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Resumen: En este art́ıculo evaluamos y comparamos nuevas variantes de un conoci-
do algoritmo de resolución de anáforas basado en reglas con la versión original. Bus-
camos establecer si los enfoques que se benefician de aprendizaje profundo, grandes
modelos de lenguaje (LLMs) y datos de eye-tracking (siempre) superan al algoritmo
original basado en reglas. Los resultados de este estudio sugieren que, aunque los
algoritmos basados en aprendizaje profundo y grandes modelos de lenguaje suelen
rendir mejor que los basados en reglas, no siempre es aśı. Por lo tanto, sostenemos
que los enfoques basados en reglas siguen teniendo cabida en la investigación actual.
Palabras clave: Resolución de Anáforas, Basado en Reglas, Aprendizaje profundo

Abstract: In this paper, we evaluate and compare new variants of a popular rule-
based anaphora resolution algorithm with the original version. We seek to establish
whether configurations that benefit from Deep Learning, LLMs and eye-tracking
data (always) outperform the original rule-based algorithm. The results of this study
suggest that while algorithms based in Deep Learning and LLMs usually perform
better than rule-based ones, this is not always the case, and we argue that rule-based
approaches still have a place in today’s research.
Keywords: Anaphora resolution, Rule-based, deep learning

1 Rationale

Back in the 1990s there was a drama-
tic surge in the development of operational
anaphora resolution algorithms due among
other things, to the availability of part-of-
speech taggers and parsers as well as corpo-
ra which inspired research into the develop-
ment and evaluation of knowledge-poor ap-
proaches. Initially the algorithms were predo-
minantly rule-based where specific rules we-
re proposed as a result of observing speci-
fic patterns in the corpus data (Lappin and
Leass, 1994; Mitkov, 1998; Baldwin, 1998).
While influential, the rule-based approaches
gradually gave a way to statistical approa-
ches (Ge, Hale, and Charniak, 1998) and la-
ter to machine learning approaches which do-
minated the research on anaphora resolution
in the early 2000s. More recently data-driven

models and, most prominently, Deep Lear-
ning and Large Language Models, have taken
the world by storm. Deep Learning is used
almost everywhere, in almost every discipli-
ne and Natural Language Processing (NLP)
is not an exception. The widespread use of
Deep Learning approaches and Large Lan-
guage Models (LLMs) in NLP has not by-
passed the task of anaphora resolution and
several recent studies have been reported in
the last five years or so (see section 2.3).

Deep Learning (DL) has been highly suc-
cessful so far indeed, with improvements re-
ported for almost every NLP task and ap-
plication. However, as seen on numerous oc-
casions, the outputs of DL models are not
always perfect, with the failure of Neural
Machine Translation to successfully transla-
te multiword expressions being an obvious



example (Colson, 2019; Mitkov, 2019)1 .
In addition, there have been earlier studies
which report that machine learning approa-
ches to anaphora resolution do not fare ne-
cessarily better than the ‘old-fashioned’ rule-
based ones (Stuckardt, 2002; Stuckardt, 2003;
Stuckardt, 2005).

More recently, Large Language Models
(LLMs) has been another influential deve-
lopment with many NLP studies following
the lead of, and comparing their performance
with, generative models.

In this study we seek to establish (whether
and) to what extent up-to-date Machine
Learning, Deep Learning and LLM approa-
ches as well as approaches benefiting from
modern resources such as eye-tracking gaze
data, deliver better results than rule-based
approaches developed in the 1990s when the
above techniques and resources were not
available. To this end we take the exten-
sively used Mitkov (1998)’s knowledge-poor
approach as a testbed and build several mo-
difications of the original algorithm which in-
corporate popular recent (statistical, machi-
ne learning, deep learning and LLM) techni-
ques and benefit from gaze data. Then we
compare the performance of the enhanced
systems and seek to establish whether and
to what extent they outperform the original
algorithm, and which version fares best.

The rest of the paper is structured as
follows. Section 2 provides the prelimina-
ries of this research by introducing Mit-
kov’s knowledge-poor approach to anapho-
ra resolution used here as a testbed for
our experiments, discusses the use of eye-
tracking in anaphora resolution, and outlines
recent work on Deep Learning and LLMs for
anaphora and coreference resolution. Section
3 covers the data used and methodology em-
ployed by providing information on the an-
notated data prepared for this study and the
methodology adopted. Section 4 elaborates
on the experiments conducted and comments
on the results obtained. Finally, the last sec-
tion offers the concluding remarks for this
study. Code and data used in the experiments
will be made available on github.

1The performance of NMT systems has signifi-
cantly improved since these studies were conducted
and published.

2 Preliminaries

2.1 Mitkov’s knowledge poor
pronoun resolution approach
as testbed

(Mitkov, 1996; Mitkov, 1998)’s robust,
knowledge-poor approach to pronoun reso-
lution was motivated by the pressing need
in the 1990s for anaphora resolution al-
gorithms operating robustly in real-world,
knowledge-poorer environments in order to
meet the demands of practical NLP systems.
The first version of the algorithm was re-
ported in (Mitkov, 1996) as an inexpensive,
fast and yet reliable alternative to the labour-
intensive and time-consuming construction of
a knowledge-based system2. This project was
also an example of how anaphors can be re-
solved quite successfully (at least in a specific
genre, namely computer/technical manuals)
without any sophisticated linguistic knowled-
ge or even without parsing. In addition, the
evaluation showed that the basic set of fac-
tors (referred to as ‘indicators’, see below)
employed can work well not only for English,
but also for other languages including French,
Bulgarian, Polish and Arabic (Mitkov and
Stys, 1997; Mitkov and Belguith, 1998; Mit-
kov, Belguith, and Stys, 1998; Mitkov and
Barbu, 2000; Tanev and Mitkov, 2002; Mit-
kov, 2006).3

Mitkov’s approach relies on a list of prefe-
rences known as antecedent indicators. The
approach operates as follows: it works from
the output of a text processed by a part-of-
speech tagger and an NP extractor, identi-
fies noun phrases which precede the anaphor
within a distance of 2 sentences4, checks them
for gender and number agreement with the
anaphor and then applies the indicators to
the remaining candidates by assigning a po-
sitive or negative score (2, 1, 0 or -1). The
noun phrase5 with the highest composite sco-

2The approach has become better known through
a later updated publication (Mitkov, 1998).

3In fact the performance reported for Slavonic lan-
guages was higher than for English due to the fact
that they have a three-gender system: gender agree-
ment would filter many ineligible candidates.

4Subsequent versions of the approach have used
search scopes of different lengths (2, 3 or 4 sentences),
but the original algorithm only considered two sen-
tences prior to the sentence containing the anaphor.
The NP patterns are limited to the identification of
base NPs and do not include complex or embedded
phrases.

5The approach handles only pronominal anaphors



re is proposed as antecedent.
The antecedent indicators are applied to

all NPs which have passed the gender and
number filters.6 These indicators can act in
either a boosting or an impeding capacity.
The boosting indicators apply a positive sco-
re to an NP, reflecting a positive likelihood
that it is the antecedent of the current pro-
noun.

In contrast, the impeding ones apply a ne-
gative score to an NP, reflecting a lack of con-
fidence that it is the antecedent of the current
pronoun. Most of the indicators are genre-
independent and related to coherence pheno-
mena (such as salience and distance) or to
structural matches, whereas others are genre-
specific.7 The boosting and impeding indica-
tors are described in detail in Mitkov (1998).
The work presented in Mitkov, Evans, and
Orasan (2002) provides some additional de-
tail on the indicators used by the algorithm.

The aforementioned antecedent indicators
are preferences and not absolute factors. The-
re might be cases where one or more of the
antecedent indicators do not ‘point’ to the co-
rrect antecedent. For instance, in the senten-
ce ‘Insert the cassette into the VCR making
sure it is turned on’, the indicator preposi-
tional noun phrases would penalise the co-
rrect antecedent. When all preferences (an-
tecedent indicators) are taken into account
however, the right antecedent is still likely to
be tracked down - in the above example, the
prepositional noun phrases heuristic stands a
good chance of being overturned by the collo-
cation match heuristics since the collocation
‘The VCR is turned on’ is likely to appear
previously in the text, being typical of video
technical manuals.

The antecedent indicators have proved to
be reasonably efficient in identifying the right
antecedent and the results show that for
the genre of technical manuals they may be
no less accurate than syntax- and centering-
based methods (see Mitkov 1998). The ap-
proach is not dependent on any theories or
assumptions; in particular, it does not ope-

whose antecedents are noun phrases.
6The approach takes into consideration the fact

that in English there are certain collective nouns
which do not agree in number with their antecedents
(e.g. government, team, parliament etc. can be refe-
rred to by ‘they’; equally some plural nouns such as
data can be referred to by ‘it’) and are thus exempted
from the agreement test.

7Typical of the genre of user guides.

rate on the assumption that the subject of
the previous utterance is the highest-ranking
candidate for the backward-looking center -
an approach which can sometimes lead to in-
correct results.8

Mitkov’s original algorithm was enhanced
and developed into the fully-automatic pro-
noun resolution system referred to as MARS
(Mitkov, Evans, and Orasan, 2002)9. The
initial implementation of MARS employed
the FDG shallow parser as its main pre-
processing tool and was based on a revised
version of the original algorithm.

The initial implementation of MARS fo-
llowed Mitkov’s original approach closely, the
main differences being (i) the addition of th-
ree new indicators and (ii) the change in the
way some of the indicators were implemen-
ted or computed due to the available pre-
processing tools. In its later version, MARS
also used a program for automatically recog-
nising instances of anaphoric or pleonastic
pronouns (Evans, 2001) and intrasentential
syntax filters.

The system operated in five phases. In
phase 1, the text to be processed is parsed
syntactically, using Conexor’s FDG Parser
(Tapanainen and Jarvinen, 1997) which re-
turns the parts of speech, morphological lem-
mas, syntactic functions, grammatical num-
ber, and dependency relations between to-
kens in the text which facilitates complex
noun phrase (NP) extraction.

In phase 2, anaphoric pronouns are identi-
fied and non-anaphoric and non-nominal ins-
tances of it are filtered using the machine
learning method described in Evans (2001).

In phase 3, for each pronoun identified as
anaphoric, candidate NPs are extracted from
the heading of the section in which the pro-
noun appears, and from the current and pre-
ceding two sentences within the paragraph
under consideration. Once identified, these
candidates are subjected to further morpho-
logical and syntactic tests. Extracted candi-

8For instance, subject-favouring methods or
methods heavily relying on syntactic parallelism
would incorrectly propose the utility as the antece-
dent of it in the sentence ‘The utility shows you the
LIST file on your terminal for a format similar to
that in which it will be printed’ as it would prefer
the subject as the most salient candidate. The indica-
ting verbs preference of Mitkov’s approach, however,
would prefer the correct antecedent the LIST file.

9MARS stands for Mitkov’s Algorithm to pronoun
ReSolution.



dates are expected to obey a number of cons-
traints if they are to enter the set of compe-
ting candidates, i.e. the candidates that are
to be considered further. Competing candi-
dates are required to agree with the pronoun
in terms of number and gender, as is the ca-
se in the original algorithm. They must al-
so obey syntactic constraints (Mitkov, Evans,
and Orasan, 2002). In phase 4, 14 preferen-
tial and impeding factors are applied to the
sets of competing candidates. On application,
each factor applies a numerical score to each
candidate, reflecting the extent of the sys-
tem’s confidence about whether the candida-
te is the antecedent of the current pronoun.
In the implemented system, certain practical
issues led to the weights assigned by indica-
tors being computed in a different way from
that described in the original algorithm. The
full details of these differences are beyond the
scope of the current paper, but they are des-
cribed in detail in (Mitkov, Evans, and Ora-
san, 2002). In addition, three new indicators
were added, one of which (syntactic para-
llelism) exploits new, previously unavailable
features of the pre-processing software.

Finally, in phase 5, the candidate with the
highest composite score is selected as the an-
tecedent of the pronoun. Ties are resolved by
selecting the most recent highest scoring can-
didate.

Further versions of MARS incorporated
several advancements over the system des-
cribed in Mitkov, Evans, and Orasan (2002).
These improvements covered the inclusion of
more precise and strict number and gender
agreement, and the addition of one indicator
employing the modelling of selectional res-
trictions.

Finally, MARS was improved to cater for
several frequent causes of apparent number
disagreement. These consist of (i) collecti-
ve nouns, (ii) gender under-specification, (iii)
quantified nouns/indefinite pronouns, and
(iv) organisation names by NER. These cases
were handled by a combination of gazetteers
and the integration of animacy recognition
modules (Orasan and Evans, 2001) and na-
med entity recognition (Cunningham et al.,
2000). Patterns were used to identify the oc-
currence of quantified NPs in the parsed text.
MARS’s recognition of the gender of NP can-
didates was improved. In addition to gazet-
teers, an NER system was used to recognise
person names and a system for animacy re-

cognition deployed.
All versions of Mitkov’s knowledge-poor

algorithm which have been widely used in
different anaphora resolution studies were
rule-based. Versions enhanced by Machine /
Deep Learning techniques have been develo-
ped (and are reported) for the first time (in
this paper) in line with the objectives of this
study.

2.2 Pronoun resolution and
eye-movement measures

Eye tracking is a process where an eye-
tracking device measures the point of gaze
of an eye (gaze fixation) or the motion of
an eye (saccade) relative to the head and
a computer screen (Duchowski, 2017). Diffe-
rent eye-tracking measures (usually divided
into early and late) are indicative of different
aspects of cognitive processing. For example,
early gaze measures such as first fixation du-
ration give information about the early sta-
ges of lexical access and syntactic processing,
while late gaze measures such as total dwell
time or total number of fixations give infor-
mation about processes such as textual in-
tegration, syntactic and semantic processing
and disambiguation. A series of studies on eye
tracking during reading show that gaze da-
ta is sensitive to linguistic phenomena such
as word frequency, verb complexity and lexi-
cal ambiguity, as well as contextual effects on
word perception (Rayner et al., 2012; Rayner,
1998; Rayner and Duffy, 1986).

Eye-movement measures have been used
in psycholinguistic studies of pronoun reso-
lution. The most relevant study to the pre-
sent research is conducted by Foraker and
McElree (2007), who found that resolution
occurred earlier for he/she pronouns than for
the it pronoun in both clefted10 and non-
clefted sentences. In a follow-up experiment
they used eye tracking to identify whether
the time-course difference could be due to
the ambiguity of the it pronouns or to the
antecedent being actively maintained in the
focal span of the readers. They hypothesised
that if the reason for the time-course diffe-
rence was in the active state of the antece-
dents, the differences would be observed in
measures such as first-pass duration. Alter-

10Constructions of this type include ‘It is Jamie for
whom we are looking’ or ‘And most disturbing, it is
educators, not students, who are blamed for much of
the wrongdoing’ (Li et al., 2009).



natively, if the reason was the ambiguity of
the it pronoun, the differences would be ob-
served in measures signalling reanalysis, such
as increased immediate regressions from the
coreference region, longer second-pass times
and regression path durations. Their analysis
indicated that conditions with the pronoun it
caused more first-pass regressions than those
with he/she, which lead the authors to con-
clude that the it-pronoun conditions were in
fact functionally ambiguous. This ambiguity
was later resolved by looking at the token
occurring after the pronoun, which provided
“immediate diagnostic information that hel-
ped identify and repair the coreference bond”
(Foraker and McElree, 2007). No effects of
clefting were found. The experiments of this
study provide convincing evidence that the
locus of the time-course difference was the it-
pronoun owing to its ambiguity.

Based on these results, we hypothesise
that gaze data contains traces of the way hu-
mans perform pronoun resolution and that
these traces can be used to improve the per-
formance of automatic coreference resolution.
This approach has been previously used in
other areas of NLP, including classifying re-
ferential and non-referential it (Yaneva et al.,
2018), sentiment analysis (Rotsztejn, 2018),
part-of-speech tagging (Barrett et al., 2016),
and multiword expressions (Rohanian et al.,
2017), among others.

2.3 Recent work on Deep Learning
and LLMs for anaphora and
coreference resolution

The employment of Deep Learning (DL) for
a number of NLP tasks and applications11

has been an important trend in recent years
and there has been hardly any NLP area in
which Deep Learning methods have not been
made use of. Anaphora resolution as a crucial
NLP task has not gone unnoticed by resear-
chers who have been experimenting with and
applying DL approaches in the hope of im-
proving performance.

In one of the first studies employing deep
learning for anaphora/coreference, Clark and

11See Mitkov (2003; Mitkov (2022) for distinctions
between NLP tasks and NLP applications where
the former include part-of-speech tagging, parsing,
word sense disambiguation, semantic role labelling,
anaphora resolution, etc., and the latter include ma-
chine translation, text summarisation, text categori-
sation, information extraction and question answe-
ring, among others.

Manning (2015) described a coreference re-
solution system based on neural networks
which automatically learned dense vector re-
presentations for mention pairs. These we-
re derived from distributed representations
of the words in the mentions and surroun-
ding context and captured semantic simila-
rity which could assist the coreference reso-
lution process. The representations were used
to train an incremental coreference system
which can exploit entity-level information.

Clark and Manning (2016) applied re-
inforcement learning to optimise a neural
mention-ranking model for coreference eva-
luation metrics. The authors experimented
with two approaches: REINFORCE policy
gradient algorithm and a reward-rescaled
max-margin objective. They found the latter
to be more effective, resulting in a significant
improvement over the state of the art on the
English and Chinese portions of the CoNLL
2012 Shared Task.

Wiseman, Rush, and Shieber (2016) em-
ployed recurrent neural networks (RNNs) to
learn latent global representations of entity
clusters directly from their mentions. They
showed that such representations are espe-
cially useful for the prediction of pronomi-
nal mentions and can be incorporated into an
end-to-end coreference system which outper-
formed the state of the art without requiring
any additional search.

More recently, Plu et al. (2018) presen-
ted an improved version of the Stanford
‘deep-coref’ system by enhancing it with se-
mantic features, and reported a minimal in-
crease of the F-score, while Sukthanker et
al. (2018) described an entity-centric neural
crosslingual coreference model which builds
on multi-lingual embeddings and language-
independent features and performs well in in-
trinsic and extrinsic evaluations.

Other recent work which employs deep
learning for anaphora and/or coreference re-
solution include Meng and Rumshisky (2018)
who used a triad-based neural network sys-
tem to generate affinity scores between en-
tity mentions for coreference resolution, and
Nitoń, Morawiecki, and Ogrodniczuk (2018)
who experimented with several configura-
tions of deep neural networks for coreference
resolution in Polish.

Latest research on using deep learning mo-
dels for coreference resolution is summarised
in Liu et al. (2023).



Latest Large Language Models have been
explored in anaphora resolution as well. Yang
et al. (2022) study how well ChatGPT-like
models do on anaphora resolution. They con-
clude that LLMs perform poorly on the task
of coreference resolution without fine-tuning.
These models achieve relatively better per-
formance on pronouns and mention pairs
with high similarity. The authors also repor-
ted that the capabilities of such models to
identify coreferent mentions are limited and
prompt-sensitive, leading to inconsistent re-
sults.

In another recent study, Vadász (2023)
reports experiments on using ChatGPT for
pronoun resolution in Hungarian. The expe-
riments suggest that while ChatGPT does
reasonably well, it is far away from the ideal
performance.

3 Data and methodology

3.1 Annotated corpus

In this study we exploited two existing corpo-
ra of English text annotated with information
about the eye movements of readers, recorded
using eye tracking equipment. These were:

- The 51,254-token English portion of the
Dundee corpus (Kennedy, Hill, and Pynte,
2003), a collection of news articles from the
Independent. The eye tracking data enco-
ded in this corpus was recorded from ten
English-speaking readers using a Dr Bouis
Oculometer Eyetracker with a 1 kHz mono-
cular (right) sampling rate.

- The 56,419-token Ghent Eye-Tracking
Corpus (GECO) (Cop et al., 2016), which
comprises the text of the Agatha Christie no-
vel The Mysterious Affair at Styles. It is an-
notated with eye tracking data recorded from
English monolinguals and Dutch-English bi-
linguals using a tower-mounted EyeLink 1000
system with a sampling rate of 1 kHz.

To the eye-tracking information encoded
in the GECO and Dundee corpora, we ad-
ded a second annotation layer to encode in-
formation about examples of the pronoun it
occurring in these texts. This includes infor-
mation about the locations of the pronouns
and the candidate NPs preceding them in the
same sentence and in the two preceding sen-
tences. Due to the laboriousness of the task
for human annotators of manually identifying
the sets of NPs preceding each pronoun in a
text, we implemented a semi-automatic an-
notation task. We used the Charniak par-

ser (Charniak, 2000) to automatically iden-
tify and list an initial set of preceding NP
candidates for each example of the pronoun
it. These lists were then post-edited by the
human annotators who deleted incorrect can-
didates and inserted any NPs omitted due to
parsing errors. When post-editing the lists,
the human annotators also enforced number
and gender agreement constraints to ensure
that the lists only contained antecedent can-
didates that are singular in number and neu-
ter in gender. The identification of these at-
tributes is one in which automatic methods
are currently unreliable. Table 1 presents in-
formation on these characteristics of the cor-
pora.

3.2 Methodology

We seek to establish to what extent (and
whether) up-to-date Machine Learning, Deep
Learning and LLM techniques as well as the
exploitation of eye-tracking gaze data, could
deliver better results than old-fashioned and
popular-in-the-1990s rule-based approaches.
In this particular study Mitkov’s knowledge-
poor approach was used as a testbed. Several
modifications of the original algorithm (Mit-
kov, 1998) incorporating popular recent sta-
tistical, machine learning and deep learning
techniques as well as resources were imple-
mented and the performance of the enhanced
algorithms was compared with that of the
original algorithm. In this study the values
of the antecedent indicators12 were regarded
as features whose weights were to be opti-
mised. In addition to features derived from
original antecedent indicators, each NP can-
didate was associated with a set of language
model features and a set of gaze features.13

For each candidate of a particular pro-
noun, the sentence containing the pronoun
was identified and a variant sentence was ge-
nerated in which the pronoun was replaced
by the candidate NP with the probability of
each variant sentence encoded through lan-
guage model features. This particular expe-
riment employed 14 language models deri-
ved from deep learning and vector representa-
tions of words/characters, presented by Trinh
and Le (2018). These 14 models differ from
each other with respect to their neural net-

12See Mitkov (1998, 2002) for description of the an-
tecedent indicators.

13A variety of gaze features encoded for each token
in the Dundee and GECO corpora, was exploited.



work settings and training data used with th-
ree of them being similar to those used by
ELMo (Peters et al., 2018) a word embedding
method which fared better than word2vec.

In addition, information about a variety of
gaze features encoded for each token in the
Dundee and GECO corpora, was exploited.
The gaze features used were First Fixation
Duration (The duration of the first fixation
to fall on the token), Second Fixation Du-
ration: (The duration of the second fixation
to fall on the token), Last Fixation Duration
(The duration of the final fixation to fall on
the token), Have second fixation (Readers fi-
xate on the token twice or more), Fixation
Count (The number of times readers fixate
on the token) and Skip Rate (The proportion
of times that the token is not fixated upon by
readers).

Source #W #Pr #Can PP
GECO 56,419 533 2,391 4.5
Dundee 51,254 224 3,248 14.5
TOTAL 107,673 757 5,639 7.4

Tabla 1: Characteristics of the annotated cor-
pus (#W: number of words, #Pr: Number of
pronouns, #Can: Number of candidate ante-
cedents, PP: Number of singular neuter can-
didates per pronoun)

4 Experiments and results

After deriving the values of the full feature
set (comprising the original MARS antece-
dent indicator features, the DL language mo-
del features, and the gaze features), we con-
ducted experiments to optimise the weights
of various combinations of features in 10-fold-
cross-validation and cross-corpus evaluation
settings. In 10-fold cross-validation, we eva-
luated over the corpora by exhaustively trai-
ning on nine tenths (folds) of them and tes-
ting on the remaining tenth (fold). In cross-
corpus evaluation, we evaluated by training
on one whole corpus (e.g. GECO) and tes-
ting on the other (e.g. Dundee).

We experimented with various machine
learning models trained to predict whether
a candidate NP is the actual antecedent of
a pronoun (1) or not (0), using our annota-
ted training data. The trained models were
then applied to generate a score for each of
the candidate NPs in the testing data. Simple
linear regression using the least squares ap-

Corpus
Settings Dundee GECO ave.

Antecedent indicators only
Original 0.39 0.51 0.47

Optimised using
10-fold cross-val 0.48 0.58 0.55

Cross-corpus 0.43 0.58 0.53

Tabla 2: Effects of optimisation of indicator
weights

proach led to the derivation of most accurate
anaphora resolution models, regardless of the
evaluation setting (cross-validation or cross-
corpus). The evaluation results show that
optimisation of antecedent indicator weights
can improve accuracy of anaphora resolution
model by around 10% which is statistically
significant. In the statistical linear regression
model, Deep Learning language model fea-
tures were included as variables; annotated
data used to learn optimal weights for varia-
bles.

In the statistical linear regression model,
we included the DL language model features
as variables and used our annotated data to
learn the optimal weights for those variables.
Optimising the weighting of the DL language
model features improved the accuracy of the
anaphora resolution process.

Table 3 shows the effects of the different
configurations on the accuracy of anaphora
resolution. We compare the accuracy of the
original algorithm with various enhanced al-
gorithms corresponding to these configura-
tions. In the table, corpus, absolute refers to
the actual number of pronouns correctly re-
solved by each configuration while corpus, ac-
curacy is the ratio of corpus, absolute to the
total number of referential occurrences of it
in the corpus. The configurations are based
on various combinations of features including
the antecedent indicators, DL language mo-
del features and gaze features. In our experi-
ments, features are combined by concatena-
ting them into a single vector. The langua-
ge models used to obtain the language mo-
del features were built using deep learning
methods applied to huge corpora by Trinh
and Le (2018). The results presented here are
derived from experiments conducted in the
cross-corpus evaluation setting. We consider
that the cross-corpus setting better reflects
real world scenarios where models should not



Corpus, absolute count Corpus, accuracy
Setting GECO Dundee All GECO Dundee Wt. ave

DeepLM token labelling (deberta-v3-
large, cross corpus train/test, best among
candidates)

349 149 490 0.686 0.668 0.680**

DeepLM token labelling (deberta-v3-base,
cross corpus train/test, best among candi-
dates)

337 143 480 0.662 0.664 0.656**

ChatGPT-4, choose among candidates 309 150 459 0.607 0.672 0.627**
Antecedent Indicators (Original Weights)
+ DL Language Model Features

301 118 419 0.591 0.529 0.572**

Antecedent Indicators (Original Weights)
+ DL Language Model Ensemble[1]

302 115 417 0.593 0.516 0.570**

Antecedent Indicators (Original Weights)
+ Gaze Selected (Dundee)

299 115 414 0.587 0.516 0.566**

ChatGPT-4, no candidate 290 118 408 0.570 0.529 0.560*
Antecedent Indicators (Original Weights)
+ Gaze All + DL Language Models En-
semble

301 106 407 0.591 0.475 0.556*

NeuralCoref 288 118 406 0.566 0.529 0.554*
Antecedent Indicators + DL Language
Models Ensemble

304 98 402 0.597 0.439 0.549*

Antecedent Indicators (Original Weights)
+ Gaze All

297 105 402 0.583 0.471 0.549*

Antecedent Indicators + Gaze All 297 104 401 0.583 0.466 0.548*
Antecedent Indicators + DL Language
Model Features (Original Weights)

299 102 401 0.587 0.457 0.548*

Antecedent Indicators (Optimized
Weights)

298 97 395 0.585 0.435 0.540

DeepLM token labelling (deberta-v3-
large, cross corpus train/test, raw span)

255 136 391 0.501 0.610 0.534

DeepLM token labelling (deberta-v3-base,
cross corpus train/test, raw span)

240 122 362 0.472 0.547 0.494

Antecedent Indicators (Original Weights) 270 90 360 0.530 0.404 0.492
DL Language Models Ensemble14 274 70 344 0.538 0.314 0.470
DL Language Model Features 212 60 272 0.417 0.269 0.372
Gaze All 221 49 270 0.434 0.220 0.369
Gaze Selected (GECO) 216 50 266 0.424 0.224 0.363
Gaze Selected (Dundee) 195 42 237 0.383 0.188 0.324

Tabla 3: Effects of different combinations on accuracy. *: statistically significant, McNeymar
test, at p¡0.05 when compared with the Antecedent Indicators (Original Weights) configuration.
**: statistically significant at p¡0.01 when compared with the Antecedent Indicators (Original
Weights) configuration.

be domain-specific.
Table 3 refers to several feature sets and

settings:

• Gaze All is the set First Fixation Dura-
tion, Second fixation duration, Last Fi-
xation Duration, Have second fixation,
Fixation Count, And Skip Rate.

• Gaze Selected (Dundee) is the set Have

Second Fixation, Skip rate.

• Gaze selected (GECO) is the set First
Fixation Duration, Second fixation du-
ration

• DL Language Model Features is the
set of 14 sentence probabilities obtained
when the 14 language models presented
by Trinh and Le (2018) are used to ob-



tain the probabilities of variant senten-
ces. In this context, variant sentences are
versions of the sentence containing the
pronoun occurs in which the pronoun
has been replaced by the candidate NP.

• DL Language Models ensemble compri-
ses the joint probability of the aforemen-
tioned language model features.

• Antecedent Indicators (Original
Weights): is the sum of the scores
assigned by the antecedent indicators
presented in Section 2.1, whose weights
were set empirically, in accordance
with the original statement of Mitkov’s
anaphora resolution algorithm (Mitkov,
2002).

• Antecedent Indicators (Optimised
Weights): is the sum of the scores assig-
ned by the antecedent indicators briefly
outlined in Section 2.1, whose weights
were set using the linear regression
optimisation method.

• NeuroCoref: In this approach, we employ
the HuggingFace NeuroCoref model as it
comes pre-packaged. Specifically, we exa-
mine NeuroCoref’s suggestions for ante-
cedents and compare them against the
annotated gold antecedents. This allows
us to determine if the suggested antece-
dent aligns with the expected reference
according to the provided annotations.

• DeepLM token labelling: In this ap-
proach, we consider the task of anaphora
resolution as token labelling. We use the
annotated data to finetune a generic lan-
guage model (in our case, either deberta-
v3-base or deberta-v3-large) to the task
of identifying the spans that correspond
to the annotated antecedents. The pro-
posed antecedent then either the span
whose tokens’ probabilities that they be-
long to an antecedent are greater than
0.5 (raw span), or the span whose avera-
ge tokens’ probabilities that they belong
to an antecedent is the largest among
the candidates provided by the prepro-
cessing steps (best among candidates).

• ChatGPT-4 no candidate. We use
ChatGPT to determine the antecedents
of it using zero-shot learning method.
Specifically, we use the following templa-
te: “in the following paragraph: {text},

‘it’ in ‘{feature text}’ refers to, give me
the exact phrase”. The {text} is the
whole context in which the pronoun it
can be found, and the {feature text} is
the part of the text starting with the it
pronoun. We then get the results from
ChatGPT-4 through openAI API, and
match the results with the known correct
antecedents.

• ChatGPT-4 Choose among candida-
tes. We use ChatGPT to choose the
antecedents of it among candidates
using zero-shot learning method. Spe-
cifically, we use the following templa-
te: “in the following paragraph: {text},
‘it’ in ‘{feature text}’ refers to (A)
{candidate 1} B {candidate 2} . . . ”.
The {text} is the whole context in which
the pronoun it can be found, and the
{feature text} is the part of the text
starting with the ‘it’ pronoun. The list of
candidates is provided by the preproces-
sing steps. We then get the results from
ChatGPT-4 through openAI API, and
match the results with the known correct
antecedents. 15

5 Discussion

Closer examination of the results (Table 3)
allows us to make the following observations.

1. Optimisation of antecedent indicators

The weights on antecedent indicators,
initially set empirically, can be optimi-
sed further, but when combined with
DL language models and gaze features,
the empirically set weights seem to work
very well across domains.

2. Deep Learning models

The inclusion of features derived using
language models (deep learning and ad-
vanced vector representations) improves
the accuracy of the anaphora resolution
method.

In recent years, deep learning language
models are getting very good at tasks
such as token labelling, and if they are

15Unlike the experiments with Deep Learning mo-
dels which are built on top of the original anaphora
resolution algorithm, in both ChatGPT experiments
(‘ChatGPT-4, no candidate’ and ‘ChatGPT-4, choo-
se among candidates’), ChatGPT’s operation is based
on its original methodology due to the impossibility
to change the way it operates.



fine-tuned on a small amount of data,
they can produce very good results.

3. Large Language Models

ChatGPT, when asked to identify ante-
cedents on its own performs competiti-
vely as compared to (or event better)
than selected Deep Learning methods
but cannot beat the original algorithm
when combined with gaze data or DL
Language Model Features or Language
Model Ensemble and still is far behind
the best performing DeepLM token la-
belling methods, when asked to predict
the exact antecedents. It performs well
when asked to pick the correct antece-
dents among the candidates.

4. Gaze features

The inclusion of gaze features improves
the accuracy of the anaphora resolution
method.

Gaze features do not provide additional
information to models that use DL lan-
guage model features. An interesting ob-
servation from our experiments is that
the two sources of information appear
to be redundant rather than complemen-
tary.

The results of the experiments suggest that
the rule-based anaphora resolution does not
always perform less successfully than models
based on deep learning and gaze data – in
fact, in some cases it delivers better results.
While data-driven approaches generally fa-
re better in these experiments, they still ha-
ve some way to go in order to be comfor-
tably beat old-fashioned rule-based approa-
ches. The results also show that the weights
on antecedent indicators, initially set empiri-
cally, can be optimised further. When combi-
ned with DL language models and gaze fea-
tures, empirically set weights appear to work
very well across domains. In particular the
inclusion of gaze features also improves ac-
curacy of the anaphora resolution and the
inclusion of features derived using langua-
ge models (deep learning and advanced vec-
tor representations) also improves accuracy
of anaphora resolution. However, gaze featu-
res do not provide additional information to
models that use DL language model features.

6 Conclusions

Anaphora resolution is arguably one of the
most difficult NLP tasks. The results of this
study provide evidence that while in most
cases Deep Learning and Large Language
Models applied to this task show superior
performance to rule-based methods, the old-
fashioned, rule-based algorithms still perform
competitively and still have a place in to-
day’s research. An interesting follow-up study
might be one that seeks to establish how rule-
based algorithms could be better integrated
in or combined with new Large Language Mo-
dels and what the limits of anaphora resolu-
tion are. Improvements of the performance
of anaphora resolution have been only incre-
mental over the years. Now, with the power
of the latest LLMs, how far can we go?
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