
Enhancing Deep Reinforcement Learning
for Scale Flexibility in Real-Time Strategy Games

Marcelo Luiz Harry Diniz Lemosa, Ronaldo e Silva Vieiraa, Anderson
Rocha Tavaresb, Leandro Soriano Marcolinoc, Luiz Chaimowicza

aUniversidade Federal de Minas Gerais, Belo Horizonte, Brazil
bUniversidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

cLancaster University, Lancaster, United Kingdom

Abstract

Real-time strategy (RTS) games present a unique challenge for AI agents
due to the combination of several fundamental AI problems. While Deep
Reinforcement Learning (DRL) has shown promise in the development of
autonomous agents for the genre, existing architectures often struggle with
games featuring maps of varying dimensions. This limitation hinders the
agent’s ability to generalize its learned strategies across different scenarios.
This paper proposes a novel approach that overcomes this problem by in-
corporating Spatial Pyramid Pooling (SPP) within a DRL framework. We
leverage the GridNet architecture’s encoder-decoder structure and integrate
an SPP layer into the critic network of the Proximal Policy Optimization
(PPO) algorithm. This SPP layer dynamically generates a standardized rep-
resentation of the game state, regardless of the initial observation size. This
allows the agent to effectively adapt its decision-making process to any map
configuration. Our evaluations demonstrate that the proposed method sig-
nificantly enhances the model’s flexibility and efficiency in training agents for
various RTS game scenarios, albeit with some discernible limitations when
applied to very small maps. This approach paves the way for more robust
and adaptable AI agents capable of excelling in sequential decision problems
with variable-size observations.
Keywords: Deep Learning, Reinforcement Learning, Real-Time Strategy
Games, Game-Playing AI

Preprint submitted to Entertainment Computing September 2, 2024



1. Introduction

Advancements in Deep Reinforcement Learning (DRL) have significantly
influenced the landscape of Artificial Intelligence (AI) in recent years. This
domain has not only achieved remarkable breakthroughs but has also show-
cased its prowess by outperforming human experts in various environments.
These advancements highlight the potential of DRL to excel in problem-
solving tasks across diverse domains, ranging from robotics to autonomous
vehicles, and beyond. The ability of DRL algorithms to learn from experience
and make decisions based on trial and error has revolutionized AI research,
offering new avenues for tackling real-world challenges with unprecedented
efficiency and adaptability.

The strategic utilization of games as platforms for DRL research offers a
unique advantage in this development process. Titles such as Atari (Mnih
et al., 2013), Go (Silver et al., 2016), StarCraft II (Vinyals et al., 2019),
and Dota 2 (Berner et al., 2019) have emerged as crucial platforms for DRL
research. By providing controlled yet complex environments, these games
enable researchers to develop and refine DRL algorithms in a flexible and
accessible setting. The successful autonomous agents developed for these
games highlight the technique’s capacity to master complex tasks that were
once deemed exclusive to human intelligence. This approach not only pro-
pels the field of DRL forward but also enhances our understanding of AI’s
adaptability and potential for broader applications.

Despite these successes, DRL systems often face challenges related to
handling varying input sizes, requiring retraining even if the underlying en-
vironment has the same mechanics (e.g. adapting to various map sizes in
the same game). This limitation arises because DRL architectures are typi-
cally designed to process fixed-size inputs and often include layers that need
a specific input size, such as fully connected layers. Attempting to feed
data of different sizes into these architectures would result in incompatible
data shapes, preventing the model from functioning. Although input resizing
methods such as cropping or warping offer a workaround, they introduce a
preprocessing step that can cause loss of information or distortions that can
hinder the agent’s learning.

To address this constraint, our study introduces an innovative architec-
ture incorporating Spatial Pyramid Pooling (SPP) (He et al., 2015) to forge a
scale-flexible DRL framework applicable across diverse DRL scenarios. SPP,
a method initially devised for scale-invariant tasks in image recognition, is

2



adapted here to enhance DRL architectures, allowing a neural network to
adapt to inputs of varying sizes efficiently. This adaptation not only stream-
lines and accelerates the training process of DRL agents but also facilitates
transfer learning, empowering agents to manage inputs of previously unseen
sizes. Additionally, by incorporating multiple map sizes in a unified training
regimen, we can improve the agent’s learning process, enhancing its capacity
for generalization.

We evaluated our approach in two distinct environments: initially on
Gym-µRTS (Huang et al., 2021) and subsequently on Frozen Lake (Brock-
man et al., 2016). The Gym-µRTS environment is a RTS game developed
for research, encompassing complex challenges such as expansive state and
action spaces, and intricate resource management, unit control, infrastruc-
ture development, and combat strategies. Its grid-based map system aligns
well with our grid-oriented control strategy, enabling seamless distribution
of commands across the entirety of the map. The Frozen Lake environment,
provided by OpenAI Gym, is a simulated scenario where an agent navigates
a frozen lake to reach a goal while avoiding holes. It provides a simple setting
where we can more easily investigate the adaptability and robustness of our
proposed DRL architecture while remaining in a task related to RTS games.

Our findings suggest that our novel framework enhances performance
across both single and multi-environment tasks, outperforming existing state-
of-the-art agents in µRTS. While our agent demonstrated remarkable profi-
ciency in large maps, successfully learning and extrapolating acquired knowl-
edge to analogous scenarios, we also observed instances of learning instability
and generalization issues on smaller maps, a phenomenon we analyze within
the Frozen Lake environment. As our experiment analysis will reveal, our
agent exhibits greater suitability for larger maps rather than smaller ones.
Moreover, our µRTS study highlights the benefits of training agents in a
diverse range of environments, fostering adaptability and proficiency across
various scenarios rather than specialization in narrow contexts.

This paper is a comprehensive and self-contained extension of our previ-
ous work (Lemos et al., 2024), integrating all its foundational results while
introducing new experiments and discussions that expand on the original
findings. The latest experiments were designed to address unresolved ques-
tions identified in the prior study, providing a more robust understanding
of the potential of a scale-invariant DRL model. Furthermore, discussions
are enriched with findings from these new experiments, offering a deeper and
more comprehensive analysis. This approach reaffirms the validity of the

3



original results and extends its implications, providing valuable directions
for future research and practical applications.

2. Related Work

In the domain of Real-Time Strategy games, notable efforts have been
made to create autonomous agents capable of rivaling human players. A
prominent example is DeepMind’s AlphaStar (Vinyals et al., 2019), which
achieved a remarkable performance, surpassing 99.8% of human players.
This result was mainly possible due to the employment of advanced Deep
Reinforcement Learning techniques combined with a robust infrastructure
and long training sessions. Similar approaches have been pursued by other
research teams, often involving the utilization of thousands of CPUs and
GPUs (Wang et al., 2021).

Recognizing the resource-intensive nature of RTS games, many researchers
have explored alternative platforms with reduced hardware requirements to
study various aspects of RTS games. For instance, µRTS (Huang et al., 2021)
offers a simplified grid-based framework in Java, while miniRTS (Tian et al.,
2017) presents a lightweight RTS environment with a Reinforcement Learn-
ing backend. Deep RTS (Andersen et al., 2018) provides a highly configurable
platform tailored for DRL research, emphasizing speed and complexity. Ad-
ditionally, initiatives such as the StarCraft II Learning Environment (SC2LE)
mini-games (Vinyals et al., 2017) isolate specific gameplay elements to target
distinct challenges individually.

Managing the fluctuating number of units in real-time strategy (RTS)
games poses a significant challenge for players. With no reliable method to
predict the exact quantity of units at any given moment, players must possess
the skill to efficiently micromanage an indefinite number of units throughout
a game. Han et al. (2019) devised a solution to this problem by partitioning
the game map into a grid and assigning actions to individual cells. By taking
inspiration from the Encoder-Decoder architecture typically utilized in image
segmentation tasks, they implemented a Grid-Wise Control mechanism that
operates independently of the number of units present on the battlefield.

Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Deep
Q-Network (DQN) (Mnih et al., 2013) algorithms have demonstrated strong
performance across various domains, and the former has been successfully
applied in µRTS as well. Huang et al. (2021) leveraged PPO alongside Grid-
Wise Control and Invalid Action Masking (Huang and Ontañón, 2022), re-

4



sulting in the development of an agent capable of efficiently outperforming
state-of-the-art opponents. Despite its effectiveness, this model exhibits ex-
hibits the usual lack of flexibility of DRL approaches: changes in map size
require alterations to the network architecture. While the encoder-decoder
component of the actor can accommodate any map, the critic relies on a fixed
observation space due to its fully connected architecture. Consequently, the
agent requires predefined layer sizes and must undergo training from scratch
whenever a different map dimension is chosen.

Incorporating attention mechanisms into multi-agent control offers a promis-
ing avenue for managing diverse observation spaces. An instance of this is
evident in the utilization of a Transformer-based approach (Vaswani et al.,
2017) for multi-agent credit assignment and joint action evaluation within
the context of the Starcraft Multi-Agent Challenge (Samvelyan et al., 2019).
Despite their notable successes across various domains, Transformers are sus-
ceptible to vanishing and exploding gradients (Pascanu et al., 2013), and
strong dependencies on residual branches (Liu et al., 2020).

An alternative approach to addressing the challenge of varying input
sizes involves adapting the observation model. Utilizing fixed-size repre-
sentations may result in inefficient memory usage and processing resources
in certain contexts. Given that much of the environment information is
associated with entities, entity-based representations can offer notable ef-
ficiency gains, especially in sparsely populated domains. Graph Attention
Networks (GATs) (Brody et al., 2021) have been applied in single-agent con-
trol scenarios using an entity-based methodology within environments like
the Arcade Learning Environment (ALE) (Bellemare et al., 2013) and Sim-
ple Playgrounds (Jankovics et al., 2022). Moreover, GATs have been em-
ployed in Multi-Agent Reinforcement Learning settings to tackle Starcraft
mini-games (Yun et al., 2021) using a decentralized approach. However, it’s
important to note that these applications were primarily tested on specific
tasks rather than entire Real-Time Strategy (RTS) matches.

In our novel approach, we integrate Grid-Wise Control with Spatial Pyra-
mid Pooling, creating a scale-invariant architecture tailored for sequential
control problems. This innovation yields a versatile and efficient agent ca-
pable of seamlessly managing a varied number of units across distinct input
sizes without requiring structural modifications. Leveraging insights from
the work of Huang et al. (2021), particularly techniques like Invalid Action
Masking and Action Composition, our approach is grounded on established
methodologies. Additionally, we incorporate Reward Shaping (Mataric, 1994),

5



accelerating the Reinforcement Learning process by introducing a series of
small rewards tailored to guide the agent swiftly toward its ultimate objec-
tive.

Our proposed model introduces two significant enhancements over the lit-
erature. Firstly, we introduce a novel network architecture featuring Spatial
Pyramid Pooling layers, producing a flexible scale-invariant network. Sec-
ondly, we implement a revamped training methodology that capitalizes on
experiences garnered from maps with varying dimensions and representation
sizes. This strategic approach generates a more comprehensive and robust
learning process, enriching the agent’s ability to tackle complex environments
effectively.

3. Background

3.1. Grid-Wise Control
Grid-wise Control (Han et al., 2019) introduces a method for managing

entities within environments divisible into a grid structure. This approach,
implemented through the GridNet architecture, employs an encoder-decoder
mechanism akin to those utilized in image segmentation tasks. Given a
grid with dimensions (h,w, nf ), where (h,w) represents the grid’s scale and
nf denotes the number of feature planes, GridNet takes as input a state
s ∈ Rh×w×nf and generates an action aij for each grid position (i, j), with
1 ≤ i ≤ h, 1 ≤ j ≤ w. The resulting output, defined as an action map a, has
dimensions (h,w, ca), where ca denotes the action dimensionality.

In Real-Time Strategy (RTS) games, actions are typically characterized
by a combination of parameters, such as directing a unit to construct a base
at coordinates (x, y). Here, the action type may be designated as build, with
the structure type specified as base, and the target location determined by
the coordinates x and y. Consequently, the dimension ca must encompass
all parameters essential for predicting and composing any given action along
with its specifications.

3.2. Spatial Pyramid Pooling
Convolutional Neural Networks (CNNs) have profoundly transformed the

landscape of Deep Learning, particularly within the field of computer vi-
sion. However, traditional CNN architectures typically require fixed input

6



sizes, primarily due to the presence of fully connected layers. Yet, real-
world datasets often comprise images of varying dimensions, posing a com-
patibility challenge with CNNs. To address this issue, many models resort
to preprocessing techniques like cropping (Krizhevsky et al., 2017) or warp-
ing (Girshick et al., 2014) to conform images to the required input dimensions.
However, these methods are suboptimal, potentially leading to content loss
or geometric distortions, thereby diminishing model accuracy and impairing
recognition capabilities in certain scenarios.

A more robust solution comes in the form of Spatial Pyramid Pooling
(SPP) (He et al., 2015), a computer vision technique designed to generate
fixed-length representations irrespective of input dimensions. SPP achieves
this by employing multi-level pooling across spatial bins, ensuring output
consistency without introducing distortions. Unlike conventional pooling
methods, which utilize fixed-size filters, SPP adapts its filter size dynami-
cally according to the input dimensions. Moreover, a predefined number of
bins yield a constant-shape representation. As its name suggests, SPP also
incorporates multiple filters, creating a pyramid-like structure. Each SPP
layer produces an output vector of consistent size, regardless of the input
dimensions, as illustrated in Figure 1.

3.3. Gym-µRTS
µRTS is a streamlined version of a RTS game specifically designed to

facilitate Artificial Intelligence (AI) research. It operates within a simpli-
fied framework that replicates the strategic complexity and decision-making
challenges characteristic of the RTS genre but in a more controlled and man-
ageable environment. Set on a rectangular grid, each cell of µRTS can con-
tain only one entity – be it a unit, a building, or a resource – at any given
time. This constraint simplifies the spatial component of RTS games, mak-
ing it easier for researchers to focus on the development and testing of AI
algorithms. The ability to customize the size and layout of the map before
each game allows for a wide range of scenarios, enabling researchers to sys-
tematically evaluate the performance of AI agents across different conditions.
Despite its simplicity compared to full-fledged commercial RTS games, µRTS
retains the core strategic elements that make the RTS genre a rich domain for
AI research, including resource management, unit production, and tactical
combat.

To help in the accessibility and flexibility of µRTS for diverse research
needs, the game supports various unit types and strategies, mirroring the

7



Figure 1: An example of Spatial Pyramid Pooling, assuming that the latest convolution
layer yields 256 feature maps. The first SPP level has 16 bins of dimension 256, the second
level has 4 bins and the third level has 1 bin. The final representation given by SPP has
length (16 + 4 + 1)× 256 regardless of the input. Source: He et al. (2015).

complexity of larger-scale RTS games. Each unit type in µRTS – ranging
from workers that gather resources and construct buildings to combat units
with distinct offensive and defensive capabilities – requires unique strategic
considerations. This setup ensures that while the game complexity is reduced,
the strategic depth is not. µRTS also includes configurable AI opponents with
different levels of sophistication, from basic scripted agents to more advanced
adversaries. This variability allows researchers to challenge their AI models
against progressively harder opponents, facilitating the study of incremental
learning and adaptation strategies in AI systems. Through these features,
µRTS serves as a testbed for algorithmic innovation and a dynamic platform
for studying complex interaction patterns and competitive behaviors in AI
agents. In Figure 2, we can see an example of what a µRTS match looks like.

OpenAI Gym (Brockman et al., 2016) is a widely used open-source toolkit
that provides a diverse collection of environments designed to benchmark and
facilitate the development of RL algorithms. By offering a standardized in-
terface and a broad range of tasks, including classic control problems, Atari
games, and simulated robotics, OpenAI Gym enables researchers to system-

8



Figure 2: Screenshot of a µRTS match in a 16×16 map that showcases distinct units and
structures. Circles represent units, their type delineated by size and color, while squares
denote various structures, each color-coded for easy identification.

atically prototype, test, and compare the performance of their algorithms.
Its ability to streamline the experimental process allows easy reproducibility
and results sharing within the RL community. Moreover, OpenAI Gym’s
extensibility supports the creation of custom environments, further fostering
innovation and the exploration of new RL applications. This toolkit has be-
come an important tool to help advancing the state of the art in RL, as it
provides the necessary infrastructure for rigorous experimentation and the
development of more robust and generalizable RL solutions.

The integration of µRTS with OpenAI Gym through Gym-µRTS further
enhances its utility for AI research by providing a standard interface for µRTS
experiments. Gym-µRTS abstracts the complexities of µRTS into a format
that is compatible with popular machine learning libraries, simplifying the
process of developing and training AI models. The observation space of
Gym-µRTS, represented as a tensor (h,w, nf ) that reflects the game’s grid

9



dimensions and the types of entities present, requires AI agents to adapt to
variable map sizes and configurations. This flexibility is crucial for developing
versatile AI systems capable of generalizing across different environments.
By offering a simplified yet challenging platform for RL, Gym-µRTS plays
a significant role in advancing the field of AI, providing researchers with a
valuable tool for exploring strategic decision-making, learning dynamics, and
the scalability of AI algorithms in complex, ever-changing scenarios.

3.4. Frozen Lake Environment
The Frozen Lake environment is a classic grid world simulation in OpenAI

Gym, designed to evaluate reinforcement learning algorithms. It represents
a grid of frozen tiles, with the agent starting at a designated position and
aiming to reach a goal tile without stepping on hazardous tiles. However,
the catch is that the ice can be slippery, causing the agent to slide in unin-
tended directions. Due to its inherent unpredictability, it forces algorithms
to account for the probabilistic nature of state transitions, making it an ef-
fective testbed for evaluating robustness and adaptability. The environment
comes with varying sizes and complexities, offering different levels of chal-
lenge for reinforcement learning agents. Additionally, the simplicity of the
environment allows for clear visualization and interpretation of the learning
process.

Each tile in the Frozen Lake environment is represented by one of four
types: a start tile (S), a frozen tile (F), a hole (H), or the goal (G). The agent
navigates through the grid by taking actions such as moving up, down, left,
or right. The goal is for the agent to learn an optimal policy to navigate from
the starting position to the goal while avoiding the hazardous holes, making it
a popular benchmark for testing reinforcement learning algorithms’ ability to
handle stochastic environments and long-term planning. Overall, the Frozen
Lake environment’s blend of simplicity and complexity makes it a versatile
and challenging setting for advancing the understanding and development of
intelligent agents. In Figure 3 we can see a graphical representation of the
Frozen Lake environment.

4. Methodology

To address the limitations associated with fixed input sizes in current
RL models, we propose a novel solution that integrates techniques from
DQN, PPO, Grid-Wise Control, and SPP. This approach aims to create

10



Figure 3: Screenshot of the Frozen Lake environment.

scale-invariant Reinforcement Learning agents, offering a more versatile and
adaptable framework. This research culminated in the development of two
distinct agents. The initial agent was designed specifically for Real-Time
Strategy (RTS) Games, where we conducted most of our experiments. Build-
ing on the insights gained, a second agent was tailored for Frozen Lake, a
single-agent RL environment. This second agent not only served as tool to
verify and evaluate the efficacy and potential of our proposed architecture,
but also allowed us to investigate and better understand the limitations ob-
served in the first agent.

4.1. µRTS Agent
The first model developed was tailored for µRTS. As discussed previously,

a significant challenge inherent to RTS games lies in managing a dynamic
number of units and structures. However, conventional RL algorithms are
primarily structured to control a single agent. To overcome this obstacle, we

11



adopted the approach outlined by Huang et al. (2021), integrating Grid-Wise
Control with PPO, resulting in an agent capable of managing a dynamic num-
ber of units by segmenting the environment into a grid and assigning actions
to each grid cell. Notably, since the µRTS environment is inherently grid-
based, there was no necessity to devise additional mechanisms to partition
the environment, streamlining the implementation process. Subsequently,
we augmented the architecture with SPP to achieve a scale-invariant model.
In the remainder of this section, we will detail how the model architecture
is structured and how we leverage its capabilities to devise a more robust
training routine for the agent.

4.1.1. Model Architecture
As shown in Figure 4, the model architecture is divided into three parts:

one encoder and two decoders. The encoder consists of convolutional layers
followed by pooling layers, designed to process the agent’s observation inputs
and generate a concise feature map. This feature map is instrumental for
learning the optimal policy for the agent and assessing the value of the given
environment state. While the baseline model encoder encompasses four pairs
of convolutional and pooling layers, we found that reducing it to two pairs
of layers retained the agent’s performance while significantly decreasing the
number of parameters in the network.

The encoder output feeds into the first decoder – the actor’s decoder –
which is responsible for generating action probabilities for each grid cell. This
is done by combining deconvolutional layers with pooling layers, resulting in
an output tensor with the same height and width as the initial observation
but with a different number of channels. Each output channel is responsible
for a parameter of the possible actions and will be used to compose the action
the agent will perform. This first path of the network behaves in the same
way as the Grid-Wise Control described previously, taking a grid observation
as input and outputting an action for each grid cell. Once again, we reduced
the reference GridNet actor by removing the last two deconvolutional and
pooling layers.

The second decoder – the critic’s decoder – uses the encoder output to
predict the state’s value function. The reference architecture is composed
only of fully connected layers, and it flattens the encoder output to pass it
onto the critic’s decoder. Instead of flattening the encoder’s output, we added
an SPP layer before the fully connected layers. The SPP layer generates a
standardized representation of any input passed to the critic, which allows

12



Encoder

Actor Critic

Observation

Convolution

Convolution

Deconvolution

Deconvolution

Action Map

SPP

Fully Connected

Fully Connected

State Value

Figure 4: Network Architecture.

the agent to work properly in any environment regardless of the observation
dimensions. Despite being a simple innovation, this causes great changes to
the actor’s behavior and, as shown in our experimental results, improves the
agent’s effectiveness in most scenarios.

Overall, the revised architecture with an optimized encoder and actor’s
decoder, as well as an enhanced critic’s decoder via the SPP layer, not only
reduces the number of parameters in the network but also boosts the model’s
scalability and adaptability in various environment states, demonstrating ro-
bust improvements in the agent’s performance as we will see on our evaluation
section.

Most of the hyperparameters used by our model follow the guidelines set
by Huang et al. (2021), with a few exceptions. Specifically, we reduced the
number of convolutional and pooling layers from four to two each, which
decreased the model’s parameter count while maintaining it’s performance.
Furthermore, we conducted experiments to determine the best hyperparame-
ters for the SPP layer we introduced, as detailed in Section 5. Comprehensive
information about the architecture of our µRTS agent, including all layers

13



Algorithm 1 PPO with environment swap
1: for iteration = 1, 2, . . . do
2: Select environment E
3: for actor = 1, 2, . . . do
4: Run policy πθold in environment E for T timesteps
5: Compute advantage estimates Â1, . . . , ÂT

6: end for
7: Optimize surrogate L wrt θ, with K epochs and minibatch size M
8: θold ← θ
9: end for

and their sizes, can be found on our GitHub repository1.

4.1.2. Expansion of Training Scenarios
The new model’s capabilities allow a distinct training approach by lever-

aging the agent’s expertise acquired in one scenario to accelerate learning in
other similar settings. Building on this concept, we devise a training routine
that utilizes multiple scenarios within a single session, thereby developing a
more general agent capable of performing well in distinct environments.

This enhanced training methodology is consolidated in our modified ver-
sion of PPO – shown in Algorithm 1 – that allows for a more diverse training
approach. Before each algorithm iteration, a new environment is selected
for the training. The agent then collects experience by interacting with the
environment, and the policy is updated as usual. This adjustment generates
a diverse training procedure while keeping the algorithm’s implementation
simple when using widely adopted Deep Learning libraries.

As we will see below, the strategy used to select the environment may also
affect the agent’s behavior. Different approaches may lead to more consis-
tent learning throughout all environments or prioritize specific environments
without forsaking others. For example, let us consider a set of three maps
{A,B,C}, with dimensions (a × a), (b × b), and (c × c), respectively. We
could sequentially cycle through {A,B,C}, ensuring the agent would experi-
ence all three distinct representations for the same amount of steps. Another
option would be to randomly select the maps following a uniform distribu-
tion, creating an unpredictable experience for the player.

1Available at https://github.com/marcelo-lemos/MicroRTS-Py

14

https://github.com/marcelo-lemos/MicroRTS-Py


Moreover, we can assign different weights to the performance in different
scenarios. For example, if we evaluate the agent by its weighted average per-
formance, with weights (0.6, 0.2, 0.2) for (A,B,C), we would prioritize expe-
rience on map A. We could tailor the selection strategy to meet this specific
need by utilizing a weighted random selection with the same (0.6, 0.2, 0.2)
weights, ensuring map A would be prioritized. The strategy selection could
also be used as a form of Curriculum Learning (Bengio et al., 2009), where the
agent starts playing only in simple maps and, as time passes, more complex
maps are added to the selection pool.

This approach to training using multiple environment dimensions en-
hances the agent’s generalization capabilities and allows for tailored learning
strategies. By adjusting the environment selection process and incorporat-
ing weighted performance evaluations, we can guide the agent’s development
more effectively, ensuring robust performance across a wide range of scenar-
ios. This method provides a powerful framework for developing adaptable
and resilient agents capable of thriving in heterogeneous environments.

4.2. Frozen Lake Agent
Our second model was tailored to an agent tasked with navigating a

grid-based environment, specifically the Frozen Lake environment. Within
this setting, we made the assumption that the agent possessed complete
visibility of the grid, encompassing its dimensions, obstacles, goals, and its
own position. In an environment characterized by these features and fixed-
size inputs, a conventional Q-Learning could be employed to address the
navigation challenge. However, the inherent limitation arises when dealing
with varying input sizes. Traditional Q-Learning relies on a table of Q-values
tied to specific states, thereby becoming constrained by input dimensions.
Alternatively, a DRL approach could be employed, with DQN emerging as
the most straightforward option rooted in Q-Learning principles. However, it
would also encounter difficulties with diverse input sizes, as the convolutional
layers in DQN would generate multiple output sizes, which is incompatible
with the expected dimensions of the fully connected layers responsible for
outputting the Q-values.

In the progression of our research, the initial application of the PPO al-
gorithm within a RTS game environment served as a robust framework for
exploring complex decision-making processes. However, upon encountering
specific learning challenges within this context (detailed on the next sections),
our investigation took a pivotal turn towards a more granular analysis using

15



the Frozen Lake environment. This transition prompted us to adopt the DQN
algorithm, a choice driven by several key considerations. Firstly, the Frozen
Lake environment is typically solvable by employing a traditional Q-Learning
agent, so DQN’s relative simplicity and direct lineage to Q-learning principles
offer a streamlined approach for dissecting and addressing the learning chal-
lenges we encontered. Furthermore, DQN’s value-based approach streamlines
the agent’s architecture, facilitating a clearer understanding of how our mod-
ifications influence its behavior. By leveraging DQN’s more straightforward
framework, we could iterate rapidly and refine our architectural innovations,
ensuring they are not only effective in a simplified context like Frozen Lake
but also scalable to the complex dynamics of an RTS environment when in-
tegrated with PPO. This strategic choice of algorithmic transition thereby
allows for a more focused and profound exploration of our proposed archi-
tectural modifications, ensuring their applicability and effectiveness across a
spectrum of learning environments and challenges.

In the Frozen Lake environment, we implemented an adaptation of the
conventional CNN architecture, integrating a Spatial Pyramid Pooling (SPP)
layer situated between the final convolutional layer and the network’s first
fully connected layer. This design mirrors the approach adopted for both
the encoder and critic components of the µRTS model. The SPP layer is
designed to process inputs of varying dimensions, outputting a uniform-sized
representation irrespective of the input size. This combination of convolu-
tional layers and SPP layers yields a versatile and powerful encoder, capable
of producing standardized representations across diverse environments that
we can then use to infer the Q-values of the pairs (s, a). It is important
to highlight that this approach does not employ any form of input prepro-
cessing, thereby preserving the entirety of the state’s information without
introducing any distortions.

In the classic Frozen Lake challenge, the agent’s objective is to learn
navigation across a singular map, traditionally encoding the state as a sin-
gle integer that represents the agent’s location. However, to accommodate
navigation across varying map sizes and different maps of the same size, we
revised the state representation strategy. Instead of relying on a singular
integer, our approach utilizes three binary feature planes for the observation
model. Each plane adheres to dimensions (h×w) of the map, where h and w
signify the height and width, respectively. The first plane marks the agent’s
current location; the second delineates the positions of the holes; while the
third highlights the goal’s location. This adjustment ensures our agent is

16



equipped to intelligently navigate any map on the Frozen Lake environment.
Given the inherent simplicity of the Frozen Lake environment, which is

typically solvable through tabular methods, we were mindful to avoid over-
complicating our model. Consequently, in our initial approach we adopted a
basic CNN design for the DQN. This design comprises a single convolutional
layer, succeeded by a pooling layer. These layers are then connected to a
hidden fully connected layer, culminating in a final output layer responsible
for generating the Q-values associated with each possible action.

In designing this network, we intentionally configured the initial layers to
act as an encoder, simplifying the detailed observation of the map into an
abstracted representation. With this goal in mind, we initially matched the
dimensionality of the hidden fully connected layer to the total count of possi-
ble states within the map. For instance, in a setting with an 8×8 map, there
are 64 unique states, prompting us to set the hidden layer’s size to 64 units.
This configuration allows our agent to undertake dual responsibilities: first,
to learn the encoding of observations into their respective states efficiently,
and second, to learn the most promising action for each state based on the
expected outcomes.

Upon verifying that our model demonstrated the capacity to learn effec-
tively on smaller maps with the initial architecture, we introduced a Spatial
Pyramid Pooling (SPP) layer situated between the pooling and the fully con-
nected layers. The primary role of the SPP layer is to normalize the output
from the pooling layer across varying map sizes, thereby equipping our agent
with the ability to apply its learned insights universally, regardless of the
map dimensions. This enhancement ensures that our model’s adaptability
and learning efficiency are maintained even when transitioning to environ-
ments of different scales.

To further enhance the model’s learning ability, we incorporated a reward
function tailored to the specifics of the Frozen Lake environment. This re-
ward function was designed to provide more granular feedback to the agent,
rewarding not only the successful navigation to the goal but also intermediate
milestones such as avoiding holes and progressing towards the goal. Specif-
ically, we introduced small positive rewards for each step that brought the
agent closer to the goal and small penalties for steps that either moved the
agent away from the goal or brought it dangerously close to holes. Addition-
ally, we incorporated a negative reward for falling into a hole and a significant
positive reward for successfully reaching the goal. This reward system aimed
to mimic real-world navigation challenges, encouraging the agent to develop

17



a more sophisticated understanding of the environment and fostering a more
strategic approach to decision-making. By providing continuous and context-
sensitive feedback, we ensured that the agent’s learning process was not only
focused on end goals but also on optimizing the path taken to achieve these
goals, thereby enhancing the agent’s overall performance and resilience in
varying and complex scenarios.

Details about the architecture of our Frozen Lake agent, including all
layers and their sizes can be found on our GitHub repository2.

5. µRTS Results

In a series of experiments conducted within the Gym-µRTS framework,
we thoroughly assessed the performance of our model, systematically bench-
marking it against state-of-the-art agents. Following the experimental pro-
tocol outlined by Huang et al. (2021), we designated CoacAI3 as the primary
adversary in our trials, and used diverse opponents in training to grant a
more complete experience. We trained our model against CoacAI, Random-
BiasedAI, LightRushAI, and WorkerRushAI. CoacAI is the winner of the
2020 IEEE CoG MicroRTS Competition, and the other bots are part of the
µRTS framework and are used as baselines for the competitions. While the
other opponents are not as relevant as CoacAI, playing against them ensures
our agent will acquire knowledge of many strategies and will not easily lose
to different opponents.

Furthermore, we use the best model4 developed by Huang et al. (2021)
as a baseline to compare and evaluate our approach and the impact of the
proposed modifications. Unless stated otherwise, our proposed model used a
single-layer SPP with 4×4 bins and trained with a sequential map selection
where maps were swapped every 100,000 steps. As we show below, this was
the best configuration we have found.

All agents were trained for 300 million steps, with the resulting policy
being tested in 100 games against CoacAI. Three map configurations were
used, with sizes 8×8, 16×16, and 24×24. Since the baseline model cannot
play in multiple map dimensions without changes to its architecture, we have

2Available at https://github.com/marcelo-lemos/deep-frozen-lake
3Available at https://github.com/Coac/coac-ai-microrts
4The model did not receive an official name but was referred to as the combination of

GridNet + PPO + invalid action masking + diverse bots + encoder-decoder.

18

https://github.com/marcelo-lemos/deep-frozen-lake


used three versions, one for each map, adapting the first fully connected layer
of their critic to accommodate the encoder’s output. All the hyperparameters
used on the experiments can be found at our GitHub repository5.

The game results during test time were the primary metrics used to eval-
uate the agents. For easier visualization, we opted to simplify it, and instead
of using the raw results, we employ a Score metric where a player gets 1 point
for each victory and 0.5 points for each draw.

In RL, agents receive rewards for completing certain actions or reaching
specific states, generally associated with their final goal. Since we employ
reward shaping, our agent receives rewards from several small actions, such
as collecting resources or attacking enemy units. One of the main rewards
we use is a win/loss reward, which is always received at the end of a game:
1 in case of a win, 0 in case of a draw, or −1 in case of a loss. The sum of
all rewards received across a game (or episode) is called the episodic return,
which does not have an upper bound in our case but has a lower bound
of −1 in case the only reward received was of a loss. We use the win/loss
rewards and episodic returns received during training as additional metrics
to analyze learning progression. Since our agent plays thousands of games
during training, we apply a moving average to better visualize our graphs.
Values closer to −1 indicate the agent is losing more games than winning,
while values closer to 1 indicate the opposite. Values close to zero indicate
the agent is winning almost as much as it is losing. Our experiments are
divided into four categories as follows.

5.1. Proposed vs Baseline Model
In this first experiment, we compare our proposed model with the best

version developed by Huang et al. (2021) playing against CoacAI in two
different scenarios: specialized and generalist.

5.1.1. Specialized Scenario
For each of the three maps, an agent of each model was trained and

tested exclusively on it. As shown in Figure 5, the proposed model outper-
formed the baseline in all three maps. The greatest difference occurred on
the 8×8 map, where the original lost all 100 games against CoacAI, while
the proposed version achieved a score of 70 points. This disparity highlights

5Available at https://github.com/marcelo-lemos/MicroRTS-Py

19

https://github.com/marcelo-lemos/MicroRTS-Py


a critical limitation of the baseline model: its architecture and hyperpa-
rameters were tailored for the 16×16 map, which likely caused suboptimal
performance in environments requiring different strategies. The 16x16 and
24x24 maps are relatively large, causing the games to last longer and requir-
ing strategies that focus on developing more military structures and combat
units. On these maps, long-term planning and gradual build-up are essen-
tial for success. In contrast, the 8x8 map is significantly smaller, favoring
quicker strategies. Here, efficiency in creating a maximum number of simple
workers and deploying them for immediate attacks becomes crucial. The
baseline model, designed for the larger 16x16 environment, struggles with
the rapid, aggressive tactics needed for the 8x8 map, whereas the proposed
model adapts better to these distinct scale demands.

Figures 6 and 7 show that the win/loss reward and the episodic return
are very close for the two models tested, except for the 8×8 map once again.
On this smaller map, the baseline model failed to learn effective gameplay
strategies, as evidenced by its declining performance after 100 million steps,
from which it could not recover. This suggests a critical deficiency in the
baseline model’s adaptability and robustness when confronted with different
environmental constraints.

Our novel architecture, designed with greater flexibility, demonstrates
consistent performance across all tested environments. It does not compro-
mise effectiveness when focusing on a single environment and shows improved
results. We also notice that the episodic returns differ from one map to an-
other, which can be attributed to our use of reward shaping. In larger maps,
units must traverse greater distances, leading to longer game durations and
allowing the agent to accumulate more rewards from a series of smaller ac-
tions. This accumulation contrasts with the more immediate, direct rewards
available in the shorter games of smaller maps.

5.1.2. Generalist Scenario
Since only the proposed model can play any map without structural

changes, we compare the baseline agent results in single map training (as
above) with the proposed model in a generalist setup, where the training
occurs over multiple maps.

Figure 8 shows that the specialized agents of the baseline model outper-
formed our generalist agent in two of the three maps. On 16×16, the baseline
received 36.5 more points than the proposed model. However, on the 24×24,
the performance gap was much narrower, with the baseline only scoring 3.5

20



B
as

el
in

e

P
ro

po
se

d

B
as

el
in

e

P
ro

po
se

d

B
as

el
in

e

P
ro

po
se

d

B
as

el
in

e

P
ro

po
se

d

0

20

40

60

80

100

08x08 16x16 24x24 MeanMap

Sc
or

e

Figure 5: Comparison of proposed and baseline models’ scores across three map dimen-
sions in the specialized setting. The proposed model outperforms the baseline on all tested
dimensions.

points higher. Lastly, on the 8×8 map, the proposed model achieved 97
points against zero of the baseline. When considering all maps, our pro-
posed model achieved a better mean score, almost 20 points higher than the
baseline.

An important detail to note is that the proposed model had a third of
the total training budget of the baseline model in this setting. The baseline
had to be trained in each map individually for 300 million steps, totaling 900
million. In contrast, the proposed model trained a single time for 300 million
total. Despite this significantly reduced training budget, the proposed model
demonstrated a notable performance improvement.

Figure 9 shows that the win/loss reward received by the generalist agent
is very similar to the baseline on maps 16×16 and 24×24. This suggests
that our proposed generalist model is nearly as effective as the baseline when
considering these larger maps. Figure 10, however, shows that the generalist
agent’s episodic returns are biased towards the 8×8 baseline. Since the gen-
eralist agent is trained on all three maps for the same number of steps, and
because the 8×8 map is smaller and games are shorter, the agent completes
more episodes on this map, skewing the curve towards the 8×8 baseline.

In conclusion, while the baseline model’s specialized agents perform slightly

21



0 50M 100M 150M 200M 250M 300M
−1

−0.5

0

0.5

1

Steps

W
in

/L
os

s
R

ew
ar

d

Baseline 8x8
Proposed 8x8
Baseline 16x16
Proposed 16x16
Basline 24x24
Proposed 24x24

Figure 6: Comparison of win/loss rewards between proposed and baseline models across
three map dimensions in the specialized setting. Both models exhibit similar performance
trends, except on the 8×8 map, where the baseline model struggled with learning optimal
winning strategies over time.

0 50M 100M 150M 200M 250M 300M
0

100

200

Steps

E
pi

so
di

c
R

et
ur

n

Baseline 8x8
Proposed 8x8
Baseline 16x16
Proposed 16x16
Baseline 24x24
Proposed 24x24

Figure 7: Comparison of episodic returns between proposed and baseline models across
three map dimensions in the specialized setting. Both models exhibit similar performance
trends, except on the 8×8 map, where the baseline model struggled with learning optimal
winning strategies over time. Larger maps result in longer games, leading to greater
cumulative rewards per game for the agents.

22



B
as

el
in

e

P
ro

po
se

d

B
as

el
in

e

P
ro

po
se

d

B
as

el
in

e

P
ro

po
se

d

B
as

el
in

e

P
ro

po
se

d

0

20

40

60

80

100

08x08 16x16 24x24 MeanMap

Sc
or

e

Figure 8: Comparison of proposed and baseline models’ scores across three map dimen-
sions in the generalist setting. The baseline agent outperforms the proposed model in two
of the three maps, but the proposed model achieves a greater mean score.

better on individual maps, the proposed generalist approach offers superior
overall performance and efficiency across diverse environments. The ability
to generalize across different map sizes and strategies demonstrates a sig-
nificant advantage in scenarios where agents must perform well in diverse
settings. However, the training routine must be carefully crafted to prevent
biases towards some maps or strategies.

5.2. Specialized vs General Training
To consolidate whether training in various scenarios instead of focusing

on a single environment is advantageous for the agent, we tested four agents
of our proposed model with the same architecture and configuration, each
trained in different map settings: (i) 8×8 map only, (ii) 16×16 map only, (iii)
24×24 map only, and (iv) all three maps. For clarity, from now onward, we
will refer to each agent as S-08x08, S-16x16, and S-24x24 for those trained
solely on maps 8×8, 16×16, and 24×24, respectively. The agent trained on
all maps will be referred to as generalist. Despite the different training, they
were all evaluated on all three maps and we also included a 32×32 map in
the evaluation that was not included in any agent’s training.

Figure 11 shows that the specialized agents outperformed the generalist
agent in two of the three maps. On 16×16, the S-16x16 received 39 more

23



0 50M 100M 150M 200M 250M 300M
−1

−0.5

0

0.5

1

Steps

W
in

/L
os

s
R

ew
ar

d

Baseline 8x8
Baseline 16x16
Baseline 24x24
Proposed

Figure 9: Comparison of win/loss rewards between proposed and baseline models across
three map dimensions in the generalist setting. Both models exhibit similar performance
trends, except on the 8×8 map, where the baseline model struggled with learning optimal
winning strategies over time.

0 50M 100M 150M 200M 250M 300M

0

100

200

Steps

E
pi

so
di

c
R

et
ur

n

Baseline 8x8
Baseline 16x16
Baseline 24x24
Proposed

Figure 10: Comparison of episodic returns between proposed and baseline models across
three map dimensions in the specialized setting. The proposed model’s performance cannot
be directly compared to the baselines’ due to its training on multiple map dimensions, each
offering distinct maximum achievable cumulative rewards.

24



points than the generalist, but on the 24×24, the difference was a lot smaller,
with the S-24x24 being only 17 points better. However, on the 8×8 map, the
generalist outperformed the S-08x08, achieving 97 points compared to the 70
points of the specialized agent. Lastly, on the 32×32 map – which was not
seen during training – the generalist achieved the second-best performance,
with 53 points against the 65 points of the S-24x24. All four maps present
the same structure and units, the only difference being the map’s scale. This
factor gave an edge to S-24x24 due to the similarity in the scale of the training
map and the 32×32 map. Considering all maps, the generalist agent achieved
a better mean score, 17 points higher than the second place.

Figures 12 and 13, illustrate the win/loss reward and episodic return,
respectively, where we note patterns similar to those observed in the previous
experiment. A major difference was the performance of the S-08x08 agent,
which, unlike the baseline model, managed to attain good results on map
8×8. The flexibility of our architecture allowed the S-08x08 to adapt better
to the specific demands of the smaller map.

While specialized agents may have an edge on their respective training
maps, the generalist agent demonstrates an overall superior performance.
The generalist’s ability to adapt and perform well across different environ-
ments, including the previously unseen 32×32 map, highlights the advan-
tages of training on multiple scenarios. This adaptability suggests that a
more generalized training approach can lead to more robust performance in
varied settings, compared to agents trained exclusively on single environ-
ments. This approach ensures adaptability and robustness but also prepares
the agent for unforeseen challenges, making it a more versatile and efficient
solution for diverse environments.

5.3. Environment Selection
As discussed before, our training method involves swapping environments

mid-training. To investigate the impacts of the strategy used to select the
new environment, we examined both the method and the frequency of envi-
ronment selection.

5.3.1. Selection Method
Two methods were verified, random and sequential. In the sequential

method, we cycle through a predefined sequence of maps from smallest to
largest.

25



S-
08

x0
8

S-
16

x1
6

S-
24

x2
4

G
en

er
al

is
t

S-
08

x0
8

S-
16

x1
6

S-
24

x2
4

G
en

er
al

is
t

S-
08

x0
8

S-
16

x1
6

S-
24

x2
4

G
en

er
al

is
t

S-
08

x0
8

S-
16

x1
6

S-
24

x2
4

G
en

er
al

is
t

S-
08

x0
8

S-
16

x1
6

S-
24

x2
4

G
en

er
al

is
t

0

20

40

60

80

100

08x08 16x16 24x24 32x32 MeanMap

Sc
or

e

Figure 11: Comparison of specialist and generalist models’ scores across four map dimen-
sions. The generalist model exhibits the best or second-best performance on all maps and
achieves the best performance overall.

As seen in Figure 14, the sequential selection method outperformed the
random method in all three maps tested. This difference was especially pro-
nounced on the 8x8 map, where the random method lost all 100 games,
whereas the sequential method won 97 games. Examining the episodic re-
turn of both methods, depicted in Figure 16, reveals a significant learning
instability for the random method compared to the sequential method. This
instability directly correlates to the reduction of the win/loss reward in Fig-
ure 15, ultimately affecting the resulting policy. Notably, sequential selection
promotes a more consistent and smoother learning process.

The sequential method’s superiority can be attributed to its structured
progression, which likely allows the agent to develop and reinforce strategies
incrementally. By starting on smaller maps and gradually moving to larger
ones, the agent can build on its previous experiences, leading to more stable
and effective learning. In contrast, the random method’s lack of structure
can cause the agent to randomly encounter vastly different environments,
disrupting the learning process and leading to instability.

26



0 50M 100M 150M 200M 250M 300M
−1

−0.5

0

0.5

1

Steps

W
in

/L
os

s
R

ew
ar

d

S-08x08
S-16x16
S-24x24
Generalist

Figure 12: Comparison of win/loss rewards between specialized and generalist models
across three map dimensions during training. All models exhibit similar performance
trends.

0 50M 100M 150M 200M 250M 300M

0

100

200

Steps

E
pi

so
di

c
R

et
ur

n

S-08x08
S-16x16
S-24x24
Generalist

Figure 13: Comparison of episodic returns between specialized and generalist models
across three map dimensions during training. The episodic returns of the generalist model
fall between those of the S-08x08 and S-16x16 models, reflecting intermediate cumulative
rewards due to its training on multiple map dimensions.

27



R
an

do
m

Se
qu

en
ti

al

R
an

do
m

Se
qu

en
ti

al

R
an

do
m

Se
qu

en
ti

al

R
an

do
m

Se
qu

en
ti

al

0

20

40

60

80

100

08x08 16x16 24x24 MeanMap

Sc
or

e

Figure 14: Comparison of models’ scores using random and sequential environment swap
across three map dimensions. The sequential method consistently outperforms the random
method in all maps.

5.3.2. Change Frequency
To evaluate the change frequency’s impact, we utilized only the sequential

method and ensured our agent experienced each environment for the same
total steps. We tested two different frequencies, one changing every 100
million steps – causing each environment to be seen a single time – and one
changing every 100,000 steps. We refer to them as A-100M and B-100K,
respectively.

This experiment aims to understand the effects of long-term versus short-
term environmental exposure on the agent’s learning and adaptability. The
100 million steps frequency (A-100M) allows the agent to thoroughly explore
and learn each environment in isolation, potentially leading to stronger, more
environment-specific skills and strategies. This setup ensures each environ-
ment will be seen only once during training and tests the agent’s ability to
maximize performance in a stable setting before encountering a new envi-
ronment. Conversely, the 100,000-step frequency (B-100K) introduces more
frequent environmental changes, challenging the agent to adapt quickly to
new conditions and develop more generalizable skills.

As seen in Figure 17, the agent B-100K, trained with more frequent swaps,
achieved better results on the test games on most maps, except for the 24×24

28



0 50M 100M 150M 200M 250M 300M
−1

−0.5

0

0.5

1

Steps

W
in

/L
os

s
R

ew
ar

d

Sequential
Random

Figure 15: Comparison of win/loss rewards between models using random and sequential
environment swap. The sequential method demonstrates a consistent improvement trend
over time, whereas the random method experiences significant performance drops.

0 50M 100M 150M 200M 250M 300M

0

100

200

Steps

E
pi

so
di

c
R

et
ur

n

Sequential
Random

Figure 16: Comparison of episodic returns between models using random and sequen-
tial environment swap. The random method exhibits unstable returns compared to the
sequential method.

29



A
-1

00
M

B
-1

00
K

A
-1

00
M

B
-1

00
K

A
-1

00
M

B
-1

00
K

A
-1

00
M

B
-1

00
K

0

20

40

60

80

100

08x08 16x16 24x24 MeanMap

Sc
or

e

Figure 17: Comparison of models’ scores when the environment is swapped every 100K
or 100M steps across three map dimensions. Swapping every 100K steps generally results
in better performance, except on the 24×24 map, where swapping every 100M steps yields
superior results by a small margin.

map, where the score was 3.5 points below A-100M. Figure 18 shows that the
agent that trained for longer periods before swapping environments presented
a big drop in performance during the change of context. This suggests that
the agent specialized in a single map after training on it for an extended
period, but struggled to adapt when the environment changed, taking time
to adjust its strategies to the new situations.

Figure 19 shows the episodic return, where we can clearly see when the
map changes occurred for the A-100M agent, marked by noticeable increases
on the episodic return. In contrast, the more frequent map changes for
agent B-100K led to smoother and more consistent learning. This continuous
exposure to different environments helped the agent maintain flexibility and
prevented overfitting to any single map.

The agent trained with more frequent swaps (B-100K) achieved better
overall results and demonstrated smoother and more consistent learning.
This suggests that maintaining a dynamic and varied training regimen, with
frequent exposure to different environments, is crucial for developing agents
capable of adapting to multiple scenarios encompassing different scales.

30



0 50M 100M 150M 200M 250M 300M
−1

−0.5

0

0.5

1

Steps

W
in

/L
os

s
R

ew
ar

d
A-100M
B-100K

Figure 18: Comparison of win/loss rewards when the environment is swapped every 100K
or 100M steps. The model A-100M stays for longer periods on the same map and exhibits
significant performance drops when the environment is swapped. Meanwhile the model
B-100K exhibits more consistent improvements.

0 50M 100M 150M 200M 250M 300M

0

100

200

Steps

E
pi

so
di

c
R

et
ur

n

A-100M
B-100K

Figure 19: Comparison of episodic returns when the environment is swapped every 100K
or 100M steps. Model B-100K, which experiences more frequent swaps, displays a smoother
curve. In contrast, Model A-100M shows distinct steps in episodic returns corresponding
to each environment swap.

31



5.4. SPP Layer Size
We study the impact of different sizes of the SPP layer in our agent by

comparing four different compositions. The layers tested are (i) a single layer
with 2×2 bins, (ii) a single layer with 4×4 bins, (iii) a single layer with 8×8
bins, and (iv) three layers with 2×2, 4×4, and 8×8 bins. All four architec-
tures were trained and tested on all three map dimensions.

The 2×2 bins capture coarse spatial information, summarizing large re-
gions of the input, which can help the model understand broader spatial
patterns and context. This configuration can be useful where the overall
structure is more important than fine details. The 4×4 bins provide a mid-
level spatial resolution, balancing between capturing overall patterns and
finer details. This intermediate resolution can help the model detect fea-
tures that might be missed by either too coarse or too fine resolutions. The
8×8 bins offer a fine-grained representation, preserving detailed spatial in-
formation. This high resolution is important for tasks that require precise
localization and recognition of small features within the input data. By
combining all three sizes in the fourth configuration (2×2, 4×4, and 8×8
bins), we aim to leverage the strengths of all three previous configurations.
This multi-layer approach allows the model to capture spatial information at
different granularities, potentially improving its ability to generalize across
various tasks and environments. This is particularly important in scenarios
where the agent must simultaneously understand the global context and local
details.

As shown in Figure 20, single-layer architectures with 2×2 and 4×4 bins
attained the best results, with mean scores of 73.5 and 76, respectively. In
contrast, the bigger architectures exhibit worse performances, especially on
map 16×16. The small single layers displayed better generalization than
bigger or multiple ones. Figures 21 and 22 show that all four configurations
performed closely during training. The biggest single layer, with 8×8 bins,
deviated more from the others. Its win/loss reward received dipped around
80M and 260M steps. It eventually recovered from the first dip but not the
second one, which surely impacted the final policy.

The superior performance of the 2x2 and 4x4 bin configurations suggests
that smaller bin sizes in the SPP layer facilitate more effective feature extrac-
tion and generalization. These configurations likely strike a balance between
capturing sufficient spatial information and maintaining computational effi-
ciency, leading to better adaptability across different map sizes. In contrast,
the poorer performance of the larger 8x8 bin configuration can be attributed

32



2x
2

B
in

s
4x

4
B

in
s

8x
8

B
in

s
A

ll
th

re
e

2x
2

B
in

s
4x

4
B

in
s

8x
8

B
in

s
A

ll
th

re
e

2x
2

B
in

s
4x

4
B

in
s

8x
8

B
in

s
A

ll
th

re
e

2x
2

B
in

s
4x

4
B

in
s

8x
8

B
in

s
A

ll
th

re
e

0

20

40

60

80

100

08x08 16x16 24x24 MeanMap

Sc
or

e

Figure 20: Comparison of models’ scores using different SPP layers across three map
dimensions. The model with 4×4 bins exhibits the best performance overall and is closely
followed by the model with 2×2 bins. The model with 8×8 shows the lowest performance
among all configurations.

to its tendency to overfit to specific spatial patterns within the training data,
resulting in less robust generalization to new environments. The combina-
tion of multiple SPP layers (2x2, 4x4, and 8x8 bins) also did not perform as
well, possibly due to the increased complexity and potential redundancy in
feature extraction, which might have hindered the agent’s ability to develop
a coherent strategy.

6. Frozen Lake Analysis

In the previous section, we observed a learning instability on smaller
maps, notably on the 8×8 size. The agents tested exhibited either excep-
tionally high or exceedingly low score ratings on the smallest map. Building
upon this observation, we devised experiments for the Frozen Lake envi-
ronment that would allow us to investigate this issue in more detail. This
section presents and discusses the experiments conducted to evaluate the ef-
fectiveness and scalability of our proposed architecture in the Frozen Lake
environment. The primary focus was to examine the model’s capability to
generalize its learning from smaller to larger maps. This aspect is crucial
for reinforcing the notion that a truly adaptive model should not only excel

33



0 50M 100M 150M 200M 250M 300M
−1

−0.5

0

0.5

1

Steps

W
in

/L
os

s
R

ew
ar

d

2x2 Bins
4x4 Bins
8x8 Bins
All three

Figure 21: Comparison of win/loss rewards between models using different SPP layers.
All models exhibit similar performance trends.

0 50M 100M 150M 200M 250M 300M

0

50

100

150

Steps

E
pi

so
di

c
R

et
ur

n

2x2 Bins
4x4 Bins
8x8 Bins
All three

Figure 22: Comparison of episodic returns between models using different SPP layers.
All models exhibit similar performance trends.

34



in environments it has been directly trained on but also demonstrate a high
degree of transferability and performance across scenarios of different scales.
To this end, we selected a range of map sizes similar to those used on our
previous experiments – 8×8, 16×16, 24×24, 32×32, 48×48, and 64×64 – to
thoroughly explore how our model navigates and adapts to varying levels of
complexity. Given our emphasis on scalability, we ensured consistency in the
features and obstacles present across all maps, differing only in their spatial
dimensions, to isolate the effects of scale on the model’s effectiveness. In all
maps our agent starts at the upper-left corner of the map and must traverse
an U-shaped path to reach the goal on the upper-right corner. In Figure 23,
we can see the 8x8 map used on our experiments. All other maps present
the same path, but in a different scale.

Figure 23: Illustration of the 8x8 Grid Utilized in Our Frozen Lake Experimentation:
Starting from the upper-left corner, the objective of the agent is to navigate to the goal
located at the upper-right corner. The grid features cells depicted in white, representing
frozen terrain that is safe for the agent to traverse, contrasted with the dark cells, which
represent holes to be avoided.

6.1. Encoder Generalization
In this exploration, our primary focus is on assessing the consistency of

spatial feature representations generated by the SPP layer within our network

35



across varying map scales. To this end, we initially trained our model on an
8×8 map for 30,000 steps, then guided the agent along a predetermined route
across maps of different sizes. During this process, we captured and stored
the SPP layer outputs for each state encountered along the trajectory in an
array A, with each element ai representing the SPP output at the i-th step.
Our goal is to analyze and quantify the differences in representations for
analogous states across varying map sizes.

Given that larger maps naturally lead to longer trajectories for the identi-
cal route, we implemented a normalization process to facilitate a more equi-
table comparison. This process involves adjusting for map dimensions, using
the 8×8 dimension as a standard reference. Specifically, utilizing dimension
8 as a reference, where each map expands by a factor of n, we aggregated the
representations at intervals of n steps along the trajectory, computing the
mean representation for these grouped states. This adjustment yields arrays
of uniform length for each map, enabling us to then compute the Euclidean
distance between the representation arrays of each map pair. The resulting
distances can be seen in Table 1.

Map 8x8 16x16 24x24 32x32 48x48 64x64
8x8 0.00 51.67 71.00 69.59 68.08 65.82

16x16 51.67 0.00 19.32 17.91 16.41 14.15
24x24 71.00 19.32 0.00 1.40 2.91 5.17
32x32 69.59 17.91 1.40 0.00 1.51 3.76
48x48 68.08 16.41 2.91 1.51 0.00 2.25
64x64 65.82 14.15 5.17 3.76 2.25 0.00

Table 1: Euclidean distance between the representation of different map sizes. The ta-
ble displays the pairwise Euclidean distances among all maps, with rows and columns
representing the map sizes (8×8, 16×16, 24×24, 32×32, 48×48, and 64×64). This com-
parison highlights the similarity between representations of bigger maps and dissimilarity
of smaller maps.

The results from our analysis reveal an intriguing pattern: the repre-
sentations in larger maps demonstrated minimal variance, suggesting a high
degree of similarity. The distance between the representation of maps with
sizes 24×24 or larger are all less than 5.2, with some of them as low as 1.4.
Conversely, representations derived from smaller maps exhibited a greater
deviation when compared to others. The greatest deviation registered was
between the maps 8×8 and 24×24, with a value of 71. All the distances

36



between the 8×8 and the other maps were bigger than 51, almost 10 times
larger than what we observed between the larger maps. This indicates that
as the map size increases, the model’s ability to generate consistent repre-
sentations improves, showcasing a robustness in handling spatially complex
environments. On the other hand, the increased divergence seen in smaller
maps underscores potential challenges in generalizing from limited spatial
contexts to more expansive scenarios. This suggests that the spatial features
learned from smaller maps may not encapsulate enough variability, leading
to less robust representations when scaled to larger environments. To ad-
dress this issue, enhanced adaptation strategies or modifications in model
architecture may be necessary.

6.2. Policy Transferability
In this subsection, we investigate the transferability of our model’s policy

across different map sizes. We focused on comparing how well our model
could transfer a policy learned on one scale to another. Initially, we trained
the agent on the 8×8 map for 30,000 steps and evaluated its generated pol-
icy on every map. The results, shown in Figure 24, revealed a suboptimal
transfer to the 16×16 map (which also happens in larger maps), which was
unsurprising given the observed discrepancies in representations for smaller
maps seen on the previous subsection. The policy learned on 8×8 allows
the agent to reach the goal by traversing the shortest path every time, but
when transfer to larger maps a lot was lost. Notably, the agent struggled
to effectively apply a policy acquired in a small-scale environment to larger
maps, resulting in seemingly random and ineffective behaviors.

To delve deeper into this phenomenon, we extended our investigation
by conducting supplementary experiments. Here, we conducted additional
experiments by training the agent on the 24×24 map and assessing its per-
formance on larger maps. The resultant policies are illustrated in Figure 25.
Remarkably, in this scenario, we observed a highly successful transfer, where
most of the actions learned on the 24×24 map are transferred to the corre-
sponding expected action on the the 48×48 map, indicating a robust ability
of the model to generalize the policy from intermediate to larger spatial con-
texts.

These contrasting outcomes shed light on the nuanced dynamics of policy
transfer across different scales, emphasizing the critical role of scale consid-
erations in Reinforcement Learning. The failure of the 8x8-trained policy

37



Figure 24: Agent policy transferability: on the left, the policy derived from training on
the 8×8 map; on the right, the corresponding policy transferred to a 16×16 map. Signifi-
cant discrepancies between the policies on each map are evident, indicating a suboptimal
transfer.

to generalize to larger maps highlights the limitations of transferring knowl-
edge acquired with small observation sizes to larger ones. On the other
hand, the successful generalization from the 24x24 map to the 48x48 map
underscores the importance of training on sufficiently complex environments.
When trained on an intermediate-sized map, the agent encounters a diver-
sity of spatial patterns and strategic challenges that better prepare it for even
larger maps. This experience enables the model to develop more generalized
and adaptable policies, capable of scaling to different sizes.

Figure 25: Agent policy transferability: on the left, the policy derived from training on the
24×24 map; on the right, the corresponding policy transferred for a 48×48 map. Despite
the difference in map dimensions, the transferred policy closely matches the original policy,
with only a few deviations.

38



6.3. Agent performance
It is important to note that our primary focus in this section’s experi-

ments is on the agent’s ability to generalize its learning across different map
scales rather than its specific performance metrics. Throughout our inves-
tigation, we observed a peculiar trend in our agent’s performance. While it
exhibited proficiency in learning the optimal policy within smaller maps (8×8
or smaller), it encountered significant challenges navigating larger maps to
reach the goal. This issue was evident in the resulting policies from previous
experiments: the agent trained on the 8x8 map successfully reached an op-
timal policy, whereas the agent trained on the 24x24 map struggled, failing
to reach the goal consistently.

Interestingly, this issue isn’t unique to our model; we conducted tests
employing other architectures and algorithms from established libraries like
Stable Baselines (Raffin et al., 2021), only to find even worse results. These
models struggled to learn even in the context of smaller maps. This predica-
ment appears to stem from an inherent incongruity between the simplicity
of the environment and the design focus of Deep Reinforcement Learning
models, which are typically geared towards addressing more complex tasks.
This is particularly relevant for environments like Frozen Lake, where the
simplicity of the task doesn’t fully leverage the advanced capabilities of DRL
algorithms.

Despite these performance challenges, the significance of our analysis in
this section remains intact. Our primary objective was to develop a scale-
invariant DRL model and evaluate its ability to generalize learning across
different map sizes rather than evaluating DQN efficacy in such environments.
The insights gained from these experiments are valuable, especially when
considering more complex environments where our approach did not display
the same performance issues.

7. Conclusion

In this study, we tackle the limitations of Reinforcement Learning (RL)
frameworks that struggle when faced with varying sizes of state representa-
tions. We introduce a novel architecture that integrates Grid-wise Control
with Spatial Pyramid Pooling, crafting a versatile model adept at learning
from any grid-based setting without the need for structural modifications.
This design allows for the smooth transfer of learned behaviors across simi-
lar environments. To enhance the model’s adaptability, we’ve also devised a

39



novel training methodology that encompasses a variety of environments, each
with unique state representation dimensions. This method offers the flexibil-
ity to adjust the focus on specific environments based on the requirements
of the task at hand.

Our experiments conducted within the Gym-µRTS environment, demon-
strate that our model not only outshines existing state-of-the-art solutions in
terms of efficiency and generalization capabilities but also exhibits remarkable
performance under constrained training conditions, outperforming baseline
models in several instances. However, throughout our experiments, we en-
countered learning instabilities and generalization problems while working
with small maps. Upon conducting an in-depth analysis within the Frozen
Lake environment, we confirmed that our model struggles with very small
maps, highlighting a significant area for improvement.

Looking ahead, our focus extends to addressing these shortcomings. We
intend to explore alternative strategies to address the model’s limitations in
small maps, while simultaneously evaluating its effectiveness across a wider
range of map sizes to ensure consistent performance. Furthermore, we are
delving into alternative approaches for selecting environments within the
adapted PPO algorithm, such as implementing a weighted random selection
mechanism, to gain deeper insights into its impact on the model’s learning
trajectory.

In summary, our research has made significant strides in developing a
scale-invariant RL model capable of generalizing across diverse scale settings.
By addressing the identified limitations and refining our training methodolo-
gies, we aim to further enhance the model’s robustness and applicability,
paving the way for more versatile and effective RL solutions in complex and
varied environments.

References

Andersen, P.A., Goodwin, M., Granmo, O.C., 2018. Deep RTS: a game
environment for deep reinforcement learning in real-time strategy games,
in: 2018 IEEE conference on computational intelligence and games (CIG),
IEEE. pp. 1–8.

Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M., 2013. The arcade
learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research 47, 253–279.

40



Bengio, Y., Louradour, J., Collobert, R., Weston, J., 2009. Curriculum
learning, in: Proceedings of the 26th annual international conference on
machine learning, pp. 41–48.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C.,
Farhi, D., Fischer, Q., Hashme, S., Hesse, C., et al., 2019. Dota 2 with
large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680 .

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,
J., Zaremba, W., 2016. OpenAI Gym. arXiv preprint arXiv:1606.01540 .

Brody, S., Alon, U., Yahav, E., 2021. How attentive are graph attention
networks? arXiv preprint arXiv:2105.14491 .

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hier-
archies for accurate object detection and semantic segmentation, in: Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 580–587.

Han, L., Sun, P., Du, Y., Xiong, J., Wang, Q., Sun, X., Liu, H., Zhang,
T., 2019. Grid-wise control for multi-agent reinforcement learning in video
game AI, in: International Conference on Machine Learning, PMLR. pp.
2576–2585.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Spatial pyramid pooling in deep
convolutional networks for visual recognition. IEEE transactions on pat-
tern analysis and machine intelligence 37, 1904–1916.

Huang, S., Ontañón, S., 2022. A closer look at invalid action masking in
policy gradient algorithms, in: Barták, R., Keshtkar, F., Franklin, M.
(Eds.), Proceedings of the Thirty-Fifth International Florida Artificial In-
telligence Research Society Conference, FLAIRS 2022, Hutchinson Island,
Jensen Beach, Florida, USA, May 15-18, 2022. doi:10.32473/flairs.
v35i.130584.

Huang, S., Ontañón, S., Bamford, C., Grela, L., 2021. Gym-µrts: Toward
affordable full game real-time strategy games research with deep reinforce-
ment learning, in: 2021 IEEE Conference on Games (CoG), Copenhagen,
Denmark, August 17-20, 2021, IEEE. pp. 1–8. doi:10.1109/CoG52621.
2021.9619076.

41

http://dx.doi.org/10.32473/flairs.v35i.130584
http://dx.doi.org/10.32473/flairs.v35i.130584
http://dx.doi.org/10.1109/CoG52621.2021.9619076
http://dx.doi.org/10.1109/CoG52621.2021.9619076


Jankovics, V., Ortiz, M.G., Alonso, E., 2022. Efficient entity-based reinforce-
ment learning. arXiv preprint arXiv:2206.02855 .

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. Imagenet classification
with deep convolutional neural networks. Communications of the ACM
60, 84–90.

Lemos, M.L.H.D., Vieira, R.E.S., Tavares, A.R., Marcolino, L.S., Chaimow-
icz, L., 2024. Scale-invariant reinforcement learning in real-time strategy
games, in: Proceedings of the 22nd Brazilian Symposium on Games and
Digital Entertainment, Association for Computing Machinery, New York,
NY, USA. p. 11–19. URL: https://doi.org/10.1145/3631085.3631337,
doi:10.1145/3631085.3631337.

Liu, L., Liu, X., Gao, J., Chen, W., Han, J., 2020. Understanding the
difficulty of training transformers. arXiv preprint arXiv:2004.08249 .

Mataric, M.J., 1994. Reward functions for accelerated learning, in: Machine
Learning, Proceedings of the Eleventh International Conference.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M., 2013. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602 .

Pascanu, R., Mikolov, T., Bengio, Y., 2013. On the difficulty of training re-
current neural networks, in: International conference on machine learning,
PMLR. pp. 1310–1318.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.,
2021. Stable-Baselines3: Reliable reinforcement learning implementations.
J. Mach. Learn. Res. 22, 268:1–268:8.

Samvelyan, M., Rashid, T., De Witt, C.S., Farquhar, G., Nardelli, N., Rud-
ner, T.G., Hung, C.M., Torr, P.H., Foerster, J., Whiteson, S., 2019. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043 .

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017.
Proximal policy optimization algorithms. CoRR abs/1707.06347. URL:
http://arxiv.org/abs/1707.06347, arXiv:1707.06347.

42

https://doi.org/10.1145/3631085.3631337
http://dx.doi.org/10.1145/3631085.3631337
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347


Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,
et al., 2016. Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489.

Tian, Y., Gong, Q., Shang, W., Wu, Y., Zitnick, C.L., 2017. Elf: An ex-
tensive, lightweight and flexible research platform for real-time strategy
games. Advances in Neural Information Processing Systems 30.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, Ł., Polosukhin, I., 2017. Attention is all you need. Advances in
neural information processing systems 30.

Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A.,
Chung, J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., et al., 2019.
Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature 575, 350–354.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.S., Yeo,
M., Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J., et al., 2017.
Starcraft II: A new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782 .

Wang, X., Song, J., Qi, P., Peng, P., Tang, Z., Zhang, W., Li, W., Pi, X.,
He, J., Gao, C., et al., 2021. SCC: an efficient deep reinforcement learning
agent mastering the game of StarCraft II, in: International Conference on
Machine Learning, PMLR. pp. 10905–10915.

Yun, W.J., Yi, S., Kim, J., 2021. Multi-agent deep reinforcement learning
using attentive graph neural architectures for real-time strategy games, in:
2021 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), IEEE. pp. 2967–2972.

43


	Introduction
	Related Work
	Background
	Grid-Wise Control
	Spatial Pyramid Pooling
	Gym-MicroRTS
	Frozen Lake Environment

	Methodology
	MicroRTS Agent
	Model Architecture
	Expansion of Training Scenarios

	Frozen Lake Agent

	MicroRTS Results
	Proposed vs Baseline Model
	Specialized Scenario
	Generalist Scenario

	Specialized vs General Training
	Environment Selection
	Selection Method
	Change Frequency

	SPP Layer Size

	Frozen Lake Analysis
	Encoder Generalization
	Policy Transferability
	Agent performance

	Conclusion

