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(a)

FIGURE 1. Jacdac is a new open-source hardware and software platform, inspired by USB
but implemented more simply and cheaply to support plug-and-play physical computing
and device prototyping. (a) A BBC micro:bit with Jacdac adaptor (left), three Jacdac
modules—slider, CO; sensor and LED ring (middle), and three Jacdac cables (right); (b) A
completed prototype CO2 monitor; note that the slider and LED ring are daisy-chained.

PHYSICAL COMPUTING AND DEVICE PROTOTYPING

hysical computing involves the creation of interactive digital devices that sense and respond to the
world around them [1]. Typically, sensors, actuators and communications modules are connected
to a microcontroller (MCU) running code that maps sensed inputs into outputs such as lighting,
sound and electro-mechanical actuation [7]. This prototyping process builds on a wide range of
disciplines including electronics, mechatronics, computer science and software development. It’s typically
experimental, creative and highly iterative.

Numerous physical computing platforms
simplify and accelerate the development of
this type of MCU-based system [2]. Many
are targeted at students and hobbyists,
with three of the most well-established
being Arduino [3], Raspberry Pi [4] and
the BBC micro:bit [5]. These systems
support prototyping at three increasing
levels of abstraction [2]. The most flexible
approach is often the cheapest but also the
most fiddly: connecting discrete electronic
components, often mounted in a solderless
breadboard, via individual wires. A more
integrated approach involves connecting one
or more pre-soldered modules or ‘breakout

boards’ that integrate the support circuitry
for a given peripheral, again via individual
wires. This makes hardware composition
quicker, but still requires care and starts to
restrict flexibility. And finally, many MCU
boards support a range of platform-specific
accessories, such as shields and HATS; these
are the easiest to use but typically the least
flexible and most expensive.

In this paper we present Jacdac, an open-
source hardware and software platform
for plug-and-play physical computing
and device prototyping. Inspired by USB,
Jacdac is designed to combine the simplicity
of ready-to-use accessories but without

compromising the flexibility and lower cost
of modules and breakout boards. Jacdac
also supports a low-overhead transition to
discrete electronic components if further
design optimization is desired.

Since we only have enough space here
for a high-level description of Jacdac,
we refer those interested in more details,
including how we have assessed Jacdac
technically and evaluated it with users, to [6]
and [7] respectively. Jacdac is open source
at https://github.com/microsoft/jacdac,
and a list of commercially available Jacdac
hardware is maintained at https://microsoft.
github.io/jacdac-docs/devices/.




INTRODUCING JACDAC

The Jacdac modular, plug-and-play platform
allows a physical computing prototype to
be assembled quickly and easily. Jacdac-
compatible components incorporate one

or more Jacdac connectors and are joined
together via Jacdac cables that carry power
and data. Jacdacs architecture naturally
results in the following categories of device
hardware.

A Jacdac module, or server, is simply a
Jacdac device that presents one or more
sensors, actuators or other peripherals onto
the shared Jacdac bus via Jacdac services.
Figure 1 shows three such modules: a slider,
an LED ring, and a CO2 module.

A Jacdac brain, or client, is an application
that orchestrates one or more Jacdac modules
via their services. In Figure 1, the micro:bit
is the brain. Brains can be integrated with
on-board peripherals, and may therefore
also provide services. Multiple brains may
consume the same set of module services as
each other, or different combinations of them.

Jacdac adaptors (or Jacdaptors) allow
existing electronics prototyping platforms
like micro:bit, Raspberry Piand Arduino to
work with Jacdac. Figure 1 shows an adaptor
for the micro:bit. With the right firmware,
the micro:bit can expose its on-board
peripherals as Jacdac services. Finally, it can
also bridge Jacdac bus traffic through to a
laptop or desktop over USB, whereupon
browser-based applications can interact with
Jacdac devices via WebUSB or WebSerial.
Mative Jacdac brains with a USB interface
also support this functionality.

FIGURE 2. The Jacdac PCB edge connector and mating

cable connector.

Jacdac power supplies take a few different
forms. Jacdac devices that have their own
power source—perhaps via a USB connector
or from a built-in battery—may be bus
power providers. This allows Jacdac power
consumers, such as simple sensors and LEDs,
to be powered by the bus. Alternatively,
devices can be independently powered.

THE JACDAC CONNECTOR

At the electrical level, Jacdac relies on a
3-wire bus for power delivery and data
transfer. One wire is used for ground, one
for data and one for power. In the simpl

with the slots on either side of the PCB edge
connector. This ensures mechanical stability
and provides a positive “click” as the cable is
attached. We've produced cables from 10cm
to 150cm long, and we've also made a simple
PCB “extender” that allows cables to be
daisy-chained.

THE JACDAC SOFTWARE STACK

A plug-and-play abstraction sits on top of
the underlying packet-based Jacdac protocol
and exposes module functionality as a

set of digital services. These services are

configuration, all devices on the Jacdac bus
are connected directly to these three wires.
‘We created a new connector optimized for
Jacdac. One mating half is a double-sided,
three-conductor edge connector that is an
integral part of the printed circuit board
(PCB) of a Jacdac device, making it incredibly
cheap. It works with a purpose-designed
Jacdac cable connector, see Figure 2. This is
designed to be reversible, like USB C, but
internally only requires sprung contacts on
one side due to the double-sided design of
the mating Jacdac PCB edge connector. This
keeps the cost of the cable low.

We worked with a cable assembly
manufacturer to refine our initial ideas for
the Jacdac connector into the final design,
producing two iterations. Sprung mechanical
hooks inside the plastic housing engage
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transport—the service abstraction could run
over different protocols, and the low-level
protocols could be used in different ways—
but they were designed to work well together.

At the lowest level, the Jacdac network
layer builds on the foundations of RS232,
operating in half-duplex mode to create a

shared bus using just three wires (ground,
power and data). All Jacdac devices broad-
cast data at a fixed 1Mbps frequency
following a defined packet structure.
Every device has a randomly assigned but
fixed 64-bit Jacdac device identifier that
is used to determine the sender and/or
recipient of a Jacdac packet. The chance
of identifier collision on any one Jacdac
bus is astronomically small.
Listen-before-transmit bus arbitration
allows any device to initiate communications

FIGURE 3. A MakeCode program that uses a Jacdac slider, COz sensor and

LED ring medules to program the CO; alarm from Figure 1. The pane below

the microzbit simulator shows the status of the Jacdac modules.

while minimizing collisions, which will be
detected via a cyclic redundancy check.
The Jacdac protocol is similar to the user
datagram protocol (UDP) [8], in that
delivery guarantees are not provided,
although the sender of a command can
request an acknowledgement. Additional
TCP-like functionality [9] can be added to
support reliability and ordering.

In general, a Jacdac server listens for
a command addressed to it and responds
by broadcasting a service report with the
required data. A server will also directly issue
certain information without prompting,
such as events and advertisements. But since
servers do not generally issue commands,
they need not track which other devices are

on the bus, saving valuable resources.

WORKING WITH JACDAC'S
CLIENT/SERVER ARCHITECTURE
Although Jacdac hardware is readily
composable, it won't perform any function
without at least one Jacdac client application
to consume and react to packets emanating
from Jacdac servers on the bus.

The web-based Jacdac dashboard is a
client built on our TypeScript implementa-
tion of the Jacdac stack, which presents
live digital twins of any Jacdac services it
recognizes. Any Jacdaptor with USB support
will link the physical Jacdac bus through to
the dashboard via WebUSBE or WebSerial
Interacting with a physical Jacdac module
such as aslider causes its on-screen twin
to update in real time; similarly, selecting
the desired color for an LED module from
within the browser will cause that physical
module to light up in the requested color.

Jacdac clients running on a computer
(like the Jacdac dashboard) can be written
in TypeScript, Python or C#. But arguably
the real power of Jacdac is the creation
of embedded clients that run on a Jacdac
brain. To make coding these as easy as
possible, we have integrated Jacdac into the
popular Microsoft MakeCode programming
environment for micro:bit, as shown in
Figure 3. Our Jacdac extension allows users
to create embedded Jacdac client apps in-
browser using “Scratch-like’ visual blocks
or JavaScript. Digital twins like those in the
Jacdac dashboard web app also appear in
MakeCode, allowing users to interactively
explore module functionality or to emulate
Jacdac modules they don’t have to hand.

WE HOPE THAT JACDACWILL INSPIRE AND
EMPOWER OTHERS TO PURSUE A RANGE

OF DIFFERENT RESEARCH DIRECTIONS,

ALL CATALYZED BY THE COMMERCIAL
AVAILABILITY OF JACDAC HARDWARE AND
THE COMPREHENSIVE SET OF OPEN-SOURCE
CODE AND DOCUMENTATION

A MakeCode program that uses Jacdac
can be compiled in the browser as usual; the
compiler will link in the embedded Jacdac
stack and necessary libraries to create a
microcbit executable that runs standalone.

JACDACIN PRACTICE

In the course of our research, we have

designed over 40 different Jacdac modules

and produced over 2000 of these for testing
in the lab and with end-users. These modules
fall into four broad categories:

+ User inputs: These include individual
buttons of various types, sliders, joy-
sticks, rotary controls, game pads and
keypads. We also have an optical mouse
tracking sensor.

+ Outputs: We have built a range of RGB
LED modules for Jacdac: a single LED,
ring of 8 LEDs and a strip of 10 LEDs
are all power consumers. We have an
independently powered module that
interfaces to a NeoPixel strip of any
length. We also have relay, servo motor
driver, Braille and display modules.

+ Sensors: In addition to the CO2 sensor
from Figure 1, we have a temperature
and humidity sensor, flex sensor, light
level sensor, soil temperature and
moisture sensor.

Each module contains a low-cost MCU
that interfaces between the underlying input/
output/sensor and the Jacdac bus. Other
than this, basic modules only require a linear
power regulator and a handful of passive
components, resulting in a total bill-of-
materials (BoM) cost of as little as US$0.10
for a button or LED module, based on typical
Chinese component pricing for quantities of
1k units. More sophisticated modules may
use more expensive sensors and/or require
a more capable MCU (e.g. US$0.50 for an
STM32G030).

In addition to modules, we have created
over ten different Jacdac brains, adaptors and
power supplies. We have brains based on the
STM32F4 and RP2040 MCUs that Prcl\"ide
power and bridge to USE like the micro:hit
Jacdaptor of Figure 1; they also expose a
Jacdac HID service that allows Jacdac clients
to generate USB HID events such as mouse
movements. The RP2040 brain has a BoM
cost of as little as US$1.50. Brains based on
the nRF52840 and ESP32 MCUs support
wireless connectivity.

Dedicated Jacdac power supplies can
supply 1A per port for higher current
applications, such as those using multiple
servo motors or long RGB LED pixel strips.

JACDAC HACKATHON

We evaluated Jacdac as part of an international
three-day hackathon with 80 participants
who volunteered to work in small teams

on assistive technology projects targeted at
improving the accessibility of digital devices
and apps. We supplied 50 kits containing
Jacdac modules selected to suit each of

the proposed projects, see Figure 4a for an
example. Our primary goal was to see how
easily newcomers to physical computing and
MakeCode could use Jacdac to prototype
custom devices.

Here we briefly describe one of the
projects, the Video-conferencing Accessibility
Controller (VACO) which is designed to
make video conferencing more accessible to
those with limited movement. In particular,
it provides easier control of features like
muting/unmuting, switching video on
and off, raising and lowering a hand, and
triggering emoticons through dedicated
physical controls. From a hardware
perspective, VACO consists of a microchit
with Jacdaptor, five buttons, two sliders,
and six switch access input modules, see



Figure 4b. Four buttons trigger emoticons,
and a large central button supports quick
mute toggling. One slider raises and lowers
the hand, and the other toggles video. The
switch access modules provide alternative
inputs for users who require accessibility
switches.

The complexity of the prototypes built
during the Hackathon, each of which was
created by a small group of participants
new to device creation in just three days,
demonstrates how quickly they became
productive with Jacdac. And the solutions
themselves illustrate how Jacdac can be
used to address practical challenges and
create solutions that solve very real user
needs. See [7] for more example hackathon
projects and research insights, and [10] for
our subsequent work leveraging Jacdac to
prototype assistive technology devices.

FROM PROTOTYPE TO PRODUCT

From the outset of the Jacdac project

we aspired to create a solution that was
not only innovative and compelling to
use, but also practical and commercially
viable. Throughout our iterative design
and evaluation process, we leveraged our

experience working on other products in
this domain. We focused on two priorities
for Jacdac: optimizing the user experience
and keeping the cost low. We open-sourced
all our Jacdac specifications and numerous
hardware and software reference designs. We
worked with the MakeCode product team to
integrate Jacdac support. And we identified
and worked with hardware partners from

an early stage, initially for the Jacdac cable
and subsequently to validate our hardware
and software prototypes.

‘The results are positive so far. Microsoft
MakeCode now includes Jacdac support in
its stable, mainstream release and several
hardware manufacturers have incorporated
Jacdac into their products. Notably, Kittenbot
in China and Forward Education in Canada
have each released several different kits
containing Jacdac modules, all of which
work with a micro:bit V2 in support of
physical computing applications. The latest
Calliope mini, a physical computer popular
in some German-speaking countries,
incorporates two Jacdac connectors and
therefore works with the above kits without
needing a Jacdaptor. Several companies are
also working on new Jacdac products.

WHERE NEXT FOR JACDAC?

‘The core contribution of our work with
Jacdac is to show how a service-based
modular hardware architecture, based on very
low-cost components, can ease the process of
physical computing and device prototyping.
We use the latest web technologies to simplify
programming and debugging.

We have lots of ideas for new directions
for Jacdac. We hope to gain more detailed
insights from observing users working with
Jacdac to better understand its strengths and
weaknesses. We would like to strengthen
Jacdac’s interoperability with platforms like
the Raspberry Pi, Pi Pico and ESP families,
and to extend our software integration to
other tools and languages. We have sketched
out a ‘topology detection’ scheme based
on simple hardware that could be added
to certain modules and would support a
range of additional scenarios. We would
also like to extend our previous work on a
range of applications that leverage Jacdac
as a platform for end-users with all levels of
experience and from all backgrounds, such
as sonifying sensor data [11] and supporting
the creation of interactive avant-garde
fashion [12].

(b)

FIGURE 4. (a) A Jacdac hardware kit for the micro:bit V2, as used by hackathon
participants; {b) The video conferencing accessibility controller prototype: a
3D-printed enclosure contains mounting pillars that hold the Jacdac modules
neatly in place and the laser-cut top cover includes a large ‘living hinge’button.

We are also actively exploring ways in
which Jacdac might support a transition
from prototypes such as our CO, alarm
to reliable low-volume production, with
software tooling that automates the design
of custom PCBs containing the circuitry
necessary to replace some or all of the Jacdac
modules in a given prototype [13]. In this
way we can facilitate a transition from a fully
modular prototype to a design based on
discrete electronic components. Finally, we
are also developing ways to create custom
enclosures for Jacdac-based designs.

In addition to our own plans and ideas,
we hope that Jacdac will inspire and empower
others to pursue a range of different research
directions, all catalyzed by the commercial
availability of Jacdac hardware and the
comprehensive set of open-source code and
documentation. We can’t wait to see what
you will build with it' m
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