝑝𝑝
𝑖𝑖=1

                                                                                         (10) 

 
where k is the number of PCs. To retain as much information from the 
original dataset as possible, k should be as large as possible (k<n), but 
a balance must be found to achieve dimension reduction. Typically, 
the cumulative variance contribution is chosen to be no less than 85%. 
  
Power generation forecasting framework  
 
To operationalise the envisaged model, we adhere to a structured 
seven-step methodology, as depicted in the flowchart, Fig. 4. The 
initial stage involves the acquisition and preprocessing of time-series 
data, derived from the TALOS WEC numerical models cited in prior 
studies. The raw data, sampled at intervals of 0.05 seconds, 
encompasses 20 distinct monitoring variables, as described earlier 
(Sheng et al., 2022b).  This stage segregates the data into training and 
testing subsets, with an additional focus on normalising the data. The 
causality inherent in the WEC system guides the selection of training 
inputs, which include water surface elevation, surge, heave, pitch 
motions, and the PTO forces along the x and z-axes, as well as the 
overall moment in the y-axis. These inputs are chosen based on their 
impact on the PTO forces, which are the primary forecasting target of 
the model. The model also considers the independence and potential 
interdependence of the six PTOs, accounting for scenarios where one 
PTO's failure could influence the dynamics of the others, thereby 
affecting the overall power output. 
 
The dataset size, encompassing 12,000 data points with a 90% split for 
training and 10% for testing, is chosen to prevent overtraining and 
ensure robust learning without excessive computational demands. The 
subsequent stages, from the second to the fourth, focus on configuring 
the LSTM network parameters. This process is informed by previous 
successful applications and iterative testing with the same dataset, 
culminating in a set of optimised hyperparameters. These include a 
maximum of 250 epochs, a gradient threshold of 1, an initial learning 
rate of 0.05, a drop period of 125, and a drop factor of 0.2. Following 
the training phase, the model's precision is verified using the 
remaining 10% (1,200 points) of the dataset. 



 
Fig. 4 TALOS WEC power generation model. 
 
The architecture choice in the LSTM model is a strategic decision 
based on balancing the risks of underfitting and overfitting, and is 
based on our previous research (Wu & Ma, 2022).  
 
The 3rd stage utilises Kernel Principal Component Analysis (KPCA) 
for feature extraction, enhancing the model's ability to capture 
complex patterns within the data. The prediction set is determined five 
time steps (0.25s) ahead toward the feature set.  In the sixth step, the 
model is trained for LSTM regression, further refining its predictive 
capabilities with regard to PTO forces. Subsequent predictions of PTO 
forces lead to the seventh step, where the power output for each PTO 
is calculated. This facilitates a comparison between the model's 
predictions and actual measurements, aiding in the identification of the 
most accurate and efficient solution. The forces of the six PTOs are 
further used for the power outputs calculation, by using Eq. 11, 
 
𝑃𝑃 = 𝐹𝐹2

𝜆𝜆
                                                                                               (11) 

 
where P and F are the power output and force of one PTO and λ = 
250,000 is the power coefficient based on hydrodynamic modelling.  
 
Finally, the LSTM prediction accuracy is further compared with other 
machine learning algorithms. Both RMSE (root mean square error) in 
Eq. 12 and R2 (coefficient of determination) in Eq. 13 are calculated to 
evaluate the forecasting model accuracy.   
 

𝑅𝑅𝑅𝑅𝑈𝑈𝐸𝐸 = �∑ (𝑦𝑦𝑛𝑛�−𝑦𝑦𝑛𝑛)2𝑁𝑁
𝑛𝑛=1

𝑁𝑁
                                                                      (12) 

where ŷn represents the prediction value and yn the measurement 
value. The RMSE value ranges from 0 to +∞. Lower values indicate 
higher accuracy. R2 is calculated as below: 
 
𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡
                                                                                    (13) 

 
where SSres and SStot represent the residual sum of squares and total 
sum of squares, respectively. Normally, the R2 value is ranges from 0 
to 1, where 1 indicates the prediction model fits the data perfectly. 
 
POWER GENERATION RESULTS AND ANALYSIS  
 
PTO force predictions 
 
Figures 5 and 6 show the KPCA-LSTM forecasting test results. In 
total, 1200 rows of data are used (10% of 12,000) for testing. Fig. 6 is 
a box plot representation that compares the distribution of predicted 
and measured values across six different PTO forces, while the Fig. 5 
shows time-series plots for each PTO force, juxtaposing predicted and 
actual measurements over time. 
 
The box plot provides a statistical summary that highlights the central 
tendency and dispersion of the predicted and measured values for each 
PTO. It is immediately apparent that the model's predictions are 
consistent with the measurements, given that the median of the 
predictions closely aligns with the median of the measurements across 
all PTO forces. However, there are notable differences in the 
interquartile ranges and the whiskers of the box plots, which suggest 
variability in the model's accuracy. The box plots for PTO forces 1, 5 
and 6 indicate a wider range of variability in the predictions than in 
the measurements. In contrast, PTO forces 2, 3 and 4 show a closer 
match between the spread of predicted and measured data. 
 
The time-series plots enable a more granular analysis of the model's 
performance. The oscillatory nature of the predicted and measured 
forces is evident and suggests a cyclic process. While the model 
captures the general trend and periodicity of the forces, there are 
instances where the predictions diverge from the measurements. These 
discrepancies might be due to the model's inability to fully account for 
the system's dynamic complexities or unexpected variations in the 
PTO forces that were not captured during the model training. 
 

 
Fig. 5 TALOS WEC force prediction results. 

 
Fig. 6 Comparison between PTO force predictions and measurements. 



 
 
Fig. 7 TALOS WEC power prediction results. 
 

 
Fig. 8 PTO power predictions and measurements. 
 
Analysis of these figures provides a nuanced perspective on the 
potential benefits of employing a KPCA-LSTM model for prediction. 
The KPCA-LSTM model's non-linear dimensionality reduction, 
coupled with its memory-capable architecture, may afford 
improvements in capturing the underlying patterns and reducing the 
prediction error. The current model's deviations, particularly the points 
where the predictions fail to align with the peaks and troughs of the 
measurements, could be addressed by the LSTM's ability to learn from 
long sequences of data and remember important information over 
extended time lags. 
 
PTO power predictions 
 
Fig. 7 presents a series of line graphs for six distinct PTO systems, 
comparing predicted and actual power outputs over time. This side-by-
side portrayal facilitates a direct assessment of the predictive model’s 
fidelity, revealing that the predictions adhere to the actual values to a 
variable extent. For PTO systems 1 and 4, there is a noteworthy degree 
of congruence between the predictions and actual measurements, 
despite occasional lapses in capturing peak values. Contrastingly, PTO 
systems 2, 3, 5 and 6 exhibit more marked divergences, especially in 
the accuracy and timing of predicted peaks. 
 
Fig. 8 employs a boxplot to summarise the predictive and actual power 
values across all PTO systems. The visualisation elucidates the central 
tendencies and variances within the data, highlighting that, while 
median predicted values sometimes closely match the actual 
measurements, substantial variability is evident in other instances, as 
demarcated by the range of the interquartile spread and the outliers. 
 
Scrutiny of these figures underscores specific aspects where the 
predictive model could be honed. The time-series line graphs indicate 
potential difficulties the model encounters with abrupt power 
fluctuations, as evidenced by the occasional missed peaks and troughs. 

The boxplot corroborates this by displaying a wider dispersion in 
predicted values relative to the measurements, implying 
inconsistencies in the model’s ability to represent the data’s true 
distribution. The integration of a KPCA-LSTM methodology has 
already advanced the precision of this model beyond that of traditional 
ANN, SVR, and standalone LSTM networks, especially given the 
complexity of the systems in question, which, when approached 
directly, have resulted in substantial prediction errors. Through KPCA, 
critical features that drive PTO power variability and sudden shifts are 
distilled. The LSTM networks are applied to these features to refine 
the prediction of temporal patterns. 
 
Anticipated improvements from this advanced hybrid approach are 
multifaceted: it aims to heighten the accuracy in predicting peaks and 
to attenuate the discrepancy between the predicted and actual values. 
This should manifest as more constrained boxplot distributions that 
more accurately reflect the measured data. Furthermore, the enhanced 
capability for feature extraction and temporal prediction promises a 
model with not only improved accuracy but also heightened resilience 
to the dynamic changes in PTO power, which is crucial for real-world 
application reliability. 
 
Forecasting efficacy evaluation 
 
Accurate forecasting is paramount in the realm of wave energy 
conversion. Not only does it ensure optimal energy capture, 
safeguarding the maximisation of energy yields, but it also plays a 
foundational role in facilitating effective grid integration. By 
accurately forecasting power outputs, grid operators can adeptly 
manage energy inputs, ensuring a stable and reliable power supply. 
Moreover, precise predictions are instrumental in averting potential 
disturbances or grid imbalances that can arise from fluctuating energy 
inputs, especially given the inherently variable nature of wave energy. 
 
In this landscape, the analysis of R2 values emerges as a key metric. It 
offers a diagnostic lens, shedding light on the predictive prowess of 
the employed models, such as LSTM. As control systems of WECs 
rely heavily on these forecasts for real-time adjustments and 
operational decision-making, the pertinence of understanding the 
nuances of R2 values cannot be overstated. Variations in these values 
across different forecast horizons can signal potential areas for model 
refinement, paving the way for more responsive and efficient control 
systems. A granular grasp of these dynamics ensures that WECs not 
only harness wave energy with heightened efficiency but also operate 
with enhanced predictability, optimising the symbiosis between power 
generation and control systems. 
 
In the assessment of predictive modelling for WEC, the trajectory of 
the coefficient of determination R2 across varying forecast intervals, as 
depicted in Fig. 11, offers a profound insight into the efficacy of 
simulation-based predictive models. The initial surge in R2 is 
indicative of the model's high precision in short-term forecasting, 
which is paramount for the effective application of Model Predictive 
Control (MPC) strategies. This pronounced accuracy within the 
nascent stages of prediction underscores the model's capability to 
harness contemporaneous data and translate them into reliable force 
estimates for the PTO systems. 
 
Conversely, the ensuing decline in R2 upon extending the prediction 
window beyond the immediate horizon, accentuates the inherent 
limitations of the simulation model in encapsulating the complex, non-
linear interactions within the marine environment. Such a decremental 
shift in predictive reliability suggests a divergence between the 
simulated projections and the system's nuanced response to evolving 



hydrodynamic stimuli. This interval of diminished accuracy hints at 
the potential latency in the system's reaction to control inputs, due to 
physical constraints and the model's waning proficiency in forecasting 
under the rapidly shifting conditions that characterise wave dynamics. 
 
Stabilisation of the R2 metric in the subsequent phase reflects the 
model's recalibration to the broader, more persistent patterns of the 
simulated environment. This equilibrium suggests an alignment 
between the model's predictive capacity and the average behavioural 
tendencies of the wave energy system over extended periods, thus 
providing a consistent, albeit generalized, forecast that can inform 
longer-term strategic adjustments in the control and design of wave 
energy converters. 
 
Such results, emanating from simulation data, highlight the critical 
importance of iterative model refinement and validation against a 
spectrum of temporal scales, to fine-tune the forecasting tools used 
within the wave energy sector. The simulated environment serves as a 
testbed for developing robust predictive algorithms that can anticipate 
and navigate the complexities of real-world wave energy conversion, 
thereby fostering advancements in control mechanisms and enhancing 
the overall efficacy of energy harnessing from oceanic waves. 
 
Power output forecasting accuracy comparison  
 
Table 2 presents a comparative analysis of the prediction accuracy 
across five distinct algorithms, delineating the overall R² and RMSE 
values for the power output prediction of six PTOs. A close 
examination of the table reveals that the LSTM algorithm exhibits 
commendable performance, often surpassing the other models in 
overall prediction accuracy. Notably, for the 2nd and 5th PTOs, the 
LSTM algorithm achieves the highest R² values, underscoring its 
superior predictive capabilities. The KPCA-LSTM model, which 
integrates kernel KPCA with the LSTM framework, shows strong 
performance, particularly in the R² values for the 2nd, 3rd, and 5th 
PTOs, where it outperforms the standalone LSTM. This suggests that 
the KPCA preprocessing step effectively captures relevant features 
from the input data, enhancing the LSTM's ability to model complex 
relationships. 
 
For the 2nd PTO's power prediction, the SVR model yields the lowest 
RMSE, indicating a slightly better prediction precision for this 
particular PTO compared to the LSTM. In the case of the 1st PTO, 
however, the SVR and LSTM are equally accurate, both achieving the 
lowest RMSE of 0.12. The regression tree, with its simpler structure, 
demonstrates the weakest performance in both metrics across all PTOs, 
suggesting that the complexity of the LSTM and KPCA-LSTM 
models may contribute to their heightened accuracy. Finally, the SVR 
and ANN (multilayer perceptron) models exhibit similar performance 
levels, slightly trailing behind the LSTM. 

 
Fig. 11 Changes of R2 values with increasing forecast time for the 
sixth PTO forces. 

Table 2. Prediction accuracy of five algorithms (RT: Regression tree). 
 

PTO R2 or 
RMSE 

KPCA-
LSTM 

LSTM RT SVR ANN 
 

1st R2 0.87 0.67 0.44 0.78 0.56 
2nd R2 0.93 0.49 0.56 0.67 0.45 
3rd R2 0.92 0.83 0.75 0.74 0.78 
4th R2 0.89 0.93 0.74 0.74 0.77 
5th R2 0.85 0.92 0.52 0.81 0.83 
6th R2 0.92 0.92 0.79 0.89 0.80 
1st RMSE 0.12 0.13 0.17 0.13 0.16 
2nd RMSE 0.08 0.15 0.16 0.14 0.17 
3rd RMSE 0.09 0.11 0.14 0.13 0.13 
4th RMSE 0.11 0.08 0.13 0.13 0.13 
5th RMSE 0.12 0.09 0.13 0.12 0.12 
6th RMSE 0.09 0.09 0.13 0.11 0.12 

 
CONCLUSIONS  
 
This article has compared a novel KPCA-LSTM approach with 
several other ML approaches for the prediction of power generation 
from a multi-DOF WEC presently in development. The work is 
presently limited to the analysis of simulated data. It is concluded 
from the results that KPCA-LSTM offers a feasible approach for such 
power generation forecasting. Based on evaluation results of R2 and 
RMSE, the KPCA-LSTM algorithm yields improved performance 
compared to several other, more conventional ML algorithms. With 
the development of power prediction methods, better design of WEC 
control systems and power management becomes feasible, especially 
for offshore power management.  
 
Theoretically, the LSTM network bypasses the intricate physical 
interdependencies inherent in a two-body wave energy converter 
system. Instead, it focuses directly on predicting the output based on 
historical input data. By doing so, the LSTM leverages its strength in 
pattern recognition from time-series data, effectively making forecasts 
without delving into the complex physics of the system's interactions. 
This approach allows for efficient prediction while circumventing the 
need for detailed modelling of the system's physical dynamics. 
 
The current work on hyperparameter selection for LSTM networks is 
based on prior knowledge and commonly used parameters. In other 
words, it selects hyperparameters manually, which might cause extra 
errors in the prediction. The next steps will consider algorithm 
optimisation work related to hyperparameter selection for the training 
model, and investigations into other potential algorithms suitable for 
power prediction in this multi-DOF WEC context. 
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