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Double vibrational resonance is reported for a driven oscillator in a periodic structure of the
Josephson junction type with high-frequency phase modulation. We identify two distinct phase
modulation effects, namely, resonant induction and resonant amplification, leading to the appear-
ance of a double resonance. We analyse these vibrational resonance phenomenon theoretically and
numerically, and we show that the origin of the induced resonance is traceable to a transition from
periodicity to quasiperiodicity associated with an attractor-merging crisis.
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I. INTRODUCTION

Interest in nonlinear dynamical systems is motivated
in part by their numerous scientific, engineering, medi-
cal and other applications. These stem from their broad
range of dynamical behaviours, which are profoundly dif-
ferent from those of linear systems. Amongst a range of
complex features, transitions associated with dynamical
crises are of particular interest. Crises are sudden qual-
itative changes in a system’s dynamics as a parameter
is being varied, producing sudden transitions in the sys-
tem’s features that impact significantly on its overall evo-
lution [1]. Four main types of crisis have been observed:
attractor-merging crises [2]; boundary crises [3]; interior
crises [4]; and tangent bifurcation [5] or fold crises [6].
Each of these routes represent a different mechanism by
which a system can undergo a transition from one be-
haviour to another. In general, it is the nature of the
bifurcation and phase space structure that determines
the type of crisis. For instance, when two or more at-
tractors merge to form a single attractor as a critical
parameter value is exceeded, this is an example of an
attractor-merging crisis [7, 8].

We report below a double vibrational resonance (DVR)
induced by an attractor-merging crisis in a phase-
modulated potential structure. Earlier studies had re-
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ported DVR induced by a number of other mecha-
nisms, such as double symmetry breaking (sb-sb) bifurca-
tions [9], cooperation between the time-scale separations
of astrocytes, neurons, and driving signals [10], a shift in
phase-locking mode [11], multiple period-doubling bifur-
cations of attractors [12, 13], and Hopf bifurcations [14],
just to mention a few. In contrast, we consider here
the onset of DVR induced by the phase-modulation of
a potential. This is unlike the other system configura-
tions such as time-delay feedback [15, 16], small distur-
bances, damping inhomogeneity, potential deformation,
and position-dependent mass (PDM) that have also been
reported to have induced DVR [11, 12, 14, 17–20].

The study of vibrational resonance (VR) originated
from the work of Landa and McClintock [21] who stud-
ied a system subjected to both high and low frequency
periodic forces, simultaneously, in the absence of noise.
The emergence of VR has elucidated many complex
features of dual-frequency-driven nonlinear systems and
has enriched our understanding of their dynamical be-
haviours [20, 22–25]. Landa and McClintock [21] pro-
posed this idea by replacing the role of noise in stochastic
resonance (SR) with a fast periodic force. VR and SR
have been found to be potentially useful in a wide va-
riety of applications, including bulk material processing,
signal processing, optical communication systems, image
processing, logic gate operations, energy harvesting, and
bearing-fault detection in machinery [25, 26].

Investigations of VR have been based on a num-
ber of different model configurations and approaches.
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These have included variable-mass systems [13], non-
linear damped systems [14], parametric modulated sys-
tems [27], amplitude modulation of the external peri-
odic force [28–32] as well as frequency modulation [31].
Phase modulation of a potential plays important roles
in the generation of short laser pulses in plasma chan-
nels [33], in vibrational modes of trapped ions [34], in
ultrafast transmission of electrons [35] and in the cre-
ation of ultrashort light pulses [35–37]. Phase modu-
lation based on liquid crystal spatial light modulators
(LC-SLMs) has been utilized in optical tweezers, neurol-
ogy and astronomy, amongst the several applications enu-
merated in [38]. Kenfack and Dandogbessi [39] demon-
strated that modulated phase assisted by a combination
of an external periodic excitation and a constant bias
force, induced so-called absolute negative mobility [39].
Very recently, a time-periodic potential was shown to in-
fluence the transmission probability and conductance of
an MoS2-based circuit [40, 41]. Earlier, both random
phase and periodic phase were employed in controlling
chaos by either driving it from a chaotic regime to a pe-
riodic regime or vice versa, depending on the tuning of
the phase parameters [42–45]. Notably, VR has been
studied in the framework of amplitude modulation and
parametric modulation [27].

However, we report below the occurrence of VR in a
system in which a periodic force modulates the periodic
potential’s phase directly, with the other force continu-
ing to function as the external periodic drive. We fo-
cus our attention on the impact of modulating the phase
of periodic-potential on the resonance features by exam-
ining, first, the zero-phase case and, secondly, the case
where the phase is non-zero. We validate this way of
achieving VR both theoretically and numerically, and
provide evidence that the primary resonance (without
modulated phase) can be substantially enhanced within
a suitably chosen parameter regime, based on phase mod-
ulation of the potential. More importantly, we report the
occurrence of phase-modulation-induced VR, originating
from the expansion of two coexisting attractors undergo-
ing an attractor-merging crisis.

The paper is organised as follows. Following this in-
troduction, the model equation is presented in Section II.
Section III provides a theoretical assessment of the sys-
tem’s resonance behavior using the separation of motions
approach. Sec. IV presents numerical results to validate
the theoretical analysis, while Sec. V draws conclusions.

II. MODEL

We consider here the dynamics of a particle in a phase-
modulated periodic structure, V (ϕ, t) given by,

V (ϕ, t) = Va[1− cos(ϕ+ g0 cos(Ω0t))], (1)

where Va is the depth, ϕ0 = g0 cos(Ω0t) is a time-periodic
phase modulation with g0 and Ω0 being the amplitude

and characteristic frequency, respectively. By consider-
ing all external forces, including dissipation, the corre-
sponding Lagrange’s equation of motion is given by:

mϕ̈+ Va sin(ϕ+ g0 cos(Ω0t)) + δϕ̇− fext = 0, (2)

wherem is the mass of the particle, δ is the dissipation co-
efficient, fext = fD cos(ωDt) is the external force with fD
and ωD being its amplitude and characteristic frequency.
The frequency of the linearized motion around the mini-
mal of the potential in the absence of the modulation is
denoted as ω0. By defining the dimensionless variables:
t̃ = ω0t, θ = ϕ, λ = δ/mω0, ω = ωD/ω0, Ω = Ω0/ω0,
g = g0, V0 = Va/mω

2
0 , f = f0, and substituting them

into Eq. (2), we obtain:

d2θ

dt̃2
+ λ

dθ

dt̃
+ V0 sin(θ + g cos(Ωt̃)) = f cos(ωt̃). (3)

The dimensionless equation of motion for the system, af-
ter rescaling the time with the natural period of motion
τ̃ = 2π/ω0, and renaming the variables, then becomes:

θ̈ + λθ̇ +
dV (θ, t)

dθ
= f cos(ωt), (4)

where θ is the dimensionless angular displacement and
the dimensionless potential V (θ, t) becomes,

V (θ, t) = V0[1− cos(θ + ϕ(t))]. (5)

Given the form of the potential (5), it turns out
that the system can be likened to a phase-modulated
Josephson-junction (JJ) device [46]. Such devices have
a broad range of applications in quantum-state engi-
neering, memory solutions, on-chip temperature sensors,
electrical metrology and nanowire quantum dots [47–51].
ϕ(t) = g cos(Ωt) is the high frequency (HF) modulating
force. The parameters g and f represent the amplitudes
of the HF and low-frequency (LF) periodic forces, respec-
tively. V0 is the normalized amplitude of the potential,
f cos(ωt) is the LF excitation, and g cos(Ωt) is the HF ex-

citation component of the bichromatic signal. λθ̇ is the
energy dissipation term, and θ is the angular displace-
ment. In the VR setting, Ω ≫ ω.
The phase modulation can rock the particle back and

forth in its potential well. This is illustrated in Figure 1
for three distinct values of the phase modulation ampli-
tude g and for two different configurations of the snap-
shot times ts leading to negative (leftward) displacement
[Fig. 1(a)], and to positive (rightward) displacement [Fig.
1(b)]. For g = 0 (solid red lines), the particle is located at
the bottoms (equilibrium positions) of the potential, at
positions θL0 and θR0, respectively. However, when one
of the control parameters of phase is switched on, i.e.,
g ̸= 0 (dotted black line and dashed green line), the par-
ticle vibrates rightward or leftward at different snapshot
times ts. Thus, the phase plays a non-trivial role in the
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FIG. 1. [Color Online] Potential V (θ, ts) [Eq. (5)] highlight-
ing the effect of phase modulation with respect to the dis-
placement θ of the particle for two snapshot times (a) ts = 1
and (b) ts = 10. The curves correspond to g = 0 (solid red
lines), g = 0.5 (dotted black lines) and g = 1 (dashed green
lines). The other parameters are set to Ω = 6.7 and V0 = 1.

action of the external LF force in rocking the particle. In
the following analysis, we will obtain the effective poten-
tial and an exact expression for the particle’s response as
it vibrates when the phase modulation, ϕ(t), is switched
on.

III. THEORETICAL ANALYSIS OF VR

The vibration of the particle can be analysed by sepa-
rating the variables into rapid and slow motions. This
leads to two differential equations. To make Eq. (4)
amenable to the analysis, it will be convenient to express
the potential V (θ, t) as:

V (θ, t) = V0[1− (cos θ cos(g cosΩt) + sin θ sin(g cosΩt))].
(6)

Thus, the system to be analyzed becomes,

θ̈ + λθ̇ + V0[sin(θ) cos(g cosΩt) + cos θ sin(g cosΩt)]

= f cos(ωt). (7)

Since Ω ≫ ω, the dynamics evolves on two time-scales so
that the solution θ(t) of the system (7) consists of two
components: (i) χ(t), which is a periodic solutions of
the slowly varying oscillations whose frequency is ω, and
period 2π/ω, and (ii) ψ(t,Ωt), a rapidly varying periodic

oscillation with frequency Ω, fast time τ = Ωt and period
2π. Thus,

θ(t) = χ(t) + ψ(t,Ωt). (8)

The average value with respect to the fast time τ , is given
by

ψ =
1

2π

∫ 2π

0

ψ dτ = 0. (9)

In addition, the following averages apply:

cos(g cosΩt) = J0(g), sin(g cosΩt) = 0,

sinψ =
1

2π

∫ 2π

0

sinψdτ = 0, (10)

cosψ =
1

2π

∫ 2π

0

cosψdτ = J0(ψ0),

At this point, the corresponding pair of coupled differen-
tial equations for the variables χ and ψ are to be derived
from the differential equation (7), with attention paid to
the slow dynamics. To get the solution of the first equa-
tion, we substitute Eq (8) into Eq. (7), so that,

χ̈ + λχ̇+ ψ̈ + λψ̇ + V0 sin(χ+ ψ) cos(g cosΩt)

+ V0 cos(χ+ ψ) sin(g cosΩt) (11)

= f cos(ωt).

By taking the averages of Eq. (11) over the interval
[0, 2π], and in view of ψ being a rapidly-varying peri-
odic function of τ , and by applying Eqs. (9) and (10), we
can write:

χ̈+ λχ̇+ V0[sinχcosψ + cosχsinψ]cos(g cosΩt)

+ V0[cosχcosψ − sinχsinψ]sin(g cosΩt)

= f cos(ωt),

(12)

where ψ0 represents the amplitude of the steady-state
solution corresponding to ψ. J0(ψ0) and J0(g) represent
the zeroth-order Bessel function of the first kind. Sim-
plifying Eq. (11) with Eq. (12) yields

χ̈+ λχ̇+ V0[J0(g)J0(ψ0) sinχ] = f cosωt. (13)

Equation (13) is the first of the required two coupled
oscillators in the variable χ. Using Eq. (11) and the in-

ertial approximation ψ̈ ≫ ψ̇ ≫ ψ, where the overhead
dots imply derivatives with respect to τ , we can obtain
the equation for the fast oscillation ψ, reducing the re-
sultant equation to that of a periodically-driven particle.
When ψ changes rapidly, the long term periodic solution
is considered in the fast time τ , i.e.,

ψ̈ + λψ̇ + V0[sinχ(cosψ − J0(g)J0(ψ0))]

+ V0 sinψ cosχ cos(g cosΩt)

+ V0 cosχ cosψ sin(g cosΩt)

− V0 sinχ sinψ sin(g cosΩt) = 0, (14)
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Under the above condition, we can free the component
of the slow oscillation in Eq. (14), and consider only
the cosine of the maximal value of the fast motion (i.e.,
ψ = 2π) for small values of g. Thus, for slow variables
on the left-hand side (LHS), the 3rd term (sinχ = 0),
4th and 6th terms (sinψ = 0) all vanish. The 5th term
(with cosχ = 1, and cosψ = 1) survives. For small
values of g, it is clear that sin(g cosΩt) ≈ V0g cosΩt.
The surviving term (i.e., the 5th term), reduces to
V0 cosχ cosψ sin(g cosΩt) ≈ V0g cosΩt.
Consequently, Eq. (14) can then be reduced to:

ψ̈ + λψ̇ = −G cosΩt, (15)

where G = V0g. For simplicity, V0 = 1 throughout the
paper, and hence G = g. The steady state solution of
Eq. (15) is

ψ = ψ0 cos(Ωt+ ϕ) =
−g

Ω
√
Ω2 + λ2

cos(Ωt+ ϕ); (16)

sinϕ =
−λ√

Ω2 + λ2
, cosϕ =

−Ω√
Ω2 + λ2

. (17)

Assuming Ω ≫ λ, then ψ0 = −g
Ω2 . Thus, Eq. (13) can

appropriately be written as

χ̈+ λχ̇+ V0

[
J0(g)J0

(
−g
Ω2

)
sinχ

]
= f cosωt. (18)

Equation (18) is the required theoretical expression for
the slow dynamics. It consists of the parameters of the
HF signal. Eq. (18) corresponds to an effective potential:

Veff = −V0
[
J0(g)J0

(
−g
Ω2

)]
cosχ. (19)

Figure 2 depicts the phase modulated oscillator’s effective
potential at different modulation amplitudes. It is evi-
dent that modulation reduces the depth of the effective
potential. The oscillation occurs near χ = χmin(max) =
2πχ, suggesting that modulation of the phase of the po-
tential is capable of amplifying the system’s response.

At this juncture, we approximate the slow oscilla-
tion equation of (18) around the equilibrium positions

(χ+, χ̇+), where slow oscillation occurs, using the ap-
proximation χ+

min(max) = 2kπ, where k is an integer. The

oscillatory motion χ around the equilibrium can be rep-
resented in terms of its deviation from χ+, such that
Y = χ− χ+. Thus, the equation of motion now reads:

Ÿ +λẎ +V0J0(g)J0

(
−g
Ω2

)
sin(Y +χ+) = f cosωt. (20)

The points of equilibrium for the slow oscillations
are χ+

min(max) = 2kπ, where k is an integer, and

J0(
−g
Ω2 ). cosχ

+ = |J0(−g
Ω2 )|. Eq. (20) can be written as

Ÿ + λẎ + V0|J0(g)J0
(
−g
Ω2

)
| sinY = f cosωt. (21)
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FIG. 2. [Color Online] The effective potential Veff(χ) given
by Eq. (19), for three values of g, with Ω = 5 and V0 = 1

Equation (21) is the approximate analytic solution from
which the amplitude of the response of the system to the
HF phase modulation would be obtained.
For f ≪ 1, |Y | ≪ 1 and sinY ≈ Y . Thus, Eq. (21)

becomes

Ÿ + λẎ + ω2
rY = f cosωt, (22)

where ωr =
√
V0|J0(g)J0(−g

Ω2 )| represents the resonant

frequency. The steady-state solution Y (t) = Am cos(ωt+
Φ) corresponds to Eq. (22) which gives the overall de-
scription of the system in the long time limit t → ∞
with Am = f√

S
and S = β2 + λ2ω2, and β = ω2

r − ω2.

The response amplitude is denoted by the quantity Q.
It is the ratio of the amplitude of Y (t), denoted by the
output Am, to the LF signal’s amplitude, f :

Q =
Am

f
=

1√
(ω2

r − ω2)2 + λ2ω2
. (23)

In Eq. (23), Q is maximum when S is minimum. Thus,
at resonance, the condition ωr = ω or β = 0, must be
satisfied.

IV. NUMERICAL RESULTS

We now study the occurrence of VR numerically to
investigate the result of varying the phase modulation
parameter. The response was computed from the ampli-
tudes Qsn and Qcn of the Fourier spectrum of the output
signal, where Qsn and Qcn are defined by [21]:

Qsn =
2

nT

∫ nT

0

θ(t) sinωt dt (24)

Qcn =
2

nT

∫ nT

0

θ(t) cosωt dt.

The system’s amplitude is given by

A =
√
Q2

sn +Q2
cn. (25)
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FIG. 3. [Color Online] Frequency-response curve, Q plotted
as a function of ω, for (a) a fixed value of the high-frequency
(Ω = 20ω) and five values of the phase modulation amplitude
g, and (b) a fixed value of the phase modulation amplitude
(g = 1.3) and three different values of the high-frequency.
The various lines (solid, dashes, dots, dash-dots) represents
numerically computed values ofQ, while the markers show the
theoretically calculated Q from Eq. (23). Other parameters
are: V0 = 1 and λ = 0.5.

For the LF signal, the response amplitude is given by

Q =
A

f
=

√
Q2

sn +Q2
cn

f
. (26)

To compute the system’s response Q, a convenient ap-
proach is to re-write Eq. (7) as two coupled first-order
autonomous ordinary differential equations, i.e.,

θ̇ = y,

ẏ = −λθ̇ − V0 sin θ cos(g cosΩt)

−V0 cos θ sin(g cosΩt) + f cos(ωt). (27)

We integrated Eq. (27) numerically using a fourth-order
Runge-Kutta algorithm. The computation step size in
the slow time t, ∆t = 0.01 over a simulation time interval
Ts = nT , with T = 2π

ω being the period of the oscillation,
and n (= 1, 2, 3...) is the number of complete oscillations.
Throughout the simulations, except otherwise stated, the
values of the following parameters were fixed: V0 = 1,
λ = 0.5, ω = 0.75, and Ω = kω, where k is the frequency
ratio. Zero initial conditions were used, and the relax-
ation time was set to 100T . The choices made here en-
sured that the system is in the underdamped dynamical
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FIG. 4. [Color Online] Numerically computed frequency-
response curve, with Q from Eq. (26) plotted as a function of
ω for five values of the phase modulation amplitude: g = 0,
0.75, 1, 1.2 and 1.3. (a) Ω = 6.7ω and (b) Ω = 20ω. In (c) g
= 1.3 and Q is plotted for increasing values of Ω in the region
of induced resonance.

regime, which allows for both periodic and quasiperiodic
behavior.

The frequency response amplitude Q obtained analyt-
ically using Eq. (23) was compared to the response am-
plitude Q numerically obtained from Eq. (26). This is
shown in Figure 3. Q (analytic) values are presented
using different line types (solid, dash, dots, dash-dots),
while Q (numerical) values are denoted by the different
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markers. With the ratio k = 20 fixed, the plots in Fig-
ure 3(a) are for g = 0, 0.5, 0.75, 1.0, and 1.3 wherein
VR occurs. For the lower g values (0, 0.5, and 0.75), the
agreement is excellent over the entire frequency range
presented, whereas, when g becomes large (e.g., g = 1
and g = 1.3), small discrepancies between the theoretical
and the numerical results become evident in the very low
frequency regime (typically, ω ≲ 0.2), which could be at-
tributed to the assumptions and simplifications used for
the theoretical analysis. Remarkably, the key properties
of the curves, such as the trend and shape, are still in
excellent agreement. Thus, the response of the system to
driving forces can be predicted, albeit within some tol-
erance. However, in the limits when k approaches large
values as demonstrated in Figure 3(b), vibrational sup-
pression occurs in the lower frequency regime, with the
theoretical predictions fitting excellently.

Figure 4(a) plots the numerically-computed frequency
response Q as a function of the LF excitation frequency
ω. The red curve shows the zero-phase case (g = 0),
where a single resonance peak is evident. This primary
resonance appears due to the response of the system to
an LF signal in the absence of modulation. By switching
on the phase modulation (g ̸= 0), a non-trivial impact
on the frequency response curve occurs, in addition to
the typical VR phenomenon shown in Figure 3(a). This
occurs in the frequency range 0.05 ≤ ω ≤ 0.2. For 0.5 ≤
ω ≤ 1, the response curve is strongly enhanced, whereas
for 0.05 ≤ ω ≤ 0.2, resonance is induced so that, as
g progressively increases, the oscillator exhibits double
resonance with strong amplification.

We have investigated the range of occurrence of time-
periodic phase-modulation-induced resonance, as shown
in Figure 4(a), for different values of the frequency ra-
tio k, ranging from 6.7 to 2000. We find that the phe-
nomenon is robust, even at higher values of k, for ex-
ample 6.7 ≲ k ≲ 600 as illustrated in Figure 4(b) for
k = 20. However, the LF frequency values at which
the modulation-induced resonance occurs shift progres-
sively towards lower ω values as shown in Figure 4(c),
where Q is plotted for some selected Ω values, ranging
from Ω = 6.7ω to Ω = 600ω. For extremely large values
of k (k ≫ 500), the induced resonance becomes unsta-
ble and collapses to a sharp spike in the very weak LF-
frequency domain, while enhancement of the primary res-
onance dominates. These results highlight the ability of a
time-periodic phase-modulation to induce enhanced dou-
ble resonance over a wide range of the LF regime. Note
that double resonance has also been reported in previous
works [10–12, 20]. Its occurrence has been attributed to
a variety of dynamical transitions. For instance, Vin-
cent et al. [12] reported DVR induced by deformation
of an asymmetrical Remoissenet-Peyrard potential sub-
strate originating from period-doubling bifurcations of
three coexisting attractors. Roy-Layinde et al. [20] re-
ported that DVR arises via cooperation between PDM
parameters and nonlinear dissipation. In this latter
case, the DVR was attributed to a mechanism linked
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FIG. 5. [Color Online] The forward and backward bifurcation

diagram of velocity, θ̇ as a function of ω for g = 0, 0.001, 0.1
and 1.3. The green points represent the forward bifurcation
points, while the brown points are the backward bifurcation
points. The other parameters are set as f = 0.1, λ = 0.5,
Vo = 1, Ω = 5.025.

to a symmetry-breaking pitchfork bifurcation. Variable
PDM was also shown to induce DVR via multiple period-
doubling bifurcations of resonant attractors in a model
NH3 molecule [13]. Here, we identify another mechanism
by which DVR can be induced and enhanced: via phase
modulation of the potential.

To gain insight into the appearance of DVR and un-
cover the hidden dynamics of our system, we explored
the bifurcation of attractors, phase portrait and Poincaré
section within the corresponding low-ω regime, for both
zero and non-zero phase modulation of the potential of
the system (4). It was evident that no resonance oc-
curred for g = 0, but that it was induced when g > 0.
In the Poincaré section, the trajectories are computed
as a series of points in (θ, θ̇) phase-space, with a sin-
gle point per cycle of the phase modulation. That is,
a point is plotted if ωt = γ + n 2π, where γ repre-
sents the phase space. Figure 5 depicts both the forward
(green points) and backward (brown points) bifurcation
diagrams, showing two coexisting attractor bifurcation
branches. It was necessary to present both the forward
and backward bifurcation structures in order to capture
all the points of the two attractors, because not all val-
ues of ω have a defined velocity value in each branch.
Figure 5(a) shows the bifurcation structure for the zero-
phase case in which only the primary resonance exists in
figure 4 for g = 0 for the entire ω regime: 0.5 ≤ ω ≤ 1.
However, in Figure 5(b), a qualitative change in the bi-
furcation structure occurs when the phase-modulation is
switched on by adjusting its amplitude to a very small
value, g = 0.001. Typically, the two attractor bifur-
cation branches expand when the there is finite phase
modulation of the potential. The expansion is progres-
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FIG. 6. [Color Online] (a)Poincaré section and (b) Phase por-
trait showing a transition from periodicity: (g = 0, black) to
quasiperiodicity (g > 0, green), with corresponding attractor-
enlargement-induced phase modulation of the potential, for
increasing values from g = 0 t0 1.3. Other parameters are set
as f = 0.1, λ = 0.5, Vo = 1, Ω = 5.025.

sive with further increase in g until the two branches
collide at around g ≈ 0.01 as shown in Figure 5(c), and
eventual merge. Indeed, the consequences of the progres-
sive expansion in the attractor size, the collision, and the
merger are: (i) the induction of a new resonance with
fixed resonance frequency ω = 0.12 for all values of g
shown in Figure 5; and (ii) the amplification of the pri-
mary resonance with decreasing resonant frequency (g, ω)
= [(0,0.95),(0.75,0.85),(1.0,0.8),(1.2,0.75),(1.3,0.7)]. In
the ω regime where resonance is induced, the attrac-
tor expansion leads to corresponding enhancement un-
til a maximum peak is attained at which the attractor
bifurcation branches are completely merged into a sin-
gle large-quasiperiodic orbit occupying nearly the entire
phase space region as shown in Figure 5(d) for g = 1.3.
Note that the velocity axis scaling in Figure 5(a-d) is dif-
ferent in each panel. This phenomenon is known as an
attractor-merging crisis [52]. Figure 5(d) corresponds to
the case of g = 1.3 in the frequency response curve of Fig-
ure 4, where the induced VR is very prominent. Thus, the
attractor-merging crisis underscores the hidden dynamics
by which the DVR is induced by phase modulation. Sim-
ilar crisis mechanisms have been known in the past to be
associated with other important dynamical phenomena,
such as intermittency [53, 54], unstable dimension vari-
ability [55], multi-stability [8], spatiotemporal and tran-
sient chaos [56], flow-reversal [57] and bursting [58], to
mention but a few of them.

We consolidate these results with evidence from the
Poincaré and phase portrait plots. Figure 6(a) shows the
Poincaré section for zero and non-zero phase modulation
of the potential with ω = 0.1, for the attractor located
near the zero-equilibrium point. The motion of the par-
ticle is periodic for g = 0 (black point), but becomes an
enlarged higher-order orbit, reminiscent of quasiperiodic-

0 0.2 0.4 0.6 0.8 1 1.2
f

2

2.4

2.8

3

Q

g=0 g=0.5 g=0.75 g=1 g=1.2(a)

0 1 2 3 4 5
g

1.5

2

2.5

3

Q

f=0.1 f=0.3 f=0.4 f=0.5(b)

FIG. 7. [Color Online] Dependence of the response amplitude
Q, computed numerically from Eq. 26: (a) on the amplitude
f for five values of the phase amplitude g = 0, 0.5, 0.75, 1
and 1.2; and (b) on the amplitude g of the phase modulation,
for f = 0.1, 0.3, 0.4 and 0.5.

ity, with increased amplitude of vibration when the phase
modulation is activated at g = 0.75, (green points), im-
plying that time-periodic phase modulation can induced
antiresonance in addition to DVR. The enlarged ampli-
tude of oscillation, as well as the transition from period-
icity to quasiperiodicity, is obvious in the phase portrait
shown in Figure 6(b) for both the zero-phase potential
(the inner closed orbit) and the non-zero phase poten-
tial, respectively.
To complete the picture, Figure 7(a) shows the re-

sponse amplitude Q with respect to the external drive’s
amplitude f for both the zero-phase and modulated
phase scenarios. Evidently, VR occurs with enhancement
of the resonance peaks as the system transitions from
the zero-phase state to the phase-modulated state within
the parameter range f ∈ (0.025 to 1.2) with the peaks
appearing at different values of f . Finally, Figure 7(b)
shows the numerically computed response amplitude Q
as a function of the amplitude g of the phase function.
It is clear that resonance peaks appear as a function of
g, separated by a minimum near g = 2.3 in each case.
This feature is reminiscent of the vibrational antireso-
nance reported in coupled nonlinear oscillators by Sarkar
and Ray [59]. The antiresonance dip at g = 2.3 signals
the transition point at which the time-periodic modulat-
ing force switches the dynamics from weakly enhanced
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VR (0 ≤ g ≤ 2) to weakly suppressed VR (2.8 ≤ g ≤ 5).

V. CONCLUSIONS

In summary, we have investigated the impact on VR of
phase modulation of the potential in a periodic potential
system. The contributions from this phase modulation
were first identified, based on the derived effective poten-
tial. From that, we inferred that phase-modulation could
be employed to amplify a weak signal in the same fash-
ion as additive or multiplicative driving forces. We ex-
amined the frequency response curve and we found that
modulating the phase of the potential can both induce
and enhance resonance within certain parameter regimes,
thereby leading the system to exhibit double resonance
behaviour at two different frequency bandwidths. We pe-
rused the bifurcation structure in Poincaré section to gain
insight into the origin of the observed double resonance,
and we found two periodic attractor bifurcation branches
merging to form a larger quasiperiodic orbit within the
regime where DVR occurred, suggesting that it is the at-
tractor merging crisis that underpins the induced DVR
as well as the resonant amplification in the presence of
the potential’s phase modulation. Our theoretical results
were validated numerically.

The VR phenomena investigated may have appli-
cations in periodically modulated structures such as
Josephson junctions, especially in relation to supercon-
ducting electronics and quantum computing [60], and
in phase-tunable thermoelectric systems [61], cryogenic
memory [62], and quantum phase slips [63]. Other po-
tential applications include optical communications [64],
sound synthesis [65], and radar and sonar applications
where varying the phase of broadcast and received sig-
nals allows for more precise measurement of the tar-
get’s distance and velocity [66]. There are also potential
applications in improving frequency-based devices such
as quantum sensors [67] and one-dimensional nanostruc-
tures [68].
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