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We propose some extensions to semi-parametric models based on
Bayesian additive regression trees (BART). In the semi-parametric BART
paradigm, the response variable is approximated by a linear predictor and
a BART model, where the linear component is responsible for estimating
the main effects and BART accounts for non-specified interactions and non-
linearities. Previous semi-parametric models based on BART have assumed
that the set of covariates in the linear predictor and the BART model are mu-
tually exclusive in an attempt to avoid poor coverage properties and reduce
bias in the estimates of the parameters in the linear predictor. The main nov-
elty in our approach lies in the way we change the tree-generation moves in
BART to deal with this bias and resolve non-identifiability issues between
the parametric and non-parametric components, even when they have covari-
ates in common. This allows us to model complex interactions involving the
covariates of primary interest, both among themselves and with those in the
BART component. Our novel method is developed with a view to analysing
data from an international education assessment, where certain predictors
of students’ achievements in mathematics are of particular interpretational
interest. Through additional simulation studies and another application to a
well-known benchmark dataset, we also show competitive performance when
compared to regression models, alternative formulations of semi-parametric
BART, and other tree-based methods. The implementation of the proposed
method is available at https://github.com/ebprado/CSP-BART.

1. Introduction. Generalised linear models (GLMs; Nelder and Wedderburn, 1972;
McCullagh and Nelder, 1989) are frequently used in many different applications to predict a
univariate response due to the ease of interpretation of the parameter estimates as well as the
wide availability of statistical software that facilitates simple analyses. Besides the estimation
of main effects, a common use of regression models is to measure the effects that combina-
tions of covariates may have on the response. However, standard GLM settings require pre-
specification of interaction terms, which is a complicated task with high-dimensional data.
Furthermore, a key assumption in GLMs is that the specified covariates in the linear predic-
tor, including potential interactions and higher-order terms, have a linear relationship with
the expected value of the response variable through a defined link function. Extensions such
as generalised additive models (GAMs; Hastie and Tibshirani, 1990; Wood, 2017) require
specification of main and interaction effects via a sum of (potentially non-linear) predictors.
In GAMs, the non-linear relationships are usually captured via basis expansions of the co-
variates and constrained by a smoothing parameter. However, in problems where the numbers
of covariates and/or observations are large, it may not be simple to specify the covariates and
interactions that impact most on the response. Semi-parametric models (Harezlak, Ruppert
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and Wand, 2018) have been proposed for situations where a mixture of linear and non-linear
trends, as well as interactions, are required for accurately fitting the data at hand.

Semi-parametric Bayesian additive regression tree (BART) models (Zeldow, Lo Re III
and Roy, 2019; Tan and Roy, 2019; Dorie et al., 2022) are black-box type algorithms which
aim to tackle some of the key limitations often encountered when using GLMs to analyse
datasets with a large number of covariates. Most commonly, they are used when it is of in-
terest to quantify the relationships between covariates and the response. It is well-known that
tree-based algorithms such as BART (Chipman, George and McCulloch, 2010) and random
forests (Breiman, 2001) are flexible and can produce more accurate predictions, as they re-
move the often restrictive assumption of linearity between the covariates and the response.
However, prediction is not the most important aspect in many situations (e.g., Hill, 2011; Zel-
dow, Lo Re III and Roy, 2019; Hahn et al., 2020). Instead, knowing how covariates impact
the response is crucial; but this quantification is not easily interpretable with the standard
BART model or random forests. Thus, the main appeal of semi-parametric BART models is
that they allow us to look inside the black-box and provide interpretations for how some key
inputs of primary interest are converted into outputs. Unlike GLMs and GAMs, however, they
account for non-specified interactions automatically. This is key to their appeal for analysing
datasets with a large number of covariates where interaction effects are difficult to specify.

Motivated by data collected in 2019 under the seventh cycle of the quadrennial Trends in
International Mathematics and Science Study (TIMSS; Mullis et al., 2020; Fishbein, Foy and
Yin, 2021), we extend the semi-parametric BART model introduced by Zeldow, Lo Re III and
Roy (2019), which we henceforth refer to as separated semi-parametric BART (SSP-BART)
for clarity. TIMSS is an international assessment which evaluates students’ performance in
mathematics and science at different grade levels across several countries. A large number
of features pertaining to students, teachers, and schools are recorded. We aim to quantify
the impact of a small number covariates of primary interpretational interest (i.e., parents’
education level, minutes spent on homework, and school discipline problems) on students’
performance in mathematics, in the presence of other covariates of non-primary interest.

In the previously proposed SSP-BART, the design matrix is split into two disjoint subsets
X1 and X2, which contain covariates of primary and non-primary interest, respectively. The
specification of these matrices should be guided by the application at hand. The covariates
in X1 are of interest in terms of being interpretable, but their impact on the response is also
relevant. The covariates of non-primary interest in X2 may still be strongly related to the
response, but are not considered important in terms of interpretation. The primary covariates
in X1 are specified in a linear predictor and the others are exclusively used by BART; i.e.,
covariates in X2 are the only ones allowed to form interactions. SSP-BART applied to the
TIMSS 2019 data would thus prohibit interactions between (or involving) the aforementioned
primary covariates. This omission of important interactions represents a major limitation of
SSP-BART, given that handling interactions automatically is supposedly part of its appeal.

Our work differs from SSP-BART in that i) we do not assume that X1 and X2 are disjoint;
i.e., we allow X1 ∩X2 ̸= ∅, or even X1 ⊂X2. This is important because primary and non-
primary covariates may also interact in complex ways and further impact the response. Unlike
SSP-BART, our model’s BART component accounts for this and yields better trees and no-
tably improved predictive performance on the TIMSS 2019 data. Moreover, ii) we change the
way the trees in BART are learned by introducing ‘double-grow’ and ‘double-prune’ moves,
along with stricter checks on tree-structure validity, to resolve non-identifiability issues be-
tween the parametric (linear) and non-parametric (BART) components. Finally, iii) while
Zeldow, Lo Re III and Roy (2019) assume that all parameters in the linear predictor have the
same (diffuse) variance a priori, we instead place a hyperprior on the full hyper-covariance
matrix of the main effects, so that we are better able to model the correlations among them.
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Thus, within the semi-parametric BART paradigm, we make a distinction between SSP-
BART and our combined semi-parametric BART, which we call CSP-BART. In CSP-BART,
we have made fundamental structural changes to the way that the trees are learned due to
the fact that X1 and X2 can have covariates in common. Specifically, we prohibit the BART
component from estimating marginal effects for variables in X1 in order to ensure that the
parameter estimates in the linear component are identifiable. We also allow the specification
of both fixed and random effects in the linear predictor, as in a linear mixed model, in which
the parameter estimates can vary by a grouping factor. In contrast, interactions and non-
linearities are handled by the BART component.

Beyond our proposed extensions to SSP-BART, another related work in this area is the
varying coefficient BART (VCBART; Deshpande et al., 2020), which combines the idea of
varying-coefficient models (Hastie and Tibshirani, 1993) with BART and extends the work
of Hahn et al. (2020) to a framework with multiple covariates. In VCBART, the response
is modelled via a linear predictor where the effect of each covariate is approximated by a
BART model based on a set of modifiers (i.e., covariates that are not of primary interest).
The only similarity between VCBART and CSP-BART is the use of a linear predictor along
with BART. However, our work is structurally different as we do not estimate the parameters
in the linear predictor via BART. Instead, they are obtained in the same fashion as a Bayesian
linear mixed model approach, so as to yield interpretable and unbiased coefficient estimates.

Another extension of SSP-BART is provided by the model of Dorie et al. (2022), which
accommodates not only fixed effects but also random effects in its parametric component.
Unlike SSP-BART, their approach integrates BART with Stan (Stan Development Team,
2023) in the associated R package stan4bart, so that the fixed and random effects are
updated via the No-U-Turn sampler rather than Gibbs steps. Without random effects, this is
the only aspect of their approach which differs from SSP-BART. Crucially, Dorie et al. (2022)
also operate under the assumption of mutual-exclusivity between X1 and X2. As we do not
make use of random effects in either our simulation experiments or our applications, we do
not compare the results of CSP-BART with those of stan4bart, although we do describe
a version of CSP-BART which also allows random effects in Section 4.3. Instead, we show
using standard performance metrics that SSP-BART and VCBART compare unfavourably to
CSP-BART in two simulation studies (where we demonstrate CSP-BART’s ability to recover
the true main effects in either the presence or absence of interactions), our primary analysis
of the TIMSS 2019 data, and an additional application to the well-known Pima Indians Di-
abetes dataset (Newman et al., 1998) (presented in Appendix D to demonstrate the practical
use of CSP-BART in classification rather than regression settings).

The remainder of this paper is organised as follows. Section 2 provides an overview of the
TIMSS 2019 data and discusses why our model is particularly well-suited for it. In Section 3,
we summarise the BART model and introduce relevant notation. In Section 4, we revise the
separated semi-parametric BART model and describe our proposed CSP-BART extension in
detail. In Section 5, we compare the performance of CSP-BART with other relevant algo-
rithms on synthetic data. We analyse the TIMSS 2019 dataset in Section 6. To conclude, we
present a discussion in Section 7. Finally, additional details on the theoretical underpinnings
of CSP-BART and additional results on the TIMSS 2019 data are provided in the Appendices.

2. Trends in International Mathematics and Science Study (TIMSS). The Trends
in International Mathematics and Science Study (TIMSS) is a large international evaluation
programme which monitors the trends in students’ achievement in science and mathematics.
Since 1995, the assessment takes place every 4 years in more than 60 countries and serves
as a valuable source of data to compare students’ performance at the fourth and eighth grade
levels of secondary schools (Mullis et al., 2020). For the eighth grade students, the TIMSS
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2019 data consisted of four components: i) mathematics and science assessments for students,
either paper- or computed-based, ii) a background questionnaire for students, iii) a question-
naire for teachers, and iv) a school questionnaire for principals. The first component contains
mathematics- and science-related questions, and are exclusively taken by students. In 2019,
for the first time, half of the countries opted for an onscreen assessment, and more countries
are planning to offer it digitally over the next cycles. The students were also asked to fill in a
brief background questionnaire on subjects such as their family, school, classroom environ-
ment, and self-confidence in learning mathematics and science. The teachers and principals
also responded to a set of questions on their teaching experience, practices, educational back-
ground, and learning resources available at the schools, such as computers, access to internet,
library, etc. The main goal of TIMSS is to use all these sources of information to improve
learning and teaching practices (Fishbein, Foy and Yin, 2021).

Due to its international reach and the availability of public use versions of the databases,
TIMSS data have been studied since its first cycle in 1995. The first works date back to Beaton
et al. (1996), who analysed students’ performance in mathematics by different content areas,
such as fractions and number sense, algebra, and probability. In addition, Stigler and Hiebert
(1997) compared mathematics teaching practices in Germany, Japan, and the U.S., while
Stigler, Gallimore and Hiebert (2000) studied some of the challenges involved in analysing
cross-cultural data. In recent years, approaches based on linear mixed-effects models have
often been used to investigate important topics (Grilli et al., 2016; Tang, Li and Liu, 2022;
Chen, 2022), such as the impact of teachers’ professional development on students’ perfor-
mance and the association between individual- and class-level achievement and students’
self-confidence in mathematics. Though these models offer more flexibility than their coun-
terparts with no mixed-effects, they still require the specification of main effects and interac-
tions, which are assumed to have a linear relationship with the response. In practice, it can
be challenging to fully specify the interaction effects without deep knowledge of the problem
at hand. Moreover, this is naturally even more difficult in high-dimensional settings. Our ap-
proach, however, addresses the interaction effects through a non-parametric form which does
not require their specification nor impose/assume any linear relation with the response.

2.1. Data description. We consider TIMSS 2019 data from Ireland pertaining to stu-
dents at the eighth grade level. In total, the data provide details on the achievement of 4,118
participating students, as well as information on their personal backgrounds, their teachers,
and the schools they attend. As the focus of our work is on evaluating students’ performance
in mathematics, we dropped variables related to science achievement. After merging the in-
dividual student data with that of their teachers and school, the resulting dataset provides us
with a total of 270 predictors. However, we initially do some data manipulation to remove
predictors with a high level of missing information in order to ensure a fair comparison with
as much data as possible between CSP-BART and its competitors in Section 6.1, since the im-
plementations of BCF, SSP-BART, and VCBART cannot deal with missing data. We adopt a
BART-based variable-screening step which yields a dataset with 20 predictors and 3,224 ob-
servations (greater than the 1,448 complete cases). The exact nature of this data manipulation
is explained in detail in Section 6 and additional rationale for this procedure is provided in
Appendix C.1. Furthermore, we present additional results (for CSP-BART only) in Appendix
C.2, considering scenarios which make use of more predictors, both by analysing only the
complete cases and by adapting CSP-BART to accommodate missing values in its trees.

In our analyses, we aim to quantify how a small group of covariates of primary interpre-
tational interest impact students’ performance in mathematics while automatically account-
ing for non-linearities and interactions involving a larger group of covariates, which are of
non-primary interpretational interest. We chose the covariates of primary interest based on
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previous works which suggest that family background, time spent on academic activities,
and school-level factors affect students’ mathematics scores (Martin et al., 2000; Moham-
madpour, Shekarchizadeh and Kalantarrashidi, 2015; Grilli et al., 2016). Notably, we have
primary interpretational interest in quantifying the effect of ‘parents’ education level’, ‘min-
utes spent on homework’, and ‘school discipline problems’. As covariates of non-primary
interest, we consider predictors such as ‘gender of the student’, ‘how often student is absent
from school’, ‘how often student feels hungry’, ‘does the student have a tablet or a computer
at home?’, among others; see Table C.1 in Appendix C for the list of the 20 variables iden-
tified by the BART-based variable-screening step and Table 1 for descriptive statistics of the
covariates of primary interest and some specifically student-related covariates of non-primary
interest. We point out that the latter covariates are not of interpretational interest, though they
are important to predict students’ performance in mathematics as they might form complex
interactions, either among themselves or with those of primary interest, or have marginal
linear/non-linear relationships with the response.

TABLE 1
Descriptive statistics of seven of the 20 pre-selected covariates from the TIMSS 2019 data for Irish students at

the eighth-grade level, based on the dataset with 3,224 observations obtained after the BART-based
variable-screening step. Predictors of primary interpretational interest are denoted with an asterisk (⋆). A

complete list of the 20 covariates identified by the BART-based variable-screening step is provided in Table C.1.

Covariate Category n (percent)

Parents’ education level (⋆)

University or higher 1,078 (0.33)

Post-secondary but not university 666 (0.21)

Upper secondary 434 (0.13)

Lower secondary 112 (0.03)

Primary, secondary, or no school 59 (0.02)

Do not know 875 (0.27)

Minutes spent on homework (⋆)

No homework 27 (0.01)

1 to 15 minutes 1,065 (0.33)

16 to 30 minutes 1,469 (0.46)

31 to 60 minutes 541 (0.17)

61 to 90 minutes 79 (0.02)

More than 90 minutes 43 (0.01)

School discipline problems (⋆)
Hardly any problems 2,011 (0.62)

Minor problems 1,133 (0.35)

Moderate to severe problems 80 (0.02)

Gender of the student
Female 1,636 (0.51)

Male 1,588 (0.49)

How often student is absent from school

Once a week 89 (0.03)

Once every two weeks 283 (0.09)

Once a month 552 (0.17)

Once every two month 781 (0.24)

Never or almost never 1,519 (0.47)

How often student feels hungry

Every day 293(0.09)

Almost every day 412(0.13)

Sometimes 1,383(0.43)

Never 1,136(0.35)

Tablet or a computer at home
Yes 3,161(0.98)

No 63(0.02)
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In general, data from TIMSS questionnaires tend to be analysed using parametric models,
such as linear mixed-effects models (Bates et al., 2015). For instance, Grilli et al. (2016)
analysed the Italian data from TIMSS and the Progress in International Reading Literacy
Study (PIRLS). They performed a multivariate analysis considering reading, mathematics,
and science scores via a multivariate linear mixed-effects model. In addition, Mohammad-
pour, Shekarchizadeh and Kalantarrashidi (2015) analysed the science scores of the TIMSS
2007 data for eighth-grade students for 29 countries also using mixed-effects models. How-
ever, both works explored marginal effects of some student- and school-level predictors only,
thus missing relevant complex interactions and non-linear effects. More recently, McJames
et al. (2023) modelled the mathematics and science scores of the TIMSS 2019 data by propos-
ing a multivariate extension to Bayesian causal forests (BCF; Hahn et al., 2020). Though
methods based on Bayesian forests offer great flexibility since they can deal with interaction
effects without requiring pre-specification, their method, as per the vanilla BCF, is able to
model the effect of one binary covariate of primary interpretational interest only. That is, if
there is interest in analysing more than one covariate of interest, a continuous covariate, or a
categorical covariate with more than 2 levels, their multivariate BCF cannot be used.

Unlike linear mixed-effects and BCF models, our approach is particularly well-suited to
the TIMSS 2019 data, since here we are concerned not only with prediction, but also inter-
pretability. First, similar in spirit to linear mixed-effects models, it allows the estimation of ef-
fects of multiple covariates of primary interest of any kind. Second, complex interactions and
non-linearities involving covariates of non-primary interpretational interest require no pre-
specification. In practice, predictors of non-primary interest tend to outnumber those of pri-
mary interest in high-dimensional settings and CSP-BART deals with this non-parametrically
through its BART component. Compared to the work of Zeldow, Lo Re III and Roy (2019),
we allow for more interactions by not assuming that the set of primary and non-primary
covariates are mutually exclusive; in practice, there is no reason as to why such interactions
should be prevented. In this sense, CSP-BART can be seen as the best of both worlds as it has
a linear predictor where covariates of primary interest are specified and accounts for complex
interactions and non-linear effects through a Bayesian non-parametric model.

3. BART. BART (Chipman, George and McCulloch, 2010) is a Bayesian statistical
model based on an ensemble of trees that was first proposed in the context of regression and
classification problems. Through an iterative Bayesian backfitting MCMC algorithm, BART
sequentially generates a set of trees that, when summed together, return predicted values. A
branching process prior is placed on the tree structure to control the depth of the trees. In
addition, the covariates and split-points used to define the tree structure (i.e., splitting rules)
are randomly selected without the optimisation of a loss function, such as in random forests
(Breiman, 2001) and gradient boosting (Friedman, 2001). Compared to regression models,
BART is more flexible in the sense that it does not assume linearity between the covariates
and the response and does not require specification of a linear predictor. In particular, BART
automatically determines non-linear marginal effects and multi-way interaction effects.

BART has been used and extended to different applications, and its theoretical properties
have also gained attention more recently. For instance, BART has been applied to credit
risk modelling (Zhang and Härdle, 2010), survival/competing analysis (Sparapani et al.,
2016, 2020; Linero et al., 2021), biomarker discovery (Hernández, Pennington and Parnell,
2015), plant-based genetics (Sarti et al., 2023), and causal inference (Hill, 2011; Green and
Kern, 2012; Hahn et al., 2020). Furthermore, it has also been extended to high-dimensional
data (Linero, 2018; Hernández et al., 2018), polychotomous responses (Kindo, Wang and
Peña, 2016; Murray, 2021), zero-inflated and semi-continuous data (Linero, Sinha and Lip-
sitz, 2020; Murray, 2021), heteroscedastic data (Pratola et al., 2020), and to estimate linear,
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smooth, and monotone functions (Starling et al., 2020; Prado, Moral and Parnell, 2021; Chip-
man et al., 2022). Regarding theoretical developments, we highlight the works of Linero and
Yang (2018), Ročková and Saha (2019), and Ročková and van der Pas (2020), who provide
results related to the convergence of the posterior distribution generated by the BART model.
Finally, we note that BART has also been previously employed in education assessment set-
tings (Suk, Kim and Kang, 2021), similar to the TIMSS application we analyse herein.

The standard BART model approximates a univariate response {yi}ni=1 by a sum of trees,

yi | xi,M,T , σ2 ∼ N

(
T∑
t=1

g (xi,Mt,Tt) , σ2

)
,

where N(·) denotes the Normal distribution, σ2 is the error variance, g(·) = µtℓ is a function
which assigns predicted values µtℓ to all observations falling into terminal node ℓ of tree
t, xi denotes the i-th row of the design matrix X, Tt represents the topology of tree t, and
Mt = (µt1, . . . , µtbt) is a vector comprising the predicted values from the bt terminal nodes
of tree t. For notational convenience, we let T = (T1, . . . ,TT ) and M = (M1, . . . ,MT )
denote the sets of all trees and all predicted values, respectively. Regarding the number of
trees T , Chipman, George and McCulloch (2010) recommend T = 200 as a default, though
they suggest that T can also be selected by cross-validation, depending on the application.

Unlike other tree-based algorithms where a loss function is minimised to define the split-
ting rules in the growing process, in BART the splitting rules are uniformly defined (i.e., the
covariates and their split-points are selected at random based on a uniform distribution). In
addition, the BART model learns the structure of the trees by greedy modifications consist-
ing of four moves: grow, prune, change, and swap (see Figure 1). For instance, in the grow
move, a terminal node is randomly selected and two new terminal nodes are created below
it. During a prune move, a parent of two terminal nodes is picked at random and its children
are removed. In the change move, an internal node is randomly selected and its splitting rule
is changed. Finally, in the swap move, the splitting rules associated with a pair of parent-
child internal nodes are exchanged, with the pair being selected at random. See Kapelner and
Bleich (2016) for further details on these tree proposal moves.

As a Bayesian model, BART places priors on the parameters of interest, assuming that
σ2 ∼ IG(ν/2, νλ/2) and µtℓ ∼ N(0, σ2

µ), where IG(·) represents the inverse gamma dis-
tribution and σµ = 0.5/(k

√
T ), with k ∈ [1,3] such that each terminal node in each tree

contributes only a small amount to the overall fit. In addition, a branching process prior is
considered to control the depth of the trees. With this prior, each internal node ℓ′ is observed
at depth dtℓ′ with probability η(1 + dtℓ′)

−ζ , where η ∈ (0,1) and ζ ≥ 0. Chipman, George
and McCulloch (2010) recommend η = 2 and ζ = 0.95, which tends to favour shallow trees.
See Appendix A.1 for further details.

Fitting and inference for BART models is accomplished via MCMC. It is common to
begin with all trees set as stumps. While they are stumps, the only possible move is grow.
Thereafter, each tree is updated in turn by proposing a potential grow, prune, change, or
swap move, whereby the type of move is chosen with probabilities 0.25, 0.25, 0.4, and 0.1,
respectively. Each modified tree is compared to its previous version considering the partial
residuals Rt = y−

∑T
j ̸=t g (X,Mj ,Tj) and the structure of both trees via a marginal like-

lihood calculation. This comparison is carried out via a Metropolis-Hastings (MH) step, and
it is needed to select only splitting rules that improve the final prediction, since they are cho-
sen based on a uniform distribution. Hence, all node-level parameters (µtℓ) are generated.
After doing this for all T trees, the error variance (σ2) is updated from its full conditional
distribution. This entire scheme is then iteratively repeated; see Appendix A.1 for further de-
tails on the BART implementation. The BART algorithm is practically implemented in the R
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packages bartMachine (Kapelner and Bleich, 2016), dbarts (Dorie, 2020), and BART
(Sparapani, Spanbauer and McCulloch, 2021).

(a) T (1)
1

x2 ≤ 1

x1 ≤ 0.5

µ11 µ12

µ13

TRUE

TRUE FALSE

FALSE

(b) T (2)
1

x2 ≤ 1

x1 ≤ 0.5

µ11 µ12

x3 ≤ 2

µ13 µ14

(c) T (3)
1

x2 ≤ 1

x1 ≤ 0.5

µ11 µ12

x4 ≤ 0.75

µ13 µ14

(d) T (4)
1

x1 ≤ 0.5

x2 ≤ 1

µ11 µ12

x4 ≤ 0.75

µ13 µ14

Fig 1: An example of a tree generated from BART in 4 different instances. In principle,
BART does not generate only one tree but rather a set of trees which, summed together, are
responsible for the final prediction. As indicated in panel (a), observations are pushed to the
left child node when the splitting criterion is satisfied. The tree is represented as T (r)

1 , where
r = {1,2,3,4} denotes the number of the iteration in which the tree is updated. The splitting
rules (covariates and their split-points) are presented inside the rectangles which represent
the internal nodes. The predicted values µtℓ are shown inside the circles which correspond
to the terminal nodes. T (1)

1 illustrates the tree at iteration one with two internal nodes and
three terminal nodes. From T (1)

1 to T (2)
1 , the grow move is illustrated, as µ13 in T (1)

1 is split
into µ13 and µ14 in T (2)

1 by using x3 ≤ 2. In addition, the prune move can be seen when T (2)
1

reverts to T (1)
1 . The change move is shown when comparing T (2)

1 and T (3)
1 , as the splitting

rule that defines µ13 and µ14 is changed from x3 ≤ 2 to x4 ≤ 0.75. Finally, the swap move is
illustrated in the comparison of T (3)

1 and T (4)
1 .

4. Semi-parametric BART. The BART model above does not provide an easy
way to quantify the effects of covariates on the response as in regression models, which is
often the main goal in many applications. The semi-parametric BART framework aims to
overcome this by adding a parametric linear component to the additive ensemble of non-
parametric trees. We note that linear predictors and BART have also been previously com-
bined by Prado, Moral and Parnell (2021), albeit in a different way. There, linear predictors
are used at the terminal node level of each tree, with a focus more on prediction accuracy than
interpretability. In this Section, we first revise briefly the SSP-BART of Zeldow, Lo Re III
and Roy (2019) in Section 4.1, then outline in detail our proposed extensions in the form of
CSP-BART in Section 4.2, and finally further extend CSP-BART in Section 4.3 to also allow
random effects in the parametric component as per Dorie et al. (2022).
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4.1. Separated semi-parametric BART. In the separated semi-parametric BART
proposed by Zeldow, Lo Re III and Roy (2019), the design matrix X is split into two subsets,
X1 and X2, with p1 and p2 columns, respectively. The matrix X1 contains covariates that
should be included in a linear component to quantify the main effects and the X2 matrix
contains covariates that might contribute to predicting the response but are not of primary
interest. The linear predictor inside the BART framework is written as follows:

(1) yi | x1i,x2i,β,M,T , σ2 ∼ N

(
x1iβ+

T∑
t=1

g (x2i,Mt,Tt) , σ2

)
.

Furthermore, X1 and X2 are assumed to be mutually exclusive, such that X1∩X2 = ∅. Such
a model with X1 = ∅ is equivalent to the standard non-parametric BART, while such a model
with X2 = ∅ implies a fully parametric linear regression. In this semi-parametric setting, it is
assumed that p2 is large enough to ensure that BART is a reasonable model and that there are
relatively few columns in X1; i.e., p1 ≪ p2, typically. As above, the ensemble of trees used
by the BART component is learned by the standard grow, prune, change, and swap moves.

The priors β ∼ MVN(0p1 , σ
2
b Ip1) and σ2 ∼ IG(ν/2, νλ/2) are assumed for the linear

regression coefficients and error variance, respectively, where MVN(·) represents the multi-
variate normal distribution, 0p1 and Ip1 respectively denote a p1-dimensional vector of zeros
and identity matrix, and ν, λ, and σ2

b are user-specified hyperparameters. Typically, σ2
b is

set large enough so that the prior on β is diffuse. Notably, the isotropic covariance structure
σ2
b Ip1 assumed by Zeldow, Lo Re III and Roy (2019) implies that all covariates in X1 have

the same magnitude, which can easily be accomplished by appropriate transformations, and
that covariate effects in β are a priori uncorrelated, which may be unrealistic for many ap-
plications.

4.2. Combined semi-parametric BART. In CSP-BART, we similarly allow for
modelling covariates of primary and non-primary interest. Unlike SSP-BART, however, we
consider that X1 and X2 may have covariates in common. This change is crucial as it al-
lows primary covariates to interact both among themselves and with those in X2. Moreover,
we change the tree-generation process in BART by introducing ‘double-grow’ and ‘double-
prune’ moves to account for non-identifiability issues that may arise between the estimates
from the linear and BART components. In CSP-BART, a univariate response yi is modelled
in accordance with Equation (1), along with the following prior distributions:

β ∼ MVN (b,Ωβ) ,

Ωβ ∼ IW (V, v) ,

σ2 ∼ IG (ν/2, νλ/2) ,

where IW(·) represents the inverse Wishart distribution. We specify V = Ip1 and v = p1,
while ν = 3 and λ are set following Chipman, George and McCulloch (2010). While the prior
on β used by SSP-BART assumes that the linear regression coefficients are uncorrelated and
equivariant, this assumption is sensible only when the covariates in X1 have been standard-
ised appropriately. Conversely, our hierarchical prior on β allows us to explicitly model cor-
relation among the covariate effects in β (see Section 4.3). As an aside, numeric covariates in
X2 need not be standardised under either CSP-BART or SSP-BART, as the splitting rules in
BART are invariant under monotone transformations. Following Chipman, George and Mc-
Culloch (2010); Linero (2018), we recommend transforming only the response to lie between
−0.5 and 0.5 to facilitate specification of the prior on µtℓ and improve numerical stability.

To allow for X1 and X2 sharing covariates, we propose to change the moves of the BART
model in order to resolve non-identifiability issues between the linear component and BART.
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Thus, if X1∩X2 ̸= ∅, we propose a ‘double-grow’ move only when x ∈ {X1∩X2} is chosen
to define a splitting rule for a stump. We therefore stress that the double-grow move applies
only when growing a stump where the splitting rule is based on x ∈ {X1 ∩X2}. In cases
where the tree is not a stump or x /∈X1, only the ‘single-grow’ move applies. Furthermore,
we point out that the double-grow move consists of two operations which must be performed
simultaneously: i) proposing a second splitting rule using any variable, except the one used at
the root node, and ii) shrinking the µtℓ parameter of the terminal node on the opposing branch
of the initial split by modifying its prior. Below, we first illustrate part i) of the double-grow
move and then state why part ii) is needed to prevent non-identifiability issues.

For example, if Tt is a stump and x1 ∈ {X1 ∩X2} is randomly chosen to define a splitting
rule, then another covariate, e.g., x2 — which cannot be the same variable used to split at
the root but otherwise can belong either to X1, X2, or X1 ∩X2 — will also be (randomly)
chosen and the proposed tree will contain both x1 and x2. When double-growing a tree,
the branch on which the second split is proposed is sampled with equal probability. If Tt is a
stump and x1 /∈ {X1∩X2} is chosen to define a splitting rule, a standard ‘single-grow’ move
is employed. The rationale behind double-growing is thus to induce interactions between
covariates in X1 and others in either X1 or X2, and let only the linear component capture
main effects associated with covariates in X1. With a single grow move, both components
would eventually try to estimate the effects of covariates in X1 whenever X1 and X2 share
at least one common covariate, which would lead to non-identifiability issues. However, the
double-grow move ensures that the linear component estimates only main effects and forces
the BART component to work specifically on interactions and non-linearities.

The ‘double-prune’ move is proposed to prevent trees from containing only one covariate
which belongs to X1 ∩X2. To illustrate this move, we recall Figure 1. In panel (a), the tree
has 3 terminal nodes (circles) and 2 internal nodes (rectangles). If the parent of the terminal
nodes with parameters µ11 and µ12 is ‘single’ pruned, the new tree structure will contain
only x2. If x2 /∈ {X1 ∩ X2}, which implies that x2 ∈ X2, there will be no identifiability
issues between the components in CSP-BART. However, if x2 ∈ {X1 ∩X2}, the effect of x2

will be estimated by both the linear predictor and BART. To avoid this issue, we prune the tree
again. Thus, the result of a double-prune move will always be a stump. Like the double-grow
move, it is vital to emphasise that the double-prune move is only accepted or rejected via a
MH step in its entirety; it is not possible to accept the first grow/prune and reject the second.

Despite these double moves, non-identifiability issues may still arise in two cases: a) when
an intercept is specified in X1 and b) when any terminal node belongs to a branch whose split-
ting rules at each depth all involve only one covariate belonging to X1 ∩X2. To avoid the
first issue, we stress that X1 should not be equipped with a leading column of ones corre-
sponding to an intercept. Doing so would conflate the linear component’s constant with the
constant node-level µtℓ parameters in the BART component. Accordingly, our removal of the
intercept circumvents the need to impose the constraint E

(∑T
t=1 g (x2i,Mt,Tt)

)
= 0. The

second issue is easily remedied by automatically rejecting proposed trees containing branches
defined only by repeated splits on the same variable in X1; see Appendix A.2 for details on
CSP-BART’s implementation. Given that this further prevents the BART component from
estimating marginal effects associated with categorical variables of primary interest, it is es-
pecially pertinent for the TIMSS application where the covariates in X1 are all categorical.

To provide further details on the second issue, we recall Figure 1 and assume that x2 ∈
{X1 ∩X2}. In panel (a), T (1)

1 represents a tree containing two predictors (x2 and x1), where
x1 can belong to either X1, X2, or X1 ∩X2. For simplicity, imagine that T (1)

1 was generated
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by naively applying a single grow move twice1 to a stump, where x2 and x1 were randomly
selected to create the splitting rules. The two left-most terminal nodes have µ11 and µ12 as
predicted values, with splitting rules defined by x1 and x2. However, the right-most terminal
node with predicted value µ13 has x2 as its only ancestor along that branch, which causes non-
identifiability issues between the linear and BART components, since x2 ∈ {X1 ∩X2}; see
Appendix A.2 for an example in the context of categorical predictors and binary indicators
thereof. We avoid such issues by performing part ii) of the double-grow move, which mod-
ifies the prior on the relevant predicted value to µtℓ ∼ N(0, σ2

µ ≈ 0) and in turn shrinks the
posterior predicted value towards zero. We therefore stress that the double-grow move cannot
be thought of as simply applying a single grow move twice to a stump. Rather, it is a two-step
procedure which induces interactions and guarantees that the trees in the BART component
do not model effects already specified in the linear predictor. Finally, we note that the prior
on the other terminal nodes (µ11 and µ12 in the present example) would remain unchanged.

Regarding the change and swap moves, we stress that they are kept intact as ‘single’
moves in CSP-BART. Equivalent ‘double-change’ and ‘double-swap’ moves are not required
to deal with non-identifiability issues that may arise between the linear and BART compo-
nents. However, more stringent checks are placed on the validity of trees proposed by these
moves. In particular, change and swap moves are iteratively proposed until a valid tree struc-
ture is found; i.e., one which ensures the parameters in the linear component are identifiable,
with a minimum number of observations in each terminal node. If a valid tree is not found
in some small number of iterations, a stump is proposed instead. In the end, proposed trees
are always accepted or rejected according to a Metropolis-Hastings step, as in the standard
BART model. Further details on the stringent checks and how the novel double moves and
other modifications described above lead to identifiable estimates of the coefficients in the
linear component in Equation (1) are described in Appendix B.

Unlike the SSP-BART of Zeldow, Lo Re III and Roy (2019), CSP-BART allows for X1 ∩
X2 ̸= ∅ and thus accommodates a range of situations in which the sets of covariates are either
identical or nested (X1 ⊂X2 or X1 ⊃X2), while also allowing non-overlapping sets as per
SSP-BART as a special case. The specification of the predictors of primary interpretational
interest (X1) depends on the problem at hand, similar in spirit to the specification of linear
predictors in GLMs and SSP-BART. For example, a user of SSP-BART needs to specify X1

correctly just as much as a user of CSP-BART (i.e., for both models it is assumed that the
user knows beforehand which effects are of primary interest). In parallel, the set of variables
of non-primary interpretational interest (X2) should contain all predictors that can form com-
plex, non-linear interactions. If the practitioner has X1 set up but is not sure which predictors
should be included in X2, they could consider adding all available predictors2 to X2 (includ-
ing those in X1) to ensure they allow for any possible interactions to be estimated. In contrast,
if the user wants to prevent any interactions between predictors of primary and non-primary
interest or among predictors of primary interest, they can set up X2 so that X1 ∩X2 ̸= ∅.

Equations (2)–(4) below present the respective full conditional distributions for β, Ωβ ,
and σ2. These expressions are needed due to the inclusion of the linear predictor in the
CSP-BART model; see Appendix A.2 for full details on the CSP-BART implementation.
An outline algorithm for the process is given by:

1Notice that applying a single grow move twice to a stump is equivalent to part i) of the double-grow move
only, though the ‘single-grow’ move is not restricted to stumps.

2We advise adding all available predictors to X2, but caution against adding covariates to X2 which are highly
correlated among themselves, for reasons of parsimony, or with those in X1, to avoid biasing the β estimates.
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i) Update the linear predictor, with r= y−
∑T

t=1 g (X2,Mt,Tt), via

β |X1,r, σ
2,b,Ωβ ∼ MVN

(
µβ =Σβ

(
σ−2X⊤

1 r+Ω−1
β b

)
,(2)

Σβ =
(
σ−2X⊤

1 X1 +Ω−1
β

)−1
)
,

Ωβ |β,b,V, v ∼ IW
(
(β− b) (β− b)⊤ +V, v+ 1

)
.(3)

ii) Then, sequentially update all T trees, one at a time, via

Rt = y−X1β−
T∑
j ̸=t

g (X2,Mj ,Tj) .

iii) Finally, update

σ2 ∼ IG
(
n+ ν

2
,
S + νλ

2

)
,(4)

where S = (y− ŷ)⊤ (y− ŷ) and ŷ=X1β+
∑T

t=1 g (X2,Mt,Tt).

In Step i), the linear predictor’s parameter estimates and covariance matrix are updated, tak-
ing into account the difference between the response and the predictions from all trees. In
Step ii), each tree t is modified considering the updated parameter estimates β. Finally, the
error variance is updated in Step iii).

The main benefits of our approach are i) ease of implementation, relative to GLMs and
GAMs, as we can model interactions and non-linearities without requiring pre-specification,
ii) improved predictive performance relative to other tree-based methods, and iii) reduced
bias relative to other semi-parametric BART models. In CSP-BART, practitioners do not
need to iv) have prior knowledge of whether X1 ∩X2 ̸= ∅, v) rely on previous studies to
specify interaction effects in X2, vi) examine interaction plots to determine possible interac-
tions to then specify X2, or vii) fit several BART-based models in order to compare them with
CSP-BART. Regarding computational cost, viii) CSP-BART adds negligible time overhead
to the standard BART model, especially if the number of columns in X1 is moderate. The
computational cost of CSP-BART is also comparable to that of SSP-BART, as our novel dou-
ble moves are not computationally intensive; see Appendix A.2 for details on the comparison
of the computational time of BART, SSP-BART, and CSP-BART.

Finally, we note that CSP-BART may not be suitable for analyses where the number of
variables in the BART component is large, given the uniform sampling of the splitting rules.
In such cases, instead of drawing the splitting variable uniformly as in BART, we recommend
the DART model of Linero (2018) which uses a Dirichlet prior on the splitting probabilities,
so that more important predictors can be favoured over those which have little or no influence
on the response. In our implementation3, the ‘CSP-DART’ model is available by specifying
sparse=TRUE, though we retain the sparse=FALSE default in all applications herein
(apart from the additional results on the TIMSS 2019 data presented in Appendix C.2).

4.3. Incorporating random effects in CSP-BART. Although we have introduced
CSP-BART considering only fixed effects, it is straightforward to extend it to a setting with
additional random effects, whereby covariates of primary interest are conditioned on categor-
ical predictors. This yields

3Available at https://github.com/ebprado/CSP-BART.

https://github.com/ebprado/CSP-BART
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(5) yi | x1i,zi,x2i,β,γ,M,T , σ2 ∼ N

(
x1iβ+ ziγ +

T∑
t=1

g (x2i,Mt,Tt) , σ2

)
,

where γ is the q-dimensional random effects vector with associated design matrix Z. Con-
ceptually, all effects are random under the Bayesian paradigm, but we use the terms ‘fixed’
and ‘random’ to distinguish between β and γ nonetheless. To fit such a model, we define
β⋆ = (β,γ)⊤ and x⋆

1i = (x1i,zi). With β ∼ MVN(b,Ωβ) as above, and a MVN(0q,Ωγ)
prior assumed for γ, a block-diagonal covariance matrix Ωβ⋆ is obtained in the induced
prior for β⋆, which implies that β and γ are correlated among themselves but not with each
other. We relax this assumption by letting b⋆ = (b,0q)

⊤ and assuming β⋆ ∼ MVN(b⋆,Ωβ⋆),
where now Ωβ⋆ ∼ IW(V⋆, v⋆). Subject to β = β⋆, X1 =X⋆

1, and Ωβ =Ωβ⋆ , both prior set-
tings allow direct application of the model-fitting algorithm outlined in Section 4.2. Notably,
only Ωβ⋆ under the latter approach accounts for potential correlations between the fixed and
random effects, while the isotropic prior employed in SSP-BART by Zeldow, Lo Re III and
Roy (2019) would not. As ever, SSP-BART would also be unable to capture interactions
involving random effects in X1 and other covariates of non-primary interest in X2.

In our implementation, we adapt the mixed-model formula syntax from the lme4 (Bates
et al., 2015) package, so that the linear fixed and random effects can be easily specified
through a formula (e.g., y ∼ 0 + x1 + (x2 | x3), where y denotes a univariate re-
sponse, 0 ensures that no intercept is included, x1 and x2 represent continuous covariates,
and x3 is a factor with multiple levels; see Table 2 in Bates et al. (2015) for more exam-
ples). When specifying the linear predictor, the user needs only to supply the main fixed and
random effects, as any interactions among covariates of primary interest are also determined
automatically by BART. We note that polynomial effects, if any are of primary interpreta-
tional interest, should also be specified in the linear predictor only, as splitting rules based on
x1 or x3

1, for example, would yield equivalent trees, and it would be necessary to avoid trees
whose only splits involve both x1 and monotonic transformations thereof.

The model in Equation (5) shares some similarities with the model of Dorie et al. (2022)
implemented in the stan4bart R package. Both models include a nonparametric BART
component, allow both fixed and random effects in a parametric component, and omit the
global intercept. Though our model updates the parametric component via Gibbs steps
rather than the No-U-Turn sampler, the more substantial differences between our model and
stan4bart are analogous to the aforementioned differences between CSP-BART with only
fixed effects and the SSP-BART model of Zeldow, Lo Re III and Roy (2019). Specifically,
Dorie et al. (2022) advise that the parametric component (both fixed and random effects)
should have no predictors in common with the BART component if interpretability of the
regression coefficients is of interest. Their model thus suffers from similar limitations as
SSP-BART in this regard. Conversely, the benefits of our novel double-grow and double-
prune moves (originally motivated in the context of a linear predictor with only fixed effects)
extend to settings where CSP-BART also has random effects in its parametric component.

In the context of CSP-BART with a multilevel structure, we need only additionally ensure
that all branches across all trees in the BART component are not exclusively defined by
splitting rules related only to the predictors involved in the specification of the random effects.
For example, in the aforementioned formula y ∼ 0 + x1 + (x2 | x3), x2 and x3
could not define splitting rules in a given tree whenever the resulting terminal nodes would
have only these two variables as ancestors, while partitions defined only by x1 and x3, x1
and x3, and x1, x2 and x3 would be allowed. However, we stress that we do not explicitly
compare the results of CSP-BART with those of stan4bart; as we do not make use of
random effects in either our simulation experiments or our applications, it suffices to compare
CSP-BART with SSP-BART.
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5. Simulation experiments. In this Section, we compare our novel CSP-BART
with GAMs, SSP-BART, and VCBART in terms of bias (i.e., the difference between the pos-
terior mean parameter estimates and the true parameter values) using three sets of synthetic
data. The results were obtained using R (R Core Team, 2020) version 4.11 and the R pack-
ages mgcv (Wood, 2017), semibart (Zeldow, Lo Re III and Roy, 2019), and VCBART
(Deshpande et al., 2020). In addition to the standard SSP-BART, we also consider a modified
version of SSP-BART throughout the simulations, which we denote by SSP-BART⋆, whereby
the variables in X1 are shared with X2 (i.e., X1 ∩X2 ̸= ∅), as per CSP-BART, but without
the CSP-BART’s additional innovations (i.e., the novel double moves and stricter checks on
tree-structure validity). Such a model can also be thought of as a version of CSP-BART which
only employs the standard ‘single’ moves. This can be achieved using the semibart pack-
age as it places no checks on the mutual-exclusivity of the two sets of predictors, in spite of
this model assumption being crucial. By considering SSP-BART⋆, our goal is to empirically
demonstrate the benefits of the innovations proposed in CSP-BART and show that merely
sharing covariates is insufficient by itself to lead to reduced bias and complete isolation of
the parameter estimates in the linear predictor.

For CSP-BART, SSP-BART, and SSP-BART⋆, we use T = 50 trees, 2,000 MCMC itera-
tions as burn-in, and 2,000 as post-burn-in. We use the default arguments of the mgcv and
VCBART packages, with the exception of intercept=FALSE being specified for VCBART
for the sake of comparability with the other BART-based models. We note that the GAM is
the only non-Bayesian method among the set of comparators. As GAMs require explicit spec-
ification of terms to be included in the linear predictor, we supply the true structure used to
simulate the data in both experiments. This gives GAMs an unfair advantage over the other
methods, but does provide a baseline that the BART-based methods can aim for. In practice,
a misspecified GAM could be expected to perform much worse.

5.1. Friedman dataset. In this first scenario, we consider the Friedman equation:

yi = 10 sin (πxi1xi2) + 20 (xi3 − 0.5)2 + 10xi4 + 5xi5 + ϵi, i= 1, . . . , n,

where x.j ∼ Uniform(0,1) ∀ j = 1, . . . , p and ϵi ∼ N(0, σ2). This equation (Friedman, 1991)
is used for benchmarking tree-based methods using synthetic data, and has been used in many
other papers, e.g., Chipman, George and McCulloch (2010); Linero (2018); Deshpande et al.
(2020). In this experiment, we set n = 1000, p = (10,50), and σ2 = (1,10), totalling four
scenarios. To evaluate model performance, we use the bias of the parameter estimates as
the accuracy measure, across 50 replicates of the data-generation process. As the Friedman
equation uses only 5 covariates to generate the response, the additional x.j are noise, and have
no impact on yi. In this simulation, we aim to estimate the p1 = 2 linear effects associated
with x4 and x5 (denoted by β4 = 10 and β5 = 5, respectively) using the linear predictor, i.e.,
we set up X1 in SSP-BART, SSP-BART⋆, and CSP-BART so that it contains only x4 and x5.
In contrast, we let BART take care of the non-linear and interaction effects by setting X2 to
contain all p covariates (including x4 and x5) for CSP-BART and SSP-BART⋆; SSP-BART’s
X2 is set up to contain all p covariates, except x4 and x5.

Figure 2 shows the results of bias exhibited by the novel CSP-BART and its competitors
for each combination of p and σ2. As GAMs require all terms that are estimated by the model
to be specified, we supply the true structure of the Friedman equation so that it can be used
as a reference in the comparison. The CSP-BART, SSP-BART, and SSP-BART⋆ estimates
are notably similar. We can see that the bias of the parameter estimates is low and each
model recovers the true effects in all four scenarios, with the exception of the β4 parameter
in the p = 10 setting for SSP-BART⋆. This is expected and can be attributed to the fact
that x4 and x5 do not interact with other covariates. Consequently, the trees in CSP-BART
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tend not to contain x4 and x5 as both effects are captured solely by the linear predictor. We
note also that VCBART presents larger bias for both β4 and β5 in all but one scenario. As
VCBART estimates β4 and β5 using BART models that employ a set of effect modifiers (i.e.,
all covariates of non-primary interest), the results shown in Figure 2 are unsurprising since,
in this example, β4 and β5 depend exclusively on x4 and x5, respectively.

p = 10 p = 50

σ2 = 1

σ2 = 10

β4 β5 β4 β5

−2

−1

0

1

−2

0

2

Parameter

B
ia

s

GAM SSP−BART SSP−BART* VCBART CSP−BART

Fig 2: Boxplots of simulation results obtained across 50 replicate datasets generated accord-
ing to the Friedman equation, considering n = 1000, p = (10,50), and σ2 = (1,10). The
y-axis exhibits the bias related to the parameter estimates β̂4 and β̂5 for the novel CSP-BART
and various competitors. Recall that the GAM has been given the true model structure so its
superior performance is expected.

We have also run simulation experiments (not shown here, for brevity) in which the linear
predictor of CSP-BART contains i) x1, . . . , x5 and ii) x1, . . . , xp to check how much bias is
added to the effects of primary interest, which are associated with x4 and x5 only, when the
linear predictor is misspecified. For both x1, . . . , x5 ∈ X1 and x1, . . . , xp ∈ X1, the results
were similar to those presented in Figure 2 as no systematic bias was observed on the pa-
rameter estimates of primary interest. Finally, we point out that as x4 and x5 are the only
predictors of primary interpretational interest, it would make little sense to leave them both
out of X1. In this case, we ran additional experiments (for CSP-BART only) in which X2

contains all p predictors but x4 is left out of X1 and x5 is included (and vice-versa). Again,
no systematic bias was observed. These results are expected because the predictors in the
Friedman equation are uncorrelated and when x4 (or x5) is left out of X1, its marginal effect
is reasonably well estimated by the BART component of CSP-BART.
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5.2. Estimating main effects in the presence of interactions. In the scenario above, we
have shown that the novel CSP-BART correctly estimates the main effects when they do not
have any interactions with other effects and thus established that CSP-BART and SSP-BART
yield comparable results in such settings. However, in practice, the covariates of primary
interest may interact, either among themselves or with other effects, which should be taken
into account. In this sense, the simulation setting which follows is likely to better reflect the
nature of the TIMSS 2019 data (see Section 6.1) and other real-world applications.

In this scenario, we compare the methods using the following regression functions:

yi = 10xi1 − 5xi2 + (T1 | x1i,x2i) + ϵi,(6)

yi = 10xi1 − 5xi2 + 10cos(πxi2xi3), i= 1, . . . , n,(7)

where x.j ∼ Uniform(0,1) ∀ j = 1, . . . , p and ϵi ∼ N(0, σ2), as before, and T1 | x1i,x2i rep-
resents the tree structure shown in Figure 3. As per Section 5.1, we consider n = 1000,
p = (10,50), and σ2 = (1,10), where the additional covariates have no impact on the re-
sponse. We are now interested in estimating the effects associated with x1 and x2 (denoted
by β1 = 10 and β2 =−5, respectively). This is achievable under CSP-BART and SSP-BART⋆

by specifying X1 to contain only x1 and x2 and X2 to contain all p covariates, including x1

and x2 and the covariate x3, which contributes only to the tree in Figure 3. In SSP-BART,
however, x1 and x2 are exclusive to X1 (i.e., neither x1 nor x2 are in X2).

x1 ≤ 0.5

x2 ≤ 0.5

4 −7

x3 ≤ 0.5

3 −8

TRUE FALSE

Fig 3: An illustration of the tree structure used to generate the response via Equation (6). In if-
else format this can be written as T1 |xi = f(xi1, xi2, xi3) = 41(xi1 ≤ 0.5)×1(xi2 ≤ 0.5)−
71(xi1 ≤ 0.5) × 1(xi2 > 0.5) + 31(xi1 > 0.5) × 1(xi3 ≤ 0.5) − 81(xi1 > 0.5) × 1(xi3 >
0.5), where 1(·) denotes the indicator function. Note that the tree splits on both primary (x1

and x2) and non-primary (x3) covariates.

Figure 4 shows the bias in the estimates of β1 and β2 for Equation (6). While CSP-BART
estimates both parameters with low bias, regardless of p and/or σ2, SSP-BART gives large
bias for β1 and even more pronounced bias for β2 in all scenarios. These biases occur as
x1 and x2 are not available to the BART component of SSP-BART. However, as per CSP-
BART, x1 and x2 are part of X2 in SSP-BART⋆, which exhibits less bias than SSP-BART.
We conjecture that β2 exhibits greater bias than β1 — for both versions of SSP-BART —
because x2 appears at a lower depth than x1 in Figure 3; i.e., in closer proximity to terminal
nodes. This notion is supported by further experiments, conducted but not shown here, using
alternative tree structures with varying depth levels for x2.

We have also created an additional scenario (not shown here, for brevity), where an inter-
action between x1 and x2 is included in the linear predictor of Equation (6) in the hope of
reducing the bias of SSP-BART’s parameter estimates; we omitted this interaction term from
CSP-BART as it is not of primary interest and the bias is already low. However, we observed
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that the inclusion of the interaction between x1 and x2 in the linear predictor has a negligible
impact on the bias of both β1 and β2 as the interaction effect statistically does not differ from
zero. Nonetheless, we describe in Appendix E.2 some strategies for specifying interaction
terms in the linear predictor of CSP-BART, which may be of interest in other applications.
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Fig 4: Boxplots of the simulation results obtained across 50 replicate datasets generated ac-
cording to Equation (6), considering n = 1000, p = (10,50), and σ2 = (1,10). The y-axis
exhibits the bias related to the parameter estimates β̂1 and β̂2 for the novel CSP-BART and
various competitors. Recall that the GAM has been given the true model structure so its su-
perior performance is expected.

Furthermore, it can be seen that VCBART and CSP-BART provide similar bias for both
parameters, and match well with the baseline GAM model to which the true structure is
supplied, as it is unable to capture non-specified interactions. However, it is worth recalling
that VCBART uses a BART model to estimate each parameter in the linear predictor. For
these data, VCBART uses 50× 2 = 100 trees in total to estimate β1 and β2, as the VCBART
package uses 50 trees for each parameter, by default. In this sense, the greater the number
of parameters to be estimated in the linear predictor, the more computationally intensive
VCBART becomes, since the total number of trees used to estimate all covariate effects is a
function of the number of covariates in the linear predictor and the number of trees used to
approximate each effect.

Unlike Equation (6) where the interaction term is given by a decision tree, in Equation (7)
the interaction component is a smooth function which depends on the interaction between
predictors in X1 and X2. Figure 5 shows the bias in the estimates of β1 and β2. While
all models estimate β1 with low bias since it does not form interactions of any kind, SSP-
BART and VCBART exhibit larger bias for β2 than CSP-BART. The fact that all models
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exhibit bias is partly due to BART’s difficulty to estimate smooth functions properly, which
in turn is inherently connected to the step functions used as predicted values. Though the
biases of the parameter estimates for CSP-BART are not close to zero, they are better than
those for SSP-BART, SSP-BART⋆, and VCBART, particularly for p= 10. These results are
illuminating because they show that the bias can be reduced by sharing covariates between
the linear predictor and BART components. However, the SSP-BART⋆ results indicate that
this alone is not sufficient; clearly the other innovations of CSP-BART, particularly the novel
double moves, are necessary to achieve a greater reduction in bias. This is consistent with
our argument throughout Appendix B that the novel double moves are necessary to ensure
the identifiability of the coefficients of the parametric linear component of CSP-BART.
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Fig 5: Boxplots of the simulation results obtained across 50 replicate datasets generated ac-
cording to Equation (7), considering n = 1000, p = (10,50), and σ2 = (1,10). The y-axis
exhibits the bias related to the parameter estimates β̂1 and β̂2 for the novel CSP-BART and
various competitors. Recall that the GAM has been given the true model structure so its su-
perior performance is expected.

6. TIMSS 2019 Application. We now turn to an analysis of Trends in International
Mathematics and Science Study (TIMSS) data, which initially motivated the development of
CSP-BART and offers a large and challenging test of the model. The focus in Section 6.1 is
on comparing CSP-BART’s performance to other previously proposed tree-based methods,
namely BCF, SSP-BART, and VCBART. We defer additional analyses of these data using
only our model to Appendix C.2. We also demonstrate the use of CSP-BART in a classifica-
tion rather than regression setting via another, smaller application to a well-known benchmark
dataset in Appendix D. We begin here by outlining the comparative analysis of TIMSS data
in Section 6.1.
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TIMSS is an international series of assessments which takes place every four years. The
TIMSS 2019 dataset records students’ achievements in mathematics and science at the fourth
and eighth grade levels in 64 countries (Mullis et al., 2020; Fishbein, Foy and Yin, 2021),
along with information sourced from surveys of students, teachers, and school principals.
Here, we are specifically interested in quantifying the impact of some covariates on students’
mathematics scores (variable ‘BSMMAT01’). In our analysis, we only consider data from
Ireland (where mathematics is a compulsory subject) pertaining to students at the eighth
grade level, comprising 4,118 observations.

We selected three covariates of primary interpretational interest as candidates for inclu-
sion in the linear predictor via the X1 matrix. Notably, all three are categorical variables:,
‘parents’ education level’ (6 levels), ‘minutes spent on homework’ (6 levels), and ‘school
discipline problems’ (3 levels). Our interest in these covariates follows work in the applied
literature which shows that students’ achievement is influenced by these factors. For instance,
a previous investigation into the relation between students’ performance in mathematics and
various student-level and school-level factors using data from various countries gathered un-
der the third cycle of TIMSS identified significant effects due to family background and time
spent on academic activities (Martin et al., 2000). These three factors as well as a number
of others, such as the gender of the student, an index of the wealth of the school and its
surrounding area, and a measure of the resources available for learning at home, have also
been shown to be strongly related to the outcome in similar international education studies
(Mohammadpour, Shekarchizadeh and Kalantarrashidi, 2015; Grilli et al., 2016).

As the TIMSS 2019 data were originally split by the sources of information, some data
manipulation was required. In particular, we found high levels of missing information across
many of the predictors. If we were to keep all 270 predictors without missing data, we would
have only 1,448 complete observations instead of 4,118. In order to avoid the use of impu-
tation methods and avoid reducing the target population by keeping as many observations as
possible, we adopt a few different strategies to account for this missingness in our analyses.
Firstly, we identify predictors for inclusion in X2 by performing a variable-screening step us-
ing BART on the complete consolidated dataset with 1,448 observations and 270 predictors.
This allows us to work with a smaller subset of predictors (i.e., the 20 most-used by BART)
and greatly increase the number of complete observations used from 1,448 to 3,224. Reassur-
ingly, we note that the p1 = 3 covariates above are among the 20 most-used covariates under
such a model. The remaining p2 = 17 covariates, which may help to improve prediction but
are not of primary interpretational interest, are specified in the X2 matrix. In what follows,
selected primary covariates are also shared with X2 when fitting the CSP-BART model but
excluded from X2 under SSP-BART and VCBART. Full details of the identified covariates
are provided in Table C.1 in Appendix C.

It should be noted, however, that the BART-based variable-screening step is arguably a
sub-optimal way to analyse the TIMSS 2019 data, given that a key selling point of a BART-
based model like CSP-BART is its ability to handle a large number of covariates without
pre-specification. We perform the variable screening step in order to facilitate a comparison
with competing BART-based methods — which cannot accommodate missing values in their
trees — with as much completely observed data as possible, similarly to other analyses of
TIMSS data (e.g., Grilli et al., 2016). Thus, we note that the conclusions of the analysis
carried out in Section 6.1 may be limited, since only 20 variables are used and not the full
set of initially available predictors. We discuss the rationale for the BART-based variable-
screening step in greater detail in Appendix C.1 and present two additional analyses, using
only CSP-DART (given the larger number of predictors), in Appendix C.2; we firstly apply
CSP-DART on the much smaller number of complete cases and secondly adapt CSP-DART
to accommodate missing values in its trees using the strategies proposed by Loh (2009). It is
worth noting that the conclusions drawn from this latter analysis are broadly consistent with
those presented in the comparative analysis which now follows.
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6.1. TIMSS 2019 results for CSP-BART and competing methods . Initially, we
compare CSP-BART with the Bayesian causal forest model (BCF; Hahn et al., 2020). To
do so, we only consider the covariate ‘school discipline problems’ in the linear predictor of
CSP-BART and as the treatment variable for BCF, with SSP-BART included as an additional
comparator. CSP-BART and SSP-BART thus differ in that this covariate is also specified in
X2 under CSP-BART, but is exclusive to X1 under SSP-BART. Though this is an ordinal
variable with 3 levels (‘hardly any problems’, ‘minor problems’, and ‘moderate to severe
problems’), we binarise it by collapsing the first two levels. These modelling decisions are
to the advantage of BCF, as it can only deal with a single binary covariate as the treatment
effect. The goal is to quantify the impact of discipline problems on students’ mathematics
scores along with the other 19 covariates (i.e., the other two primary covariates are specified
only in X2 for this preliminary analysis).

In Table 2, we summarise the posterior distributions of the parameter estimates for BCF,
CSP-BART, and SSP-BART. The marginal effect of school discipline problems is negative in
each case, which means that students who study in schools with moderate to severe discipline
issues tend to have lower mathematics scores than those in schools with hardly any or minor
discipline problems. However, this covariate also defines at least one split in 2.8% of the
sampled trees in the BART component of CSP-BART; i.e., it also interacts with non-primary
covariates in X2. Notably, BCF yields a much wider credible interval (CI) than both CSP-
BART and SSP-BART, though all CIs exclude zero.

TABLE 2
Descriptive measures of the posterior distribution of the ‘school discipline problems’ covariate’s effect on

students’ mathematics scores. The estimates relate to the level ‘moderate to severe problems’, as the reference
level merges those with ‘hardly any’ or ‘minor’ problems.

Method Mean 2.5-th percentile 97.5-th percentile

BCF −36.07 −62.05 −12.24

CSP-BART −37.43 −54.45 −24.78

SSP-BART −38.05 −48.09 −27.73

As we now consider all three aforementioned categorical covariates of primary interest,
we note that BCF is inadequate for this application as it admits only one binary covariate.
As VCBART extends BCF to allow for more covariates (of any type) in the linear predictor,
we replace BCF with VCBART in the comparison with CSP-BART and SSP-BART. We use
80% of the data for training and use the remaining 20% as a test set to evaluate out-of-sample
prediction performance. As a base for comparison, we note that the RMSEs obtained using
just the average of the training and test outcomes are 65.10 and 64.48, respectively. Firstly,
the RMSEs on the training and test sets are comparable for CSP-BART (57.2 and 58.2) and
SSP-BART (57.6 and 58.6)4, but VCBART (57.28 and 60.35) is slightly worse for the test
set. Secondly, we present the parameter estimates based on the training set under each model
for the three chosen primary covariates, along with associated 90% CIs, in Table 3.

4Notably, we use code from our own implementation of CSP-BART in order to fit both CSP-BART and SSP-
BART, as it is not possible to predict on out-of-sample data using the R implementation of SSP-BART provided
by the authors of Zeldow, Lo Re III and Roy (2019). This is achieved by adopting the diffuse isotropic prior
β ∼ MVN(0p1 , σ

2
b Ip1) and appropriately specifying the design matrices X1 and X2 when fitting SSP-BART.
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Students whose parents studied at ‘university or higher’ or obtained ‘post-secondary’ qual-
ifications tend to have higher mathematics scores than those whose parents were educated up
to secondary level at most. The effects become more pronounced at lower education levels.
A similar pattern of higher scores is observed under VCBART for students who devote in-
creasingly more time to homework. However, both CSP-BART and SSP-BART suggest that
students who spend ‘more than 90 minutes’ on homework score less than those who spend
less time (but still more than those who have/do ‘no homework’). VCBART’s estimates are
quite extreme for these two levels, possibly due to the small numbers of observations therein.
Lastly, all models suggest that students in schools with ‘moderate to severe’ discipline prob-
lems tend to have lower scores than those in schools with ‘hardly any’ or ‘minor’ problems.

Though their posterior mean estimates differ only in magnitude and not in sign (with only
two exceptions), another important aspect shown in Table 3 is the difference between the
CIs from CSP-BART and the other methods. Notably, all CIs are much wider for SSP-BART
and VCBART. In particular, they all contain zero under SSP-BART, while the CIs for all
effects associated with the covariate ‘school discipline problems‘ and some levels of the other
primary covariates are bounded away from zero by CSP-BART. As CSP-BART and SSP-
BART assume different priors for the linear regression parameters, we conducted additional
experiments (not shown here, for brevity) by fitting hybrid models which swap their priors
on β. In doing so, we verified that the assumption of a diffuse isotropic prior under SSP-
BART is driving the disparities in these intervals. Thus, CSP-BART allowing the effects of
covariates of primary interpretational interest to be correlated and have different variances a
priori appears to have a strong impact on the posterior uncertainty of the estimates.

To show the benefits of CSP-BART sharing covariates across components, it is of interest
to detect interaction effects between covariates in X1 and others of both primary and non-
primary interest. Though the sum of the topology of the trees can be seen as a new single tree,
which may be of interest in some applications, we focus on finding interactions from the in-
dividual trees in the ensemble. According to Chipman, George and McCulloch (2013), an
interaction exists between two variables if both variables (or one or more binary indicators
associated with each variable) are in the same tree. This definition makes some sense for
BART-based methods due to the way the trees are designed and learned. Here, 26.9% of trees
across all MCMC samples have interactions of this sort between at least one covariate in X1

and another in either X1 or X2, while 1% are stumps and 50.5% split on one covariate only.
Following a definition of non-spurious interactions, a stricter criterion for detecting interac-
tions is provided by Kapelner and Bleich (2016), whereby covariates must be in the same
branch. Among these 26.9% of trees, the majority of interactions we detect involving at least
one primary covariate are of this more specific nature; e.g., between ‘parents’ education level’
and ‘minutes spent on homework’ (both in X1) and between ‘school discipline problems’ (in
X1) and ‘absenteeism’ (5 levels, in X2). A major limitation of SSP-BART is that it would fail
to detect key interactions such as these. Due to the assumption of mutual-exclusivity between
X1 and X2, SSP-BART can only capture interactions between two or more non-primary co-
variates in X2. Our CSP-BART also detects frequent interactions of this sort in the remaining
21.6% of trees; e.g., between ‘absenteeism’ and ‘how often the student feels hungry’ (4 lev-
els). To detect important interactions in VCBART, one would need to examine all trees for all
covariates in the linear predictor. This would amount to 150 trees per iteration, as the effect
associated with each of the 3 primary covariates is approximated by 50 trees (by default).

The aforementioned interaction between parents’ education level and minutes spent on
homework is of particular interest, as both variables are specified in both X1 and X2. To
further elucidate this interaction, we explore it visually in Figure 6. This type of plot is due to
Inglis, Parnell and Hurley (2022), who introduce metric- and model-agnostic visualisations
for exploring variable importance and variable interactions for supervised machine learn-
ing algorithms. They present the generalised pairs partial dependence plot in the context of
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numerical predictors, which displays one-way partial dependence plots and individual con-
ditional expectation curves (ICE; Goldstein et al., 2015) with superimposed partial depen-
dence curves along the diagonal, as well as off-diagonal bivariate partial dependence plots
and scatterplots, all coloured by the predicted values. Though the authors demonstrate their
visualisations by fitting random forests and k-nearest neighbours to well-known benchmark
datasets, it is straightforward to use them to visualise variable interactions in the context of
BART-based models and adapt them to categorical predictors5. Given the categorical nature
of the predictors comprising the one interaction of interest, we choose to display one bivariate
partial dependence plot only in Figure 6, thus omitting the scatterplots and the ICE curves.
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Fig 6: Bivariate partial dependence plot between the predictors ‘parents’ education level’ and
‘minutes spent on homework’ for CSP-BART’s estimate of the mathematics scores (ŷ) on the
TIMSS 2019 data.

We know from Table 3 that i) students with no homework tend to have lower mathemat-
ics scores and ii) students with parents with high level of education (‘university or higher’
and ‘post-secondary but not university’) tend to perform better than students whose par-
ents attended school up to secondary level at most. In Figure 6, however, we can see that
students with parents with high level of education with no homework tend to perform par-
ticularly worse than their counterparts who have some homework, with the interaction effect

5Recall that the covariates of primary interpretational interest in the TIMSS 2019 dataset — parents’ education
level, minutes spent on homework, and school discipline problems — are all categorical predictors. Moreover, all
variables of non-primary interest are also categorical. See Table C.1 in Appendix C for a list of all 20 covariates
pre-selected by the BART-based variable-screening step.
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becoming more pronounced at lower levels of education. Notably, within each level of ed-
ucation background, students who spend more than 90 minutes on homework tend to have
slightly worse/similar mathematics scores compared to those who spend 1 to 15 minutes,
which suggests that the homework load does not have a linear effect (e.g., the more home-
work, the better the score) on Irish students’ mathematics performance at eighth grade level.
This non-linearity demonstrates the importance of relaxing the mutual-exclusivity assump-
tion of SSP-BART by sharing these predictors between the linear and BART components of
CSP-BART.

7. Discussion. In this work, we have extended BART to a semi-parametric frame-
work which circumvents many of the restrictions and non-identifiability issues found in other
versions of semi-parametric BART. In semi-parametric BART models, the main effects are
estimated via a linear predictor, while interactions and non-linearities are dealt with by a
BART component. The main novelties of our CSP-BART are i) the sharing of covariates
between the linear and BART components, in tandem with ii) additional double-grow and
double-prune moves. These innovations combine to induce additional interactions between
covariates of primary interest, both among themselves and with those available to the BART
component, which ensures that marginal effects of primary interest are strictly isolated in the
identifiable linear component while interactions and non-linearities are strictly confined to
the BART component. Our modifications can be interpreted as adjustments to the prior over
the set of possible tree structures; effectively, a prior probability of zero is placed on invalid
trees. We have implemented CSP-BART as an R package, which is currently available at
https://github.com/ebprado/CSP-BART.

Through extensive simulation studies, applications to novel data from an international ed-
ucation assessment, and an additional application to a well-known benchmark dataset with a
binary response variable, the ability of CSP-BART to estimate marginal effects with low bias,
while not requiring pre-specification of interaction effects, has been demonstrated in both re-
gression and classification settings. Regarding the motivating TIMSS 2019 application, we
note that CSP-BART offers particularly interesting insight into the effect of the ‘minutes
spent on homework’ covariate on students’ mathematics scores. While competing methods
suggest either that this variable is not statistically significant or that scores improve indefi-
nitely as the time devoted to homework increases, CSP-BART suggests that the effect of this
predictor on mathematics scores begins to yield diminishing returns for those who spend an
excessive amount of time (more than 90 minutes) on homework, which implies that students
who do so might actually be weak students who struggle with their homework exercises or
mathematics classes in general.

We also showed that CSP-BART captures many important interactions between covariates
of primary interest and others of both primary and non-primary interest in the TIMSS 2019
application, by virtue of CSP-BART allowing the covariates of primary interest to be shared
with both the linear and BART components. Such interactions cannot be captured by the
SSP-BART or VCBART models, and would need to be explicitly specified if instead fitting
a linear model such as a GLM or a GAM. However, we note that mixed-effects models
are widely used in the analysis of similar education assessment datasets (Mohammadpour,
Shekarchizadeh and Kalantarrashidi, 2015; Grilli et al., 2016). As the present analysis in
Section 6.1 only considers fixed effects in the linear component, our proposals outlined in
Section 4.3 for also incorporating random effects in the parametric component of CSP-BART
are thus of interest for future practical work. This is especially worthy of further investigation
in light of the model of Dorie et al. (2022) suffering from the same limitations as SSP-BART,
in terms of identifiability of the parametric component, when the assumption of mutual-
exclusivity between the two sets of predictors is not enforced.

https://github.com/ebprado/CSP-BART
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Overall, we anticipate CSP-BART enjoying great utility in a wide range of application
settings, beyond the TIMSS 2019 data considered herein. The model accommodates multiple
covariates, yields improved out-of-sample prediction performance, and ensures accurate in-
ference of important linear effects while accounting for additional non-specified interactions
(beyond those already accounted for by other semi-parametric BART models). Furthermore,
the model-fitting algorithm enables straightforward incorporation of random effects and has
built-in strategies to address non-identifiability issues. Notably, its run-time is comparable to
SSP-BART and BART for small to moderate numbers of predictors in the linear predictor.

In terms of future methodological extensions, other BART-based models, such as SBART
(Linero, 2018), log-linear BART (Murray, 2021), and BART for gamma and log-normal hur-
dle data (Linero, Sinha and Lipsitz, 2020) could be embedded in semi-parametric frame-
works following a similar approach. A semi-parametric version of SBART, in particular,
could prove especially fruitful for the TIMSS 2019 application. Theoretical results underly-
ing CSP-BART could also be developed in order to explore its posterior convergence prop-
erties. Finally, two specific extensions to CSP-BART which may be of particular interest,
relating to the inclusion of non-linear and interaction effects of primary interpretational in-
terest in the linear predictor, are outlined in greater detail in Appendix E.
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Appendices. We present details of the implementation of the BART and CSP-BART al-
gorithms in Appendix A, details on the identifiability of the linear coefficients in CSP-BART
in Appendix B, details on the covariates identified by the BART-based variable-screening
step for the TIMSS 2019 application in Section 6.1 and additional results which account for
missing values in Appendix C, and details of another application to the well-known Pima In-
dians Diabetes dataset in Appendix D. Finally, details of further extensions to the CSP-BART
model to accommodate higher-order effects in the linear predictor are outlined in Appendix E.

APPENDIX A: ALGORITHMIC IMPLEMENTATIONS

We first describe an implementation of the standard BART algorithm in Appendix A.1,
then describe the implementation of our CSP-BART proposal in Appendix A.2, and finally
compare the run-times of different implementations of BART, SSP-BART, and CSP-BART
in Appendix A.3.

A.1. BART implementation. In this Section, we provide the mathematical details
of the BART model following Prado, Moral and Parnell (2021) and Tan and Roy (2019),
which can be written as

yi | xi,M,T , σ2 ∼ N

(
T∑
t=1

g (xi,Mt,Tt) , σ2

)
,

where g(·) = µtℓ is a function which returns predicted values, given the design matrix X
and tree structure Tt, and Mt = (µt1, . . . , µtbt) is a vector comprising the predicted values
from the bt terminal nodes of tree t. To obtain the full conditionals for µtℓ and σ2, Chipman,
George and McCulloch (2010) assume the following priors

µtℓ | Tt ∼ N
(
0, σ2

µ

)
,

σ2 ∼ IG (ν/2, νλ/2) ,

where σµ = 0.5k/
√
T , with k ∈ [1,3]. To control the tree structure/depth, Chipman, George

and McCulloch (2010) place the following prior on Tt:

p (Tt) =
∏

ℓ′∈L(t)
I

[
η (1 + dtℓ′)

−ζ
]
×
∏

ℓ∈L(t)
T

[
1− η (1 + dtℓ)

−ζ
]
,

where dtℓ′ and dtℓ respectively denote the depth of an internal node ℓ′ and a terminal node ℓ,
η ∈ (0,1) and ζ ≥ 0 are hyperparameters that control the shape of the tree, and L(t)

I and L(t)
T

denote the sets of internal and terminal nodes of tree t, respectively. Hence, the joint posterior
distribution can be written as

p
(
M,T | y,X, σ2

)
∝

[
T∏
t=1

bt∏
ℓ=1

[ ∏
i : xi∈Ptℓ

p
(
yi |X,Mt,Tt, σ2

)]
p (Mt)p (Tt)

]
p
(
σ2
)

∝

[
T∏
t=1

bt∏
ℓ=1

[ ∏
i : xi∈Ptℓ

N

(
yi

∣∣∣ T∑
t=1

g (xi,Mt,Tt) , σ2

)]
N
(
µtℓ | 0, σ2

µ

)
p (Tt)

]
× IG

(
σ2 | ν/2, νλ/2

)
,

where Ptℓ is the set of splitting rules which define terminal node ℓ of tree t. It is possible to
sample from this joint posterior in two steps, by substituting the response variable y by the
partial residuals Rt ≡ y−

∑T
j ̸=t g(X,Mj ,Tj). We now outline the steps involved:
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i) A new tree T ⋆
t is proposed by a grow, prune, change, or swap move and then compared to

its previous version Tt via

p
(
Tt |Rt, σ

2
)
∝ p

(
Rt | σ2

)
p (Tt)

∝
bt∏
ℓ=1

[(
σ2

σ2
µntℓ + σ2

)1/2

exp

(
σ2
µ

(
ntℓR̄ℓ

)2
2σ2

(
σ2
µntℓ + σ2

))]p (Tt) ,
where R̄ℓ = n−1

tℓ

∑
i∈Ptℓ

ri, ri ∈Rt, and ntℓ is the number of observations belonging to
terminal node ℓ of tree t. This sampling is conducted via a Metropolis-Hastings step.

ii) Since µtℓ are i.i.d, their posterior is given by

µtℓ | Tt,Rt, σ
2 ∼ N

(
σ−2

∑
i∈Ptℓ

ri

ntℓ/σ2 + σ−2
µ

,
1

ntℓ/σ2 + σ−2
µ

)
.(8)

Finally, the full conditional of σ2 is given by

σ2 |X,M,T ,y∼ IG

(
n+ ν

2
,

∑n
i=1 (yi − ŷi)

2 + νλ

2

)
,(9)

where ŷi =
∑T

t=1 g(xi,Mt,Tt) is the predicted response. In Algorithm A.1, the full structure
of the BART model is presented.

Algorithm A.1 BART model
1: Input: y, X, number of trees T , and number of MCMC iterations M .
2: Initialise: {Tt}T1 and set all hyperparameters of the prior distributions.
3: for (m= 1 to M ) do
4: for (t= 1 to T ) do
5: Compute Rt = y−

∑T
j ̸=t g

(
X,Mj ,Tj

)
.

6: Propose a new tree T ⋆
t by a grow, prune, change, or swap move;

iterate until a valid tree structure is obtained.
7: Compare the current (Tt) and proposed (T ⋆

t ) trees via Metropolis-Hastings, with

α
(
Tt,T ⋆

t

)
= min

{
1,

p(T ⋆
t |Rt,σ2)q(T ⋆

t →Tt)
p(Tt |Rt,σ2)q(Tt→T ⋆

t )

}
.

8: Sample u∼ Uniform (0,1): if α
(
Tt,T ⋆

t

)
< u, set Tt = Tt, otherwise set Tt = T ⋆

t .
9: Update all node-level parameters µtℓ via Equation (8), for ℓ= 1, . . . , bt.

10: end for
11: Update σ2 via Equation (9).
12: Update the predicted response ŷ.
13: end for
14: Output: samples of the posterior distribution of T .

A.2. Combined semi-parametric BART implementation. In this Section, we
provide details for the implementation of the CSP-BART model, which can be written as

yi | x1i,x2i,β,M,T , σ2 ∼ N

(
x1iβ+

T∑
t=1

g (x2i,Mt,Tt) , σ2

)
.

We recall that CSP-BART and SSP-BART (Zeldow, Lo Re III and Roy, 2019) differ in many
aspects, with the latter assuming that i) X1 and X2 are disjoint matrices, such that only ‘sin-
gle’ grow/prune moves are considered, and ii) β ∼ MVN(0p1 , σ

2
βIp1), where 0p1 and Ip1
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respectively denote a vector of zeros and an identity matrix of appropriate dimension and σ2
b

is a fixed, large scalar, such that the prior on β is uninformative. In contrast, CSP-BART i)
allows X1 and X2 to share covariates, which is rendered valid by the novel double-grow and
double-prune moves employed, and ii) assumes β ∼ MVN(b,Ωβ), with the associated hy-
perprior Ωβ ∼ IW(V, v). This hierarchical prior allows for more complex covariance struc-
tures for the linear predictor’s parameters to be explicitly modelled. In terms of common-
alities, both methods consider that σ2 ∼ IG(ν/2, νλ/2) and define the partial residuals as
Rt = y−X1β−

∑T
j ̸=t g(X2,Mj ,Tj).

In Algorithm A.2, the structure of CSP-BART is presented. Firstly, the response and the
design matrices X1 and X2 are specified, along with the number of trees (e.g., T = 50),
number of MCMC iterations M , and all hyperparameters associated with the priors for β,
Ωβ , µtℓ, Tt, and σ2. Initially, all trees are set as stumps. Secondly, the parameter vector
β and covariance matrix Ωβ are updated. Thereafter, candidate trees (T ⋆

t ) are sequentially
proposed, one at a time — via one of the four standard moves employed by SSP-BART,
or one of the novel ‘double-grow’ and ‘double-prune’ moves — and compared with their
previous versions (Tt) via a Metropolis-Hastings step. Later, the node-level parameters µtℓ

are generated. Finally, the variance σ2 is updated. For sufficiently large M , samples from the
posterior distribution of the trees are obtained upon convergence.

Algorithm A.2 describes CSP-BART considering only fixed effects. However, we recall
that the model can be extended to also incorporate random effects, such that

yi | x1i,zi,x2i,β,γ,M,T , σ2 ∼ N

(
x1iβ+ ziγ +

T∑
t=1

g (x2i,Mt,Tt) , σ2

)
,

where γ is the random effects vector of dimension q and zi denotes the i-th row of the
associated design matrix Z. For completeness, we reiterate that the same algorithm can be
directly used to fit such a model, following the scheme outlined in Section 4.3.

Algorithm A.2 CSP-BART model
1: Input: y, X1, X2, number of trees T , and number of MCMC iterations M .
2: Initialise: {Tt}T1 and set all hyperparameters of the prior distributions.
3: for (m= 1 to M ) do
4: Update the parameter vector β via Equation (2).
5: Update the covariance matrix Ωβ via Equation (3).
6: for (t= 1 to T ) do
7: Compute Rt = y−X1β−

∑T
j ̸=t g(X2,Mj ,Tj).

8: Propose a new tree T ⋆
t by a grow, double-grow, prune, double-prune, change, or swap move;

iterate until a valid tree structure is obtained.
9: Compare the current (Tt) and proposed (T ⋆

t ) trees via Metropolis-Hastings, with

α
(
Tt,T ⋆

t

)
= min

{
1,

p(T ⋆
t |Rt,σ2)q(T ⋆

t →Tt)
p(Tt |Rt,σ2)q(Tt→T ⋆

t )

}
.

10: Sample u∼ Uniform (0,1): if α
(
Tt,T ⋆

t

)
< u, set Tt = Tt, otherwise set Tt = T ⋆

t .
11: Update all node-level parameters µtℓ via Equation (8), for ℓ= 1, . . . , bt.
12: end for
13: Update σ2 via Equation (4).
14: Update the predicted response ŷ.
15: end for
16: Output: samples of the posterior distribution of T .

The order in which our sampler updates the linear and tree components does not impact the
fit, regardless of whether X1 ⊂X2. The rationale for this is similar to that of the backfitting
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algorithm used to fit generalised additive models (Hastie and Tibshirani, 1990; Wood, 2017).
When fitting a GAM using the backfitting6 algorithm, the partial residuals related to the j-th
component, which act like the response in the estimation of βj , result from the difference
between the response variable and the sum of all current parameter estimates times their
corresponding basis functions, except for the j-th component (i.e., Rj = y −

∑
t̸=j Bt(x)β̂t,

where Bt(x) denotes the t-th basis function associated with predictor x). As long as all β̂t

converge/stabilise, the order in which they are updated is not important.
In the context of CSP-BART, f(x) is the sum of a linear predictor and a BART model,

where the latter is prevented from estimating the effects specified in the former com-
ponent. The linear predictor uses backfitting by virtue of being updated with respect to
partial residuals r = y −

∑T
t=1 g (X2,Mt,Tt) when updating the linear component and

Rt = y − X1β −
∑T

j ̸=t g (X2,Mj ,Tj) when updating the BART component. Thus, the
order in which the two components (linear predictor and trees) or even the order in which the
trees in the BART model are updated does not matter. For instance, if the trees were updated
first instead, we recall that they would all initially be set as stumps. Furthermore, at the be-
ginning of the iterative Bayesian backfitting MCMC algorithm (i.e., at the first iteration), the
trees can (very poorly) estimate interaction effects of predictors in X1 and marginal effects
involving predictors which are exclusive to X2, which should leave substantial variability for
the linear term to explain. Finally, we note that the indifference to the order of the updates
was confirmed by simulation experiments with the Friedman data and the TIMSS 2019 data,
where both orderings yielded indistinguishable results.

In our implementation of the CSP-BART model, we convert categorical predictors into
binary indicators and also check whether there is more than one value available to the split-
ting variable. To elaborate on our point from Section 4.2 about rejecting trees containing
branches defined only by repeated splits on the same variable in X1 ∩X2, we give the fol-
lowing example which focuses specifically on categorical predictors and binary indicators
thereof. Though it is not possible to repeatedly split on the same binary indicator, this exam-
ple emphasises that subsequent splits along the same branch on different binary indicators
nonetheless associated with the same variable are not allowed when that variable is common
to X1 and X2. Suppose x1i = (xi1) contains a categorical variable of primary interpretational
interest and x2i = (xi1, xi2) contains two variables of non-primary interpretational interest,
where x1 ∈ {a, b, c} and x2 ∈R. Here, we have

yi = x1iβ+ f(x2i) + ϵi,

where β = (βa, βb) is the parameter vector which contains the coefficients associated with
two levels (a and b) of the variable of primary interest. Here, c is the reference level and its
effect could be calculated by a sum-to-zero contrast (i.e., βc = −(βa + βb). In our imple-
mentation, we convert the categorical predictor into 2 binary indicators, which we denote by
x.a and x.b, for its inclusion in X1, and also retain the column x.c for its inclusion in X2.
Figure A.1 shows how a tree can also estimate the marginal effect of the levels ‘a’, ‘b’, and
‘c’, respectively, which we seek to avoid. For instance, the path to the left-most nodes can
be rewritten as µ11(x.c= 0)1(x.b= 0) and µ21(x.c= 0)1(x.b= 1), which implies that µ1

and µ2 are analogous to βa and βb because both µj and βj estimate the marginal effect of
x1. We point out, however, that our stricter checks on the tree-structure do not allow for trees
like the one shown in Figure A.1; see Appendix B for further details on the stricter checks.

6Note that the R package mgcv (Wood, 2017), which provides functions to fit GAMs, uses other algorithms
as alternatives/in addition to the vanilla backfitting algorithm introduced by Hastie and Tibshirani (1990).
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x.c≤ 0

x.b≤ 0

µ1 µ2

µ3

TRUE FALSE

Fig A.1: An example of an invalid tree with binary indicators derived from the same categor-
ical variable.

A.3. Comparison of run-times. Our CSP-BART implementation is written entirely
in R, so fair comparisons to the C++ implementations of BART, BCF, and VCBART are not
straightforward. Nonetheless, to give an idea of the computational time of BART, SSP-BART,
and CSP-BART, we compare them using our own R code to show the additional overheads
from BART to SSP-BART and from SSP-BART to CSP-BART, by omitting the X1 matrix
in the case of BART and omitting the covariates in X1 from X2 in the case of SSP-BART. In
all experiments, the number of trees and posterior samples are 200 and 1,000, respectively.

Table A.1 displays the computational time in minutes for BART, SSP-BART, and CSP-
BART based on a pure R implementation. The times were obtained by running the algorithms
on Friedman data with n= 1,000 observations and d ∈ {5,10,20,30,40,50} predictors. The
relative additional run-times of SSP-BART over BART range from 5% (d= 5) to 12% (d=
50), while they range from 3% (d= 5) to 7% (d= 50) between CSP-BART and SSP-BART.

TABLE A.1
Run-times in minutes of BART, SSP-BART, and CSP-BART across 10 runs. The results are based on a pure R

implementation of BART, which is the base for our CSP-BART implementation.
n d BART SSP CSP SSP/BART CSP/SSP

1 1,000 5 25.42 26.78 27.54 1.05 1.03
2 1,000 10 25.71 28.61 29.68 1.11 1.04
3 1,000 20 25.63 27.28 28.84 1.06 1.06
4 1,000 30 25.26 27.76 28.54 1.09 1.03
5 1,000 40 25.60 28.66 30.17 1.12 1.05
6 1,000 50 25.97 29.12 31.08 1.12 1.07

We also compared the run-times of BART and SSP-BART using the R packages
BayesTree and semibart (Zeldow, Lo Re III and Roy, 2019). We stress that the latter’s
implementation is based on the C++ code of the former, so a comparison of these package’s
run-times is reasonable. Table A.2 shows relative additional overheads which vary from 16%
to 90% depending on the number of covariates in the linear predictor of SSP-BART. As far
as we checked the implementation of semibart, we believe the additional overheads are
mostly attributable to a non-optimal sampling of the parameters in the linear predictor.

TABLE A.2
Run-times in minutes of BART and SSP-BART based on a C++ implementation across 10 runs. The results for
BART were obtained from the R package BayesTree, on which the implementation of SSP-BART is based.

n d BART SSP SSP/BART
1 1,000 5 14.76 17.08 1.16
2 1,000 10 14.80 17.87 1.21
3 1,000 20 14.73 20.98 1.42
4 1,000 30 14.37 22.95 1.60
5 1,000 40 14.54 25.21 1.73
6 1,000 50 14.52 27.76 1.91
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We point out that we plan to implement CSP-BART in C++, which should speed up its run-
time and make it more viable for real-world applications.

APPENDIX B: DETAILS ON THE IDENTIFIABILITY OF CSP-BART

Dorie et al. (2022) claim that the sum of the parametric and non-parametric components of
semi-parametric BART models which share covariates across components is identifiable but
that the individual components are not. In light of this, we stress that non-identifiability of
the BART component is of little concern but the identifiability of the main effects of primary
interpretational interest in the linear predictor — even when there are covariates common to
both components — is a key advantage of CSP-BART. To demonstrate the identifiability of
CSP-BART in this regard, we begin with a simple example with four observations, two binary
covariates, and one tree. We firstly show that the parameter estimates in the linear predictor
are identifiable if we include the appropriate restrictions on the trees in the BART component
(i.e., double-grow and double-prune moves along with shrinking appropriate terminal node
parameters to zero). Secondly, we show that this will generally be the case for any number
of observations, any number of predictors, and any tree structures by expressing the CSP-
BART model as a linear model, conditional on the tree topology. We subsequently elaborate
on the identifiability even when the conditional posterior distributions of the terminal node
parameters may allow some terminal node parameters to be similar. Finally, we discuss the
situation when the number of trees increases.

The motivating example we provide to illustrate the identifiability of CSP-BART is as
follows. Recall that the CSP-BART model can be written as

(10) yi ∼ N

(
x1iβ+

T∑
t=1

g (x2i,Mt,Tt) , σ2

)
.

For simplicity, suppose that we have T = 1 tree, 4 observations, and two binary covariates,
x1 and x2, where

β = [β1], X1 =

x1


1
1
0
0

, and X2 =

x1 x2


1 0
1 1
0 0
0 1

.

Abusing notation slightly, we use x1 and x2 to denote the covariates inside the matrices
X1 and X2. Here, we have x1 ∈ {X1 ∩X2} being a covariate of primary interpretational
interest, a linear predictor without an intercept to model the main effect of x1, and a single
tree to model x2 and the interaction between x1 and x2.

B.1. Restricting the trees in the BART component. In light of this simple example
with a single tree, we show potential trees in Figure B.1 in order to show the progression from
a stump, through an invalid tree, to a valid tree obtained as the result of a double-grow move.
The panel (a) of Figure B.1 shows a stump. Such stumps are valid trees under CSP-BART,
given that we omit the leading column of ones corresponding to an intercept from the linear
component’s design matrix X1. The tree in panel (b) illustrates a ‘single’ grow move and
exemplifies an invalid tree. As x1 is common to both X1 and X2, TB clearly would bring
non-identifiability issues into the model in Equation (10) as µ12 would be equivalent to β1

(i.e., they would concomitantly model the main effect of x1). If TB instead split on x2 rather
than x1, the single grow move would lead to a valid tree because x2 is not in X1 (i.e., x2 is
exclusive to X2). On the other hand, the tree TC in panel (c) exemplifies one of two potential
outcomes of a ‘double-grow’ move applied to the stump TA. When double-growing a tree,
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which only occurs when x ∈ {X1 ∩X2} is chosen to define a splitting rule for a stump, the
branch on which to propose the second split is randomly sampled, with each branch being
equally likely. Thus, a double-grow move could yield an alternative TC where the second split
is along the x1 > 0 branch. In any case, here, TC splits on the common x1 at the top level and
x2 at the second level along the x1 ≤ 0 branch, such that it has terminal node parameters µ13

and µ14 at a depth of 2 and µ15 at a depth of 1. Notice that µ13 and µ14 estimate interaction
effects between x1 and x2, while µ15 estimates the main effect of x1 as it results from a
splitting rule which splits on x1 only. However, the main effect of x1 is estimated in the
linear predictor by β1. To avoid estimating this effect which is already specified in the linear
predictor, even after the double-grow move, the prior on µ15 is modified so that its posterior
sample is shrunk to zero. As pointed out in Section 4.2, this is achieved by assuming that, a
priori, µ15 ∼ N(0, σ2

µ ≈ 0), which results in the posterior sample µ15 ≈ 0 illustrated in the
corresponding terminal node in panel (c) of Figure B.1.

(a) TA
µ11

(b) TB
x1 ≤ 0

µ11 µ12

TRUE FALSE

(c) TC
x1 ≤ 0

x2 ≤ 0

µ13 µ14

µ15 ≈ 0

Fig B.1: An example of the double-grow move in CSP-BART. Recall that the double-grow
move applies only when a covariate x ∈ {X1 ∩X2} is proposed for splitting a stump. The
tree TA is a stump, TB shows the result of a single grow move (invalid in this case) using
x1 ∈ {X1 ∩X2} applied to TA, and TC illustrates an example of a tree obtained after CSP-
BART’s double-grow move. Note that tree index t= 1 for all terminal node parameters µtℓ,
as we are assuming only T = 1 tree in Equation (10).

We therefore stress that the double-grow move — which only applies when a splitting
rule involving a covariate common to X1 and X2 is proposed for a stump — consists of
two operations which must be performed simultaneously: i) proposing a second splitting
rule using any other variable, except the one used at the root node, and ii) shrinking the
terminal node parameter of the terminal node on the opposing branch of the initial split by
modifying its prior. Thus, by further splitting on x2 and shrinking µ15 ≈ 0, we avoid having
the main effect of x1 be estimated twice (via β1 in the linear term x1β and via µ15 through
µ151(x1 > 0)). We also point out that there is no need for changes in the priors of µ13 and µ14

because they both model an (interaction) effect which is not specified in the linear predictor.
Finally, we note that for all nodes except µ15, we follow Chipman, George and McCulloch
(2010) by assuming a priori that µtℓ ∼ N(0, σ2

µ), where σµ = 0.5k/
√
T , with T denoting the

number of trees and k ∈ [1,3].
To motivate the counterpart double-prune move, we recall TB in panel (b) of Figure B.1,

but now from a different perspective. Without loss of generality, instead of obtaining it via a
single grow move as stated above, we can think of TB as a tree which is obtained via a ‘single’
prune move from panel (c) to (b). However, by pruning TC once, the resulting tree (TB) and
the linear predictor would both model the marginal effect of x1, which would cause — as per
the single grow move — a non-identifiability issue. To avoid this, we propose the ‘double-
prune’ move so that trees such as TC are pruned twice. Consequently, TC would become TA
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after a double-prune, thus bypassing invalid trees like TB . Thus, the double-prune move is
the counterpart of the double-grow move in the sense that it allows double-grow moves to
be completely reversed. To clarify why TC is a candidate for a double-prune move, we note
that the double-prune move applies only to trees with exactly two splits (i.e., three terminal
nodes) where the first split nearest the root of the tree splits on a variable common to X1 and
X2 and the two resulting branches contain precisely one further split and no further splits,
respectively. We also highlight that the double-prune move does not apply when the splitting
rule at the root node of trees of this nature splits on a variable exclusive to X2, as subsequent
terminal nodes will by definition either estimate main effects associated with covariates in
X2 only or capture interactions between covariates in X2 and either those also in the linear
predictor or others only in X2. Thus, were the splitting rule at the root node of TC based on
x2 as opposed to x1, no double-prune move would be needed since the resulting tree would
be valid from an identifiability point of view, in the sense that it would avoid estimating main
effects associated with covariates also in X1.

In Figure B.1, the tree TB found after a single grow move would be considered invalid
by CSP-BART. However, the double-grow move and the simultaneous shrinking of µ15 to
zero ensures that TC would be considered valid by CSP-BART. In other words, if the stump
TA is grown using a covariate x ∈ {X1 ∩X2}, a double-grow as per TC must be applied
simultaneously with the shrinking of µ15 to zero. Consequently, we henceforth focus on TC
and provide further justification for these simultaneous operations by expressing the CSP-
BART model as a linear model conditional on the tree topology.

B.2. Expressing CSP-BART as a linear model. With the fixed tree structure of
TC , we can rewrite the model in Equation (10) using the following equation:

(11) y= X1β︸︷︷︸
Linear predictor

+ Z2M1︸ ︷︷ ︸
BART

+ ϵ

where

Z2 =


0 0 1
0 0 1
1 0 0
0 1 0

 , M1 =

µ13

µ14

µ15

 , and W=Z2 diag(M1) =


0 0 µ15

0 0 µ15

µ13 0 0
0 µ14 0

 ,
subject to µ15 ≈ 0. The binary indicator matrix Z2 represents the tree structure of TC in panel
(c) of Figure B.1 in terms of the allocations of observations in X2 to the terminal nodes, while
the vector M1 contains the terminal node parameters of the same tree.

The model in Equation (11) will be identifiable whenever both of the following conditions
are satisfied:

(a) none of the columns in Z2 are created from a dichotomisation of a single covariate x ∈
{X1 ∩X2}.

(b) none of the µ1ℓ values in a tree are equal such that it would create an identical column of
X1 through linear combinations of these values.

We now show that condition (a) can be addressed via certain modifications, while condition
(b) will theoretically never occur provided our modifications have been made.

(a) Identifiability of the linear model representation. Under condition (a), we look at the
model in Equation (11) as y=ZM+ϵ, where Z= [X1 W] and M= [β 1], with 1 denoting
a vector of ones. In this example, for the sake of examining possible non-identifiability issues
between the two components (linear predictor and BART) in the CSP-BART model, we point
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out that X1 is fixed by design and we otherwise assume that only the tree topology Z2 is
known (i.e., both β and M1 are unknown). Notably, we know from linear model theory
that the least-squares solutions for the parameter estimates B= [β M1] would exist and be
unique if, and only if, Z is full rank (i.e., (Z⊤Z)−1 exists). Furthermore, we notice that X1

and Z2 have a column in common (the only column of X1 is identical to the final column of
Z2). Consequently, the only column of X1 and the final column of W are linearly dependent,
which means that Z is a rank-deficient matrix. However, we stress that columns of Z2 and X1

need not be strictly identical in order for this to occur; any dichotomisation of a covariate x ∈
{X1 ∩X2} which yields a one-to-one mapping of a column in X1 will inhibit the inversion
of Z⊤Z. To ensure the uniqueness of the solution, we recall that we address the linearly
dependent column from W by changing the prior on terminal node parameters (such as µ15)
whose indices in M1 correspond to the indices of the associated columns in Z2, such that
their posterior mean is shrunk to zero. In this way, the final column of W becomes redundant
and can be removed, which in turn makes Z full rank.

(b) Accounting for similar terminal node parameters. The condition (b) is also from
linear model theory, and again requires the unknown terminal node parameters in M1 to
be taken into account. Since we already deal with the columns of W and X1 being linearly
dependent by changing the prior on µ15, we can now look for a linear combination between
the two columns left in W (columns one and two) which, depending on M1, could be
linearly dependent with the column of X1. By calculating Z2M1 = [µ15 µ15 µ13 µ14]

⊤ ≈
[0 0 µ13 µ14]

⊤ and X1β = [β1 β1 0 0]
⊤ as in Equation (11), we notice that if µ13 = µ14 = µ⋆,

it would be equivalent to have

Z⋆
2 =


0 1
0 1
1 0
1 0

 , M⋆
1 =

[
µ14

µ15

]
≈
[
µ14

0

]
, and W⋆ =Z⋆

2 diag(M⋆
1)≈


0 0
0 0
µ⋆ 0
µ⋆ 0

 ,
and this would be an issue because now the first column in W⋆ and the only column in X1

are linearly dependent — recall that the second column of W⋆ is not an issue because we
already dealt with it by shrinking µ15 to zero. In particular, note that the first column of Z⋆

2

arises from interchanging the {0,1} labels in the only column of X1. Consequently, there is
a one-to-one mapping of the values {0,1} in the only column of X1 with the values {µ⋆,0}
in the corresponding column of W⋆. This, in turn, would lead to a model of the form y =
Z⋆M⋆+ϵ, with M⋆ = [β 1⋆] and Z⋆ = [X1 W

⋆], where Z⋆ is a now a rank-deficient matrix.
This would be a clear example of non-identifiability between the two components (linear
predictor and BART) of the CSP-BART model. However, we recall that the µtℓ parameters
are assumed i.i.d a priori, and that their conditional posterior distribution is given by

µtℓ | Tt,Rt, σ
2 ∼ N

(
σ−2

∑
i∈Ptℓ

ri

ntℓ/σ2 + σ−2
µ

,
1

ntℓ/σ2 + σ−2
µ

)
,(12)

where ri ∈Rt, Rt ≡ y −X1β −
∑T

j ̸=t g(X2,Mj ,Tj), and ntℓ is the number of observa-
tions belonging to terminal node ℓ of tree t; see Appendix A.1 for further details on the full
conditionals of the BART model. Thus, in theory, P (µth = µtj) = 0, for all h ̸= j, because
the µtℓ parameters are updated via a continuous (Gaussian) full conditional distribution (i.e.,
with probability 1, µ13 and µ14 are different).

In practice, however, one could wonder about having similar but not necessarily identical
µtℓ parameters in the same tree, due to numeric precision. This could happen when the means
of the partial residuals in each of the terminal nodes are similar and ntℓ/σ

2 is large, such that
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the variance term in Equation (12) is extremely small. Notably, it is extremely unlikely that
the Metropolis-Hastings (MH) step in Algorithm A.2 — which is used to sample from the
full conditional of the trees — will accept splits which lead to terminal nodes with similar
means of the partial residuals, since the MH step filters out splitting rules which do not
reduce the residual variance, as they are not supported by the likelihood. For example, if
we assume that the variance term in Equation (12) goes to zero, it would imply that the µtℓ

would approximately be the average of the partial residuals in each terminal node, which the
MH step in turn says are substantially different. Moreover, in the context of the double-grow
move, accepting spurious splits becomes even less likely, as both splits must be accepted
simultaneously by the MH step. Furthermore, given that the first split in a double-grow move
applied to a stump is restricted to variables in X1 ∩X2, which are assumed to be of primary
interpretational interest and linearly related to the response by definition, the interactions
enforced by the double-grow move are guaranteed to be meaningful.

B.3. Additional comments on the example. Overall, we point out that the exam-
ple above illustrates how CSP-BART prevents non-identifiability issues through the double
moves and the change in the prior of appropriate terminal node parameters. In addition, we
note that the addition of the double moves to the transition kernel q(Tt → T ⋆

t ) in the MH
step satisfies detailed balance (i.e., it yields a reversible Markov chain). That is to say, our
modifications yield an identifiable model without compromising the validity of the MCMC
sampler. We recall that the transition from Tt to T ⋆

t via the grow move is reversed by the
prune move in the vanilla BART, which also applies to the double-grow and double-prune
moves in CSP-BART since the double-prune is the counterpart of the double-grow and vice-
versa and the same rationale applies to the change and swap moves, which are themselves
their own counterparts (Chipman, George and McCulloch, 1998).

Though we have focused more on the double moves and the modified prior on relevant
µtℓ parameters in this example, we recall that we also place stricter checks on tree-structure
validity after performing the (single) change and (single) swap moves to make sure the ef-
fects estimated by the resulting tree do not conflict with those in the linear predictor. After
a new tree is proposed via a change or swap move, we check the ancestors of the affected
nodes to ensure that no identifiability issues in line with those outlined and dealt with above
arise. If the ancestors of the affected terminal nodes all split only on the same single variable
which already has its marginal effect estimated in the linear predictor (i.e., if the same x ∈X1

defines all splitting rules along the given branch), the tree is deemed invalid and thus auto-
matically rejected, without being subjected to a MH step. Valid trees are subsequently either
accepted or rejected via the MH step as usual. If no valid tree is found after some number of
attempts to propose a new tree via a change or swap move, a stump is proposed instead.

Finally, we point out that the example above could be easily generalised in a number of
directions, with some minor adjustments to the representations of Z2 and M1.

• To include more trees, we note that an additive ensemble of trees can still be represented
as a linear model conditional on the topology of the trees, as above. When T > 1, the Z2

matrix is obtained by concatenating the binary allocations of observations to the terminal
nodes of all trees across its columns, such that it retains the same number of rows, n,
while all terminal node parameters are now gathered in the vector M= [M1, . . . ,MT ].
Thereafter, the same conditions and modifications apply.

• It is also trivial to show that including additional predictors, whether as extra columns in X1

only, X2 only, or both, would lead to the same representations and required modifications.
• All predictors in the example above are nominal and thus all splitting rules on their dummy

representations are of the form x ≤ 0. Accounting for continuous or ordinal predictors
confined exclusively to X2 is trivial; we simply allow for generic splitting rules of the
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form x ≤ c and note that no confounding is possible, given that such predictors do not
contribute to the linear component by construction.

To account for continuous predictors in X1, we note that the double-grow and double-
prune moves are still required in order to bypass trees like TB in Figure B.1. However, with
a tree topology such as that of TC thereafter, none of the continuous columns in X1 will
be identical to any of those in the corresponding binary Z2 matrix, by definition. More-
over, no one-to-one mapping can exist between the continuous values of the corresponding
column of X1 and any binary column of Z2. Nonetheless, condition (a) must be satisfied;
i.e., to ensure the complete isolation of the effects of primary interest, Z2 should not con-
tain columns obtained by dichotomising the values of a single variable x ∈ {X1 ∩X2}
via binary splitting rules of the form x ≤ c. We point out that, by construction, for both
continuous and categorical predictors, Z2 will never contain columns of this nature due to
the change on the prior for relevant terminal node parameters which shrinks them to zero
as part of the double-grow move. Then, as per the purely categorical example above, it fol-
lows that condition (b) is automatically satisfied for continuous predictors also, provided
those same modifications have been made.

Broadly speaking, the non-identifiability issues between the parametric (linear) and non-
parametric (BART) components arise when the trees in the BART component estimate the
effects specified in the linear predictor. Overall, our modifications aim to prevent linearly
dependent columns between X1 and Z2 when x ∈ {X1 ∩X2} is categorical, such that the
linear model representation of CSP-BART ensures identifiability and guarantees, when such
an x is continuous, the complete isolation of the main effects in the linear predictor by ef-
fectively discarding columns in Z2 which arise from dichotomising columns of X1. In cases
where mixed-type predictors are of primary interpretational interest, only the columns of X1

which relate to the categorical predictors are at risk of being linearly dependent with columns
of Z2 and the same set of modifications address both identifiability conditions for both types
of variable. Roughly speaking, our proposals can be interpreted as an adjustment to the prior
over the set of possible tree structures such that a prior probability of zero is assigned to
invalid trees which could bring non-identifiability issues into the CSP-BART model.

APPENDIX C: ACCOUNTING FOR MISSING VALUES IN THE TIMSS 2019 DATA

In Section 6.1, we analysed a subset of the TIMSS 2019 data on Irish students at eighth
grade level. To illustrate the novel CSP-BART, only one plausible value of the students’
mathematics scores was used, and sampling weights were not accounted for. Nonetheless, it
would be necessary to consider all five mathematics scores along with sampling weights for
a more complete analysis; see Rutkowski et al. (2010) and Foy (2017) for details. A more
complete analysis would also account for the missing values in the additional covariates we
discarded as part of this analysis.

We analysed a subset of the TIMSS 2019 data in Section 6.1 by identifying a set of 20
predictors using a BART-based variable-screening step. By using the complete cases across
these 20 pre-selected predictors — which include the three covariates of primary interest
— we were able to conduct a comparison between CSP-BART and a number of competing
models which cannot accommodate missing values (namely, SSP-BART, VCBART, BCF)
using an increased number of complete observations. However, other strategies for dealing
with the missing values are available under CSP-BART, which can provide a better analysis
of the TIMSS 2019 data when applying CSP-BART alone, outside of the context of the
comparison of methods conducted in Section 6.1. We discuss the rationale and results of
the BART-based pre-screening step in greater detail in Appendix C.1 and present alternative
approaches for accounting for missing values in the TIMSS 2019 data in CSP-BART in
Appendix C.2.
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C.1. BART-based pre-screening of the TIMSS 2019 dataset. In Table C.1, we
present the 20 covariates that were pre-selected to demonstrate CSP-BART’s performance
relative to other BART-based competitors in Section 6.1. These covariates were selected by
identifying the 20 variables used most often by a standard BART model fit to the complete
cases of the TIMSS 2019 dataset. In the comparisons between CSP-BART, SSP-BART, and
VCBART, X1 contained the covariates ‘BSDGEDUP’, ‘BSBM42BA’, and ‘BCDGDAS’. All
20 covariates were included in X2 under CSP-BART, which is the matrix used by the BART
component, but these three covariates of primary interpretational interest were excluded from
the X2 matrix for the other methods. In the first comparison with BCF, X1 contained only
the binarised version of the covariate ‘BCDGDAS’.

We performed the variable-screening step as we were required to work with complete
cases only (i.e., no missing values) for the competing methods in particular. However, the
number of complete cases (1,448) was quite low relative to the initial sample size (4,118).
In an attempt to work with a larger number of observations of fewer variables, we first ran
BART on the complete cases, to simply select predictors to subsequently carry out statistical
analyses on a much bigger population of 3,224. We now endeavour to explain the scarcity of
complete observations in the original TIMSS 2019 data by describing its diverse sources.

As pointed out in Section 2 and Section 6.1, the TIMSS 2019 data pertaining to eighth
grade level students from Ireland comprised 4,118 observations in total. This number corre-
sponds to the number of students who were surveyed. In addition, 565 of their teachers across
149 associated schools were also surveyed. We mention the number of students, teachers, and
schools because the TIMSS 2019 data are split in a similar fashion. For instance, the school
dataset has 149 rows and 87% of its 98 columns have more than 5% of observations missing.
Similarly, 93% of columns in the 565-row teacher dataset have more than 5% of observations
missing. In the student dataset, a full 20% of columns are completely missing, while only 5%
are fully observed. Consequently, if a teacher has some information missing, which is the
case for most teachers here, all students of that teacher will have missing values when merg-
ing the data of the students with those of their teachers, given that individual teachers teach
up to 56 different students. Hence, what seems to be a minor missing value imputation in the
565-row teacher dataset becomes a bigger issue when merging datasets. In addition, merging
the data of students with the data of their school presents similar challenges for imputation.

In the context of large-scale assessment data, there are works which propose and use dif-
ferent imputation methods as alternative approaches for dealing with missing information in
educational research settings (Foy and O’Dwyer, 2013; Bouhlila and Sellaouti, 2013; Weirich
et al., 2014). However, many of the predictors in the merged TIMSS 2019 data we analyse
that could, in theory, benefit most from imputation methods tend to have levels of missingness
in excess of 90%, which renders imputation infeasible. In our case, we found in the student
questionnaire that general questions related to the use of computers/tablets have the highest
percentage of missing observations (i.e., close to 100%). Grilli et al. (2016), who analysed
TIMSS 2011 data7 using multivariate mixed models, also observed that some sources of in-
formation have high levels of missingness, particularly for student-related data and usually
associated with questions related to family background. In their analysis with only complete
cases pertaining to fourth grade level Italian students, 3,741 observations out of 4,200 were
used, which is roughly in line with the proportion used in our analysis (3,224 out of 4,118
observations)). Furthermore, both works consider approximately the same number of predic-
tors (specifically, p= 20, after the BART-based variable-screening step here, p= 29 in Grilli
et al. (2016)).

7Unlike our analysis of the Irish TIMSS 2019 data which focuses on a single mathematics score and allows for
interactions, Grilli et al. (2016) analysed Italian TIMSS 2011 data using a multivariate mixed model that modelled
marginal effects only.
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We stress that if there were no missing values in the TIMSS 2019 data, there would have
been no need to pre-select the predictors in Table C.1. We recall that a key selling point
of a BART-based model like CSP-BART is its ability to handle a large number of covariates
without pre-specification. Furthermore, its BART component can be adapted to efficiently
handle a larger number of predictors through specifying a Dirichlet prior (Linero, 2018) on
the splitting probabilities, so that more important predictors can be favoured over those with
little or no influence on the response. We termed this extension the ‘CSP-DART’ model in
Section 4.2 and noted that it can be specified in our CSP-BART software implementation
via the argument sparse = TRUE. Furthermore, tree-based methods can also be adapted
to deal with missing observations. Different approaches have been proposed by (Loh, 2009),
depending on the nature of the predictor; missing observations are assigned to the left child
node for numerical predictors and treated as a new category on which the trees can split for
categorical predictors. Examples of the adoption of this strategy for categorical predictors
are provided by the bartMachine (Kapelner and Bleich, 2016) and ranger packages
(Wright and Ziegler, 2017), which offer implementations of BART and random forests, re-
spectively.

Such strategies, however, are limited from the point of view of CSP-BART in that they
can only accommodate missing values in the trees. The linear predictor of CSP-BART can-
not accommodate predictors with missing values, as it would not be possible to obtain the
parameter estimates associated with the variables of primary interpretational interest without
substantial modifications to the model and its MCMC scheme. Furthermore, there are 316 ob-
servations with missing values across the three variables in the linear predictor (i.e., parents’
education level, minutes spent on homework, and school discipline problems), which results
in 3,802 = 4,118− 316 “partially complete cases” of 270 variables after removing the miss-
ing values for the variables in X1 only. Notably, we use 3,224 observations of 20 variables
in our analysis in Section 6.1, which represents approximately 85% of the aforementioned
3,802 “partially complete cases”. While considering a situation in which the covariates of pri-
mary interest are completely observed but missing values in X2 are preserved and accounted
for is feasible for CSP-BART, it is not doable for BCF, SSP-BART, and VCBART.

For these reasons, we opted to work in Section 6.1 with complete cases, as per Grilli et al.
(2016), across the full set of pre-screened covariates only, to facilitate a fair comparison of
the competing methodologies’ performance on the TIMSS 2019 data. Consequently, we defer
additional analyses of these data which account for missingness in different ways using only
CSP-DART to Appendix C.2.

C.2. Additional analyses of the TIMSS 2019 data. By way of addressing po-
tential concerns about the data pre-processing performed in Section 6.1, we now consider
two alternative analysis approaches for the TIMSS 2019 data which make use of more pre-
dictors in X2, both by analysing only the 1,448 complete cases and by adapting our model
to accommodate missing values in its trees using the strategies of Loh (2009), without the
BART-based pre-selection step in either case. Given the larger number of predictors in each
case, we employ the CSP-DART rather than CSP-BART model for the sake of efficiency
for both analyses. We recall that the BART-based variable-screening step is arguably a sub-
optimal way to analyse the TIMSS 2019 data and was only performed in order to facilitate a
comparison between CSP-BART and its competitors (i.e., BCF, SSP-BART, and VCBART),
whose available software implementations cannot handle missing values in their tree struc-
tures. With this in mind, we recap the results from Section 6.1 of CSP-BART obtained in
conjunction with the variable-screening step when presenting the results of the additional
analyses using CSP-DART in Table C.2. It is worth noting that the results obtained by adapt-
ing CSP-DART to handle missing values are nonetheless based on cases where the covariates
of primary interest in X1 are completely observed, as CSP-BART cannot accommodate miss-
ing values in its parametric linear component.
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In Table C.2, we compare the results of CSP-DART applied to the complete cases (CC, n=
1,448, p2 = 250) and CSP-DART adapted to handle missing values in the trees while using
the complete cases of the three covariates of primary interest (MT, n= 3,802, p2 = 250). As a
reference for comparison, the first column of Table C.2 exhibits the results already presented
in Section 6.1 where CSP-BART is applied to the data pre-screened by BART (PS, n= 3,224,
p2 = 20). In each case, p2 only denotes the number of predictors in the X2 matrix available
to the BART component; the same three covariates are of primary interpretational interest
in each case. Notably, we do not use all 270 predictors under the CC or MT results. In line
with the discussion around identifiability issues presented in Appendix B, we discarded some
predictors which are perfectly collinear with the variables of primary interpretational interest,
as well as variables for which one of the three categorical variables of primary interest is
a one-to-one discretisation. We also offered advice in this regard in a footnote in Section
4.2. As one example of this phenomenon, we note that there are two variables which arise
from two closely-related questions8 pertaining to discipline problems in the questionnaire
responded by the school principals. As this ordinal variable — which we specify in the linear
predictor of CSP-BART — can be completely defined by the other numeric variable of non-
primary interest without any mismatch, we omit the numeric variable from the X2 matrix and
likewise omit other variables similarly related to the other variables specified in X1 (‘parents’
education level’ and ‘minutes spent on homework’).

It is notable that the parameter estimates presented in the first column of Table C.2, using
BART-based pre-screening where p2 = 20 and CSP-BART, are broadly in line in terms of
sign and significance (as determined by whether the reported 90% credible intervals contain
zero) with the alternative set of results for CSP-DART when p2 = 250 and n= 3,802 for all
variables of primary interpretational interest. However, one noticeable aspect of the results
of adapting CSP-DART to handle missing values in its trees — in the third column of Ta-
ble C.2 — is that a number of levels of the ‘minutes spent on homework’ variable are now
identified as significant effects, though their posterior means are similar in magnitude to the
original CSP-BART results. This may be attributable to reduced posterior uncertainty given
the larger sample size. However, we can also reiterate that the results for the additional sce-
narios with p2 = 250 avail of a Dirichlet prior on the splitting probabilities (Linero, 2018), so
that important predictors are favoured over those which have little to no importance, and are
thus based on fundamentally different models. Of course, this choice is particularly pertinent
as in the new scenarios (i.e., CC and MT) the number of predictors available to the BART
component via X2 is significantly greater than the number (i.e., p2 = 20) used in the analysis
of the TIMSS 2019 data in Section 6.1.

Conversely, the CSP-DART results based on complete cases where n = 1,448 and p2 =
250 show more pronounced differences. In particular, these result suggest that two out of
the three variables of primary interest have no significant impact on students’ mathematics
scores, in sharp contrast to the two sets of results which consider more observations. It is
not surprising that most of the estimates have greater variability when CSP-DART is applied
on the complete cases, since in this case the number of observations n is much less than
in the other scenarios. Overall, despite some of these outlined differences, the conclusions
that can be drawn from all three sets of results are mostly coherent; for the most part, we
can still assert that students who experience school discipline problems tend to obtain worse
mathematics scores, while students who spend more time on homework or whose parents
have a higher level of education tend to exhibit better performance.

8In the 2019 School Context Data Almanac by Mathematics Achievement for the eighth grade level (https:
//timss2019.org/international-database/), these questions are “School Discipline - Principals
Reports’ (Scale)”, which is numeric and can be found through the code BCBGDAS. The other variable is “School
Discipline - Principals Reports’ (Index)” (BCDGDAS), which is categorical and of primary interest in the results
presented in the paper.

https://timss2019.org/international-database/
https://timss2019.org/international-database/
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APPENDIX D: PIMA INDIANS DIABETES

We now analyse the well-known Pima Indians Diabetes dataset from the UCI Machine
Learning Repository (Newman et al., 1998), which is available in R through the mlbench
package (Leisch and Dimitriadou, 2021), to demonstrate the use of CSP-BART in a classifica-
tion setting. Unlike the TIMSS 2019 data, here the response is binary rather than continuous
and all covariates are continuous rather than categorical. The goal is to predict whether or not
a patient has diabetes based on age, blood pressure, body mass index, glucose concentration,
and 4 other covariates. We analyse a corrected version of the data which treats physically
impossible values of zero for a number of covariates as missing values, which we in turn
omit. We are primarily interested in measuring the effects of age and glucose through the
linear predictor along with possible non-specified interactions involving age, glucose, and/or
the other six covariates accounted for by BART. As the response variable is binary, we use a
probit link function following the data augmentation scheme of Albert and Chib (1993).

We only compare CSP-BART and SSP-BART, as the VCBART package cannot deal with
binary responses. Henceforth, all parameter estimates are based on a training set comprising
a randomly chosen 80% of the data and misclassification rates based on the remaining 20%
are used to quantify prediction accuracy. For CSP-BART, we specify age and glucose in X1

and supply all 8 available covariates, including age and glucose, to the BART component. For
SSP-BART, we specify age and glucose in X1 and the 6 remaining covariates in X2, as SSP-
BART does not allow for covariates to be shared across the linear and BART components. In
both cases, the intercept is omitted from the X1 matrix, as described in Section 4.2.

We present the parameter estimates for age and glucose, with corresponding 90% CIs,
in Table D.1. Under both models, the estimates for both covariates indicate that, as they
increase, the probability of observing positive diabetes diagnoses also increases, and vice
versa. All CIs also have positive lower and upper limits. It is especially notable, however,
that the CI for the age effect is bounded further away from zero under the CSP-BART model;
i.e., we detect a more significant marginal age effect.

To highlight the efficacy of the hierarchical prior on β, the double-grow and double-prune
moves, and our other proposals for addressing non-identifiability, we also fit a hybrid model,
equipped with the isotropic prior from SSP-BART, with age and glucose in both components,
but without the double moves and stringent checks on tree-structure validity used in CSP-
BART. Such a model achieves a misclassification rate of 19.23% on the test set; slightly better
than SSP-BART itself (20.51%), though still inferior to the proper CSP-BART (17.94%).

Under the hybrid model, we observe that the additional inclusion of age and glucose in the
X2 matrix used by the BART component generates trees that occasionally use only age or
only glucose. In this case, the linear predictor and BART component both try to estimate the
effects of these covariates, which is not sensible as it generates non-identifiability issues be-
tween the two components and bias in the estimates of the parameters in the linear predictor.
Overall, the benefits arising from i) sharing covariates among the components, ii) the em-
ployment of double-grow and double-prune moves, along with other checks on tree-structure
validity, and iii) the adoption of the hierarchical prior on β are evident from the superior
out-of-sample classification accuracy of CSP-BART.

TABLE D.1
Posterior mean estimates of the age (years) and glucose (mg/dL) effects on the diagnosis of diabetes, with

corresponding 90% CIs, according to CSP-BART and SSP-BART models fit to the training set (80%).

CSP-BART SSP-BART

Covariate Estimate 95% CI Estimate 95% CI

Age 0.0634 (0.0285; 0.1006) 0.0287 (0.0016; 0.0572)
Glucose 0.0359 (0.0271; 0.0445) 0.0296 (0.0221; 0.0377)
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APPENDIX E: EXTENDING THE LINEAR COMPONENT IN CSP-BART

CSP-BART is largely presented throughout Section 4.2 from the perspective of lending
interpretability to main effects of primary interest in a linear component, while allowing
non-linearities and interactions to be estimated by a BART component, in order to ensure
identifiability of the linear component even when both components share covariates in com-
mon. In Section 4.3, a version of CSP-BART is presented which also allows random effects
along with fixed effects in the parametric component. In principle, the framework could be
extended further to accommodate situations in which specific interactions and non-linear ef-
fects are of primary interpretational interest. For simplicity, we describe the additional exten-
sions which follow in terms of a model which excludes random effects from the parametric
component, though they could also be incorporated within a more flexible CSP-BART model
with a multilevel structure.

E.1. Non-linear effects of primary interest. CSP-BART can be extended to model,
via the linear predictor, non-linear relationships between the response and (multiple) contin-
uous covariates of primary interpretational interest, by replacing the linear component by
an additive partial linear component. On the other hand, we recall that linear and non-linear
effects of non-primary interpretational interest would continue to be estimated through the
BART component of CSP-BART without pre-specification. To illustrate how CSP-BART
could be extended, suppose we have the following model:

yi = x1iβ︸︷︷︸
Linear effects

+f1(xi1) + . . .+ fp(xip)︸ ︷︷ ︸
Non-linear effects

+g(x2i)︸ ︷︷ ︸
BART

+ϵi.

In this model, the predictors of primary interest are split into two disjoint groups: linear and
non-linear. The linear effects are modelled via x1iβ and the non-linear effects are estimated
via smooth functions of the form fj(x) =

∑Kj

k=1Bk(x)αk, where Bk(·) denotes the k-th basis
function and αj = (α1, . . . , αKj ) is a parameter vector of unknown coefficients which we aim
to estimate. The flexibility of adding non-linear effects to the linear predictor of the model
requires i) the choice of the basis functions, ii) a prior on αj , and iii) a careful specification
of the predictors used by the BART component (i.e., X2).

Regarding the choice of the basis functions, there are various options which offer differ-
ent theoretical and computational advantages. For instance, knot-based approaches, such as
cubic smoothing splines (Reinsch, 1967) and P-splines (Eilers and Marx, 1996), offer both
simplicity and flexibility, and are commonly used in practice. Knot-free approaches like thin
plate splines (Duchon, 1977) are also an option. The prior on αj can be similar to the one
placed on the parameter vector β in Section 4.2, where it is assumed that β ∼ MVN(0,Ωβ).
The only difference here is that we can assume αj |λj ∝ exp(− 1

2λj
α⊤

j Ω
−1
α αj), where Ωα is

an appropriate penalty matrix and λj is a smoothing parameter, equipped with its own prior
distribution, which balances the trade-off between model fit and smoothness of the fit (Lang
and Brezger, 2004; Wood, 2017).

To allow for the BART component to estimate interactions among variables of primary
interest and between variables of primary and non-primary interest in cases where such vari-
ables of primary interest are specified as non-linear effects, the key point is to add to X2 the
original predictors associated with non-linear effects instead of their basis functions, Bk(x).
In doing so, we avoid adding unnecessary predictors which represent pre-defined partitions
of the domain of x and allow the BART component to create its own splits based on the orig-
inal predictor. In this way, we can use the double-grow and double-prune moves to prevent
BART from estimating now both linear and non-linear marginal effects of primary interest.
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E.2. Interactions of primary interest. To extend CSP-BART to model interaction
effects of primary interpretational interest via the linear predictor, additional tree-generation
moves9 would be required. We now explain the rationale for introducing ‘triple-grow’ and
‘triple-prune’ moves in this context. If there is a primary interpretational interest in a two-
way interaction effect, the ‘triple’ moves apply in the specific situation where both predictors
comprising the interaction are i) also specified as main effects in the linear predictor and ii)
also included in X2. To illustrate our point, we consider the following example:

(13) yi = β1xi + β2zi + β3xizi +
T∑
t=1

g (x2i,Mt,Tt) + ϵi.

Here, x and z are both specified in X1 as main effects, along with the two-way interaction
between them. Both x and z are also included in X2 = (x, z, a1, . . . , ap), where aj denotes
an additional predictor of non-primary interest. Figure E.1 shows what happens when the
single grow and double-grow moves are applied using predictors which belong to both X1

and X2 under the model in Equation (13). In panel (a), the tree T1 is obtained from a single
grow move on x ∈ {X1 ∩ X2}. However, T1 is invalid in the sense that it would bring a
non-identifiability issue into the model since it estimates the marginal effect of x, which in
turn is already being estimated in the linear predictor via β1. Analogously, in panel (b), the
tree T2 splits on x and z through a double-grow move, thus modelling an interaction effect
between them which is already accounted for by β3. Nonetheless, the double-grow move by
itself is not enough to ensure the validity of the resulting tree, since the interaction between x
and z is of primary interest and is also specified in the linear predictor. We note that the trees
in Figure E.1 would remain equally invalid if T1 split on z rather than x and if x and z were
interchanged in T2.

(a) T1
x≤ 0.5

µ1 µ2

TRUE FALSE

(b) T2
x≤ 0.5

z ≤−0.5

µ1 µ2

µ3

Fig E.1: Examples of invalid trees based on the model in Equation (13). Both x and z belong
to X1 and X2. These trees redundantly estimate a marginal of x and an interaction effect
between x and z, which would cause non-identifiability issues, as these effects are also spec-
ified in the linear predictor in Equation (13) via β1 and β3, respectively.

Figure E.2 shows tree structures which are valid in the context of the model in Equation
(13). Through a double-grow move on x and aj , the tree T3 in panel (a) estimates an in-
teraction effect between x and a predictor (aj) exclusive to X2. This tree is valid from an
identifiability point of view, as the interaction it captures is not specified in the linear pre-
dictor. Notably, the tree T4 in panel (b) of Figure E.2 exemplifies the ‘triple-grow’ move
involving an interaction of primary interpretational interest. Recalling T2 in panel (b) of Fig-
ure E.1, a tree containing splits on x and z only is invalid because it estimates an effect which

9Along with related ideas already described in Section 4.2, such as stringent checks on the tree topology and
changes on the priors of relevant terminal node parameters.
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is already estimated by the model’s linear component. However, a tree such as T4 in panel
(b) of Figure E.2, containing x, z, and any other predictor (aj) in the same branch, is valid
as it estimates a 3-way interaction which is not in the linear predictor. As before, the trees in
Figure E.2 would remain equally valid if T3 initially split on z rather than x and if x and z
were interchanged in T4.

(a) T3
x≤ 0.5

aj ≤ 0.5

µ11 µ12

µ13 ≈ 0

TRUE

TRUE FALSE

FALSE

(b) T4
x≤ 0.5

z ≤−0.5

aj ≤ 0.5

µ11 µ12

µ13 ≈ 0

µ14 ≈ 0

Fig E.2: Examples of valid trees based on the model in Equation (13). While aj is exclusive
to X2, x and z belong to both X1 and X2. T3 estimates an interaction effect between x and
aj via a double-grow move; were aj at the root node, then a single move could be applied
and the resulting tree would also be valid. T4 illustrates a ‘triple-grow’ move involving x, z,
and aj . Further non-identifiability issues are avoided by modifying the prior on the relevant
predicted values to µtℓ ∼ N(0, σ2 ≈ 0), which in turn shrinks the posterior predicted values
towards zero, as per the double-grow move.

It is possible to further generalise this example to cases where there is a primary inter-
pretational interest in a three-way interaction effect. If all three predictors comprising the
interaction belong to X1 ∩X2, ‘quadruple’ moves will be necessary. However, such moves
would rarely be accepted in practice as the branching process prior placed on the structure
of the trees in BART tends to penalise deep/asymmetric trees. Though we have focused in
our example on the triple-grow move only, the counterpart ‘triple-prune’ move would need
to be added to the transition kernel of the BART component in CSP-BART in order to gen-
erate a reversible Markov chain. Consider, for example, the tree T4 in panel (b) of Figure
E.2, which would need to be triple-pruned in order to bypass an invalid tree such as T2 in
panel (b) of Figure E.1. Consequently, quadruple-grow and quadruple-prune moves would
be required whenever three-way interactions are specified in the linear predictor. Finally, we
reiterate that ‘single-change’ and ‘single-swap’ moves are sufficient for dealing with non-
identifiability issues that may arise between the linear and BART components, even in the
presence of interaction effects (of any order) in the linear predictor. Nonetheless, as pointed
out in Section 4.2, stringent checks should be placed on the validity of the trees proposed by
such moves.
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