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Abstract 
 

Two main commitments appear in Rey’s Unified Radical Associationism: 1) using Hebbian learning as a 
unified computational framework in psychological science, 2) using associations as a unique construct to 
account for mental activities. Hebbian learning has been shown to account for complex behavioral 
repertoires in experimental paradigms coming from different psychological traditions. Here we review the 
processing mechanisms underlying such a complex repertoire, we suggest two additional points to extend 
the associationist hypothesis, and we point to the need to understand how implemented associative 
learning mechanisms are balanced and modulated. We believe these points are key for future research to 
support or question both commitments in Rey’s Unified Radical Associationism. 

 
 
We applaud Rey’s call for a radical associationism. We believe that too often, high-level processes 

(‘rich’ interpretations, Haith, 1998) are put forward where low-level (‘lean’) explanation would suffice. At 
the very least, radical associationism can push us to explore the limits of lean interpretations by building 
explanations of cognitive processes from the bottom up instead of postulating high-level descriptions of 
behavior as the underlying mechanisms of cognition (see also McClelland et al., 2010). 

Rey puts forward 10 initial points to circumscribe the associationist hypothesis. He also proposes 
the computational framework of Hebbian learning as the central axis to unify learning theories in 
psychological science. However, the classical conception of Hebbian learning may seem limited to only 
explain the associative strength between co-occurring events, and therefore not useful as an account for 
learning in more complex situations such as human language acquisition, where learning associations 
between nonadjacent elements or deriving associations from other preexisting ones happens all the time. 

In this commentary we first review a set of mechanisms that provide implemented Hebbian neural 
networks with the power to account for complex cognitive processes such as those involved in language; we 
then suggest two additional points to Rey’s 10-point list that we believe would significantly expand the 
reach of the associationist hypothesis, and we finally discuss a set of critical questions pointing towards 
future research in associative learning to test Rey’s Unified Radical Associationism. 

 
Key Features in Hebbian Neural Networks for Complex Processing 

Hebbian neural networks simulate experimental paradigms through a series of simple steps: 
external objects/stimuli (e.g., A and B) are presented to the network through input vectors following 
experimental schedules, some units in the network (e.g., neurons A and B) selectively respond to these 
objects, and connection weights (e.g., WAB) between active units change in Hebbian fashion based on co-
occurrence of stimuli. Network performance is usually evaluated through analyzing unit activations (e.g., 
responses) and connection weights (e.g., interpreted as associative strengths). 

The above description makes it straightforward to understand how these networks account for the 
learning of co-occurring events. However, a number of reasonable questions also emerge, such as how to 
prevent overgrowing in connection weights; how to account for associative learning between objects that 
appear distant in time; and whether it is possible to derive new associations based on previous ones. We 



next describe some key components and mechanisms that enrich the computational framework of Hebbian 
learning to considerably expand the empirical phenomena covered by these networks. 

Spreading Activation and Activation Decay are key components to capture complex associations, 
sequence learning and associations between distant objects. For example, after unit A has been repeatedly 
coactive with B and a strong connection between A and B (WAB) has formed, further presentations of B will 
trigger spreading activation to A, enabling the network to recall previous associations, accounting for 
phenomena such as priming and prediction/anticipation (Tovar et al., 2018). Moreover, through this 
mechanism it is possible to account for derived or “emergent” associations between objects that have never 
been presented together, because recalling an object A, for example during presentations of B and C 
together, allows the activation of A to co-occur with activation of C, triggering Hebbian learning between A 
and C and accounting for derived transitivity (i.e., if A=B and B=C, then A=C; Tovar & Westermann, 2017) 

A second mechanism enabling more complex learning is the gradual decay of unit activations when 
a stimulus is removed. In this way, the unit’s residual activation may co-occur with other newly appearing 
stimuli. The amount of activation decay modulates the associative strengths between previous and current 
stimuli, enabling the modeling of experimental paradigms where sequences are relevant such as the 
canonical tasks used in Statistical Learning: word-segmentation, artificial grammar learning and serial 
reaction time (Tovar & Westermann, 2023).  

Connection Decay and Connection Limit: Hebbian learning is typically conceptualized as connection 
strengthening such as Long-Term Potentiation (LTP) in biological neural networks. But connections do not 
grow endlessly, they stabilize at a functional level. This can be computationally achieved by including two 
constraints. One is connection decay that captures an adaptive synaptic process of weakening of connection 
weights following low coactivation values. This process is sometimes called Anti-Hebbian learning and it is 
biologically inspired by reports of Long-Term Depression (LTD) of synaptic efficacy. The second constraint is 
a connection limit: in previous work (Tovar et al., 2018; Tovar & Westermann, 2017) we have proposed a 
self-regulated parameter that limits the growth of connections and captures metaplasticity as it tunes the 
amount and direction of weight changes depending on the difference between the current weight (e.g., 
WAB) and the current coactivation (AB). This limiting effect is mathematically equivalent to the lambda 
parameter in the Rescorla & Wagner model (1972), showing a convergent approach in both associative 
models. 

LTP/LTD threshold: With both connection strengthening and decay triggered by unit coactivations, 
determining which coactivation levels should result in strengthening and which ones in decay emerges as an 
interesting question. We have suggested a computational implementation following two complementary 
notions: one is the BCM model (Bienenstock et al., 1982) which proposed an LTP/LTD threshold; here, over-
threshold coactivations (e.g., strong A and strong B) result in strengthening the connection weight, and 
below-threshold coactivations (e.g., weak A and strong B) result in connection decay. Notably, for the BCM 
theory the threshold is not a fixed value but slides as a function of previous postsynaptic activity 
(experience). The second notion comes from reports of animal models of intellectual disability showing an 
unbalanced LTP/LTD with increased LTD and weak LTP (Rueda et al., 2012), which can be captured through a 
relatively higher threshold. This is interesting because when we have modeled such imbalance with a higher 
LTP/LTD threshold, the resulting performance in the neural network mimics and predicts the behavior of 
participants with intellectual disabilities in Statistical Learning and Equivalence tasks (Tovar et al., 2018; 
Tovar & Westermann, 2017). But we have also found that slight changes in the threshold are needed to 
account for typical performance across different experimental paradigms. Thus setting the LTP/LTD balance 
is both an important problem for future research (see below) and a promising approach to model human 
processing and disorders, directly linking neural processing to cognitive behaviors. 

By enriching the traditional Hebbian algorithm with the above mechanisms, Hebbian neural 
networks evolve from learning one-to-one associations to displaying a complex performance that models 
learning during challenging tasks. For example, during Sta5s5cal Learning paradigms such models learn 
associa5ons between nonadjacent dependencies, because ac5va5on decay and spreading ac5va5on allow 
the establishment of new links between distant objects. Moreover, weight decay, connec5on limits and the 
LTP/LTD threshold keep these distant associa5ons with a medium strength accoun5ng for empirical reports 
of medium accuracy, discriminability and changes in response speed in human par5cipants when acquiring 
such repertoires (Tovar & Westermann, 2017a, 2023). Notably, these Hebbian networks account for 



numerous paradigms coming from different traditions such as Behavior Analysis, Implicit Learning and 
Statistical Learning, providing evidence in support of Rey’s proposal of Hebbian learning as a central 
framework for unifying learning theories. 
 
Two additional points to enrich the associationist hypothesis 
 

The ten points put forward by Rey provide a comprehensive characterization of the associationist 
framework. Eventually, this framework’s challenge is to explain higher cognitive functions as the outcome of 
associative processes. We propose two further points to add to this framework that we believe have great 
potential to enhance learning in associative networks to provide mechanistic accounts of the emergence of 
higher-level processes:  

11. Networks grow and shrink, adapting their functionality to the task. Over the first years of life, 
biological networks develop in an experience-dependent, constructive way (Quartz & Sejnowski, 1997). Such 
guided growth presents substantial advantages over learning in maximal, fixed architectures (Quartz, 1993) 
in terms of speed and robustness, and can lead to functional specialization in developing sub-components 
(Westermann & Ruh, 2012), integrating the statistical structure of the environment into the functional 
structure of the resulting network and showing rule-like and abstract generalization behavior (Westermann, 
2016). 

12. Learners choose their input, arguably to optimize their in-the-moment learning. This point 
embeds the associative learning mechanism in a behaving agent. We have shown that the order in which 
information is encountered (e.g., blocked vs. interleaved presentation of stimuli from two classes) shapes 
the learning outcome (Tovar et al., 2018). These results marry with recent research on infants’ learning 
showing that infants take an active role in their information selection to maximize their learning progress 
(Poli et al., 2020; Twomey & Westermann, 2018). With a fixed learning mechanism, therefore, active 
learners can generate an optimized sequence of information selection leading to enhanced learning over a 
random (or non-optimal) sequence.  

Integrating these features into the associationist framework will enhance this framework to 
account for developmental processes and, we believe, enable systems that more naturally support higher 
level cognitive processes.   
 
Future Directions in Associative Hebbian Learning 

 
One relevant research agenda to advance the associationist hypothesis is focused on understanding 

the interactive effects of processing mechanisms/constraints in associative systems. Taking the case of the 
Hebbian constraints reviewed above, a close inspection of their functioning rapidly reveals their interactive 
nature because changing the value of a given parameter has effects on the functioning of the others. For 
example, a relatively higher LTP/LTD threshold restricts the number of connections undergoing positive 
changes in the network, but increasing the rate of activation decay would rescue a proportion of such 
connections. Now consider that these network parameters also interact with the processing restrictions 
from our two additional suggested points: structural adaptation of the network (growing or shrinking) and 
active information selection. This highlights the complex role of balancing between the interactive learning 
restrictions; moreover, the optimal balance (i.e., optimal parameter space) in associative systems differs 
depending on task demands (Tovar & Westermann, 2023); for example, a lower LTP/LTD threshold is useful 
for learning distant associations, but not all tasks require this. 

These considerations guide us to propose several key questions for future research towards a 
deeper understanding of associative learning: 

 
How is the parameter balance in associative networks naturally achieved for each task? 
How does a system (or organism) autonomously (implicitly or explicitly) find the optimal parameter 

combination in this multi-dimensional space? For example, how does explicitly discovering the efficacy of 
learning certain associations (adjacent or nonadjacent) modulate the network constraints? 



Is the balance best explained by other processes, such as top-down modulation from attention, 
working memory, and other executive processes, or are Hebbian constraints and environmental 
contingencies enough? 

What is the relationship between the achieved balance and development? 
 
The above are not trivial questions; their answers are at the heart of confirming or questioning 

Arnaud Rey’s proposal that “associations are all we need”. While associations are necessary to account for 
complex behavior, we have highlighted the need to understand how these associations are governed and 
finely tuned, either self-regulated or modulated by other processes. This turns the question into how 
Hebbian learning interacts with/or depends on other cognitive processes, and whether a single process is 
sufficient as argued by Rey, or whether multiple processes (e.g., one processing system for low level 
associations, and a second high-level system for selective, attention-guided learning; Conway, 2020) are 
necessary. Answers to our list of questions may provide evidence to discern between both perspectives and 
would ultimately support, undermine or reshape radical associationism.     

 
Conclusion 

There are two major commitments in Arnaud Rey’s proposal. The first one, for which there is 
already some evidence, is using Hebbian learning as a unified computational framework for learning 
theories. The second is using associations as a unique construct to account for mental activities. Rey’s 
theoretical positioning pushes research to explore the explanatory limits of associative learning. Here we 
have motivated a research agenda to understand how associative learning mechanisms are regulated. 
Discovering what is involved in bringing associative mechanisms into balance is essential to test and advance 
the exciting associative project proposed by Arnaud Rey. 
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