James Devine Microsoft UK Steve Hodges Lancaster University, UK

Thomas Ball, Michal Moskal, Peli de Halleux, Gabriele D’Amone Microsoft USA

David Gakure /HI Charging Systems International, Germany

Joe Finney, Lorraine Underwood, Kobi Hartley, Matt Oppenheim Lancaster University, UK
Paul Kos Microsoft, China

PLUG-AND-PLAY PHYSICAL
COMPUTING AND DEVICE
PROTOTYPING WITH JACDAC

Excerpted from “Plug-and-play Physical Computing with Jacdac” from Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies with permission. https://dl.acm.org/doi/10.1145/3550317 © ACM 2022

Photo, courtesy of Microsoft

(a)

FIGURE 1. Jacdac is a new open-source hardware and software platform, inspired by USB
but implemented more simply and cheaply to support plug-and-play physical computing
and device prototyping. (a) A BBC micro:bit with Jacdac adaptor (left), three Jacdac
modules—slider, CO; sensor and LED ring (middle), and three Jacdac cables (right); (b) A
completed prototype CO2 monitor; note that the slider and LED ring are daisy-chained.

PHYSICAL COMPUTING AND DEVICE PROTOTYPING

hysical computing involves the creation of interactive digital devices that sense and respond to the
world around them [1]. Typically, sensors, actuators and communications modules are connected
to a microcontroller (MCU) running code that maps sensed inputs into outputs such as lighting,
sound and electro-mechanical actuation [7]. This prototyping process builds on a wide range of
disciplines including electronics, mechatronics, computer science and software development. It’s typically
experimental, creative and highly iterative.

Numerous physical computing platforms
simplify and accelerate the development of
this type of MCU-based system [2]. Many
are targeted at students and hobbyists,
with three of the most well-established
being Arduino [3], Raspberry Pi [4] and
the BBC micro:bit [5]. These systems
support prototyping at three increasing
levels of abstraction [2]. The most flexible
approach is often the cheapest but also the
most fiddly: connecting discrete electronic
components, often mounted in a solderless
breadboard, via individual wires. A more
integrated approach involves connecting one
or more pre-soldered modules or ‘breakout

boards’ that integrate the support circuitry
for a given peripheral, again via individual
wires. This makes hardware composition
quicker, but still requires care and starts to
restrict flexibility. And finally, many MCU
boards support a range of platform-specific
accessories, such as shields and HATS; these
are the easiest to use but typically the least
flexible and most expensive.

In this paper we present Jacdac, an open-
source hardware and software platform
for plug-and-play physical computing
and device prototyping. Inspired by USB,
Jacdac is designed to combine the simplicity
of ready-to-use accessories but without

compromising the flexibility and lower cost
of modules and breakout boards. Jacdac
also supports a low-overhead transition to
discrete electronic components if further
design optimization is desired.

Since we only have enough space here
for a high-level description of Jacdac,
we refer those interested in more details,
including how we have assessed Jacdac
technically and evaluated it with users, to [6]
and [7] respectively. Jacdac is open source
at https://github.com/microsoft/jacdac,
and a list of commercially available Jacdac
hardware is maintained at https://microsoft.
github.io/jacdac-docs/devices/.

INTRODUCING JACDAC

The Jacdac modular, plug-and-play platform
allows a physical computing prototype to
be assembled quickly and easily. Jacdac-
compatible components incorporate one

or more Jacdac connectors and are joined
together via Jacdac cables that carry power
and data. Jacdacs architecture naturally
results in the following categories of device
hardware.

A Jacdac module, or server, is simply a
Jacdac device that presents one or more
sensors, actuators or other peripherals onto
the shared Jacdac bus via Jacdac services.
Figure 1 shows three such modules: a slider,
an LED ring, and a CO2 module.

A Jacdac brain, or client, is an application
that orchestrates one or more Jacdac modules
via their services. In Figure 1, the micro:bit
is the brain. Brains can be integrated with
on-board peripherals, and may therefore
also provide services. Multiple brains may
consume the same set of module services as
each other, or different combinations of them.

Jacdac adaptors (or Jacdaptors) allow
existing electronics prototyping platforms
like micro:bit, Raspberry Piand Arduino to
work with Jacdac. Figure 1 shows an adaptor
for the micro:bit. With the right firmware,
the micro:bit can expose its on-board
peripherals as Jacdac services. Finally, it can
also bridge Jacdac bus traffic through to a
laptop or desktop over USB, whereupon
browser-based applications can interact with
Jacdac devices via WebUSB or WebSerial.
Mative Jacdac brains with a USB interface
also support this functionality.

FIGURE 2. The Jacdac PCB edge connector and mating

cable connector.

Jacdac power supplies take a few different
forms. Jacdac devices that have their own
power source—perhaps via a USB connector
or from a built-in battery—may be bus
power providers. This allows Jacdac power
consumers, such as simple sensors and LEDs,
to be powered by the bus. Alternatively,
devices can be independently powered.

THE JACDAC CONNECTOR

At the electrical level, Jacdac relies on a
3-wire bus for power delivery and data
transfer. One wire is used for ground, one
for data and one for power. In the simpl

with the slots on either side of the PCB edge
connector. This ensures mechanical stability
and provides a positive “click” as the cable is
attached. We've produced cables from 10cm
to 150cm long, and we've also made a simple
PCB “extender” that allows cables to be
daisy-chained.

THE JACDAC SOFTWARE STACK

A plug-and-play abstraction sits on top of
the underlying packet-based Jacdac protocol
and exposes module functionality as a

set of digital services. These services are

configuration, all devices on the Jacdac bus
are connected directly to these three wires.
‘We created a new connector optimized for
Jacdac. One mating half is a double-sided,
three-conductor edge connector that is an
integral part of the printed circuit board
(PCB) of a Jacdac device, making it incredibly
cheap. It works with a purpose-designed
Jacdac cable connector, see Figure 2. This is
designed to be reversible, like USB C, but
internally only requires sprung contacts on
one side due to the double-sided design of
the mating Jacdac PCB edge connector. This
keeps the cost of the cable low.

We worked with a cable assembly
manufacturer to refine our initial ideas for
the Jacdac connector into the final design,
producing two iterations. Sprung mechanical
hooks inside the plastic housing engage

KnwpLADOH

. I P Jent Of&le A _I‘ ;.
transport—the service abstraction could run
over different protocols, and the low-level
protocols could be used in different ways—
but they were designed to work well together.

At the lowest level, the Jacdac network
layer builds on the foundations of RS232,
operating in half-duplex mode to create a

shared bus using just three wires (ground,
power and data). All Jacdac devices broad-
cast data at a fixed 1Mbps frequency
following a defined packet structure.
Every device has a randomly assigned but
fixed 64-bit Jacdac device identifier that
is used to determine the sender and/or
recipient of a Jacdac packet. The chance
of identifier collision on any one Jacdac
bus is astronomically small.
Listen-before-transmit bus arbitration
allows any device to initiate communications

FIGURE 3. A MakeCode program that uses a Jacdac slider, COz sensor and

LED ring medules to program the CO; alarm from Figure 1. The pane below

the microzbit simulator shows the status of the Jacdac modules.

while minimizing collisions, which will be
detected via a cyclic redundancy check.
The Jacdac protocol is similar to the user
datagram protocol (UDP) [8], in that
delivery guarantees are not provided,
although the sender of a command can
request an acknowledgement. Additional
TCP-like functionality [9] can be added to
support reliability and ordering.

In general, a Jacdac server listens for
a command addressed to it and responds
by broadcasting a service report with the
required data. A server will also directly issue
certain information without prompting,
such as events and advertisements. But since
servers do not generally issue commands,
they need not track which other devices are

on the bus, saving valuable resources.

WORKING WITH JACDAC'S
CLIENT/SERVER ARCHITECTURE
Although Jacdac hardware is readily
composable, it won't perform any function
without at least one Jacdac client application
to consume and react to packets emanating
from Jacdac servers on the bus.

The web-based Jacdac dashboard is a
client built on our TypeScript implementa-
tion of the Jacdac stack, which presents
live digital twins of any Jacdac services it
recognizes. Any Jacdaptor with USB support
will link the physical Jacdac bus through to
the dashboard via WebUSBE or WebSerial
Interacting with a physical Jacdac module
such as aslider causes its on-screen twin
to update in real time; similarly, selecting
the desired color for an LED module from
within the browser will cause that physical
module to light up in the requested color.

Jacdac clients running on a computer
(like the Jacdac dashboard) can be written
in TypeScript, Python or C#. But arguably
the real power of Jacdac is the creation
of embedded clients that run on a Jacdac
brain. To make coding these as easy as
possible, we have integrated Jacdac into the
popular Microsoft MakeCode programming
environment for micro:bit, as shown in
Figure 3. Our Jacdac extension allows users
to create embedded Jacdac client apps in-
browser using “Scratch-like’ visual blocks
or JavaScript. Digital twins like those in the
Jacdac dashboard web app also appear in
MakeCode, allowing users to interactively
explore module functionality or to emulate
Jacdac modules they don’t have to hand.

WE HOPE THAT JACDACWILL INSPIRE AND
EMPOWER OTHERS TO PURSUE A RANGE

OF DIFFERENT RESEARCH DIRECTIONS,

ALL CATALYZED BY THE COMMERCIAL
AVAILABILITY OF JACDAC HARDWARE AND
THE COMPREHENSIVE SET OF OPEN-SOURCE
CODE AND DOCUMENTATION

A MakeCode program that uses Jacdac
can be compiled in the browser as usual; the
compiler will link in the embedded Jacdac
stack and necessary libraries to create a
microcbit executable that runs standalone.

JACDACIN PRACTICE

In the course of our research, we have

designed over 40 different Jacdac modules

and produced over 2000 of these for testing
in the lab and with end-users. These modules
fall into four broad categories:

+ User inputs: These include individual
buttons of various types, sliders, joy-
sticks, rotary controls, game pads and
keypads. We also have an optical mouse
tracking sensor.

+ Outputs: We have built a range of RGB
LED modules for Jacdac: a single LED,
ring of 8 LEDs and a strip of 10 LEDs
are all power consumers. We have an
independently powered module that
interfaces to a NeoPixel strip of any
length. We also have relay, servo motor
driver, Braille and display modules.

+ Sensors: In addition to the CO2 sensor
from Figure 1, we have a temperature
and humidity sensor, flex sensor, light
level sensor, soil temperature and
moisture sensor.

Each module contains a low-cost MCU
that interfaces between the underlying input/
output/sensor and the Jacdac bus. Other
than this, basic modules only require a linear
power regulator and a handful of passive
components, resulting in a total bill-of-
materials (BoM) cost of as little as US$0.10
for a button or LED module, based on typical
Chinese component pricing for quantities of
1k units. More sophisticated modules may
use more expensive sensors and/or require
a more capable MCU (e.g. US$0.50 for an
STM32G030).

In addition to modules, we have created
over ten different Jacdac brains, adaptors and
power supplies. We have brains based on the
STM32F4 and RP2040 MCUs that Prcl\"ide
power and bridge to USE like the micro:hit
Jacdaptor of Figure 1; they also expose a
Jacdac HID service that allows Jacdac clients
to generate USB HID events such as mouse
movements. The RP2040 brain has a BoM
cost of as little as US$1.50. Brains based on
the nRF52840 and ESP32 MCUs support
wireless connectivity.

Dedicated Jacdac power supplies can
supply 1A per port for higher current
applications, such as those using multiple
servo motors or long RGB LED pixel strips.

JACDAC HACKATHON

We evaluated Jacdac as part of an international
three-day hackathon with 80 participants
who volunteered to work in small teams

on assistive technology projects targeted at
improving the accessibility of digital devices
and apps. We supplied 50 kits containing
Jacdac modules selected to suit each of

the proposed projects, see Figure 4a for an
example. Our primary goal was to see how
easily newcomers to physical computing and
MakeCode could use Jacdac to prototype
custom devices.

Here we briefly describe one of the
projects, the Video-conferencing Accessibility
Controller (VACO) which is designed to
make video conferencing more accessible to
those with limited movement. In particular,
it provides easier control of features like
muting/unmuting, switching video on
and off, raising and lowering a hand, and
triggering emoticons through dedicated
physical controls. From a hardware
perspective, VACO consists of a microchit
with Jacdaptor, five buttons, two sliders,
and six switch access input modules, see

Figure 4b. Four buttons trigger emoticons,
and a large central button supports quick
mute toggling. One slider raises and lowers
the hand, and the other toggles video. The
switch access modules provide alternative
inputs for users who require accessibility
switches.

The complexity of the prototypes built
during the Hackathon, each of which was
created by a small group of participants
new to device creation in just three days,
demonstrates how quickly they became
productive with Jacdac. And the solutions
themselves illustrate how Jacdac can be
used to address practical challenges and
create solutions that solve very real user
needs. See [7] for more example hackathon
projects and research insights, and [10] for
our subsequent work leveraging Jacdac to
prototype assistive technology devices.

FROM PROTOTYPE TO PRODUCT

From the outset of the Jacdac project

we aspired to create a solution that was
not only innovative and compelling to
use, but also practical and commercially
viable. Throughout our iterative design
and evaluation process, we leveraged our

experience working on other products in
this domain. We focused on two priorities
for Jacdac: optimizing the user experience
and keeping the cost low. We open-sourced
all our Jacdac specifications and numerous
hardware and software reference designs. We
worked with the MakeCode product team to
integrate Jacdac support. And we identified
and worked with hardware partners from

an early stage, initially for the Jacdac cable
and subsequently to validate our hardware
and software prototypes.

‘The results are positive so far. Microsoft
MakeCode now includes Jacdac support in
its stable, mainstream release and several
hardware manufacturers have incorporated
Jacdac into their products. Notably, Kittenbot
in China and Forward Education in Canada
have each released several different kits
containing Jacdac modules, all of which
work with a micro:bit V2 in support of
physical computing applications. The latest
Calliope mini, a physical computer popular
in some German-speaking countries,
incorporates two Jacdac connectors and
therefore works with the above kits without
needing a Jacdaptor. Several companies are
also working on new Jacdac products.

WHERE NEXT FOR JACDAC?

‘The core contribution of our work with
Jacdac is to show how a service-based
modular hardware architecture, based on very
low-cost components, can ease the process of
physical computing and device prototyping.
We use the latest web technologies to simplify
programming and debugging.

We have lots of ideas for new directions
for Jacdac. We hope to gain more detailed
insights from observing users working with
Jacdac to better understand its strengths and
weaknesses. We would like to strengthen
Jacdac’s interoperability with platforms like
the Raspberry Pi, Pi Pico and ESP families,
and to extend our software integration to
other tools and languages. We have sketched
out a ‘topology detection’ scheme based
on simple hardware that could be added
to certain modules and would support a
range of additional scenarios. We would
also like to extend our previous work on a
range of applications that leverage Jacdac
as a platform for end-users with all levels of
experience and from all backgrounds, such
as sonifying sensor data [11] and supporting
the creation of interactive avant-garde
fashion [12].

(b)

FIGURE 4. (a) A Jacdac hardware kit for the micro:bit V2, as used by hackathon
participants; {b) The video conferencing accessibility controller prototype: a
3D-printed enclosure contains mounting pillars that hold the Jacdac modules
neatly in place and the laser-cut top cover includes a large ‘living hinge’button.

We are also actively exploring ways in
which Jacdac might support a transition
from prototypes such as our CO, alarm
to reliable low-volume production, with
software tooling that automates the design
of custom PCBs containing the circuitry
necessary to replace some or all of the Jacdac
modules in a given prototype [13]. In this
way we can facilitate a transition from a fully
modular prototype to a design based on
discrete electronic components. Finally, we
are also developing ways to create custom
enclosures for Jacdac-based designs.

In addition to our own plans and ideas,
we hope that Jacdac will inspire and empower
others to pursue a range of different research
directions, all catalyzed by the commercial
availability of Jacdac hardware and the
comprehensive set of open-source code and
documentation. We can’t wait to see what
you will build with it' m

Acknowledgements

We would like to thank our many Jacdac
collaborators, contributors and Hackathon
participants for their time and energy working
with us. This work was supported by the UK
Engineering and Physical Sciences Research
Council [grant number EP/W020564/1].

James Devine is a Senior Software Engineer at
Microsoft and holds a PhD in Physical Computing
from Lancaster University. His passion lies in
making physical computing more accessible to
all through new software, hardware, tools and
experiences.

Steve Hodges is a Distinguished Professor of
Computing and Digital Systems at Lancaster
University, UK. His work to make computers
more useful, engaging and inclusive spans
domains such as the Internet of Things, mobile
and ubiquitous computing, assistive technologies
and education. He holds a PhD from the
University of Cambridge.

Thomas Ball is a Partner Researcher at Microsoft.
He led the team that developed the MakeCode
programming environment for the BBC micro:bit
(www.makecode.com) in 2016. His expertise is in
software engineering, programming languages,
and platforms for CS education.

Michat Moskal works at Microsoft Research in
Redmond, US. He has worked on formal software
verification, programming language compilers,
interpreters and runtimes, as well as programming
for beginners, and more recently syntactic
constraints on output of Large Language Models.
His PhD is from University of Wroctaw in Poland.

Peli de Halleux is a Principal Research Software
Development Engineer at Microsoft, US, where

he works in the Research in Software Engineering
team. He earned a PhD in applied mathematics
from the Catholic University of Louvain, Belgium.

Gabriele D’Amone is a Senior Exploratory Design
Engineer at Microsoft in the US. He loves to

blend emerging technologies, user interaction
techniques and design thinking to develop
concepts, build prototypes and to advance early-
stage products. He holds a MEng degree from
Imperial College London.

David Gakure is a Senior Development Engineer
at IHI Charging Systems International, Germany.
His scientific interests straddle embedded
systems design, sensor integration, loT, power
management and energy efficiency. He received
his BSc in Mechatronic Engineering from Dedan
Kimathi University of Technology, Kenya.

Lorraine Underwood is a Research Assodiate

and PhD student at Lancaster University, UK. Her
research is around using physical computing tools
to teach data science to primary-age children.

Her background is in computer science education
and making with electronics.

Matthew Oppenheim works in marine geo-
physical surveying. When not offshore, he works at
InfoLab21, Lancaster University, where he designs
hardware for assistive technology projects.

Joe Finney is a Professor of Computer Science in
the School of Computing and Communications
at Lancaster University, UK. His research interests
focus on systems support for novel applications
of lightweight embedded systems. He holds a
PhD from Lancaster University and is a founding
partner of the BBC micro:bit initiative.

Kobi Hartley is a Research Associate and

PhD student at Lancaster University, UK. His
work involves exploring novel approaches to
prototyping and isotyping embedded hardware
as well as challenges in transitioning hardware
prototypes to production.

Paul Kos is a Director of Hardware and Systems
Engineering based in Shenzhen, China. He is
passionate about leveraging technology to help
people with accessibility needs. Paul holds a BS
in Electrical and Electronics Engineering from
Texas Tech University.

REFERENCES

[1] Steve Hodges, Sue Sentance, Joe Finney, and
‘Thomas Ball. 2020. Physical computing: A key
element of modern computer science education.
IEEE Computer 53, 4 (2020), 20-30. https://doi.
org/10.1109/MC.2019.2935058

[2] Mannu Lambrichts, Raf Ramakers, Steve Hodges,
Sven Coppers, and James Devine. June 2021.

A survey and taxonomy of electronics toolkits for
interactive and ubiquitous device prototyping.
Proceedings of the ACM Interactive, Mobile,
Wearable and Ubiquitous Technologies, 5, 2,
Article 70 https://doi.org/10.1145/3463523

[3] Massimo Banzi and Michael Shiloh. 2014.
Getting started with Arduino: The op e

[8] Jon Postel et al. August 1980. User datagram
protocol. STD 6, REC 768.

[9] Jon Postel et al. 1981. Transmission control
protocol. STD 7, RFC 793, September 1981.

[10] Rodolfo Cassovich, Steve Hodges, Jin Kang,
and Audrey Girouard. 2023. Co-designing new
keyboard and mouse solutions with people living
with motor impairments. Proceedings of the 25%
International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS 23). ACM,
New York, NY, USA, Article 98, 1-7. https://doi.
org/10.1145/3597638.3614549

[11] Venkatesh Potluri, John Th James Devine,

clectronics prototyping platform. Maker Media, Inc.

[4] Rebecca E Bruce, . Dean Brock, and Susan L.
Reiser. June 2015. Make space for the Pi.
Proceedings of the IEEE SoutheastCon 2015.

[5] Jonny Austin, Howard Baker, Thomas Ball,
James Devine, Joe Finney, Peli De Halleux, Steve
Hodges, Michal Moskal, and Gareth Stockdale.
2020. The BBC micro:bit—from the UK to the
world. Communications of the ACM 63, 3, 62-69.

[6] Thomas Ball, Peli de Halleux, James Devine,
Steve Hodges, and Michat Moskal. 2024. Jacdac:
Service-based prototyping of embedded systems.
Proceedings of the ACM Interactive, Mobile,
Wearable and Ubiquitous Technologies, Lang. 8,
PLDI, Article 175 (June 2024), 24 pages.
https://doi.org/10.1145/3656405

[7] James Devine, Michat Moskal, Peli de Halleux,
‘Thomas Ball, Steve Hodges, Gabricle D'Amone,
David Gakure, Joe Finncy, Lorraine Underwood,
Kobi Hartley, Paul Kos, and Matt Oppenheim.
Sept. 2022. Plug-and-play physical computing
with Jacdac. Proceedings of the ACM Interactive,
Mobile, Wearable and Ubiquitous Technologies, 6, 3,
Article 110 https://doi.org/10.1145/3550317

gshin Lee, Nora Morsi, Peli De Halleux, Steve
Hodges, and Jennifer Mankoff. 2022, PSST:
Enabling blind or visually impaired developers
to author sonifications of streaming sensor data.
Proceedings of the 35t% Annual ACM Symposium
on User Interface Software and Technology (UIST
"22). ACM, New York, NY, USA, Article 46, 1-13.
https://doi.org/10.1145/3526113.35457

[12] Teddy Seyed, James Devine, Joe Finney,
Michat Moskal, Peli de Halleux, Steve Hodges,
Thomas Ball, and Asta Roseway. 2021. Rethink-
ing the runway: Using avant-garde fashion to
design a system for wearables. Proceedings of
the 2021 CHI Conference on Human Factors in
Computing Systems (CHI '21). ACM, New York,
NY, USA, Article 45, 1-15. https://doi.org/
10.1145/3411764.3445643
[13] Kobi Hartley, Joe Finney, Steve Hodges,

Peli De Halleux, James Devine, and Gabricle
D'Amone. 2023. MakeDevice: Evolving devices
beyond the prototype with Jacdac. Proceedings
of the Seventeenth International Conference on
Tangible, Embedded, and Embodied Interaction
(TEI 23). ACM, New York, NY, USA, Article 37,
1-7. https://doi.org/10.1145/3569009.3573106

