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Abstract

Quantum mechanics and information theory have jointly impacted multiple fields. Two

in particular are security and computing. Via the use of quantum resources, exploits in

currently used digital security systems are known, whilst the theory also promises security

for future systems. Quantum theory has been shown to have fundamental impacts on

computing technology, but modern experimental hardware is limited in power and use

cases.

This thesis is concerned with developments in the use of quantum resources in both

fields. Physically unclonable functions (PUFs), a static form of entropy source with uses

in hardware-based cryptography, are investigated. Utilising colloidal quantum dot based

ink in order to fabricate a series of optical PUF (OPUF) devices, the reliable transforma-

tion of (classical) optical information whose source’s fundamental optical properties are

governed by quantum theory into a unique fingerprint for further processing in crypto-

graphic protocols is explored. First, the ability to use only a smartphone device to both

excite, and capture the optical emission of, an OPUF is explored. It is shown that these

images can be reliably converted into binary keys via two algorithms. Next, a novel type

of OPUF is proposed. Two inks, each comprised of quantum dots with peak emission

at different wavelengths are used to fabricated a device which produces two, separable

responses under a single optical challenge. The correlation between two outputs from a

given device is found to be inconsistent, with the cause for such inconsistencies explored.

Finally, by making use of a hybrid quantum-classical computing method, an algorithm

for learning the preparation circuit of an unknown mixed state is defined. In order

to combat known issues with scalability of current hardware, this work explores the

possibility of reformulating the well-known Hilbert-Schmidt distance using local quantum

objects. A variety of functions are investigated, with the final answer remaining open.

11



List of Figures

2.1 Schematic modelling a PUF as blackbox process. . . . . . . . . . . . . . 20

2.2 Schematic modelling of an arbitrary dynamic entropy source as a blackbox

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Schematic demonstrating the instrumental idea behind an optical PUF. . 22

2.4 Visual representation of the relationship between challenges and responses

for a given PUF device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Figure demonstrating the difference in bandstructures . . . . . . . . . . 26

2.6 Simple band diagrams showing examples for the: creation of free electron

(a), creation of hole (b), creation of electron-hole pair (c) . . . . . . . . . 27

2.7 Density of states for semiconductors with different degrees of freedom. . . 29

2.8 Schematic of electron-hole creation and re-combination. . . . . . . . . . . 30

2.9 A simple representation of the principle behind variational quantum algo-

rithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Visual representation of Bloch Sphere formalism. . . . . . . . . . . . . . 35

2.11 Quantum circuit representing the most generic quantum operation. . . . 36

2.12 Example of Loschmidt-Echo type circuit. . . . . . . . . . . . . . . . . . . 40

2.13 Simple visual representation of cost function landscapes exhibiting different

phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Flowchart displaying a simplefied view of the overall, generic processing

pipeline for interrogating PUF devices in this work. . . . . . . . . . . . . 44

3.2 QD-PUF design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Simple schematic showcasing the shroud-based capture system. . . . . . . 47

3.4 Simple schematic of the microscope-based capturing system. . . . . . . . 48

3.5 Visual schematic demonstrating experimental set up for capturing images

of PUF devices using a smartphone. . . . . . . . . . . . . . . . . . . . . . 49

3.6 Example of AHB algorithm on a given input. . . . . . . . . . . . . . . . . 50

3.7 Example of R-MLBP algorithm on a given input. . . . . . . . . . . . . . 51

3.8 Simple representation of pixel-wise comparison points for RMLBP. . . . . 52

12



3.9 An example of the intra and inter Hamming distance distributions gener-

ated for a given PUF instance. . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Examples of R-MLBP and AHB outputs for three different PUF input

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Example intra-Hamming and inter-Hamming distributions for fingerprints

produced across a range of QD PUFs under R-MLBP and AHB. . . . . . 68

4.3 Plot of calculated average biases for PUF fingerprint outputs. . . . . . . 69

4.4 Decidability scores for all 48 single-emission PUF devices. . . . . . . . . . 70

4.5 A comparison of false acceptance rate and expected number of independent

bits for a single-dot emission PUF device, imaged in shroud. . . . . . . . 71

4.6 A comparison of false acceptance rate and expected number of independent

bits for a single-dot emission PUF device, 0.06 kLux. . . . . . . . . . . . 72

4.7 A comparison of false acceptance rate and expected number of independent

bits for a single-dot emission PUF device, 0.326. . . . . . . . . . . . . . . 73

4.8 A comparison of false acceptance rate and expected number of independent

bits for a single-dot emission PUF device, 0.220 kLux. . . . . . . . . . . . 74

4.9 Intra-Hamming and inter-Hamming distributions generated via R-MLBP

from images captured at 0.006 kLux, 0.326 kLux, and 0.220 kLux . . . . 75

4.10 Example of the average decidability calculated for a PUF device, over

varying radius for fingerprints generated via R-MLBP and AHB. . . . . . 76

4.11 4-panel figure of thresholded FARs and FRRs. . . . . . . . . . . . . . . . 77

5.1 Diagramatic representations of one-to-one and one-to-many PUFs. . . . . 80

5.2 Expected emission spectra for absorbance and emission for CIS530 and

CIS650 colloidal quantum dots. . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Schematic showing potential cross-talk between quantum dots in HPUFs. 83

5.4 Schematic showcasing potential usecase for HPUF devices with indepen-

dent correlation maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Filtered images of DH-PUF and WH-PUF devices. . . . . . . . . . . . . 86

5.6 Examples of captures emission, and output R-MLBP and AHB fingerprints

for H-PUF devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Figures showcasing intra- and inter- distributions over varying choice of

radius for fingeprints generated from images of isolated emissions for a

given H-PUF device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.8 Variation of DOF and bias for a given HPUF device. . . . . . . . . . . . 89

13



5.9 Examples of the varying statistics for Hamming distributions over choices

of radius for R-MLBP and AHB for isolated CIS650 emission for a given

HPUF device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.10 Optical microscope images of DHPUF and WHPUF devices. . . . . . . . 91

5.11 Annotated isolated emission patterns of CIS5530 and CIS650 HPUF devices. 92

6.1 Overview of QMSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 QMSC Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.1 Simple schematic to prompt a smartphone user to interrogate a PUF device.117

A.2 Example inputs and outputs into a perspective correction algorithm. . . . 118

14



Chapter 1

Introduction

Since the mid-20th century, how we view the processing of information has changed sig-

nificantly. From a practical standpoint, the ever-growing ubqiuitous presence of personal

computers in the home, office, and on the person, (initially a luxury reserved for large

businesses, with the financial and spatial resources to house large machines for what is

now viewed as elementary data processing) have further changed how we perceive and

interact with information.

From a more theoretic standpoint, Claude Shannon’s work in the 1940s helped create

a basis of understanding information through the lens of mathematics. Whilst earlier

work by Nyquist [88] and Hartley [56] had examined elements of the physical nature

of information transmission (the latter’s name is given to the unit of information in base

10 due to his work on information distinguishability), Shannon’s work is considered a

historical turning point in the development of information theory. Via discussions with

von Neumann, Shannon was made aware of the direct link between his mathematical

theory of communication and earlier work in statistical and thermodynamics, resulting

in the formal definition of entropy in an informational sense, which is considered to

encompass precisely the same notion that researchers had paired it with earlier. This idea

that information theory could be linked to physical theories pervaded and strengthened,

and following Landauer’s infamous proclamation in 1991 that “Information is physical”

[71], has been taken as gospel by the majority of physicists.

The 20th century also bore witness to the modern development of quantum theory,

and the realisation that the inherent workings of nature may (in a simplefied view) boil

down to chance. If we are to subscribe to Landauer’s viewpoint and accept a direct

relationship between (phyiscal) nature and the concept of information, it is then nat-

ural to wonder how the advent of quantum mechanics reshapes our understanding of

information theory. Indeed, in 1962, Gordon [49] first considered the effect of quantum

phenomena on the transmission of information through a channel. Despite this question
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not being considered prior to Gordon’s work, a quantum analogue of Shannon’s entropy

had already been defined by von Neumann in his work on statistical quantum mechanics

[113], and a multitude of alternative measures of information in quantum theory have

since been introduced [96, 108]. Feynman’s proposition in 1982 [43] that the simulation

of quantum systems would likely be impossible via classical devices builds further on

the link between information processing and physical theories, and, along with Deutsch’s

proposal of the quantum equivalent to a Turing machine [30], helped birth the study

of quantum computing. Since, quantum computers have been realised, and the field of

quantum information theory has given rise to an increased understanding of cryptogra-

phy and (more generally) digital security, via the (both theoretical and experimental)

processing of quantum information within physical systems.

The use of quantum theory to achieve security goes beyond the direct manipulation

of quantum information. In the combat against counterfeit goods, the study of Physical

Unclonable Function (PUFs) has gained much traction. A PUF is a physical system

that exhibits some unique and readable property when interrogated, due to randomness

inherent within the system. Their production of (seemingly) random bits of information

has led to them being dubbed an entropy source, in a similar vein to random number

generators [18]. Devices that are capable of generating high levels of entropy are of

great practical use in the field of cryptography, where it’s generally held that the higher

the randomness of information (typically keys in this context), the greater the level

of security. Multiple types of PUFs have been proposed and experimentally realised,

typically exploiting seemingly random artefacts caused by hard to control manufacturing

processes of a particular device, such as microscale variation in paper fibres [115]. As well

as exploiting classical physical processes, we are able to realise quantum PUFs, exploiting

the non-deterministic1 nature of quantum theory in order to harness the unique and

unclonable response. By documenting and classifying how a PUF responds differently to

different interrogation parameters allows for their use as a means of secure authentication:

if it is trusted that a PUF device cannot be genuinely cloned, then it is sufficient to

verify these challenge and response pairs in order to determine the authenticity of the

device. Use of PUFs in an underlying protocol has many applications across both physical

security, and potential cryptographic tasks [101, 79].

In this work, we focus on how information can be manipulated and processed in light

of quantum theory, to aid the fields of security and computation. Chapter 2 seeks to

1Of course, the non-determinism of quantum theory is not a closed question, and the field of quantum
foundations seeks to understand precisely how quantum theory describes our reality. However, for the
purposes of this work, whether or not the universe truly is deterministic is inconsequential, as we have
no way to exploit any potential superdeterminism of the universe. As such, we are safe to assume
non-determinism, and leave the philosophical nature of such questions to the foundational theorists.

16



establish a basis from which the research work is contextualised, via an exploration of

related work and the theoretical background behind the topics. Chapter 3 then provides

a systematic account of the experimental methods with which results were both obtained

and analysed.

Chapters 4-5 focus on the use of quantum dots, semi-conductor nanomaterials whose

optical interactions are governed by quantum mechanics, in order to build secure authen-

tication protcols. An examination of the classical optical, unique information produced

by these devices as a result of optical interactions governed by quantum mechanics is

conducted, in order to build secure authentication protcols. In chapter 4, that these

materials’ optical properties can be captured at a macroscale is investigated as means

for conducting authentication schemes using them with ubiquitous technology, namely, a

smartphone. Chapter 5, shifting away from the ubiquitious technology framework, pro-

poses a novel device utilising two layers of ink comprising of quantum dots, for further

research in applications to authentication.

Chapter 6 deals with quantum information directly: focusing on how we can use

quantum resources in order to understand and process quantum information, in the form

of (sets of) two-dimensional quantum states. A novel algorithm for the compilation

of arbitrary mixed states is presented, with the focal work being the construction and

analyses of candidate cost functions for use in the algorithm.
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Chapter 2

Background

This chapter provides a brief review of work relevant to the remainder of the thesis, and

explores the theory and background of the work shown in the later chapters. Firstly, pre-

vious work relating to physically unclonable functions (PUFs) is explored, with particular

focus given to those of an optical and/or ubiquitous nature, as well as the first algorithm

proposed for fingerprinting PUFs. Then, an overview of early work in quantum comput-

ing and algorithms is provided, with an explicit focus on variational quantum algorithms

(VQAs), and early work on state compilation.

Firstly, the field of Physical Unclonable Functions (PUFs) is introduced, along with

the key notion of challenge response pairs, and examples of the latter’s relation to the

former. A small recap of the physical background of quantum dot PUFs is provided,

before giving a brief introduction to computer vision techniques, and their relevance to

optical PUFs.

Then, variational quantum algorithms are introduced, via an introduction to current-

term quantum computing and its challenges. Preliminaries for the work presented in

chapter 6, along with mathematical notation used throughout said chapter, are given

here. The task of mixed state compilation, which forms the basis of the work presented

throughout the aforementioned chapter, is then introduced, before an exploration of

scalability issues for the algorithm presented in this work, and VQAs in general.

2.1 Physical Unclonable Functions

A form of hardware-based security, PUFs have been proposed as a primitive for a variety of

cryptographic schemes, notably key generation and authentication [106]. PUF devices are

categorised by a challenge-response mechanism; given a (set of) “challenge(s)”, i.e., some

physical interrogation of the device, some subsequent and readable (set of) response(s)

is recorded. As sources of entropy, each challenge-response mechanism appears random
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— both when compared to other challeng-response pairs (CRPs) from the same device,

and when compared to CRPs from other devices. As such, it is expected that any PUF

(generally) satisfies the following requirements:

� Uniqueness — No two PUFs should exhibit the same readable property.

� Stability — Given a PUF device, the property to be read should provide the same

information over a long period of time.

� Assymetric fabrication process — A PUF device should be easy to fabricate, but

comparatively hard to replicate.

� Unpredictability — It should be hard to predict the response for a given challenge,

even if other CRP outputs are known.

� Scrambling — Joint with unpredictability, the process by which a PUF converts a

challenge into a response should be hard to discover.

Depending on the implementation of a PUF device, some of these requirements may be

loosened. Where appropriate, these will be addressed later.

The need for stability inherently characterises PUFs as static entropy sources, that

is to say, they produce random information within the spatial domain (between different

devices, and under different inputs), but their outputs are static over time: the output

for a given input at time t0 should be the same at time t1 > t0, as shown in fig. 2.1. This

is in direct contrast to dynamic entropy sources (shown in fig. 2.2 as a contrast), such

as (true) random number generators (RNGs) [18], which must produce different random

information, even under the same input, at times t0 and t1. Dynamic entropy sources can

act as a primitive for a variety of cryptographic purposes, such as key generation, and

(when true randomness is guaranteed) are essential for the implementation of one-time

pads, and thus provably unbreakable encryption. Static entropy sources may also be used

for key generation, but such uses will usually be paired with conditions on implementa-

tion, such as an assumption that the bearer of the entropy source is a particular party.

This makes them natural candidates for use for authentication (which will be a driving

motivation in this work), whilst their ability to produce a reliable, unclonable uniqueness

makes them suitable for identification and anti-counterfeiting purposes (such purposes

need not be distinct from authentication, as explored in chapters 4 and 5).

PUFs were first proposed by Pappu, under the moniker “Physical One-Way Func-

tions” [90], taking inspiration from the cryptographic tool of (mathematical) one way

functions [62]. This early PUF was proposed in the form of a three-dimensional inho-

mogeneous microstructure consisting of micron-scale glass spheres cured in optical-grade
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Figure 2.1: Schematic modelling a PUF as blackbox process. At time t = 0, under
different challenges (represented by c1, c2, c3), the PUF produces different responses,
(represented by r1, r2, r3). At subsequent times t = 1 and t = 2, the PUF produces the
same response when re-interrogated with a previous challenge.

epoxy. Taking advantage of the optical coherent scattering nature of such structures,

these tokens were interrogated using a laser beam, with the resulting optical speckle pat-

tern being captured with a camera, and treated as the response. In order to extract a

binary key from the output speckle pattern, the first fingerprint extraction algorithm for

PUFs was also proposed, relying on the use of Gabor Transformations to characterise

the different optical patterns produced by different challenges (formed by rotations of the

incident beam at different angles) and devices. With both the challenge and subsequent

response consisting of optical information, PUFs such as these are typically dubbed Op-

tical PUFs (O-PUFs). In the following year, Gassend et. al [47] coined the term

PUF when introducing their Silicon Physical Random Function. With the aim of char-

acterising, identifying, and authenticating semiconductor devices on integrated circuits,

these devices take an (electrical) signal as an input, and a measurement of signal delay

is taken as the output, forming the challenge-response mechanism for an all-electronic

PUF. Similarly to the original (optical) PUF proposal, a variety of challenge-response

pairs can be assessed for each device, with different input signals (acting here as the

challenge) leading to a different output delay measurement. Since, an increasing amount

of research has led to a large variety of electronic PUFs [47, 73, 59, 97, 60, 85], which

may be characterised further depending on the intrinsic physical system governing the

electrical challenge-response mechanism [84], with potential input challenge signals for

just electronic PUFs ranging from input voltage, to input binary vectors, the latter used

by arbiter PUFs to interrogate different internal delay mechanisms, resulting in a variety

of multiplexer outputs as responses [114] .
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Figure 2.2: Schematic modelling of an arbitrary dynamic entropy source as a blackbox
process. At time t = 0, under different challenges (represented by c1, c2, c3), the entropy
source produces different responses, (represented by r1, r2, r3). At subsequent times t = 1
and t = 2, even when presented with the same set of challenges, different responses are
produced.

As described above, a single PUF device typically produces multiple challenge-response

mechanisms. By considering the relationship between PUF size and the number of acces-

sible (typically, differentiable) Challenge-Response pairs (CRPs), PUFs of all types may

instead be characterised by this relationship. Typically, devices whose number of CRPs

scales well with device size are considered strong PUFs, whilst those whose number of

CRPs scales in a relatively limited manner are considered weak PUFs [99]. Challenge

response spaces are explored further in subsection 2.1.2, and chapter 5.

The work presented in chapters 4 and 5 deals specifically with a form of optical PUF.

For a full description of the different categories (and subcategories) of proposed PUFs,

the reader is directed to [84].

2.1.1 Optical PUFs

As described above, the original optical PUF proposal relies on optical scattering by an

inhomogenous microsctructure. However, a variety of optical PUFs whose randomness

stems from different intrinsic processes have since been proposed. Here, we will provide

a brief run-through of some of those considered thus far.

The use of scattering materials has proven popular in PUF fabrication since Pappu’s

initial proposal. For information stored on compact disc format, their have been a variety

of proposals for authentication by considering the scattering behaviour of the disc itself

when interrogated by lasers [54], typically due to random variations in the manufacturing

process. Exploiting Rayleigh backscattering in the transmission of information via fibre
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Figure 2.3: Schematic demonstrating the instrumental idea behind an optical PUF, con-
sisting of a scattering token. The PUF is interrogated using a coherent light source, and
following some interaction between the incident light and PUF, transmitted light is cap-
tured by a detector to interpret the challenge. The changing angle of incidence of light
(relative to the plain; top, 0, middle, θ, bottom, ω) represents different challenges, for
which the detector will record distinct responses.1

optical cables has been proposed as a method to verify the authenticity of information

transfers, due to uncontrollable variations in the manufacturing of the fibre. Recently,

‘visually hidden’ porous nanostructure layers have been exploited for their scattering

properties [70], producing OPUFs whose microstructure cannot be easily probed (for

example by electron microscopy), further obfuscating the processes yielding a unique

response for enhanced security.

Silicon-based PUFs have been introduced as an alternative method of intrinsically

tying an optical PUF process to the fabrication of electronic devices [52, 74]. A re-

lated area, that of optical PUFs based on interferometers, has also been of interest [64].

Another subset of OPUFs that has gained traction is the paper PUF, in which character-

istics of paper fibres (which are inherently random due to uncontrollable manufacturing

features) are used to uniquely identify a device [9]. These typically rely on gathering

information on the reflection of incident light, as opposed to the complex scattering in

microstructures exploited in Pappu’s case. In 2015, Wong and Wu proposed a method for

feature detection in paper, achievable using smartphone cameras [115]. Paper PUFs are

1Parts of this figure were created with Biorender.com
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typically proposed for applications associated with banknotes: that they can characterise

an intrinsic property of the paper used is a key benefit, allowing for the use of a PUF

without introducing a new manufacturing step for the product.

All OPUFs discussed so far utilise a fixed CRP space, that is, once a PUF device

has been manufactured, all available CRPs are determined and unchangeable. Recently,

Gan et. al. proposed a reconfigurable PUF [46], utilising the phase transition of VO2

nanocrystals in order to alter the laser speckle pattern of the device, allowing for an

expansion of the CRP space post-fabrication. Expansion of the CRP space had previously

been considered via the combination of different challenges, such as the influence of optical

interference discussed in [98].

When considering the security and use cases for PUFs, the intrinsic physical processes

that produce the unique responses are also considered. This can be easily divided into

those whose uniqueness stems from classical mechanics; such as those that take advantage

of stochastic, hard to predict fabrication processes; and those whose uniqueness stems

from quantum mechanics; such as those which make use of the probabilistic nature of

quantum tunnelling, and/or semiconducting structures. The use of classical processes

leads to a potential weakness in the future: should technology advance to the point

where the manufacturing process can be much more finely controlled, an adversarial

party may be able to examine a device sufficiently to reproduce the minute defects that

control its uniqeuness, and thus obtain a clone of the device. On the other hand, devices

which harness the power of quantum mechanics should remain hard to replicate. The

fabrication of defect-free monolayers is understood to be difficult, and thus the ability to

precisely replicate a device’s bandgap structure should also remain difficult. Other forms

of quantum PUFs have been proposed which make direct use of quantum states [104], and

duplication of such devices is strongly ruled out via the no-cloning theorem. Devices which

tie the uniqueness of the quantum material with a hard-to-predict manufacturing process

(similar to the case of classical optical PUFs) have been exhibited. One such example is

PUFs consisting of semiconducting quantum dots [63], which gain an advantage due to

the ability to finely control emission properties via the fabrication of dots of different sizes,

and the added complexity of how dot molecules interact with each other when forming

clusters. Such materials have been shown to have a further strength, with their unique

(non-linear) relation between excitation strength and emission acting as an additional

layer of security [44].

2.1.2 Challenge-Response Pair Space

The relationship between an input challenge and output response is pivotal to the working,

and understanding of PUF devices. As discussed previously, the density of challenge-
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response pairs (CRPs) for a device is an important aspect in characterising weak PUFs

and strong PUFs. These characterisations further inform us on the type of application

that we can expect a given PUF to be useful for: typically, strong PUFs are considered

good candidates for interactive challenge-response authentication protocols, whilst weak

PUFs are typically viewed as good candidates for the basis of key generation protocols.

However, given the nascency of the field, these extended characterisations (high density

implying authentication, and low density implying key generation) should not be viewed

as universal: depending on the specifics of the protocol, even weak PUFs may be extended

into authentication devices, which is a major focus of the work presented in chapters 4

and 5.

The mathematical analogy of one-way functions that gave PUFs their name may be

extended to the relationship between a given challenge and response; with the mapping

typically being one-to-one, i.e. for a given challenge, c, there typically exists only one

unique response, r, to which c is mapped. This is diagramatically shown in figure 2.4.

Formally, we may write

f : C → R; f(x) 7→ y (2.1)

where, for a given challenge, x in the domain C, f may be considered as the PUF device

mapping x to its unique element, y of the codomain, R.

C1

C2

C3

R1

R2

R3

Figure 2.4: Visual representation of the relationship between challenges (left) and re-
sponses (right) for a given PUF device. Analogously to injective functions, for each
element in the domain, the mapping yields one unique element of the codomain.

The work presented in this thesis falls strictly under the realm of weak PUFs, with ap-

plications in authentication with ubiquitous technology, where the same optical response

will need to be obtained in varying conditions. The work in chapter 4 deals only with a

single challenge, and single response, whilst in chapter 5, discussions of CRP spaces are

expanded, showcasing a PUF for which a single challenge elicits two responses.
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2.1.3 Ubiquitous PUFs

One of the major blocks in the widescale adoption of optical PUFs by the average person

is accessibility. The vast majority of PUF propositions require specialised knowledge

and equipment, such as laboratory-grade optics and microscopes in order to correctly

interrogate and analyse the challenge-response mechanism. One method to increase the

usability of PUFs is to remove the need for direct interaction between the user and

the PUF. For electronic PUFs, adaptation to specific use cases allows for frameworks

in which widespread use may be adopted soon. Proposed frameworks typically link an

electronic PUF to the ‘Internet of Things’ [101], such as those proposed for smart vehicle

authentication [7, 5].

Recent work on PUFs that do require user interaction has sought to remove technolog-

ical barriers, such as the need for specialised equipment. In 2019, Liu et. al. [75] proposed

a quantum dot-based inkjet-printed device that may be interrogated using a smartphone

and a USB-connected microscope, paving the way for easy-to-interrogate PUF devices.

More work utilising smartphone-based microscopy has been conducted since, with Zhang

et. al. [118] proposing a multimodal optical PUF fabricated via growth of diamond mi-

croparticles on heterogeneous structures, which may be interrogated using a smartphone

microscope. They also propose further layers of security for device authentication, via

the fingerprinting of “low level” optical information imaged simply, and “higher level”

optical information captured via photoluminescence measurements and dark-field scat-

tering recordings. Similarly to the earlier mentioned work from Gan et. al., Zhang et. al.

also propose that their PUF is dynamic and reconfigurable, in this case via air oxidation,

and showcase that different fingerprints may be reliably captured from the same device

following reconfiguration.

2.2 Quantum Dot PUFs

The use of colloidal solutions to manipulate travelling light has a long history. Since the

Medieval period, the distribution of small particles within a glass matrix has been used for

artistic and religious endeavours [36, 57], with stained glass windows featuring in British

churches since the 7th century, whose transmission of ‘heavenly light’ [72] influenced the

school of Gothic architecture through to the 12th century and beyond [28]. Despite the

prevalence of colloidal solutions throughout society and architecture, it was not until the

20th century that the scientific basis for such optical properties was probed, contributing

to the development of optical nanocrystal theory. For a look at the history of colloidal

solutions in the development of nanocrystal theory, see [36]. For an understanding

of how (specifially) colloidal quantum dots exhibit unique optical properties, the next
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Figure 2.5: Figure demonstrating the difference in bandstructuresbetween (left to right)
Insulators, Conductors, Semiconductors, with conduction bands (valence bands) repre-

sented by CBs (VBs). Here, Ef represents the Fermi level, and E
I(S)
G represents the

gap energy for insulators (semiconductors), whilst the green overlap represents the band
overlap in conductors.

part of this chapter will focus on the theory of semiconductors, before shifting towards

performance metrics for PUFs, and how we will choose to consider them.

2.2.1 Semiconductor Devices

The results presented in chapters 4 and 5 of this thesis exploit the optical properties

of semiconducting nanostructures, specifically quantum dots, for the creation of unique

digital fingerprints. Here, a brief theoretical background on semiconducting devices will

be presented, highlighting the mechanisms that allow for the creation of unique optical

patterns, and subsequently, their fingerprints.

2.2.1.1 Bulk materials

Before considering the impact of spatial confinement on semiconducting crystals of small

sizes, we begin by introducing the (general) mechanisms by which bulk materials may

act as semiconductors. The conductivity of a material may be characterised by its band

structure, i.e., the energy levels which are permissible physical states for an electron

and the levels which are not permissible, the bandgaps (a visual representation of these
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(a) (b) (c)

Figure 2.6: Simple band diagrams showing examples for the: creation of free electron
(a), creation of hole (b), creation of electron-hole pair (c); with energy plotted against
momentum. E−

min and E+
min represent the minimum energy required for the creation of a

free electron and hole, respectively.

is shown in figure 2.5). Specifically, the energy levels (bands) that exist closest to the

Fermi level (the highest energy level an electron can occupy at 0K) of the material are of

most interest, with these being the valence and conduction bands. For an insulator, the

bandgap is large, and spans over the Fermi level, necessitating a large change in energy

for the transfer of charge carriers from the valence band to the conduction band. In

a conductor however, there is an overlap between the two bands (with the Fermi level

existing within this overlap), allowing for free movement of electrons and conductivity

of electricity. For semiconductors, the bandgap is small, allowing electrons to be moved

from the valence band to the conduction band with only a small amount of energy (with

a dependence on temperature).

When an electron-hole pair is created in bulk materials, typically the coulomb attrac-

tion between the electron and hole allows for the correlation of their motion, and they

can subsequently be treated as a quasiparticle, namely, the exciton. Such excitons may

move freely through the semiconductor, modelled as a particle in a (large) box, with the

permissible energy bands and unconfined k-space allowing for a continuous distribution

of states (as seen in the first panel of Fig. 2.7).

27



2.2.1.2 Small Semiconductor crystals

So far, we have considered how bulk semiconductors behave, with excitons typically be-

ing treated as free particles. As quantum dots are specifically crystals of semiconducting

material whose size sits somewhere between that of a single molecule, and bulk crystalline

structures, the size of the structure, as well as the effects of confinement, must be consid-

ered. As confinement is introduced, the model changes. With 2D semiconductors (i.e.,

confined in one dimension), the model becomes that of a potential well, whilst for 1D

semiconductors the model becomes that of a quantum wire. For semiconducting crystals

with (sufficiently) small radius, R, it ceases to be suitable to treat the exciton as a free

particle. We re-adopt the particle in a box model, whilst taking the confinement in all

dimensions into account. Examining the time-independent Schrödinger equation

−ℏ2

2m
∇2Ψ = EΨ, (2.2)

we have the boundary conditions for the box model, Ψ(0) = Ψ(L) = 0, which yield the

solutions

En =
ℏ2

2mex

(πn
L

)2
(2.3)

where mex is the effective mass of the exciton, and L is the confinement scale. As such, at

small confinement scales (approximately that of the de Broglie wavelength), the allowed

energy levels cease to be continuous, and are instead quantised with the density of states

being (roughly) represented by a delta function (with slight variations in breadth of the

delta function peak, according to the precise size of the QD). Figure 2.7 shows the density

of states as a function of energy for each type of confined semiconductor, showcasing how

this density tends towards discrete values as degrees of freedom is reduced.

2.2.1.3 Optical Properties

In this work, quantum dots were chosen as a building block for optical PUFs over other

candidates due to their unique optical properties, particularly the fine-tunable wave-

length of peak emission, and high quantum yield. These properties are a result of their

underlying semiconductor structure. In quantum dots, the decaying of an exciton (i.e.,

subsequent recombination of exciton into an electron in the valence band) results in a

radiative release of energy in the form of a photon, whose energy is determined by the

bandgap properties of the semiconducting nanocrystal. Therefore, by controlling the size

of the nanocrystal (and subsequently controlling the size of the bandgap), it is possible to

fine-tune the peak emission for these devices. From the afore discussed particle in a box

model, the spacing of allowed energy levels widens as the radius decreases. The shifts in
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Figure 2.7: Density of states for semiconductors with different degrees of freedom. When
unconfined (i.e., three degreeso of freedom) there is a continuous distribution of avail-
able states (a). For confinement in one dimension, the available states take the form
a piece-wise step function (b), tending to a piece-wise set of peaks for confinement in
two dimensions (c). When confinement occurs in all directions, the available states are
roughly equivalent to discrete values represented by a delta-function (d).

emission wavelength may be expressed as a function of the dot’s core diameter, r:

E = EG +
ℏ2

8mex

(π
r

)2
, (2.4)

allowing for the fine-tuning of a dot’s optical properties.

However, semiconducting devices often allow for non-radiative mechanisms of recom-

bination, as well as radiative ones. Where both radiative and non-radiative mechanisms
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Figure 2.8: Left: Schematic of an electron transferring from the valence band of a semi-
conuctor device to the conduction band, leaving behind a hole. Right: Schematic of
electron and hole recombining, with their system returning to the ground state and out-
putting energy in the form of fluorescence.

of recombination are present, the quantum yield of the subject material is determined by

the recombination lifetime of both mechanisms;

ηQ =
1

τRad

1
τRad

+ 1
τNon

, (2.5)

where τRad (τNon) is the radiative (non-radiative) recombination lifetime. Due to imper-

fections in manufacturing of semi-conductor devices, further pathways are often opened

up for non-radiative mechanisms of recombination, such as Auger or Shockley-Read-Hall

recombination. In direct bandgap semiconductors, the non-radiative recombination life-

time is typically much longer than that of the radiative lifetime, resulting in a higher

quantum yield when compared to indirect bandgap semiconductors.

The use of CuInS/ZnS core/shell quantum dots allows for the exploitation of both of

these strong optical properties: the resulting bandgap created when forming core/shell

quantum dots is easily tuneable due to the relative ease of controlling the core and shell

sizes, whilst their direct bandgap structure ensures a high quantum yield, and a resulting

strong photoluminescence.

2.2.2 Computer Vision and Optical Fingerprinting

The processing of the captured optical information from a PUF into a unique key (that

may be further processed for cryptographic protocols) relies on having a method to reli-

ably extract the uniqueness of the optical pattern, and condensing this information into

a (binarised) key that retains said uniqueness. Away from PUF research, algorithms re-
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lated to such activities have been proposed and researched, mainly within the computer

science community, typically to characterise and/or identify structural information within

images. The field of computer vision encompasses such algorithms, and has been a topic

of research since the 1960s, shortly after the coining of the term artificial intelligence, in

an effort to mimic elements of human vision, and give computers an understanding of an

image scene. Elements of computer vision often have an overlap with the field of image

processing, including tasks such as edge detection. Improvements in computer vision,

mainly feature detection algorithms, naturally go hand in hand with advancements in

machine learning and artificial intelligence, with the automation of feature recognition

providing advancements in fields ranging from physical security [86, 3] to medical imaging

and diagnostics [77, 68], with such technology reported as outperforming humans [35].

2.2.2.1 Gabor Hash

In the same work that first introduced the notion of a PUF [90], the Gabor Hash algo-

rithm was also first defined, as a means for extracting a binary fingerprint from the output

of a speckle-pattern optical PUF. The algorithm makes use of the Gabor transform [45],

a special case of the short-time Fourier transform (STFT), formed by multiplying the

function to be transformed by the standard Gaussian function (here, acting as the nec-

essary window function for an STFT), and subsequently transforming via the standard

Fourier transform. The Gabor transform is typically used in time-frequency analysis, and

is formally defined as follows;

Definition 2.6 (Standard Gabor transform of a signal).

Gx(τ, ω) =

∫ ∞

−∞
x(t)e−π(t−τ)2e−iωtdt, (2.7)

where x(t) denotes the signal to be transformed; and τ and ω constitute the time and

frequency domains respectively.

The academical history of Pappu’s proposed algorithm serves as an excellent show-

case of the ways in which information-theoretic ideas from different fields may inform

one another. As Daugman illustrated [27] when proposing the 2D generalisation of the

Gabor transform, Gabor’s initial (1D) work was instrumental in the development of ideas

pertaining to how visual information is processed physiologically. Daugman’s work on ex-

panding this understanding to 2D spatial profiles furthered the understanding of simple

cells in the primary visual cortex, factoring in the processing of 2D orientation infor-

mation, and paved the way for Pappu’s hash algorithm, which makes use of this 2D

generalisation. For a full overview of the implementation and theory of the algorithm,
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the reader may consult the original thesis work [90] or the subsequent (summary) report

[91].

2.3 Quantum Computing & Algorithms

In 1984, not long after the proposition of quantum machines for information processing by

Feynman; Bennett and Brassard proposed the seminal BB84 [17] scheme for quantum key

distribution. A year later, Deutsch famously envisioned the universal quantum computer

[31]. Since Deutsch’s description of the universal quantum computer, interest in both the

development of quantum algorithms to outcompete classical methods, and the develop-

ment of hardware to run such algorithms, has grown significantly. Just three years later,

Yamamoto and Igeta proposed the first physical realisation of a quantum computer [61],

and within another three years, Ekert exploited entanglement as a resource [37] to pro-

pose an alternative to Bennet and Brassard’s key distribution scheme. In 1992, Deutsch

and Jozsa published one of the first deterministic quantum algorithms that could solve a

problem exponentially faster than a classical alternative [32]. With these developments,

and work done [13, 103] showcasing (mathematically) quantum parralelism [87, p. 30],

it began to be widely understood that quantum information processing, and the develop-

ment of quantum computing, would form an important aspect of future computer science

endeavours. In 1996, Seth Lloyd’s work [76] demonstrated that Feynman’s conjecture

regarding the simulation of quantum systems via quantum devices to be correct, adding

further interest to the experimental realisation of such devices. Within a year, Cory et.

al. [23], and independently, Gershenfeld and Chuang [48], had showcased how NMR

computing could be used to realise quantum logic gates, with such a system being ex-

perimentally realised for a working 2-qubit device capable of solving quantum algorithms

[65, 21, 20] in 1998.

2.3.1 Variational Quantum Algorithms in the NISQ Era

Since the introduction of experimentally realisable NMR based quantum computation,

research in quantum hardware has gained a great deal of pace, resulting in somewhat

of a race to build machines that feature increasing numbers of qubits, whilst building

on work to retain coherence in such machines. This has brought us up to the current

state of quantum computing, the so-called ‘Noisy Intermediate-Scale quantum era’, or

NISQ computing. The term NISQ, as coined by Preskill [93], characterises the current

frontier of quantum computers, whose size is limited to around 50-a few hundred qubits

(intermediate-scale), and whose gate sequences introduce a (non-trivial, limiting) amount
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of noise over the computations. This contrasts the ideal case, in which devices are highly

scalable to a (relatively) large amount of qubits, and whose computations are fault-

tolerant. In the last few years, an emerging idea is that NISQ devices, despite their

limitations, will still prove useful for certain tasks, so long as algorithms constructed for

them are designed in such a way as to mitigate some of these shortcomings. This has led to

the nascent field of Variational Quantum Algorithms, (VQAs), for which the principal idea

is that, by constructing your problem such that it is solved by finding optimal parameters

for a parametrised circuit, operations performed on a quantum device can be made less

resource-intensive, by offloading other tasks to a classical device. Typically, this might

look like running a parametrised quantum circuit and performing some measurement

on the NISQ device, whilst performing optimisation (e.g., via gradient descent) on a

classical device. This method of utilising both quantum and classical devices to solve a

VQA problem is often termed a hybrid quantum-classical approach to problem-solving.

Fig. 2.9 provides a simplefied visual framework of this idea.

Figure 2.9: A simple representation of the principle behind variational quantum algo-
rithms, via the lens of VQE. A quantum circuit that takes some input (here, the all
0 state), and prepares a trial state via a set of parametrised unitaries, with a known
Hamiltonian H, before measurement, is shown. This circuit can be ran on NISQ hard-
ware (represented by the upper box). Measurement results are passed on to a classical
computer for the purposes of cost function optimisation. After optimising for each θi, the
updated parameters are input back into the circuit, and this process is iterated over.

This approach was first introduced by Peruzzo et. al. [92], via the Variational

Quantum Eigensolver (VQE) algorithm. In essence, VQE utilises parametrised quantum

circuitry to prepare a system on a quantum device that models the physics of some
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sought after (potentially physical) trial wavefunction, |ψ(θ⃗)⟩ = U(θ⃗) |ψ⟩in. Here, U(θ⃗) is
the unitary equivalent to the quantum circuitry, parametrised by θ⃗, and |ψ⟩in is some

input trial state for the algorithm, typically the all-zero state |⃗0⟩. Given a (known)

Hamiltonian, H, that represents the system that we wish to compute eigenvectors and

eigenvalues for, one can perform a measurement equivalent to

⟨ψ|in U
†(θ⃗)HU(θ⃗) |ψ⟩in , (2.8)

which is lower-bounded by the ground state energy of the Hamiltonian, i.e.,

E0 ≤
⟨ψ(θ⃗)|H |ψ(θ⃗)⟩
⟨ψ(θ⃗)|ψ(θ⃗)⟩

. (2.9)

So, by minimising the result of this measurement (such that it approximates the ground-

state energy E0), one can find the relevant eigenvector and eigenvalue within the infor-

mation encoded in the trial state |ψ(⃗0)⟩. The VQE algorithm has been shown to have

applications in chemistry, but is still limited in the system sizes it can efficiently solve for

[42].

This methodology of ‘evaluate on quantum, optimise on classical’ has been employed

for various algorithms since, providing efficient solutions for problems such as time-

evolution simulation [82, 38, 12], classical optimisation [4], and quantum machine learn-

ing [14]. The strengths and pitfalls of the hybrid VQA approach are explored in section

2.3.5.

2.3.2 Preliminaries

2.3.2.1 Quantum Information and Tensor Algebra

This thesis will utilise standard bra-ket notation for representing qubits, in which the

traditional basis elements are represented as |0⟩ =

(
1

0

)
and |1⟩ =

(
0

1

)
. Arbitrary

mixed states are represented via their density operators, e.g., ρ = |ψ⟩ ⟨ψ| ∈ H, and this

density matrix picture (often associated with the Bloch-sphere formalism, pictured in

fig. 2.10), will be heavily utilised throughout chapter 6. When dealing with multi-qubit

computations, each of the n qubits resides in its own Hilbert Space, such that the entire

system of qubits may be represented as the tensor product between each qubit, residing in

the tensor product of each Hilbert Space, i.e., |x1⟩ ⟨x1|H1
⊗|x2⟩ ⟨x2|H2

⊗· · ·⊗|xn⟩ ⟨xn|Hn
∈

H1⊗H2⊗ · · ·⊗Hn. For shorthand, when it is unambiguous to do so, we may write such

systems as |x1x2...xn⟩ ⟨x1x2...xn|.
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Figure 2.10: Visual representation of Bloch Sphere formalism of quantum mechanics,
with a pure state, |ψ⟩ = α |0⟩ + β |1⟩, labelled. Geometrically, pure states are all those
that occupy the surfaces of the Bloch sphere, whilst mixed states occupy the remaining
volume. The particular case of the maximally mixed state occupies the centre of the
Bloch sphere.

2.3.2.2 Quantum Circuitry

For the purposes of illustrating algorithmic implementation on quantum devices, we also

present a formalism of quantum information processing within the framework of quantum

circuits. A quantum circuit consists of quantum gates, represented by unitaries, acting

on qubits (represented by individual wires) from left to right, typically culminating in a

measurement. Fig. 2.11 shows a diagramatic representation of a single qubit quantum

operation in the most generic terms via Stinespring’s dilation theorem [105]: the system

qubit (uppermost qubit here) and an ancillary system (the lower qubit here) is introduced,

some quantum operation (the gate, U †) acts on the system and ancillary registers, before

the system qubit is measured and the ancillary system is discarded (i.e., traced out). The

construction of general operations viewed through this lens is sometimes referred to as

going to the Church of the Large Hilbert Space, following John Smolin’s remark [50].

2.3.3 Distance Measures

In order to assess the similarity between two quantum objects (where here, an object

could be a state, a circuit, a measurement, etc.), a form of distance measure is necessary.

Typically, a used distance measure will be mathematically equivalent to a metric.
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Discard

|0⟩

U †

|0⟩

Figure 2.11: Quantum circuit representing the most generic quantum operation, in which
any map can be represented by the introduction of an additional system, a unitary, and
a discarding of this second (ancillary) system.

Definition 2.10. Given a space S and a function d : S × S → R, call d a metric if it

satisfies the following:

1. Non-negativity — d(a, b) ≥ 0 ∀ a, b ∈ S (with equality iff a = b).

2. Symmetry — d(a, b) = d(b, a) ∀ a, b ∈ S.

3. Triangle inequality — It holds that d(a, c) ≤ d(a, b) + d(b, c) ∀ a, b, c ∈ S.

Example 2.11. It is worth noting that the Hamming distance, used extensively in the

analysis presented in chapters 4 and 5 is formally considered a distance measure, where

the Hamming distance between two strings (of equal length) is the number of substitutions

required to make the strings equal. I.e., in the use of the Roman alphabet, the Hamming

distance between Belt and Ball would be 2, whilst the Hamming distance between two

binary strings, say, x = 11101010, y = 01101101 would be 4.

Mathematical metrics are typically induced by a norm, which can be thought of as

way to establish the distance between a point and some agreed upon zero point (origin),

i.e., the magnitude of an object a ∈ S, with respect to the norm.

Definition 2.12. Given a space S and a function ∥ · ∥ : S → R, call ∥ · ∥ a norm if it

satisfies the following:

1. Non-negativity — ∥a∥ ≥ 0 ∀ a ∈ S, with equality iff a = 0.

2. Absolute homogeneity — ∥αa∥ = |α|∥a∥ ∀ a ∈ S and any α ∈ R.

3. Triangle inequality — ∥a+ b∥ ≤ ∥a∥+ ∥b∥ ∀ a, b ∈ S.

Norms are often associated with vector spaces, and thus the term vector norm is often

used interchangeably with norm throughout the literature. Here, we will be principally

concerned with norms on operators, and as such will not typically associate norm with

vector norms.
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Definition 2.13. For a real number p ≥ 1 and a vector space V, the p-norm of an

n-dimensional vector x⃗ ∈ V is defined by

∥x⃗∥p =

(
n∑
i

|x⃗i|p
)1/p

. (2.14)

A choice of p = 2 produces the Euclidean norm, whilst a choice of p = 1 produces the

taxicab, or, Manhattan norm.

Norms need not only be defined for vectors, but can also be defined on operators

(amongst other mathematical objects). For instance, there exists the well known operator

norm2, which, for a matrix A, is equivalent to the square root of the largest eigenvalue

of A†A. Working in Hilbert spaces, there exists a class of operator norms similar to

the p-norms on vectors, dubbed the Schatten p-norms, which will be of relevance to this

thesis.

Definition 2.15. Given a bounded operator between two Hilbert spaces, A : H → H,

and a real number p ≥ 1, the Schatten p-norm of A is defined by

∥A∥p = (Tr [|A|p])1/p . (2.16)

The aforementioned operator norm is equivalent to the Schatten ∞-norm, whilst a

choice of p = 1 yields the trace class norm, and p = 2 emits the Hilbert-Schmidt norm,

which will be used in the construction of cost functions in Ch. 6. Due to both the

(vector) p-norm and the Schatten p-norm sharing similar names, and the same notation,

throughout literature they are often only distinguished via context. Throughout this

thesis, any use of the notation ∥ · ∥p will refer to the Schatten p-norm (unless otherwise

specified), and the term p-norm will not be used to refer to the Schatten p-norm, to avoid

confusion.

2.3.3.1 Distances between quantum objects

The act of distinguishing between two quantum objects, |ψx⟩ and |ψy⟩ is a fundamental

one throughout quantum computing and information. The simplest way to attempt state

discrimination is by measurement, but it is known that measurement can only distinguish

non-orthogonal states with a certain probability. Instead, we could calculate the difference

between them by some metric on their Hilbert spaces. Shifting to the Bloch-Sphere

framework of discussing quantum states (writing ρ = |ψx⟩ ⟨ψx| and σ = |ψy⟩ ⟨ψy|), it is
2The conventional naming of which is unfortunate, obscuring the use of operator norm for an arbitrary

norm on operators. In this thesis, the term operator norm will be used in the more general sense, whilst
∥ · ∥∞ will denote the operator norm.
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clear that the aforementioned Schatten p-norms are of use for calculating the similarity

between two quantum objects, and thus distinguishing between them.

There are also physically meaningful methods by which the similarity of two states,

which do not satisfy the requirements necessary to be considered a metric. One well

known measure of closeness between two states is the Fidelity, defined as

F (ρ, σ) =

(
Tr
√√

ρσ
√
ρ

)2

. (2.17)

Whilst not being a formal metric, the fidelity of two states is a widely adopted means of

assessing their similarity due to its physical relevance. This relevance is easy to see in

the pure case state, where we have that the fidelity simplifies to

F (ρ, σ) = | ⟨ψρ|ψσ⟩ |2, (2.18)

the overlap between the two states. Uhlmann’s theorem [110] allows us to extend this

to the mixed state case, where we get that the fidelity is equivalent to the maximum

overlap between purifications of ρ and σ. Further, the fidelity induces the Bures metric,

a quantum-equivalent of the Fisher information metric.

2.3.4 Quantum Compilation

Compilation of a quantum state is a primitive in quantum computing. With the ex-

perimental realisation of quantum computers, it is natural to question how, given some

(potentially unknown) quantum state ρ, one can prepare that quantum state on hardware.

Compilation can also serve as a primitive for other tasks, or in some cases, perform other

tasks as a byproduct. In the case of ρ being unknown, learning its preparation (i.e., learn-

ing a unitary for compilation) is evidently equivalent to learning the state itself, which

forms one of the most universal tasks accomplished by compilation. Further examples

of tasks achievable via compilation will be explored in Chapter 6. Work on compilation

is, naturally, not limited to that of states. Since Barenco et. al.’s [8] and Deutsch et.

al.’s [33] work on elementary and universal logic gates for quantum computation, early

compilation work [109, 55] focused on translating theoretical quantum algorithms into

sets of such gates and their unitary matrix representations, for processing on hardware.

As work on experimental realisations of quantum hardware progressed, compilation work

focusing on specific hardware instances, such as those based on Ising couplings [16], also

picked up.

In 2008, Maslov et. al. [81] investigated the recompilation of known circuits into

hardware specific instances with a great reduction in depth and gate number. In 2018,
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Venturelli et. al. [112] related the task of native gate compilation to the AI field of tem-

poral planning to realise a circuit compilation scheme for circuits with a high degree of

commutability, specifically quantum alternating operator ansatz circuits [41, 53]. Later

that year [15], this work was extended with the investigation of approaches based on con-

straint programming, in which a task is formulated as a scheduling problem. It was shown

that, by exploring a hybrid approach consisting of both temporal planning and constraint

programming, one could compile circuits with greater success and scaleability than with

either constraint programming or temporal planning alone. More and more, researchers

began to make use of machine-learning techniques in the pursuit of compilation. Cincio

et. al. presented an ML-based approach to learning the (quantum) algorithm for state

overlap [22], which can be viewed as equivalent to (but not limited to) state compilation.

Compilation via variational algorithms has recently been explored too, albeit primarily

for pure state compilation. The aforementioned work in [22] teased the variational

approach proposed in [69]: an algorithm for pure state compilation that employs the

Hilbert-Schmidt Test as a cost function is proposed, whilst also introducing a localised

variant of the cost function for mitigating the problems invoked by barren plateaus (both

local cost functions and barren plateaus will be formally defined and explored as concepts

in section 2.3.5 and chapter 6). Sharma et. al. [102] explore the inherent resilience

to noise in such approaches, finding that, for the tested circuit types, the output gate

sequence of a variational compilation algorithm typically reduces noise (as opposed to

inheriting, and perhaps increasing) when compared to an already known gate sequence.

Further work by Jones and Benjamin [66] explores compilation for specific input states,

via eigensolving techniques and energy minimisation. It is shown that such an approach

is robust to gate noise when seeking near-perfect compilation.

2.3.5 VQA Cost Functions

As briefly discussed in chapter 2, variational quantum algorithms have emerged as a hot

topic in research, given their strengths in task-oriented programming for current low-qubit

devices where purely quantum error correction is hard to achieve. Performance of a VQA

has been shown to be dependent on the cost function used for evaluating performance

(and hence, “closeness” to the sought-after solution), and the construction of the ansatz

used in preparing a trial input to the algorithm. In the case of cost functions, researchers

typically seek to ensure that any such function used is

� Faithful — The cost function should vanish if and only if the output of the quantum

algorithm matches the desired target solution.

� Efficiently computable on quantum hardware — Evaluation of the cost function
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Figure 2.12: Example of Loschmidt-Echo type circuit to measure Tr[ρσ] . Here, U † aims
to “echo” the unitary required to have evolved ρS from an initial state.

should be achievable with (relatively) low gate-depth and qubit resources.

� Scaleable — As the problem size grows, complexity of the task should grow linearly

with it.

� Operationally meaningful — Non-zero values should provide some physical or op-

erational description about the objects in question.

For problems directly related to physical systems, such as VQE, the formulation of

a cost function comes naturally: by computing the energy of the trial state, |ψ⟩, the
operational meaning is trivial, as is faithfulness (i.e., if searching for the ground state, the

cost function will only be minimised for the ground state). Efficiency naturally depends

on the complexity of the Hamiltonian in question, but it is at least known that the

Hamiltonian may be decomposed into a series of unitaries that can be adapted and chosen

to complement the elementary gate alphabet of a given device. For some other tasks,

where the goal is abstracted away from a natural, physical system; such as compiling,

compression, and foundational questions such as VQA explorations of consistent histories;

defining a suitable cost function is less intuitive, particularly in terms of operational

meaning. Cases such as compression and compilation, where “closeness” of states may

be measured by fidelity, will allow for an intuitive operational meaning, but less efficient

computation. Meanwhile, the use of efficiently computable circuits such as so-called

“Loschmidt echo”-style circuits, (named as such as they seek to mimic the effect of a

Loschmidt Echo [94, 51] (the composition of a time-reverse unitary evolution and the

original unitary evolution)) (Pictured in fig. 2.12) allow for calculations of forms of

p−norms, introduced in definition 2.13, which can be tied to an operational meaning

via known bounds on such norms. However, regardless of the ease of cost function

construction, scaleability remains an issue amongst VQAs.
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2.3.5.1 Barren Plateaus

Whilst the field of VQAs has shown a great deal of promise in advancing our ability

to perform a variety of tasks on quantum hardware, such algorithms typically suffer

from the curse of dimensionality ; as the size of a problem scales up (and hence, the

number of qubits used), and as gate depth increases, issues with trainability arise. One

phenomenon that has been shown to contribute to this so-called ‘curse’ is that of barren

plateaus (BPs). Put simply, a barren plateau is a feature of a cost landscape, in which

the cost function gradient is vanishing at the majority of points in the landscape, and

therefore, optimisation is made difficult.

Early research in to barren plateaus [83] had shown that they were linked to deep

circuits, especially with random initialisations of ansätze. Cerezo et. al. [19] then went

on to show the prevalence of BPs even in shallow parametrised circuits, showing that cost

functions defined in terms of global observables lead to exponentially vanishing gradients

in terms of the number of qubits, n; i.e., barren plateaus appear quickly. However, they

also showed that, for shallow circuits, if the cost function is instead formulated in terms

of local observables, gradients vanish at worst polynomially in n, and thus the curse of

barren plateaus may be staved off for well-devised problems. The difference between

these two types of cost functions (global and local) is as follows: global cost functions

revolve around global observables, and thus typically involve a final measurement on all

qubits. Local cost functions however, instead make use of a series of measurements on

k < n qubits, with early research simply focused on the case that k = 1. Formally, for

a quantum circuit parametrised by some vector θ⃗ with the circuit represented by some

parametrised unitary U
(
θ⃗
)
, and some cost function C

(
θ⃗
)
, Arrasmith et. al. [6] define

the presence of barren plateaus as follows

Definition 2.19. A cost function C
(
θ⃗
)
exhibits a barren plateau if, for all θk ∈ θ⃗, the

variance of the partial derivative of the cost vanishes exponentially with increasing qubit

number, n, as

Varθ⃗

[
∂kC

(
θ⃗
)]

≤ F (n), (2.20)

where F (n) ∈ O( 1
bn
)

Arrasmith et. al. go on to demonstrate, via probability bounds and Chebyshev’s

inequality, that if the variance in the partial derivative of C
(
θ⃗
)
vanishes, then the prob-

ability that the partial dervivative is non-zero vanishes likewise.

Figure 2.13 showcases the difference between a cost landscape featuring a barren

plateau, and a cost landscape that is trainable (no barren plateau). Note that a related

phenomenon that often complements barren plateau landscapes is the narrow gorge at

the optimal solution. A narrow gorge is the (very) low concentration of values for which
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(a) (b) (c)

Figure 2.13: Simple, 2-D visual representation of cost function landscapes featuring dif-
ferent phenomena, with p as our parameter (space) that is being optimised over, and
C(p) the cost function we are optimising for. (a) A simple cost function landscape with
no barren plateau, and easily findable minima. (b) A cost function landscape featuring
a barren plateau with local minima and no narrow gorges. (c) A cost function landscape
featuring a barren plateau with a single minimum found in a narrow gorge.

there is a significant gradient towards the minima, such that the probability of randomly

sampling such a point from the underlying distribution is low. Due to the low number of

samples ‘within’ a narrow gorge, even if an optimiser finds a value within one, it is likely to

return to the barren landscape unless a very small step is used for optimisation; reducing

trainability further. A more formal definition relating the probability of sampling a point

within the narrow gorge to bounds in terms of dimensionality (qubit number) may be

found in [6]. The same work also examines the permissibility of different cost function

landscapes in parametrised quantum circuits, showcasing that only landscapes of the form

in fig. 2.13 are possible.

Cerezo et. al. [19] established that local cost functions have only polynomially van-

ishing gradients, as opposed to exponentially vanishing gradients. Uvarov and Biamonte

[111] explored this further, bounding the variance in terms of individual Pauli string

coefficients (and their contribution the the overall variance). As a result, it is expected

that the expressibility of an ansatz, in terms of local observables versus global observ-

ables, may help suppress the phenomenon of barren plateau, and help progress the field

of VQAs.

The work presented in chapter 6 makes two contributions to the field: firstly, the

mixed state compilation algorithm presented makes novel contributions to the field of

VQAs, exploiting the result of the quantum low-rank approximation problems presented

in [40] in order to provide compilation, compression, and principal component analysis

all-in-one. Further, the work relating to local cost functions seeks to directly address the

issues of barren plateaus.
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Chapter 3

Experimental Methods

In chapters 4 and 5 we analyse the performance of two types of quantum-optical phys-

ically unclonable functions, single-wavelength emission and hybrid-wavelength emission

quantum dot devices, respectively. The latter will henceforth be simply referred to as

hybrid devices or hybrid PUFs, though they should not be conflated with the definition

given to hybrid PUFs in [84].

These two types of PUFs are fabricated with an intent to exploit the uniqueness of

optical PUFs for two different purposes. The single-wavelength emission devices are pre-

sented as a means for expanding PUF use and research to the realm of ubiquitous devices:

due to the nature of quantum dot clustering in lacquer being capable of producing both

micro-scale and macro-scale variations in emission patterns, it is hypothesised that such

devices may be read with simple camera technology, such as that found in smartphones.

The introduction of a second layer of quantum dot ink for the fabrication of the hy-

brid devices is expected to yield two different identities from a single challenge, with the

identities being distinguished via the use of optical filters to extract information from

only one ink’s emission pattern. As such, these may not carry the potential for use with

current-term ubiquitous devices, but instead may present novel ways to use PUF out-

puts for increased security in authentication, as well as cryptographic primitives. These

potential use cases will be defined and further explored in chapter 5.

In this section, we detail the techniques used for the fabrication of both types of

devices; the algorithms used to translate (classically captured) optical information from

the devices in to secure authentication keys; and the processes by which we capture

information from the devices. A simple overview of the interrogation process is shown in

figure 3.1. Fabrication of devices was performed by Angelo Lamantia, with the processes

and pipelines jointly determined by Lamantia and the author. As such, and due to the

main focus being on measurement and interpretation of their optical properties, only a

brief overview of fabrication methods is provided below.
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Figure 3.1: Flowchart displaying a simplefied view of the overall, generic processing
pipeline for interrogating PUF devices in this work.

3.1 PUF Fabrication

For both single-wavelength and hybrid-wavelength devices, the uniqueness of the PUF

device stems from the use of colloidal quantum dot-based inks. In each case, to fabricate

the ink, CuInS/ZnS colloidal quantum dots are immersed in UVALUX UL-7M1000, a

commercial UV lacquer, within a flat-bottomed vial at a concentration of 100mg/ml.

With the use of a SciQuip Pro40 Digital Laboratory Mixer (equipped with a custom-

designed 3D-printed tip), the lacquer-quantum dot combination is mixed at a constant

speed of 750 rpm for 1 hour creating a dense and viscous mixture. Throughout, the flat-

bottomed vial is immersed in an ice bath, negating the excess heat caused by the mixing

process and thus preventing damage to the QDs themselves. The ink is then transferred

to a flat surface via the use of a uniform hand-stamp, resulting in a 1cm2 area of ink,

which constitutes the PUF device.

3.1.1 Single-wavelength emission devices

The single-wavelength emission devices analysed throughout chapter 4 are primarily com-

prised of CuInS/ZnS colloidal quantum dots emitting at 650 nm, which were subsequently

dispersed in a UV lacquer using a slow mixer at 750 rpm. The dots used have a specified

core and shell thickness of 3.5± 0.5 nm, and 2.0 nm, respectively, with a concentration

of 1.7 nmol/mg.

3.1.2 Multiple-wavelength emission devices

The devices analysed in chapter 5 were fabricated in a similar fashion, with the main

difference being the addition of a second layer of quantum dots whose emission peak differs

to the first set. Specifically, we use CuInS/ZnS colloidal quantum dots in both cases, first

depositing a layer of quantum dots with an emission peak of 530 nm (CIS530), before

depositing another layer of quantum dots emitting at 650 nm (CIS650). The CIS530 dots

used have a specified core and shell thickness of 2.0± 0.5 nm, and 2.0 nm, respectively,

with a concentration of 9.1 nmol/mg; whilst the CIS650 have the same specifications as

described above. For 24 of the devices, the layer of CIS650 is deposited immediately after
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Figure 3.2: QD-PUF design. (a) Schematic of entire security device design, with the
quantum dot-based ink PUF printed in the centre, occupying a 1 × 1 cm2 QR-less re-
gion, and surrounded by a QR code which may be linked to the registration process.
(b) Photograph taken of real device, cropped to include central area of QR in frame.
The handstamped PUF is typically overprinted atop the device, ensuring that any edge
artefacts (such as thick layers of ink seen in top right of QD area) are not fingerprinted.
(c) Simple schematic of quantum dots suspended in UV-cured lacquer.

the layer of CIS530, resulting in an interface of two wet inks, before being left to dry.

Another 24 devices were fabricated in which the layer of CIS530 is allowed to dry before

the deposition of CIS650. The two groups of bi-wavelength emission devices, or, hybrid

PUFs (H-PUFs) will henceforth be referred to by the monikers WH-PUF and DH-PUF

respectively.

3.2 Lab-based data capture

In chapter 5, PUF devices comprising of two different types of quantum dots (with differ-

ent wavelength emission peaks) are interrogated under laboratory conditions, making use

of various optical filters in order to assess the separability of different fingerprints under

the same challenge.

3.2.1 Shroud-based Capture

In order to image the entire optical PUF under well-controlled lighting conditions, a

‘shroud’ is used, comprising of a 3D-printed black box and lid, encasing a light source,

CCD sensor, and a specially printed 3D stand for holding the PUF device. This setup is
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pictured in Fig. 3.3. Each H-PUF device is imaged under two different conditions: using

a combination of a long-pass 550 nm and short-pass 600 nm optical filters (to principally

capture optical emission from the CIS530 dots); and using a combination of long-pass

650 nm and short-pass 700 nm optical filters (to principally capture optical emission

from the CIS650 dots). A short-pass 400 nm short-pass optical filter is also placed in

front of the light source (controlled throughout to provide constant illumination, with

voltage and current maintained at 2.674 V and 0.163A, via a T3PS3000 programmable

DC power supply.), such that that no reflected incident light is captured in the images,

whilst ensuring the incident light covers the absorption spectra of both dots used. We

note that, given the emission spectra of both dots and potential ‘leakage’ from the filters,

that it cannot be guaranteed that each case will only contain emission from the dot

type being sought. However, such cross-over will be kept minimal (a point revisited in

the presentation of results in chapter 5). The decision not to use fine, small bandgap

filters was made as a compromise against the change in capture parameters that would

be necessitated by such equipment: due to the scarcity of emitted light if the images

were filtered with smaller (i.e., 10 nm) bandgaps, the exposure time used in capturing

would have to be increased to the point where camera sensor noise would be increased,

compromising the input image and thus the output fingerprint.

3.2.2 Microscope-based Capture

An optical microscope is also used, allowing for easier identification of areas dominated

by either quantum dot for further investigation of how interaction between dots effects

fingerprint commonalities, due to the clustering nature of the QD inks. Here, the general

set up for data collection is outlined.

A Zeiss Axio Lab A1 optical microscope is used, with a Moticam S3 USB 3.0 camera

attached directly to the microscope via the use of a camera mount adapter. All measure-

ments are taken in brightfield imaging with epi-illumination, making use of an Olympus

MPlan 10x lens. In the case of optical microscope measurements, captured light is again

filtered twice: using a combination of short-pass and long-pass filters, as described above

for the shroud case. However, the incident light is not filtered in this case, due to sensor

noise that would be present in images taken with lengthy exposure times; as would be

required given the low levels of light entering the aperture.
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Figure 3.3: Simple schematic showcasing the shroud-based capture system. A small
stand, upon which the PUF device is placed, is fixed to an optical bench, along with a
light source, and camera. The wavy lines to and from the PUF device represent incident
light and emitted/reflected light, respectively. A short-pass optical filter is secured in
front of the light source, whilst individual pairings of short-pass and long-pass optical
filters are secured in front of the camera, allowing for filtration of emission from each ink.

3.3 Smartphone-based capture

In order to assess the performance of our QD-Optical PUFs outside of laboratory condi-

tions, we construct a framework for data capture using a smartphone; both for interro-

gation of the device (presenting a challenge), and capturing the unique response.

We make use of a specifically designed 3D-printed stand, to remove stability issues

and retain a fine control of distance, L, between device and camera sensor, as well as the

angle of incidence of challenging light, θ. A visual mock-up of the stand is shown in Fig.

3.5, with L = 85mm and θ = 35◦. All images obtained via this set-up were captured on

an iPhone X, with a constant ISO of 22, and exposure of 40 ms.
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Figure 3.4: Simple schematic of the microscope-based capturing system. A PUF device
is held still on the microscope stage via the use of a 3D printed stencil, ensuring no
movement between captures, and that all captures are taken with the same orientation.
A reflected light microscope is used, with epi-illumination brightfield imaging. Atop the
microscope is fixed a filter holder, allowing for filtration of emitted and reflected light to
capture different wavelength emission individually with use of a camera, screwed in on
top of the filter holder.

3.4 Fingerprinting Algorithms

For the previously described PUFs to provide a means for authentication, it is not only

necessary that they exhibit uniqueness when challenged; but we also need to be able to

convert this uniqueness into some form of digital key for storage and verification. For

this purpose, we deploy two different fingerprinting techniques; Adapted High Boost, and

the novel Reduced Modified Local Binary Patterns. The former is a pre-existing algorithm

developed specifically for optical PUFs, and serves to both benchmark the PUF devices,

and the performance of the novel algorithm.

3.4.1 Adapted High Boost

Adapted High Boost (AHB) was first proposed as an alternative to the aforementioned

Gabor Hash algorithm, specifically for the purpose of binarising information obtained

from optical PUFs [98]. AHB takes as input a (single-channel) a × b pixel image, and

outputs an a× b pixel bitmap, which encodes contrast information, as displayed in figure

3.6. AHB makes use of convolution kernels, a type of object regularly used in image

48



Figure 3.5: Visual schematic demonstrating experimental set up for capturing images of
PUF devices using a smartphone. A PUF device is placed in a vertical stand, with the
smartphone held in an opposing stand oriented to ensure a distance of 85 mm and an
angle of 35 degrees from the PUF’s normal plane for incident light.

processing, both for computer vision related tasks [98] and aesthetic reasons, with a

host of photography post-processing toolboxes utilising them. Informally, a convolution

kernel can be thought of as an M ×N matrix “window”, K of numeric elements, which,

when “passed over” a section of an image, I, outputs a scalar value determined by some

operation ⋆ between K and I. In practice, the kernel used in AHB (to be defined shortly)

calculates the arithmetic mean of the intensity of all pixels within a neighbourhood of

the center pixel, with the neighbourhood size determined by some choice of algorithmic

radius, r. If the intensity of the center pixel (optionally, with some added, adjustable

offset term) is smaller than this calculated mean, the pixel’s corresponding output in the

binary fingerprint is set to 1, otherwise it is set to 0.

Formally, AHB computes a given pixel’s output using the convolution kernel

K =



1 · · · 1 · · · 1
...

. . .
...

. . .
...

1 · · · − (n2 − 1) · · · 1
...

. . .
...

. . .
...

1 · · · 1 · · · 1


(3.1)
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(a) (b)

Figure 3.6: (a) Image of a Portuguese cat. (b) Image shown in (a), converted to a single
channel grey-scale image using MATLAB’s native rgb2gray function and no resizing,
and subsequently converted into a binary image via AHB, with a radius of 24.

and performing K ⋆ I, where here ⋆ denotes element-wise multiplication followed by

summing all elements, i.e.,

K ⋆ I =
a∑
i

b∑
j

Kij × Iij, (3.2)

and thresholding the output value, such that K⋆I < 0 yields an output binary value of 1,

and a binary value of 0 otherwise. For pixels near the boundary of the input image, from

where the kernel may extend beyond the input boundaries, pixel values are interpolated

via the standard ’replication’ method.

The final fingerprint is then an a× b logical matrix, where each pixel’s value is deter-

mined simply by whether or not it is brighter than the (average of) neighbouring pixels

defined by r. As such, AHB can be seen to encode local contrast information from the

original image.

3.4.2 Reduced Modified LBP

The second algorithm introduced is Reduced Modified Local Binary Patterns, or, R-MLBP.

In contrast to AHB, R-MLBP principally encodes gradient information to output a binary

image, as demonstrated in figure 3.7. The algorithm takes its name and fundamental ideas

from Local Binary Patterns (LBP) [89], a texture description algorithm first formally

described1 in 1994, which has since seen great success when used for facial recognition

[116], object recognition [100], and texture classification. The original LBP algorithm

takes as its input a (typically one-channel, greyscale) a × b pixel image, and outputs

1In fact, LBP is a specific instance of the Texture Spectrum model [58].
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(a) (b)

Figure 3.7: (a) Image of a Portuguese cat. (b) Image shown in (a), converted to a single
channel grey-scale image using MATLAB’s native rgb2gray function and no resizing,
and subsequently converted into a binary image via R-MLBP, with a radius of 24.

an a × b feature vector, providing a characterization of textural information within the

original picture. The algorithm functions (on a pixel-wise basis) in the following manner:

1. For a given pixel, store the values of it (α0) and its eight neighbouring pixels (αi

for i ∈ [0, 8] in a 3× 3 matrix.

2. For each neighbouring pixel i, assign it the label ’1’ if αi ≥ α0 or ’0’ otherwise.

3. Omitting the central pixel, concatenate the eight binary labels to form an 8−bit

binary number, α, known as a texture unit.

4. Convert α into decimal.

By storing the output decimal number generated for each pixel, an a × b feature vector

is created; whose elements describe one of 28 = 256 possible texture units. Each texture

unit encodes local contrast information positionally. The original LBP algorithm as

described above may be generalised beyond 3 × 3 coverage with 8 neighbouring pixels,

instead defining the coverage by some arbitrary radius parameter, R, and choosing N > 8

‘neighbouring’ pixels on the circumfrence of a circle centred at the centre pixel, with radius

R. However, each calculated feature vector is prone to noise. Given that all information

encoded in a feature vector is reliant upon the value of the centre pixel, a (very) noisy

centre pixel may corrupt several output pixels away from the correct value, whilst noise

in any neighbouring pixel may corrupt the value for the corresponding bit in the feature

vector. Thus, to minimise noise, we make use of a more noise-resilient adaptation of

LBP, Modified Local Binary Patterns (MLBP). MLBP, like the generalised LBP, takes

two parameters: the algorithmic radius R and (an even) number of neighbour pixels,
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Figure 3.8: Simple representation of pixel-wise comparison points for RMLBP.

N . For a given pixel, the ‘circle’ of neighbouring pixels is split into a left half and right

half, with the right half being defined as the first N/2 pixels going clockwise from the

neighbouring pixel on the positive y-axis (upper pixel) from the centre. The algorithm

then calculates a N
2
+ 1 feature vector as follows:

1. Starting from the upper pixel and working clock-wise; compare diametrically op-

posed pixels. If the pixel value defined as being on the right half of the circle is

greater than or equal to the value on the left, assign a bit-value of 1. Otherwise,

assign 0. Concatenating these values provides the first N
2
bits.

2. Calculate the mean, µ, of all N neighbouring pixels.

3. Compare the centre value to the calculated mean µ. If it’s greater than or equal to

the mean, assign a value of 1. Otherwise, assign 0. This forms the N
2
+ 1’th bit.

An example of this process for N = 8 is shown in figure 3.8. MLBP reduces the

feature vector’s dependency on the centre pixel in calculations (here, only contributing to

1 bit, as opposed to all bits as in LBP). Each neighbouring pixel only contributes to two

feature vector bits, with the contribution to the final bit being minimal via averaging.

By doing this, the algorithm shifts from encoding (positionally-informed) local contrast

information, to instead encoding a mixture of local gradient information (from left to

right, for the first N
2
bits) and (positionless) local contrast information (from the final

bit). The result is a (compartively more) noise-robust feature vector than that of the
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original algorithm, reducing the effect of both camera noise and inconsistencies in ambient

lighting conditions during capture.

In order to yield an algorithm that maps each image pixel to a single binary value (as

in AHB), we seek some binarisation, or reduction of MLBP’s feature vector, motivating

the use of Reduced-Modified Local Binary Patterns. R-MLBP adds one step to the above

algorithm:

5. Take modal value of MLBP feature vector as final pixel output.

Which motivates the use of N
2
+ 1 values in the feature vector, and further reduces

the effect of any pixel noise on a given (centre-) pixel’s output.

Similarly to the implementation of AHB, towards the edges of the input image, a

replication interpolation method may be used.

3.5 Processing Pipeline

Having detailed the algorithms used for fingerprint generation, as well as the systematic

methods used to obtain the raw optical data for generating such fingerprints, here is

detailed a (generalised) pipeline for the processing of information from the PUF devices.

The framework follows the following steps:

1. Data capture — as outlined above.

2. Pre-processing — the processing of the raw captured image before input into AHB

or R-MLBP.

3. Fingerprint generation — as outlined above.

4. Post-processing — the processing of the output of (either) fingerprinting algorithm,

for i.e., noise reduction.

5. Output — the final output key, a 64× 64 binary matrix.

A diagramatic overview is given in Fig. 3.1. As the earlier sections of this chapter

have given great attention to the data capture and FP generation steps, here we provide

information on pre- and post-processing.

3.5.1 Pre-Processing

Before passing an image to one of the two fingerprinting algorithms, we deploy a few

pre-processing steps in an attempt to yield consistency in fingerprint generation and (to
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some degree) to reduce noise. Some steps are tailored to specific algorithms, dot types,

or capturing processes, whilst others are applied regardless. A general framework of the

pre-processing is as follows:

1. Region of interest (ROI) cropping

2. Contrast boosting.

3. Channel selection.

4. Downsizing.

3.5.1.1 ROI cropping

All captured images initially include information surrounding the QD area itself (typically

the QR code printed on the device). To ensure only the QD area (i.e., region of interest)

is converted into the final output key, all images are cropped to square c × c images,

containing only optical information from the QD emission itself. In the case of smartphone

captures, due to the use of secure stands to hold the smartphone and the QD PUF, this

process is streamlined by simply employing the same crop for all images taken. However,

in the case of images captured underneath the optical microscope; due to the possibility

of stage movement (as well as focal change) between uses, this necessitates that all intra-

comparisons are only made between images captured in the same session (allowing one to

ensure that the stage will not be moved between interrogations). Further, in such cases,

regions of interest are determined and noted down, with specific cropping coordinates

being used for each ROI.

3.5.1.2 Contrast boosting

Given the nature of AHB as a (local) contrast-encoding algorithm, simple contrast boost-

ing is used to better highlight contrasting pixels and yield more reliable, unique finger-

prints. To achieve this, the MATLAB histeq function is applied to all images before input

to AHB.

3.5.1.3 Channel selection

For cases where a multi-channel camera sensor is used (producing RGB images), an im-

portant thing to consider is precisely what information to pass through the fingerprinting

algorithms, which only accept single-channel images as inputs. Two factors influence

this decision: the perceived colour of the quantum dot emission, and the specifics of the

camera sensor itself. Naturally, for dots that emit red light upon excitation (i.e., the dots
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used in this work whose emission peak lies at 650 nm), it would be expected that the blue

channel of an RGB image would likely contain little to no valuable information from the

dots emission, and would be more sensitive to noise. It might be expected that then the

red channel should be used, however, in the case of images captured using a smartphone,

it is standard practice in such camera development to have more sensors that capture

green light, typically according to the Bayer array [10], due to the understanding of how

human eyes perceive colour (linked with the fact that such cameras are often designed

to produce the most ‘aesthetically pleasing’ result for human vision, as opposed to a

true representation of the optical information of a given object). As such, for the results

presented in chapter 4, the green channel is used for processing (note that, due to the

(relatively) large FWHM of the emission spectrum of the CIS650 dots (see figure 5.2),

the green channel will still contain a large amount of relevant information, even for dots

perceived as red). For the images captured using a three-channel camera mounted to the

optical microscope, a variety of channel selections are used in conjunction with the op-

tical filters, for singling out individual dot emissions. For information captured between

550 - 600 nm (i.e., when using the long-pass 550 nm filter combined with the short-pass

600 nm filter), the blue channel is processed for fingerprinting, whilst for information

captured between 650 - 700 nm, the red channel is used. For examining how well the

fingerprints may be differentiated based solely on sensor channel filtration, information

captured across the visible light spectrum (i.e., with no optical filtration used), informa-

tion is processed from both the red and blue channels, as well as single-channel greyscale

image extracted via MATLAB’s native rgb2gray function.

3.5.1.4 Downsizing

Prior to fingerprinting, the resolution of the input image is reduced. This has two benefits

for the processing of fingerprints: (i) It induces a speed-up of the algorithms (reducing

the number of pixels (and hence number of iterations of the fingerprinting algorithm)

processed); (ii) Downsizing of the input image typically reduces the amount of noise in

the image, especially for single-pixel noise. Parameters for downsizing vary, depending

on both the resolution of the original captured image, and the expected size of distinct

features on the PUF surface. Parameters, as well as their choosing, will be defined where

appropriate.

3.5.2 Post-Processing

The steps for post-processing are kept minimal, in an attempt to depend upon the directly

captured optical information for fingerprint comparisons as much as possible. In fact, the
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only post-processing step incorporated in the work of this thesis is for noise-reduction,

and consistency in fingerprinting outputs; and that is resizing of the output. For both

algorithms investigated, an a × b image yileds an a × b output. In order to reduce the

effect of noise on the algorithm, all a× b outputs are resized to yield a 64×64 bit output,

equivalent to a 4096 bit binary key, well above the standard thresholds for a secure

public key. It is worth noting that, for real-world applications, there are a number of

post-processing steps which are likely to be considered for use. For completeness and for

consideration for future work focusing on applications of optical PUFs, a few are listed.

They are not used here, as for this work it was considered important to understand the

direct output of the fingerprint process as best as possible.

To attempt to lessen the effect of noise on output fingerprints, instead of only taking

a single measurement of the CRP at a given time, multiple measurements may be taken

and processed. Following the computation of several fingerprints associated with a given

CRP probing, they may be combined to identiy anomalous pixels influenced by noise in

the processing.

Additionally, for real-world security applications, a hash (or family of) algorithms is

likely to be used to obfuscate the final output, thus making reverse-engineering of any

given key harder, further complicating the process of gathering information in attempt

to create a convincing fake device. However, the use of standard hashing algorithms

alone is not suitable for the noisy readout of a PUF; due to the very nature of hashing,

the Hamming distance between each output is likely to greatly increase, in comparison

to the distance between each input fingerprint. Thus, a method is needed to obtain a

consistent output key from all fingerprints obtained from a single device, despite the noise

issue elemental to PUF readout. Numerous solutions for this exist, with fuzzy extractors

[34, 29, 67] being a noteable example.

3.6 PUF Assessment

For the purposes of assessing PUF efficacy, as well as the comparison of different PUFs

and fingerprinting algorithms, we desire a set of figures of merit to produce for each PUF

instance. Throughout pre-existing literature, a number of different metrics have been

proposed, but a single systematic set of metrics has not been adopted in a widespread

fashion. Whilst this could be due to the (relatively) nascent nature of PUF research,

we must also factor in that, with different challenge-response mechanisms characterising

different PUF types, it is natural that different sources of (different types of) information

may require varied approaches in assessment. In the case of PUFs whose output is

naturally binarised, it may be sufficient to base the analysis only on the direct output
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of the PUF itself. However, in the case of optical PUFs, the need for some (binarising)

key extraction protocol naturally leads to the assessment being intrinsically tied to such

a process. In this section is defined the system for evaluating our devices.

3.6.1 Assessment Model

For the analysis of PUF performance, we require a set of assumptions on any protocol that

may use them. Here, we lay out the assumptions made during the research and writing

of this thesis. Note that any real world implementation may involve a different set of

assumptions, and some assumptions made here may be strengthened, or even relaxed, for

such implementations.

1. Verification process — There exists some (black-box) process by which a device may

be interrogated, and the process outputs ACCEPT (in the case that the device is

real) or REJECT (in the case that the device is a fake).

2. Fabrication method — All (real) tags are fabricated via some prescribed method,

which may be known to an attacker.

3. Storage of keys — It is assumed that all keys (in this case, the digital fingerprints)

will be stored in a central system, for use within the verification process. It is

further assumed that this information is kept private (although later, scenarios in

which this latter assumption may be relaxed will be discussed).

4. Fuzzy information error — It is assumed that, due to the noise inherent to the sig-

nal capturing process, as well as uncontrolled/uncontrollable capturing conditions,

different captures of the same PUF device will differ according to some error ϵinput.

5. Fuzzy fingerprint error — It is assumed that, post-fingerprinting, the binary output

key for a given PUF device should be equal to other output keys from different

captures of the same device, up to some error factor ϵFP, dependent upon ϵinput.

6. Query model — An attacker may query the verification process with fakes. In the

case where the attacker may obtain a real device, they may also query the process

with a real device. (The attacker will not gain access to the fingerprint associated

with their device instance, only ACCEPT or REJECT.)

In the analysis presented in chapters 4 and 5, a full verification process is not con-

sidered, and is left for future work focusing on real world implementations. Instead,

the focus is on the assessment of metrics that relate fingerprints (or a set thereof) to

other fingerprints (or sets thereof). A full verification process would inherently need to
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be combined with the query model and the implementation of key storage to ensure a

cryptographically secure process, with safeguards against side-channel attacks as well as

replay attacks. Thus, the discussion of side-channel attacks will be omitted from this

work. However, replay attacks will be considered within our framework.

With regards to replay attacks, we consider three attack scenarios of an adversary,

Malory, attempting to counterfeit a specific PUF device, X, with challenge-response

(post-fingerprinting) output of KX :

1. Malory has no information of a PUF’s given input or output, and may manufacture

a device, Y ′, using any material.

2. Malory has access to both a PUF’s input image, and output fingerprint, and may

manufacture a device, Y ′′ using quantum dots, mimicking the steps specified in 3.1.

3. Malory has access to both a PUF’s input image, and output fingerprint, and may

manufacture a device, Y ′′′ using any material.

Scenario one simplifies to chance: Malory does not know the desired output she wishes

to mimic, and as such, any device produced and interrogated for an output is essentially

attempting to guess KX . In a scenario where PUF outputs could be recorded repeatedly

with perfect precision and no noise, the probability of passing is

Pr [Pass] = Pr [KY ′ = KX ] = 2n,

where n is the total size of KX,Y ′ . Given that the readout of optical PUFs is noisy,

and authentication schemes require instead that a presented key need only be close to a

registered key, in relation to some threshold parameter, t, opting to represent closeness

of keys by the Hamming distance, we instead have

Pr [Pass] = Pr [KY ′ ∼ KX ] = 2n(1−t).

In scenario two, Malory possesses information of both X and KX , and as such may

iterate their design approach, in order to produce a device, Y , that outputs a fingerprint

KY ′′ which is sufficiently close to KX . However, given that the production of quantum

dot PUFs is considered to be a hard-to-control process, this scenario simplifies to attack

scenario one: even though Malory has knowledge of what she must mimic in order to pass,

as each quantum dot PUF device she produces has a random emission pattern beyond

her control, the scenario can once again be considered as good as guesswork. In scenario

three, however, the assumption that Malory will have little to no control over the optical

pattern present on Y ′′′ no longer holds. It should be noted that, given these devices
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are interrogated via the use of a macroscale camera sensor, despite the origin of their

uniqueness residing in the microscale, it may be possible to spoof the output response

sufficiently enough to obtain a collision via the fingerprinting algorithm chosen; especially

given the reliance on fingerprinting algorithms that are further distilling the microscale

features into bits representing larger and larger areas of physical space. As such, Malory

may expect she is able to produce a device, Y ′′′, producing an output KY ′′′ ∼ KX .

However, in spite of this, such devices may still be used for secure authentication, by

employing a secondary check that authenticates information about the material used,

such as the non-linear emission response of quantum dots, as discussed in [44]. As it is

understood to be impossible to replicate both the stochastic process of printing a device,

as well as the clustering of quantum dots within the lacquer, it should be expected that,

if a device can reliably be shown to exhibit these non-linear properties, then it’s optical

emission pattern could not have been highly engineered as a spoof attack. Thus, if such

a material property check is implemented prior to authentication of KY ′′′ , and devices

which do not pass this check are rejected at this point, the issue of authenticating the

output key simplifies to scenario 2, and can thus again be considered guesswork.

In this work, for each PUF CRP instance (detailed specifically for each case in chapters

4 and 5), the PUF will be interrogated under the associated challenge parameters multiple

times, with the optical response being captured by use of camera sensors to generate a

three-channel full colour images, as detailed earlier in this chapter. All images will be

processed under R-MLBP and AHB, to create a fingerprint database. From this database,

each CRP instance is assessed individually for both uniquness and reliability, by making

use of the metrics defined in subsection 3.6.2. In order to do this, one image (and its

associated fingerprint) are treated as equivalent to a registration entry; i.e., that entry

will form the reference for comparisons made in the assessment of that CRP instance.

Comparisons made between a reference entry, and entries from different interrogations of

the same CRP instance will be dubbed intra comparisons, whilst those made between a

reference entry and interrogations of a different CRP instance (and/or a different PUF

instance) will be dubbed inter comparisons.

3.6.2 Performance Metrics

The following definition of metrics takes inspiration principally from the field of biomet-

rics: given the noisy nature of the optical information, the problem of verifying that a

given input matches a previously assessed given input must take into account this fuzzy

element, similarly to the verification of biological fingerprints, irises, or indeed any bio-

metric information. The nature of the task is to ensure that, given a previously registed

PUF device, PUFX , and fingerprint FPX , any new captures of PUFX should yield a small
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Figure 3.9: An example of the intra (left) and inter (right) Hamming distance distri-
butions generated for a given PUF instance, by comparison against images of the same
PUF instance (intra) and all other PUF instances (inter). The low x-values for the intra
distribution, whose peak is just under 0.2, implies a reliable fingerprint extraction process
over different images, whilst the peak centred around 0.5 for the inter distribution implies
that the fingerprints retain the randomness of the PUFs’ optical outputs.

value for ϵinput, and the output of the fingerprinting process should emit a binary string

FP∗
X ≡ FPX up to a small error ϵFP. Simultaneously, a capture of either a fake, or a

different PUF instance, for now dubbed (w.l.o.g.) PUFY should yield a large value for

ϵinput, and in turn emit a subsequent fingerprint FPY ̸= FPX , determined by a large error

ϵFP. In order to assess the similarity between different fingerprints (and therefore ϵFP, we

make use of the Fractional hamming distance.

For a given PUF instance, by comparing the reference fingerprint to all other finger-

prints from that instance generates the intra-Hamming distance (intra-HD) distribution.

Likewise, by comparing the reference fingerprint to all fingerprints from other PUF in-

stances generates the inter-Hamming distance (inter-HD) distribution. In an ideal case,

elements of the intra-HD distribution would be equal to 0 (signalling two identical keys),

whilst elements of the inter-HD distribution would be equal to 0.5 (signalling a difference

on precisely half of all bits, implying seemingly randomness compared to each other). In

practice, due to the fuzzy nature of the capturing process, this is not achievable, especially

for the case of intra-HD elements. An example of both intra- and inter-HD distributions

is shown in Fig. 3.9, with the separation between distributions clearly shown.

From the two HD distributions, both false acceptance rates (FARs) and false rejection

rates (FRRs) for a given PUF instance can be calculated, via the cumulative distribution

functions (CDFs) for each distribution. For the calculation of CDFs, a normal distribution

is fitted to each HD set. Considering the intra-HD distribution for a given PUF CRP
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instance to be a random variable X, and the inter-HD distribution being a random

variable Y , we formally define the FAR and FRR as follows:

Definition 3.3. FAR
FAR(X, Y ) = Pr(Y ≤ tr)

= CDF(Y, tr).
(3.4)

Definition 3.5. FRR
FRR(X, Y ) = Pr(X > tr)

= 1− CDF(X, tr).
(3.6)

There are a variety of ways to consider how to choose the rejection threshold, tr. Sim-

ply (but not necessarily practical for real-world implementations), tr can be dynamically

chosen independently for FARs and FRRs: for the former, tr = max(X) whilst for the

latter, tr = min(Y ). Cases where such choices are made are hereon dubbed true FARs

and true FRRs. In such a case, the FAR and FRR respectively become

FAR(X, Y ) = CDF(Y,max(X))

and

FRR(X, Y ) = 1− CDF(X,min(Y ))

(3.7)

For use in a wider authentication protocol, it is ideal to instead select a hard, fixed limit

for tr, that is jointly used in calculations of both FAR and FRR. Determining a suitable

choice for this will be presented in the results section. As well as calculating FARs and

FRRs, we choose a metric to more directly quantify the distance between the two HD

distributions. Borrowing from the field of biometrics, we consider the decidability between

two distributions, defined as follows:

Definition 3.8. Decidability

d′ =
|µ1 − µ2|√

((σ2
1 + σ2

2) /2)
(3.9)

The decidability is less arbitrary than FARs and FRRs, due to it being independent

of any arbitrarily chosen parameter such as tr. Further, it informs the decision on how

to choose tr: increasing tr benefits the FRR, whilst worsening the FAR. As discussed in

[26], a high decidability signals that we sacrifice less in terms of FAR whilst improving

FRR, and vice versa.

Use of FARs, FRRs, and decidability help to test the separability of the HD distribu-

tions, as discussed, in order to assess how repeatable a fingerprinting process is, and the

level of uniqueness retained in the final fingerprint from the initial optical output. How-

ever, none of these metrics provide insight on the information independently held within

61



an output fingerprint. As well as ensuring uniqueness and repeatability, we require a way

to measure the inherent entropy in an individual fingerprint, as well as some checks on

the content of the fingerprint to inhibit an adversary’s ability to guess an output using

some other publically available information about a PUF device, CRP, or fingerprinting

process. One simple check is to consider the inherent bias towards a possible value of

each fingerprint,

Definition 3.10. Bias. Given a binary n ×m-dimensional bitmap, α, we can calculate

the bias of the bitmap as

bias(α) =

∑m
i=1

∑n
j=1 αi,j

n×m
, (3.11)

i.e., the bias is equivalent to the proportion of ones in the bitmap.

Ideally, all fingerprints would yield a bias of 0.5, as large deviations from this imply an

easier to guess output. However, in practice, perfectly unbiased fingerprints are unlikely

to occur.

There are varying proposals of quantifying entropy of information in bitmap, whilst

respecting spatial components of the image. Here, we opt to consider the degrees of

freedom (DoF), initially defined as Effective Number of Independent Bits (ENIB) by

Pappu [90], for a given fingerprint.

Definition 3.12. Degrees of Freedom. Given a binary bitmap (fingerprint) α, and a

description of the random variable Y describing the inter-HD distribution calculated for

α and a population of PUF CRP interrogations, A not containing α, one can calculate

the degrees of freedom, N within α as

N =
µ (1− µ)

σ2
(3.13)

where µ and σ are the mean and standard deviation (respectively) of Y .

When assessing the above defined metrics, we (generally) seek the following criteria

to be met:

� FAR under 10−6 and FRR under 10−5, as a base for further use in an authentication

protocol (specifically, for faith in the verification process).

� Decidability on par with biometric systems currently in wide-use, such as iris scan-

ners, which yield a decidability of 14.1 in controlled conditions and 7.3 in field

use.

� (For a key size of 4096 bits) A minimum DoF of 256 bits, to ensure that, even

when deployed in an authentication protocol that further compresses the output,
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the final key retains unique identifying bitstrings with a large information yield to

avoid collisions (with or without hashing). A DoF of 256 bits is hereon considered

a hard minimum, whilst aiming for a soft minimum of at least 512 bits to allow for

some redundancy within the output.

The final list of metrics used in this work is:

� Intra- and inter-Hamming distances (HDs)

� False acceptance and false rejection rates (FARs/FRRs)

� Decidability

� Bias

� Degrees of Freedom

Given the (relative) nascency of the optical PUF field, a systematic method of assess-

ing the performance of such devices is yet to be agreed upon. Due to that, the above

metrics may not prove a definitive means of evaluating PUF performance. In [80], the

authors propose a systematic method of evaluating PUFs, following a review of previous

literature related to the assessment of PUF devices. In this, the following metrics are

finally proposed:

� Uniformity

– Defined to be the Hamming Weight of an output string, equivalent to bias.

Ideally, a score of 50% would be achieved.

� Reliability

– Equivalent to calculating the intra-Hamming distance distribution for a given

tag. Ideally, devices are 100% reliable (equivalent to generating intra-Hammings

of 0). Such scores are unachievable due to the noisy nature of the capturing

process.

� Steadiness

– Considered similar to reliability, but with a focus on capturing different con-

ditions. Again, ideal target steadiness equates to intra-Hammings of 0. Small

changes in the PUF’s response in different lighting conditions are likely to

propagate noise errors.

� Uniqueness
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– Equivalent to calculating the inter-Hamming distance distribution for a given

tag. Ideally, this should correspond to inter-Hammings of 0.5, with scores less

than this implying correlation, and scores above implying anti-correlation.

� Diffuseness

– Considered similar to uniqueness, but instead considering differences between

identifiers obtainable from a single device, hence being more applicable towards

strong PUFs.

� Bit-aliasing

– Defined as the Hamming weight of a particular bit across multiple devices.

� Probability of misidentification

– Calculated via FARs and FRRs.

Comparing this list to the metrics used in this thesis, the majority are included. Of those

that are not, two (steadiness and diffuseness) are due to their suitabilities, as stated in

the report. Regarding bit-aliasing, as it focuses on recognising spatial irregularities in

the outputs, it was deemed less relevant due to the inherent spatial uniqueness of the

analysed PUF devices.

Further, decidability and DOF are used in this work, due to their suitability to weak

PUFs and proposed use cases of this work. Decidability proves useful for assessing in-

field use of the devices, allowing for confident matching of correct fingerprints given a

potentially large number of devices. DOF provides a means of retaining confidence in

the likelihood of a collision in the field being low, given a high number of devices in use.

Both figures of merit allow for confidence in long term use of the devices, which is key in

ensuring longevity in the use, and potential reuse, of a single weak PUF device.
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Chapter 4

Quantum Dot Physically Unclonable

Functions

The use of unique identifiers has been an essential cornerstone in the building of phys-

ical security devices, allowing manufacturers of goods, pharmaceuticals, and physical

money to give a consumer confidence in the authenticity of their product. The battle

against counterfeiting, however, has often taken the shape of a cat-and-mouse game, with

manufacturers devising increasingly complex fabrication methods for devices, which only

remain secure as long as the fabrication process is inaccessible to counterfeiters, typi-

cally due to financial and/or time constraints. Such a process (where, given the same

resources, it is approximately as easy to create a convincing fake as it is to create a real,

authentic device) is considered a symmetric manufacturing process. Due to the stochastic

processes exploited by physical unclonable functions (PUFs) for their uniqueness, they

can be seen as having an assymetric manufacturing process, i.e., even with full access

to the equipment and knowledge required for device fabrication, it is (relatively) much

harder to produce a convincing fake than it is to fabricate a real device; breaking the

typical cat-and-mouse process that is typical of the counterfeit industry. However, the

widespread adoption of PUFs has been limited due to the often complex methods, and

expensive, inaccessible equipment, required to successfully interrogate a device and record

its response.

In this chapter, the interrogation of optical PUFs utilising ubiquitous technology,

namely a smartphone, is demonstrated in an attempt to surmount the roadblock of inac-

cessibility for PUFs. Quantum dot PUFs (QD-PUFs) consisting of CuInS/ZnS quantum

dots with peak emission at 620 nm are assessed and shown to yield sufficient uniqueness

to form a physical authentication token, with reliable interrogation and verification per-

formed using only a smartphone’s built-in torchlight (camera flash) and camera sensor.

Firstly, this is demonstrated in ideal conditions, with the devices assessed in the presence
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of no ambient lighting, ensuring the devices uniqueness can be reliably interpreted via the

smartphone camera. Such conditions would also bear applications ‘in-field’, for a scenario

where a product (e.g. a passport or identity card) utilising a QD-PUF may be assessed

under dark conditions, such as a third-party (e.g. an immigration officer) placing the

product into a trusted scanner. Working under the hypothesis that, without a strict con-

trol on ambient light, the flash from the smartphone is likely to be the dominating source

of light over the device, the control on ambient lighting is removed. By interrogating

the devices in a series of different lighting conditions and comparing outputs from each

experiment, it is shown that the process can still be conducted reliably. This expands

the potential use cases of a QD-PUF to the general case of allowing a consumer to verify

the authenticity of a product in an unknown environment, without relying upon a third

party for assessment.

In order to generate digital fingerprints from the captured optical emission, both

reduced modified local binary patterns (R-MLBP) and adapted high boost (AHB) (as

described in 3.4) are used on a dataset consisting of 48 PUF instances, each imaged 50

times. The resulting 2400 images are seperated into two classes:

� 48 images (one per PUF instance) which form the reference images; akin to the

data used in the registration phase for a real-world implementation.

� 2352 images (49 per PUF instance) which form our comparison pool for intra- and

inter-comparison populations.

Prior to any processing, crops of the captured quantum dot patch area are roughly

525× 525 px, and are first re-sized to 175× 175 px prior to fingerprinting. As detailed

in chapter 3, output fingerprints are then resized down to 64× 64 px. For these devices

consisting of a 1 × 1 cm patch of quantum dot material, each pixel in an input to a

fingerprinting algorithm corresponds to roughly 5.71 × 10−3 cm, whilst each pixel in a

64× 64 output corresponds to roughly 1.6× 10−2 cm

For both algorithms, each image is processed under 15 different choices of algorithmic

radius between r = 2 and r = 24. For each choice of radius, one fingerprint is generated

per captured image, resulting in a fingerprint population of 2400 per radius. When

generating distributions for both intra- and inter-HDs, we only compare fingerprints

amongst those obtained at the same choice of r.

Initially, the true FAR and true FRR are calculated (i.e., tr is unfixed, and is adap-

tively changed according to the minima and maxima of the inter-HD and intra-HD dis-

tributions resp.). In the cases where the resultant calculation falls below MATLAB’s

precision threshold (roughly 10−308 for floating point double-type data objects), the out-

put rate is rounded to zero.
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4.0.1 Fingerprinting Outputs

For secure use in cryptographic protocols, the outputs of both fingerprinting algorithms

(shown in figure 4.1) must satisfy certain requirements (as discussed in Ch. 3, to satisfy

notions of randomness and uniqueness of the PUF itself, as well as reliability of the

interrogation and fingerprinting processes.

R-MLBP AHB

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 4.1: (a,h,o) Images of three different PUF devices. (b-d,i-k,p-r) R-MLBP outputs
for the green channel of three different images of matching device; and (e-g,l-n,s-u) AHB
outputs of the same three different images of matching device showcase both (i) the
reliability of obtaining similar fingerprints from different captures of a given device; (ii)
uniqueness of fingerprints of different devices. Each QD-region pictured in the left-hand
column represents a 1× 1 cm2 region.

Figure 4.2 shows an example pair of Hamming distance distributions for a given PUF

device under each algorithm, demonstrating both the uniqueness of a given device, and

the reliability of the interrogation process.

As well as uniqueness and reliability, the outputs of the interrogation process must be

considered random. Figure 4.3 showcases the evolution of the binary bias of fingerprints

(on average) over changing radius. Both algorithms suffer from deteriorating bias as the

algorithmic radius increases, suggesting that random variation within a device occurs at

(relatively) small-scale levels. AHB achieves a worse optimal bias compared to R-MLBP.

This poor performance in bias may be remedied (to some extent) by changes to the

pre-processing, and/or tweaks to the algorithmic kernel.
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(a) (b)

Figure 4.2: Example intra-Hamming (left, blue) and inter-Hamming (right, orange) dis-
tributions for fingerprints produced across a range of QD PUFs under (a) R-MLBP and
(b) AHB.

4.1 Shroud (Black-box) Conditions

4.1.1 Qualitative Comparison

When seeking to compare the two algorithms against each other, we find that both AHB

and R-MLBP are capable of reliably producing unique fingerprints for all 48 QD-PUF

instances. On average, AHB achieves an optimal absolute FAR of magnitude 10−179

whilst R-MLBP averages out at 10−170. On 30 out of 48 of the tokens, AHB is deemed to

yield lower absolute FARs than R-MLBP, initially suggesting that AHB is more capable

of reliably producing fingerprints of the tokens, albeit only slightly. It is worth noting

that, given the minuscule nature of the reported figures, such differences are trivial. Fur-

ther, the reliance on the tails of distributions in calculating false rates should be treated

with caution, as these tails may not be representative of experimental data. Despite AHB

achieving lower optimal FAR values than R-MLBP, the latter yields a greater decidability

(as shown in figure 4.4, suggesting it should be easier to find a fixed threshold for accep-

tance/rejection. R-MLBPs drop in FRR is therefore greatly beneficial when considering

potential real-world implementations. In Fig. 4.5, we observe a much greater distance be-

tween produced FAR minima and maxima for R-MLBP, with FAR rapidly deteriorating

as radius increases. This suggests that R-MLBP suffers from an inability to capture local

information at high r, resulting in areas of uniformity within the output. As described in

section 3.6.2, R-MLBP computes a final binary output dependent upon a fixed number,

here, N = 16, of pixels on the circumfrence of a circle with radius r, regardless of the

choice of r. Thus, with increasing r, R-MLBP calculates a deteriorating proportion of
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Figure 4.3: Plot of calculated average bias across entire range of fingerprints generated
from PUF responses captured in all environments investigated in this work. 0.5 represents
an ideal score for bias.

the total bits within the neighbourhood, compared to AHB, which always utilises all bits

in the local neighbourhood. Consequently, R-MLBP’s DoF performance also deteriorates

as r increases. AHB retains locality and yields lower inter-hamming standard deviations,

resulting in a higher entropy output across radii, as well as the aforementioned lower FAR

performance. However, R-MLBP benefits from a lower intrahamming distance and stan-

dard deviation, resulting in much lower FRR values and greater decidability. Examining

the choice of radius at which absolute FAR is optimized (i.e., r corresponding to a global

FAR minima), we find that R-MLBP averages an optimal radius of 2.6, whilst AHB av-

erages at 9.7, significantly higher (a trend further highlighted in Fig., where we see that

R-MLBP’s absolute FAR tends to increase with radius, whilst AHB’s decreases). Noting

that algorithm performance at higher choices of r involves the amalgamation of informa-

tion from a greater pixel neighbourhood, we hypothesize that AHB is less-well equipped

at reliably extracting the fine-grained uniqueness from QDPUFs, and instead excels at

extracting coarse-grained uniqueness. Given the potential of manufacturing thousands, if

not millions, of PUF devices for use in commercial applications, this difference in graining

by the algorithms may prove pivotal in wide-scale robustness: PUF devices which prove

uniquely different within small-pixel neighbourhoods may yield coarsegrained fingerprints

that are more likely to form a collision under AHB (due to large(r) segments of repeated

bits within the fingerprint), when compared to the excelling fine-grained fingerprints of

R-MLBP. However, due to correlations inherent within outputs, it may be useful to cou-

ple fingerprint generation with some form of entropy addition process. Additionally, the

standard deviation of optimal r is 0.84 for R-MLBP, and 5.72 for AHB. In a commercial

application, this provides greater confidence in being able to choose a single radius to as-

69



Figure 4.4: Decidability scores averaged over all 48 PUF devices investigated, shown over
varying radii for R-MLBP and AHB. Whilst R-MLBP outperforms AHB, both algorithms
scores are comparable to those reported for modern iris recognition technologies.

sess all produced QD-PUFs under R-MLBP than under AHB. Further, fingerprinting at

higher radii is more computationally intensive under AHB, with the number of necessary

calculations scaling up quadratically with r, which, considering implementation times for

user experience in real world use, suggests seeking a low working radius.

4.2 Ambient Lighting

The results presented thus far serve as a proof of concept for the idea of measuring

optical PUFs with ubiquitous devices. However, for widespread adoption, the process of

interrogation and recording of the QD-PUF challenge-response pair (CRP) must be able

to withstand a plethora of environmental factors, such as varying lighting conditions,

movement (due to the human element of holding the smartphone and PUF device) and

perspective correction. Towards this aim, this section presents an analysis of performance

in different lighting conditions.

All 48 devices are re-interrogated in three different ambient lighting conditions: low-

light (0.006 kLux) in an optics lab, and two medium-light (0.220 kLux and 0.326 kLux)

in an office and an optics lab respectively. Initially, results are presented to show the

reliability of obtaining a unique identifier in each individual setting, before comparing

identifiers obtained from all settings against the earlier analysed identities from the shroud

captures. The latter analysis is used as a model of a real-world implementation, in

which an identifier obtained in any setting must be successfully authenticated against

the identity obtained at registration (in this case, blackbox shroud conditions).
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(a) (b)

Figure 4.5: A comparison of (a) false acceptance rate (FAR) and (b) expected number of
independent bits for a single-dot emission PUF device, under both R-MLBP (blue line)
and AHB (orange line). The dashed line in panel (b) represents the minimum allowed
score for ENIB.

4.2.1 Single session comparisons

Initial assessment of the PUF devices in ambient lighting conditions is done on a per-

session basis: the analysis previously done within blackbox shroud conditions (but util-

ising only the inner stand) is repeated in each of our chosen ambient lighting conditions.

The aim of this analysis is two-fold: it allows for a proof that reliable fingerprints are

capturable outside of shroud conditions, and it allows for an assessment on the impact

of ambient light on intra-hamming distances, providing data on noise-resistance of each

algorithm, as well as data for planning mitigations in order to improve performance.

For each environment, a light-meter was used to capture the level of local ambient light

before commencing the PUF interrogation process. Two capturing environments were

located in the same optics lab in which the shroud was used, but without the shroud, and

varying ambient light via the combination of different levels of indoor lighting; resulting in

a scene at 0.06 kLux and one at 0.326 kLux. The final environment was in an office with

a combination of natural light and ambient light resulting in a local light-level recording

of 0.220 kLux. The results are presented in order of increasing ambient light levels.

4.2.1.1 0.06 kLux

Outside of shroud conditions, we again find that both AHM and R-MLBP are capable

of reliably and repeatedly producing unique fingerprints for all 48 QD-PUF instances.

However, surprisingly, the minima of the (non-fixed threshold) FARs tend to be lower in

ambient lighting conditions, as seen in Fig. 4.6: For AHB, the average global minimum of
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the FAR curves across all PUF devices is of magnitude 10−284, whilst FARs for R-MLBP

average out at a magnitude of 10−260. Initial expectations were that FAR performance

would worsen with the introduction of ambient light. However, in low levels of light, it

is hypothesized that the improvement in performance will be related to the automated

capturing process of the camera; with the camera’s focus being maintained correctly in

the presence of ambient light.

The average radii at which the global minima were found under AHB is r = 5.3, with

a standard deviation of 3.17, whilst for R-MLBP, the average was found to be r = 2.1,

with a standard deviation of 0.31

(a) (b)

Figure 4.6: A comparison of (a) FAR and (b) ENIB for a single dot emission PUF
device. Both sets of results are calculated based on inter-Hamming distance distributions
generated from fingerprints of all PUF devices examined in an open shroud, with local
ambient light level readings of 0.06 kLux. The dashed line in panel (b) represents the
minimum allowed score for ENIB.

4.2.1.2 0.326 kLux

Increasing ambient light levels further, the devices were re-interrogated in the same lab-

oratory. Once again, the reliable production of unique identities is proven to be possible

with both examined algorithms. The results directly follow those presented above for

the 0.06 kLux case, with AHB again producing lower (non-fixed threshold) FARs than

R-MLBP on 30 out of 48 PUF devices. The average of the global minima of the FAR

curve for AHB is of magnitude 10−287, and for R-MLBP, the average is 10−262, showing

similar improvments over the 0.06 kLux case. For AHB, these minima were found at

an average radius of r = 4.1 with a standard deviation of 2.09, whilst for R-MLBP the

equivalent figures calculated were r = 2.1, with a standard deviation of 0.33.
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(a) (b)

Figure 4.7: A comparison of (a) FAR and (b) ENIB for a single dot emission PUF
device. Both sets of results are calculated based on inter-Hamming distance distributions
generated from fingerprints of all PUF devices examined in an open shroud, with local
ambient light level readings of 0.326 kLux. The dashed line in panel (b) represents the
minimum allowed score for ENIB.

4.2.1.3 0.220 kLux

Additionally, the devices were also interrogated outside of an optics laboratory, allowing

for the influence (indirect) natural light on the capturing scene. From readings taken

before and after the round of interrogation, the average level of ambient light throughout

the session was 0.22 kLux. This shift away from well-controlled light introduces the first

big change in the trend of results so far, with AHB continuing to benefit from the increased

ambient light levels, whilst R-MLBP’s performance decreased: the average optimal FAR

for AHB (R-MLBP) in these conditions was of magnitude 10−285 (10−251). These minima

were obtained, on average, at a radius of r = 4.6 (r = 2.1) for AHB (R-MLBP), with a

standard deviation of 2.2 (0.31).

4.2.1.4 Assessment

In each environment that the PUF devices were interrogated in, both fingerprinting algo-

rithms were able to reliably fingerprint the captured image and obtain unique identifiers.

In general, the results follow the trends established in the earlier, shroud-based work:

AHB achieves lower optimal FARs than R-MLBP, whilst R-MLBP is more capable of

separating the intra- and inter-Hamming distance distributions (as shown by the de-

cidability scores shown in figure 4.10). Figure 4.9 showcases the similarity in trends for

both algorithm’s performance in these environments, with intra-(inter)Hamming distance

distributions consistently low (∼ 0.5) for each environment.
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(a) (b)

Figure 4.8: A comparison of (a) FAR and (b) ENIB for a single dot emission PUF device
interrogated under ambient light provided by internal office lighting and indirect external
sunlight through a nearby window, with an ambient light reading of 0.220 kLux. A
comparison of (a) FAR and (b) ENIB for a single dot emission PUF device. Both sets
of results are calculated based on inter-Hamming distance distributions generated from
fingerprints of all PUF devices examined in an office environment including both internal
and external lighting. Local ambient light level readings taken before and after measuring
averaged out at 0.220 kLux. The dashed line in panel (b) represents the minimum allowed
score for ENIB.

Examining the radii at which optimal FARs are achieved across different lighting con-

ditions, it is worth noting that R-MLBP’s optimal performance was consistently focused

around r = 2, with low levels of variation, in comparison to AHB, whose optimal per-

formance is more variable across different conditions, focusing around r ≈ [3, 5]. This

further boosts the prospect of R-MLBP for a real-world implementation, due the increased

assurance of good performance at one chosen fixed algorithmic radius.

4.2.2 Comparisons against shroud reference

The results shown in the previous subsection demonstrate the PUF device’s ability to

be reliably interrogated in different lighting conditions. However, for real world use,

fingerprints generated from user-captured images of a device would be unlikely to be

compared to those generated in similar lighting conditions, instead being compared to a

reference fingerprint generated in controlled conditions at registration. Thus, it must be

ensured that fingerprints captured in each lighting condition are adequately similar to

those generated at some registration point. In order to test this, the earlier captured in-

shroud images are treated as a reference point generated during some registration period,

and these fingerprints are compared to those generated in different lighting conditions.
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: (a)-(c) Intra-Hamming (left,blue) and inter-Hamming (right, orange) distri-
butions generated via R-MLBP from images captured at 0.006 kLux, 0.326 kLux, and
0.220 kLux respectively. (d)-(e) Intra-Hamming (left,blue) and inter-Hamming (right, or-
ange) distributions generated via AHB from images captured at 0.006 kLux, 0.326 kLux,
and 0.220 kLux respectively.

In this case, intra-Hamming comparisons are made between the reference image, and

all images (of the same device) captured from each environment, resulting in 45 data

points for the distribution for each device. Inter-Hamming comparisons are made between

the reference image, and all images of other devices from each environment, yielding 2115

data points per device.

Examining decidability metrics (shown in figure 4.10) calculated across the data pop-

ulation, R-MLBP outperforms AHB, suggesting that a fixed threshold for separation of

of fingerprints from the wrong (or, fake) devices is easier to find for R-MLBP than for

AHB. In earlier sections of this chapter, “adaptive” false acceptance and rejection rates

were shown, acting as a measure of distance between each Hamming distribution, and

the nearest extrema of the other. Whilst these are of use for understanding the likelihood

of an element of one distribution belonging to the other, such rates are unlikely to bear

usefulness in real-world applications, where a fixed threshold for rejection or acceptance

of a given fingeprint is required. To this end, for the model of an authentication protocol,

fixed FARs and FRRs are calculated for the Hamming distributions; i.e., the probabil-

ity of an inter-(intra-)Hamming distribution element falling below (above) some fixed

threshold, t, is calculated and presented as the t−thresholded FAR (FRR). Results are
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Figure 4.10: Example of the average decidability calculated for a PUF device, over vary-
ing radius for fingerprints generated via R-MLBP (blue) and AHB (orange). Hamming
distance distributions used for the calculation of decidability were obtained from finger-
prints of captures taken in all lighting conditions described.

shown in figure 4.11 for a selection of thresholds t = 2.5, 3, 3.5, 4, 4.5. As suggested by the

calculated decidability scores, R-MLBP is better capable of achieving strong scores for

both FAR and FRR at a fixed threshold for a single radius choice for both rates. Whilst

AHB is again capable of producing lower FARs overall, for fixed thresholds it achieves

much worse FRRs than R-MLBP throughout the choices of radius.

4.3 Concluding Remarks

Optical PUFs made using collodal CuInS/ZnS core/shell colloidal quantum dot-based

inks are proposed as strong candidates for use in ubiquitous PUF designs. It is shown,

through the low intra-Hamming distance distributions with mean less than 0.2, that they

can be reliably interrogated in a variety of lighting conditions using a ubiquitous device,

namely a smartphone, in order to both excite the quantum dots optically, and capture

their emission pattern response. Further, two algorithms are shown to be able to reliably

process captures into unique (in the case of different PUFs) fingerprints for further pro-

cessing in cryptographic communications, highlighted by the inter-Hamming distributions

produced, all with a mean around 0.5. Of the two, R-MLBP produces more consistent

results across different capturing environments, suggesting it to be more suitable for use.

It is found that a matching threshold of t = 0.35 would allow for easily differentiable fin-

gerprints, with expected percentage of false acceptances (rejections) around 10−20 (10−5)

for a radius choice of 8. However, the reported rates should be taken with some caution.

Whilst it is standard within PUF literature to used Gaussian fits to approximate the
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(a) (b)

(c) (d)

Figure 4.11: 4-panel figure of thresholded FARs and FRRs, for t = 0.25, 0.3, 0.35, and
0.4. (a) FARs for R-MLBP. (b) FARs for AHB. (c) FRRs for R-MLBP. (d) FRRs for
AHB. The targets defined in chapter 3 (10−6 for FAR and 10−5 for FRR) are annotated
via the dot-dashed lines.

Hamming distributions, this is often applied to electronic PUFs, for which the output bit

string is expected to be independent and identically distributed (i.i.d.). However, due to

the nature of optical PUFs, bits may not conform to the i.i.d. assumption, due to the

detection of features of varying sizes by fingerprinting algorithms, as well as the fact that

one bits value is determined by the input of pixels around it. As such, future work should

investigate the use of other fits, and for any large-scale experiments, work can be done to

compare these fits to a large pool of experimental data. Due to the lower reported intra-

Hamming scores, it is believed that this strong performance across conditions is due to

its inherent noise resilience. AHB particularly suffers from an inability to distill unbiased

fingerprints from captured responses, further limiting its suitability. To this end, changes
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to the post-processing in order to introduce some debiasing may benefit both algorithms,

but particularly AHB.

Whilst the sample size presented in this preliminary study allows for reported ENIBs

to be comparable to those presented in the original PUF work by Pappu, they fall orders

of magnitude short of what would be necessary to replicate a real-world use case. And

given the noisy nature of PUFs, the devices can certainly not be expected to fill the entire

key space of 24096, and may fall short of filling the key space suggested by reported ENIBs.

However, the chosen key size allows for a great deal of redundancy within the output, in

order to mitigate for this, and whilst future studies with greater sample sizes may report

a drop in ENIB, the results presented here remain positive for future development.

As mentioned, a limitation of this study is the use of the custom-printed stand, which

fixes both the distance and angle between the capturing device, and PUF device, for

smartphone-based data capture. For real-world use, however, both distance and angle

of capture can be controlled (to some degree) via the design of the app used, utilising

both textual and visual prompts. Further, the use of standard perspective correction

algorithms for image processing may be used to reduce any impact on capturing angle

that may be introduced by handling of the devices throughout the interrogation process.

This is discussed further, with examples shown, in Appendix A.

Additionally, for long term use, and for robustness in different conditions (both in

terms of consumer use, and packaging and logistics), any body wishing to use quantum

dot based PUFs would need faith in their resistance to ageing, as well as environmental

conditions such as heat. With regards to ageing, different use cases may have different

requirements, for example, due to varying shelf-lives on products. The work in [78]

examines the effects of both temperature and ageing on QD-PUFs, and the stability

of their fingerprints under R-MLBP. Further, recommendations are made on ways to

increase stability and arrest photodecay over time, allowing for further faith on products

with long shelf-lives.
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Chapter 5

Hybrid QD PUF

In this chapter, a novel form of quantum dot physically unclonable function (QD-PUF)

making use of a second layer of quantum dots (with a peak emission different to that of the

first layer) is proposed and assessed in order to yield two discernible fingerprints from the

same optical challenge. Interrogation of the devices is performed in laboratory conditions,

initially utilising a shroud in a similar vein to the work conducted in chapter 4 to display

a proof of concept, yielding unique fingerprints from different PUF devices, and assessing

the similarity from fingerprints formed from the optical emission of the different QDs on

a single device. In order to isolate emission contributed from each ink independently,

a series of short-pass and long-pass filters are placed in front of the camera, to focus

the captured emission on a bandgap around the target dot’s peak emission wavelength.

A short-pass filter is placed in front of the incident light source in order to ensure no

reflected light is captured from the exciting of the dots.

Due to a variety of factors, such as overlap of broad emission spectra of the quantum

dots; overlap between the emission spectra of one, and the absorption spectra of the

other; and spatial relations between the two inks arising from fabrication (giving rise to

the potential for carrier transfers between nearby clusters, with interactions potentially

varying further with excitation wavelength), it’s expected that some level of correlation

between fingerprints of different emission profiles from a single device may exist. Assess-

ments of similarity show this to indeed be the case: two fingerprints obtainable from a

single device are different, but not as unique as fingerprints arising from different devices.

To investigate this phenomenon, devices are then assessed under an optical microscope,

observing how spatial proximity of large clusters of QDs contributes to shared elements

of output fingerprints.

This chapter is organised as follows: First, the notion of PUF strength is revisited,

with a slight reformulation being introduced to capture the behaviour of these hybrid

PUFs. Then follows a discussion of the devices themselves; their use as an extended
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source of entropy in comparison to single-emission devices; and how expected correlations

may contribute to increased security and use-cases. Results are subsequently shown, with

a discussion following.

5.1 One-to-Many PUF

Thus far, the use of quantum dots in authentication devices has been considered in the

scenario of a traditional weak PUF: we have only considered a single challenge-response

pair (CRP) mechanism (with the aims of compatibility with ubiquitous technology),

and thus, a trivially small challenge-response space. The typical view of a strong PUF

involves the use of multiple challenges to generate multiple (unique) responses. This

can be pictured as being akin to the notion of an injective, or one-to-one, function,

mapping distinct elements of its domain (challenges) to distinct elements of its codomain

(responses). Here, we propose a different formulation of a PUF, instead akin to a one-to-

many map. Again, analysis will focus on the presentation of one challenge, but with the

aim of capturing multiple, distinguishable, responses. To construct such a PUF, an ink
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Figure 5.1: Diagramatic representations of (left) typical multi-CRP PUF (one-to-one)
and (right) proposal of one-to-many multi-CRP PUF. Note that, in the work presented
in this chapter, the different responses (e.g., C1 mapping to R0 and R2) are distinguished
via optical filters.

comprising of two different sizes of quantum dot molecules is used, with the responses

being distinguished by only capturing light focused around each dot size’s respective

emission spectrum peak. We make use of two sets of CuInS/ZnS core/shell quantum dots,
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with peak emission at 530 and 650 nm, with the PUF fabrication process detailed in Ch. 3.

Similarly to the single-emission devices discussed in Ch. 4, the devices can be interrogated

with a simple light device. By filtering the light that passes through to the capturing

devices, it is expected that two unique fingerprints are obtainable; one from the emission

of CIS530 quantum dots, and one from the emission of CIS650 quantum dots. Atop of

this, a third fingerprint is also obtainable by choosing not to filter the captured light,

and instead fingerprinting the emission of both CIS530 and CIS650 quantum dots. To

some degree, this expansion of the CRP space may seen as equivalent to the segmentation

of a PUF response, in which, given a large response, it can be segmented into multiple

outputs and, thus, treated as multiple CRPs, similarly to [98]. However, one-to-many

PUFs offer a potential advantage by allowing segmentation to occur for the same spatial

points of a device. This has direct implications on discussion of PUF strength, where

CRP concentration in comparison to device size is used as a measure; and may further

help bridge the gap between PUFs and ubiquitous technology, allowing the devices to

take up less real estate on products. An additional discussion on the potential further

expansion of the CRP-space is provided at the end of this chapter.

5.2 Correlated Hybrid Extended Entropy Source

As is the case for the single-dot emission devices discussed in chapter 4, the uniqueness

of emission pattern for a deposited layer of the quantum dot ink stems from the random

and uncontrollable clustering of quantum dots in laquer, with an additional contribution

coming from the variations in deposition introduced by the human element of a hand-

stamp deposition process. In the case of the aforementioned and previously discussed

devices, this leads to a source of high entropy, and a uniqueness of each individual device.

Thus, it is expected that the use of two inks fabricated and deposited in this fashion will

continue to yield unique sources of high entropy. It is also expected that, via the filtra-

tion of received optical information, each ink’s emission pattern may be discerned and

be considered its own individual entropy source. However, unlike comparisons between

different devices, which suggest a strong sense of uniqueness that may be distilled into

unique, easy to characterise identifiers; for H-PUFs it is expected that the two sources of

entropy for a single device will exhibit some form of correlation — resulting in identifiers

which are not necessarily completely unique. Such behaviour may stem from a variety of

factors, including but not limited to, the closeness of the emission peaks (with a small

amount of overlap for the full-width of the spectrum profile below the half-maximum

point, as shown in Fig. 5.2); the overlap of CIS650’s absorption profile and CIS530’s

emission profile, resulting in some “cross-talk” between the two entropy sources, as emis-
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(a) (b)

(c) (d)

Figure 5.2: Figure showing expected emission spectra for absorbance (left) and emission
(right) for CIS530 (top) and CIS650 (bottom) colloidal quantum dots used in this work.
FWHM for the peak in the emission spectrum of CIS530 (CIS650) is 69 nm (100) nm.
This graph was reproduced using data obtained from NNCrystal US Corporation[1].

sion of CIS530 may be absorbed by nearby CIS650 QDs, boosting intensity of the CIS650

emission where CIS530’s emission is high. A simple schematic demonstrating this idea is

given in figure 5.3 Additionally, and linked to the previous factors, the spatial configura-

tions of the dot clusters themselves may contribute to any correlations; with CIS650 dots

potentially being situated at the same x, y-spatial coordinates as CIS530 dots, separated

only by their increased height on the surface of the device.

5.2.1 Correlation as a resource

As such, it is expected that, for a given device, the two entropy sources will exhibit

a lower normalised Hamming distance between their respective generated fingerprints.

At first glance, this may seem an unwanted phenomenon for a PUF: the two CRPs
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Figure 5.3: Schematic showing potential cross-talk between quantum dots in HPUFs.
Incident light is represented by solid lines, whilst emission from quantum dots is repre-
sented by dashed lines.

(in reality, a single challenge, with two distinguishable responses) do not exhibit the

uniqueness expected for obtaining two responses from a given device, in the manner

usually expected during strong PUF analysis. However, this correlation may be used

either as an additional security measure, or, potentially, as a sub-tool in a wider use-case

dependent application. Here, propositions for the former is given.

5.2.1.1 Additional security via extended entropy

A simple way to make use of the second layer of quantum dots is to use it as an additional

parameter for checking the authenticity of a device, for use cases such as authentification

of a product. In the case of a single-dot emission device, verification is performed by

ensuring that the fingerprint obtained by a user of a given device is close enough to the

registered device, potentially by directly computing the Hamming distance between the

user generated fingerprint x′ and the registered fingerprint x; or by indirectly assessing

this distance with the use of fuzzy extractors (allowing the output to be hashed for

additional security in circumstances where this may be required). Given a H-PUF device

instead, additional checks may be performed, making fabrication of an inauthentic device

harder for counterfeiters. Here, two methods are proposed, the first involving only the

two distinguishable fingerprints themselves, and the second involving the correlation also.

An alternative to yield additional security is to instead combine the outputs of each

response, into a single key of greater length, as done by [95]. Further, the presence

of two keys allows the use of H-PUFs as reconfigurable PUFs, similar to the work by

[46]. Suppose only one key, say, generated from red emission from a H-PUF was used

at a time. If a communication between an honest party, Bob, in possession of a H-PUF,
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and Alice, an honest verifier, were to be intercepted (and Alice and Bob detected the

eavesdropping), the device need not be rendered obsolete: instead, Alice and Bob could

switch to using the key obtained from green emission for future communications. By

investigating the properties and uniqueness of H-PUFs with some n > 2 number of fine-

tuned peak emission wavelengths, these could potentially be used to scale up the number

of potential reconfigurations (and thus, overall challenge-response space) for a single-key

PUF.

Figure 5.4: Schematic showcasing potential usecase for HPUF devices with independent
correlation maps. Bob presents his PUF for local validation: two fingerprints are obtained
and checked for authenticity based on closeness to a pair of registered fingerprints. If, at a
later date, Alice requires knowledge of Bob’s authorisation, she may request a correlation
map. As long as her database is securely kept private, even if an eavesdropper, Eve,
intercepts the correlation map, no other information allows her to tie it to Bob.

Additionally, correlation may be used as a method of obscuring the keys generated by

each layer. In a communication protocol in which a PUF output is sent over a (necessar-

ily) encrypted channel, correlation may be used as protection against an eavesdropper.

Suppose Alice is the head of security for a high-clearance research facility, who must be

able to remotely verify who is present at the facility at any given time. Additionally, due

to the nature of the work and fear for the researchers’ safety, their identities must not

be revealed during any communications between the facility’s local security system and

herself. She may issue a researcher, Bob, a H-PUF as a key for the building. Upon pre-

senting the H-PUF, the local system may interrogate it and record its responses in both

channels. Upon verification that the output belongs to a trusted party, Bob is granted

access to the facility.
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Should Alice wish to check who is present at the facility, instead of requesting Bob’s

personal output keys (or, without loss of generality, hashes of the keys), which are in-

trinsically linked to his device, Alice may instead request a correlation map of the two

keys. As the correlation stems from unique placement and clustering of quantum dots

of various sizes, it is expected that each user’s correlation map will also be unique. By

checking any inbound correlation maps against her own personal, local database of em-

ployees, Alice can identify that Bob is present in the facility. If a nefarious party, Eve,

were to intercept the communication between the local facility system and Alice, she

would obtain no information that allows her to link the map to Bob, even if she were to

have previously obtained his private keys.

Thus, the notion of one-to-many PUF is established to have at least two potential use

cases. Firstly, the ability to formulate a reconfigurable PUF in the weak PUF case, using

quantum dot-based inks. Secondly, it may provide an additional layer of security to use

as part of the implementation of PUF-based authentication schemes, allowing for further

obfuscation of protocol details, even under eavesdropping attacks.

5.3 Shroud, Full PUF Analysis

We examine the full area of the H-PUFs in an optical laboratory to ensure fine control

of ambient environment, whilst allowing for easy filtration of light using camera equip-

ment roughly analogous to the smartphone case. As outlined in Chapter 3, two effective

bandpass filters are used, comprised of a combination of longpass and shortpass optical

filters to capture emission chiefly from each quantum dot PUF ink individually. Example

captures are shown in figure 5.5.

5.3.1 Fingerprinting Outputs

Before investigating the level of correlation between the two different responses garnered

from a single device, metrics on the fingerprints for each response are presented (inde-

pendent of fingerprints from a device’s second response), to ensure uniqueness between

devices, as well as more general requirements for a PUF. Outputs of both fingerprinting

algorithms are presented in figure 5.6. Further evidence of independence of output re-

sponses is given by the reported DOF for each algorithm, shown in figure 5.8. Trends

generally follow that which were established in chapter 4; with better performance for

lower radii; and AHB out-performing R-MLBP.

To assess the uniqueness of devices individually, intra-and inter-Hamming distance

distributions are calculated on a per-response basis: i.e., the uniqueness of a device’s
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(a) (b)

Figure 5.5: Filtered images of both DH-PUF (top) and WH-PUF (bottom) devices.
Images in panel (a) were acquired with a combination of 500 nm longpass and 550 nm
shortpass optical filters, in order to isolate emission from CIS530 dots. Images in panel
(b) were acquired with a combination of 550 nm longpass and 650 nm shortpass filters
in order to isolate emission from CIS650 dots. Captures of individual responses from a
single PUF appear to share some level of correlation, which can be seen in images of the
WH-PUF, which share common areas with little to no emission.

CIS530 fingerprint is determined only via calculations against CIS530 fingerprints from

other devices; and the reliability of the fingerprinting process will be calculated only for

the set of images taken of isolated CIS530 emission. Figure 5.7 shows an example of

a range of distributions for a given device. Inter-Hamming distribution means centred

around 0.5 show that each device has a unique fingerprint per isolated emission output,
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Figure 5.6: Examples of captured isolated emission from HPUF devices (isolated CIS530
on the left, with CIS650 on the right), along with their corresponding fingerprints under
both R-MLBP and AHB. The top row shows examples for a DH-PUF device, whilst the
bottom shows a WH-PUF device. Each greyscale PUF image constitutes a∼ 0.732×0.732
cm2 region.

whilst both R-MLBP and AHB are shown to be capable of reliably extracting the same

fingerprint from a response by the low Intra-Hamming results.

Figure 5.8 provides an overview of how bias and DOF both vary over radius for

HPUFs. Accumulatively across the entire population of fingerprints from both sets of

responses from each device, bias scores for R-MLBP remain suitably close to the ideal

score of 0.5, only deteriorating towards the highest choices of radii. AHB, on the other

hand, once again produces worse bias figures for low choices of radius, with performance

improving as radius increases. This further suggests a lack of suitability towards quantum

dot OPUFs made in this manor. In the case of DOF, both algorithms perform satisfac-

torily — performance is similar to that seen in the case of single dot emission devices

analysed in chapter 4. For R-MLBP, DOF remains above the threshold for low choices

of radius, and drops to roughly the threshold for higher choices; whilst AHB tends to

remain higher overall.

5.3.2 Uniqueness and Correlation

The calculated inter-Hamming distance distributions once again suggest that the unique-

ness of each device is capturable via the use of both fingerprinting methods, with all de-

vices producing fingerprints that are seemingly random when compared with each other.

Paired with the low intra-Hamming distances calculated for both cases of optical filtra-

tion, there is good reason to believe that, via filtration, each individual dots’ emission is
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(a) (b)

(c) (d)

Figure 5.7: Figures showcasing intra- and inter- distributions over varying choice of ra-
dius for fingeprints generated from images of isolated emissions for a given device. Intra-
distributions are based on fingerprints generated from images of a single isolated emission
for a single given tag. Inter-distributons are based on fingerprints generated from images
of all devices, for a single isolated emission. Distributions shown are for (a) Isolated
emission from CIS530 fingerprinted under LBP; (b) Isolated emission from CIS650 fin-
gerprinted under LBP; (c) Isolated emission from CIS530 fingerprinted under AHB; (d)
Isolated emission from CIS650 fingerprinted under AHB.

reliably and uniquely capturable using the techniques discussed.

Of more interest is the Hamming distances calculated for comparisons of photos of

the same device under different filtration methods. At all choices of algorithmic radius,

this Hamming distance distribution (henceforth referred to as the filtered Hammings)

tends to fall near the calculated inter-Hammings, often with only small separation. An

example of intra-Hamming, inter-Hamming, and filtered Hamming distance for CIS650

samples is shown in figure 5.9. For both algorithms, the average of the absolute distance
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(a) (b)

Figure 5.8: Variation of (a) DOF and (b) bias for a given HPUF device. For DOF,
calculations are separated for each isolated emission, and a solid line is drawn at 256 bits,
marking the minimum sought-after DOF result. For bias, calculations are made using
fingerprints generated for both isolated emissions under a given fingerprinting algorithm.

between filtered Hammings and inter-Hammings across all devices are 0.08 (0.09) for

R-MLBP (AHB). Due to the tight standard deviations produced for both distributions,

they are separable despite the relative closeness of means. However, the distributions

generally lack consistency, suggesting an inconsistency to control correlation across the

devices. This may limit their use in scenarios where a certain degree of correlation must

necessarily exist for use, although it may be useful for protocols that wish to exploit the

unpredictability of correlation levels.

One general trend noticeable in the results presented is that, as the choice of algorith-

mic radius, r, increases, the ability to separate the fingerprints produced by the individual

dots’ emission deviates further from 0.5. Noting that a normalised Hamming distance

of 1 signals perfect anti-correlation, a Hamming distance x > 0.5 can be considered to

contain the same amount of information about the fingerprint its been compared to as a

Hamming distance of y = 1− x. As seen in Fig. 5.5, there is a clear overlap in areas of

bright emission between the two dots. Therefore, it is hypothesized that, at low choices

of r, the finer, microscale differences (which may not be immediately clear by eye) in

random distribution of the respective quantum dots is, to a limited degree, captured by

the fingerprinting processes, whereas, as r increases, the common, macroscale features are

fingerprinted, resulting in an increasing chance of information leakage (and, in a scenario

where fingerprints are correlated as opposed to anti-correlated, a direct collision).

From figure 5.5, it is noticeable that a great deal of the emission pattern produced by

the CIS530 QDs is present in the filtered image of the CIS650 QDs. It is hypothesised

that this is the cause for the correlation that does exist, although it is not understood
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(a) (b)

Figure 5.9: Examples of the varying statistics for Hamming distributions over choices
of radius for (a) R-MLBP and (b) AHB. Here, intra-(red) and inter-(blue) distributions
refer to the standard intra- and inter-distributions for isolated CIS650 emission for a
given tag. In green is the average calculated Hamming distance between fingerprints of
the same device, under different emission filtrations (i.e., fingerprints of isolated CIS650
emission compared to fingerprints of isolated CIS530 emission.)

why this pattern is present in both images. Potentially this could be the result of the

fabrication process, with ink of the second layer of dots forming around any ridges or

troughs created by the uneven distribution of pressure from the handstamp process.

Figure 5.11 shows an example of correlated emission patterns; in panel (a) it can easily

be observed that there are areas dominated by large green (red) clusters due to the CIS530

(CIS650) dots. However, at a smaller scale, relatively minuscule clusters also form (as

can be seen in the microscope images shown later in fig. 5.10), which will contribute

to the optical information processed via a camera’s sensor, creating correlations due to

the aforementioned spatial configurations, as well as potential cross-talk between the dot

types. In order to investigate this further, devices were imaged under a microscope, with

the behaviour of dot clusters compared to phenomena seen in the full-device captures

analysed here.

5.4 Optical Microscope Analysis

Images of H-PUFs taken under a microscope are presented, for the investigation of the

root cause of shared emission patterns in full shroud imaging. the case of each image area,

an optical microscope is used as described in chapter 3. Under 10 X magnification, full

colour RGB images are taken at high resolution with 16-bit depth, showcasing individual

clustering of quantum dots as shown in figure 5.10.
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Figure 5.10: Left: Optical microscope image of a DHPUF device, with 10x magnification.
Right: Optical microscope image of a WHPUF device, with 10x magnification. In both
images, the tendency for CIS650 quantum dots to form larger, solid clusters can be seen.

Examining the images in Figure 5.10, it is apparent that the clustering of quantum

dots within lacquer is majorly dependent on particle size, with the CIS650 quantum dots

tending to conglomerate in larger, distinct clusters in comparison to the CIS530 dots,

which appear to spread more diffusely through the lacquer. It is conjectured that this

variation in clustering behaviour is the root of the different types of optical emission

pattern present in full-shroud images: CIS650 dots tend to emit at (comparably) high

levels of intensity in small discrete areas (referred to as a constellation-like pattern, whilst

CIS530 dots tend to emit at lower levels of intensity, spread more diffusely across the

device surface (referred to as a nebulous pattern). Returning to the images taken uner

the optical microscope, it is observed that there is a lack of consistency in the deposition

of lacquer across the device surface: away from clear clusters of quantum dots, the surface

exhibits a mix of darker-grey areas, and light/white areas. It is conjectured that these

darker grey areas, which quantum dot clusters tend to be surrounded by, are areas in

which the deposition of lacquer is thicker than surrounding areas, resulting in less reflected

light reaching the camera sensor. Such variations are expected to some degree, due to the

uncontrollable element of applied pressure during manufacturing via the handstamping

method, resulting in an uneven distribution of lacquer deposition.

Assuming such conjecture, a possible explanation for the spatial correlation of CIS530

and CIS650 dots on the devices is considered. Here, it is proposed that the drying of

lacquer in varying thicknesses is the leading cause for correlation, with cross-talk between

quantum dots an additional factor. Consider the different areas of full-shroud images

highlighted in figure 5.11. Areas such as (a), where the CIS530 emission pattern is clearly

visible in the CIS650 isolated images, with strong constellation-like clustering above, are

believed to be areas in which both layers of ink have dried with thicker areas of lacquer in
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Figure 5.11: Image of a WHPUF device captured with no ambient light, within a shroud,
with short-pass and long-pass optical filters fixed to the camera, allowing for isolation of
emission from individual dot types. Left: Capture of isolated emission from CIS530 quan-
tum dots. Right: Capture of isolated emission from CIS650 quantum dots. Highlighted
areas: (a) Purple (bottom-most); (b) Red (top left-most); (c) Green (top right-most).
Each greyscale PUF image constitutes a ∼ 0.732× 0.732 cm2 region.

the same location, and a strong clustering of CIS650 dots. Meanwhile, areas such as (b),

in which little emission is present in both filtered images, are suggested to stem from a

thin deposition of lacquer from both inks. Areas such as (c), where the CIS530 emission

pattern is clearly visible in the CIS650 isolated images, but there is no overlying strong

constellation-like pattern, are posited to be areas in which either: (i) thick areas of lacquer

have formed from deposition of CIS530, whilst the deposition of CIS650 only contributed

a thin layer of lacquer; or, (ii), thick areas of lacquer have formed from deposition of both

CIS530 and CIS650 inks, yet CIS650 has not formed a high concentration of clusters in

this area. For the case where sections of a device are characterised by (c), we believe that

the presence of the emission pattern may be boosted by cross-talk between the two types

of dots: areas with a strong emission pattern from CIS530, but only a thin, diffuse layer

of CIS650 appear similar to the isolated CIS530 image due to the emission from CIS530

further exciting the thin layer of CIS650 and increasing the emission intensity from these

dots.

5.5 Concluding Remarks

The HPUF tags presented in this chapter are confirmed to be strong sources of static

entropy of optical information centred around both 530 nm and 650 nm wavelength emis-
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sions, for which outputs of one device are highly independent from outputs of another

device, similarly to the single-wavelength emission devices examined in the earlier chap-

ter 4. Further, information obtained from the two distinct entropy sources is shown to

be intrinsically linked, with Hamming distances between fingerprints of different isolated

emission wavelengths of the same tag shown to typically fall slightly above or below 0.5,

which would signal comparative uniqueness. This shared information takes the form of

an increased correlation when the associated Hamming distance is under 0.5; and anti-

correlation when the associated Hamming distance is above 0.5. Areas of correlation and

anti-correlation within fingerprints of each independently isolated emission are believed

to be highly related to the irregularities in lacquer deposition present in the manufac-

turing method. Proposals are put forward for how such devices, with varying levels of

correlation, may be exploited for use in communication protocols, viable with current

technology.
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Chapter 6

Mixed State Compilation

The task of learning an unknown quantum state is a fundamental primitive in quantum

computing, and one that can be approached in a variety of ways. One method, which

has been studied extensively, is quantum tomography (a review of tomography techniques

may be found here [25]) — the act of learning the matrix elements of an unknown state,

ρ, directly by making a series of (known) measurements on multiple samples of the (un-

known) state. By combining the results of such measurements and making use of Born’s

rule, one ends up with a full, classical description of the state. It has been conjectured

[117] that using only Ω(rank(ρ)d/ϵ2) measurements is sufficient to gain a description of

the density matrix of ρ, up to additive error ϵ in the trace distance. Obtaining a full,

classical description of a state by such means naturally requires the number of measure-

ments to increase exponentially as the number of qubits grows. As a result, for large

systems quantum state tomography falls victim to the curse of dimensionality, a phrase

coined by Bellman [11], encapsulating the phenomenon of sparse, high-dimensional data

leading to the intractability of learning problems. Further research has led to the develop-

ment of “specialised” tomography-based tasks, such as matrix product state tomography

[24, 119] and neural network tomography [107]; where, given a state with certain known

properties, the required number of state samples is reduced. However, for unknown sys-

tems whose properties are not known (or, for some reason, can not easily be found out),

a general system for learning a state of arbitrary size remains evasive. As opposed to

seeking a full description of ρ’s density matrix, we can instead seek to learn some op-

erational property of ρ in a way that is sufficient to characterise the state, either fully,

or for specific properties required for a task at hand. This avenue was first explored

by Aaronson in [2], leading to the task of shadow tomography. Shadow tomography

exploits the linearity of many interesting quantum properties’ function on the density

matrix of ρ. It has been found that learning the output of such functions (and hence, a

description of that property of a state) can require significantly fewer copies of the state,
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avoiding the curse of dimensionality (or, at the very least, putting it on hold). However,

whilst traditional shadow tomography reduced the number of samples of ρ required for

learning, it employed quantum circuits with vastly great depth, and required working

quantum memory, making it impractical on today’s NISQ hardware. Algorithms reduc-

ing this quantum burden have since been proposed, often by introducing techniques from

(classical) machine learning, such as semidefinite programming.

An alternative approach to learning an unknown state is the task of quantum state

compilation, in which one learns the quantum circuitry required to prepare a state. For

a known state, compilation can prove useful in learning a hardware-specific, efficient

circuit with which to prepare the state on quantum hardware for further processing1.

Compilation may also be used a means for compression of a quantum state, in which

one wishes to find an approximation of a full (potentially unknown) state that can be

stored with fewer resources (qubits) than required for a full description of the state. In

the case of prioritising a select number of eigenvalues of the state for its representation,

compression via compilation naturally extends to the task of principal component analysis

(PCA). Applications of compilation may also extend to work on PUFs whose challenges

and responses take the form of quantum states. Compilation may help in the preparation

of challenge states, by providing more hardware efficient circuits for the task; as well as

directly learning the output of a quantum PUF.

The rest of this chapter is organised as follows. First, a variation quantum algorithm

for mixed state compilation is defined, with a particular emphasis on the operational

formulation of the ansätze used in evaluating the cost function, the Hilbert-Schmidt dis-

tance. Then, it is briefly shown that the chosen cost function’s gradient is analytically

computable. The rest of the chapter deals with alternative formulations of the cost func-

tion, constructing local alternatives to the Hilbert-Schmidt distance in order to increase

trainability of the algorithm. Each formulation is analysed for its suitability as a cost

function in different use cases.

6.1 Quantum Mixed State Compiling

In [39], a variational quantum algorithm for state compilation, dubbed the Quantum

Mixed State Compiling Algorithm (QMSC) was introduced. Whilst the focus of this

chapter is principally on analysis of the cost function (and variants of it) used in QMSC,

we will first define the algorithm, in order to highlight specific use cases of it which will

be important in the later analysis.

1Or, in the case that such a circuit is already known, compilation may prove useful in learning a more
efficient, lower-depth circuit.
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6.1.1 QMSC Algorithm

The QMSC algorithm takes as its input a (typically unknown) target state ρ, along with

a desired approximation rank, R, and outputs a trial state, σ, with rank R. If the desired

approximation rank is chosen such that R ≥ rank(ρ), a successful implementation will

result in an output σ ≈ ρ. If instead, one seeks to learn a lower rank approximation of ρ,

(i.e., R < rank(ρ), a successful implementation will result in an output σ ≈ ρ∗, where ρ∗

is the solution to the quantum low-rank approximation problem (QLRAP), given in [40].

The degree to which the output σ is “close” to ρ is given in terms of the cost function

chosen for QMSC, the Hilbert-Schmidt Distance between ρ and σ.

Definition 6.1. The Hilbert-Schmidt (HS) distance is a distance measure between two

operators in Hilbert space,

DHS(ρ, σ) = ∥ρ− σ∥22 ≡ Tr
[
ρ2
]
+ Tr

[
σ2
]
− 2Tr [ρσ] , (6.2)

where ∥ · ∥22 denotes the Schatten 2-norm, as introduced in chapter 2.

An analysis of the suitability of the HS distance as a cost function is provided in Sec.

6.2.

For the preparation of our trial state, we deploy two different ansätze, for reasons

which will briefly be touched upon later (for a fuller description of the importance of the

ansatz choice, refer to [39]). The ansätze are defined as follows:

Definition 6.3. For the input of the trial state, σ, the Convex Combination of Pure

States (CCPS) ansatz takes the form

σCCPS(θ⃗, ϕ⃗, R) :=
R−1∑
i=0

pϕ⃗(i)Uθ⃗ |i⟩ ⟨i|U
†
θ⃗
, (6.4)

where {|i⟩}R−1
i=0 denotes a subset of the computational basis on n qubits, θ⃗, ϕ⃗ are vectorised

parameters, Uθ⃗ is a quantum circuit parametrised by θ⃗, and pϕ⃗ is a probability distribution

parametrised by ϕ⃗.

Definition 6.5. For the input of σ, the State Purification (SP) ansatz takes the form

σSP(θ⃗, R) := TrA

[
U−→

θ
(|0⟩ ⟨0|)⊗(n+nA) U†

−→
θ

]
, (6.6)

where Uθ⃗ is a parametrised quantum circuit acting on the n system qubits, and an addi-

tional nA ancilla qubits, where nA is determined by the choice of R.
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Figure 6.1: Simple flow diagram depicting most general overview of QMSC algorithm.

Where context leaves no room for ambiguity, we will opt to drop the CCPS and SP

subscripts.

The general form of the QMSC algorithm is represented in Fig. 6.2, and formally

described as follows:

1. Input target state, ρ, along with desired output rank R for the output trial state,

σ.

2. Calculate target purity term, Tr [ρ2].

3. Perform optimisation subroutine as follows:

� For CCPS ansatz:

(a) Evaluate overlap terms via Loschmidt echo.

(b) Compute cost function Tr [ρ2] +
∑

i pϕ̃(i)− 2
∑

i pϕ̃(i) ⟨i|U
†
θ̃
ρUθ̃ |i⟩.

(c) Update parameters θ⃗ and ϕ⃗ via classical optimisation, and return to step

(a).

� For SP Ansatz:

(a) Evaluate overlap term and ansatz purity via Loschmidt echo or SWAP

circuits.

(b) Compute cost function Tr [ρ2] + Tr [σ2]− 2Tr [ρσ].

(c) Update parameter θ⃗ via classical optimisation, and return to step (a).

4. Output final trial state σOUT of rank R.

Upon successful implementation of the algorithm, both ansätze form a trial state

σ ≡ ρ in the case of R = rank(ρ), and σ ≡ ρ∗ for R < rank(ρ). For the SP ansatz, we

may only learn lower-rank approximations where R is a power of two, due to the link

between R and the number of ancillary qubits, nA. We note that this does not limit

the ability to learn full-rank approximations of a target state, as choosing 2nA > rank(ρ)

will yield a purification of suitable rank upon discarding the ancillary system. This is
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Figure 6.2: Oveview of both the state-purification (left-upper), and convex combination
of pure states-based (left-lower) subroutines and examples of circuitry that may be used
to evaluate terms (right).

in contrast to the CCPS ansatz, for which there is no ancillary system and instead R

can be chosen freely. In the case of the CCPS ansatz however, one must perform an

additional optimisation step, to account for the trainable terms contained in the classical

description of the probability vector, pϕ⃗. We note further that, in practicality, pϕ⃗ may only

be stored classically for either small-scale problems, or for choices of small R: for large-

scale problems and/or large R, the number of terms scales exponentially, necessitating

sampling and adding a further layer of complexity to the process. For a full description of

algorithmic implementation and circuits used, as well as both simulated and experimental

results of performance, refer to [39].

6.1.2 Gradient Analysis

In order to successfully run the proposed VQA for mixed state compilation using gradient-

based optimisers, we must be able to compute an analytic expression for our cost func-

tion’s gradient, such that it can be calculated at each necessary step. Here, we provide a

brief calculation of the analytical gradient for the Hilbert-Schmidt distance.
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6.1.2.1 Global Cost

Firstly examining the state purification ansatz, we recall the appropriate Hilbert-Schmidt

distance cost,

CSP(θ⃗,nA) = Tr
[
ρ2
]
+ Tr

[
σ(θ̃, nA)

2
]
− 2Tr

[
ρσ(θ̃, nA)

]
, (6.7)

where our trial state, σ(θ⃗, nA) is typically expressed via its Stinespring representation,

i.e.,

σ(θ⃗, nA) := TrA

[
Uθ̃ (|0⟩ ⟨0|)

⊗(n+nA) U†
θ̃

]
. (6.8)

Computing the gradient w.r.t. θ⃗, we see that

∇CSP(θ⃗,nA) = ∇Tr[ρ2] +∇Tr
[
σ(θ̃, nA)

2
]
− 2∇Tr

[
ρσ(θ̃, nA)

]
= ∇Tr

[
σ(θ̃, nA)

2
]
− 2∇Tr

[
ρσ(θ̃, nA)

] (6.9)

Due to the lack of dependence upon θ⃗ in the purity term for ρ. The overlap term obeys

the standard Pauli parameter shift rule2, in which we implement a shift on the circuitry

of θ 7→ θ ± π
2
. The gradient of the purity term for our trial state σ(θ⃗, nA) is less trivial,

owing to the squaring of our parameter-dependent term. However, exploiting the fact

that, for some function f(x), we have that

∂

∂θ
Tr [f(A(θ))] = Tr

[
f ′(A(θ))

∂A

∂θ

]
. (6.10)

We can rewrite (individual terms of) this term as

∂Tr
[
σ(θ̃, nA)

2
]

∂θk
= 2Tr

[
σ
(
θ̃, nA

) ∂σ(θ̃, nA)

∂θk

]
, (6.11)

from where we can again apply the Pauli parameter shift rule, applied such that

∂Tr
[
σ(θ̃, nA)

2
]

∂θk
= Tr

[
σ(θ̃, nA)σ

(
θ̃ +

π

2
· ẽk, nA

)]
− Tr

[
σ(θ̃, nA)σ

(
θ̃ − π

2
· ẽk, nA

)]
,

(6.12)

where e⃗k is a standard basis vector. As such, we have all requisite information to calculate

the analytical expression for the gradient of our cost function. For the local costs defined

2Given a variable to be computed via quantum machinery, and its gradient, if the gradient may be
expressed in the original circuitry, but under a different parametrisation, we may compute it simply by
shifting the parameter in our circuit.
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below, the gradient analysis is entirely analogous, and is thus omitted from this thesis

for brevity.

6.2 Search for a local cost function

In [39], it is shown that the above algorithm successfully compiles quantum states and

their low-rank approximations for small-scale problems, with better performance shown

for selected well-defined classes of states. However, due to the known existence of barren

plateaus in VQA cost landscapes, it is expected that trainability will be greatly reduced

as the problem size scales. As such, in a similar vein to the work shown in [69], we

may wonder if a well-defined local cost may be found for the Hilbert-Schmidt distance,

yielding a cost-landscape less susceptible to barren plateaus.

For a cost function to be suitable for training, we desire that it establishes the following

criteria: An appropriate cost function should be:

1. Faithful — The cost function should vanish iff the compilation is exact, i.e., σ = ρ;

2. Efficiently computable on quantum hardware

3. Scaleable — As the problem size grows, complexity of compilation should grow

linearly with it;

4. Operationally meaningful — non-zero values should provide some physical or op-

erational description about the objects in question.

We note that in the case of seeking a local alternative to a faithful global cost function,

faithfulness is equivalent to the requirement that CLocal = 0 ⇐⇒ CGlobal = 0.

Recall our (ansatz-blind) global cost function, the Hilbert-Schmidt distance:

HS(ρ, σ) = Tr[ρ2] + Tr[σ2]− 2Tr[ρσ], (6.13)

which comprises of the purity of each state (first two terms) and the overlap between

the two (the final term). This cost is (almost trivially) faithful, and it naturally has an

operational meaning based on the above, as well as the (more mathematically abstract)

consideration as the Schatten 2-norm on ρ−σ. It can be calculated efficiently on quantum

hardware using the either the SWAP test or a Loschmidt-Echo style circuit, as defined in

chapter 2. However, due to the globality of the cost, it falls victim to the curse of barren

plateaus, creating the need to establish a local-version of the cost. Two frameworks for

local costs are explored in this chapter: the use of locally defined inputs to the algorithm;

and the use of locally defined operators within the ansätze preparation.
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6.2.1 Local States-Based Attempts

Perhaps the simplest way to formulate a local version of the Hilbert-Schmidt distance

cost is to invoke the Hilbert-Schmidt distance as is, but considering marginal states on

ρ and σ as opposed to the full states. For a complete description on all n qubits, this

would involve making n local assessments of the Hilbert-Schmidt distance, and taking

the average.

Definition 6.14. For a given target state, ρ, and a trial state, σ, we define the Marginal

1-local cost as

C
(1)
M :=

1

n

n∑
j=1

∥ρj − σj∥22 . (6.15)

where ρj = Tr̄j[ρ] and σj = Tr̄j[σ], where j̄ denotes the set of all system qubits other than

the j-th qubit.

The marginal 1-local cost is naturally an operational meaningful cost — it retains

the same meaning as the global cost, except it is descriptive of marginals as opposed

to full states. Likewise, each term in the cost can be efficiently computed on quantum

hardware in the same manner as the global cost (although the number of shots required

will naturally scale up with the number of marginals being compared). However, the

faithfulness of the global cost does not translate to the local case so trivially. The marginal

1-local cost is only faithful in certain cases, specifically for tensor product states, as will

be shown next.

Proposition 6.16. The marginal 1-local cost is faithful for tensor product states.

Proof. For tensor product states, ρ and σ take the form ρ =
⊗n

j=1 ρj and
⊗n

j=1 σj. Our

cost function becomes

C
(1)
M (ρ, σ) =

1

n

(
∥Tr1[ρ]− Tr1[σ]∥22 + ∥Tr2[ρ]− Tr2[σ]∥22 + · · ·+ ∥Trn[ρ]− Trn[σ]∥22

)
=

1

n

(
∥ρ1 − σ1∥22 + ∥ρ2 − σ2∥22 + · · ·+ ∥ρn − σn∥22

)
.

(6.17)

As each term ∥ρi − σi∥22 ≥ 0 with equality iff ρi = σi, if any individual elements of the

tensor product representation of ρ differ to the equivalent element of the tensor product

representation of σ, then the cost will be non-zero (and of course, the states will not be

the same). Trivially, if C
(1)
M (ρ, σ) = 0, then ρi = σi ∀ i and thus ρ = σ.

However, it’s easy to see that this cost will not be universally faithful, due to the

fact that different entangled states may have different reduced states. A simple example

to showcase this can be found using orthogonal Bell states, i.e., ρ = |Ψ+⟩ ⟨Ψ+| and
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σ = |Ψ−⟩ ⟨Ψ−|, whose reduced states are all maximally mixed. Calculating the marginal

1-local cost for these states yields

C
(1)
M (ρ, σ) =

1

2

(
∥Tr1 [|Ψ+⟩ ⟨Ψ+|]− Tr1 [|Ψ−⟩ ⟨Ψ−|]∥22 + ∥Tr2 [|Ψ+⟩ ⟨Ψ+|]− Tr2 [|Ψ−⟩ ⟨Ψ−|]∥22

)
=

1

2

(
∥I/2− I/2∥22 + ∥I/2− I/2∥22

)
.

(6.18)

Locality of a cost function need not only be defined in terms of single-qubit based

operations. Instead, we can seek to explore the range of number of qubits from 1 to k < n

(where n is the total number of qubits in the system). By adapting C
(1)
M to include k-

local terms, we can construct a faithful cost based on operations similar to those described

above.

Definition 6.19 (Generalised marginal cost). Let ρ and σ be quantum states defined on

a set of n qubits, Q. Further, group Q into some (potentially multiple) partitioning(s)

Pk, consisting of Nk subsets {Q(k)
1 , ...,Q(k)

Nk
} ⊂ Q of (at most) k < n qubits such that

|Q(k)
l | = k for at least one l ∈ [1, Nk], define the Generalised marginal cost as follows:

Cgen
M (ρ, σ) :=

n∑
k=1

αk(t)C
(k,Pk)
M (ρ, σ), (6.20)

where

C
(k,Pk)
M (ρ, σ) :=

1

Nk

Nk∑
i=1

∥ρ(k)i − σ
(k)
i ∥22, (6.21)

with {ρ(k)i , σ
(k)
i }Nk

i=1 forming the set of marginals on ρ and σ as determined by Pk, and

the iteration dependent weightings αk(t) ≥ 0 satisfying
∑

k αk(t) = 1; and defining Cn,Pn

M

(i.e., the “n-local” term) to be our global cost.3

This generalised cost could, from a practical perspective, be used in an adaptive

fashion over the course of training. One could start off with a weighting (described by

αk(l)) that prioritises low-k terms, and adapt the weighting to shift towards the global

cost over time (as one gets closer to the target state). As it is trivial that ρ = σ =⇒
C

(k,Pk)
M = 0 for any choice of k,Pk, then, as long as αk(l) ̸= 0 for k = n, then this cost is

faithful to the global equivalent, as this global term will ensure inequality when ρ ̸= σ.

6.2.2 Local Measurements on Global States

We may alternatively seek to define a local cost via local measurements as opposed to

local states, using the light-cone argument presented in [19]. Above, a cost function

3Note that here we only have one choice of set Pn, the set of all qubits.
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was constructed by considering locality based on states. As such, the relevant circuitry

for parametrising and computing the cost could be considered “blind” to the locality

of the cost function, in the sense that the circuit could accept any state, of any ansatz

type; and in this case the states in question just happened to be local (reduced) states.

However, in the case of local measurements, such cost functions cannot remain ansatz-

blind — that the operational formula of the cost function assessment (i.e., the circuitry)

is specifically geared to the ansatz type requires local costs based on local measurements

to be constructed in an ansatz-specific manner.

In order to construct such a cost, it is necessary to identify which parts of the circuit

are parametrised and optimised on quantum hardware, and replace global components

in these with local components. Recall the cost function as formulated for the CCPS

ansatz:
CCCPS(ρ, σ) := Tr[ρ2] +

∑
i

pϕ(i)
2 − 2

∑
i

pϕ(i) ⟨i|U†
θ̃
ρUθ̃ |i⟩

= Tr[ρ2] +
∑
i

pϕ(i)
2 − 2

∑
i

pϕ(i)TrS

[
U†

θ̃
ρUθ̃H

(i)
G

]
,

(6.22)

where H
(i)
G := |i⟩ ⟨i|S emphasises the globality of the operations. The first term, the

purity of the target state, ρ, is not optimised, so can retain its global form. The second

term, the purity of the training state, σ, is optimised over. However, as outlined in [39],

this optimisation process can be done purely classically, allowing us to again return the

global form. This leaves the overlap term, which is optimised on quantum hardware, to

be modified to include local measurements. That is, the global operator H
(i)
G must be

replaced with some (set of) local measurement(s). There is freedom in the choosing of

such measurements. One simple approach, similarly to the näıve attempt of constructing

a marginal 1-local cost is to choose the average of all 1-local measurements.

Definition 6.23 (Local CCPS cost). We can define a local cost function for the CCPS

ansatz as

CCCPS
L = Tr

[
ρ2
]
+
∑
i

pϕ(i)
2 − 2

∑
i

pϕ(i)TrS

[
U†

θ̃
ρUθ̃H

CCPS(i)
L

]
, (6.24)

where we define

H
CCPS(i)
L :=

1

n

n∑
j=1

|ij⟩ ⟨ij|Sj
⊗ ISj̄

(6.25)

where |ij⟩ denotes the j-th bit of the computational basis element (on n qubits) bit-string

|i⟩ =
⊗n

j=1 |ij⟩

Such a method introduces problems when considering the operational meaning of the

cost function. As discussed above, in the case of the marginal cost functions, the opera-
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tional meaning of the Hilbert-Schmidt distance was retained, and simply just focused on

reduced states. However, CCCPS
L no longer follows the definition of the Hilbert-Schmidt

distance. By cyclicity of trace, the overlap term may be rewritten as

TrS

[
ρUθ̃H

CCPS(i)
L U†

θ̃

]
, (6.26)

that is, it is the overlap between the trial state ρ, and the state formed by evolving

H
CCPS(i)
L under the unitary Uθ⃗. Thus, to gain a full understanding of the operational

meaning of the cost function, we would need a full understanding of the state obtained (in

the most general case) by evolving the local Hamiltonian under Uθ⃗. Regardless of precise

operational meaning, it is still possible to analyse the faithfulness of the cost function, and

thus identify cases in which it may prove useful. This cost function is provably faithful

in the case of training pure states, with provable bounds on the effectiveness for mixed

states, dependent on their purity. In order to prove this, we first state and re-derive a

result introduced in [69].

Proposition 6.27. Let ρ be an arbitrary quantum state, and let Uθ⃗ be a parametrised

unitary (for the preparation of a trial state, σ). For shorthand, denote ρU = U †
θ⃗
ρUθ⃗ and

H
(i)
L = H

CCPS(i)
L . We have that

1− Tr
[
ρUH

(i)
L

]
≤ 1− Tr

[
ρUH

(i)
G

]
≤ n

(
1− Tr

[
ρUH

(i)
L

])
(6.28)

Proof. We can express the local Hamiltonian in the form H
(i)
L = 1

n

∑n
j H

(i)
L,j, where

H
(i)
L,j = |ij⟩ ⟨ij|Sj

⊗ ISj
(6.29)

are mutually commuting projectors that multiply up to the global Hamiltonian, i.e.,

Πn
j=1H

(i)
L,j = H

(i)
G . We can associate events, Ej, with projectors HL,j such that Pr [Ej] =

Tr
[
ρUH

(i)
L,j

]
. Consequently, Tr

[
ρUΠ

n
j=1H

(i)
L,j

]
= Pr

[
∩n

j=1Ej

]
. Recall that, via the axiomatic

definition of probability measures, for any set of events A :]{A1, A2, ..., Am}, it holds that

Pr

[
m⋃
i=1

Ai

]
≥ 1

n

m∑
i=1

Pr [Ai] . (6.30)
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Choosing Ai = Ej, (where Ej denotes the complement of Ej), we see

Pr

[
n⋃

j=1

Ej

]
≥ 1

n

n∑
j=1

Pr
[
Ej

]
=⇒ 1− Pr

[
n⋂

j=1

Ej

]
≥ 1

n

n∑
j=1

(1− Pr [Ej])

=⇒ 1− Pr

[
n⋂

j=1

Ej

]
≥ 1− 1

n

n∑
j=1

Tr
[
ρUH

(i)
L,j

]
=⇒ 1− Tr

[
ρUH

(i)
G

]
≥ 1− Tr

[
ρUH

(i)
L

]
,

(6.31)

which is precisely the LHS of inequality 6.28. In order to prove the remaining inequality,

we make use of the union bound, observing that

Pr

[
n⋃

j=1

Ej

]
≤

n∑
j=1

Pr
[
Ej

]
=⇒ 1− Pr

[
n⋂

j=1

Ej

]
≤

n∑
j=1

(1− Pr [Ej])

=⇒ 1− Tr
[
ρUH

(i)
G

]
≤ n

(
1− Tr

[
ρUH

(i)
L

])
.

(6.32)

Thus, together we have 1 − Tr
[
ρUH

(i)
L

]
≤ 1 − Tr

[
ρUH

(i)
G

]
≤ n

(
1− Tr

[
ρUH

(i)
L

])
as

required.

Utilising the above inequality, we can derive a lower bound on CCCPS
L that guarantees

faithfulness for pure states, reliant on the impurity of our target and training states.

Theorem 6.33. Given two arbitary quantum states, ρ, σ, with σ expressed in the form

of the CCPS ansatz, CCCPS
L (ρ, σ) is lower bounded by CG(ρ, σ) in the following way:

nCCCPS
L ≥ CG − (n− 1)(Impurity(ρ) + Impurity(σ)), (6.34)

where Impurity(X) := 1− Tr [X2] for X = ρ and X = σ, and CG ≡ ∥ρ− σ∥22.

Corollary 6.35. It follows that if C
(CCPS)
L = 0, then

(n− 1)(Impurity(ρ) + Impurity(σ) ≥ ∥ρ− σ∥22. (6.36)

That is, if both the target and trained states are pure (Impurity(ρ) = Impurity(σ) = 0),

then CCCPS
L = 0 implies that CG = 0. More generally, if the impurities of both states are

low, then a vanishing local cost function implies that CG is small.
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Proof. From (6.28), we have

1− Tr
[
ρUH

(i)
G

]
≤ n

(
1− Tr

[
ρUH

(i)
L

])
=⇒ − Tr

[
ρUH

(i)
G

]
≤ (n− 1)− nTr

[
ρUH

(i)
L

]
=⇒ − 2

∑
i

pϕ(i)Tr
[
ρUH

(i)
G

]
≤ −2n

∑
i

pϕ(i)Tr
[
ρUH

(i)
L

]
+ 2(n− 1)

∑
i

pϕ(i),

(6.37)

Adding the purity terms to both sides (and noting that 2(n − 1)
∑

i pϕ(i) = 2(n − 1))

gives

CG ≤ Tr
[
ρ2
]
+ Tr

[
σ2
]
− 2n

∑
i

pϕ(i)Tr
[
ρUH

(i)
L

]
+ 2(n− 1)

=⇒ CG ≤ nCCCPS
L + (n− 1)

(
2− Tr

[
ρ2
]
− Tr

[
σ2
]) (6.38)

or, equivalently,

nCCCPS
L ≥ CG − (n− 1)(Impurity(ρ) + Impurity(σ). (6.39)

Accordingly, if CCCPS
L = 0, then

CG ≤ (n− 1)(Impurity(ρ) + Impurity(σ)). (6.40)

Therefore, if both the target and training states are pure (states with an impurity of 0),

the cost is faithful; i.e., CCCPS
L = 0 =⇒ CG = 0. For high purity states, CG remains

small, and CCCPS
L is approximately faithful.

Note that the construction of CCCPS
L is equivalent to taking a partitioning of the set of

n qubits (into n sets, each with cardinality 1), performing (1-)local measurements on each

partition, and taking the average. This idea can be generalised for arbitrary partitionings

of the n qubits, allowing for the construction of alternative local cost functions, similarly

to 6.19. One simple approach is to perform n
k
measurements, on k < n qubits at a time.

This of course restricts us to only choosing k such that k|n. Defining

H
k(i)
L :=

1

(n/k)

n/k∑
m=1

H
k(i)
L,m, (6.41)

with

H
k(i)
L,m := |i⟩Pm

⟨i|Pm
⊗ IPm

, (6.42)

where each Pm contains the indices of the k qubits being measured over by the m-th

(k-)local operator, and all Pm are defined by the choice of partitioning P , such that

P1∪P2∪ · · · ∪Pn/k spans {1, . . . , n}; we can define a k-local cost function specifically for
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the CCPS ansatz, as follows:

Definition 6.43. For k|n, we have the k-local cost function

Ck
L = Tr

[
ρ2
]
+
∑
i

pϕ(i)
2 − 2

∑
i

pϕ(i)TrS

[
U†

θ̃
ρUθ̃H

k(i)
L

]
. (6.44)

Noting that the construction of the k-local cost is similar to that of the 1-local cost

(via the use of mutually commuting projectors H
k(i)
L,m), we would expect the k-local cost

to be faithful in the same case of the 1-local cost, i.e., for pure states. Indeed, this can

be shown, by following the same formula established in proposition 6.27.

Proposition 6.45. Let ρ be an arbitrary quantum state, and Uθ⃗ be a parametrised unitary

(for the preparation of a trial state, σ). For shorthand, denote ρU = U †
θ⃗
ρUθ⃗. We have

that

1− Tr
[
ρUH

k(i)
L

]
≤ 1− Tr

[
ρUH

(i)
G

]
≤ n

k

(
1− Tr

[
ρUH

k(i)
L

])
(6.46)

Proof. We associate events Ei with the projectors H
k(i)
L,m such that Pr [Ei] = Tr

[
ρUH

k(i)
L,m

]
.

Noting that Tr
[
ρUΠ

n/k
m=1H

k(i)
L,m

]
= Pr

[
∪n/k

m=1Em

]
, we have that

Pr

 n/k⋃
m=1

Em

 ≥ 1

(n/k)

n/k∑
m=1

Pr
[
Em

]

=⇒ 1− Pr

 n/k⋂
m=1

Em

 ≥ 1

(n/k)

n/k∑
m=1

(1− Pr [Em])

=⇒ 1− Tr
[
ρUH

(i)
G

]
≥ 1− 1

(n/k)

n/k∑
m=1

Tr
[
ρUH

k(i)
L,m

]
,

(6.47)

which is equivalent to the LHS of (6.46). We also have that

Pr

 n/k⋃
m=1

Em

 ≤
n/k∑
m=1

Pr
[
Em

]

=⇒ 1− Pr

 n/k⋂
m=1

Em

 ≤
n/k∑
m=1

(1− Pr [Em])

=⇒ 1− Tr
[
ρUH

(i)
G

]
≤ n

k

(
1− Tr

[
ρUH

k(i)
L

])
.

(6.48)

Combining the two inequalities results in

1− Tr
[
ρUH

k(i)
L

]
≤ 1− Tr

[
ρUH

(i)
G

]
≤ n

k

(
1− Tr

[
ρUH

k(i)
L

])
. (6.49)
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Comparing (6.46) to (6.28), the newly introduced dependence on k allows us to form

a lower bound on the local cost that varies depending on the choice of k, i.e., the choice

of “how local” the cost function is.

Theorem 6.50. Given two arbitrary quantum states, ρ, σ with σ expressed in the form

of the CCPS ansatz, Ck
L(ρ, σ) is lower bounded by CG(ρ, σ) in the following way:

n

k
Ck

L ≥ CG −
(n
k
− 1
)
(Impurity(ρ) + Impurity(σ)) . (6.51)

Corollary 6.52. It follows from theorem 6.50 that if Ck
L = 0, then(n

k
− 1
)
(Impurity(ρ) + Impurity(σ)) ≥ ∥ρ− σ∥22. (6.53)

Proof. The proof is completely analogous to that for theorem 6.33, but with n→ n/k.

Once again, we have that, for states with 0 impurity, a vanishing local cost implies a

vanishing global cost. However, the inclusion of the reciprocal of k implies that the k-local

cost is “closer to faithful” than the 1-local cost for states with (relatively) low impurity;

whilst the cost becomes “increasingly faithful” as k grows. As we should expect, the

cost becomes trivially faithful for k = n (equivalently, the global cost). Thus, similarly

to the marginal local cost, we could start training on the 1-local cost (or, some convex

combination of different k-local costs, with extra weighting given to low k), and increase

our dependence on high-k terms as we approach the solution, driving our ansatz towards

the global minimum.

Shifting to the framework of the SP ansatz, we can again invoke local costs by replacing

the relevant measurement operator with local measurements. First, recall the global cost

function as defined for the SP ansatz:

CSP(ρ, σ) = Tr
[
ρ2
]
+ Tr

[
σ2
]
− 2Tr [ρσ]

= Tr
[
ρ2
]
+ Tr

[
σ
(
θ̃,R

)2]
− 2dATrSA

[(
ρ⊗ I

dA

)
Uθ̃ (|0⟩ ⟨0|)

⊗(n+nA) U†
θ̃

]
,

(6.54)

where we have represented our trial state via its (parametrised) Stinespring representa-

tion. Without loss of generality (and for reasons which will become clearer once intro-

ducing the local cost equivalent), for analysis we may also express ρ via the Stinespring
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representation of its purification, i.e.,

ρ = TrA

[
Vρ (|0⟩ ⟨0|)⊗(n+nA) V†

ρ

]
. (6.55)

As in the CCPS case, we need to identify which terms require a replacement in the (global)

measurement operator, (|0⟩ ⟨0|)⊗(n+na), in order to construct a local cost. However, unlike

the CCPS case, we calculate the purity term for σ on quantum hardware, as the SP ansatz

does not provide a classical description of this term (unlike the CCPS ansatz, where the

convex combination
∑

i pϕ(i)
2 completely and classically describes this term). Thus, we

need to implement local measurements for (at least) both the overlap term, and the purity

of the trial state σ. Noting that, via cyclicity of trace, we have

TrSA

[(
ρ⊗ I

dA

)
Uθ̃(|0⟩ ⟨0|)

⊗(n+nA)U†
θ̃

]
≡ TrSA

[
U†

θ̃

(
ρ⊗ I

dA

)
Uθ̃ (|0⟩ ⟨0|)

⊗(n+nA)

]
,

(6.56)

we can indeed treat (|0⟩ ⟨0|)⊗(n+nA) as our global measurment operator (despite this being

an input ground state for evolution under our training unitary). As such, we propose

replacement measurements as follows:

Definition 6.57. By replacing the global measurement with a local operator on the

system register, we can define the Singly-local SP Hamiltonian,

HS
L =

1

n

n∑
j=1

|0⟩ ⟨0|Sj
⊗ ISj̄

⊗ |0⟩ ⟨0|A . (6.58)

Alternatively, we can try to capture an intuitively “more” local set of information, by

also making the measurement local on the ancilla register.

Definition 6.59. We define the Doubly-local SP Hamiltonian as

HD
L =

1

n

n∑
j=1

|0⟩ ⟨0|Sj
⊗ ISj̄

⊗ |0⟩ ⟨0|Aj
⊗ IAj̄

. (6.60)

To grasp what, if any, operational meaning is to be had in a cost function employing

these measurement techniques, before formally defining our local costs, we opt to con-

sider the new form of the overlap term. Without loss of generality, consider the overlap

term, Tr[ρσ], with the global measurement operator replaced with the singly-local SP

Hamiltonian,

dATrSA

[
(ρS ⊗ I/dA)Uθ̃H

S
LU

†
θ̃

]
=dATrSA

[
U†

θ̃
(ρS ⊗ I/dA)Uθ̃H

S
L

]
.

(6.61)
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By inspection of the first line of (6.61), we see that this term is equivalent to the overlap

of ρS ⊗ I/dA and the state obtained by evolving the local Hamiltonian under Uθ⃗. Clearly,

this is not equivalent to the overlap between ρ and σ — the latter is obtained by evolving

the all-zero state under Uθ⃗ (and tracing out the ancilla system), whilst we instead have

evolved the maximally mixed state on n−1 system qubits along with the all-zero state on

one system qubit, and the all-zero state on the ancilla. (For the case of the doubly-local

Hamiltonian, this would be the maximally mixed state on n− 1 and nA − 1 qubits along

with the all-zero state on two qubits, one each from the system and ancillary registers).

As such, it is unclear what operational meaning remains in the overlap term, being the

overlap between our global target state, and some unknown state whose only link to the

trial state is that they share a preparation unitary (but differ in initialisations). Whilst

this does not necessarily preclude us from using it in training on its own, a combination

of this overlap with the (global) purity term on ρ would evidently quickly raise questions

in terms of any provable faithfulness: It is not necessarily true that such a cost function

would vanish given σ = ρ ⇐= Uθ⃗ = Vρ, as VρH
S
LV

†
ρ ̸= ρ. As such, to ensure a vanishing

cost when σ = ρ ⇐= Uθ⃗ = Vρ, we need to also introduce the local measurements into

the purity term for ρ.

Definition 6.62. For the SP ansatz, we define a local cost up to choice of singly- versus

doubly-local measurement,

CX
L = cXL (Vρ, ρ) + cXL (Uθ⃗, σ)− 2cXL (Uθ⃗, ρ), (6.63)

where we define

cXL (Uθ⃗, ρ) := dATrSA

[
U†

θ̃
(ρS ⊗ I/dA)Uθ̃H

X
L

]
(6.64)

with a choice of X = S(D) producing the singly- (doubly-)local cost function.

We note that each term can be efficiently calculated on quantum hardware via the use

of Loschmidt-Echo style circuits. However, the first term, cXL (Vρ, ρ) will not be measurable

in practicality, as we do not have access to the purifying unitary Vρ (in fact, this is exactly

what we are trying to learn via the SP ansatz approach). Yet this does not preclude us

from using this cost function, as this term remains constant throughout and does not

contribute to the gradient change of the cost function, allowing it to be neglected with

no effect on the optimisation procedure. Noting that we once again have a Hamiltonian

comprised of mutually commuting projections, it is natural to wonder if this cost function

is provably faithful for pure states, as the CCPS-ansatz based local cost function was.

However, the presence of the dA factor in our calculations causes such analysis to fail.

Despite this, it is still possible to prove faithfulness for tensor-product states in the SP

picture.

110



Theorem 6.65. CD
L is faithful to the global Hilbert-Schmidt cost for unentangled (tensor-

product) states.

Proof. Given an unentangled target state, we can express it in the form ρ =
⊗n

j=1 ρSj
.

The preparation unitary for our trial state σ can, w.l.o.g., take the form Uθ⃗ =
⊗n

j=1 USjAj
,

i.e., the preparation of each qubit is independent from the preparation of all other qubits

(as would be expected for an unentangled state). Thus, the overlap can be written as

cDL (Uθ⃗, ρ) = dATrSA

[(
n⊗

k=1

U†
SkAk

(
n⊗

k=1

ρSk ⊗
IA
dA

)
n⊗

k=1

USkAk

)
HD

L

]

=
dA
n

n∑
j=1

TrSA×[(
n⊗

k=1

U †
SkAk

(
n⊗

k=1

ρSk
⊗ IA
dA

)
n⊗

k=1

USkAk

)(
|0⟩ ⟨0|Sj

⊗ ISj
⊗ |0⟩ ⟨0|Aj

⊗ IAj

)]

=
1

n

n∑
j=1

TrSjAj

[(
U†

SjAj

(
ρSj ⊗ IAj

)
USjAj

)(
|0⟩ ⟨0|SjAj

)]
×

TrSjAj

[(⊗
k ̸=j

ρSk ⊗ IAj

)]

=
dA
2n

n∑
j=1

TrSjAj

[
U†

SjAj

(
ρSj ⊗ IAj

)
USjAj

|0⟩ ⟨0|SjAj

]
=
dA
2n

n∑
j=1

Tr
[
ρSjσSj

]
.

(6.66)

Thus, for tensor product states, we have that

CD
L =

dA
2n

(
n∑

j=1

Tr [ρjρj] +
n∑

j=1

Tr [σjσj]− 2
n∑

j=1

Tr [ρjσj]

)
. (6.67)

Noting that

n∑
j=1

Tr [ρjρj] +
n∑

j=1

Tr [σjσj]− 2
n∑

j=1

Tr [ρjσj] =
n∑

j=1

|ρj − σj|22 , (6.68)

we have that

CD
L ∝

n∑
j=1

|ρj − σj|22 , (6.69)

where each term of the summation is greater than or equal to zero, with equality if and

only if ρj = σj, therefore the cost may only vanish if and only if ρj = σj for all j.
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It is worth noting that the inability to construct a local variant of the cost function for

the SP ansatz is not due to the inherent mathematical characteristics of the singly- and

doubly-local cost functions presented above, but rather due to the practical limitations

when implementing the algorithm. That we do not have access to the purification of ρ

(as it is in fact this precise purification that we are hoping to learn) precludes faithful-

ness. A faithful (but impractical for implementation) cost function may be formulated

by introducing (either) local Hamiltonian into each state referenced in the cost function,

i.e.,

Definition 6.70. Impractical local cost.

CX
Im = cXL (Vρ, Vρ) + cXL

(
Uθ⃗, Uθ⃗

)
− 2cXL

(
Uθ⃗, Vρ

)
. (6.71)

Here, by momentarily ignoring the practical aspects of training, we have the easily

defineable operational meaning of the Hilbert Schmidt distance between the state found

via the purifications Vρ and Uθ⃗, leading to trivial faithfulness.

Thus, the existence of a local formulation of the Hilbert-Schmidt distance that is

suitable for training on current and near-term quantum hardware (in tandem with clas-

sical counterparts) remains an open question. Nonetheless, an algorithm that has great

potential for success with current hardware is proposed. Analysis of performance of the

algorithm on quantum hardware may be found in [39].
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Chapter 7

Discussion and Future Work

In this work, the use of manipulating and interpreting quantum sources of information

is explored in two ways. The principally experimental chapters (4, 5) explore the inter-

pretation of information which, despite being classical, has a high degree of randomness

stemming from quantum materials. It is demonstrated that semiconducting CuInS/ZnS

core/shell colloidal quantum dot based ink is a viable candidate for PUF devices aimed to-

wards ubiquitous use. Of the two algorithms investigated in this work, Reduced Modified

Local Binary Patterns (R-MLBP) and Adapted High Boost (AHB), R-MLBP is judged to

be more suitable for use in workflows employing smartphones in general settings, primar-

ily due to the easily separable intra- and inter-Hamming distance distributions obtained

for fingerprints generated from images of devices in various settings. R-MLBP’s built

in noise resistance allows for confidence in a selection of parameters for wide use, with

responses generated in different environments bearing more similarity under R-MLBP.

A novel type of optical PUF is explored, utilising two layers of quanutm dot-based

ink, each with a different peak emission wavelength. Alongside this, a “one-to-many”

challenge-response mechanism classification is proposed for this type of PUF, and others

explored in the future. It’s assessed that both inks are capable of producing highly

unique and repeatable fingerprints when compared to other devices, and that comparison

of fingerprints from different isolated emissions of the same device reveals a high degree

of uniqueness, with some guaranteed low level of correlation. When comparing the two

algorithms, AHB appears to capture slightly more correlated fingerprints.

For both ubiquitous PUF designs as analysed in chapter 4, and One-to-Many sys-

tems as analysed in chapter 5, R-MLBP is determined to be more suited to the task

of interrogating quantum dot based OPUFs. In general, AHB appears to suffer from

a poor fingerprinting binary bias, making it unsuitable for the preparation of crpyto-

graphic keys as is, although tweaks to the algorithm and/or pre-/post-processing of the

image/fingerprint may remedy this. In the ubiquitous case, R-MLBP tends to produce
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more easily-separable intra- and inter-Hamming distributions, allowing for greater confi-

dence of no false-matching in wide use. Further, R-MLBP also benefits from a greater

consistency in performance trends across different PUF devices, making it a strong can-

didate for future use and further research in PUF identification.

Chapter 6 explores how we can learn information about a given quantum system,

by directly making use of quantum theory. The work principally focuses on the mathe-

matical analysis and treatment of cost functions used in variational quantum algorithms,

particularly ones utilising the Hilbert-Schmidt distance as an operationally meaningful

metric. Barren plateaus, a phenomena present in cost function landscapes for large-scale

problems run on deep hardware, plague current-term research into VQAs. As an attempt

to mitigate BPs, this work sought to find a cost function in which, via either the intro-

duction of local states or replacement of global operators in the HS distance with local

alternaives, the Hilbert-Schmidt distance was generalised into a local equivalent. Whilst

proposed cost functions were seperably proved faithful for the (i) pure state and (ii) ten-

sor product state cases, no cost function could be found that was suitable and faithful

for the more general highly entangled and highly mixed state case(s).

7.1 Future Work

7.1.1 Authentication

For widespread use, further investigation into the effects of different uncontrollable envi-

ronmental factors is needed. Principally, the exploring of the change of angle of incidence

(and capture), as well as the introduction of unsteadiness present in human handling of

the phone and the PUF device itself is of interest (and is discussed briefly in appendix

A). Whilst R-MLBP demonstrated a strong ability to reliably extract unique fingerprints

in a variety of lighting conditions, it is necessary to collect more data, involving ambient

lighting different warmths, hues, and stability. It is expected that the introduction of

an automated calibration system for the choosing of target capture settings such as ISO,

exposure, and aperture would allow for an expansion of useable environments for the

PUF devices, and an accompanying algorithm. Within this work, characterisation of the

sensor used did not take place. Whilst in the pursuit of ubiquitous use, such properties

will be assumed unknown (due to the need to operate on devices which may have different

sensors, and which may suffer different defects), future work should consider such char-

acterisations, allowing for an understanding of their effect (and extents of effect), such

that mitigations can be deployed to increase universality. Whilst the work presented in

this thesis extends a weak PUF to a “One-to-X” PUF, an investigation into the inde-
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pendence of responses garnered from changing the incident peak wavelength of excitation

(and thus, presenting a different challenge) could allow for the creation of “One-to-X”

PUFs within the strong PUF domain.

For the HPUFs examined, their lack of close correspondence in fingerprints for de-

vices that appear visually similar is a potential interesting avenue for future research.

Understanding the connection between micro-scale features, and how they may or may

not be tied into specifics of variable lacquer distribution may allow for further control

on the level of correlation present in isolated fingerprints of such devices, allowing fine

tuning of devices for specific protocols. With regards to the impact of lacquer disposi-

tion on correlation, experiments investigating PUF response behaviour in the presence of

ambient light, and/or without a filter on the incident light may be of interest, to explore

how reflected light may impact the behaviour of the conjectured thinner areas of lacquer

on devices. To this end, it would also be of interest to replicate the experiment on a

smartphone camera, adjoining this work with the work towards ubiquitous PUFs, by po-

tentially isolating emission based on single channels of the captured RGB image. In order

to investigate, and potentially eliminate, this conjectured lacquer phenomenon, it would

be of interest to examine how variation of fabrication method impacts both correlation of

fingerprints, and appearance of the device under a microscope. The use of a draw-down

applicator for the ink would eliminate the uncontrollable human element introduced in

the handstamp method used for this work. Future studies on the clustering of quantum

dots in lacquer, particularly with a focus on how fabrication methods may influence the

clustering would be of interest, for potential impact on correlation.

Another method of influencing output correlation in HPUF devices is the changing

of peak emission of each dot type. Peak emissions may be brought closer to increase

likelihood of correlation due to overlaps in emission spectra, or be pushed further apart

in an effort to create completely separable fingerprints. Additionally, multiple dots can

be used, to create a PUF utilising One-to-X challenge-response mechanism, where X is

the number of different quantum dot inks.

Further, this work only considers dual emission quantum dot OPUFs fabricated by

the deposition of two different inks onto a surface. Whilst this is believed to be linked

to the appearance of correlations in output fingers, as discussed, the analysis of devices

fabricated by mixing a single ink comprising of two types of quantum dots of differing

sizes would be of special interest, allowing for a comparison of output correlation to the

case examined here, and of general interest for the development of new optical PUFs.

More generally, further work into additional layers of security that can be provided

would be of interest. Whilst the work in [44] is discussed in this thesis as potential

secondary check, it would be interesting to see if the non-linearity that is observable may
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be directly paired with the PUF’s unique output fingerprint. That such secondary checks

exist for non-linearity suggests it is also worth trying to exploit other optical properties

of materials more generally, for instance, introducing a phosphorescent layer with a long-

time decay could allow for the introduction of a temporal element, as well as a spatial

element, to optical PUF-based authentication schemes.

Both types of PUF examined in this thesis utilise small sample sizes, in comparison

to potential real-world use cases. Future work would benefit from a larger number of

samples, allowing for reaffirmation of the statistics reported in this thesis. Such work

would also aid in formalising standards for assessing intra-and inter-hamming distribu-

tions, and their related metrics, allowing for a comparison of theoretical false rates against

experimental false rates.

7.1.2 Compilation

Quantum compilation as a task is not limited to quantum states only. By learning how to

compile any arbitrary quantum circuit, it is then possible to compile any arbitrary quan-

tum processes. One of particular interest, and a natural extension of state compilation, is

quantum channel compilation. Given a compilation algorithm that can accurately learn

any arbitrary mixed state, one can accurately learn any arbitrary quantum channel by

exploiting the Choi-Jamio lkowski isomorphism, which shows that any quantum channel,

equivalent to a completely positive map, has a dual object taking the form of a density

matrix, which may be interpreted as a quantum state. In the discussion of channel-state

duality, the state associated with a given channel is often referred to as the Choi state.

Learning a channel’s Choi state is then equivalent to learning the channel itself, following

some post-processing. Further, given a PUF whose output is a quantum state, a success-

ful compilation algorithm would provide a method of learning the output, allowing for

comparison against the registered (expected) output for the challenge and device.

An open question from this work is whether or not a faithful and practical local equiv-

alent of the Hilbert-Schmidt cost exists for hybrid-based training. Whilst one could not

be provably found, any efforts to provide a no-go theorem failed. To this end, either a

proof of the existence of a satisfactory cost function, or a no-go theorem for its existence

based on properties of subsystems of its elementary operators would be useful for contin-

uing research in efficient and trainable state compilers. Further, this question may have

links to the field of quantum foundations, should the reasoning for a no-go theorem be

based on operational aspects of mixed states. If it is known that mixed states can not be

compiled with guarantee, this sheds some light on what can be learned about quantum

objects overall.
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Appendix A

Towards Implementation

In chapter 4, the use of smartphones to interrogate (and record the subsequent optical

response of) quantum dot-based PUF devices is demonstrated, under tightly controlled

conditions. Whilst the initial controls on ambient light are relaxed, the issue of human

handling, of both device and tags, is not investigated. This appendix provides a brief,

preliminary look at how issues of varying angle and distance between the smartphone

and PUF device can be mitigated.

Figure A.1: Simple schematic to prompt a smartphone user to interrogate a PUF device.
The user is prompted to align the QR’s eyes with the three corner squares, such that
captured images are taken at distances and angles that are consistent across multiple
challenges.
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Given that a custom-designed app would need to be used in order to both trigger the

capturing of a CRP output, and the execution of an authentication protocol based on it,

one solution is to control the user’s capturing behaviour where possible, via instructions

within the app. These instructions can take the form of a simple text dialog, or be

combined with a visual prompt, i.e., a custom viewfinder shown on screen (a simple

example of which is provided in figure A.1), exploiting the landmarks of the QR (the

eyes used as part of the QR detection process) to ensure that the user aligns the tag

consistently, to produce an image of expected perspective, resolution, and orientation.

However, some human error is likely to persist, resulting in variations of angle, that

may potentially lead to warping, particularly around the edges of the quantum dot patch.

To this end, the eyes of the QR may again be used, as anchor points for a standard

perspective correction algorithm, restoring a “face-on” angle to the imaged PUFs, as

demonstrated in figure A.2

Figure A.2: Example inputs (top row) and outputs (bottom row) for a custom designed
perspective correction algorithm, utilising the QR eyes as anchor points to produce more
consistent input images for fingerprinting.

Three images were taken at each angle, and the quantum dot patch was manually

cropped in each, before resizing down to 175 × 175 pixels and processing through R-

MLBP via the steps defined in 3. From these R-MLBP fingerprint outputs, an average

Hamming distance of 0.31 was calculated, suggesting that even without a visual prompt

to minimise human error, relatively reliable fingerprints are obtainable. However, this

is a significant increase compared to the results presented in chapter 4 —suggesting the

need for further work to investigate this, and test if further image correction (e.g., by

homographical transformations) can help mitigate this increase.
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