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Multilayer Evolving Fuzzy Neural Networks
with Self-Adaptive Dimensionality Compression

for High-Dimensional Data Classification
Xiaowei Gu, Qiang Ni and Qiang Shen

Abstract—High-dimensional data classification is widely con-
sidered as a challenging task in machine learning due to the
so-called “curse of dimensionality”. In this paper, a novel
multilayer jointly evolving and compressing fuzzy neural network
(MECFNN) is proposed to learn highly compact multi-level latent
representations from high-dimensional data. As a meta-level
stacking ensemble system, each layer of MECFNN is based on
a single jointly evolving and compressing neural fuzzy inference
system (ECNFIS) that self-organises a set of human-interpretable
fuzzy rules from input data in a sample-wise manner to perform
approximate reasoning. ECNFISs associate a unique compressive
projection matrix to each individual fuzzy rule to compress
the consequent part into a tighter form, removing redundant
information whilst boosting the diversity within the stacking
ensemble. The compressive projection matrices of the cascading
ECNFISs are self-updating to minimise the prediction errors via
error backpropagation together with the consequent parameters,
empowering MECFNN to learn more meaningful, discriminative
representations from data at multiple levels of abstraction. An
adaptive activation control scheme is further introduced in
MECFNN to dynamically exclude less activated fuzzy rules,
effectively reducing the computational complexity and fostering
generalisation. Numerical examples on popular high-dimensional
classification problems demonstrate the efficacy of MECFNN.

Index Terms—high-dimensional data classification; compres-
sive projection; dimensionality compression; evolving fuzzy sys-
tem; stacking ensemble.

I. INTRODUCTION

THANKS to the rapid advancements of electronic and
manufacturing technologies, human societies have en-

tered the era of big data. Massive volumes of digital data
in the formats of texts, images, audio, videos, etc., are gen-
erated from different aspects of human activities over the
past years with growing scale, complexity and dimensionality
[1]. Mining, analysing and interpreting high-dimensional data
is of great importance in various fields, including science,
technology, healthcare and finance. Techniques capable of im-
plementing these tasks play a crucial role in advancing knowl-
edge, fostering innovation, and enabling informed decision-
making. However, high dimensionality of data presents signif-
icant challenges to machine learning models due to the more
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complicated data structure, and raises many issues that can
affect their abilities to accurately recognise the underlying data
patterns and perform approximate reasoning. Learning from
high-dimensional data is also computationally expensive and
often leads to overfitting [2].

As a forefront of machine learning research, artificial neural
networks (ANNs or deep neural networks, DNNs) have made
remarkable achievements in a wide range of practical applica-
tions involving text, audio and visual information processing
[3]. ANNs have demonstrated the state-of-the-art (SOTA)
performances on many high-dimensional, complex problems
that traditional machine learning models may struggle with
[4]. The eye-catching successes of ANNs come from their
capabilities to learn highly descriptive latent representations
of the input data at multiple levels of abstraction through
the utilisation of multiple layers of artificial neurons typi-
cally trained using backpropagation algorithms. Nevertheless,
ANNs are extremely complicated systems composed of huge
amounts of parameters preserving abstract information learned
from data without clear physical meanings to be linked to the
practical problems directly. As a result, there is often a lack
of understanding on the rationale behind their decisions [5].
This also makes it practically impossible for human experts
to identify the causes of prediction errors made by ANNs and
fix these errors.

In addressing such observations, a number of post-hoc ap-
proaches have been introduced aiming to provide explanations
to the internal reasoning of ANNs, e.g., saliency [6], layer-
wise relevance propagation [7]. Yet, the vast majority of the
resulting approaches focus on attributing the predictions of
the ANNs to the inputs [8]. Their explanations are aligned
to the modes’ behaviours rather than human understanding,
and may even be misleading and meaningless [5]. Despite of
their superior prediction performances, concerns on the lack of
interpretability and explainablity of ANNs have largely limited
their wider adaption in real-world applications, particularly, for
high-stake tasks.

Evolving fuzzy systems (EFSs) are a type of fuzzy systems
that are capable of self-evolving the system structure and self-
adjusting parameters online to capture the dynamically chang-
ing patterns of data streams, while summarising the captured
information from data into a set of human-interpretable IF-
THEN fuzzy rules [9], [10]. EFSs are an effective and promi-
nent tool for real-time non-stationary problem approximation,
offering high-level transparency and interpretability [11]. They
can be implemented in the form of fuzzy rule-based systems
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or neuro-fuzzy systems, and have been widely applied in
many real-world applications for handling data streams with
inherent uncertainties [12]. As one of the hottest topics in
computational intelligence research, a wide variety of EFSs
have been proposed over the past few decades.

The most representative examples of the recently developed
EFSs include, but are not limited to, dynamic evolving neural-
fuzzy inference system [9], evolving Takagi-Sugeno system
[13], sequential adaptive fuzzy inference system [14], evolving
fuzzy rule-based classifiers [10], evolving granular neural
network [15], parsimonious network based on fuzzy inference
system [16], generic evolving neuro-fuzzy inference system
[17], evolving fuzzy model [18], self-evolving fuzzy system
[19], parsimonious learning machine [71], evolving fuzzy sys-
tem with self-learning/adaptive thresholds [21], jointly evolv-
ing and compressing fuzzy system [22], statistically evolving
fuzzy inference system (SEFIS) [23], etc. With the transpar-
ent, highly flexible system structure and human-interpretable
reasoning mechanism, EFSs have demonstrated great success
in handling real-world streaming data problems, providing an
effective and promising solution toward explainable artificial
intelligence [24].

Although highly complex models do not necessarily achieve
greater prediction accuracy, it is generally recognised that the
simpler and more transparent EFSs struggle to handle high-
dimensional and complex problems, say for image recognition,
due to the so-called “curse of dimensionality” [22]. Existing
EFSs suffer from system obesity with significantly increased
complexity and lose transparency when applied to such prob-
lems. This is because of the inherent vulnerability of fuzzy
systems to the curse of dimensionality [25], [26]. In practice,
as the dimensionality of data increases, both the number of
fuzzy rules and the number of parameters associated with the
rules increase significantly, which not only impairs the inter-
pretability, but also leads to system breakdown potentially. One
feasible solution to tackle system obesity is to cap the number
of fuzzy rules within the system [27]. However, this approach
carries a risk that the learned fuzzy rules may be insufficient
for precisely approximating the problem. In addition, EFSs
rely on online clustering for fuzzy rule identification from
incoming data. Unfortunately, the validity and reliability of
the obtained clusters unfavourably decrease with the increase
of input dimensionality. As a result, EFS models learned
from high-dimensional data are prone to be overfitting and
the prediction performances are usually limited. To empower
the capability of EFSs for handling sophisticated problems,
many flat ensemble schemes have been proposed to construct
stronger predictive models from a number of individual single-
model EFSs, trained either in parallel [28]–[33] or sequentially
[34], [35]. The performance improvement of flat ensemble
schemes is typically attained by boosting the diversity among
the individual EFSs and increasing the width of the resulting
ensemble model. However, this is usually insufficient to tackle
high-dimensional, complicated learning tasks. To gain greater
representation learning capabilities, the depth of the ensemble
model has to be increased [36], a lesson learned from the
conventional ANN paradigm also [37].

To date, there has been a growing number of works in

the literature attempting to build multilayer stacking ensemble
models with EFSs to learn multi-level latent representations
from data. In [38], a deep evolving fuzzy neural network
(DEVFNN) is proposed. It is composed of multiple cascading
EFSs (one per layer) with the outputs of EFSs at previous
layers being utilised to augment the inputs to the EFSs
at successive layers. A multilayer ensemble evolving fuzzy
inference system (MEEFIS) is introduced in [39]. Each layer
of MEEFIS is an ensemble of multiple EFSs implemented in
parallel to jointly process the inputs received from preceding
layer. These early techniques explore the potential of EFSs
in stacked ensemble learning. Both methods utilise the stan-
dard recursive least squares (RLS)-based algorithms [9], [10]
to adjust the consequent parameters of the individual EFSs
within the ensemble models. However, consequent parameter
learning using RLS can be computationally expensive when
the dimensionality of data is high due to the recursive updating
of covariance matrices. In [40], a hierarchical evolving fuzzy
system (HEFS) that employs the kernel conjugate gradient
(KCG) algorithm for training consequent parameters is pro-
posed. While KCG offers greater computational efficiency
compared to RLS when dealing with low-dimensional data,
its computational complexity also increases substantially as
the dimensionality of data increases.

In addition, one significant issue overlooked by the vast
majority of existing works on stacking ensemble EFS models
is that conventional consequent parameter learning algorithms,
such as RLS and KCG, require the error functions to be
explicitly specified. As such, given a current input individual,
EFSs have to be trained separately to minimise the differ-
ence between their outputs and the ground truth, in order to
avoid ambiguity in defining the error functions for different
layers. This updating mechanism limits the interaction between
EFSs at different layers and hinders multi-level representation
learning [41]. Having recognised the limitation of conven-
tional algorithms in stacking ensemble consequent parame-
ter learning, recent designs [41], [42] tend to employ back
propagation instead for adjusting the parameters of ensemble
components layer-by-layer. This helps break the bottleneck,
fostering the interactions between layers to learn more descrip-
tive latent representations from data collaboratively. Despite
such advancement, learning stacking EFS ensembles from
high-dimensional, complicated problems remains a highly
challenging task due to the potentially redundant information
in the data, hindering effective generalisation [22].

Compressive sensing techniques, such as very sparse ran-
dom projection (VSRP) [43], have been proven useful for
EFSs to learn a more compact fuzzy rule base from high-
dimensional data, improving computational efficiency and
reducing overfitting [22], [33]. Very recently, a multilayer
stacked evolving fuzzy system (MS-EFS) combined with di-
mensionality compression is proposed in [44]. In MS-EFS,
each individual EFS is followed by a feature compressing
layer based on VSRP, which compresses the dimensionality
of its outputs before passing them as inputs to the successive
EFS. While the computational complexity of the first EFS in
MS-EFS remains high due to the use of weighted RLS algo-
rithm for consequent parameter learning, the VSRP matrices
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effectively improve computational efficiency of the subsequent
EFSs in the stacking ensemble and increase the compactness of
the learned IF-THEN rules. Nonetheless, in practice, utilising
VSRP matrices in EFSs inevitably impairs the prediction
performance of the model due to the loss of information
after data compression, particularly when the compression
ratio is high [33]. The primary reason for this degradation
is that these VSRP matrices are randomly generated during
the system identification process and are not adapted to the
input data. This random generation process does not account
for the specific characteristics of the data, leading to potential
loss of important information and, consequently, a decline in
prediction accuracy.

To better handle high-dimensional complex problems, the
following three limitations of existing EFS-based stacking
ensemble models need to be addressed collectively: 1) in-
sufficient interaction between different layers; 2) significant
increase in computational complexity due to high dimension-
ality; and 3) inefficiency in eliminating redundant information
from the data. In this paper, a novel Multilayer jointly Evolv-
ing and Compressing Fuzzy Neural Network (MECFNN) that
overcomes these three important limitations is proposed for
high-dimensional data classification. MECFNN is a multi-
layer stacking ensemble model composed of multiple jointly
Evolving and Compressing Neural Fuzzy Inference Systems
(ECNFISs) arranged in layers to learn more meaningful and
compact latent representations from data at multiple levels of
abstraction. It works through the utilisation of self-adaptive
compressive projection (SACP) matrices for autonomous di-
mensionality compression, which cleans redundant informa-
tion in data and further enhances the diversity between the
learned IF-THEN fuzzy rules as well as between the learned
network layers. Similar to its predecessor, multilayer evolving
fuzzy neural network (MEFNN) [41], each layer of MECFNN
is based on a single ECNFIS self-organising and self-evolving
from data on a sample-by-sample basis. Inputs to MECFNN
are processed by the cascading ECNFISs layer-by-layer to
produce the final outputs, and the prediction errors are feed
backwards for parameter updating.

A distinctive feature of MECFNN is that the consequent
part of each individual IF-THEN fuzzy rule is associated with
a unique SACP matrix. These SACP matrices are continuously
self-updating with data to minimise the prediction errors. In
doing so, MECFNN can gradually learn to preserve the more
discriminative features during dimensionality compression and
to discard the less relevant ones, rather than in a purely random
manner as done with the existing techniques [22], [33], [44].
To reduce the computational complexity and further improve
generalisation, an adaptive activation control scheme is also
introduced in MECFNN. It selects only these activated fuzzy
rules by the current input for output generation and consequent
parameter updating at each learning cycle [11], resembling
dropout regularisation in ANNs. The utilisation of activation
functions in dimensionality compression and output generation
enables MECFNN to capture and reflect the subtle nonlinearity
hidden in the data [41]. Hence, MECFNN possesses greater
prediction performance when dealing with high-dimensional,
complex problems.

To summarise, novel features of the proposed MECFNN
include:

1) A meta-level stacking ensemble system composed of
multiple cascading EFS models to self-evolve from data
in a sample-wise manner and to simultaneously perform
dimensionality compression, removing redundant infor-
mation while boosting generalisation capacity;

2) An adaptive dimensionality compression scheme to pro-
mote the diversity within the stacking ensemble, en-
abling the model to learn more meaningful, compact
multi-level latent representations from data through the
exploitation of SACP matrices;

3) An adaptive activation control scheme to dynamically
exclude less activated IF-THEN rules at different layers
in response to the inputs in a more targeted, flexible
manner, effectively reducing the computational com-
plexity involved in updating the consequent part while
preventing overfitting.

The proposed MECFNN is distinctive from existing tech-
niques in the following five aspects:

1) In contrast to ANNs [3], [4], MECFNN self-organises
a multilayer fuzzy rule-based system structure from
data, offering greater model transparency and inference
interpretability;

2) Different from EFS-based flat ensemble models [28]–
[35], MECFNN learns latent representations from data at
multiple levels of abstraction thanks to its deep structure;

3) Unlike most of EFS-based multilayer ensemble models
[38]–[40], [44], MECFNN fosters information exchange
between different layers using error backpropagation for
consequent parameter learning;

4) Differing from alternative EFS models using dimension-
ality compression [22], [33], [44], MECFNN self-adapts
the compressive projection matrices from data, better
preserving more discriminative features;

5) Compared to its predecessor [41], MECFNN learns more
meaningful, compact representations from data with
improved generalisation with adaptive dimensionality
compression and activation control.

Numerical examples based on a range of high-dimensional
benchmark classification problems demonstrate that with the
substantial enhancements, MECFNN achieves superior repre-
sentation learning capabilities in comparison to its predecessor,
MEFNN and surpasses the SOTA approaches with elevated
classification accuracy.

The remainder of this paper is organised as follows. Techni-
cal details of the proposed MECFNN are presented in Section
II. Numerical examples on high-dimensional benchmark clas-
sification problems are given in Section III for comparative
performance demonstration. This paper is concluded in Section
IV, which also outlines directions for future work.

II. PROPOSED MECFNN
A. General Architecture

The model structure of MECFNN is depicted in Fig. 1a,
where the zoom-in structure of the lth layer is given by Fig.
1b. It can be seen from Fig. 1 that similar to its predecessor,
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(a) Model structure.

(b) Inner structure of the lth layer.

Fig. 1: General Architecture of MECFNN.

MEFNN [41], MECFNN is a meta-level ensemble system
composed of multiple ECNFISs stacked on top of each other
layer-by-layer, where the outputs of the preceding layer serve
as the inputs of the following layer. Note that, different
from existing EFSs in the literature, ECNFIS is equipped
with two unique schemes, namely, i) adaptive dimensionality
compression and ii) adaptive activation control [11].

Assuming MECFNN is composed of L individual ECNFISs,
each ECNFIS (e.g., the lth one) is a MIMO EFS (see Fig. 1b)
composed of N l prototype-based IF-THEN rules in the form
of Eq. (1) [33], [41].

Rl
n : IF (xl ∼ pl

n) THEN (yl
n = σ(Al

n[1, c
l
n]

T )) (1)

where l = 1, 2, ..., L; Rl
n denotes the nth IF-THEN rule of

the lth ECNFIS; n = 1, 2, ..., N l; “∼” denotes similarity;
xl = [xl

1, x
l
2, ..., x

l
M l ]

T is the M l × 1 dimensional input
vector; yl

n = [yln,1, y
l
n,2, ..., y

l
n,W l ]

T is the W l×1 dimensional
output of Rl

n in response to xl; pl
n is the M l × 1 dimen-

sional prototype/antecedent part of Rl
n; cln = σT (Vl

nx
l);

Vl
n = [vln,j,k]

j=1:Cl

k=1:M l is the Cl×M l dimensional SACP matrix
associated with Rl

n; Cl = ϵlM l; ϵl is the compression ratio of
the lth ECNFIS, 0 < ϵl ≤ 1; Al

n = [aln,j,k]
j=1:W l

k=0:Cl is the cor-
responding W l × (Cl +1) dimensional consequent parameter
matrix; and σ(·) denotes the standard activation function. In
this study, the classic sigmoid function is employed, namely,
σ(x) = 1

1+e−x .
One distinctive feature of MECFNN is that the consequent

part of each IF-THEN rule is associated with a unique SACP
matrix, Vl

n that maps the input vectors onto a lower dimen-
sional latent space. Upon identifying and adding a new IF-
THEN rule to the rule base, a newly produced SACP matrix
is assigned to its consequent part in the form of a randomly
generated VSRP matrix (as specified by Eq. (5)). After ini-
tialisation, such SACP matrices will be continuously adjusted
during the learning process through error backpropagation to
better preserve the key information from data whilst reducing

redundant information (as specified by Eq. (25)). Since every
SACP matrix is unique, the input data to a ECNFIS is
projected onto different latent spaces, offering multiple views
of the underlying data. This uniqueness property effectively
enhances the diversity within the rule bases of individual
ECNFISs.

The output, yl of the lth ECNFIS given the input xl is
derived by Eq. (2):

yl = f l(xl) =

N l∑
n=1

λl
ny

l
n =

N l∑
n=1

λl
nσ(A

l
n[1, c

l
n]

T ) (2)

where λl
n is the normalised firing strength of Rl

n (specified
by Eq. (15) later).

Since the inputs of the lth ECNFIS are the outputs of the
l−1th ECNFIS and its outputs serve as the inputs of the l+1th

ECNFIS, there are xl = yl−1 and xl+1 = yl. Hence, IF-
THEN fuzzy rules in the successive layers are fully connected,
and the L-layer MECFNN can be modelled by the following
composite function [41]:

y = fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1(x) (3)

where x = [x1, x2, ..., xM ]T and y = [y1, y2, ..., yW ]T denote
the input and output of MECFNN, respectively; yj represents
the likelihood that x belongs to the jth class (j = 1, 2, ...,W ).

Similar to MEFNN [41], users need to specify the output
sizes (namely, W 1,W 2,...,WL−1) of the stacked ECNFISs
(except for the final one) and the corresponding compression
ratios (namely, ϵ1,ϵ2,...,ϵL) a priori for MECFNN. It will
self-organise its multi-level model structure and parameters
automatically from input data based on their ensemble prop-
erties and mutual distances. The output sizes (W l) control the
amounts of information transmitting between layers, and the
compression ratios (ϵl) control the dimensionality of the input
vectors at the respective layers after compression. It is worth
noting that both the output sizes and the compression ratios are
not problem- and user- specific, and can be determined based
on users’ preference without prior knowledge of the problem
or making any assumptions on the data generation model. A
detailed discussion on the parameter settings of MECFNN is
presented in Section III. A and the recommended setting is
also given in the same section.

Thanks to the adaptive dimensionality compression scheme,
MECFNN is capable of compressing the consequent parts
of the IF-THEN rules into a tighter and more meaningful
form to remove the redundant information whilst self-evolving
from data simultaneously. This helps MECFNN to effec-
tively capture the hierarchically interconnected patterns of data
across different levels of abstraction and learn more compact,
descriptive representations, lifting the “curse of dimensional-
ity”. Moreover, the adaptive activation control scheme works
similarly as the dropout technique used by ANNs but in a
more selective, flexible manner by dynamically dropping out
these less activated IF-THEN rules with respect to the current
inputs, effectively improving the computational efficiency of
MECFNN and reducing overfitting [11].

In the next subsection, the system identification process of
MECFNN is detailed. Note that all the ECNFISs forming the
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Fig. 2: Illustration of structure evolving and parameter updating process.

stacking ensemble follow the exact same structure evolving
and parameter updating process during system identification.

B. System Identification

MECFNN self-organises the meta-level model structure and
parameters automatically from data on a sample-by-sample ba-
sis and performs dimensionality compression simultaneously.
The system identification process of MECFNN is composed of
the following three stages. For clarity, the structure evolving
and parameter updating process is illustrated in Fig. 3.

Stage 0. System Initialisation. For a particular input sample,
xk (k stands for the time instance at which xk is observed), if
k = 1, the meta-level structure and parameters of MECFNN
will be initialised by xk in a layer-wise manner starting from
the ECNFIS at the first layer (l = 1). Otherwise, the system
identification process skips Stage 0 and enters Stage 1 directly.

Given the first input sample, xl
k (xl

k = x if l = 1 or xl
k =

yl−1
k ∀l > 1), the global parameters of the lth ECNFIS are

initialised as [11]:

ηl ← xl
k; X l ← ||xl

k||2 (4)

where ηl and X l denote the global means of all the input
samples to the lth ECNFIS and their squared Euclidean norms,
respectively.

The first fuzzy rule, Rl
N l (N l ← 1) of the lth ECNFIS

is initialised in the form of Eq. (1) with the corresponding
prototype pl

N l , SACP matrix Vl
N l and consequent parameter

matrix Al
N l set by Eq. (5) [22], [33], [41].

pl
N l ← xl

k; Vl
N l ← ωl

o; Al
N l ←

1

M l + 1
ξo (5)

where αl =
√
M l; ωl

o = [
√
αl√
Cl

ωl
o,j,k]

j=1:Cl

k=1:M l is a unique
Cl × M l dimensional VSRP matrix with the elements ran-
domly generated by the distribution given in Eq. (6) [22], [43];
ξo = [ξo,j,k]

j=1:W l

k=0:Cl is a randomly generated W l × (Cl + 1)
dimensional matrix, whose elements equal to either 0 or 1,
namely, ξo,j,k ∈ {0, 1} ∀ j, k, following the symmetrical
binomial distribution [41]. Note that, both Vl

N l and Al
N l

are randomly generated for each IF-THEN rule and will be

continuously updated throughout the learning process to better
approximate the data.

ωl
o,j,k =


1, with probability 1

2αl

0, with probability 1− 1
αl

−1, with probability 1
2αl

(6)

The main reason for using VSRP matrices as the initial
SACP matrices is that VSRP matrices can effectively reduce
the dimensionality of data, improve the computational effi-
ciency with little impact on accuracy (in the expectation)
[22], [43]. However, in practice, the utilisation of VSRP
matrices inevitably decreases the accuracy of the predictive
model because these randomly generated matrices are often
far from the optimum and can cause a significant loss of
information after data compression [33]. Therefore, these
matrices need to be continuously updated with data during
the system identification process to achieve more meaningful
compression.

Then, parameters of the cluster, denoted as Cl
N l associated

with Rl
N l are initialised by Eq. (7) [41].

ml
N l ← xl

k; χl
N l ← ||xl

k||2; Sl
N l ← 1 (7)

where ml
N l and χl

N l are the respective arithmetic means of all
data samples associated with Cl

N l and their squared Euclidean
norms; Sl

N l is the number of such samples, namely, support.
After the lth ECNFIS is initialised, it produces the output

ylk using Eq. (8) and passes it to the ECNFIS at the next layer
(l + 1th) as the input.

yl
k = σ(Al

N l [1, clN l,k]
T ) (8)

where clN l,k = σT (Vl
N lxl

k).
Once the l+1th ECNFIS receives the input xl+1

k from the
previous layer (xl+1

k ← yl
k), the same initialisation process

given by Eqs. (4) to (8) is repeated until the ECNFIS at the
final layer (Lth) is initialised and the output of MECFNN is
produced (yk ← yL

k ). After this, the current learning cycle
enters Stage 2 for consequent part updating.

Stage 1. Structure Evolving and Antecedent Part Updating.
Given a new input sample xk with k > 1, the model structure
and antecedent parameters of MECFNN are adjusted accord-
ingly to reflect the changes in the data patterns on a layer-
wise basis by updating the cascading ECNFISs sequentially
in response to the inputs.
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With the current input sample xl
k (xl

k ← xk if l = 1 or
xl
k ← yl−1

k , otherwise), global parameters of the lth ECNFIS
are firstly updated as (l = 1, 2, ..., L) [41]:

ηl ← ηl +
xl
k − ηl

k
; X l ← X l +

||xl
k||2 −X l

k
(9)

Then, the firing strength of each IF-THEN rule, Rl
n (n =

1, 2, ..., N l) in response to xl
k is calculated using Eq. (10) [41].

µn(x
l
k) = e

− ||xl
k−pl

n||2

(τl
n)2 (10)

where τ ln =

√
Xl−||ηl||2+χl

n−||ml
n||2

2 .
Condition 1 is then utilised to examine whether xl

k repre-
sents a data pattern unseen from previous inputs [41]:

Cond. 1 : if
(

max
n=1,2,...,N l

(µn(x
l
k)) < δo

)
then (xl

k becomes a new prototype)
(11)

where δo (0 < δo < 1) is the threshold to identify whether xl
k

is spatially distant to all existing prototypes and, by default,
δo = e−3 is used.

If xl
k meets Condition 1, it is suggested that xl

k is distinctive
from prototypes identified previously and highly likely to
represent a data pattern unseen before. To capture this new
data pattern, a new IF-THEN rule, Rl

N l (N l ← N l + 1)
and the associated cluster, Cl

N l are initialised with the related
parameters set by Eqs. (5)-(7). Otherwise, namely, Condition 1
is not satisfied, xl

k is utilised for updating the parameters of the
cluster, Cl

n∗ associated with the IF-THEN rule producing the
greatest firing strength (n∗ = argmaxn=1,2,. . . ,n∗(µn(x

l
k)))

by Eq. (12).

ml
n∗ ←ml

n∗ +
xl
k −ml

n∗

Sl
n∗ + 1

χl
n∗ ← χl

n∗ +
||xl

k||2 − χl
n∗

Sl
n∗ + 1

Sl
n∗ ← Sl

n∗ + 1

(12)

After the model structure and antecedent parameters of the
lth ECNFIS are updated, the firing strength values of the
IF-THEN rules within the rule base are recalculated using
Eq. (10) to reflect the latest changes in respect to xl

k. Then,
adaptive activation control is performed to enable ECNFIS to
identify these more activated rules by the current input for
parameter updating and output generation. To do so, the firing
strength values are ranked in descending order, re-denoted
by µ∗

1(x
l
k), µ∗

2(x
l
k),...,µ

∗
N l(x

l
k) (µ∗

1(x
l
k) ≥ µ∗

2(x
l
k) ≥ ... ≥

µ∗
N l(x

l
k)) and the number of activated IF-THEN rules in the

rule base with higher firing strength values than the rest is
identified by Eq. (13).

N̂ l
k = argmin

n=1,2,...,N l

(

n∑
i=1

µ∗
n(x

l
k) ≥ ρo

N l∑
i=1

µn(x
l
k)) (13)

where 0 ≤ ρo ≤ 1. Eq.(13) identifies the minimum num-
ber, N̂ l

k of such IF-THEN rules with the sum of their fir-
ing strength values exceeds the soft threshold specified by
ρo

∑N l

i=1 µn(x
l
k). Hence, one can see that with ρo = 1, all the

IF-THEN rules are considered as being activated, and; only a

single rule giving the highest firing strength will be selected
if ρo is set to be 0. In this study, ρo = 0.95 is used by default
such that a small number of the least activated IF-THEN rules
are excluded from output generation and consequent parameter
updating (in Stage 2), effectively improving the computational
efficiency and preventing overfitting.

Based on Eq. (13), Condition 2 is utilised to examine the
IF-THEN rules one-by-one (n = 1, 2, ..., N l) to see whether
they are activated by the current input xl

k.

Cond. 2 : if
(
µn(x

l
k) ≥ µ∗

N̂ l
k

(xl
k)
)

then (Rl
n is activated by xl

k)
(14)

The normalised firing strength values of the IF-THEN rules
are derived by Eq. (15):

λl
n,k =


µn(x

l
k)∑N̂l

k
i=1 µ∗

i (x
l
k)
, Rl

n meets Cond. 2

0, otherwise
(15)

Then, the output of the lth ECNFIS, yl
k with regards to xl

k

is generated using Eq. (2), and passed to the l+1th ECNFIS at
the next layer as the input. The same process (Eqs. (9)-(15)) is
repeated until the model structure and antecedent parameters
of Lth ECNFIS at the final layer are updated and the output of
MECFNN, yk (yk ← yL

k ) is produced. After this, the system
identification process enters Stage 2 to update the consequent
parts of the cascading ECNFISs, which include the consequent
parameter matrices Al

n and SACP matrices Vl
n (∀l, n).

Stage 2. Consequent Part Updating. Same as MEFNN [41],
MECFNN utilises backpropagation for consequent parameter
updating for the following three reasons: i) avoiding the
ambiguity in specifying the error functions for updating the
consequent parameters of individual ECNFISs at different
layers as required by standard RLS-based algorithms used
by conventional EFSs; ii) encouraging information exchange
between layers to collaboratively learn more descriptive, com-
pact multi-level representations from data after dimension-
ality compression, and; iii) removing the need of updating
covariance matrices for consequent parameter learning to
achieve greater computational efficiency, particularly, in high-
dimensional problems.

Given the final output yk, the prediction error is defined as:

ek =
1

2
(yk − rk)

T (yk − rk) (16)

where rk = [rk,1, rk,2, . . . , rk,W ]T is the corresponding one-
hot encoded class label of xk [41].

Consequently, the derivative of ek with respect to yL
k is

given by Eq. (17):

∂ek
∂yL

k

= yL
k − rk (17)

Based on Eq. (17), the consequent parameter matrices
and SACP matrices of the IF-THEN rules of the cascading
ECNFISs are updated layer-by-layer in a backward manner
from the last layer to the first layer. The derivatives of the two
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matrices in the consequent part of the nth IF-THEN rule of
the lth ECNFIS are given as follows [41] (n = 1, 2, ..., N l).

∂ek

∂Al
n

=
∂ek
∂yL

k

· ∂yL
k

∂yL−1
k

· · · · ·
∂yl+1

k

∂yl
k

· ∂y
l
k

∂Al
n

= dl
k ·

∂yl
k

∂Al
n

(18)

∂ek

∂Vl
n

=
∂ek
∂yL

k

· ∂yL
k

∂yL−1
k

· · · · ·
∂yl+1

k

∂yl
k

· ∂y
l
k

∂Vl
n

= dl
k ·

∂yl
k

∂Vl
n

(19)

where dl
k = ∂ek

∂yL
k

· ∂yL
k

∂yL−1
k

· · · · · ∂yl+1
k

∂yl
k

is the derivative of

prediction error with respect to yl
k and there is dL

k = ∂ek

∂yL
k

.

Utilising the chain rule, dl−1
k can be derived from dl

k using
Eq. (20) (∀l = 2, 3, ..., L):

dl−1
k = dl

k ·
∂yl

k

∂xl
k

=

N l∑
n=1

(∂λl
n,k

∂xl
k

· (yl
n,k)

T · dl
k

+ λl
n,k · (Ã

l

nU
l
n,k)

T · gl
n,k

) (20)

where gl
n,k = dl

k⊗σ′(Al
n[1, c

l
n]

T ); “⊗” denotes element-wise

multiplication; Ã
l

n is the consequent parameter matrix Al
n but

with the first column removed; σ′(x) = σ(x) · (1 − σ(x)) is

the derivative of σ(x) with respect to x;
∂λl

n,k

∂xl
k

and Ul
n,k are

obtained by Eqs. (21) and (22).

∂λl
n,k

∂xl
k

= λl
n,k ·

(2(pl
n − xl

k)

(τ ln)
2

−
N l∑
i=1

(λl
i,k ·

2(pl
i − xl

k)

(τ li )
2

)
)

(21)

Ul
n,k = [vl

n,1 ⊗ σ′(Vl
nx

l
k), ...,v

l
n,M l ⊗ σ′(Vl

nx
l
k)] (22)

Here, vl
n,k = [vln,1,k, v

l
n,2,k, ..., v

l
n,Cl,k]

T denotes the kth

column of Vl
n; k = 1, 2...,M l.

Since the outputs of the lth ECNFIS serve as the inputs of
the l+1th ECNFIS (namely, yl

k = xl+1
k ∀l = 1, 2, ..., L− 1),

Eqs. (18) and (19) can be simplified in a more compact form:

∂ek

∂Al
n

= λl
n,k · gl

n,k · [1, cln,k] (23)

∂ek

∂Vl
n

= λl
n,k · (((Ã

l

n)
T · gl

n,k)⊗ σ′(Vl
nx

l
k)) · (xl

k)
T (24)

Detailed derivations for Eqs. (20), (23) and (24) are given
in Supplementary Section A.

Based on the respective derivatives, Al
n and Vl

n are updated
using Eq. (25).

Al
n ← Al

n − γo ·
∂ek

∂Al
n

; Vl
n ← Vl

n − γo ·
∂ek

∂Vl
n

(25)

where γo is the learning rate and there is γo = 1 because
normalised firing strengths have been considered in ∂ek

∂Al
n

and ∂ek

∂Vl
n

such that the consequent parameters of the IF-
THEN rules will be adjusted proportionally according to the
respective levels of activation in regards to the current input.
However, experienced users may further specify a particular
learning rate for each layer of MECFNN.

From Eqs. (23)-(25) one can see that if a particular rule
is not activated by xl

k, namely, λl
n,k = 0, its consequent

parameters will remain unchanged as both ∂ek

∂Al
n

and ∂ek

∂Vl
n

equal

to 0. Thanks to the activation control scheme (by Condition
2), these inactivated IF-THEN rules at the current learning
cycle will be excluded from output generation and consequent
parameter updating. This mechanism effectively prevents over-
fitting and improves the computational efficiency of individual
ECNFISs as well as the overall stacking ensemble.

By using Eqs. (20), (23)-(25), consequent parts of the
cascading ECNFISs are updated in a backward, layer-wise
manner and after that, MECFNN starts a new learning cycle
to process the next input (k ← k + 1).

The system identification process of the proposed MECFNN
is summarised by Algorithm 1 in the form of pseudo code.

C. Computational Complexity Analysis

A brief analysis on the computational complexity of
MECFNN is presented in this subsection.

MECFNN learns from data in a sample-wise manner.
Given a particular input sample xk, the computational com-
plexity for MECFNN to self-improve in response to xk is
O(

∑L
l=3 N̂

l
kC

lM lW l +
∑L

l=1 N̂
l
kC

l(M l + W l)). Together,
the overall computational complexity of the system iden-
tification process of MECFNN given K input samples is
O(

∑K
k=1(

∑L
l=3 N̂

l
kC

lM lW l +
∑L

l=1 N̂
l
kC

l(M l +W l)). The
detailed analysis can be found in Supplementary Section B.

In contrast, for a standard EFS that uses the RLS-based al-
gorithm for consequent parameter learning, the computational
complexity of updating N fuzzy rules within its rule base
individually given K input samples is O(KNM3), due to the
recursive update of covariance matrices [45].

It can be concluded from the analysis above that the adaptive
dimensionality compression and activation control schemes
combined with the use of error propagation effectively reduce
the computational complexity of MECFNN, particularly when
the dimensionality of data is high.

III. EXPERIMENTAL INVESTIGATION

In this section, numerical examples based on a variety of
public numerical and image benchmark datasets are presented
to demonstrate the merits of the proposed MECFNN on high-
dimensional, complex classification problems. The algorithms
were developed on Matlab2019a platform and the performance
was evaluated on a desktop with dual core i7 processor 3.80
GHz×2 and 32.0 GB RAM. Unless specifically declared other-
wise, the reported numerical results were obtained as the aver-
age of 10 Monte Carlo experiments to allow a certain degree of
randomness and hence, a fair comparison. The source code of
MECFNN is available at: https://github.com/Gu-X/Multilayer-
Jointly-Evolving-and-Compressing-Fuzzy-Neural-Network.

A. Configuration

1) Data Description: A total of 15 high-dimensional prob-
lems are exploited in experimental investigation, which include
five large-scale non-stationary datasets for network intrusion
detection (NSLKDD [46], UNSWNB15 [47], CICIDS2017,
CICIDS2018 [48] and HIKARI2021 [49]), three popular im-
age classification datasets (MNIST [50], FMNIST [51] and
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Algorithm 1 MECFNN identification process

1: k ← 1
2: while (xk is available) do
3: x1

k ← xk

4: if (k = 1) then
5: for l = 1 to L do
6: ### Stage 0 ###
7: N l ← 1
8: initialise ηl and X l by (4)
9: initialise pl

N l , Vl
N l and Al

N l by (5)
10: initialise Rl

n in the form of (1)
11: initialise Cl

N l by (7)
12: produce yl

k by (8)
13: if l ̸= L then
14: xl+1

k ← yl
k

15: else
16: yk ← yl

k

17: else
18: ### Stage 1 ###
19: for l = 1 to L do
20: update ηl and X l by (9)
21: for n = 1 to N l do
22: calculate µn(x

l
k) by (10)

23: if (Condition 1 is satisfied) then
24: N l ← N l + 1
25: initialise pl

N l , Vl
N l and Al

N l by (5)
26: initialise Rl

n in the form of (1)
27: initialise Cl

N l by (7)
28: calculate µN l(xl

k) by (10)
29: else
30: n∗ = argmaxn=1,2,. . . ,n∗(µn(x

l
k))

31: update Cl
n∗ by (12)

32: update µn∗(xl
k) by (10)

33: estimate N̂ l
k using (13)

34: for n = 1 to N l do
35: calculate λl

n,k by (15)

36: produce yl
k by (2)

37: if l ̸= L then
38: xl+1

k ← yl
k

39: else
40: yk ← yl

k
### Stage 2 ###

41: calculate ∂ek

∂yk
by (17)

42: dL
k ←

∂ek

∂yk

43: for l = L to 1 do
44: calculate ∂ek

∂Al
n

by (23)
45: calculate ∂ek

∂Vl
n

by (24)

46: update Al
n and Vl

n by (25)
47: if l ̸= 1 then
48: calculate dl−1

k by (20)
49: k ← k + 1

CIFAR10 [52]), and seven remote sensing datasets for scene
classification (SIRIWHU [53], UCMerced [54], RSSCN7 [55],
AID [56], PatternNet [57], SAT4 [58] and SAT6 [58]). Key in-
formation of the 15 high-dimensional problems is summarised
in Supplementary Section C. The pixel values of the images
have been normalised to the range of [0,1] a priori.

In running the experiments, for NSLKDD and UNSWNB15
datasets, the categorical attributes have been converted into
numerical attributes using one-hot encoding [59]. Redun-
dant attributes, attributes without any variance and records
with missing values are removed from CICIDS2017 and CI-
CIDS2018 datasets [60]. For HIKARI2021 dataset, problem-
specific attributes are removed in advance [48], [49]. Follow-
ing the common practice, all the numerical attributes of the
five intrusion detection datasets have been standardised a priori
such that all the attributes are on the same scale [47].

For MNIST, FMNIST and CIFAR10 datasets, MobileNet
(MBN) and MobileNetV2 (MBN2) [61] are employed for
feature extraction due to their relatively smaller model size,
lower computational complexity and higher performance. Both
models with weights pre-trained on ImageNet are used directly
without fine-tuning. Activations from the last fully connected
layer of the two pre-trained DNNs are used as the feature vec-
tors of the images, namely, one 1024× 1 dimensional feature
vector per image by MBN and one 1280 × 1 dimensional
feature vector per image by MBN2. The extracted feature
vectors are normalised prior to the experiments. In addition,
images of MNIST and FMNIST datasets are also vectorised
into 784× 1 dimensional vectors and used for experimenting.

For SIRIWHU, UCMerced, RSSCN7, AID and PatternNet
datasets, three DCNN models popular for remote sensing
scene classification, including ResNet50 [62], DenseNet121
[63] and InceptionV3 [64], are used for feature extraction.
To learn more meaningful, discriminative semantic features
from remote sensing scenes, the three DNNs pre-trained on
ImageNet are fine-tuned on the NWPU45 dataset following the
same procedure described in [65]. Three 1024×1 dimensional
representations are extracted by the fine-tuned models from
each input image, and then aggregated into a single feature
vector by averaging, thereby enhancing the descriptive abili-
ties. This aggregated feature vectors of the images are directly
used for carrying out the experiments. Due to the smaller
image size and the additional near-infrared channel, DNNs
pre-trained on ImageNet are unsuitable for feature extraction
from SAT-4 and SAT-6 images. Hence, these images are
converted to greyscale and vectorised into 784×1 dimensional
vectors for experiments, similar to MNIST and FMNIST.

2) Parameter Setting for MECFNN: As aforementioned,
MECFNN self-organises its multi-layered model structure and
parameters from data based on their ensemble properties and
mutual distances. The two distinctive features that differentiate
MECFNN from existing works are: i) adaptive dimensionality
compression to learn more compact, meaningful represen-
tations; and ii) adaptive activation control to reduce com-
putational complexity and prevent overfitting. Hence, users
are required to predetermine the number of layers/ensemble
components, L, the output sizes of each layer (except for the
final layer), W1, W2, ..., WL−1, the compression ratio of each
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layer, ϵ1,ϵ2,...,ϵL, the threshold, δo used by Condition 1 for
novel data pattern detection and the ratio, ρo used by Condition
2 for rule activation control.

It has to be stressed that these externally controlled pa-
rameters are not problem- or user- specific, and can be
determined without prior knowledge of the problem. As the
main purpose of this paper is to introduce the proposed concept
and general principles, for simplicity, the compression ratios
of the individual layers are set to be uniformly the same,
namely, ϵ1 = ϵ2 =, ...,= ϵL = ϵo, and the output sizes of
individual ensemble components are set as W l = Woϵ

l−L
o

(l = 1, 2, ..., L−1), considering the decreasing dimensionality
of the input layer-by-layer. In running the experiments, unless
specifically declared otherwise, MECFNN with a two-layer
architecture (L = 2) is considered for performance demon-
stration. The values of the other four externally controlled
parameters, namely, Wo, ϵo, ρo and δo are set as: Wo = 3W ,
ϵo = 0.5, ρo = 0.95 and δo = e−3.

Compared with existing single-model EFSs and EFS-based
ensemble models, MECFNN has a more complex model struc-
ture and a greater amount of trainable parameters in exchange
for the ability to learn more compact, meaningful, discrimina-
tive representations from data. Hence, to ensure that MECFNN
is trained sufficiently, it is trained on the same training sets
with random shuffling for 100 epochs during the experiments.
However, note that the aforementioned configurations only
serves as an option feasible for users to consider and it is
demonstrated through numerical examples that MECFNN with
this configuration offers superior performances on a variety of
high-dimensional, complex, challenging problems, surpassing
the alternatives. Experienced users can further adjust the
parameter settings accordingly utilising prior knowledge of the
problem and domain expertise to maximise the performance
of MECFNN.

To better understand the influences of the five externally
controlled parameters (L, Wo, ϵo, ρo and δo) on the classifi-
cation performance of the proposed MECFNN, a sensitivity
analysis is carried out using the following seven datasets:
NSLKDD, CICIDS2017, vectorised MNIST and FMNIST,
SIRIWHU, RSSCN7 and PatternNet. The detailed results are
presented in Supplementary Section D.

3) Methods for Performance Comparison: The following
12 popular single-model classification algorithms are involved
in the numerical experiments for performance comparison on
the aforementioned high-dimensional problems: 1) k-nearest
neighbour (kNN) [66]; 2) decision tree (DT) [67]; 3) support
vector machine (SVM) [68]; 4) multilayer perceptron (MLP);
5) recurrent neural network (RNN) [69]; 6) long short-term
memory network (LSTM) [70]; 7) bidirectional LSTM net-
work with attention mechanism (BAT) [59]; 8) parsimonious
learning machine (PALM) [71]; 9) sequence classifier (SC)
[72]; 10) leaky ReLU-based evolving classifier (LREC) [73];
11) self-organising fuzzy belief inference system (SOFBIS)
[74], and; 12) SEFIS [23]. Furthermore, the following 11
multi-model ensemble classifiers are also employed for perfor-
mance comparison: 1) Adaboost.M2 DT-based ensemble clas-
sifier (ADBDT) [75]; 2) Adaboost.M2 kNN-based ensemble
classifier (ADBNN) [75]; 3) random forest (RF) [76]; 4) stage-

wise additive modeling using a multi-class exponential loss
function (SAMME)-based DT ensemble classifier (SAMDT)
[77]; 5) SAMME-based kNN ensemble classifier (SAMNN)
[77]; 6) eEnsemble (eEns) [28]; 7) XGBoost [78]; 8) self-
organising fuzzy inference ensemble system (SOFEns) [31];
9) fuzzily weighted adaptive boosting (FWADB) [34]; 10)
self-training hierarchical prototype-based ensemble framework
(STHPEF) [65], and; 11) MEFNN [41]. Hence, a total of
23 SOTA single-model and multi-model classification algo-
rithms are comparatively examined. Parameter settings of the
comparative classifiers are given in Supplementary Section
E. Note that STHPEF is designed for scene classification on
regular-sized remote sensing images specifically and, hence,
it will be only involved in numerical examples on SIRIWHU,
UCMerced, RSSCN7, AID and PatternNet datasets.

B. Numerical Example on Network Intrusion Detection

First, the performance of MECFNN is evaluated on the
five numerical datasets for network intrusion detection, which
include NSLKDD, UNSWNB15, CICIDS2017, CICIDS2018
and HIKARI2021. Since the sizes of the five datasets are
all very large, random down-sampling is performed to facili-
tate simulation whilst preserving the original distributions of
data. In this study, for NSLKDD and UNSWNB15 datasets,
the original training-testing splits are kept, and 10% of the
training and testing data are randomly selected for running
the experiment each time. For CICIDS2017, CICIDS2018
and HIKARI2021, 1%, 0.2% and 5% of data are randomly
selected and divided into the training and testing sets with
the split ratio of 1:1 in each experiment. The classification
results obtained by MECFNN on the testing data of the five
datasets after are reported in Table I in terms of accuracy (acc)
and balanced accuracy (bacc). In addition, the performances
of MECFNN with a three layer architecture, re-denoted as
MECFNN3 (all other externally controlled parameters follow
the recommended setting) are also reported in the same table
for better demonstration. The results obtained by 22 SOTA
single-model and ensemble competitors under the same ex-
perimental settings are given in Table I for comparison, where
the best results are in bold.

Table I shows that MECFNN and MECFNN3 achieve high-
level classification performances on the five network intru-
sion detection datasets, outperforming the majority of SOTA
competitors including mainstream ANN models, e.g., RNN,
LSTM, BAT, EFS models, e.g., PALM, LREC, SOFBIS, and
recently introduced EFS-based ensemble classifiers, namely,
FWADAB and MEFNN (its predecessor) in both acc and bacc.
Furthermore, one may notice that by increasing the depth of
the model, MECFNN attains greater multi-level representa-
tion learning capabilities and achieves better performance on
UNSWNB15 and CICIDS2017. It has to be admitted that
DT and DT-based ensemble models such as RF and XGB
are among the most popular approaches for network intrusion
detection [79] and, indeed, they achieve better classification
performances in this example than other types of classifiers
(due to the nature of data), this example demonstrates the ef-
ficacy of MECFNN on these high-dimensional non-stationary
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TABLE I
PERFORMANCE COMPARISON ON FIVE NETWORK INTRUSION DETECTION PROBLEMS

Algorithm NSLKDD UNSWNB15 CICIDS2017 CICIDS2018 HIKARI2021
acc bacc acc bacc acc bacc acc bacc acc bacc

MECFNN 0.7883 0.8065 0.8485 0.8349 0.9743 0.9557 0.9848 0.9638 0.9319 0.6024
MECFNN3 0.7848 0.8039 0.8489 0.8352 0.9768 0.9844 0.9583 0.9633 0.9317 0.6024

kNN 0.7780 0.7965 0.8414 0.8283 0.9871 0.9814 0.9867 0.9683 0.9194 0.6436
DT 0.7946 0.8125 0.8615 0.8507 0.9938 0.9911 0.9831 0.9664 0.9138 0.6686

SVM 0.7577 0.7779 0.8111 0.7905 0.9299 0.8959 0.9424 0.8693 0.9307 0.5055
MLP 0.7881 0.8046 0.8448 0.8301 0.9789 0.9628 0.9854 0.9672 0.9316 0.6039
RNN 0.7925 0.8078 0.8197 0.8047 0.9242 0.8820 0.9556 0.9082 0.9245 0.5418

LSTM 0.7927 0.8103 0.8221 0.8108 0.9268 0.8746 0.9140 0.8793 0.9121 0.6042
BAT 0.7531 0.7739 0.8191 0.8007 0.9427 0.8805 0.9524 0.8961 0.9306 0.5484

PALM 0.7588 0.7709 0.7922 0.7716 0.9007 0.7621 0.9396 0.8578 0.9297 0.5110
SC 0.7866 0.8086 0.8664 0.8576 0.9808 0.9606 0.9615 0.9114 0.9169 0.6363

LREC 0.7638 0.7842 0.8091 0.7882 0.8992 0.7578 0.9366 0.8494 0.9302 0.5123
SOFBIS 0.7550 0.7800 0.8455 0.8326 0.9634 0.9318 0.9776 0.9450 0.9252 0.6302
SEFIS 0.7806 0.7937 0.6499 0.6356 0.7361 0.6092 0.7300 0.6154 0.8371 0.5944

ADBDT 0.7952 0.8123 0.8671 0.8546 0.9946 0.9913 0.9873 0.9687 0.9306 0.6204
ADBNN 0.7781 0.7965 0.8397 0.8263 0.9874 0.9814 0.9869 0.9680 0.9206 0.6401

RF 0.7744 0.7981 0.8347 0.8171 0.9942 0.9894 0.9857 0.9674 0.9314 0.6109
SAMDT 0.7946 0.8125 0.8657 0.8548 0.9838 0.9911 0.9840 0.9669 0.9229 0.6279
SAMNN 0.7780 0.7965 0.8414 0.8283 0.9871 0.9814 0.9867 0.9683 0.9194 0.6436

eEns 0.6666 0.7021 0.7207 0.7123 0.7074 0.7216 0.7100 0.6893 0.7373 0.7393
XGB 0.7878 0.8098 0.8687 0.8562 0.9964 0.9945 0.9874 0.9695 0.9245 0.6389

SOFEns 0.7783 0.7975 0.8364 0.8230 0.9621 0.9643 0.9725 0.9608 0.9243 0.5927
FAWADB 0.7818 0.8024 0.8358 0.8216 0.9655 0.9407 0.9852 0.9614 0.9305 0.5079
MEFNN 0.7756 0.7941 0.8416 0.8263 0.9722 0.9506 0.9830 0.9631 0.9317 0.5859

problems over ANNs, conventional EFS and EFS-based en-
semble classifiers as well as other mainstream classifiers such
as SVM, kNN, etc.

C. Numerical Example on Image Classification

Next, numerical experiments on the three popular image
classification problems, namely, MNIST, FMNIST and CI-
FAR10, are carried out for performance evaluation. In running
the experiments, MECFNN is firstly trained on the feature
vectors of the training images extracted by pre-trained MBN
and then tested on the feature vectors extracted from the
testing images. To facilitate simulation, in each experiment,
only the feature vectors of 10000 randomly selected training
images are used for training the classification model. The
classification results obtained by MECFNN in terms of acc on
the three image datasets are reported in Table II. The three-
layer MECFNN3 and 22 single-model/ensemble classifiers
involved in the previous example are also used for performance
comparison under the same experimental protocol. In addition,
the same experiments are repeated with the feature vectors
of images extracted by pre-trained MBN2, and the obtained
results by the 24 classification algorithms are reported in
the same table. The experimental results obtained on the
vectorised images of MNIST and FMNIST datasets under the
same protocol are also given in Table II for better comparison.
The best results are in bold.

It can be observed from Table II that MECFNN achieves
the highest classification performance on CIFAR10 with the
feature vectors extracted by MBN2, and it average acc over the
three image datasets is 0.8114, which is the highest among the
24 classifiers involved in this example. By contrast, MEFNN,
SVM and MECFNN3 achieve the second, third and forth

highest overall performances with the average acc of 0.8087,
0.8045 and 0.7973, respectively.

D. Numerical Example on Scene Classification

Then, the classification performance of MECFNN is eval-
uated on seven remote sensing scene classification problems,
namely, SIRIWHU, RSSCN7, UCMerced, AID, PatternNet,
SAT-4 and SAT-6. In running the experiments, for SIRIWHU
dataset, the training-testing split is set to be 4:1. Two training-
testing split ratios, namely, 1:4 and 1:1, are considered for
RSSCN7 and AID datasets and, for UCMerced, the split ratios
are set as 1:1 and 4:1, following the common practice [53],
[56]. To facilitate simulation, in each experiment, 160 images
per class are selected randomly from PatternNet dataset for
training the classification models and another 40 images per
class are selected for performance evaluation, following the
commonly used splitting ratio of 4:1 [65]. For SAT-4 and
SAT-6 datasets, 1000 images per class are selected from the
training and testing sets, with 500 images from each, to carry
out the numerical experiments, which is equivalent to setting
the splitting ratio to 1:1. The scene classification performances
of MECFNN and the aforementioned 23 comparative classifi-
cation algorithms on the remote sensing datasets are reported
in Table III in terms of acc. Similar, the best result per dataset
is highlighted.

One can see from Table III that MECFNN offers the third
best classification performance over the seven benchmark
datasets with the overall average acc of 0.8821, slightly lower
than XGB and RF (due to their significantly higher perfor-
mances on SAT-4 and SAT-6 datasets). It is also suggested by
Table III that MECFNN tends to overfit and performs worse
on datasets with many classes but few images per class, e.g.,
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TABLE II
PERFORMANCE COMPARISON ON THREE IMAGE CLASSIFICATION PROBLEMS

Algorithm MNIST FMNIST CIFAR10
Orig MBN MBN2 Orig MBN MBN2 MBN MBN2

MECFNN 0.9570 0.9724 0.9715 0.8480 0.8610 0.8674 0.5069 0.5070
MECFNN3 0.9443 0.9589 0.9646 0.8368 0.8457 0.8495 0.4946 0.4876

kNN 0.9487 0.9602 0.9560 0.8134 0.8347 0.8311 0.3615 0.3590
DT 0.8103 0.7808 0.7798 0.7521 0.6553 0.6491 0.2531 0.2583

SVM 0.9219 0.9772 0.9745 0.8241 0.8718 0.8626 0.5152 0.4884
MLP 0.9617 0.9664 0.9730 0.8474 0.8335 0.8591 0.4499 0.4662
RNN 0.9560 0.9520 0.9751 0.8353 0.8335 0.8680 0.2733 0.4694

LSTM 0.9633 0.9572 0.9751 0.8459 0.8393 0.8679 0.4024 0.4909
BAT 0.8963 0.9547 0.8677 0.7557 0.8200 0.7136 0.4589 0.4182

PALM 0.8454 0.9784 0.9735 0.8012 0.8716 0.8671 0.5108 0.4930
SC 0.9340 0.9531 0.9611 0.8341 0.8269 0.8331 0.3604 0.3589

LREC 0.8493 0.9776 0.9740 0.8027 0.8690 0.8677 0.5201 0.4998
SOFBIS 0.9466 0.9168 0.9069 0.8036 0.7745 0.7844 0.3984 0.3847
SEFIS 0.5194 0.5884 0.6912 0.5363 0.5127 0.4873 0.1721 0.1417

ADBDT 0.8943 0.8954 0.9014 0.8151 0.7644 0.7673 0.1257 0.1266
ADBNN 0.9488 0.9611 0.9566 0.8036 0.8278 0.8236 0.2994 0.3021

RF 0.9242 0.9253 0.9285 0.8263 0.8034 0.8025 0.4146 0.4165
SAMDT 0.8579 0.8778 0.8816 0.7917 0.7498 0.7540 0.3642 0.3669
SAMNN 0.9487 0.9602 0.9560 0.8134 0.8347 0.8311 0.3512 0.3477

eEns 0.7237 0.8217 0.8388 0.6695 0.7038 0.7074 0.2658 0.2723
XGB 0.9494 0.9545 0.9549 0.8594 0.8422 0.8400 0.4646 0.4674

SOFEns 0.9526 0.9632 0.9594 0.8208 0.8426 0.8417 0.4149 0.4123
FAWADB 0.9639 0.9648 0.9591 0.8447 0.8549 0.8469 0.4319 0.4320
MEFNN 0.9499 0.9733 0.9738 0.8486 0.8519 0.8705 0.5018 0.4996

Fig. 3: Average acc rates and ranks of the 23 classification models over 15 high-dimensional classification problems.

UCMerced. Interestingly, one may note that LREC struggles
to classify images when the number of classes exceeds 30.

E. Additional Numerical Results and Analysis

For better demonstration, the average classification perfor-
mances of MECFNN and 22 SOTA single-model/ensemble
classifiers in terms of acc on the 15 high-dimensional problems
(23 sets of experiments in total) are shown in Fig.3 in the
form of a bar chart. In addition, the performances of the 23
classification models are ranked per dataset (and per setting
if different feature descriptors or split ratios are used for the
same dataset) from the best (1st) to the worst (23th) based
on acc. The average rank of each individual classification
model is also indicated in Fig. 3, shown in brackets on top
of the bar accordingly. One can see from Fig.3 that MECFNN
offers the greatest classification performance over the 12 high-
dimensional benchmark problems with an average acc of
0.8626 and rank of 5.2, outperforming all the single-model
and ensemble competitors. This comparison demonstrates the
superior performance of MECFNN on high-dimensional clas-
sification problems.

1) Statistical Significance Analysis. To examine whether
the superior performance of MECFNN over the competitors is
of statistical significance, pairwise Wilcoxon signed rank tests
[80] are further carried out based on the acc rate per dataset
(per experimental setting), and the p-values returned from the
pairwise tests are reported in Supplementary Table S9. One
can see from this table that 19 out of the 22 p-values reported
are below the level of significance specified by α = 0.05,
suggesting that the performance of MECFNN is significantly
better that others, consistent with the results presented in Fig.
3.

2) Diversity Demonstration. As aforementioned, the util-
isation of SACP matrices effectively enhances the diversity.
To show this, the absolute correlation coefficients between
the vectorised SACP matrices associated with the IF-THEN
rules learned by MECFNN as per the particular numerical
experiment on the RSSCN7 dataset (with the splitting ratio
of 1:4), in the form of matrix in Supplementary Figs. S1 and
S2. These two figures illustrate that the maximum absolute
correlation coefficients between any two SACP matrices are
0.02 for the first layer and 0.2 for the second. The low
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TABLE III
PERFORMANCE COMPARISON ON FOUR REMOTE SENSING SCENE CLASSIFICATION PROBLEMS

Algorithm SIRIWHU RSSCN7 UCMerced AID PatternNet SAT-4 SAT-6
4:1 1:4 1:1 1:1 4:1 1:4 1:1 4:1 1:1 1:1

MECFNN 0.9454 0.9165 0.9316 0.9395 0.9612 0.9120 0.9336 0.9840 0.6921 0.6052
kNN 0.9202 0.8826 0.9104 0.9537 0.9683 0.8944 0.9211 0.9780 0.4354 0.4813
DT 0.7315 0.6200 0.6874 0.7375 0.7552 0.7397 0.7745 0.8079 0.6184 0.5899

SVM 0.9477 0.9160 0.9399 0.9582 0.9719 0.9173 0.9308 0.9845 0.5509 0.4993
MLP 0.9460 0.9124 0.9326 0.9409 0.9750 0.9037 0.9347 0.9835 0.5707 0.6633
RNN 0.9294 0.9163 0.9165 0.9566 0.9660 0.8824 0.8884 0.9499 0.2500 0.4601

LSTM 0.9498 0.9215 0.9277 0.9689 0.9740 0.9278 0.9140 0.9672 0.5325 0.5677
BAT 0.4689 0.5935 0.6551 0.2625 0.2844 0.2345 0.2495 0.1798 0.6108 0.4840

PALM 0.9385 0.8817 0.8681 0.4474 0.9781 0.9261 0.9462 0.7291 0.4362 0.3438
SC 0.9279 0.9049 0.9250 0.9651 0.9750 0.8968 0.9175 0.9786 0.3071 0.3548

LREC 0.9419 0.8945 0.9046 0.9530 0.9793 0.0360 0.0360 0.0263 0.4586 0.3739
SOFBIS 0.8481 0.8797 0.8864 0.9296 0.9367 0.8355 0.8433 0.9573 0.4699 0.5523
SEFIS 0.6021 0.5835 0.7326 0.7368 0.7536 0.4947 0.5561 0.7005 0.3486 0.3253

ADBDT 0.8427 0.8144 0.8686 0.8501 0.9026 0.7540 0.8311 0.6917 0.6983 0.6938
ADBNN 0.9196 0.8900 0.9170 0.9544 0.9686 0.8819 0.9114 0.9769 0.4203 0.4791

RF 0.9115 0.8775 0.8773 0.9515 0.9593 0.8897 0.9074 0.9578 0.7843 0.7405
SAMDT 0.7971 0.8018 0.8306 0.7608 0.8064 0.6769 0.7932 0.8480 0.6574 0.6429
SAMNN 0.9202 0.8887 0.9211 0.8456 0.9157 0.8826 0.9104 0.9113 0.4346 0.4764

eEns 0.7723 0.7887 0.8093 0.8610 0.8602 0.7709 0.7912 0.9026 0.5420 0.5227
XGB 0.9218 0.8879 0.9106 0.9347 0.9528 0.8789 0.9091 0.9649 0.7953 0.7691

SOFEns 0.8565 0.6097 0.7302 0.7976 0.7968 0.7361 0.7965 0.9098 0.4626 0.4931
FAWADB 0.9375 0.9164 0.9338 0.9628 0.9729 0.9070 0.9292 0.9827 0.3071 0.3844
MEFNN 0.9404 0.9023 0.9284 0.8421 0.8814 0.8683 0.9418 0.9061 0.6852 0.5950
STHPEF 0.9356 0.9176 0.9358 0.9702 0.9755 0.9139 0.9305 0.9824 - -

correlation coefficients suggest a high degree of diversity
between these SACP matrices, indicating that they project
the data onto different lower dimensional sub-spaces, thereby
enhancing the diversity within the stacking ensemble.

3) Ablation Analysis. An ablation analysis is further per-
formed to demonstrate the influence of the adaptive dimen-
sionality compression scheme and adaptive activation control
scheme on the performance of MECFNN. The detailed results
are presented in Supplementary Section G. The ablation anal-
ysis demonstrates the superior performance of the proposed
MECFNN over the three alternatives and its predecessor,
highlighting the effectiveness of the proposed two schemes.
In particular, the adaptive dimensionality compression scheme
enables the model to capture more discriminative features
using fewer IF-THEN rules (although this is at the expense of
increased computational complexity and potentially, a greater
susceptibility to overfitting, if applied alone). However, the
adaptive activation control scheme embedded in the model
helps reduce overfitting while reinforcing classification accu-
racy, by dynamically filtering less activated IF-THEN rules
from parameter updating and output generation. This filter-
ing process also improves the computational efficiency of
MECFNN. The combination of the two schemes effectively
enhances the representation learning of MECFNN and pro-
motes generalisation without a significant increase in com-
putational complexity overall. The statistical analysis given
by Supplementary Table S11 further indicates that the perfor-
mance improvement is of statistical significance.

F. Discussions
To summarise, the systematic numerical experiments con-

ducted in this study have collectively and consistently demon-
strated the superior performance of the proposed MECFNN

over the SOTA classifiers, including its predecessor MEFNN
for high-dimensional data classification. Thanks to the novel
adaptive activation control and adaptive dimensionality com-
pression schemes, MECFNN learns highly compact, infor-
mative and meaningful multi-level representations from data
with high dimensionality and complex structure, and attains
high generalisation by dynamically dropping out less ac-
tivated IF-THEN rules. As a result, MECFNN is able to
achieve greater classification performance on a variety of
popular high-dimensional complex classification problems of
different natures, outperforming the 23 single-model/ensemble
competitors. However, MECFNN has higher computational
complexity when compared to its predecessor, due to the
additional costs of dimensionality compression and compres-
sive projection matrix updating. Similar to its predecessor,
MECFNN also requires more training data to attain excellent
performance than alternative EFS models that employ RLS-
based algorithms for consequent parameter updating.

Note that as the initial report on a novel approach, the
main purpose of this study is to introduce the relevant key
concepts and general principles. Thus, all the numerical results
of MECFNN reported in this section are obtained using the
recommended parameter setting specified previously with-
out any tuning, facilitating fair comparisons. However, the
recommended parameter setting may be far from optimal,
depending on the nature of data. In fact, it can be seen
from Supplementary Tables S4 and S5 that reducing the value
of Wo or increasing the value of ϵo can greatly improve
the computational efficiency of MECFNN without substantial
decrease in its classification accuracy. However, this is not the
case when the dataset contains many classes, e.g., PatternNet.
Supplementary Tables S6 and S7 demonstrate that by reducing
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the value of ρo or δo, MECFNN performs better on MNIST,
but worse on FMNIST. Although it is practically impossible
to find an universal parameter setting that works well for all
problems, the recommended parameter setting can serve as the
starting point. Indeed, the performance of MECFNN can be
maximised by adjusting the externally controlled parameters,
including modifying the structure by adding or removing
a certain number of layers. Hence, there is a large space
for performance improvement by optimising the externally
controlled parameters.

IV. CONCLUSION

This paper has presented a novel multilayer evolving neural
fuzzy ensemble model with adaptive dimensionality compres-
sion and activation control for high-dimensional data clas-
sification. The resultant model, named MECFNN is capable
of self-organising and self-updating the underlying multilayer
system structure and parameters from data on a sample-by-
sample basis, whilst performing dimensionality compression
simultaneously through the utilisation of SACP matrices.
These SACP matrices are continuously updated from data
during the learning process to minimise the prediction errors.
This enables MECFNN to better preserve the discriminative
features in the data and to effectively prevent losing key
information during dimensionality compression. Systematic
experimental investigations have been carried out, showcasing
that MECFNN is superior to the SOTA approaches on various
challenging high-dimensional problems, by offering greater
classification accuracy.

Open issues remain to be further investigated, however.
1) Computational efficiency. The utilisation of SACP ma-

trices effectively improves the classification performance of
MECFNN, but inevitably increases its computational com-
plexity. This is because the additional computational costs
incurred by dimensionality compression and matrix updating.
Generally, learning from high-dimensional data is itself a com-
putationally expensive task, but more advanced approaches for
dimensionality reduction/feature selection that are computa-
tionally efficient may help to minimise such complexity. This
is of particular significance when the model interpretability is
required in working towards explainable classification systems,
especially when such approaches (e.g., [81]) have proven to
be theoretically rigorous and empirically successful.

2) Consequent parameter learning. Similar to its predeces-
sor MEFNN, MECFNN requires larger amounts of training
data (or being trained repeatedly with the same data) to
achieve excellent performance. This is restricted by the use
of the error backpropagation algorithm for consequent part
updating to avoid ambiguities in defining the error functions
for individual layers. To address this common limitation shared
with many SOTA techniques, one important direction for
future research is to design a more effective solution for
training the consequent parts of the IF-THEN fuzzy rules.

3) Stability analysis. Although the numerical examples
presented in this study have demonstrated the effectiveness
and validity of the proposed MECFNN, there is a lack of the-
oretical analysis on its stability and convergence. In particular,

the use of SACP matrices in EFS-based stacking ensemble
models trained by backpropagation has not been explored
previously and the impact of dimensionality compression upon
the stability and convergence of MECFNN remains unknown.
A continued examination and development alone this direction
is very interesting.

4) Structure evolving. Reflecting on the structure of
MECFNN being able to self-evolve from data horizontally (by
adding new rules to different layers) once the number of layers
is fixed, it would be extremely useful to devise a mechanism
that helps MECFNN to also self-evolve vertically. This may be
implemented by autonomously adding/removing layers during
the learning process for better approximation.

5) Externally controlled parameters. Finally, concerning
less experienced problem domains, it would be helpful if
MECFNN would be able to self-adapt certain externally con-
trolled parameters (e.g., δo and ϵo) with respect to the nature
of the domain data after the initial values have been provided.
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A. Detailed Derivation of Consequent Part Updating 
Based on the derivative of the prediction error 𝒆𝑘 with regards to the output 𝒚𝑘

𝐿  of the 𝐿𝑡ℎ ECNFIS at the last layer 

of MECFNN, namely, 𝒅𝑘
𝐿 =

𝜕𝒆𝑘

𝜕𝒚𝑘
𝐿 = (𝒚𝑘

𝐿 − 𝒓𝑘), the derivative of prediction error with respect to the consequent 

parameter matrix 𝐀𝑛
𝐿  of the 𝑛𝑡ℎ IF-THEN rule, 𝑹𝑛

𝐿  is calculated by Eq. (S1) (𝑛 = 1,2, … , 𝑁𝐿). 

𝜕𝑒𝑘,𝑖

𝜕𝑎𝑛,𝑖,𝑗
𝐿 = 𝑑𝑘,𝑖

𝐿 ∙
𝜕𝑦𝑘

𝐿

𝜕𝑎𝑛,𝑖,𝑗
𝐿 = 𝜆𝑛,𝑘

𝐿 ∙ 𝑑𝑘,𝑖
𝐿 ∙

𝜕𝜎(𝒂𝑛,𝑖
𝐿 [1,𝒄𝑛,𝑘

𝐿 ]
𝑇

)

𝜕𝑎𝑛,𝑖,𝑗
𝐿

= {
𝜆𝑛,𝑘

𝐿 ∙ 𝑑𝑘,𝑖
𝐿 ∙ 𝜎′ (𝒂𝑛,𝑖

𝐿 [1, 𝒄𝑛,𝑘
𝐿 ]

𝑇
) , 𝑖𝑓 𝑗 = 0

𝜆𝑛,𝑘
𝐿 ∙ 𝑑𝑘,𝑖

𝐿 ∙ 𝜎′ (𝒂𝑛,𝑖
𝐿 [1, 𝒄𝑛,𝑘

𝐿 ]
𝑇

) ∙ 𝑐𝑛,𝑘,𝑗
𝐿 , 𝑒𝑙𝑠𝑒

                                                                 (S1) 

where 𝑖 = 1,2, … , 𝑊𝐿; 𝑗 = 1,2, … , 𝐶𝐿;  𝒅𝑘
𝐿 = [𝑑𝑘,1

𝐿 , 𝑑𝑘,2
𝐿 , … , 𝑑

𝑘,𝑊𝐿
𝐿 ]

𝑇

; 𝑑𝑘,𝑖
𝐿 =

𝜕𝑒𝑘,𝑖

𝜕𝑦𝑘,𝑖
𝐿 = 𝑦𝑘,𝑖

𝐿 − 𝑟𝑘,𝑖, and;  𝒂𝑛,𝑖
𝐿  is the 𝑖𝑡ℎ 

row of 𝐀𝑛
𝐿 . 

The derivative of prediction error with respect to the self-adaptive compressive projection (SACP) matrix 𝐕𝑛
𝐿 of 

𝑹𝑛
𝐿  is formulated in a similar from to Eq. (S1) as follows (𝑛 = 1,2, … , 𝑁𝐿). 

𝜕𝑒𝑘,𝑖

𝜕𝑣𝑛,𝑖,𝑡
𝐿 = 𝑑𝑘,𝑖

𝐿 ∙
𝜕𝑦𝑘,𝑖

𝐿

𝜕𝑐𝑛,𝑘,𝑗
𝐿 ∙

𝜕𝑐𝑛,𝑘,𝑗
𝐿

𝜕𝑣𝑛,𝑗,𝑡
𝐿 = 𝜆𝑛,𝑘

𝐿 ∙ 𝑑𝑘,𝑖
𝐿 ∙

𝜕𝜎(𝒂𝑛,𝑖
𝐿 [1,𝒄𝑛,𝑘

𝐿 ]
𝑇

)

𝜕𝑐𝑛,𝑘,𝑗
𝐿 ∙

𝜕𝜎(𝒗̅𝑛,𝑗
𝐿 𝒙𝑘

𝐿)

𝜕𝑣𝑛,𝑗,𝑡
𝐿

= 𝜆𝑛,𝑘
𝐿 ∙ 𝑑𝑘,𝑖

𝐿 ∙ 𝜎′ (𝒂𝑛,𝑖
𝐿 [1, 𝒄𝑛,𝑘

𝐿 ]
𝑇

) ∙ 𝑎𝑛,𝑖,𝑗
𝐿 ∙ 𝜎′(𝒗̅𝑛,𝑗

𝐿 𝒙𝑘
𝐿 ) ∙ 𝑥𝑡

𝐿

                                          (S2) 

where 𝑖 = 1,2, … , 𝑊𝐿; 𝑗 = 1,2, … , 𝐶𝐿; 𝑡 = 1,2, … , 𝑀𝐿, and; 𝒗̅𝑛,𝑗
𝐿  is the 𝑗𝑡ℎ row of 𝐕𝑛

𝐿. 

Eqs. (S1) and (S2) can be converted into a more compact form given by Eqs. (S3) and (S4): 

 
𝜕𝒆𝑘

𝜕𝐀𝑛
𝐿 = 𝜆𝑛,𝑘

𝐿 ∙ (𝒅𝑘
𝐿 ⨂𝜎′ (𝐀𝑛

𝐿 [1, 𝒄𝑛,𝑘
𝐿 ]

𝑇
)) ∙ [1, 𝒄𝑛,𝑘

𝐿 ]                                                                          (S3) 

𝜕𝒆𝑘

𝜕𝐕𝑛
𝐿 = 𝜆𝑛,𝑘

𝐿 ∙ (((𝐀̃𝑛
𝐿 )

𝑇
∙ (𝒅𝑘

𝐿 ⨂𝜎′ (𝐀𝑛
𝐿 [1, 𝒄𝑛,𝑘

𝐿 ]
𝑇

))) ⨂𝜎′(𝐕𝑛
𝐿𝒙𝑘

𝐿 )) ∙ (𝒙𝑘
𝐿 )𝑇                                    (S4) 

To obtain the derivatives of prediction error with respect to the consequent parameter and SACP matrices, namely,  

𝐀𝑛
𝐿−1 and 𝐕𝑛

𝐿−1 for the ECNFIS at the 𝐿 − 1𝑡ℎ layer, 𝒅𝑘
𝐿−1 needs to be derived from 𝒅𝑘

𝐿  firstly using the chain rule: 

𝒅𝑘
𝐿−1 =

𝜕𝒆𝑘

𝜕𝒚𝑘
𝐿 ∙

𝜕𝒚𝑘
𝐿

𝜕𝒚𝑘
𝐿−1 = 𝒅𝑘

𝐿 ∙
𝜕𝒚𝑘

𝐿

𝜕𝒙𝑘
𝐿                                                                                                                           (S5) 

where 
𝜕𝒚𝑘

𝐿

𝜕𝒙𝑘
𝐿 is given by Eq. (S6) (𝑖 = 1,2, … , 𝑊𝐿; 𝑗 = 1,2, … , 𝐶𝐿; 𝑡 = 1,2, … , 𝑀𝐿): 

𝜕𝒚𝑘,𝑖
𝐿

𝜕𝒙𝑘,𝑡
𝐿 = ∑ (

𝜕𝜆𝑛,𝑘
𝐿

𝜕𝒙𝑘,𝑡
𝐿 ∙ 𝜎𝑇 (𝒂𝑛,𝑖

𝐿 [1, 𝒄𝑛,𝑘
𝐿 ]

𝑇
) + 𝜆𝑛,𝑘

𝐿 ∙
𝜕𝜎(𝒂𝑛,𝑖

𝐿 [1,𝒄𝑛,𝑘
𝐿 ]

𝑇
)

𝜕𝒙𝑘,𝑡
𝐿 )𝑁𝐿

𝑛=1                                                         (S6) 

and there are: 

𝜕𝜆𝑛,𝑘
𝐿

𝜕𝑥𝑘,𝑡
𝐿 = 𝜆𝑛,𝑘

𝐿 (
2(𝑝𝑛,𝑡

𝐿 −𝑥𝑘,𝑡
𝐿 )

(𝜏𝑛
𝐿 )

2 − ∑ (𝜆𝑖,𝑘
𝐿 ∙

2(𝑝𝑖,𝑡
𝐿 −𝑥𝑘,𝑡

𝐿 )

(𝜏𝑖
𝐿)

2 )𝑁𝐿

𝑖=1 )                                                                               (S7) 

𝜕𝜎(𝒂𝑛,𝑖
𝐿 [1,𝒄𝑛,𝑘

𝐿 ]
𝑇

)

𝜕𝑥𝑘,𝑡
𝐿 =

𝜕𝜎(𝒂𝑛,𝑖
𝐿 [1,𝒄𝑛,𝑘

𝐿 ]
𝑇

)

𝜕𝒄𝑛,𝑘
𝐿 ∙

𝜕𝒄𝑛,𝑘
𝐿

𝜕𝑥𝑘,𝑡
𝐿 = 𝜎′ (𝒂𝑛,𝑖

𝐿 [1, 𝒄𝑛,𝑘
𝐿 ]

𝑇
) ∙ 𝒂̃𝑛,𝑖

𝐿 ∙ (𝜎′(𝐕𝑛
𝐿𝒙𝑘

𝐿 )⨂𝒗𝑛,𝑡
𝐿 )            (S8) 



Note that, 𝒗𝑛,𝑡
𝐿  is the 𝑡𝑡ℎ column of 𝐕𝑛

𝐿. 

Eq. (S6) is reformulated in a more compact form as: 

𝜕𝒚𝑘
𝐿

𝜕𝒙𝑘
𝐿 = ∑ (

𝜕𝜆𝑛,𝑘
𝐿

𝜕𝒙𝑘
𝐿 ∙ 𝜎𝑇 (𝐀𝑛

𝐿 [1, 𝒄𝑛,𝑘
𝐿 ]

𝑇
) + 𝜆𝑛,𝑘

𝐿 ∙
𝜕𝜎(𝐀𝑛

𝐿 [1,𝒄𝑛,𝑘
𝐿 ]

𝑇
)

𝜕𝒙𝑘
𝐿 )𝑁𝐿

𝑛=1                                                               (S9) 

where  

𝜕𝜆𝑛,𝑘
𝐿

𝜕𝒙𝑘
𝐿 = 𝜆𝑛,𝑘

𝐿 (
2(𝒑𝑛

𝐿 −𝒙𝐿)

(𝜏𝑛
𝐿 )

2 − ∑ (𝜆𝑖
𝐿 ∙

2(𝒑𝑖
𝐿−𝒙𝐿)

(𝜏𝑖
𝐿)

2 )𝑁𝐿

𝑖=1 )                                                                            (S10) 

𝜕𝜎(𝐀𝑛
𝐿 [1,𝒄𝑛,𝑘

𝐿 ]
𝑇

)

𝜕𝒙𝑘
𝐿 = (𝐀̃𝑛

𝐿 𝐔𝑛,𝑘
𝐿 )

𝑇
∙ 𝜎′ (𝐀𝑛

𝐿 [1, 𝒄𝑛,𝑘
𝐿 ]

𝑇
)                                                                                      (S11) 

𝐔𝑛,𝑘
𝐿 = [𝒗𝑛,1

𝐿 ⊗ 𝜎′(𝐕𝑛
𝐿𝒙𝑘

𝐿 ), 𝒗𝑛,2
𝐿 ⊗ 𝜎′(𝐕𝑛

𝐿𝒙𝑘
𝐿 ), … , 𝒗

𝑛,𝑀𝐿
𝐿 ⊗ 𝜎′(𝐕𝑛

𝐿𝒙𝑘
𝐿 )]                                          (S12) 

Based on Eq. (S9), Eq. (S5) can be reformulated as: 

𝒅𝑘
𝐿−1 = ∑ (

𝜕𝜆𝑛,𝑘
𝐿

𝜕𝒙𝑘
𝐿 ∙ 𝜎𝑇 (𝐀𝑛

𝐿 [1, 𝒄𝑛,𝑘
𝐿 ]

𝑇
) ∙ 𝒅𝑘

𝐿 + (𝐀̃𝑛
𝐿 𝐔𝑛,𝑘

𝐿 )
𝑇

∙ (𝒅𝑘
𝐿 ⨂𝜎′ (𝐀𝑛

𝐿 [1, 𝒄𝑛,𝑘
𝐿 ]

𝑇
)))𝑁𝐿

𝑛=1        (S13) 

and the derivatives of prediction error with respect to 𝐀𝑛
𝐿−1 and 𝐕𝑛

𝐿−1 are obtained as follows (𝑛 = 1,2, … , 𝑁𝐿−1). 

𝜕𝒆𝑘

𝜕𝐀𝑛
𝐿−1 = 𝜆𝑛,𝑘

𝐿−1 ∙ (𝒅𝑘
𝐿−1⨂𝜎′ (𝐀𝑛

𝐿−1[1, 𝒄𝑛,𝑘
𝐿−1]

𝑇
)) ∙ [1, 𝒄𝑛,𝑘

𝐿−1]                                                                         (S14) 

𝜕𝒆𝑘

𝜕𝐕𝑛
𝐿−1 = 𝜆𝑛,𝑘

𝐿−1 ∙ (((𝐀̃𝑛
𝐿−1)

𝑇
∙ (𝒅𝑘

𝐿−1⨂𝜎′ (𝐀𝑛
𝐿−1[1, 𝒄𝑛,𝑘

𝐿−1]
𝑇

))) ⨂𝜎′(𝐕𝑛
𝐿−1𝒙𝑘

𝐿−1)) ∙ (𝒙𝑘
𝐿−1)𝑇     (S15) 

Similarly, the derivatives of prediction errors with respect to 𝐀𝑛
𝑙  and 𝐕𝑛

𝑙  (𝑛 = 1,2, … , 𝑁𝑙) of the ECNFIS at the 

𝑙𝑡ℎ layer of MECFNN can be calculated by Eqs. (S16)-(S18) (∀𝑙 = 1,2, … , 𝐿 − 2): 

               𝒅𝑘
𝑙 = ∑ (

𝜕𝜆𝑛,𝑘
𝑙+1

𝜕𝒙𝑘
𝑙+1 ∙ 𝜎𝑇 (𝐀𝑛

𝑙+1[1, 𝒄𝑛,𝑘
𝑙+1]

𝑇
) ∙ 𝒅𝑘

𝑙+1 + (𝐀̃𝑛
𝑙+1𝐔𝑛,𝑘

𝑙+1)
𝑇

∙ (𝒅𝑘
𝑙+1⨂𝜎′ (𝐀𝑛

𝑙+1[1, 𝒄𝑛,𝑘
𝑙+1]

𝑇
)))𝑁𝑙+1

𝑛=1        (S16) 

𝜕𝒆𝑘

𝜕𝐀𝑛
𝑙 = 𝜆𝑛,𝑘

𝑙 ∙ (𝒅𝑘
𝑙 ⨂𝜎′ (𝐀𝑛

𝑙 [1, 𝒄𝑛,𝑘
𝑙 ]

𝑇
)) ∙ [1, 𝒄𝑛,𝑘

𝑙 ]                                                                         (S17) 

𝜕𝒆𝑘

𝜕𝐕𝑛
𝑙 = 𝜆𝑛,𝑘

𝑙 ∙ (((𝐀̃𝑛
𝑙 )

𝑇
∙ (𝒅𝑘

𝑙 ⨂𝜎′ (𝐀𝑛
𝑙 [1, 𝒄𝑛,𝑘

𝑙 ]
𝑇

))) ⨂𝜎′(𝐕𝑛
𝑙 𝒙𝑘

𝑙 )) ∙ (𝒙𝑘
𝑙 )

𝑇
                                     (S18) 

B. Computational Complexity Analysis for MECFNN 
Since MECFNN learns from data in a sample-wise manner, the computational complexity analysis is assumed to 

be conducted at the 𝑘𝑡ℎ time instance at which 𝒙𝑘 is presented to MECFNN.  

Stage 0 is for system initialisation and will not repeat after the first input sample 𝒙1 has been processed. Hence, 

the computational complexity of this stage is negligible.  

Stage 1 is for structure evolving and antecedent part updating on a layer-by-layer basis. For the 𝑙𝑡ℎ ECNFIS (𝑙 =

 1,2, . . . , 𝐿), the computational complexity of updating 𝜼𝑙 and 𝑋𝑙 given 𝒙𝑘
𝑙  is 𝑂(𝑀𝑙), and that of calculating the 

local density of 𝒙𝑘
𝑙  at the 𝑁𝑙 clusters is 𝑂(𝐶𝑙𝑀𝑙). The complexity of adding a new IF-THEN rule and the associated 

cluster to the system is 𝑂(𝐶𝑙(𝑀𝑙 + 𝑊𝑙)), and that of updating the parameters of a cluster is 𝑂(𝑀𝑙). The 

computational complexity of output generation is 𝑂 (𝑁̂𝑘
𝑙𝐶𝑙(𝑀𝑙 + 𝑊𝑙)). Therefore, the computational complexity 

of the 𝑙𝑡ℎ ECNFIS at Stage 1 is 𝑂 (𝑁̂𝑘
𝑙𝐶𝑙(𝑀𝑙 + 𝑊𝑙)) and the overall computational complexity of MECFNN is 

𝑂(∑ 𝑁̂𝑘
𝑙𝐶𝑙(𝑀𝑙 + 𝑊𝑙)𝐿

𝑙=1 ).  

Stage 2 is for consequent part updating in response to 𝒙𝑘
𝑙 , which include both the consequent parameter matrices 

and SACP matrices of individual ECNFISs within MECFNN. The complexity of calculating 
𝜕𝒆𝑘

𝜕𝐀𝑛
𝑙  and 

𝜕𝒆𝑘

𝜕𝐕𝑛
𝑙  is 

𝑂(𝐶𝑙(𝑀𝑙 + 𝑊𝑙)). The complexity of updating the consequent parts of the activated IF-THEN rules of the 𝑙𝑡ℎ 



ECNFIS is 𝑂 (𝑁̂𝑘
𝑙𝐶𝑙(𝑀𝑙 + 𝑊𝑙)), and that of calculating 𝒅𝑘

𝑙−1 from 𝒅𝑘
𝑙  is 𝑂(𝑁̂𝑘

𝑙 𝐶𝑙𝑀𝑙𝑊𝑙). Note that there is 𝒅𝑘
𝐿 =

𝜕𝒆𝑘

𝜕𝒚𝑛
𝑙 . There also will be no need for calculating 𝒅𝑘

1  since it will not be involved in parameter updating. Hence, the 

overall computational complexity of Stage 2 for MECFNN is 𝑂(∑ 𝑁̂𝑘
𝑙 𝐶𝑙𝑀𝑙𝑊𝑙𝐿

𝑙=3 + ∑ 𝑁̂𝑘
𝑙𝐶𝑙(𝑀𝑙 + 𝑊𝑙)𝐿

𝑙=1 ). 

Together, the overall computational complexity of the system identification process of MECFNN given 𝐾 input 

samples is 𝑂(∑ (∑ 𝑁̂𝑘
𝑙𝐶𝑙𝑀𝑙𝑊𝑙𝐿

𝑙=3 + ∑ 𝑁̂𝑘
𝑙 𝐶𝑙(𝑀𝑙 + 𝑊𝑙)𝐿

𝑙=1 )𝐾
𝑘=1 ). 

C. Key Information of Benchmark Datasets for Experimental Investigation 
 

Table S1. Key information of five large-scale benchmark intrusion detection datasets 

Dataset #(Samples) #(Attributes) #(Normal Samples) #(Anomalies) 

NSLKDD Training 125,973 38 numerical inputs + 3 

categorical inputs + 1 label 

67,343 58,630 

Testing 22,544 9711 12,833 

UNSWNB15 Training 175,341 40 numerical inputs + 3 

categorical inputs + 1 label 

56,000 119,341 

Testing 82,332 37,000 45,332 

CICIDS2017 2,830,743 78 numerical inputs + 1 label 2,273,097 557,646 

CICIDS2018 16,232,944 79 numerical inputs + 1 label 13,484,708 2,748,236 

HIKARI2021 555,278 83 numerical inputs + 1 label 517,582 37,696 

 

Table S2. Key information of seven benchmark image datasets for classification 

Dataset #(Images) #(Pixels) #(Classes) 

MNIST Training 60,000 28×28×1 10 

Testing 10,000 

FMNIST Training 60,000 28×28×1 10 

Testing 10,000 

CIFAR10 Training 50,000 32×32×3 10 

Testing 10,000 

SIRIWHU 2400 200×200×3 12 

RSS 2800 400×400×3 7 

UCM 2100 256×256×3 21 

AID 10,000 600×600×3 30 

PatternNet 30,400 256×256×3 38 

SAT4 Training 400,000 28×28×4 4 

Testing 100,000 

SAT6 Training 324,000 28×28×4 6 

Testing 81,000 
                                                                                                                                                               

D. Sensitivity Analysis 
In this section, influences of the five externally controlled parameters, namely, 𝐿, 𝑊𝑜, 𝜖𝑜, 𝜌𝑜 and 𝛿𝑜 on the 

prediction performance of MECFNN are investigated using the following seven datasets: NSLKDD, 

CICIDS2017, vectorised MNIST and FMNIST, SIRIWHU, RSSCN7 and PatternNet. In running the experiments, 

the same protocols used in the numerical examples presented in Tables 1-3 are follows.   

Firstly, the influence of 𝐿 on the prediction performance of MECFNN is studied. In this example, 𝑊𝑜,  𝜖𝑜, 𝜌𝑜 and 

𝛿𝑜 are fixed as 𝑊𝑜 = 3𝑊, 𝜖𝑜 = 0.5, 𝜌𝑜 = 0.95 and 𝛿𝑜 = 𝑒−3, following the recommended setting. The value of 

𝐿 is varied from 1 to 3. It is worth noting that MECFNN is reduced to a single-layer ECNFIS model if 𝐿 = 1, and 

the value of 𝑊𝑜 is set to be 𝑊 in such case by default. The results obtained by MECFNN models with different 𝐿 

are tabulated in Table S3 in terms of 𝑎𝑐𝑐, and number of rules per layer (𝑁) and training time consumption per 

iteration (𝑡𝑡𝑟𝑎). 

It is shown in Table S3 that, a deeper MECFNN will typically have more IF-THEN rules within the system and, 

therefore, a greater amount of antecedent and consequent parameters to be learned from data. In general, 

MECFNN with a deeper structure, namely, a larger 𝐿 enables it to attain greater representation learning 

capabilities and achieve greater classification performance in terms of 𝑎𝑐𝑐. On the other hand, a deeper MECFNN 

will need more training data to maximise its performance and the training process takes more time to be completed. 



Hence, it can be observed from Table S3 that the two-layer MECFNN (𝐿 = 2) and three-layer MECFNN (𝐿 = 3) 

outperform the single-layer MECFNN (𝐿 = 1) in all experiments to a large degree on the two network intrusion 

detection datasets and the three remote sensing datasets. One may also notice that the two-layer MECFNN (𝐿 =

2) outperforms the three-layer MECFNN (𝐿 = 3) in all the experiments as well, but the difference between the 

performances of the two models in terms of 𝑎𝑐𝑐 gets smaller when more training data is presented. 

 

Table S3. Classification performance of MECFNN with different settings of 𝐿 

𝐿 Meas. NSLKDD CICIDS2017 MNIST FMNIST SIRIWHU RSSCN PatternNet 

1:4 1:1 

1 𝑎𝑐𝑐 0.7559 0.9676 0.9580 0.8404 0.4946 0.4961 0.4992 0.5980 

(𝑁1) (103.4) (92.8) (10.4) (11.3) (27.8) (19.6) (28.0) (40.5) 

𝑡𝑡𝑟𝑎 49.0 24.4 479.0 365.3 173.1 32.1 130.0 847.2 

2 𝑎𝑐𝑐 0.7883 0.9743 0.9570 0.8480 0.9454 0.9165 0.9316 0.9840 

(𝑁1

𝑁2) (
103.5
20.3

) (
92.8
29.2

) (
10.4
30.9

) (
11.3
20.0

) (
27.8
21.2

) (
19.7
18.5

) (
28.0
19.6

) (
40.5
39.7

) 

𝑡𝑡𝑟𝑎 65.2 33.8 441.9 438.2 216.4 38.4 133.7 1088.1 

3 𝑎𝑐𝑐 0.7805 0.9742 0.9428 0.8341 0.9096 0.8779 0.9159 0.9340 

(
𝑁1

𝑁2

𝑁3

) (
103.4
24.4
16.0

) (
92.5
32.7
18.2

) (
10.4
35.2
33.8

) (
11.3
22.2
22.7

) (
27.8
23.0
27.5

) (
19.6
17.8
18.5

) (
28.0
20.0
16.5

) (
40.5
50.1
47.3

) 

𝑡𝑡𝑟𝑎 85.4 47.5 423.7 405.5 199.5 47.7 127.5 1452.5 

 

Secondly, the influence of 𝑊𝑜 on the prediction performance of MECFNN is studied. In this example, 𝐿, 𝜖𝑜, 

𝜌𝑜 and 𝛿𝑜 are fixed as 𝐿 =2, 𝜖𝑜 = 0.5, 𝜌𝑜 = 0.95 and 𝛿𝑜 = 𝑒−3, following the recommended setting. The value 

of 𝑊𝑜 is varied from 𝑊, 2𝑊, 3𝑊 and 4𝑊. The results obtained by MECFNN models with different parameter 

settings are tabulated in Table S4 in terms of 𝑎𝑐𝑐, and number of rules per layer (𝑁) and training time consumption 

per iteration (𝑡𝑡𝑟𝑎). 

 

Table S4. Classification performance of MECFNN with different settings of 𝑊𝑜 

𝑊𝑜 Meas. NSLKDD CICIDS2017 MNIST FMNIST SIRIWHU RSSCN PatternNet 

1:4 1:1 

𝑊 𝑎𝑐𝑐 0.7822 0.9735 0.9589 0.8450 0.9467 0.9166 0.9333 0.9419 

(𝑁1

𝑁2) (
103.4
15.0

) (
92.7
20.5

) (
10.4
39.5

) (
11.4
30.8

) (
27.7
38.5

) (
19.5
33.1

) (
28.0
31.3

) (
40.5
43.8

) 

𝑡𝑡𝑟𝑎 28.4 11.4 321.4 209.4 94.5 25.5 84 577.7 

2𝑊 𝑎𝑐𝑐 0.7793 0.9756 0.9566 0.8487 0.9319 0.9203 0.9264 0.9729 

(𝑁1

𝑁2) (
103.4
21.2

) (
92.9
31.2

) (
10.5
35.7

) (
11.3
32.0

) (
27.7
25.4

) (
19.6
25.3

) (
28.0
21.7

) (
40.5
43.8

) 

𝑡𝑡𝑟𝑎 43.4 23.4 403.0 331.2 113.3 33.5 120.3 730.1 

3𝑊 𝑎𝑐𝑐 0.7883 0.9743 0.9570 0.8480 0.9454 0.9165 0.9316 0.9840 

(𝑁1

𝑁2) (
103.5
20.3

) (
92.8
29.2

) (
10.4
30.9

) (
11.3
20.0

) (
27.8
21.2

) (
19.7
18.5

) (
28.0
19.6

) (
40.5
39.7

) 

𝑡𝑡𝑟𝑎 65.2 33.8 441.9 438.2 216.4 38.4 133.7 1088.1 

4𝑊 𝑎𝑐𝑐 0.7873 0.9762 0.9549 0.8502 0.9421 0.9170 0.9277 0.9847 

(𝑁1

𝑁2) (
103.4
15.7

) (
92.8
33.7

) (
10.4
28.7

) (
11.3
18.8

) (
27.8
20.3

) (
19.6
17.8

) (
28.0
17.8

) (
40.5
42.2

) 

𝑡𝑡𝑟𝑎 65.4 34.6 473.1 516.2 217.4 34.3 185 1220.6 

 

Table S4 shows that 𝑊𝑜 can significantly influence the performances of MECFNN by controlling the amount of 

information flowing between the layers. A larger 𝑊𝑜 can facilitate the information exchange between layers. 

However, by increasing 𝑊𝑜, the number of parameters in the consequent parts of the IF-THEN rules of MECFNN 

grows, and the size of the antecedent parts of the rules (except for the ones at the first layer) increases as well. As 

a result, the computational complexity of MECFNN increases with a larger 𝑊𝑜, and the amount of training data 

needed for MECFNN to maximise its performance also increases. Hence, it can be observed from Table S4 that 



the classification performance of MECFNN improves by increasing the values of 𝑊𝑜, particularly, on more 

complex problems with many classes, e.g., PatternNet, but the training time consumption increases as well. 

Next, the influence of  𝜖𝑜 on the performance of MECFNN is investigated. In this example, 𝐿, 𝑊𝑜, 𝜌𝑜 and 𝛿𝑜 are 

set as 𝐿 = 2, 𝑊𝑜 = 3𝑊, 𝜌𝑜 = 0.95 and 𝛿𝑜 = 𝑒−3, following the recommended setting. The value of 𝜖𝑜 is varied 

from 0.4, 0.5, 0.6 and 0.7. The results obtained by MECFNN models with different 𝜖𝑜  are reported in Table S5 

in terms of 𝑎𝑐𝑐, 𝑁 and 𝑡𝑡𝑟𝑎.  

Table S5. Classification performance of MECFNN with different settings of 𝜖𝑜 

𝜖𝑜 Meas. NSLKDD CICIDS2017 MNIST FMNIST SIRIWHU RSSCN PatternNet 

1:4 1:1 

0.4 𝑎𝑐𝑐 0.7876 0.9756 0.9570 0.8483 0.9444 0.9145 0.9237 0.9785 

(𝑁1

𝑁2) (
103.4
16.6

) (
92.5
30.6

) (
10.5
28.8

) (
11.3
20.0

) (
27.6
23.8

) (
19.6
20.6

) (
27.9
19.3

) (
40.5
39.9

) 

𝑡𝑡𝑟𝑎 46.9 21.7 443.4 419.2 184.6 48.8 111.8 1025.0 

0.5 𝑎𝑐𝑐 0.7883 0.9743 0.9570 0.8480 0.9454 0.9165 0.9316 0.9840 

(𝑁1

𝑁2) (
103.5
20.3

) (
92.8
29.2

) (
10.4
30.9

) (
11.3
20.0

) (
27.8
21.2

) (
19.7
18.5

) (
28.0
19.6

) (
40.5
39.7

) 

𝑡𝑡𝑟𝑎 65.2 33.8 441.9 438.2 216.4 38.4 133.7 1088.1 

0.6 𝑎𝑐𝑐 0.7861 0.9747 0.9568 0.8471 0.9467 0.9039 0.9299 0.9792 

(𝑁1

𝑁2) (
103.5
17.7

) (
92.7
27.4

) (
10.4 
35.7

) (
11.3
17.1

) (
27.7
21.9

) (
19.6
18.3

) (
28.0
18.4

) (
40.5
39.8

) 

𝑡𝑡𝑟𝑎 67.7 26.3 526.9 707.9 294.2 59.4 197.3 1533.4 

0.7 𝑎𝑐𝑐 0.7841 0.9722 0.9573 0.8463 0.9475 0.9146 0.9333 0.9847 

(𝑁1

𝑁2) (
103.4
16.4

) (
92.5
35.6

) (
10.4
34.1

) (
11.3
22.5

) (
27.7
20.9

) (
19.6
19.6

) (
28.0
21.6

) (
40.5
41.3

) 

𝑡𝑡𝑟𝑎 70.8 27.7 1022.2 705.9 360.6 49.0 245.2 1795.3 

 

It can be seen from Table S5 that 𝜖𝑜 can directly influence the accuracy and computational efficiency of the 

stacking ensemble model because it controls the dimensionality of the data after compression. A smaller 𝜖𝑜 will 

increase the computational efficiency of MECFNN because the data is compressed to a more compact form by 

the self-adaptive compressive projection (SACP) matrices. However, a smaller 𝜖𝑜 will potentially lead to a greater 

loss of information during the dimensionality compression, reducing the classification performance of MECFNN 

in terms of 𝑎𝑐𝑐. While a greater 𝜖𝑜 will help MECFNN to preserve more information from data after 

dimensionality compression, it will decrease the system’s computational efficiency. 

Then, the influence of 𝜌0 on the performance of MECFNN is investigated. In running the experiments, the value 

of 𝜌0 is varied from 0.75, 0.85, 0.95 and 1. The other four externally controlled parameters follow the 

recommended setting, namely, 𝐿 = 2, 𝑊𝑜 = 3𝑊, 𝜖𝑜 = 0.5 and 𝛿𝑜 = 𝑒−3. The results obtained by MECFNN 

models with different 𝜌0  are reported in Table S6 in terms of 𝑎𝑐𝑐, 𝑁 and 𝑡𝑡𝑟𝑎. Note that the adaptive activation 

control scheme stops functioning with  𝜌0 = 1 because all the IF-THEN rules will be recognised as being activated 

with respect to the input data by Condition 2.  

Table S6 shows that 𝜌0 has a greater impact on the computational efficiency of MECFNN. This is because 𝜌0 

helps Condition 2 to dynamically select these activated IF-THEN rules with respect to the current inputs for 

consequent parameter updating and output generation. A greater 𝜌0 enables more IF-THEN rules to be selected 

by Condition 2 at each learning cycle, and vice versa. Increasing the value of 𝜌0 will increase the computational 

complexity of MECFNN because a greater number of IF-THEN rules are involved in the output generation with 

their consequent parameters being updated with respect to the current inputs, which can also lead to overfitting. 

However, if  𝜌0 is set to be too small, the classification performance of MECFNN may be impacted because the 

adaptive activation control scheme may drop out too many IF-THEN rules to generate the outputs precisely  

because of the loss of information. 

Finally, the influence of 𝛿0 on the performance of MECFNN is investigated. In running the experiments, the value 

of 𝛿0 is varied from 𝑒−3, 𝑒−4, 𝑒−5 and 𝑒−6. The other four externally controlled parameters follow the 

recommended setting, namely, 𝐿 = 2, 𝑊𝑜 = 3𝑊, 𝜖𝑜 = 0.5 and 𝜌𝑜 = 0.95 . The results obtained by MECFNN 

models with different 𝛿0  are reported in Table S7 in terms of 𝑎𝑐𝑐, 𝑁 and 𝑡𝑡𝑟𝑎.  

 



Table S6. Classification performance of MECFNN with different settings of 𝜌0 

𝜌0 Meas. NSLKDD CICIDS2017 MNIST FMNIST SIRIWHU RSSCN PatternNet 

1:4 1:1 

0.75 𝑎𝑐𝑐 0.7925 0.9733 0.9601 0.8306 0.9485 0.9166 0.9127 0.9818 

(𝑁1

𝑁2) (
103.4 
18.9

) (
92.6
30.2

) (
10.4
34.8

) (
11.3
19.2

) (
27.8
19.4

) (
19.7
21.0

) (
27.9
18.5

) (
40.5
34.5

) 

𝑡𝑡𝑟𝑎 54.6 26.4 468.5 190.1 147.0 24.0 92.7 789.0 

0.85 𝑎𝑐𝑐 0.7918 0.9743 0.9592 0.8462 0.9440 0.9169 0.9306 0.9824 

(𝑁1

𝑁2) (
103.4 
21.8

) (
92.6
34.2

) (
10.4
36.6

) (
11.3
22.2

) (
27.6
20.4

) (
19.6
20.3

) (
28.0
19.6

) (
40.5
35.6

) 

𝑡𝑡𝑟𝑎 55.5 29.5 472.8 297.1 139.4 26.9 107.5 881.8 

0.95 𝑎𝑐𝑐 0.7883 0.9743 0.9570 0.8480 0.9454 0.9165 0.9316 0.9840 

(𝑁1

𝑁2) (
103.5 
20.3

) (
92.8
29.2

) (
10.4
30.9

) (
11.3
20.0

) (
27.8
21.2

) (
19.7
18.5

) (
28.0
19.6

) (
40.5
39.7

) 

𝑡𝑡𝑟𝑎 65.2 33.8 441.9 438.2 216.4 38.4 133.7 1088.1 

1 𝑎𝑐𝑐 0.7824 0.9738 0.9556 0.8482 0.9429 0.9134 0.9317 0.9805 

(𝑁1

𝑁2) (
103.4 
11.3

) (
92.8
25.7

) (
10.5
26.4

) (
11.3
17.3

) (
27.6
19.9

) (
19.6
19.7

) (
28.0
17.8

) (
40.5
48.9

) 

𝑡𝑡𝑟𝑎 148.7 90.4 673.5 619.2 401.4 63.2 299.7 2579.7 

 

Table S7. Classification performance of MECFNN with different settings of 𝛿0 

𝛿0 Meas. NSLKDD CICIDS2017 MNIST FMNIST SIRIWHU RSSCN PatternNet 

1:4 1:1 

𝑒−3 𝑎𝑐𝑐 0.7883 0.9743 0.9570 0.8480 0.9454 0.9165 0.9316 0.9840 

(𝑁1

𝑁2) (
103.5 
20.3

) (
92.8
29.2

) (
10.4
30.9

) (
11.3
20.0

) (
27.8
21.2

) (
19.7
18.5

) (
28.0
19.6

) (
40.5
39.7

) 

𝑡𝑡𝑟𝑎 65.2 33.8 441.9 438.2 216.4 38.4 133.7 1088.1 

𝑒−4 𝑎𝑐𝑐 0.7815 0.9749 0.9584 0.8285 0.9335 0.9038 0.8620 0.9728 

(𝑁1

𝑁2) (
85.2
12.4

) (
66.6
17.9

) (
4.6

18.0
) (

3.3
14.7

) (
16.6
12.6

) (
10.7
12.1

) (
13.8
13.0

) (
24.3
19.5

) 

𝑡𝑡𝑟𝑎 44.0 25.5 130.6 153.5 90.0 15.4 52.6 452.5 

𝑒−5 𝑎𝑐𝑐 0.7839 0.9712 0.9587 0.8059 0.7708 0.7399 0.7312 0.6701 

(𝑁1

𝑁2) (
60.0
5.9

) (
50.9
9.3

) (
2.9

11.8
) (

2.1
8.1

) (
12.2
8.4

) (
5.9
8.2

) (
7.7
9.2

) (
14.3
13.8

) 

𝑡𝑡𝑟𝑎 13.4 4.6 71.2 86.1 46.3 10.3 30.3 234.1 

𝑒−6 𝑎𝑐𝑐 0.7842 0.9737 0.9596 0.7937 0.5977 0.6022 0.5131 0.5380 

(𝑁1

𝑁2) (
45.9
5.3

) (
40.8
6.3

) (
2.2
7.6

) (
2.1
6.9

) (
8.6
7.0

) (
4.4
6.5

) (
6.2
7.3

) (
9.7
9.8

) 

𝑡𝑡𝑟𝑎 10.8 4.3 71.2 85.1 34.9 6.5 19.1 196.4 

 

One can see from Table S7 that, a greater 𝛿𝑜 enables MECFNN to identify more IF-THEN rules from data because 

it increases the sensitivity of the stacking ensemble model towards these more distinctive input samples that are 

spatially distant from existing prototypes. On the other hand, a smaller 𝛿𝑜 will reduce the size of the IF-THEN 

rule base learned from data because it forces MECFNN to focus on major data patterns. In general, a greater 𝛿𝑜 

can help MECFNN to better capture the underlying patterns and structure of data with a larger IF-THEN rule 

base, but it will increase the computational complexity and lead to overfitting potentially. However, if 𝛿𝑜 is too 

small, the learned IF-THEN rules may be insufficient to approximate the problem precisely, and the classification 

performance of MECFNN will be influenced as a result. 

 

 

 

  



E. Parameter Settings for Comparative Approaches 
In running the numerical experiments, the number of nearest neighbours, 𝑘 is set to be 3 for kNN, a commonly 

chosen setting by exiting works [1]. The maximum depth is set to be 𝐾 − 1 for DT to allow the tree structure to 

fully grow (𝐾 is the total amount of labelled data samples presented to DT). SVM uses the linear kernel, and the 

box constraint is 1 [2]. MLP has a four layer architecture with two hidden layers, each of which has 128 neurons. 

Root mean squared propagation (RMSprop) is employed as the optimiser with the learning rate and weight decay 

set as 0.001 and 0.9, respectively. RNN follows the recommended setting given by [3], which has one hidden 

layer composed of 80 recurrent neurons. The Adam optimiser utilised for tuning the hyperparameters of RNN. 

The learning rate is set to be 0.5 for intrusion detection problems and 0.005 for image classification problems. 

The LSTM follows the same parameter setting and architecture as the RNN except that the recurrent neurons are 

replaced by LSTM neurons. As [3] does not give the exact setting of batch size, the batch sizes for MLP, RNN 

and LSTM are all set as 50 in this study. BAT follows the exact same setting as [4] except that the kernel size for 

1D convolutional layers in BAT set as 4 due to the lack of precise information in the original literature. All the 

four ANN models are trained for 100 epochs [4]. PALM [5] uses first-order fuzzy rules and local updating 

strategy. Its parameters are set as: 𝑎 = 0.1,  𝑏1 = 0.0002,  𝑏2 = 0.01, 𝑐1 = 0.01 and 𝑐2 = 0.01. SC follows the 

recommended setting given by [6]. The parameters of LREC are set as  𝑏1 = 0.85,  𝑏2 = 0.2, same as the 

experimental setting used in [7]. SOFBIS follows the recommended setting given by [8]. The externally controlled 

parameters of SEFIS are determined as: 𝐾 = 0.5; 𝛿1 = 0.5; 𝛿2 = 0.5, and 𝑝0 = 2. For the 11 ensemble classifiers 

employed for the performance comparison, ADBDT, SAMDT and RF are composed of 50 DTs with the maximum 

depth set as 𝐾 − 1. ADBNN and SAMNN are also composed of 50 base kNN classifiers with 𝑘 set as 3. The 

number of DTs in XGBoost is set as 40, and the maximum depth of each DT is 40. eEnsemble is composed of 10 

eClass0 classifiers, and other parameters follow the same setting used in [9]. SOFEns, FWADB, STHPEF and 

MEFNN follow the respective recommended parameter settings given by [10]–[13]. Note that, similar to 

MECFNN and the four ANN models, MEFNN is trained for 100 epochs as well to maximise its classification 

performance. 

F. Additional Numerical Results 
 

Table S9. p-values returned from pairwise Wilcoxon signed rank tests 

MECFNN versus p-value MECFNN versus p-value 

kNN 0.0006 SEFIS 0.0000 

DT 0.0001 ADBDT 0.0014 

SVM 0.1361 ADBNN 0.0006 

MLP 0.4114 RF 0.0137 

RNN 0.0008 SAMDT 0.0003 

LSTM 0.0332 SAMNN 0.0001 

BAT 0.0000 eEns 0.0000 

PALM 0.0056 XGB 0.0777 

SC 0.0029 SOFEns 0.0000 

LREC 0.0039 FAWADB 0.0089 

SOFBIS 0.0000 MEFNN 0.0014 

 



 

Fig. S1. Absolute correlation coefficients between SACP matrices associated with the learned IF-THEN rules in 

the first layer of MECFNN 

 

 

Fig. S2. Absolute correlation coefficients between SACP matrices associated with the learned IF-THEN rules in 

the second layer of MECFNN 



 

G. Ablation Analysis 
In this section, an ablation analysis is performed to demonstrate the influence of the adaptive dimensionality 

compression scheme and adaptive activation control scheme on the performance of MECFNN. In this example, 

three alterative versions of MECFNN are implemented, which include:  

• Version 1 (denoted by MECFNNv1): MECFNN but with adaptive dimensionality compression scheme 

implemented only (equivalent to setting 𝜌0 = 1); 

• Version 2 (denoted by MECFNNv2): MECFNN but with adaptive activation control scheme implemented 

only; 

• Version 3 (denoted by MECFNNv3): MECFNN with both schemes implemented, but the compressive 

projection matrices are not updated during the learning process. 

The performances of MECFNN and its three alternative versions are evaluated on the same 15 datasets under the 

same experimental protocols and parameter settings used in numerical examples presented in Tables I-III. In 

addition, MEFNN is also involved in this ablation analysis as the vanilla version of MECFNN. 

The average 𝑎𝑐𝑐 rates, average numbers of rules per layer and the average training time costs per iteration (𝑡𝑡𝑟𝑎, 

in seconds) obtained by MECFNN, MECFNNv1, MECFNNv2,  MECFNNv3 and MEFNN on the 15 datasets under 

23 different experimental settings are presented in Figs. S3-S5, respectively. The 𝑎𝑐𝑐 rates of the five stacking 

ensemble models per dataset per setting are tabulated in Table S10. 

It is shown in Fig. S3 that MECFNN outperforms all its alternatives as well as its predecessor on the 15 datasets 

in terms of average 𝑎𝑐𝑐. In particular, one can see from Table S10 that MECFNN achieves the best performance 

in 14 out of 23 cases, and outperforms its predecessor in 18 out of 23 cases. The experimental results demonstrate 

clearly the effectiveness of the proposed adaptive dimensionality compression and adaptive activation control 

schemes in enhancing the multi-level latent representation learning capability of MECFNN.  

Comparing between MECFNNv1 and MEFNN, from Figs. S3-S5 one can see that the adaptive dimensionality 

compression scheme enables the model to learn more discriminative features from data with less IF-THEN rules, 

at the cost of increased computational complexity and a greater susceptibility to overfitting. Comparing between 

MECFNNv2 and MEFNN, it can be concluded that the adaptive activation control scheme enhances the 

computational efficiency and helps reduce overfitting. The combination of the two schemes effectively improves 

the performance of MECFNN without increasing the computational complexity significantly.  

It is also worth noting that MECFNNv3 performs the worst among the five stacking ensemble models. The main 

reason, as mentioned in Section I, is that the randomly generated VSRP matrices may lead to a significant loss of 

information, particularly when the compression ratio is high.  

 

 

Fig. S3. Average classification accuracy rates of the five stacking ensemble models 

 



 

Fig. S4. Average numbers of rules per layer of the five stacking ensemble models 

 

 

Fig. S5. Average training time costs per iteration of the five stacking ensemble models (logarithm is applied for 

visual clarity) 

 

Table S10. Detailed ablation analysis results 

Dataset MECFNN MECFNNv1 MECFNNv2 MECFNNv3 MEFNN 

NSLKDD 0.7883 0.7824 0.7830 0.7598 0.7756 

UNSWNB15 0.8485 0.8454 0.8406 0.8225 0.8416 

CICIDS2017 0.9743 0.9738 0.9710 0.9574 0.9722 

CICIDS2018 0.9848 0.9840 0.9844 0.9719 0.9830 

HIKARI2021 0.9319 0.9316 0.9314 0.9313 0.9317 

MNIST Orig 0.9570 0.9556 0.9503 0.9050 0.9499 

MBN 0.9724 0.7666 0.9752 0.9472 0.9733 

MBN2 0.9715 0.9721 0.9742 0.9452 0.9738 

FMNIST Orig 0.8480 0.8482 0.8507 0.8185 0.8486 

MBN 0.8610 0.7913 0.8542 0.8111 0.8519 

MBN2 0.8674 0.8491 0.8705 0.8171 0.8705 

CIFAR10 MBN 0.5069 0.4955 0.5024 0.4220 0.5018 

MBN2 0.5070 0.4777 0.5037 0.4373 0.4996 

SIRIWHU 0.9454 0.9429 0.9475 0.9415 0.9404 

RSSCN7 1:4 0.9165 0.9134 0.9013 0.9011 0.9023 

1:1 0.9316 0.9317 0.9261 0.9247 0.9284 

UCMerced 1:1 0.9395 0.9385 0.8984 0.9310 0.8421 

4:1 0.9612 0.9524 0.9631 0.9536 0.8814 

AID 1:4 0.9120 0.9066 0.8804 0.8957 0.8683 

1:1 0.9336 0.9280 0.9376 0.9137 0.9418 

PatternNet 0.9840 0.9805 0.9689 0.9688 0.9061 

SAT4 0.6921 0.6783 0.6779 0.6668 0.6852 

SAT6 0.6052 0.6061 0.5926 0.5606 0.5950 

 

 



Finally, pairwise Wilcoxon signed rank tests [14] are carried out based on the 𝑎𝑐𝑐 rate per dataset (per 

experimental setting) to examine the statistical significance of the performance improvement of MECFNN over 

its three alternative versions and predecessor. The 𝑝-values returned from the pairwise tests are reported in 

Supplementary Table S11, where one can see that all the 𝑝-values are below the level of significance specified by 

𝛼 = 0.05. This shows that the performance improvement is statistically significant. 

 

Table S11. p-values returned from pairwise Wilcoxon signed rank tests for ablation analysis 

MECFNN versus p-value 

MECFNNv1 0.0002 

MECFNNv2 0.0042 

MECFNNv3 0.0000 

MEFNN 0.0014 
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