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2. Abstract  21 

Introduction 22 

Altered subjective visual sensitivity manifests as feelings of discomfort or overload elicited by 23 

intense and irritative visual stimuli. This can result in a host of visual aberrations including 24 

visual distortions, elementary visual hallucinations and visceral responses like dizziness and 25 

nausea, collectively referred to as “pattern glare”. Current knowledge of the underlying neural 26 

mechanisms has focused on overall visual cortex excitability of the visual cortex, but the 27 

individual contribution of excitatory and inhibitory systems has not yet been quantified.  28 

Methods 29 

In this study, we focus on the role of glutamate and γ-aminobutyric acid (GABA) as potential 30 

mediators of individual differences in subjective visual sensitivity, measured by a 31 
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computerized Pattern Glare Test – a series of monochromatic square-wave gratings with three 32 

different spatial frequencies, while controlling for psychological variables related to sensory 33 

sensitivity response bias and predisposition towards anomalous experiences with multiple 34 

questionnaires. Resting neurotransmitter concentrations in primary visual cortex (V1) and right 35 

anterior insula were studied in 160 healthy participants using magnetic resonance spectroscopy.  36 

Results 37 

Data showed significant differences in the perception of visual distortions (VD) and comfort 38 

scores between men and women, with women generally reporting more VD, and therefore the 39 

modulatory effect of sex was considered in a further examination. A general linear model 40 

analysis showed a negative effect of occipital glutamate on a number of reported visual 41 

distortions, but also a significant role of several background psychological traits. When 42 

assessing comfort scores in women, an important intervening variable was the menstrual cycle.  43 

Discussion 44 

Our findings do not support that baseline neurotransmitter levels have a significant role in 45 

overreactivity to aversive stimuli in neurotypical population., and suggest that the V1 46 

hyperexcitability hypothesis for visual discomfort remains supported only when the cortex is 47 

stimulated. However, Wwe demonstrated that biological sex can have a significant impact on 48 

subjective responses. Based on this additional finding, we suggest that future studies 49 

investigate aversive visual stimuli while examining the role of biological sex. 50 

3. Keywords 51 

Pattern Glare Test, visual discomfort, magnetic resonance spectroscopy, GABA, glutamate, 52 

cortical excitability 53 

1. Introduction  54 

Certain individuals are more sensitive to harsh lights or patterns than others – resulting in the 55 

experience of visual discomfort, sensory overload, irritation, and anxiety or anger. This 56 

subjective feeling is called subjective visual sensitivity and varies across individuals both 57 

within the neurotypical population and in association with certain disorders like autism or 58 

migraine (Braithwaite et al. 2013; Robertson and Simmons 2013; Braithwaite et al. 2015;  Ward 59 

2019; Wood et al. 2021). Proposed neural mechanisms for inter-individual differences involve 60 

https://paperpile.com/c/6u1scE/jzUo+oZDI+JGqQ+BvdT+C5m0
https://paperpile.com/c/6u1scE/jzUo+oZDI+JGqQ+BvdT+C5m0
https://paperpile.com/c/6u1scE/jzUo+oZDI+JGqQ+BvdT+C5m0
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a change in the balance of excitatory and inhibitory systems, but direct evidence quantifying 61 

the individual contribution of these systems is lacking. 62 

Individual differences in subjective sensory sensitivity can be studied with laboratory tasks that 63 

utilize aversive stimuli, such as the Pattern Glare Test (PGT, Wilkins et al. 1984; Evans and 64 

Stevenson 2008; Braithwaite et al. 2013), aiming at assessing particularly visual sensitivity and 65 

resultant visual distortions/aberrations. This visual task features stationary high-contrast 66 

horizontal achromatic gratings with different spatial frequencies that can elicit discomfort, 67 

induce phantom visual perceptions, and visual distortions (e.g. colorful halos, shadows and 68 

illusory movement) as well as visceral responses like nausea and dizziness. These experiences 69 

are a form of “visual stress”, collectively referred to as pattern glare. Gratings with a spatial 70 

frequency of around 3 cycles-per-degree (cpd) are particularly potent at inducing pattern glare 71 

in observers (Wilkins et al. 1984; Braithwaite et al. 2013) and even more so in hypersensitive 72 

persons, e.g. those suffering from migraine (Huang et al. 2003; Fong et al. 2019; Fong et al. 73 

2020). Multiple neural mechanisms for this effect have been proposed, ranging from pre-74 

cortical mechanisms as early as at the retina (Szmajda and Devries 2011) to post-sensory 75 

centrally mediated processing including cognitive-affective responses (Green and Wood 2019). 76 

Increased excitability of V1 has been considered a plausible mechanism of subjective visual 77 

sensitivity since early theories (Wilkins et al. 1984), supported by later research in migraine 78 

patients (Wilkins et al. 2004). Spatial frequencies around 3 cpd are rare in natural scenes 79 

(Conlon et al. 2001; Geisler 2008; Haigh et al. 2015), therefore V1 is not efficient in their 80 

encoding and responds with unnecessarily abundant activation (De Valois et al. 1974; Le et al. 81 

2017). This makes these frequencies more likely to overstimulate the visual cortex; for example 82 

to trigger epileptic seizures (Radhakrishnan et al. 2005). This overall increase in neural 83 

activation (a kind of over-stimulation) might reflect increased excitation, decreased inhibition, 84 

or both. Excitation is primarily facilitated by glutamate and inhibition by γ-aminobutyric acid 85 

(GABA) (Badawy et al. 2012). The basic processing microcircuit in the cerebral cortex consists 86 

of excitatory glutamatergic projection neurons and inhibitory GABAergic interneurons 87 

(Douglas and Martin 2004). In case of intense stimulation of a single type of frequency-88 

sensitive cells, the excitation might exceed the shared lateral inhibitory capacity of the 89 

microcircuit (Evans and Stevenson 2008). Therefore, uncomfortable striped patterns 90 

overstimulate the neurons and produce larger and less sparse activation in a computational 91 

model (Hibbard and O'Hare 2015), resembling the excessive activation of the brain during 92 

https://paperpile.com/c/6u1scE/KTlh
https://paperpile.com/c/6u1scE/spRc
https://paperpile.com/c/6u1scE/spRc
https://paperpile.com/c/6u1scE/QTkf
https://paperpile.com/c/6u1scE/QTkf+KTlh
https://paperpile.com/c/TRokyS/qxRy
https://paperpile.com/c/6u1scE/8wiA
https://paperpile.com/c/6u1scE/UIx3
https://paperpile.com/c/6u1scE/uWrt
https://paperpile.com/c/6u1scE/uWrt
https://paperpile.com/c/6u1scE/8HIP
https://paperpile.com/c/6u1scE/4L9f
https://paperpile.com/c/6u1scE/KTlh
https://paperpile.com/c/6u1scE/JKbK
https://paperpile.com/c/6u1scE/owS0+47T8+qrzV
https://paperpile.com/c/6u1scE/iDc8+vmxi
https://paperpile.com/c/6u1scE/iDc8+vmxi
https://paperpile.com/c/6u1scE/dSs4
https://paperpile.com/c/6u1scE/LLme
https://paperpile.com/c/6u1scE/EyfT
https://paperpile.com/c/6u1scE/spRc
https://paperpile.com/c/6u1scE/ZYnC
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sensory overload. As this occurs in the visual cortex, these processes manifest themselves as 93 

increased susceptibility to visual pattern glare experiences. 94 

Direct evidence for the role of visual cortex excitability in subjective visual sensitivity comes 95 

from neuroimaging research. In functional magnetic resonance imaging (fMRI) studies, 96 

uncomfortable striped patterns evoke increased blood oxygenation response in V1 and visual 97 

association cortex (Huang et al. 2003; Huang et al. 2011). This has been corroborated by near 98 

infrared spectroscopy (Haigh et al. 2013), and electrophysiology (Adjamian et al. 2004; O’Hare 99 

et al. 2015; O'Hare 2017; Orekhova et al. 2019). Causal evidence for the role of cortical 100 

excitability comes from transcranial direct current stimulation (Braithwaite et al. 2015), where 101 

under excitatory (anodal) stimulation of V1, healthy subjects perceived more visual distortions 102 

on medium-frequency gratings and this effect was larger for observers screened for trait-based 103 

predisposition to anomalous perceptions. Although these findings point to the role of increased 104 

excitation-to-inhibition ratio in subjective visual sensitivity, the individual role of excitatory 105 

glutamatergic and inhibitory GABAergic systems awaits clarification. Currently, the only non-106 

invasive method measuring GABA and glutamate concentrations in vivo is proton magnetic 107 

resonance spectroscopy (MRS) (Öz et al. 2020). MRS-quantified GABA and glutamate 108 

concentrations have been previously found to reflect change in the level of cortical excitability 109 

as measured (Stagg et al. 2011a) or manipulated (Gröhn et al. 2019) by transcranial magnetic 110 

stimulation and also to reflect the role of GABA in visual perception (Song et al. 2017).  111 

Additional evidence on the role of cortical excitability, not limited only to V1, arises from 112 

studies in migraine patients where patients proved to be particularly susceptible to pattern glare 113 

(Wilkins and Evans 2010; Fong et al. 2020). Patients suffering from so-called complex auras 114 

show higher resting-state functional connectivity within the visual network and the right 115 

anterior insula (rAI) (Silvestro et al. 2022), which also shows heightened inter-ictal intrinsic 116 

connectivity with V1 in migraine without aura (Tso et al. 2015). The anterior insula, as a key 117 

node of the salience network, evaluates the impact of sensory stimuli on the body state (Downar 118 

et al., 2000; Cauda et al. 2011; Uddin 2015) and along with the visual and parietal brain areas, 119 

is involved in multisensory and cognitive-affective processing – including the generation of 120 

conscious feeling states (Saffin and Tohid 2016; Gogolla 2017; Campbell et al. 2018; Cebeiro 121 

and Rodríguez 2019). The rAI cortex has a role in bodily awareness and interoception (Craig 122 

2009; Rahmani and Rahmani 2019; Fermin et al. 2021). Consequently, the insula may well be 123 

https://paperpile.com/c/6u1scE/dUVV+NL26
https://paperpile.com/c/6u1scE/39TD
https://paperpile.com/c/6u1scE/tyiF+v2PS
https://paperpile.com/c/6u1scE/ewEl
https://paperpile.com/c/6u1scE/tyiF+v2PS
https://paperpile.com/c/6u1scE/tyiF+v2PS
https://paperpile.com/c/6u1scE/tyiF+v2PS
https://paperpile.com/c/6u1scE/E5Zb
https://paperpile.com/c/6u1scE/goe6
https://paperpile.com/c/6u1scE/S70Z
https://paperpile.com/c/6u1scE/FN6R
https://paperpile.com/c/6u1scE/LOr4
https://paperpile.com/c/6u1scE/wBxT
https://paperpile.com/c/6u1scE/bkKi
https://paperpile.com/c/6u1scE/Pe72
https://paperpile.com/c/6u1scE/LnjO
https://paperpile.com/c/6u1scE/qsSF
https://paperpile.com/c/6u1scE/94co
https://paperpile.com/c/TRokyS/sTXD
https://paperpile.com/c/TRokyS/sTXD
https://paperpile.com/c/6u1scE/94co
https://paperpile.com/c/6u1scE/BPoL
https://paperpile.com/c/6u1scE/oK8S
https://paperpile.com/c/6u1scE/KXBG
https://paperpile.com/c/6u1scE/wasG
https://paperpile.com/c/6u1scE/oK8S
https://paperpile.com/c/6u1scE/LLfJ
https://paperpile.com/c/6u1scE/LLfJ
https://paperpile.com/c/6u1scE/IwaW
https://paperpile.com/c/6u1scE/IwaW
https://paperpile.com/c/6u1scE/AmxR
https://paperpile.com/c/6u1scE/Fa9s
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important for mediating the visceral-body related experiences reported from viewing aversive 124 

gratings.  125 

In the present study, we aim to expand the understanding about the role of cortical excitability 126 

in subjective visual sensitivity by quantifying the contribution of baseline GABA and 127 

glutamate, utilizing naturally occurring inter-individual differences in a neurotypical sample. 128 

To measure visual sensitivity, we used both measures of the PGT: aberrant visual experiences 129 

(visual distortions – VD) and subjective ratings of visual discomfort. We related these scales 130 

to glutamate and GABA concentrations measured with proton magnetic resonance 131 

spectroscopy in V1 and in the rAI, while controlling for response bias and predisposition 132 

towards anomalous experiences with multiple questionnaires. We predicted that: (1) the 133 

number of visual distortions elicited by aversive medium-frequency gratings would be 134 

negatively correlated to inhibitory GABA or (2) positively correlated to excitatory glutamate 135 

in V1; (3) subjectively reported feeling of comfort would be positively correlated to GABA or 136 

(4) negatively correlated to glutamate in V1. We aimed to also evaluate the role of rAI 137 

excitability in a context of subjective visual sensitivity and propose a model of the relationship 138 

between cortical excitability and subjective sensitivity. By applying the hyperexcitability 139 

hypothesis on young neurotypical adults, we attempt to bridge the explanatory gap between 140 

aberrant neural processes and anomalous conscious perceptions in neurotypical samples. 141 

2. Materials and methods 142 

185 healthy young adults (aged 18 to 39; mean = 24.28, SD = 4.762) with normal or corrected-143 

to-normal vision and no neurological or psychiatric diagnosis were recruited via a database of 144 

volunteers and advertisements in university/social media. The volunteers were invited to 145 

participate in the research as a part of an international research project on consciousness 146 

research (COST Action CA18106 - The neural architecture of consciousness), for which the 147 

exclusion criteria were adapted. With respect to these criteria, we excluded individuals over 40 148 

years of age, with current neurological or psychiatric medication intake, a history of self-149 

reported migraine symptoms with aura or those not fulfilling MR safety criteria, as they self-150 

reported in a screening questionnaire prior to study participation. In total, 182 subjects (self-151 

reported 72 males and 110 females) gave written informed consent approved by the Research 152 

Ethics Committee of Masaryk University and underwent both the PGT and magnetic resonance 153 

spectroscopy. Participants were asked not to drink caffeinated beverages for at least 4 hours 154 
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before the first session (Wolde, 2014). After completing experiments, the subjects were 155 

debriefed and received a financial compensation of 1000 Czech crowns (~40 EUR).  156 

2.1. Questionnaires 157 

Validated psychological questionnaire measures were administered to provide an index of 158 

participants' trait-based predispositions to anomalous perceptions and subjective sensitivity 159 

that might influence the perception of visually aversive patterns. The questionnaires were 160 

selected to ascertain individual scores on various psychological aspects related to sensory 161 

sensitivity and with regard to the previous research on the topic (Braithwaite et al. 2013; Dance 162 

et al. 2021). This was supplemented by demography, sleep, and menstrual cycle. 163 

2.1.1. Cardiff Anomalous Perceptions Scale 164 

Cardiff Anomalous Perceptions Scale (CAPS) (Bell et al. 2006) is an instrument for measuring 165 

the propensity to report anomalous perceptual experiences, hallucinations in non-clinical 166 

populations. The questionnaire consists of 32 items of different forms (open-closed questions 167 

and Likert scales), divided into 3 components that can be interpreted as ‘‘clinical psychosis,’’ 168 

‘‘chemosensation,’’ and ‘‘temporal lobe disturbance’’. Besides a total score that can be 169 

calculated by summing the number of endorsed items, it produces three separate subscale 170 

scores measuring distress, intrusiveness and frequency. Therefore, the possible range for the 171 

CAPS total was 0 (low) to 32 (high), and for each of the dimensions the possible range is 0 to 172 

160. 173 

2.1.2. Glasgow Sensory Questionnaire 174 

Glasgow Sensory Questionnaire (GSQ) (Robertson and Simmons 2013) assesses self-rated 175 

hyper- and hypo-sensitivities across seven sensory modalities: visual, auditory, tactile, 176 

gustatory, olfactory, proprioceptive, and vestibular. The questionnaire consists of 42 items, six 177 

items targeting each sensory domain. Half of these items measure hypersensitivity, while the 178 

other half examine hyposensitivity. Each item can be answered using a scale of 0 (“Never”), 1 179 

(“Rarely”), 2 (“Sometimes”), 3 (“Often”), and 4 (“Always”), the overall sensitivity score is 180 

calculated by summing all item scores (ranging 0 to 168). From the overall score, two separate 181 

scores can be derived for hyper- and hyposensitivity (ranging from 0 to 84), as well as one 182 

score for every sensory domain (ranging 0 to 24). 183 

https://paperpile.com/c/6u1scE/YR2T
https://paperpile.com/c/6u1scE/sEdR
https://paperpile.com/c/6u1scE/sEdR
https://paperpile.com/c/6u1scE/N1po
https://paperpile.com/c/6u1scE/Dvly
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2.1.3. NEO-FFI 184 

NEO Five-Factor Inventory (NEO-FFI; Costa 1989; Costa and McCrae 1992) is a revised, short 185 

version of NEO Personality Inventory (Costa and McCrae 1985). It consists of 60 items 186 

providing a concise measure of five personality factors: neuroticism, extraversion, openness, 187 

agreeableness, conscientiousness. Each of the factors is loaded with 12 items, some of which 188 

(N=28) are reverse-worded. The questionnaire uses a five-point Likert response format to 189 

indicate if participants (0) strongly agree, (1) agree, (2) are neutral, (3) disagree or (4) strongly 190 

disagree with a given proposition about themselves. Scores for each personality factor are 191 

calculated by summing 12 items with reverse-scored reversed items. 192 

2.1.4. Multidimensional Assessment of Interoceptive Awareness-2 193 

Multidimensional Assessment of Interoceptive Awareness-2 (MAIA-2) (Mehling et al. 2012) 194 

was designed as a multidimensional self-report measure to assess the main psychological 195 

aspects of the perception of body sensations. The 37 included items may be divided into eight 196 

subscales providing separate scores. The subscales are: noticing, trusting, body listening, 197 

emotional awareness, self-regulation, not worrying, not distracting and attention regulation. 198 

Participants assign 6-point Likert ratings from 0 (“Never”) to 5 (“Always”). Lower sum of 199 

scores (an overall or for the certain subscale) indicate more deficits in interoceptive awareness. 200 

2.1.5. Biological factors 201 

Studies have attempted to provide normative data for cortical excitability parameters, from 202 

which circadian regulation and menstrual/ ovarian cycle serve as potential bias factors in our 203 

study. Sleep deprivation increases cortical excitability significantly (Meisel et al. 2015). There 204 

is some evidence that there are no differences resulting from sex (Cueva et al. 2016), but studies 205 

focused on menstrual and ovarian cycle in women proved the effect of ovarian hormones to be 206 

an important factor affecting cortical excitability since menstrual cycle causes the fluctuations 207 

in the neurotransmitter concentrations (Smith et al. 1999; Smith et al. 2002; Inghilleri et al. 208 

2004; Hattemer et al. 2007). Therefore, we decided to gather participants' data on the hours 209 

slept during the night before the experiment and the day of the menstrual cycle in women. A 210 

normal menstrual cycle is defined here as a standard 21-35 day cycle that is not regulated by 211 

hormonal contraceptives. 212 

2.2. Pattern Glare Test 213 

https://paperpile.com/c/6u1scE/E3HP+m9nF
https://paperpile.com/c/6u1scE/51X5
https://paperpile.com/c/6u1scE/kKM4
https://paperpile.com/c/6u1scE/kQEh
https://paperpile.com/c/6u1scE/ku1r
https://paperpile.com/c/6u1scE/MMqS
https://paperpile.com/c/6u1scE/7lc3
https://paperpile.com/c/6u1scE/PJPo
https://paperpile.com/c/6u1scE/PJPo
https://paperpile.com/c/6u1scE/sDdi
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With the aim to assess state-based subjective visual sensitivity, we used a modified 214 

computerized version of the Pattern Glare Test (Braithwaite et al. 2015), see Figure 1. The 215 

stimulation consisted of stationary horizontal square-wave achromatic gratings differing only 216 

in their spatial frequency. Three frequencies were presented: a control low-frequency grating 217 

(0.5 cpd – cycles pre degree) intended to screen for response bias, an aversive medium-218 

frequency grating (3 cpd), and high-frequency grating (14 cpd). Each grating was presented 6 219 

times in a randomized order. After every three trials with grating stimuli, a checkerboard of 0.5 220 

cpd was presented instead to reduce the potential for lingering excessive neural activity to carry 221 

over onto subsequent stimuli. The task was administered in a shielded laboratory and the 222 

subject was seated at 80 cm distance from the presentation monitor (TFT-LCD display Philips 223 

241S4L, refresh rate 60 Hz, 1920 × 1080 pixels, 533 × 300 mm). The gratings had dimensions 224 

120 × 120 mm (432 × 432 pixels). The Michelson contrast of the gratings was 0.7, the 225 

background luminance 50 lux. The light in the room was kept on a stable dim setting (35 lux). 226 

At the beginning of the experiment, participants were instructed on the definitions of visual 227 

distortions, and then to sit comfortably with one hand on the mouse and the other on the 228 

keyboard. Their basic task was to fixate a point at the center of the screen for the whole duration 229 

of its presence. If a stimulus turned out too uncomfortable, the participant could remove it by 230 

pressing the spacebar. Another spacebar press restored the stimulus. After each stimulus, 231 

participants were presented with three response screens: 1) select from a list all perceived visual 232 

distortions, 2) mark prevailing laterality of visual distortions (left/center/right) and 3) rate their 233 

comfort with viewing the stimulus on a 11-point scale (Figure 1). At the start of the experiment, 234 

two practice trials with checkerboard stimulus were included to ensure that participants 235 

understood the task. At the end, participants were debriefed and asked to report any visual 236 

distortions that did not fit the available alternatives. The whole task took approximately 15 237 

minutes. 238 

The number of visual distortions for each frequency (low-frequency gratings – VD-low, 239 

medium-frequency gratings – VD-med, high-frequency gratings – VD-high) was calculated as 240 

the average of the number of distortions reported after each presentation. We took into account 241 

the distortions of visual nature, i.e.: shadowy shapes amongst the lines, shimmering, flickering, 242 

bending, illusory stripes or colors, and overall discomfort such as nausea, unease, dizziness, 243 

and ocular pain. We also utilized a second measure of visual sensitivity - the comfort score, 244 

https://paperpile.com/c/6u1scE/hsfD
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which was calculated by averaging the comfort rating from each of the six stimulus 245 

presentations for each stimulus frequency (Comfort-low, Comfort-med, Comfort-high). 246 

Data were examined for outliers and data from 12 participants who diverted from the 247 

instructions were excluded from further analysis. Seven participants did not pass the screening 248 

on the control VD-low for response bias by reporting over 2.64 distortions at average (>2.5 249 

SD) and five by reporting more distortions on VD-low than to the aversive grating (Evans and 250 

Stevenson 2008). 251 

2.3. MRI scan  252 

To quantify the concentrations of individual neurotransmitters, we used the only currently 253 

available non-invasive method for measuring GABA and glutamate concentrations in vivo – 254 

magnetic resonance spectroscopy (MRS, Öz et al. 2020). MRS-quantified GABA and 255 

glutamate concentrations have been previously found to reflect change in the level of cortical 256 

excitability as measured (Stagg et al. 2011a) or manipulated (Gröhn et al. 2019) by transcranial 257 

magnetic stimulation and also to reflect the role of GABA in visual perception (Song et al. 258 

2017). Participants underwent MRI scanning on the same day as PGT was performed. 259 

Neuroimaging data were collected in a 3 Tesla MRI Scanner (MAGNETOM Prisma, Siemens 260 

Medical, Erlangen, Germany, Syngo VE11) using a 64-channel receive-array head/neck coil. 261 

Structural T1‐weighted images were acquired during each measurement using a standard 262 

magnetization‐prepared rapid gradient‐echo (MPRAGE) sequence (TR/TE = 2300/2.34 ms, TI 263 

= 900 ms, flip angle = 8°, slice thickness = 1 mm, 240 slices, field-of-view = 260 × 256 mm, 264 

resolution = 1 mm isotropic) for accurate placement of the MRS volume of interest (VOI) and 265 

within-VOI brain segmentation (Lin et al. 2021). MRS data were acquired using the SPECIAL 266 

sequence (Mekle et al. 2009; Near et al. 2013). The first voxel was placed in the primary visual 267 

cortex centered along the calcarine sulcusplaced placed to cover the calcarine sulcus bilaterally 268 

(Figure 2-1). The calcarine sulcus is a prominent anatomical landmark in the T1-weighted 269 

MPRAGE structural MRI scans, and a commonly used landmark for localization of the primary 270 

visual cortex. Thus, the V1 voxel was centered on this landmark, as shown in Figure 2-1.,  The 271 

voxel is placed as much as possible over the primary visual cortex without contaminating skull 272 

signals and includes V1 and a minimal part of the prestriate cortex. tThe second voxel was in 273 

the right anterior insula (Figure 2-2),. focused to include the whole anterior insula and as 274 

minimal part of posterior insula as possible, given the inter-individual differences in brain 275 

https://paperpile.com/c/6u1scE/spRc
https://paperpile.com/c/6u1scE/spRc
https://paperpile.com/c/6u1scE/S70Z
https://paperpile.com/c/6u1scE/FN6R
https://paperpile.com/c/6u1scE/LOr4
https://paperpile.com/c/6u1scE/wBxT
https://paperpile.com/c/6u1scE/wBxT
https://paperpile.com/c/g5Vxdb/gjj5
https://paperpile.com/c/6u1scE/RzFn+r7ef
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volume. Both voxels had these parameters: VOI = 30 x 15 x 25 mm, TR/TE = 3000/8.5 ms, 128 276 

NEX, AT = ~6:36 min., VAPOR water suppression with 66° flip angle (Tkác et al. 1999). 277 

Unsuppressed water spectra (8 NEX) were acquired as the internal reference for metabolite 278 

quantification in absolute and relative units and correction of residual eddy currents. GRE brain 279 

SIEMENS shimming was used for shimming the MRS sequences. The straightforward MRS-280 

VOI positioning secured its reproducible placement by a single operator (Park et al. 2016). 281 

MRS data were obtained with participants instructed to keep their eyes closed. 282 

The advanced SPECIAL MRS method at 3T was used as it bears several advantages over the 283 

more conventional spectral editing techniques, such as superior localization performance, low 284 

sensitivity to B1 inhomogeneities and short echo time (Öz et al. 2020). Importantly, it allows 285 

reliable quantification of several metabolites simultaneously, including both GABA and 286 

glutamate as the main neurotransmitters of interest in this study, while maintaining 287 

reproducibility comparable to previously published reproducibility values for edited GABA 288 

measurements. The SPECIAL sequence was chosen for detection of GABA for the following 289 

reasons: 1) It uses a short echo time, this minimizing decay of the GABA resonances due to T2 290 

relaxation and scalar evolution; 2) It maximizes GABA signal by preserving all three of the 291 

GABA resonances, compared to the difference editing approaches in which typically ~50% of 292 

the C4 and C2 GABA resonances is removed and ~100% of the C3 GABA resonance is 293 

removed due to the editing process; 3) It enables simultaneous detection and quantification of 294 

a large number of other metabolites, due to the short echo time. Moreover, LCModel has been 295 

shown to reliably estimate the concentration of GABA in synthetic SPECIAL MRS data with 296 

known GABA concentrations (Near et al. 2013). However, although the SPECIAL sequence 297 

demonstrates effective removal of macromolecule contamination (Near et al. 2011), it is 298 

acknowledged that the GABA concentration estimate may still contain some signal 299 

contributions from macromolecules and other sources (e.g., homocarnosine). Despite the 300 

downside of imperfect lipid suppression, the SPECIAL sequence was preferred for the selective 301 

removal of the contribution of macromolecules by editing and modeling to obtain the raw 302 

GABA value, an important benefit for this study in contrast to this common limitation of 303 

conventional methods. 304 

2.3.1. MRI/MRS data processing 305 

MRS data were processed using the FID appliance (FID-A), an open-source MATLAB-based 306 

toolkit (Simpson et al. 2017). The FID-A processing pipeline had several steps including: 307 

https://paperpile.com/c/6u1scE/qboD
https://paperpile.com/c/6u1scE/xpwf
https://paperpile.com/c/6u1scE/S70Z
https://paperpile.com/c/6u1scE/r7ef
https://paperpile.com/c/TRokyS/HfZf
https://paperpile.com/c/TRokyS/HfZf
https://paperpile.com/c/TRokyS/HfZf
https://paperpile.com/c/TRokyS/HfZf
https://paperpile.com/c/TRokyS/HfZf
https://paperpile.com/c/TRokyS/HfZf
https://paperpile.com/c/6u1scE/8I9z
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combination of multiple coils, alignment of SPECIAL subspectra, removal of motion-308 

corrupted averages, and spectral registration for correction of frequency and phase drift. Brain 309 

metabolites were quantified with LCModel (Provencher 1993; Pfeuffer et al. 1999; Provencher 310 

2001; Tkác et al. 2009) using a simulated basis set containing the following metabolites: 311 

Alanine (Ala), Aspartate (Asp), Phosphocholine (PCh), Creatine (Cr), Phosphocreatine (PCr), 312 

GABA, Glutamine (Gln), Glutamate (Glu), Glutathione (GSH), Glycine (Gly), Myo-inositol 313 

(mIns), Lactate (Lac), N-acetylaspartate (NAA), Scyllo-inositol (sIns), Taurine (Tau), Glucose 314 

(Glc), N-acetylaspartylglutamate (NAAG), Glycerophosphocholine (GPC), 315 

Phosphorylethanolamine (PE), Serine (Ser), and beta-hydroxybutyrate (bHB).of twenty two 316 

brain metabolites. CSF, GM, WM fractions were calculated using GABA ANALYSIS 317 

TOOLKIT, Gannet 2.1 (Edden et al. 2014; Harris et al. 2015). Measured signal was corrected 318 

for the CSF-fraction of the voxel for 12 metabolites (Dhamala et al. 2019) including γ-319 

aminobutyric acid (GABA) and glutamate (Glu), see descriptives in Table 1 and 2. Also, a 320 

measured spectrum of fast-relaxing macromolecules (MM) was included in the basis set, based 321 

on an average metabolite-nulled brain macromolecular spectra acquired in six healthy 322 

volunteers. We excluded from the dataset 10 participants with low data quality: four in the V1 323 

set and six in the set from insula. The inclusion criteria were signal-to-noise ratio (SNR) >= 324 

30, wWater linewidth <= 0,05 ppm, and good fit of LCModel (based on visual check of fit, 325 

baseline and residuals), see Figure 2-3 and Figure 2-4. The SNR and the FWHM (full width at 326 

half maximum) were determined by the program LCModel (Provencher, 1993). SNR is defined 327 

here as the ratio of the maximum in the spectrum minus baseline over the analysis window to 328 

twice the root mean square residuals. FWHM is a rough estimate of the linewidth in the in vivo 329 

spectrum. The maximum peak in the spectrum is NAA. We excluded mMetabolites for which 330 

a single metabolite gives an average Cramèr-Rao lower bounds (CRLB) value > 20 % across 331 

all participants were excluded (Kreis 2016). 332 

2.4. Statistical analysis 333 

Statistical analysis was performed using IBM SPSS Statistics 28.0.0.0 (190) and RStudio 334 

2022.7.1.554. The normality, homoscedasticity and linearity of all variables were investigated 335 

using scatterplots. Correlations were computed by Spearman 's correlation coefficient and 336 

missing values were excluded in casewise fashion. Significance values are two-tailed and 337 

family-wise FDR corrected at α <0.05, unless stated otherwise. To investigate effects of 338 

biological sex on the main variables of interest StudentLevene's two-sample t-test was used 339 

https://paperpile.com/c/6u1scE/rXZz
https://paperpile.com/c/6u1scE/rj7z
https://paperpile.com/c/6u1scE/Spdg
https://paperpile.com/c/6u1scE/Spdg
https://paperpile.com/c/6u1scE/TMyK
https://paperpile.com/c/6u1scE/mho7
https://paperpile.com/c/6u1scE/p09A
https://paperpile.com/c/6u1scE/VKom
https://paperpile.com/c/6u1scE/lzVa


12 

 

 

after testing the assumption of homogeneity of variances using Levene’s test. Test statistics 340 

and p-values are also supplemented by Bayes factors reported in standard form as the ratio of 341 

evidence for the alternative hypothesis and for the null hypothesis (BF10). A default 342 

noninformative effect size prior was used: a Cauchy distribution with a scale parameter of √2/2 343 

≈ 0.707. 344 

To evaluate the relationship between responses on the aversive grating (VD-med) and 345 

neurotransmitter levels together with other psychological and biological variables, a backward 346 

stepwise regression, using the BayesianAkaike Information Criterion (BICAIC; Schwarz 347 

1978Csaki and Petrov 1973), was conducted in several phases. In backward stepwise 348 

regression, a full model including all candidate predictor variables is first constructed, after 349 

which regressors are removed one by one based on whether a measure of relative model quality 350 

(in this case BICAIC) would be improved. Performing the model selection in phases allowed 351 

us to incorporate a priori assumptions into the process. For multiple linear regression, model 352 

coefficients are reported both in unstandardized (B) and standardized (beta) form to facilitate 353 

interpretation. 354 

The first model included only the control low-frequency grating responses (VD-low and VD-355 

high) as a regressors to eliminate a broader underlying tendency to report sensory distortions 356 

and pre-cortical/ ocular processes independent of local cortical excitability. Backward stepwise 357 

regression was then computed with the effects of biological sex (women coded as 1, men as -358 

1) and neurotransmitter levels, as well as their two-way interactions, using the first model as a 359 

lower limit on the included model terms. A third model was then constructed with all other 360 

biological and psychological variables (CAPS and GSQ total scores, five NEO-FFI factor 361 

scores, eight MAIA-2 subscale scores, and hours slept before experiment), , except those 362 

related to menstruation, using the second model as a lower limit on model terms. 363 

After constructing the three models, a post hoc sensitivity analysis was conducted using 364 

G*Power version 3.1.9.7 (Faul et al., 2009) to determine the smallest increase in explained 365 

variance (R2) between the first and third models detectable with our sample size. Cohen’s f2 366 

was used as a standardized measure of effect size. Additionally, we calculated the smallest 367 

possible R2 of the full model, given the achieved R2 of the control-only (first) model, using 368 

the formula for f2 as a local effect size (Selya et al., 2012). 369 
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Additionally, the role of menstrual cycle in visual distortions and comfort during the perception 370 

of aversive grating (VD-med and Comfort-med) was examined using a basic cosine regression 371 

model to ensure that the number of days since menstruation is treated as a cyclical variable 372 

(Pewsey et al. 2013). 373 

3. Results 374 

The final sample included 160 young healthy volunteers (65 males, 95 females, age mean = 375 

24.0, SD = 4.67). The main points of interest in spectroscopic analysis, GABA and glutamate, 376 

were in accordance with previous spectroscopy research correlated together positively in both 377 

occipital and insular voxel (Figure 3-1). In the occipital voxel, the average absolute 378 

concentrations were 3.3±0.55 [mM] for GABA, 10.1±0.83 [mM] for glutamate, and relative 379 

concentrations GABA/total creatine (tCr; phosphocreatine plus creatine) were 0.3±0.05 and 380 

glutamate/tCr were 0.93±0.07 In the occipital voxel, the average absolute concentrations were 381 

3.3±0.55 for GABA, 10.1±0.83 for glutamate, and concentrations relative to total creatine were 382 

0.3±0.05 for GABA and 0.93±0.07 for glutamate (in mmol); in the insular voxel, the average 383 

absolute concentrations were 3.89±0.6 [mM] for GABA, 14.44±1.34 [mM] for glutamate, and 384 

concentrations relative to total creatine were 0.32±0.05 for GABA and 1.18±0.09 for glutamate 385 

(in mmol). The average signal-to-noise ratio was 70.26±7.1 in V1 and 60.42±5.4 in insula, and 386 

full width at half maximum (FWHM) was 0.03±0.006 ppm (3.697±0.739 Hz) for both voxels.  387 

Overall, there was not a significant difference between the sexes in both occipital and insular 388 

glutamate/tCr and GABA/TCr levels concentration , as well as occipital GABA/tCr, as well as 389 

occipital GABA/tCr (Student's two-sample t-tests, (all uncorrected p > 0.05 and BF10 < 0.33). 390 

However, men and women differed in insular GABA/tCr levels (t = -3.411,  FDR corrected p 391 

< 0.01; BF10 = 32.566). Importantly, they also responded significantly differently to the key 392 

PGT variables, compared by the Student's two-sample t-test (FDR corrected): VD-med (t = -393 

3.795, p < 0.001; BF10 = 108.598), VD-high (t = -4.015, p < 0.001; BF10 = 228.127), Comfort-394 

med (t = 3.131, p = 0.0042) and Comfort-high (t = 2.247, p = 0.04226). Descriptives for the 395 

PGT scores are presented in Table 31 and correlations between the PGT values in Figure 3-1 396 

and Figure 3-2. The primary investigation focused on correlations between PGT scores and 397 

neurotransmitter levels concentrations in V1 and rAI (Figure 3 and Figure 4). Given the 398 

markedly different responses to the PGT scores in the two sexes, the general correlations are 399 

not truly relevant, and the correlations were calculated also for sample split by sex. Significant 400 

https://paperpile.com/c/6u1scE/yRj7
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differences between the sexes can be seen in the correlations of PGT scores and occipital and 401 

insular neurotransmitter levelsconcentrations. Therefore, as the next step, regression models 402 

accounting for the effect of sex were constructed to reveal the true role of neurotransmitters on 403 

PGT scores, with sex considered as an independent variable. 404 

The coefficients of the three constructed linear models investigating the predictors of visual 405 

distortions on VD-med are graphically presented in Figure 5. Firstly, VD-med was regressed 406 

on thefor other two control gratings VD-low and VD-high to address the positive correlations 407 

between the variables (Model 1). In the second phase (Model 2), the model assessing the 408 

relationship with neurotransmitters selected only the occipital glutamate and its interaction with 409 

biological sex as a predictor contributing to the overall score. From the biological and 410 

psychological variables, only the GSQ overall score, and MAIA-2 Attention Regulation and 411 

Body Listening subscales remained in the final model (Model 3). Based on the model 412 

outcomes, CAPS questionnaire (mean = 6.32; SD = 4.949) and number of hours slept during 413 

the night before the experiment (mean = 6.84; SD = 1.521) did not predict subjectively 414 

perceived visual discomfort. 415 

Outcomes of the third final model show that in the overall sample, there was a non-significant 416 

negative relationship between occipital glutamate and VD-med, with an increase of 0.1 mmol 417 

of Glu/tCr corresponding to -0.152 less distortions on average (B = -1.149; beta = -0.054). 418 

However, there was a significant (p < 0.01) interaction between occipital glutamate and sex, 419 

with women having a more negative relationship between glutamate and VD-med than men (B 420 

= -3.842.735; beta = -0.18129), while they generally reported more visual distortions on the 421 

aversive VD-med grating than men (B = 3.8522.613; beta = 0.186049). As the only included 422 

biological or and psychological variables, GSQ scores had  a statistically significant (p < 0.01) 423 

positivethe strongest association with VD-med, as well as the only statistically significant (p < 424 

0.05) regression coefficient (B = 0.02112; beta = 0.1982). Non-significant positive 425 

relationships with VD-med were also modeled for the Attention Regulation MAIA-2 subscale 426 

(B = 0.135; beta = 0.073). The only psychological variable to present a negative, though non-427 

significant association with VD-med in the model was the MAIA-2 Body Listening subscale 428 

(B = -0.145; beta = -0.099). The first model (control-only) explained 21.84% of the variance 429 

in VD-med scores. The second model, which included occipital glutamate and its interaction 430 

with sex, accounted for 30.06% of the variance. The third model, which added GSQ, explained 431 

33.87% of the variance in VD-med scores.  432 
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A post hoc sensitivity analysis was conducted to assess the difference in explained variance 433 

between Model 1 and Model 3 using the G*Power software. The analysis assumed an alpha 434 

level of 0.05, a power of 0.8, and a sample size of 160. The full model included five predictors, 435 

compared against a control-only model with one predictor. Under these assumptions, effect 436 

sizes larger than f2 = 0.077 can be reliably detected, which falls between Cohen’s (1988) 437 

criteria for a small effect size (0.02) and a medium effect size (0.15). Given that Model 1 438 

explains 21.84% of the variance in the dependent variable VD-med, this effect size corresponds 439 

to the full model needing to explain R2 = 27.42% or more. 440 

Next, the cosine regression model evaluated the effect of the menstrual cycle on scores of 441 

aversive grating. Since the variables concerning menstruation were available only for a part of 442 

the sample, they could not be included in multivariate linear models. Their effects were 443 

therefore examined separately in a relevant subsample. Sixty-eight women reported having a 444 

normal menstrual cycle, while twenty-seven did not. There was no statistically significant 445 

difference (at α = 0.05) between these groups in any of the PGT scores or neurotransmitter 446 

levels. Scores in VD-med were not predicted by the menstrual cycle (F2,58 = 0.964; p = 0.388). 447 

However, the cosine model of a cyclical relationship between the day of menstruation cycle 448 

and Comfort-med seemed to capture a non-significant trend (F2,58 = 2.728; p = 0.074), 449 

explaining 8.6 % of the variance in comfort ratings. The model is visualized using a scatterplot 450 

and a regression curve in Figure 6. 451 

4. Discussion 452 

4.1. Factors affecting perception of aversive spatial frequency 453 

Despite being well-powered, our study did not confirm the hypothesis of a straightforward 454 

relationship between V1 occipital or insular neurotransmitter levels concentrations and the 455 

Pattern Glare Test as a selected proxy measure of visual sensitivity in neurotypical adults. 456 

However, a highly significant pattern of biological sex moderating this association emerged in 457 

our dataset. To our knowledge, this is the first work on cortical excitability and visual 458 

sensitivity to describe such an interaction. The differences between sexes’ responses on the 459 

PGT were addressed and taken into consideration in further examination by correlations and 460 

linear regression modeling. Although both GABA and glutamate concentrations in the primary 461 

visual cortex were weakly negatively correlated with visual distortions on aversive medium-462 
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frequency grating of 3 cpd in women, this correlation had a positive trend in men. When 463 

controlled for sex in the regression modeling, GABA was not included in the final model. On 464 

the contrary, our model revealed the predictive power of occipital glutamate, but only when an 465 

interaction with biological sex was modeled. This suggests that its role is more important in 466 

visual sensitivity than GABA. The role of insular neurotransmitters in the perception of 467 

aversive gratings was not supported by the model's outcomes.  468 

As far as responses in the primary visual cortex are concerned, our findings do not uphold the 469 

assumption of a direct involvement of GABA and glutamate levels in subjective visual 470 

sensitivity, suggesting the hyperexcitability hypothesis requires refinementis not universally 471 

valid. Furthermore, although relatively weak, the direction of the relationship was opposite to 472 

what would be expected, both on the sample level and in the female subgroup, with larger 473 

resting glutamate levels in V1 corresponding to the experience of fewer visual distortions. 474 

These paradoxical findings might result partly from the neuroimaging method used. Magnetic 475 

resonance spectroscopy provides information on baseline neurochemical levels in subjects' 476 

neuronal cytoplasm, but does not quantify synaptic neurotransmitter activity (Stagg et al. 477 

2011b; Duncan et al. 2014), which is more likely than total metabolite concentrations to be 478 

directly related to perceptual responses (Chan et al. 2022). In previous research that we built 479 

upon, significant results were achieved only after modulating basic cortical excitability through 480 

neurostimulation methods such as transcranial direct current stimulation (tDCS), or directly 481 

during the PGT. Our findings suggest that task-related visual sensitivity in neurotypical adults 482 

may be influenced by underlying cortical processes beyond simple quantification of 483 

neurotransmitter concentrations during resting state – individuals prone to pattern glare could 484 

show signs of elevated cortical excitability only after being exposed to aversive patterns and 485 

their baseline neurotransmitter levels measured in a separate MRS session do not play a critical 486 

role in their subjective PGT scores.  487 

Another possible explanation lies within the examined test subjects. The imbalance between 488 

excitatory and inhibitory mechanisms in relation to sensory sensitivity was described in studies 489 

of wide range of neurological and neurodevelopmental disorders including migraine (Aurora 490 

and Wilkinson 2007; Nguyen et al. 2016), epilepsy (Wilkins et al. 2004), autism spectrum 491 

disorder (Dickinson et al. 2016; Wood et al. 2021), depression (Qi et al. 2019; Wang et al. 492 

2022), or anxiety (Hui et al. 2023). However, the expected relationship between the Pattern 493 

Glare Test and neurotransmitter levels concentrations in V1 of the visual cortex may not be 494 

https://paperpile.com/c/6u1scE/7JvJ+K0Ga
https://paperpile.com/c/6u1scE/7JvJ+K0Ga
https://paperpile.com/c/6u1scE/mpfN
https://paperpile.com/c/6u1scE/xIUF+vAnG
https://paperpile.com/c/6u1scE/xIUF+vAnG
https://paperpile.com/c/6u1scE/JKbK
https://paperpile.com/c/6u1scE/C5m0+lkDb+yebi
https://paperpile.com/c/6u1scE/2zHV+YJcI
https://paperpile.com/c/6u1scE/2zHV+YJcI
https://paperpile.com/c/6u1scE/s9wu
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sufficiently robust in the neurotypical individuals to reliably deduce GABA or glutamate 495 

concentration as a reliable indicator of visual discomfort. Additional factor possibly affecting 496 

the outcomes could be that our study sample generally scored low on the susceptibility to 497 

aberrant experiences, as shown by the CAPS questionnaire (mean = 6.32; SD = 4.95). 498 

Apart from neurotransmitters, the modulatory role of only a single several psychological 499 

variables was revealed: trait-based sensory sensitivity (GSQ), worse reading of and sustaining 500 

attention to physical signals (MAIA-2). Other variables, including susceptibility to anomalous 501 

perceptions (CAPS), perception of body sensations (MAIA-2), personality factors (NEO-FFI), 502 

and sleep, were not included as relevant by the constructed models. 503 

In women, the day of the menstrual cycle affected the comfort rating; the closer to ovulation, 504 

the higher the comfort, which then gradually decreased during the luteal phase and was the 505 

lowest at the beginning of the menstrual phase. This is in accordance with the progesterone-506 

derived neurosteroids inhibitory effect during the follicular menstrual phase caused by the 507 

increase in the GABAergic inhibition (Smith et al. 2002), decrease in glutamate excitation and 508 

inhibition of pyramidal neurons (Stahl 2008), which can possibly reduce the feeling of 509 

subjective discomfort while observing the aversive patterns.  510 

4.2. Sex differences in subjectively reported visual stress 511 

Our findings make a novel and noteworthy contribution to examining individual predisposition 512 

to pattern glare effects of visual discomfort. However, the complexity of the relationship 513 

between neurotransmitters and reported visual stress by the two sexes is challenging. There 514 

was no statistical difference between the sexes in occipital nor insular neurotransmitter 515 

levelsconcentrations, the difference in means was only found for the PGT variables. We found 516 

no pattern in psychological traits examined in this work that explains these differences. A 517 

comprehensive investigation of the Pattern Glare Test carried out by Evans and Stevenson 518 

(2008) with the objective of establishing standard testing norms indicated that while pattern 519 

glare correlates with conditions such as migraines, which exhibit a higher prevalence in 520 

women, their study did not identify substantial gender disparities in behavioral responses. 521 

However, it is worth mentioning that their sample comprised 33 females and 33 males with 522 

notably broad age ranges in both groups (48 ± 21 years; range: 12–82 years; 48 ± 25 years; 523 

range: 10–90 years, respectively), which differ substantially from those in our study and also 524 

included children. The same study revealed that the effect of PGT decreases with age 525 

https://paperpile.com/c/6u1scE/7lc3
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significantly at both medium and high-frequency patterns. This leads us to speculate that sex 526 

differences might have been present in young adults in the age range used in our study but were 527 

statistically mitigated by age effects. Although there are a few studies that considered the 528 

potential influence of biological sex on the PGT scores in their study design by gender-529 

matching the sample (e.g. Allen et al. 2010; Beasley and Davies, 2012; Qi et. al, 2019), no 530 

study known to us that utilized Pattern Glare Test as a proxy measure of visual stress considered 531 

sex as a possible covariate during the analysis.  Yet, an emerging number of recent studies 532 

propose the importance of control for sex in vision research (Shaqiri et al. 2018), whether the 533 

arguments arises from addressed differences in perception of color (Johansson et al. 2018; 534 

Abramov et al. 2012a; Fider and Komarova 2019), visual acuity (Abramov et al. 2012b), 535 

contrast sensitivity (Foutch and Peck 2013), or motion perception (Ruggeri et al. 2020). 536 

Considered together with the sex-contradictory results of this study, involvement of both sexes 537 

equally and inclusion of sex as a factor in the statistical analyses of future PGT studies could 538 

bring new insight into this area. 539 

The present study has a few methodological limitations. First, the sex differences observed in 540 

subjective responses played a significant role in disentangling the actual role of 541 

neurotransmitters, thus the behavioral responses could not be easily explained by correlations. 542 

Although the study was performed on a very large sample, further research should be 543 

performed to replicate these results in a different neurotypical sample, given that previous 544 

studies did not identify the observed inter-sex differences in PGT scores. In addition, it would 545 

be useful to conduct a study on neurodiverse or neurological clinical samples that have been 546 

previously investigated in visual sensitivity research, as this could improve our understanding 547 

of the factors influencing the results of this study. The impact of sex differences should be 548 

considered in the study design, while controlling for the biological variables, such as menstrual 549 

cycle. Second, although this study was focused on the relationship between the pattern glare 550 

scores and the neurotransmitter levels, concentrations were not obtained directly during the 551 

visual task. There is evidence for differences in these levels during the different conditions, e.g. 552 

GABA concentrations decreases whereas Glx (glutamate + glutamine) levels increase with 553 

increasing visual input (Kurcyus et al. 2018). Our results showed that decreased glutamate 554 

levels correlate with increased number of visual distortions, but this could be claimed only for 555 

its resting state concentration with closed eyes. It would be useful to verify this relationship 556 

with spectroscopy measurement during the PGT. Moreover, based on previous literature, we 557 

believe that the SPECIAL sequence is capable of providing reliable GABA measurements. 558 
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However, it would be useful for future work to validate the current findings using more 559 

conventional GABA measurement techniques (i.e., MEGA-PRESS). Lastly, we suggest 560 

expanding the scope of investigation within the visual cortex to encompass the association 561 

cortex. Previous research on visual discomfort among migraine patients has indicated a notable 562 

decrease in cortical activation within areas V2-V4 when utilizing colored lenses, contrasting 563 

with findings in V1 (Huang et al. 2011). This implies that exploring the hyperexcitability of 564 

association visual cortex in neurotypical subjects could provide fresh insights into the 565 

underlying neural mechanisms influencing heightened reactions to aversive visual stimuli, as 566 

the visual association cortex may mediate such effects more than V1. 567 

5. Code Accessibility 568 

The R script for statistical analysis is available in the Zenodo repository at: 569 

https://doi.org/10.5281/zenodo.1220868210.5281/zenodo.10890416. 570 

6. Abbreviations 571 

GABA - γ-aminobutyric acid 572 

MRS - magnetic resonance spectroscopy 573 

PGT - Pattern Glare Test 574 

cpd - cycles per degree (spatial frequency unit) 575 

VD - visual distortion 576 

rAI - right anterior insula  577 
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9. Captions 914 

Figure 1. Pattern Glare Test trial. Fixation dot was followed by one of four stimuli and all three 915 

response screens: VD selection - What did you perceive when looking at the image? (shadowy 916 

shapes amongst the lines, shimmering, flickering, bending, illusory stripes, red, blue, yellow, 917 

green, nausea, dizziness, ocular pain; select as many as perceived). Laterality selection - the 918 

distortions were more prominent on: left side, both sides about the same, right side (select). 919 

Comfort rating - How comfortable was looking at the image? Rate on a scale: -5 = very 920 

uncomfortable, 0 = neither comfortable nor uncomfortable, 5 = very comfortable. 921 

Figure 2. Representative example of magnetic resonance spectra from a single subject. (1) 922 

Occipital voxel placement. (2) Right anterior insula voxel placement. (3) Example of LCModel 923 

fit quantifying metabolites values in V1Representative spectrum calculated by LCModel. The 924 

figure shows MRS fit, baseline and residuum for occipital voxel. (4) Representative spectrum 925 

calculated by LCModel. The figure shows MRS fit, baseline and residuum for insular voxel. 926 

Figure 3. Pattern Glare TestGT scores and neurotransmitter levelsconcentrations (GABA/tCr 927 

and glutamate/tCr). Tables present non-parametric correlations for the (1) whole sample, (2) 928 

male (M) subsample and (3) female (F) subsample. AllNone of  the values marked with an 929 

asterisk are survived FDR correctedion at p = 0.05. 930 

Figure 4. Graphic presentation of behavioral scores for aversive gratings plotted against 931 

neurotransmitter levelsconcentrations (GABA/tCr and glutamate/tCr), illustrating the trends 932 
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for separate biological sexes for (1) VD-med and (2) Comfort-med. Statistical values reflect 933 

Pearson’s correlation coefficient and 95% bootstrap confidence interval. High visual sensitivity 934 

(visual distortions and discomfort) is hypothesized to be linked to high excitation (glutamate) 935 

and/or low inhibition (GABA). This expected pattern was not observed in either sex. Statistical 936 

values reflect Pearson’s correlation coefficient and 95% bootstrap confidence interval. 937 

Figure 5. The coefficients of the three constructed linear models predicting the response to 938 

VD-med (medium-frequency gratings). Note that to improve readability, the coefficients in the 939 

forest plot were computed after the standardization of all continuous variables, including the 940 

response variable (beta coefficients). VD-low – low-frequency gratings, VD-high – high-941 

frequency gratings,  GSQ – Glasgow sensory questionnaire score., Attention Regulation and 942 

Body listening – MAIA-2 subscales. 943 

Figure 6. Plot illustrating the outcome of the cosine regression model evaluating the effect of 944 

the menstrual cycle on Comfort-med. 945 

Table 1. Average and standard deviation of metabolite concentrations and ratios to total 946 

creatine across all participants, with separate data for males and females, alongside average 947 

CRLB values, presented for the occipital voxel. GABA = Gamma-aminobutyric acid, Glu = 948 

Glutamate, Gln = Glutamine, Asp = Aspartate, GSH = Glutathione, Ins = Myo-inositol, Lac = 949 

Lactate, NAA = N-acetylaspartate, Scyllo = Scyllo-inositol, NAAG = N-950 

acetylaspartylglutamate, tCh = Total choline (glycerophosphocholine and phosphocholine), tCr 951 

= Total creatine (creatine and phosphocreatine). 952 

Table 2. Average and standard deviation of metabolite concentrations and ratios to total 953 

creatine across all participants, with separate data for males and females, alongside average 954 

CRLB values, presented for the insular voxel. GABA = Gamma-aminobutyric acid, Glu = 955 

Glutamate, Gln = Glutamine, Asp = Aspartate, GSH = Glutathione, Ins = Myo-inositol, Lac = 956 

Lactate, NAA = N-acetylaspartate, Scyllo = Scyllo-inositol, NAAG = N-957 

acetylaspartylglutamate, tCh = Total choline (glycerophosphocholine and phosphocholine), tCr 958 

= Total creatine (creatine and phosphocreatine).      959 

Table 31. Behavioral PGT descriptives for the whole sample and separately for the two sexes.960 
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Table 1. 961 

V1 

All sample, N = 160 Males, N = 65 Females, N = 95 

Concentration 

(Mean ± SD) 

Ratio to tCr 

(Mean ± SD) 

Mean CRLB 

(%) 

Concentration 

(Mean ± SD) 

Ratio to tCr 

(Mean ± SD) 

Mean CRLB 

(%) 

Concentration 

(Mean ± SD) 

Ratio to tCr 

(Mean ± SD) 

Mean CRLB 

(%) 

GABA 3,.3 ± 0,.55 0,.3 ± 0,.05 11,.73 3,.25 ± 0,.54 0,.3 ± 0,.06 12,.11 3,.33 ± 0,.56 0,.31 ± 0,.05 11,.46 

Glu 10,.1 ± 0,.83 0,.93 ± 0,.07 4,.01 10,.01 ± 

0,.77 

0,.92 ± 0,.07 4,.09 10,.16 ± 

0,.87 

0,.93 ± 0,.08 3,.96 

Gln 2,.32 ± 0,.45 0,.21 ± 0,.04 15,.34 2,.45 ± 0,.43 0,.23 ± 0,.04 15,.06 2,.23 ± 0,.46 0,.21 ± 0,.04 15,.54 

Asp 4,.45 ± 0,.49 0,.41 ± 0,.05 7,.56 4,.43 ± 0,.42 0,.41 ± 0,.04 7,.72 4,.47 ± 0,.54 0,.41 ± 0,.05 7,.45 

GSH 2,.2 ± 0,.19 0,.2 ± 0,.02 6,.18 2,.19 ± 0,.2 0,.2 ± 0,.02 6,.29 2,.2 ± 0,.18 0,.2 ± 0,.02 6,.11 

Ins 7,.72 ± 0,.89 0,.71 ± 0,.07 4,.41 7,.75 ± 0,.89 0,.71 ± 0,.08 4,.48 7,.7 ± 0,.89 0,.7 ± 0,.07 4,.37 

Lac 0,.59 ± 0,.25 0,.05 ± 0,.02 45,.19 0,.61 ± 0,.26 0,.06 ± 0,.03 44,.95 0,.58 ± 0,.24 0,.05 ± 0,.02 45,.35 

NAA 15,.85 ± 

0,.96 

1,.46 ± 0,.1 1,.9 15,.82 ± 

0,.94 

1,.46 ± 0,.1 1,.91 15,.87 ± 

0,.97 

1,.46 ± 0,.1 1,.89 

Scyllo 0,.37 ± 0,.11 0,.03 ± 0,.01 18,.58 0,.33 ± 0,.1 0,.03 ± 0,.01 21,.08 0,.4 ± 0,.12 0,.04 ± 0,.01 16,.87 

NAAG 1,.46 ± 0,.19 0,.13 ± 0,.02 10,.83 1,.45 ± 0,.21 0,.13 ± 0,.02 11,.22 1,.48 ± 0,.17 0,.14 ± 0,.02 10,.56 

tCh 1,.33 ± 0,.16 0,.12 ± 0,.01 3,.93 1,.31 ± 0,.13 0,.12 ± 0,.01 4,.03 1,.35 ± 0,.17 0,.12 ± 0,.01 3,.85 

tCr 10,.91 ± 

0,.66 

- 1,.62 10,.89 ± 

0,.68 

- 1,.63 10,.93 ± 

0,.65 

- 1,.61 

  962 
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Table 2. 963 

Insula 

All sample, N = 160 Males, N = 65 Females, N = 95 

Concentration 

(Mean ± SD) 

Ratio to tCr 

(Mean ± SD) 

Mean CRLB 

(%) 

Concentration 

(Mean ± SD) 

Ratio to tCr 

(Mean ± SD) 

Mean CRLB 

(%) 

Concentration 

(Mean ± SD) 

Ratio to tCr 

(Mean ± SD) 

Mean CRLB 

(%) 

GABA 3,.88 ± 0,.6 0,.32 ± 0,.05 11,.56 3,.7 ± 0,.54 0,.3 ± 0,.05 11,.89 4 ± 0,.61 0,.33 ± 0,.05 11,.33 

Glu 14,.44 ± 1,.34 1,.18 ± 0,.09 3,.42 14,.51 ± 

1,.48 

1,.17 ± 0,.09 3,.38 14,.38 ± 

1,.24 

1,.18 ± 0,.09 3,.44 

Gln 2,.91 ± 0,.65 0,.24 ± 0,.05 14,.22 3,.03 ± 0,.63 0,.24 ± 0,.05 13,.11 2,.83 ± 0,.65 0,.23 ± 0,.05 14,.98 

Asp 3,.77 ± 0,.44 0,.31 ± 0,.03 10,.46 3,.86 ± 0,.47 0,.31 ± 0,.03 10,.14 3,.71 ± 0,.41 0,.31 ± 0,.03 10,.68 

GSH 2,.65 ± 0,.23 0,.22 ± 0,.02 6,.22 2,.68 ± 0,.24 0,.22 ± 0,.02 6,.08 2,.63 ± 0,.22 0,.22 ± 0,.02 6,.32 

Ins 8,.62 ± 0,.96 0,.7 ± 0,.07 4,.61 8,.89 ± 0,.95 0,.72 ± 0,.06 4,.37 8,.43 ± 0,.93 0,.69 ± 0,.07 4,.78 

Lac 0,.87 ± 0,.32 0,.07 ± 0,.02 34,.91 0,.9 ± 0,.33 0,.07 ± 0,.02 31,.29 0,.85 ± 0,.31 0,.07 ± 0,.03 37,.4 

NAA 16,.43 ± 1,.05 1,.34 ± 0,.1 1,.98 16,.28 ± 

1,.12 

1,.32 ± 0,.1 1,.95 16,.53 ± 

0,.99 

1,.36 ± 0,.09 2 

Scyllo 0,.29 ± 0,.11 0,.02 ± 0,.01 30,.38 0,.26 ± 0,.1 0,.02 ± 0,.01 33,.35 0,.3 ± 0,.12 0,.03 ± 0,.01 28,.32 

NAAG 1,.46 ± 0,.38 0,.12 ± 0,.03 18,.91 1,.49 ± 0,.32 0,.12 ± 0,.03 12,.98 1,.44 ± 0,.42 0,.12 ± 0,.04 23,.04 

tCh 2,.76 ± 0,.38 0,.23 ± 0,.03 2,.98 2,.8 ± 0,.36 0,.23 ± 0,.03 2,.92 2,.73 ± 0,.39 0,.22 ± 0,.03 3,.01 

tCr 12,.26 ± 0,.89 - 1,.86 12,.4 ± 1,.06 - 1,.8 12,.16 ± 

0,.74 

- 1,.89 
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Table 3. 966 

  Mean SD Minimum Maximum Skewness Kurtosis 

All sample, N = 160 

VD-low 0,.729 0,.609 0,.000 2,.500 0,.687 -0,.221 

VD-med 2,.717 1,.579 0,.000 7,.833 0,.594 0,.210 

VD-high 2,.608 1,.439 0,.000 7,.167 0,.725 0,.232 

Comfort-low 0,.637 1,.311 -1,.667 5,.000 1,.523 1,.667 

Comfort-med -0,.196 1,.553 -3,.833 5,.000 0,.564 1,.054 

Comfort-high -0,.290 1,.642 -4,.500 5,.000 0,.498 1,.003 

Males, N = 65 

VD-low 0,.589 0,.507 0,.000 2,.000 0,.821 0,.086 

VD-med 2,.167 1,.365 0,.000 5,.500 0,.650 -0,.507 

VD-high 2,.080 1,.197 0,.000 5,.833 0,.727 0,.228 

Comfort-low 0,.653 1,.253 -0,.833 5,.000 1,.739 2,.441 

Comfort-med 0,.256 1,.426 -3,.333 5,.000 0,.785 1,.568 

Comfort-high 0,.058 1,.558 -3,.833 4,.667 0,.548 1,.322 

Females, N = 95 

VD-low 0,.825 0,.656 0,.000 2,.500 0,.506 -0,.530 

VD-med 3,.093 1,.612 0,.000 7,.833 0,.497 0,.402 

VD-high 2,.968 1,.484 0,.333 7,.167 0,.625 0,.001 

Comfort-low 0,.626 1,.356 -1,.667 5,.000 1,.429 1,.383 

Comfort-med -0,.505 1,.567 -3,.833 5,.000 0,.636 1,.136 

Comfort-high -0,.528 1,.663 -4,.500 5,.000 0,.567 1,.098 
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