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Optimal Fare and Headway for a Demand Adaptive Paired-line Hybrid Transit 

System in a Rectangular Area with Elastic Demand 

Abstract: Demand adaptive paired-line hybrid transit systems that integrate fixed- and 

flex-route transit have emerged in the last decade and attracted increasing attention 

because of their potential to improve accessibility for passengers. To facilitate the 

operation of such a hybrid transit system, this study develops a model to determine the 

optimal fare and headways associated with fixed- and flex-route transit along a 

rectangular corridor. Compared with existing literature, the novelty of this study lies in 

designing the fare structure while simultaneously considering demand elasticity and 

passenger behaviour. A continuous approximation modelling approach is employed to 

derive the agency’s and travellers’ cost components. Using these, a nonlinear 

programming optimisation model is formulated to minimise the total user cost subject to 

the agency’s nonnegative revenue constraints and passengers’ route choice behaviour, 

which is characterised as a path-size logit model. Numerical experiments are performed 

using a stylised network to examine the properties of the model, in which the solution is 

obtained by combining a brute force method that enumerates headway and fare 

combinations and an iterative method that determines equilibrated passenger choices. The 

results show that as potential demand density increases, fare and headway fluctuate and 

drop, while the percentage of passengers choosing to ride on flex-route transit increases. 

In addition, there may be an optimal maximum offset distance, which is defined as the 

width of the corridor to be covered by the transit system, when the potential demand 

density is low, leading to minimum user cost and maximum travel demand within the 

service area.  

Keywords: Public Transit; Transit Fare; Hybrid Transit System; Flex-route Transit; 

Elastic Demand 

1. Introduction 

Public transit is the backbone of urban transport and vital in promoting sustainable urban 

mobility. It can be broadly categorised into fixed-route and flex-route transit. The former refers 

to conventional transit, with predetermined fixed operational features, including fixed routes, 
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stops, schedules, and frequencies (Amirgholy et al., 2017; Balke et al., 2000; Barnett, 1970; 

Eichler and Daganzo, 2006; Kocru and Hendrickson, 1983; Feng et al., 2024; Xu et al., 2023). 

In contrast, the latter allows transit vehicles to deviate from fixed settings to obtain various 

levels of flexibility and thus reduce operational costs and improve the level of service (Daganzo, 

1978; Daganzo, 1984; Fu, 2002; Li et al., 2023; Pecherski Sabinik and Bar-Gera, 2022; Qiu et 

al., 2014; Quadrifoglio et al., 2008; Zhao and Dessouky, 2008; Zheng et al., 2019). The merit 

of fixed-route transit lies in its regularity, which commuters can learn to accommodate and 

memorise. The advantage of flex-route transit is its capacity to offer door-to-door services, 

rivalling or complementing emerging mobility services, such as ride-hailing and car-sharing. 

To achieve the benefits of both services, more and more public transit operators are deploying 

and supplementing flex-route services with conventional transit services, resulting in a hybrid 

transit system. This trend is attracting growing attention among those seeking to optimising the 

operation of flex-route and hybrid transit systems.  

Hybrid transit is a combination of fixed-route and flex-route transit. There are various 

ways to integrate the two types of services. Stein (1978) divided a service area into zones and 

deployed fixed-route and flex-route transit for inter- and intra-zone services, respectively, so 

that passengers could use flex-route transit to reach an interchange station and then travel to 

another zone via fixed-route transit. In a similar setting, Aldaihani et al. (2004) determined the 

optimal number of zones to minimise a generalised cost. In the above two studies, flex-route 

transit can serve all passengers within a zone. In contrast, Chen and Nie (2017) proposed a 

demand adaptive paired-line hybrid transit (DAPL-HT) system that only allows flex-route 

transit to serve passengers whose distance from their origins/destinations to the nearest transfer 

stop exceeds a certain threshold. As a result, the entire service area is divided into non-

overlapping sub-areas exclusively served by flex-route or fixed-route transit. Flex-route transit 

vehicles can be dispatched at intervals coordinated with fixed-route vehicles, which are paired 
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in the DAPL-HT system. Transit operators can easily reallocate resources between fixed- and 

flex-route services to cater to varying demands when operating such a system. The DAPL-HT 

system was compared with the fixed-route transit proposed by Daganzo (2010) and the flex-

route transit proposed by Nourbakhsh and Ouyang (2012), and the results demonstrated that the 

former outperforms the other two in various scenarios. 

In terms of the methodologies used to optimise a transit system, mathematical 

programming models (e.g., bilevel programming, mixed integer nonlinear programming 

(MINP) and mixed integer linear programming (MILP)), and analytical continuous 

approximation (CA) models are prevalent. Table 1 chronologically summarises the literature 

on hybrid transit system optimisation and the corresponding methodologies. However, these 

studies focus on hybrid transit network design and aim to jointly optimise fixed-route and flex-

route services to improve system performance without considering adjusting the transit fare, a 

fundamental variable in operating transit systems. Although Pinto et al. (2020) and Luo and 

Kang (2022) consider fares, they only set fares as input parameters, rather than variables, 

overlooking the possibility of adjusting the value of transit fares to impact passenger choices 

and the corresponding consequences for agency revenue. Practically speaking, a transit fare is 

more than a single monetary value; rather, how and to whom it is charged are also important. 

This is termed ‘fare strategy’ in this study. Commonly mentioned fare strategies in the literature 

and practice include a flat fare (Chien and Tsai, 2007; Kocru and Hendrickson, 1983; Lam and 

Zhou, 2000; Zhou et al., 2005), distance-based fare (Huang et al., 2016; Kilani et al., 2014; Li 

et al., 2009; Sun et al., 2019; Wang et al., 2018; Yook and Heaslip, 2015), time-based fare 

(Tirachini et al., 2014), service-based fare (Fleishman et al., 1996), sectional fare (Sun and 

Szeto, 2019; Wang and Qu, 2017), congestion fare (Liu et al. 2023), and free fare (Metaxatos, 

2013). In brief, most existing studies focus on pricing for a fixed transit route (Bertsimas et al., 

2020; Chien and Tsai, 2007; Guo et al., 2021; Huang et al., 2016; Huang, 2002; Sun and Szeto, 
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2019; Tirachini et al., 2014; Yang et al., 2023; Zhou et al., 2005). There is limited research on 

pricing flex-route transit (Kim and Schonfeld, 2015; Ma et al., 2022; Ni et al., 2021), not to 

mention the hybrid transit systems (Table 1). It is worth noting that the fixed-route fares in 

some countries, such as China, are controlled by the government, irrespective of demand 

densities and service quality. Given this reality, this study concentrates on designing the fare 

for flex-route transit in a hybrid transit system, for which, to the best of our knowledge, there 

lacks a systematic methodology. 

[Table 1 near here] 

Moreover, Table 1 reveals that most studies of hybrid transit assign passengers to paths 

based on their origin-destination to achieve a certain objective, rather than embedding a choice 

model to capture passengers’ choice behaviour in response to service changes, as well as that 

studies of hybrid transit services rarely consider demand elasticities. However, these two factors 

should not be ignored when optimising a hybrid transit system, as passenger behaviour and 

ridership are sensitive to fare and other factors, such as walking, waiting and in-vehicle travel 

times. In this study, we aim to minimise the total user travel cost from the passengers’ 

perspective while ensuring that the operators’ revenue is non-negative. This can be done when 

government-funded agencies operate public transport with the objective of providing user-

centred transit services. To a certain extent, the transit system investigated in this study is 

similar to the DAPL-HT system proposed by Chen and Nie (2017), who established the 

superiority of a hybrid transit system. Nonetheless, in contrast to Chen and Nie (2017), the 

hybrid system examined in this study focuses on a transit corridor that contains one fixed route 

and one flex route, which resembles a segment of the MTA Line 646 flex-route service in Los 

Angeles (Qiu et al., 2014; Spasovic et al., 1994; Zheng et al., 2019). Although this study builds 

on the work of Chen and Nie (2017), several nontrivial revisions and extensions have been 

made to overcome the limitations of previous studies. 
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First, we adopt an elastic demand function, instead of assuming a constant demand. This 

captures the reality that a better transit service can attract users and vice versa. Then, to solve 

the model with elastic demand, an iterative approach is devised. Second, we allow all 

passengers in the service area to freely choose whether to ride in a flex-route vehicle, lifting the 

restriction that only passengers whose distance from their origins/destinations to the nearest 

fixed stop exceeds a certain threshold are served by flex-route transit. This is more general than 

the model developed by Chen and Nie (2017). Third, we consider four types of passengers 

instead of two, as in Chen and Nie (2017), depending on the user’s route choice for transit travel 

within the service area. This offers a higher resolution and is more realistic, but it necessitates 

a new derivation of agency and user costs. Finally, this study proposes a fare strategy in which 

the four types of passengers using the hybrid service pay different fares depending on the 

service they use. Meanwhile, the fare associated with the flex-route transit is explicitly 

considered as a decision variable. To sum up, the main contributions of this study include the 

following: 

(1) Propose a method via which to optimise the fare for flex-route transit in a DAPL-HT 

system, considering demand elasticity. 

(2) Design a differentiated fare strategy for four types of passengers based on their choices.  

(3) Devise corresponding user costs via continuous approximation modelling. 

(4) Formulate a nonlinear optimisation model to determine the fare and headway and 

develop a solution methodology to solve the model. 

(5) Conduct experiments to investigate the model properties and demonstrate the effect of 

various parameters. 

The remainder of the paper is organised as follows. Section 2 formally describes the 

DAPL-HT system and the problem investigated in this study. Section 3 devises the optimisation 
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model for the problem and examines the properties of the model. The results of the numerical 

experiments are presented and discussed in Section 4. Finally, Section 5 summarises the main 

findings of this paper and provides future research directions. 

2. System Description and Problem Statement 

In this study, a realistic road network can be approximately represented using rectilinear 

movement, as shown in Figure 1 (Quadrifoglio et al., 2008). The service area has a width of 2s 

(km) and a length of D (km) and is delimited by two terminals, of which one may be located 

close to a subway station and the other at a high-demand density site. In line with Chen and Nie 

(2017), the DAPL-HT system serving the two terminals consists of fixed- and flex-route 

(demand-adaptive lines) transit. The flex-route transit is designed to be paired with the fixed-

route transit and pick up passengers at temporary stops within the study area based on 

passengers’ requests. For the fixed-route transit, there are N stations, and the distance between 

the adjacent stops equals 2s. For the flex-route transit, the maximum allowable deviation width 

from the fixed route is s. Accordingly, the area serviced by the system is divided into n square 

grids, with a constant spacing of 2s, satisfying 2n D s= . The headway for the fixed- and flex-

route transit is denoted as 1H  (h) and 2H  (h), respectively, and influenced by the demand level. 

Other operational characteristics of the DAPL-HT system are as follows: the average cruising 

speed for all transit vehicles is given by vehv  (km/h). The time lost per fixed stop due to 

deceleration and the acceleration is lostτ   (s/stop), and the additional pick-up and drop-off time 

required per passenger for flex-route transit is pickτ  (s/pax). 

[Figure 1 near here] 

Regarding the system’s operation, it is assumed that a control centre assembles 

passengers’ travel requests and dispatches flex-route vehicles in real time. When a flex-route 
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transit vehicle drives within the area between fixed stops k  and 1k +  , the vehicle receives the 

requests from the area between fixed stops 1k +  and 2k +  (Figure 1). Then, the vehicle 

formulates and executes an optimal route and visits optimal temporary stops to pick up the 

accepted passengers in the area between fixed stops 1k +  and 2k + . After all the requests are 

granted, the vehicle visits stop 2k + , which is the last stop within the area between stops 1k +  

and 2k + , and then begins serving the following area. The vehicle confirms the requests it can 

handle without spending more time travelling between k  and 1k +  than allowed. Additional 

requests will be passed on to the next vehicle in line.  

To simplify the analysis, we introduce the following assumptions. Except for the 

assumption related to elastic demand, other assumptions are adopted from Chen and Nie (2017) 

and Daganzo (2010): 

A1. Passengers always use the stops closest to their origin and destination.  

A2. The service area generates 0λ  potential passenger requests per hour per unit area, 

and the potential number of travellers is exogenous and independent of services within the area. 

A3. An elastic demand function is adopted to represent travellers’ responses to changes 

in the travel utility (i.e., the actual number of passengers using DAPL-HT is subject to the 

expected utility, which varies under different transit fare and headway settings).  

A4. Passengers send their requests for the flex-route service to a control centre prior to 

their desired departure time, and these requests are accepted on a first-come first-serve basis.  

A5. If there is no demand, the flex-route vehicle moves along a fixed route. 

A6. There is no further transfer penalty between fixed- and flex-route transit services. 

Based on the preceding description, we will determine the optimal headways associated 

with the two transit types and determine a fare strategy for passengers using the hybrid transit 

system to minimise total user cost, given the constraint that the agency’s revenue is 
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nonnegative. Regarding fare strategy, a flat fare is proposed for fixed-route transit, which is in 

line with prevailing practices in most cities in China. For flex-route transit, the fare is explicitly 

determined by the model, as optimising flex-route transit fare is identified as a research gap. 

The agency’s profit is the difference between total fare income and operational cost. The former 

depends on the actual number of passengers served, and the latter is determined by vehicle 

travel distance and the fleet size required. 

3. Modelling 

This section begins by defining four types of passengers and an elastic demand function. Then, 

the agency cost associated with the DAPL-HT system is calculated. The corresponding cost 

components for each passenger type are derived via continuous approximation. Finally, an 

optimisation model is formulated to determine the optimal headways for the two transit modes, 

1H  and 2H , and the fare for flex-route transit, 2f , to minimise total user cost. The main 

notations used are listed in Table 2.  

[Table 2 near here] 

3.1. Passenger classification and elastic demand 

3.1.1. Four types of passengers  

The passengers travelling in the area served by the DAPL-HT system can be divided into four 

types based on their route choice (see Figure 2). In the following description, the fixed stops 

closest to the passengers’ origins (destinations) are called origin (destination) stops. Meanwhile, 

fixed-route transit is simplified to fixed, and flex-route transit is simplified to flex.  

• Type I: Origin-walk-Origin Stop-fixed-Destination Stop-walk-Destination.  

• Type II: Origin-walk-Origin Stop-fixed-Destination Stop-flex-Destination.  
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• Type III: Origin-flex-Origin Stop-fixed-Destination Stop-walk-Destination.  

• Type IV: Origin-flex-Origin Stop-fixed-Destination Stop-flex-Destination.  

[Figure 2 near here] 

Denoting the proportions of the four types of passengers as Ip  , IIp  , IIIp  and IVp , we 

have I II III IV 1p p p p+ + + = . Type I passengers only ride the fixed-route transit line once during 

their journeys. Type II and Type III passengers travel via the fixed-route and flex-route transit 

lines each once. Type IV passengers use the flex-route transit line twice and the fixed-route 

transit line once along their journeys (see Figure 2). Note that except for those of Type I 

passengers, trips may involve transfers between fixed- and flex-route services. 

User route choices and their probabilities can be characterised by the well-established 

multinomial logit (MNL) model (Ben-Akiva et al., 1985). However, this model may not suit 

this study, as explained below. As shown in Figure 2, a passenger’s travel path is divided into 

three segments: the first and the third segments involve the option of walking or taking a flex-

route vehicle, and the second involves taking a fixed-route vehicle. Clearly, there are overlaps 

among the four options. As a result, there is a correlation, leading to a violation of the 

independence of irrelevant alternatives assumption, which undergirds the MNL model. To 

address this, the path size logit (PSL) model is adopted to estimate the passengers’ distribution 

among the four options (e.g., Ben-Akiva and Bierlaire, 1999; Duncan et al., 2020). 

Mathematically, it is given by the following equations:  

 
( )( )

( )( ) ( ) ( )( )
exp ln 1

exp ln exp

j j
j

k kk k j k jk

u
p

u u u
β

θ β γ

θ β γ γ γ θ∈Ω ∈Ω

− +
= =

− + − −∑ ∑
 , (1) 
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where 

 ( ) time
j A j W j T j F ju w A w W w T c w F= + + +  . (2) 

 
1

j

b
j

b j bjj

t
t

γ
δ∈Γ ∈Ω

= ∑ ∑  (3) 

In Equation (1), θ  and β  are the scaling parameters, jγ  is the correction term for Type 

j∈Ω  passenger routes. In Equation (2), jA , jW  , jH  and jF  denote the average walking 

time, average waiting time, average in-vehicle travel time and fare, respectively, for Type j   

passengers. The cost component is calculated in Section 3.3, where Aw   , Ww  , Tw  and Fw  are 

the coefficients of the corresponding units. In Equation (3), bt  is the travel cost of segment b  

along a Type j  route, jt  is the sum of the travel costs for all segments of a Type j  route and 

the time component is calculated in Section 3.3. bjδ  is 1 if segment b is on a Type j  route and 

0 otherwise. 

3.1.2. Elastic demand function 

The actual demand density of flex-route transit services is affected by in-vehicle time, waiting 

time and fare (Kim and Schonfeld, 2015; Yang et al., 2021). In addition to flex-route transit, 

some passengers (Type I, Type II, and Type III) can walk rather than take flex-route vehicles 

to fixed stops to take fixed-route transit in the DAPL-HT system. Therefore, the actual demand 

density of DAPL-HT services is also affected by walking time. Overall, passenger demand is 

subject to the utility of the user cost, including walking time, waiting time, in-vehicle time and 

fare. Accordingly, following Sun and Szeto (2019), the logit-based elastic demand function is 

as follows: 
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 ( )( )0
1 ln exp j

j
uλ λ ψ θ

θ ∈Ω

 
= − − − ⋅ 

 
∑  , (4) 

where ju  is given by Equation (2).  

3.2. Agency cost 

The agency’s hourly operation costs for the DAPL-HT system depend on the fleet size and total 

travel distance. Mathematically, the operation cost per hour is defined by as follows: 

 veh dist
oper i i

i
C c m c d

∈Φ

= +∑  . (5) 

Essentially, we adopt a cost similar to that of Chen and Nie (2017) and Daganzo (1984) 

to compute the total expected service distance and fleet size. In what follows, we briefly 

elaborate on the computational process of the two components. 

3.2.1. Service distance   

The total expected service distance is calculated by dividing the round-trip distance by the 

headway. The calculation of the round-trip distance varies between the two types of services. 

For fixed-route transit, given round trip distance 2D and headway 1H , the expected hourly 

travel distance is computed as 12D H . For flex-route transit, the total distance per round trip 

includes the transverse and longitudinal distances that must be travelled to pick up and drop off 

passengers. The expected transverse distance is 2D, which is the same as the round-trip distance 

for the fixed-route service. The expected longitudinal distance depends on the number of 

passenger trips served. It can be derived that the expected longitudinal distance per passenger 

is 2 3s  and the number of passenger trips generated along the route per round trip is 22Ds Hλ

. Meanwhile, only Type II, Type III, and Type IV passengers will be served by flex-route transit. 
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Thus, the total expected longitudinal distance per round trip for flex-route transit is given by 

{ }
2

2 II,III,IV
4

3 jj
Ds H pλ

∈∑  , which is consistent with that in Daganzo (1984). In addition, 

because the flex-route vehicles will stop at each stop, they will incur additional longitudinal 

distance. The average longitudinal distance between a flex-route vehicle and a fixed stop is 2s , 

and the number of fixed stops is N. Therefore, the average additional longitudinal distance is 

2( 1) 2 2N s D− =  per round trip. 

Based on the above analysis, the average distance travelled per hour via fixed-route 

transit and flex-route transit can be calculated as follows:  

 

{ }

2

II,III,IV

2 , 1 

2.5 4 , 2
3

i
i

j
ji

D i
H

d
D Ds p i

H
λ

∈

 =
= 
 + =


∑
 . (6) 

3.2.2. Fleet size 

Given the total expected service distance per hour, the corresponding number of vehicles 

required can be obtained by dividing the total distance by the average distance travelled per 

vehicle within one hour, as expressed by the following: 

 ,i
i

i

dm i
v

= ∀ ∈Φ  ,  (7) 

 

{ }

lost
veh

pickveh
II,III,IV

2( 1) , 1

4 , 2

i

ii

ii
j

j

d N i
v Hd
dv Ds p i

v

τ

τ λ
∈

− + =
= 
 + =


∑
 , (8) 

where iv   in Equation (7), to a certain extent, can be interpreted as an effective speed after 
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considering all the time consumed during a round trip. Given such an interpretation, Equation 

(8) is derived from the perspective of time consumption. On the right-hand side of this equation, 

the first term computes the cruising time, and the second term computes the dwell time at the 

station and the time required for picking up and dropping off passengers, respectively, for fixed- 

and flex-route services (Chen and Nie, 2017; Daganzo, 2010). Then, by substituting Eq. (8) into 

Eq. (7), we can obtain the fleet size.  

3.3. User cost 

3.3.1. User trip time cost 

The expected total user time is defined as the sum of three attributes: expected walking time 

(A), waiting time (W), and in-vehicle travel time (T). Mathematically, it is written as follows: 

 Z A W T= + +  (9) 

In the following, we compute the cost attribute for each passenger type separately and then 

derive the total cost. 

3.3.1.1.  Walking time 

The walking time for a certain type of passenger is computed according to their walking 

distance. The total expected walking time for a trip is expressed by the following:  

 
walk

j
j j j

j j

l
A p A p

v∈Ω ∈Ω

= =∑ ∑   , (10) 

where jl   is the expected walking distance for a passenger of Type j , walkv  is the walking 

speed, jA   is the average walking time for a passenger of type j  and jp  is the proportion of 

passenger type j . Because the proposed system operates in a rectangular corridor and the 
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service area is divided into multiple square grids with a constant spacing of 2s, the walking 

distance between a point (origin or destination of passenger) and the nearest fixed stop is 

approximately the sum of the transverse and longitudinal distances. Given that the trip origins 

and destinations are uniformly and independently distributed in the service area, the expected 

walking distance for passengers is the distance from the centre of mass of the service area to 

the nearest fixed stop (i.e., 2 2l s s= ⋅ = ). For Type I passengers who only use fixed-route 

transit, we have k
I

wal2l l v= . Type II and Type III passengers may walk once from the 

origin/destination to the nearest fixed stop, and thus, k
II III

wall l l v= = . Because Type IV 

passengers take flex-route transit between a fixed stop and their origins/destinations without 

walking, their walking distance is zero. Finally, we can obtain the average walking time per 

passenger via Equation (10). 

3.3.1.2.  Waiting time 

The total expected waiting time is computed via the following:  

 j j
j

W W p
∈Ω

= ∑  , (11) 

where jW  denotes the waiting time for passenger Type j . In general, we follow the prevailing 

literature and approximate the expected waiting time for both types of services as half of the 

headway (Aldaihani et al., 2004; Nourbakhsh and Ouyang, 2012). For passengers only using 

fixed-route transit (Type I passengers), this can be computed straightforwardly and is given by 

I 1 2W H=  . For Type II and Type III passengers, because they travel via fixed-route transit and 

flex-route transit once during the journey, respectively, the waiting time is equal to the sum of 

the expected waiting time at the temporary origin stop and the destination fixed stop, indicating 

that ( )II III 1 22 2W W H H= = + . Finally, for Type IV passengers, the waiting time equals the 
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sum of the expected waiting time at the temporary origin stop, origin fixed stop, and destination 

fixed stop, leading to ( )IV 1 22W H H= +  .  

3.3.1.3.  In-vehicle travel time 

The total expected in-vehicle travel time is computed as follows:  

 
,

j
j j j

i j ji

r
T p T p

v∈Φ ∈Ω ∈Ω

= =∑ ∑  , (12) 

where jr  is the in-vehicle travel distance of passenger Type j  and iv  is the vehicle travel speed 

for the two forms of transits. To derive the travel distance for each passenger type, we first 

denote the expected in-vehicle passenger travel distances for the fixed-route transit and flex-

route transit as 1r  and 2r , respectively. Then, for Type I passengers, we have I I 1 Ir p r p= , where 

the left-hand side represents the total expected passenger travel distance for Type I passengers 

and the right-hand side represents the total passenger in-vehicle travel distance for the fixed 

transit route for Type I passengers based on its proportion. Similarly, for the other three types, 

we have ( ) { }1 2 , II, IIIj j jr p r r p j= + ∀ ∈  and ( )IV IV 1 2 IV2r p r r p= + . In what follows, we will 

focus on computing 1r  and 2r . 

To compute the expected in-vehicle travel distance for fixed-route transit, 1r , we adopt 

the method developed by Aldaihani et al. (2004). The number of all possible results from the 

origin fixed stop to the destination fixed stop requested by the passenger is denoted as 1n 1. nd  

 

1 Refers to the number of sets of all fixed origin and destination stops that passengers may choose. For example, 

when there are three fixed stops in the system, the set of all the possible outcomes for a passenger is 

( ) ( ) ( ) ( ) ( ) ( ){ }1, 2 , 2,1 , 1,3 , 3,1 , 2,3 , 3, 2 , for example, 1 6n = . 
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expresses the cumulative distance of all possible results of the passengers’ requests on a fixed-

route line with n zones. Thus, the expected in-vehicle travel distance for fixed-route transit can 

be calculated as follows: 

 
( )1

1

1 1
1 1

2

2

n

kn
n

k

D k n kd D nr
n k

−

=

−

=

−
= =

∑
∑

  .  (13) 

To compute the expected in-vehicle travel distance of flex-route 2r , we adopt the 

method developed by Chen and Nie (2017). Computing the average in-vehicle travel distance 

is similar to computing the average walking distance, including average transverse and 

longitudinal distances. The average transverse distance between the origin/destination and the 

origin/destination fixed stop is 2s . The average longitudinal distance of flex-route transit 

depends on the number of Type II–IV (Type II, Type III, and Type IV) passengers. It is difficult 

to estimate the average longitudinal distance. For convenience, it is assumed that the ratio of 

the transverse distance to the total travel distance per hour for flex-route transit can represent 

the ratio of the passengers’ expected in-vehicle travel distance to the total vehicle travel 

distance. In this way, it is possible to avoid directly calculating the offset longitudinal distance. 

Then, the transverse distance in a flex-route round trip is 2D, and the total distance per hour of 

flex-route transit is 2 2d H . Therefore, the ratio of the total distance and the average transverse 

distance for a flex-route vehicle is 2 2 2d H D . Thus, the expected in-vehicle travel distance for 

flex-route transit can be estimated as follows: 

 2 2
2 2 2

d H sr
D

= , (14) 

where 2d  is defined in Equation (6). Therefore, the expected in-vehicle travel time per 
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passenger trip for the four types of passengers is as follows: 
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where 1 2,v v  are defined in Equation (7).Thus, the total in-vehicle travel time per passenger trip 

can be calculated based on Equation (12) accordingly.  

3.3.2. Fare strategy 

The average fare per passenger is given by the following: 

 j j
j

F F p
∈Ω

= ∑  , (16) 

where jF   denotes the fare for passenger Type j . 

Let 1f   and 2f   denote the fares for fixed-route and flex-route transit. We propose the 

following differentiated fare strategies for the four types of passengers. Type I passengers only 

pay fares for fixed-route transit because they only use fixed-route services. Type II and Type 

III passengers pay fares for fixed- and flex-route transit because fixed- and flex-route transit 

are each used once. Type IV passengers travel via flex-route services twice and flex-route 

transit once. Mathematically, we have we following:  

 1IF f= , (17) 

 2II III 1F F f f= = + , and  (18) 

 1 2IV 2F f f= + . (19) 
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3.4. Formulation 

We now present the model with which to design the optimal headway for the hybrid transit 

system and fare for the hybrid transit service as follows:  

 time
user 1 2 2min ( , , ) cC H H f Z F= +   (20) 

subject to  

 10 1H< ≤  , 20 1H< ≤  , min 2 maxf f f≤ ≤  , (21) 

 oper2Ds F Cλ ≥  . (22) 

The objective function, Equation (20), is intended to minimise total user travel cost, 

where timec  denotes the value of time used to convert the user trip time cost components defined 

in Equation (9) into a single monetary value. Constraints (21) are the headway or frequency 

constraints for the three decision variables. Constraint (22) requires the agency’s fare revenue, 

the left-hand side of the equation, to be greater than or equal to its operation cost.  

4. Solution Algorithm 

The proposed nonlinear programming model can be solved via heuristic algorithms (Chen and 

Nie, 2017). Because the focus of this study is gaining insight into the setting of fares and 

headway, instead of developing an advanced solution method, and the proposed model does not 

have that many variables, this study employs the brute-force method, which enumerates 

potential combinations of the decision variables at a small incremental interval. Then, after 

evaluating all enumerated solutions, those that satisfy the nonnegative agency revenue 

constraint are filtered and sorted to determine the optimal solution. This method can ensure that 

an acceptable optimal solution is obtained for practical implementation and analytical purposes, 
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given that it would be unusual for an operator to set a transit fare and frequency with three or 

four decimal point accuracy. 

Given an enumerated solution, the evaluation of the solution contains two major 

components: one is to compute the elastic demand function to obtain λ , and the other is to 

calculate the equilibrated flow distribution, following Equation (1), and the corresponding 

passenger travel cost. Considering that the demand density affects the setting of the transit fare 

and headway and, in turn, the resultant user cost under various fare and headway combinations 

impacts travel demand, this study devises an iterative algorithm, as described below.  

Step 1. Initialisation. 

            Set iteration counter k = 0.           

            Set initial passenger flows distribution by evenly distributing the demand to the four 

types of passengers (i.e., 0 0.25,jp j= ∈Ω ).  

Step 2. Update demand.  

            Compute k
ju  based on k

jp  via Equation (2). 

            Compute kλ  under k
ju  via Equation (4). 

Step 3. Update passenger flow, cost, and demand.  

            Compute equilibrated passenger demand distribution that satisfies Equation (1) using 

the method of successive averages (Liu et al., 2009), which terminates when the number 

of iterations reaches 100 or the absolute value of the difference between the current 

iteration’s demand and the updated demand is less than 0.1.  

            Obtain the resultant flow distributions and corresponding utility, which are denoted by 

1k
jp +  and 1k

ju + , respectively.  
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            Compute 1kλ +  under 1k
ju +  via Equation (4). 

Step 4. Check convergence.  

 If 1 0.001k kλ λ −− <  or 100k > , then stop the iteration and output the solutions.  

            Otherwise, set k = k+1 and go to Step 2.  

5. Numerical Studies 

In this section, we first illustrate the effects of the headway and transit fare on the user cost and 

agency revenue. Then, we vary the demand density to examine the changes in the optimal 

headway and transit fare. Finally, a sensitivity analysis is conducted to investigate how the 

result is affected by the key input parameters, including offset s , line length D , parameter θ  

and fixed-route fare 1f . In all experiments, we set the range of fares for flex-route transit to 

min 1f =  CNY and max 10f =  CNY based on current practice (Shang et al., 2022). The fare for 

fixed-route transit, which is regulated by the local government in China and does not change 

with user travel time or demand density, is set at 2 CNY. Tw  is considered as half of Ww  ; Aw   

and Fw  are the same as Ww  and the default weight value Ww  is 1. The value of time timec  

generally represents a balance between the two interest groups (Daganzo, 2010). The maximum 

offset distance for a flex-route vehicle is typically set at 0.4–1.2 km (Zheng et al., 2021), with 

0.6 km being initially chosen by default and a subsequent sensitivity analysis being performed 

for various offset distances. In addition, the operating cost per distance distc  for flex-route 

transit vehicles was set to 80% of the value in Table 3, taking into account the fact that flex-

route transit service can be provided with smaller vehicles. Without further specifications, the 

default values of the input parameters, which are taken from Chen and Nie (2017) and Sun and 

Szeto (2019), are listed in Table 3. The code for the experiment can be found at our GitHub 
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repository: ronguo2/Hybrid_Opt_Rec (github.com). 

[Table 3 near here] 

5.1. User cost and agency revenue under variable potential demand density 

To demonstrate the properties of the proposed model, we first visualise the combined effects of 

1H , 2H , and 2f  on user cost and agency revenue under various potential demand densities. 

The results are plotted in Figures 3 and 4.  

Figure 3 shows that the user cost is reduced with a decrease in 1H , 2H , and 2f  for cases 

of low potential demand (Figure 3a) and high potential demand (Figure 3b). It is obvious that a 

higher headway results in a longer waiting time for passengers, which, in turn, results in a higher 

travel cost, and a high fare certainly increases user cost. Comparing Figures 3a and 3b, the user 

costs are lower at high potential demand levels than at low potential demand levels when the 

combinations of headway and fare are the same. Moreover, the plots reveals that various 

combinations of flex-route transit fares and headways for the DAPL-HT system can lead to the 

same user cost under the same potential demand. 

Figure 4 plots the agency revenue under low (Figure 4a) and high (Figure 4b) potential 

demand densities. It is evident that total revenue grows with an increase in potential demand 

density. This indicates that the agency’s revenue can always be positive when the potential 

demand density is sufficiently high. It is worth noting that agency revenue does not increase 

with headway and fare (see Figure 4b). This is because although increasing headway reduces 

the operational cost of fixed-route transit, it may cause flex-route vehicles to travel a greater 

distance to pick up and drop off passengers, which increases operating costs. In addition, 

because the optimisation objective is constrained by agency revenue, it is necessary to filter out 

the combinations of 1H , 2H , and 2f  that lead to a negative agency revenue. In other words, 

https://github.com/ronguo2/Hybrid_Opt_Rec
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we filter the user cost corresponding to a nonnegative operator benefit and then compare the 

user cost and find the minimum value. 

[Figure 3 near here] 

[Figure 4 near here] 

5.2. Headway and fare combination 

Figure 5 plots the combinations of headway and fare under various potential passenger demand 

densities. Figure 5a shows that 1H , 2H , and 2f  generally increase, with fluctuations, as 

potential demand density increases. The reasons for this are as follows: for the operator, this 

could be attributed to the scale of economics. Within a certain range of potential demand density 

levels (e.g., 0 100λ <  pax/h/km2), the increase in the demand density allows the agency to 

operate more fixed- and flex-route vehicles, as represented by a lower 1H  and 2H , with a lower 

price for Type II–IV passengers. However, as the potential demand density level continues to 

increase, lower headway may lead to higher operating costs. Therefore, even with higher 

demand density, it is necessary to increase the fare for flex-route transit to maintain nonnegative 

revenue. This is shown in Figure 5a, where a point of inflection is observed at 0 160λ =

pax/h/km2. Similarly, there are change points in which the change in headway differs from the 

overall trend ( 0 160 180λ = − pax/h/km2).  

For users, the expected average cost is always reduced, regardless of the increment in 

demand density (see Figure 5b). Correspondingly, the ratio of actual demand to potential 

demand increases. This is the joint effect on the part of fluctuating declines in the headway of 

the two transit types in the hybrid system and the basic fares for flex-route transit. Figure 5c 

shows how the proportions of the four types of passengers change with potential demand. As 

the potential demand density increases, the proportion of Type IV passengers increases, that of 
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Type I passengers decreases, and that of Type II and Type III passengers remain essentially the 

same. Overall, the percentage of passengers choosing flex-route transit increases as demand 

density grows (Type II–IV). Figure 5d shows the changes in fares for the four types of 

passengers. It is clear that Type II–IV passengers face the same increasing trend in fares with 

demand density, as shown in Figure 5a. This is related to the fare strategy developed (i.e., Type 

I passengers only pay for fares for fixed-route transit, Type II and Type III passengers pay fares 

for fixed- and flex-route transit, and Type IV passengers will pay both fixed- and two flex-route 

transit fares) and the fact that the fixed-route transit fares are the given values. 

[Figure 5 near here] 

5.3. Sensitivity analysis 

In this section, we conduct a sensitivity analysis to examine how headway, the flex-route fare 

and total user cost in DAPL-HT systems are affected by key input parameters. The other input 

parameters used for the following tests are listed in Table 3.  

5.3.1. Effect of flex-route transit offset distance 

This section investigates the influence of the maximum vehicle offset dimensions s  on the 

optimal result for the DAPL-HT system. We varied s  from 0.4 to 1.2 km and plotted the results 

in Figure 6. Figure 6a shows that the user cost first decreases and then increases with increasing 

offset distance. The trend for the actual demand densityλ  is opposite that of user cost at a low 

potential demand density (Figure 6b). This clearly demonstrates the existence of an optimal 

setting for the side length of the corridor at low demand densities, which generates the most 

potential demand density. In contrast, as the potential demand density increases, user cost is 

positively correlated with offset distance for flex-route transit, while the corresponding actual 

demand is negatively correlated with offset distance. 
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The corresponding changes in 1H , 2H , and fares for the four types of passengers are 

plotted in Figures 6c–e. At a low level of demand density, the optimal headway in DAPL-HT 

systems decrease with increasing vehicle offset distance, while the optimal fare for Type II–IV 

passengers fluctuates. Type II–IV passenger fares vary more significantly with offset distance 

at low demand levels and less at medium and high demand levels. This is because at high 

demand levels, lower fares are sufficient to satisfy the agency revenue constraint. Under the 

setting specified in this situation, the optimal maximum offset distance s is 0.6 km, the 

corresponding headways are 1 0.20H =  h, 2 0.16H =  h and the fare for flex-route transit is 5.8 

CNY (i.e., Type I passengers fare is 2 CNY, Type II/Type III passengers fare is 7.8 CNY, Type 

IV passengers fare is 13.6 CNY). At higher demand density levels, the trend for optimal 

headway for fixed- and flex-route transit decreases with increasing offset distance. In addition, 

Figure 6f shows that the percentage of riders on flex-route transit (Type II–IV passengers) 

increased with s . In other words, the larger the set offset distance is, the more popular flex-

route transit is in the hybrid system. 

[Figure 6 near here] 

5.3.2. Effect of the side length of the DAPL-HT system service area 

This section investigates the influence of the side length of the DAPL-HT system service area, 

D , on the optimal result for the system. We varied line length D   from 5 to 20 km and plotted 

the results in Figure 7.  

[Figure 7 near here] 

As expected, Figures 7a and b show that user cost increases with line length at variable 

demand densities, with the opposite being true for actual demand density. The corresponding 

changes in passenger fares and ridership ratios for flex-route (Type II–IV passengers) are 
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plotted in Figures 7c and d. At a low demand density, the optimal fare for Type II–IV passengers 

always increases with line length, and the proportion of Type II–IV passengers decreases, while 

at medium and high demand densities, fares and ridership ratios remain stable. This is because 

the longer the line is, the higher the operational cost is. Thus, to secure non-negative returns for 

the agency, fares must be high at low demand densities. In contrast, at high demand densities, 

the operator’s revenue neutrality can be achieved with a low fare. Therefore, at high demand 

densities, fares, increase, and at medium and high demand densities, they remain stable, which 

affects the proportions of Type II–IV passengers.  

5.3.3. Effect of θ   

This section investigates how the changes in the parameter of the logit model affect the solution. 

θ  was varied from 0.1 to 0.5 at 0 100λ =  pax/h/km2. The results are plotted in Figure 8.  

[Figure 8 near here] 

Figure 8a shows that the fares for Type II–IV decrease as θ  increases. This is because 

the larger θ  is, the greater the proportion of passengers who choose flex-route transit service 

in DAPL-HT systems, and also because the lower fare reduces user cost, as expected and shown 

in Figure 8b. The differences in minimum user cost under different values of θ  can be 

significant. For example, when 0.1θ = , the minimum user cost is 29.07 CNY; when θ  

increases to 0.5, the user cost is 23.70 CNY, which represents a difference of about 18%. A 

higher value of θ  can be understood as passengers having more information about travel costs 

(Sun and Szeto, 2019). That is, the more trip information is available to passengers, the lower 

the cost to the user will be. 

5.3.4. Effect of fixed-route transit fare 

The section investigates how changes in the fare for fixed-route transit affect passenger fares 
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overall, passenger choice and user cost. The results are plotted in Figure 9, which shows that 

adjusting the fixed-route fare affects passengers’ route choice and fares overall, especially at 

low demand densities ( 0 40λ ≤  pax/h/km2). Given a certain potential demand density, when the 

fixed-route fare is low ( 1 0.1f =  CNY), the proportion of Type I passengers increases, while 

the proportion of Type II–IV passengers decreases (Figure 9b). In this case, fares for Type II–

IV passengers must be raised to satisfy the agency revenue constraint (Figure 9a), leading to a 

larger total user cost (Figure 9b). Therefore, a low fixed-route transit fare is not desirable from 

a total user cost perspective. 

[Figure 9 near here] 

6. Conclusions 

This study investigated paired-line hybrid transit systems, which integrate fixed-route and flex-

route transit. Given that the transit fare had not yet been considered as a decision viable under 

elastic demand, a nonlinear optimisation model was devised via continuous approximation. 

Specifically, we consider a transit corridor and divide passengers into four types depending on 

the services they use. Accordingly, a fare strategy such that the four types of passengers pay 

differentiated fares is proposed. Then, user cost components are derived to compute the utilities 

associated with each type of service. The utilities are adopted to compute the passenger flow 

distribution, in which passengers’ travel choices are characterised by using a path-size logit 

model that considers the overlap between various types of services. Afterwards, a nonlinear 

programming model is formulated to determine the flex-route transit fare and headways for 

both flex and fixed transit. Finally, we employ a brute-force method to obtain the solution and 

thus analyse the properties of the model via various numerical studies.  

This study has had several interesting findings. First, we demonstrate the impact of 
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potential demand density on the setting of transit fares and ridership. As potential demand 

density increases, both the headway and optimal transit fare decrease, with fluctuations. 

Second, the demand density level significantly affects passengers’ route choices. As potential 

demand density increases, the proportion of passengers who do not choose flex-route transit 

decreases (Type I), the proportion of passengers who choose to ride flex-route vehicles once 

remains stable (Type II and Type III) and the proportion of passengers who choose to use flex-

route transit twice increases (Type IV). Third, under a low potential demand density, there is 

an optimal offset distance that helps achieve the maximum actual travel demand. In contrast, at 

high potential demand densities, the actual demand density decreases with increasing offset 

distance for flex-route transit, and user cost increases. Regardless of the level of potential 

demand density, the proportion of Type II–IV passengers increases with increasing offset 

distance for flex-route transit. Fourth, as the side length of the DAPL-HT system service area 

increases, the proportion of Type II–IV passengers decreases, and fares increase at low potential 

demand densities, while remaining essentially unchanged at medium and high potential demand 

densities. Regardless of the level of potential demand density, actual demand density decreases 

as side length increases. Fifth, both the optimal flex-route transit fare and headways of the two 

transit modes do not necessarily monotonically change with potential travel demand increases. 

Finally, setting a low fixed-route transit fare would increase total user cost, and the impact of 

this choice would be more significant at a lower potential demand density. 

This study’s results present several avenues for new research. First, some assumptions 

can be relaxed to model more complicated and realistic scenarios. For example, passenger 

demand may not be uniformly distributed within the area (Qian et al., 2024). Meanwhile, when 

modelling passengers’ choice behaviour, it is possible to explore other features, such as 

bounded rationality (e.g., Jiang and Ceder, 2021; Jiang et al., 2022; Jiang, 2024) and reliability 

(e.g., Szeto et al., 2011; Szeto et al., 2013; Jiang and Szeto, 2016; Jiang, 2022). Second, 
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different fare structures and interchange discounts can be further investigated. For example, we 

can design and examine other fare strategies and embrace fare incentives (e.g., Tang et al., 2020; 

Yang et al., 2023). Third, the solution algorithm used in this study can be applied in the planning 

stage, and a more efficient algorithm could allow real-time applications, such as synchronising 

the timetable for transfer passengers (e.g., Lee et al., 2022). Fourth, other network route 

structures, such as radial network structures (Chen and Nie, 2018) and chet networks 

(Pravinvongvuth and Matarage, 2023), can be further investigated. Finally, the linkage 

mechanism between government subsidies and fares is also a direction that can be further 

explored in the future (e.g., Shu and Durango-Cohen, 2021). 
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