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ABSTRACT. We derive subexponential tail asymptotics for the distribution of the maxi-
mum of a compound renewal process with linear component and of a Lévy process, both
with negative drift, over random time horizon τ that does not depend on the future in-
crements of the process. Our asymptotic results are uniform over the whole class of such
random times. Particular examples are given by stopping times and by τ independent of
the processes. We link our results with random walk theory.
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1. INTRODUCTION AND MAIN RESULTS

In this paper we derive subexponential tail asymptotics for the distribution of the maxi-
mum of compound renewal processes with linear component and for Lévy processes, both
with negative drift, over random time horizon τ (which may be infinite with positive prob-
ability) that does not depend on the future increments of X . We focus on obtaining results
that are uniform in a broad class of random times that is introduced below.

We believe that this is the first work in the context of the subexponential asymptotics in
the continuous-time setting where the concepts of random times that do not depend on the
future increments of the process are introduced and systematically studied; see Definitions
1 and 2 and Examples 3 and 4 below. To handle this, we propose a new approach based
on the creation of some special i.i.d. cycles. This is a crucial step that allows us to obtain
the derived results uniformly over the aforementioned random times. We like to underline
as well that our approach produces the respective asymptotics for random walks and for
general Lévy processes. As such, it seems to be new for the latter class of processes, where
the Wiener-Hopf factorisation and ladder process arguments have been used before.

Let us firstly recall some basic definitions related to subexponential distributions. A
probability distribution F on the real line has a heavy (right) tail if∫ ∞

−∞
eεxF (dx) = ∞ for all ε > 0,

and a light tail, otherwise. In this paper we focus on a very important sub-class of heavy-
tailed distributions, namely on the class of strong subexponential distributions S ∗. A
distribution F on R with a finite mean and unbounded support on the right belongs to the
class S ∗ if ∫ x

0

F (x− y)F (y)dy ∼ 2a+F (x) as x → ∞,

where F (x) = F (x,∞) and a+ =
∫∞
0

F (y)dy. By [8, Theorem 3.27], any F ∈ S ∗ is
subexponential, i.e. satisfies the following two properties: F ∗ F (x) ∼ 2F (x) and F is
long-tailed, i.e. F (x+ 1) ∼ F (x). Here ‘∗’ denotes the convolution operator and, for any
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two eventually positive functions f(x) and g(x), we write f(x) ∼ g(x) if f(x)/g(x) → 1
as x → ∞. We refer to [8] for an overview of the properties of strong subexponential and
related distributions.

To define properly the family of (possibly improper) random times of interest, we use
the notation σ(Ξ) for the sigma-algebra generated by a family of random variables Ξ.

Definition 1. We say that a random time τ ∈ [0,∞] does not depend on the future incre-
ments of the process X = {Xt, t ≥ 0} if the sigma-algebras σ{Xs, s ≤ t, I{τ ≤ t}} and
σ{Xt+v −Xt, v > 0} are independent, for all t > 0.

Equivalently, the independence of the future property may be defined as independence
of the sigma-algebras σ{Xs, s < t, I{τ < t}} and σ{Xt+v − Xt−0, v ≥ 0}, for all
t > 0. A similar term appeared in [13] and [16] while proving generalizations of Wald’s
identity and in [4, Section 7] where a random walk was considered.

For a random process X with independent increments, there are two important examples
of random times that are independent of the future increments of X:

(i) any hitting time τ , and, more generally, any stopping time τ , and
(ii) any random time τ that does not depend on the process X .

Notice that, for a non-deterministic process X , a stopping time τ does not depend on X if
and only if τ is a constant time. More examples and comments related to Definition 1 are
given in Section 2.

While Definition 1 works well for Lévy processes, it is not so for compound renewal
processes, in general. For example, if we follow Definition 1, then a constant τ = c,
while being independent of any process, appears to depend on the future increments of
a compound renewal process if the process in not compound Poisson. Indeed, the time
after c to the next jump (i.e. the overshot of the underlying renewal process at time c)
does depend on σ{Xs, s ≤ c, I{τ ≤ c}} = σ{Xs, s ≤ c}. Having this observation in
mind, we introduce another notion of ‘independence of the future’, that is with respect to
a sequence of (random) embedded epochs.

Definition 2. Given an increasing sequence of random times Tn, we say that τ ∈ [0,∞] is
independent of the future increments of X with respect to {Tn} if the following condition
holds: for all n ≥ 1, the two σ-algebras

σ{Xs, s < Tn, I{τ < Tn}} and σ{XTn+v −XTn−0, v ≥ 0} are independent.(1)

Below are two important examples of stochastic processes we are mainly interested in.

Example 3. Let X be a compound renewal process with linear component,

Xt =

Nt∑
i=1

Yi + ct, t ≥ 0,(2)

where c is a real constant, {Yn}n≥1 i.i.d. jump sizes with distribution F and finite mean b,
and N = {Nt, t ≥ 0} a renewal process independent of the jump sizes, with jump epochs
0 = T0 < T1 < T2 < . . ., where Tn − Tn−1 > 0 are i.i.d. positive random variables with
finite mean 1/λ.
If a random time τ does not depend on the future increments of X , then τ satisfies the
condition (1) with Tn the jump epochs. Indeed, for any events A ∈ σ{Xs, s < Tn, τ <
Tn} and B ∈ σ{Xs −XTn−0, s ≥ Tn} conditioning on Tn implies a.s. equality

P{AB | Tn} = P{B | A, Tn}P{A | Tn}
= P{B}P{A | Tn},
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where P{B | Tn} does not depend on the value of Tn and A due to the renewal structure
of Xt and hence

P{AB} = EP{AB | Tn}
= P{B}EP{A | Tn}
= P{B}P{A},

so the events A and B are indeed independent.

Example 4. Let X be a Lévy process starting at the origin and let τ not depend on the
future increments of X . Fix an ε > 0 and consider the sequence of all jump epochs Tn with
jump sizes |XTn −XTn−0| ≥ ε, so Tn+1 − Tn, n ≥ 0, are i.i.d. exponentially distributed
random variables, hereinafter T0 = 0. Then τ satisfies the condition (1). Indeed, since τ
does not depend on the future increments of X , it does not depend on the future jumps of
X of size at least ε, which in turn yields (1) by arguments similar to those used above.

In this paper we firstly focus on the compound renewal process X with linear compo-
nent introduced in (2). We assume throughout that the drift of the process is negative, that
is,

E(cT1 + Y1) =: −a < 0(3)

(equivalently, c + bλ = −aλ < 0), which implies that the family of distributions of the
partial maxima

(4) Mt := max
u∈[0,t]

Xu

is tight and
sup
t>0

P{Mt > x} ≤ P{M∞ > x} → 0 as x → ∞.

We are interested in the tail behaviour of Mτ for random times τ . Our first main result
here is as follows.

Theorem 5. Let the drift condition (3) hold. Let either c ≤ 0 or the following condition
hold:

c > 0 and P{cT1 > x} = o(F (x)) as x → ∞.(5)

If the distribution F of Y1 belongs to S ∗, then

P{Mτ > x} =
1 + o(1)

a
E
∫ x+aNτ

x

F (y)dy + o(F (x)) as x → ∞,

uniformly for all random times τ ∈ [0,∞] that satisfy (1) in Definition 2.

Hereinafter, we write f(x, τ) = o(g(x, τ)) as x → ∞ uniformly for all τ if

sup
τ

∣∣∣∣f(x, τ)g(x, τ)

∣∣∣∣ → 0 as x → ∞.

Note that a result similar to Theorem 5 has been obtained recently in the case of non-
random times.

Theorem 6 ([15, Theorem 1]). Under the conditions of Theorem 5,

P{Mt > x} ∼ 1

a

∫ aENt

0

F (x+ y)dy as x → ∞ uniformly for all t ∈ (0,∞].
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One can see the difference in results of Theorems 5 and 6: in Theorem 5, the expectation
of the integral is taken while in Theorem 6, for constant τ , it is simplified to an integral with
constant upper limit. We have to comment that, despite the fact that the results look similar,
the extension to random times requires a lot of effort in the case where the random time τ
depends on the process – say like stopping times. Our approach is based on the introduction
of special i.i.d. cycles that allows us to handle random times that do not depend on the
future increments. We like to underline as well that our approach produces the respective
asymptotics for random walks and for general Lévy processes. Note also that such an
extension is really needed in many applications, say in risk or in queueing theory where
we often need to know how likely it is to exceed a high level within some time cycle or
similar random time interval.

A more general than renewal setting was studied by Tang [19] where the author obtained
uniform asymptotics for the supremum over time intervals [0, t] for a counting process that
satisfies a law of large numbers.

Let us consider a random walk S0 = 0, Sn := Y1 + . . . + Yn, n ≥ 1 and its partial
maxima Mn := max(S0, . . . , Sn). Since a random walk may be considered as a particular
case of a compound renewal process with constant jump epochs Tn = n, we derive from
Theorem 5 the following result which replicates and corrects several results from [1, 6, 7,
9, 10, 11, 12]; see also [8] for further references.

Theorem 7. Let EY1 =: −a < 0. If the distribution F of Y1 belongs to S ∗, then

P{Mτ > x} =
1 + o(1)

a
E
∫ aτ

0

F (x+ y)dy as x → ∞,

uniformly for all counting random variables τ ∈ [0,∞] that do not depend on the future
jumps of Sn.

First results on the asymptotics of randomly stopped sequences with independent in-
crements are due to Greenwood [10] and Greenwood and Monroe [11] where a case of a
bounded or regularly varying at infinity stopping time τ and regularly varying at infinity F
is considered.

Asmussen [1] obtained this result for the proper hitting time τ = min{n ≥ 1 : Sn ≤ 0}
with Eτ = 1/P{S∞ ≤ 0}, where the right hand side is asymptotically equal to EτF (x).

In [6], a more general statement than Theorem 7 is presented, it concerns up-crossing
of a high level non-linear boundary. However, its proof is based on a key Lemma 1 whose
proof contains a gap. Namely, Lemma 1 states some asymptotic result which holds uni-
formly for all stopping times from a family Tφ := {σ : 0 ≤ σ ≤ φ} where φ ≥ 0 is a
stopping time such that Eφ < ∞, i.e. the family of stopping times possesses an integrables
majorant. Then its proof starts with saying that, without loss of generality, it suffices to
assume that σ ≥ 1, and then this assumption is essentially used, together with the existence
of an integrable majorant. However, the latter reduction is not supported by any argument.
One can see that, in general, the family of σ’s conditioned on being greater than 1, may
not possess a common integrable majorant if the family of probabilities P{σ > 0} is not
bounded away from zero. This is exactly the case, in particular, for the family of stopping
times {τ ′ = (τ − m)+,m ∈ N} that are considered in the proof of Corollary 1 in [6]
(denoted σ′ there). This questions the proof of Theorem 7 in [6], and it is not clear so far
if this result holds true or not in the generality stated there.

Notice that Theorem 7 generalises the following result for partial maxima of a random
walk over non-random time intervals.
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Theorem 8 ([8, Theorem 5.3]). Under the conditions of Theorem 7,

P{Mn > x} ∼ 1

a

∫ an

0

F (x+ y)dy as x → ∞ uniformly for all n ≥ 1.

Now let X be a Lévy process starting at the origin, that is, a càdlàg stochastic process
(i.e. almost all its paths are right continuous with existing left limits everywhere) with
stationary independent increments, where stationarity means that, for s < t, the probability
distribution of Xt −Xs depends only on t− s and where the independence of increments
means that, for all k ≥ 2 and for all s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sk < tk, the differences
Xti −Xsi , 1 ≤ i ≤ k are mutually independent random variables.

Stemming from Theorem 5 above, by considering the compound Poisson component
of X , one can find the correct asymptotic lower bound for the tail of Mτ . However this
approach does not work so well for the matching upper bound, because the suprema of the
Gaussian component and the compound Poisson component are dependent via τ . For that
reason we need to follow an alternative approach to derive the matching upper tail bound.
Our main result for a Lévy process is the following theorem.

Theorem 9. Let EX1 =: −m < 0. If the distribution of X1 belongs to S ∗, then

P{Mτ > x} =
1 + o(1)

m
E
∫ x+mτ

x

P{X1 > y}dy + o(P{X1 > x}) as x → ∞,

uniformly for all random times τ ∈ [0,∞] that do not depend on the future increments of
X .

First results on the asymptotics of randomly stopped Lévy processes go back to Green-
wood and Monroe [11] who considered a particular case of regularly varying at infinity
distributions F and stopping times τ . The case of independent sampling was considered in
Korshunov [15, Theorem 10].

It has been suggested by Asmussen and Klüppelberg [2, Sect. 1.1] and by Asmussen
[1, Sect. 2.4] to follow a discrete skeleton argument in order to prove these asymptotics
for τ = ∞ when the integrated tail of the Lévy measure is subexponential; notice that this
approach requires additional considerations which take into account fluctuations of Lévy
processes within time slots.

In Doney et al. [5] the passage time problem has been considered for Lévy processes,
emphasising heavy tailed cases; local and functional versions of limit distributions are
derived for the passage time itself, as well as for the position of the process just prior to
passage, and the overshoot of a high level which is an extension for Lévy processes of
corresponding results for random walks, see e.g. Foss et al. [8, Theorem 5.24].

Notice that the conclusions of both Theorems 5 and 9 are not so trivial. For example,
one could doubt if they really hold true uniformly for all τ . At first glance, the uniformity
may fail for the family of hitting times τ(x) = inf{t ≥ 0 : Xt > x}, x > 0. However, for
such τ(x), on the one hand

P{Mτ(x) > x} = P{τ(x) < ∞}

= P{M∞ > x} ∼ 1

m

∫ ∞

x

F (y)dy as x → ∞,

while on the other hand,

E
∫ x+mτ(x)

x

F (y)dy ≤
∫ ∞

x

F (y)dy,
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and

E
∫ x+mτ(x)

x

F (y)dy ≥ P{τ(x) = ∞}
∫ ∞

x

F (y)dy ∼
∫ ∞

x

F (y)dy,

due to P{τ(x) = ∞} → 1 as x → ∞, so

E
∫ x+mτ(x)

x

F (y)dy ∼
∫ ∞

x

F (y)dy as x → ∞.

The paper is organised as follows. In Section 2 the property of the independence of
the future increments given in Definition 1 is discussed in detail. In Section 3 we prove
Theorem 5 on the compound renewal process. For a compound Poisson process, the tail
asymptotics may be significantly improved in what concerns the upper limit of the integral,
it is done in Section 4. Next, in Section 5 we prove Theorem 9 on Lévy processes. Finally,
Appendix includes the proofs of three auxiliary results.

2. INDEPENDENCE OF THE FUTURE INCREMENTS – DISCUSSION AND FURTHER
EXAMPLES

We discuss now Definitions 1 and 2. Firstly observe the following properties of inde-
pendent of the future increments random times:

• while the minimum of two stopping times is a stopping time, the same property
for independent of the future increments random times fails, in general;

• the minimum of an independent of the future increments random time and of a
stopping time does not depend on the future increments, too;

• for a general compound renewal processes (with a possible linear drift), an inde-
pendent time (hence e.g. a constant time) depends on the future increments, in
the sense of (more-or-less standard) Definition 1. We have eliminated this con-
ceptual problem by introducing a novel Definition 2, that involves embedded time
instants. Note that, in particular cases, one can deal with constant times using
another approach based on lower and upper bounds, see e.g. Example 6 in [6].

We give a number of examples that clarify our results and the two definitions of the
independence of the future. We focus first on the case when X is a compound renewal
process defined in (2) and when all the assumptions of Theorem 5 hold true.

Example 10. Let {τn}n≥1 be a family of stopping times independent of X with pn :=
P{τn = ∞} and En := E{τn | τn < ∞}. Then,

P{Mτn > x} =
pn + o(1)

a

∫ ∞

x

F (y)dy

+
1− pn + o(1)

a

∫ x+En/λ

x

F (y)dy + o(F (x)) as x → ∞,

uniformly for all n ≥ 1. If additionally supn En < ∞ and infn pn > 0, then, since
F (x) = o(

∫∞
x

F (y)dy), we have

P{Mτn > x} =
pn + o(1)

a

∫ ∞

x

F (y)dy + o(F (x)) as x → ∞,

uniformly for all n ≥ 1.

Example 11. In this example we consider a family of stopping times {τn}n∈≥1 with

qn := P{τn = 0} → 1 as n → ∞,
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but the mean value of the conditional distributions given τn > 0 tends to infinity, that is,
Dn := E{τn | τn > 0} → ∞ as n → ∞. Then

P{Mτn > x} =
1− qn + o(1)

a

∫ x+Dn/λ

x

F (y)dy + o(F (x)) as x → ∞,

uniformly for all n ≥ 1. If additionally we assume that τn are bounded by an integrable
random variable K, then

P{Mτn > x} =
Eτn + o(1)

λa
F (x) as x → ∞ uniformly for all n ≥ 1.

Example 12. As we already mentioned, the constant τ satisfies Definition 1 but not Def-
inition 2. One can consider other examples as well. For example, τ = Tk for the kth
renewal epoch Tk of N is of this type. In this case

P{MTk
> x} =

k + o(1)

λa
F (x) as x → ∞ uniformly for all k ≥ 1.

Example 13. Assume that {Tn−Tn−1} are non-degenerate; let a > 0 be such that P{Tn−
Tn−1 > a} ∈ (0, 1). Let ν1 < ν2 < . . . be the consecutive times when Tνk

− Tνk−1 > a.
Let η be an independent non-degenerate counting random variable. Then τ = Tνη

satisfies
Definition 2.

Now we present a number of examples of independent of the future random times that
are not stopping times. We start with examples for random walks. Let Sn =

∑n
i=1 ξi,

n ≥ 0 be a random walk with i.i.d. increments.

Example 14. Let P{ξ1 > 0} > 0 and P{ξ1 < 0} > 0. Let η be an independent non-
degenerate counting random variable and

τ1 = min{n > 0 : ξn < 0} and τk = min{n > τk−1 : ξn < 0} for k ≥ 2.

Then a proper random variable τ = τη does not depend on the future of random variables
{ξn}, but it is not a stopping time.

Example 15. Let B ∈ B(R). Define hitting times τ1 := min{n ≥ 1 : Sn ∈ B} and, for
all k ≥ 2, τk := min{n > τk−1 : Sn ∈ B}. Let η be an independent counting random
variable. Then (possibly improper) random variable τη does not depend on the future of
random variables {ξn}, but it is not a stopping time.

Example 16. Let g be a measurable function on the real line, taking values in (0, 1) and
such that g(x) ̸= g(y) for x ̸= y. Let {ζz}z∈(0,1) be a family of geometric random
variables, with ζz having parameter z, that do not depend on the random walk. Then

τ = 1 + ζg(ξ1)

is a random time that does not depend on the future of random variables {ξn}, but is not a
stopping time.

Example 17. Let Xt be a Lévy process. For a fixed a > 0, let

τ1 = inf{t > 0 : ∆Xt > a} and τk = inf{t > τk−1 : ∆Xt > a} for k ≥ 2.

Then for an independent non-degenerate counting random variable η, τη satsfies Definition
1.
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3. PROOF OF THEOREM 5 FOR COMPOUND RENEWAL PROCESS WITH LINEAR DRIFT

The proof of Theorem 5 is split into two parts, the lower bound is considered in Propo-
sition 18 and the upper bound in Proposition 19.

Proposition 18. Let −a = E(cT1 + Y1) < 0. If F is long-tailed, then

P{Mτ > x} ≥ 1 + o(1)

a
E
∫ x+aNτ

x

F (y)dy + o(F (x)) as x → ∞,

uniformly for all random times τ ∈ [0,∞] that satisfy (1).

Proof. As the distribution F is long-tailed, there exists a function h(x) ↑ ∞ as x → ∞
such that (see, e.g. [8, Lemma 2.19])

F (x+ h(x)) ∼ F (x) as x → ∞.(6)

Since the events {MTn−0 ≤ x,XTn > x, τ ≥ Tn} are disjoint and each of them implies
that Mτ > x, we have

P{Mτ > x}

≥
∞∑

n=1

P{MTn−0 ≤ x,XTn > x, τ ≥ Tn}

≥
∞∑

n=1

P{MTn−0 ≤ x,XTn−0 > −(a+ ε)(n− 1)− h(x), XTn
> x, τ ≥ Tn},

≥
∞∑

n=1

P{MTn−0 ≤ x,XTn−0 > −(a+ ε)(n− 1)− h(x),

Yn > x+ (a+ ε)(n− 1) + h(x), τ ≥ Tn},(7)

for any fixed ε > 0. Since {τ ≥ Tn} = {τ < Tn} and owing to the condition (1), the last
series equals to

∞∑
n=1

P{MTn−0 ≤ x,XTn−0 > −(a+ε)(n−1)−h(x), τ ≥ Tn}F (x+ (a+ε)(n−1)+h(x))

=

∞∑
n=1

P{XTn−0 > −(a+ ε)(n− 1)− h(x), τ ≥ Tn}F (x+ (a+ ε)(n− 1) + h(x))

−
∞∑

n=1

P{MTn−0 > x,XTn−0 > −(a+ ε)(n− 1)− h(x), τ ≥ Tn}

×F (x+ (a+ ε)(n− 1) + h(x))

≥
∞∑

n=1

P{XTn−0 > −(a+ ε)(n− 1)− h(x), τ ≥ Tn}F (x+ (a+ ε)(n− 1) + h(x))

−P{Mτ > x}
∞∑

n=0

F (x+ an).
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Therefore, since
∑∞

n=0 F (x+ an) ≤ a−1F I(x− a), it follows from (7) that

P{Mτ > x}

≥ 1

1 + a−1F I(x− a)

∞∑
n=1

P{XTn−0 > −(a+ ε)(n− 1)− h(x), τ ≥ Tn}

×F (x+ (a+ ε)(n− 1) + h(x))

= (1 + o(1))

∞∑
n=1

P{XTn−0 > −(a+ ε)(n− 1)− h(x), τ ≥ Tn}

×F (x+ (a+ ε)(n− 1) + h(x))(8)

as x → ∞ because F I(x − a) → 0; here o(1) does not depend on τ . Let us decompose
the last sum as follows:

∞∑
n=1

P{τ ≥ Tn}F (x+ (a+ ε)(n− 1) + h(x))

−
∞∑

n=1

P{XTn−0 ≤ −(a+ε)(n−1)−h(x), τ ≥ Tn}F (x+(a+ε)(n−1)+h(x))

=: Σ1 − Σ2.(9)

To bound the value of Σ2, we introduce recursively a sequence {θk}k≥0 of stopping times
by letting θ0 = 0 and, for k ≥ 0,

jk+1 := min{i : Ti > θk : XTi−0 −Xθk−0 > −(i− jk)(a+ ε)},

and θk+1 = Tjk+1
, so that Xθk−0 > −jk(a + ε). By construction, θk − θk−1, k ≥ 1, are

i.i.d. random variables and

Eθ1 < ∞.(10)

Introduce the minima over disjoint time intervals

Lk := min
θk<Ti≤θk+1

(XTi−0 −Xθk−0 + (i− jk)(a+ ε)), k ≥ 0,

and notice that

{Lk, k ≥ 0} are i.i.d. proper random variables.(11)

Then, for all n ≥ 1,

P{XTn−0 ≤ −(a+ ε)(n− 1)− h(x), τ ≥ Tn}

=

n−1∑
k=0

P{θk < Tn ≤ θk+1, XTn−0 ≤ −(a+ ε)(n− 1)− h(x), τ ≥ Tn}

≤
n−1∑
k=0

P{θk < Tn ≤ θk+1, XTn−0 −Xθk−0 + (a+ ε)(n−1−jk) ≤ −h(x), τ ≥ Tn}

≤
n−1∑
k=0

P{θk < Tn ≤ θk+1, Lk ≤ −h(x), τ ≥ θk}.
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Hence,

Σ2 ≤
∑
k≥0

∑
n≥k+1

P{θk < Tn ≤ θk+1, Lk ≤ −h(x), τ ≥ θk}F (x+(a+ε)(n−1)+h(x))

=
∑
k≥0

(
EI{τ ≥ θk}

∑
n≥k+1

I{θk < Tn ≤ θk+1, Lk ≤ −h(x)}
)
F (x+(a+ε)k+h(x))

=
∑
k≥0

E [I{τ ≥ θk}(θk+1 − θk)I{Lk ≤ −h(x)}]F (x+ (a+ ε)k + h(x)).

By the condition (1), the event {τ ≥ θk} = {τ < θk} does not depend on the random
variable

(θk+1 − θk)I{Lk ≤ −h(x)} ∈ σ{Xt −Xθk−0, t > θk},
hence we conclude that the last sum is equal to∑

k≥0

P{τ ≥ θk}E{θk+1 − θk; Lk ≤ −h(x)}F (x+ (a+ ε)k + h(x))

≤
∑
k≥0

P{τ ≥ Tk}E{θk+1 − θk; Lk ≤ −h(x)}F (x+ (a+ ε)k + h(x)),

due to Tk ≤ θk. It follows from (10) and (11) that

sup
k

E{θk+1 − θk; Lk ≤ −h(x)} → 0 as x → ∞,

which implies that, as x → ∞,

Σ2 = o(1)
∑
n≥0

P{τ ≥ Tn}F (x+ (a+ ε)n+ h(x))

= o(F (x)) + o(1)
∑
n≥1

P{τ ≥ Tn}F (x+ (a+ ε)n+ h(x)).

Thus we derive from (8) and (9) that

P{Mτ > x} ≥ (1 + o(1))

∞∑
n=1

P{τ ≥ Tn}F (x+ (a+ ε)(n− 1) + h(x)) + o(F (x))

= (1 + o(1))

∞∑
n=1

P{τ ≥ Tn}F (x+ (a+ ε)(n− 1)) + o(F (x)),

as x → ∞, owing to (6); here o(1) does not depend on τ . The last sum equals
∞∑

n=1

P{τ ∈ [Tn, Tn+1)}
n∑

k=1

F (x+ (a+ ε)(k − 1)) + P{τ = ∞}
∞∑

n=0

F (x+ (a+ ε)n)

≥ 1

a+ε

( ∞∑
n=1

P{τ ∈ [Tn, Tn+1)}
∫ x+(a+ε)n

x

F (y)dy + P{τ=∞}
∫ ∞

x

F (y)dy

)

=
1

a+ ε
E
∫ x+(a+ε)Nτ

x

F (y)dy

≥ 1

a+ ε
E
∫ x+aNτ

x

F (y)dy(12)

for all random variables τ that satisfy (1). Since the choice of ε > 0 is arbitrary, we
conclude the lower bound. □
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Proposition 19. Let E(cT1 + Y1) = −a ≤ 0. Assume that either c ≤ 0 or the condition
(5) holds. If F ∈ S ∗, then

P{Mτ > x} ≤ 1 + o(1)

a
E
∫ aNτ

0

F (x+ y)dy

as x → ∞ uniformly for all random times τ ∈ [0,∞] that satisfy (1).

Proof. The maximum is always attained at a jump associated epoch, either prior to or at
the jump epoch.

Firstly consider the case where c ≤ 0 and hence the maximum is attained at a jump
epoch. Define θ0 = 0. By the strong law of large numbers, for any ε ∈ (0, a) there exists
an A < ∞ such that the stopping time

θ1 := inf{Tn : XTn
> n(−a+ ε) +A}

is finite with a small probability,

P{θ1 < ∞} ≤ ε.

As Xt ≤ A for all t < θ1, by the total probability law, for x > A,

P{Xθ1∧τ > x} =

∞∑
n=1

P{θ1 ∧ τ ≥ Tn, XTn−1
≤ (n−1)(−a+ ε) +A, XTn

> x}

≤
∞∑

n=1

P{τ ≥ Tn, XTn−1 ≤ n(−a+ ε)− c1, XTn > x}

≤
∞∑

n=1

P{τ ≥ Tn, Yn > x+ n(a− ε) + c1},(13)

due to c ≤ 0, where c1 := −a+ ε−A. Since {τ ≥ Tn} = {τ < Tn} and τ satisfies (1),

P{Xθ1∧τ > x} ≤
∞∑

n=1

P{τ ≥ Tn}F (x+ n(a− ε) + c1)

= E
Nτ∑
n=1

F (x+ n(a− ε) + c1).

Since F is a decreasing function,

P{Xθ1∧τ > x} ≤ 1

a− ε
E
∫ aNτ

0

F (x+ c1 + y)dy.

Taking into account that Mθ1∧τ ≤ max(A,Xθ1∧τ ), we conclude an upper bound, for
x > A,

P{Mθ1∧τ > x} ≤ P{Xθ1∧τ > x} ≤ Gτ (x),(14)

where the distribution Gτ on [A,∞) defined by its tail as

Gτ (x) := min

(
1,

1

a− ε
E
∫ aNτ

0

F (x+ c1 + y)dy

)
, x ≥ A,

is long-tailed because F is so. Hence

Gτ (x) ∼ 1

a− ε
E
∫ aNτ

0

F (x+ y)dy as x → ∞,(15)



12 S. FOSS — D. KORSHUNOV — Z. PALMOWSKI

uniformly for all τ ≥ 0. For k ≥ 2, define recursively stopping times θk as follows: on the
event {θk−1 < ∞},

jk := inf{n : Tn > θk−1 : XTn −Xθk−1
> (n− jk−1)(−a+ ε) +A}

and θk = Tjk . Then, by the renewal structure of the process,

P{θk < ∞ | θk−1 < ∞} = P{θ1 < ∞} ≤ ε.(16)

Similar to (14) we deduce, for all k,

P{Mθk∧τ −Xθk−1∧τ > x | θk−1 < ∞} ≤ Gτ (x).(17)

Since

Mτ =

∞∑
k=1

(Mθk∧τ −Mθk−1∧τ )

≤
∞∑
k=1

(Mθk∧τ −Xθk−1∧τ ),

it follows from (16) and (17) that

P{Mτ > x} ≤
∞∑
k=1

G∗k
τ (x)εk−1.

Now we need the following fact (a distant analogue of the well-known Kesten’s lemma)
which is proved in Appendix.

Lemma 20. Let a, ε > 0 and let F ∈ S ∗. Then, for any δ > 0, there exists a C(δ) < ∞
such that G∗n

τ (x) ≤ C(δ)(1 + δ)nGτ (x) for all τ ∈ [0,∞], x > 0, and n ≥ 1.

As the distribution F is strong subexponential, by Lemma 20 above, uniformly for all
τ ∈ [0,∞] satisfying (1),

P{Mτ > x} ≤ Gτ (x)(1 + o(1))

∞∑
k=1

kεk−1

∼ 1

(a− ε)(1− ε)2
E
∫ aNτ

0

F (x+ y)dy as x → ∞,

due to (15). Since we can choose ε > 0 as small as we please, this concludes the proof of
Proposition 19 in the case c ≤ 0.

Now proceed with the proof in the case c > 0 under the condition (5). We need to
slightly modify the starting point, because in the case c > 0 it is not any longer true that
the maximum can be only attained at a jump epoch Tn, instead it can be attained just prior
to that, at time epoch Tn − 0. We define θ1 as

θ1 := inf{Tn : XTn−0 > n(−a+ ε) +A}

and choose A sufficiently large that

P{θ1 < ∞} ≤ ε.



MAXIMA SAMPLING ON RANDOM TIME INTERVALS 13

Hence we observe that, for x > A,

P{Xθ1∧τ > x} ≤
∞∑

n=1

P{θ1 ∧ τ ≥ Tn, XTn−0 ≤ (n− 1)(−a+ ε) +A,

XTn+1−0 > x}

≤
∞∑

n=1

P{τ ≥ Tn, XTn−0 ≤ n(−a+ ε)− c1, XTn+1−0 > x}

≤
∞∑

n=1

P{τ ≥ Tn, Yn + c(Tn+1 − Tn) > x+ n(a− ε) + c1},

where c1 = −a+ ε−A. Since {τ ≥ Tn} = {τ < Tn} and since τ satisfies (1),

P{Xθ1∧τ > x} ≤
∞∑

n=1

P{τ ≥ Tn}P{Yn + c(Tn+1 − Tn) > x+ n(a− ε) + c1}.

Due to the condition (5),

P{Yn + c(Tn+1 − Tn) > y} ∼ F (y) as y → ∞,

which allows us to conclude the proof of Proposition 19 in the case c > 0 along the lines
of the earlier proof in the case c ≤ 0. □

4. APPLICATION TO COMPOUND POISSON PROCESS WITH LINEAR COMPONENT

For a compound Poisson process with linear component X where N = {Nt, t ≥ 0}
is a homogeneous Poisson process with intensity of jumps λ, we have ENt = tλ and
P{cT1 > x} = e−λx/c = o(F (x)) provided F is heavy-tailed. The following result holds.

Theorem 21. Let X be a compound Poisson process with linear component. If E(c/λ +
Y1) =: −a < 0 and the distribution F of Y +

1 is strong subexponential, then

P{Mτ > x} =
1 + o(1)

a
E
∫ x+aNτ

x

F (v)dv + o(F (x))

=
1 + o(1)

a
E
∫ x+aλτ

x

F (v)dv + o(F (x))

=
1 + o(1)

|EX1|
E
∫ x+|EX1|τ

x

P{X1 > v}dv + o(F (x))

as x → ∞ uniformly for all random times τ ∈ [0,∞] that do not depend on the future
increments of X .

Proof. The first equivalence in the theorem follows directly from the discussion on the
condition (1) in Introduction and from Theorem 5. We prove the second equivalence now,
doing so in several steps.

We start from the following analogue of the Wald–Kolmogorov–Prokhorov identity (see
[13]) that holds for Lévy processes, which has independent own interest.

Lemma 22. Let X be a Lévy process with finite drift m := EX1, and let τ be a random
time that does not depend on the future increments of X . If Eτ < ∞ then

EXτ = mEτ.
In addition, if σ2 = VarX1 < ∞, then

E(Xτ −mτ)2 = σ2Eτ.
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Based on Lemma 22, one can prove the following asymptotic equivalence.

Lemma 23. Let T > 0 and TT = {τ : τ ≤ T} be a family of random times that do not
depend on the future increments of N . If F is long-tailed then

E
∫ aNτ

0

F (x+ y)dy ∼ E
∫ aλτ

0

F (x+ y)dy ∼ aλEτF (x)

as x → ∞ uniformly for all τ ∈ TT .

The proofs of Lemmas 22 and 23 are given in Appendix.
Then the following result is straightforward.

Lemma 24. Let X be a Lévy process with finite drift m := EX1 and diffusion coefficient
σ2 = VarX1. Then, for any fixed ε > 0,

sup
τ

E(Xτ − (m+ ε)τ) < ∞.

Proof. The Lévy process Yt = Xt− (m+ ε)t, t ≥ 0 is negatively driven and its jumps are
square integrable, so

E sup
t>0

Yt < ∞,

hence the result follows. □

We are ready to prove the second equivalence in the statement of Theorem 21. For a
general τ , fix an ε > 0 and a T < ∞, and consider the following decomposition and the
upper bound

E
∫ x+aNτ

x

F (v)dv = E
∫ x+aNτ∧T

x

F (v)dv + E
(∫ x+aNτ

x+aNT

F (v)dv; τ > T
)

≤ E
∫ x+aNτ∧T

x

F (v)dv + E
(∫ x+a(Nτ−NT )

x

F (v)dv; τ > T
)

= E
∫ x+aNτ∧T

x

F (v)dv + E
∫ x+a(Nτ−NT )+

x

F (v)dv

=: E1 + E2.(18)

Fix an ε > 0. Then

E2 ≤ E
∫ x+a(λ+ε)(τ−T )+

x

F (v)dv + F (x)aE[(Nτ −NT )
+ − (λ+ ε)(τ − T )+]+

≤ E
∫ x+a(λ+ε)(τ−T )+

x

F (v)dv

+F (x)aE
{
sup
s≥0

{(NT+s)−NT )− (λ+ ε)s}; τ > T
}
.

We recall that the process N̂s = NT+s − NT , s ≥ 0, is independent of the event τ > T .
Hence by Lemma 24,

E2 ≤ E
∫ x+a(λ+ε)(τ−T )+

x

F (v)dv + c(ε)P{τ > T}F (x),

where the constant c(ε) depends on neither τ nor T . Further,

E
∫ x+a(λ+ε)(τ−T )+

x

F (v)dv ≤ λ+ ε

λ
E
∫ x+aλ(τ−T )+

x

F (v)dv,
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because the tail function F (x) is decreasing. Hence,

E2 ≤ (1 + ε/λ)E
(∫ x+aλ(τ−T )

x

F (v)dv; τ > T
)
+ P{τ > T}c(ε)F (x)

≤ (1 + ε/λ)E
(∫ x+aλτ

x

F (v)dv; τ > T
)
+ P{τ > T}c(ε)F (x).

Therefore, due to the long-tailedness of F , there exists an x̂ = x̂(T ) such that, for x ≥ x̂,

E2 ≤ (1 + ε/λ)E
(∫ x+aλτ

x

F (v)dv; τ > T
)
+ P{τ > T}2c(ε)F (x+ aλT ).

By Lemma 23, for all τ and for all sufficiently large x,

E1 ≤ (1 + ε)E
∫ x+aλ(τ∧T )

x

F (y)dy

= (1 + ε)E
(∫ x+aλτ

x

F (y)dy; τ ≤ T
)
+ (1 + ε)P{τ > T}F (x+ aλT ).

Thus, for all τ and sufficiently large x,

E1 + E2 ≤ (1 + ε̂)E
∫ x+aλτ

x

F (v)dv + P{τ > T}ĉF (x+ aλT ),

where ε̂ = εmax(1, 1/λ) and ĉ = 1 + ε+ 2c(ε). Since

P{τ > T}F (x+ aλT ) ≤ 1

aλT
E
(∫ x+aλτ

x

F (v)dv; τ > T
)
,

we conclude an upper bound

E1 + E2 ≤ (1 + ε̂+ ĉ/aλT )E
∫ x+aλτ

x

F (v)dv.

Firstly letting T → ∞ and then ε ↓ 0, we derive from (18) that

E
∫ x+aNτ

x

F (v)dv ≤ (1 + o(1))E
∫ x+aλτ

x

F (v)dv

as x → ∞ uniformly for all τ that do not depend on the future increments of Nt.
To get a matching lower bound we start with the inequality

E
∫ x+aNτ

x

F (v)dv ≥ E
∫ x+aNτ∧T

x

F (v)dv

+E
(∫ x+aNτ

x+aNT

F (v)dv; τ > T,NT ≤ (λ− ε)T
)
;

further arguments are quite similar to that used for the analysis of the right hand side terms
in the upper bound (18). □

5. PROOF OF THEOREM 9 FOR LÉVY PROCESS

Given the distribution of X1 is infinitely divisible, recall the Lévy–Khintchine formula
for its characteristic exponent Ψ(θ) := logEeiθX1 , for all θ ∈ R,

Ψ(θ) =
(
iαθ − 1

2
σ2θ2

)
+

∫
0<|x|<1

(eiθx−1−iθx)Π(dx) +

∫
|x|≥1

(eiθx−1)Π(dx)

=: Ψ1(θ) + Ψ2(θ) + Ψ3(θ);
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see, e.g. Kyprianou [17, Sect. 2.1]. Here Π is the Lévy measure concentrated on R \ {0}
and satisfying

∫
R(1∧ x2)Π(dx) < ∞. Let X(1), X(2) and X(3) be independent processes

given in the Lévy–Itô decomposition Xt
d
= X

(1)
t + X

(2)
t + X

(3)
t , t ≥ 0, where X(1)

is a drifted Brownian motion with characteristic exponent given by Ψ(1), X(2) a square
integrable martingale with an almost surely countable number of jumps on each finite time
interval which are of magnitude less than unity and with characteristic exponent given by
Ψ(2), and X(3) a compound Poisson process with intensity

λ := Π(R \ (−1, 1))

and jump distribution
F (dx) = Π(dx)/λ

concentrated on R \ (−1, 1). It is known—see, e.g. Kyprianou [17, Theorem 3.6] or
Sato [18, Theorem 25.17]—that the process Zt := X

(1)
t + X

(2)
t , t ≥ 0 possesses all

exponential moments finite which allows us to show the following result, see e.g. Corollary
8 in Korshunov [15].

Proposition 25. (i) The distribution of X1 is long-tailed if and only if the distribution of
X

(3)
1 is so. In both cases, P{X1 > x} ∼ P{X(3)

1 > x} as x → ∞.
(ii) The distribution of X1 is strong subexponential if and only if the distribution F is

so. In both cases, P{X1 > x} ∼ Π(x,∞) as x → ∞.

Proof of Theorem 9. Since X1 is assumed to be strong subexponential, by Proposition 25
the distribution F is strong subexponential too and Π(x) ∼ P{X1 > x} ∼ λF (x) as
x → ∞.

The proof is split into two parts, where we obtain matching lower and upper bounds.
We start with the lower bound.

Consider the sequence of jump epochs Tn of the compound Poisson component X(3),
that is when Yn := XTn −XTn−0 ∈ R \ (−1, 1). Then, as discussed in Introduction, the
τ satisfies the condition (1). The distribution F of Y is long-tailed by Proposition 25.

For the lower bound for P{Mτ > x}, we can literally follow the lines of the proof of
Proposition 18 with a := |EX1|/λ, λ := Π(R \ (−1, 1)), and then we arrive at the lower
bound, as x → ∞,

P{Mτ > x} ≥ 1 + o(1)

a
E
∫ x+aNτ

x

F (y)dy + o(F (x))

for all random variables τ that do not depend on the future increments of X , where N is the
Poisson process with intensity λ that counts the number of jumps of X(3). As explained in
Section 4, this implies the required lower bound,

P{Mτ > x} ≥ 1 + o(1)

m
E
∫ x+mτ

x

P{X1 > y}dy + o(F (x)) as x → ∞.(19)

Now let us proceed with a matching upper bound. Similar to the proof for a renewal
process, we define θ0 = 0 and a stopping time

θ1 := inf{t : Xt > n(−a+ ε) +A for some n and t < Tn}
= inf{t : Xt > n(−a+ ε) +A for some n and t ∈ [Tn−1, Tn)}.

By the strong law of large numbers for Xt, for any ε ∈ (0, a), there exists an A < ∞ such
that

P{θ1 < ∞} ≤ ε.
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The upcrossing of the level n(−a + ε) + A by the Gaussian component X(1) results in
zero overshoot, while the square-integrable martingale X(2) leads to an overshoot of size
at most unity. Hence, for A > 1 and x > A, the event Xθ1 > x can only occur due to a
jump of the compound Poisson process X(3). Therefore, by the total probability law, for
A > 1 and x > A,

P{Xθ1∧τ > x}

≤
∞∑

n=1

P{θ1 ∧ τ ≥ Tn, XTn−0 ≤ n(−a+ε) +A, Xt > x for some t ∈ [Tn, Tn+1)}

≤
∞∑

n=1

P{τ ≥ Tn, Yn +∆n > x+ n(a− ε)−A},

where ∆n := sup(Xt − XTn
, t ∈ [Tn, Tn+1). Since {τ ≥ Tn} = {τ < Tn} and since

τ satisfies (1) due to its independence of the future increments of X and the discussion in
Introduction,

P{Xθ1∧τ > x} ≤
∞∑

n=1

P{τ ≥ Tn}P{Yn +∆n > x+ n(a− ε)−A}

= E
Nτ∑
n=1

P{Yn +∆n > x+ n(a− ε)−A}.

Since only X(1) and X(2) contribute to the value of ∆n and since the exponentially dis-
tributed time interval [Tn, Tn+1) is independent of them, the distribution of the random
variable ∆n is light-tailed and hence

P{Yn +∆n > y} ∼ F (y) as y → ∞.

Therefore, as x → ∞, uniformly for all τ ,

P{Xθ1∧τ > x} ≤ (1 + o(1))E
Nτ∑
n=1

F (x+ n(a− ε)−A)

∼ E
Nτ∑
n=1

F (x+ n(a− ε))

because F is long-tailed. Since F is a decreasing function,

E
Nτ∑
n=1

F (x+ n(a− ε)) ≤ 1

a− ε
E
∫ aNτ

0

F (x+ y)dy.

Taking into account that Mθ1∧τ ≤ max(A,Xθ1∧τ ), we conclude the upper bound, for
x ≥ x0,

P{Mθ1∧τ > x} ≤ P{Xθ1∧τ > x} ≤ Gτ (x),(20)

where x0 > A is sufficiently large and the distribution Gτ on [x0,∞) is defined by its tail
as

Gτ (x) := min

(
1,

1 + ε

a− ε
E
∫ aNτ

0

F (x+ y)dy

)
, x ≥ x0.
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For k ≥ 2, let us recursively define stopping times θk as follows: on the event {θk−1 <
∞},

θk := inf{t > θk−1 : Xt −Xθk−1
> (n−jk−1)(−a+ε)+A for some n and t < Tn}

where jk−1 is such that θk−1 ∈ [Tjk−1
, Tjk−1+1). By the renewal properties of the Lévy

process X ,

P{θk < ∞ | θk−1 < ∞} = P{θ1 < ∞} ≤ ε.(21)

Similar to (20) we deduce, for all k,

P{Mθk∧τ −Xθk−1∧τ > x | θk−1 < ∞} ≤ G(x).(22)

Since

Mτ =

∞∑
k=1

(Mθk∧τ −Mθk−1∧τ )

≤
∞∑
k=1

(Mθk∧τ −Xθk−1∧τ ),

it follows from (21) and (22) that

P{Mτ > x} ≤
∞∑
k=1

G∗k
τ (x)εk−1.

As the distribution F is strong subexponential, by Lemma 20, uniformly for all τ ,

P{Mτ > x} ≤ Gτ (x)(1 + o(1))

∞∑
k=1

kεk−1

∼ 1 + ε

(a− ε)(1− ε)2
E
∫ aNτ

0

F (x+ y)dy as x → ∞,

due to (15). Letting ε ↓ 0, we conclude the desired upper bound which together with the
lower bound (19) implies the required asymptotics. □
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APPENDIX

Proof of Lemma 20. By Fubini’s Theorem,

1

a− ε
E
∫ aNτ

0

F (x+ y)dy =
1

a− ε

∫ ∞

0

P{Nτ ∈ dz}
∫ az

0

F (x+ y)dy

=
1

a− ε

∫ ∞

0

F (x+ y)dyP{Nτ > y/a}

=

∫ ∞

0

F (x+ y)µτ (dy),
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where the measure

µτ (dy) =
1

a− ε
P{Nτ > y/a}dy

satisfies the condition

µτ (x, x+ 1] ≤ 1/(a− ε) for all x and τ.

In addition, the distribution F is strong subexponential, so Corollary 3.36 from [8] or
Lemma 9 from [3] are applicable and we conclude the result. □

Proof of Lemma 22. For any fixed T , the random variable τ ∧ T also does not depend on
the future increments of X as τ , hence

E(XT −Xτ∧T ) = EE{XT −Xτ∧T | τ}
= mE(T − τ ∧ T ).

Therefore,

mT = EXT

= EXτ∧T + E(XT −Xτ∧T )

= EXτ∧T +mT −mE(τ ∧ T ),

which implies EXτ∧T = mE(τ ∧T ) for all T . Hence, by the Lebesgue monotone conver-
gence theorem applied to τ ∧ T ,

EXτ∧T → mEτ as T → ∞.

On the other hand, EXτ∧T → EXτ because the random variable Xτ is integrable. Indeed,

|Xτ | ≤
[τ ]+1∑
n=1

Yn,

where the random variables

Yn := sup
s∈(0,1]

|Xn−s −Xn−1|, n ≥ 1,

are i.i.d. with finite mean value because X is a Lévy process with finite drift. Since [τ ] +
1 does not depend on the future of the sequence {Yn}, by the Kolmogorov–Prokhorov
equality,

E
[τ ]+1∑
n=1

Yn = (E[τ ] + 1)EY1 < ∞,

so the proof of the first statement is complete.
For the second statement, firstly notice that, for a bounded τ , that is τ ≤ T for some

T < ∞,

σ2T = E(XT −mT )2

= E(Xτ −mτ)2 + 2E(Xτ −mτ)(XT −Xτ −m(T − τ))

+E(XT −Xτ −m(T − τ))2.

Conditioning on τ implies that

E(Xτ −mτ)(XT −Xτ −m(T − τ))

= EE{(Xτ −mτ)(XT −Xτ −m(T − τ) | τ}
= 0,
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because XT −Xτ −m(T − τ) is independent of Xτ −mτ given τ . Similarly,

E(XT −Xτ −m(T − τ))2 = EE{(XT −Xτ −m(T − τ))2 | τ}
= σ2E(T − τ).

Combining the last three equalities we conclude that

E(Xτ −mτ)2 = σ2T − E(XT −Xτ −m(T − τ))2

= σ2Eτ

for any bounded τ . For an unbounded τ , we apply it to τ ∧ T and then let T → ∞ as in
the proof of the first statement. □

Proof of Lemma 23. As we know from Lemma 22, ENτ = λEτ and E(Nτ−λτ)2 = λEτ .
Therefore,

EN2
τ = E(Nτ − λτ)2 + 2λENττ − λ2Eτ2

≤ E(Nτ − λτ)2 + 2λTENτ .

due to τ ≤ T . Thus,

EN2
τ ≤ λEτ + 2λTλEτ

= (2Tλ2 + λ)Eτ,

which in turn yields, for all A > 0,

E{Nτ ; Nτ > A} ≤ EN2
τ

A

≤ (2Tλ2 + λ)
Eτ
A

,

so, owing to Lemma 22 again,

E{Nτ ; Nτ ≤ A} = ENτ − E{Nτ ; Nτ > A}

≥
(
λ− 2Tλ2 + λ

A

)
Eτ.(23)

Further, on the one hand,

E
∫ x+aNτ

x

F (v)dv ≤ F (x)E(aNτ ) = aλEτF (x).(24)

On the other hand, for any fixed A,

E
∫ x+aNτ

x

F (v)dv ≥ E
(∫ x+aNτ

x

F (v)dv; Nτ ≤ A
)

≥ F (x+ aA)E{aNτ ; Nτ ≤ A}

≥
(
aλ− 2Taλ2 + λ

A

)
EτF (x+ aA),

by (23). Thus, for any fixed ε > 0, we can choose a sufficiently large A such that

E
∫ x+aNτ

x

F (v)dv ≥ (aλ− ε/2)EτF (x+ aA)

≥ (aλ− ε)EτF (x)(25)
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for all sufficiently large x, due to the long-tailedness of the distribution F . Combining the
bounds (24) and (25), we conclude the first uniform asymptotics stated in the lemma,

E
∫ x+aNτ

x

F (v)dv ∼ aλEτF (x) as x → ∞.

Taking into account that

aλEτF (x+ T ) ≤ E
∫ x+aλτ

x

F (v)dv ≤ aλEτF (x),

we also conclude the second uniform equivalence of the lemma,

E
∫ x+aλτ

x

F (v)dv ∼ aλEτF (x) as x → ∞.

□
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