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Abstract: Global change is associated with variable shifts in the annual production of 206 

aboveground plant biomass, suggesting localized sensitivities with unclear causal 207 

origins. Combining remotely sensed NDVI data since the 1980s with contemporary field 208 

data from 84 grasslands on six continents, we demonstrate a widening divergence in 209 

site-level biomass ranging from +51% to -34% globally. Biomass generally increased in 210 

warmer, wetter and species-rich sites with longer growing seasons while declining in 211 

species-poor arid areas. Phenological changes were widespread, revealing substantive 212 

transitions in grassland seasonal cycling. Grazing, nitrogen deposition, and plant 213 

invasion were prevalent in some regions but did not predict overall trends. Grasslands 214 

are undergoing sizable changes in production, with implications for food security, 215 

biodiversity, and carbon storage especially in arid regions where declines are 216 

accelerating. 217 

 218 

 219 
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Main Text 221 

Shifting annual production of aboveground peak biomass by vascular plants 222 

(hereafter ‘biomass’) has been observed worldwide in response to global environmental 223 

change1-5. These shifts differ in magnitude and direction including positive responses 224 

(i.e., ‘winners and losers’6) suggesting localized sensitivities that have been difficult to 225 

simultaneously measure and test7-11. Given the importance of biomass to humanity for 226 

food and fuel and the likelihood of intensifying consumption going forward, there is an 227 

urgent need to assess its vulnerability to global change especially in areas where yield 228 

declines could intensify12,13. 229 

Analyses to date on biomass shifts13-15 have mostly relied on remotely sensed data 230 

that can be prone to estimation bias and an inability to discern underlying fine-scale 231 

drivers9-16. This is problematic because plant biomass often varies with combinations of 232 

coarse- and fine-scale factors whose interactions can be expressed uniquely by 233 

location, even when vegetation structure and climate may seem similar8,16. For 234 

example, anthropogenic nitrogen (N) deposition and plant invasion can sometimes 235 

dramatically increase biomass especially with warming17-19 yet some global regions are 236 

largely unaffected by one or both factors.  237 

To date, hypothesized drivers of biomass variability have emphasized 238 

combinations of climate change, phenological shifts, N deposition, or local-scale biotic 239 

interactions. Climate impacts on biomass can vary based on regional differences in the 240 

magnitude of temperature change relative to historic baselines (e.g., greater warming at 241 

higher latitudes), shifts in seasonality within and across years (e.g., longer, hotter 242 

summers), the magnitude of temperature change relative to the tolerance thresholds of 243 

local taxa, and interactions between temperature and precipitation including whether 244 

warming sites become wetter or more arid20,21. Phenologically, shifts in the timing of 245 
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seasonal growth can have variable impacts on plant biomass8,9,15 - earlier emergence 246 

can increase biomass if plants are biologically active for longer periods or reduce it by 247 

accelerating seasonal cycling such that growing seasons shorten22. The impacts of 248 

anthropogenic N deposition on plant biomass and diversity sometimes exceed those of 249 

climate and vary by proximity to centers of industry and agriculture19. Nitrogen 250 

deposition often interacts strongly with climate, given linkages among moisture 251 

availability, growing period, and N demand by plants19.23. Finally, a multitude of biotic 252 

factors can affect biomass differently by location, including among-site variation in plant 253 

species richness24, the diversity of plant traits25, levels of plant invasion17, and over-254 

grazing26,27. Given these diverse and often scale-dependent drivers of biomass change, 255 

it is unsurprising that their effects have been difficult to disentangle. Doing so will 256 

require a global-level systematic assessment of biomass regulation both within and 257 

among continents28,29.   258 

Here, we link long-term remotely sensed NDVI data with more contemporary plot 259 

data from 84 grasslands on six continents to test drivers of biomass variability in 260 

response to global change. These grasslands span a latitudinal gradient from -52o to 261 

+78o (four within tropical latitudes), and capture ~1.6% of the world’s total non-woody 262 

vascular flora including ~5% of all Poaceae and ~3% of Cyperaceae (Table S1). 263 

Seventy percent of our sites are arid (PET>annual rainfall – Table S1) matching the 264 

ratio of arid-to-mesic grasslands globally30, with the highest number of sites in North 265 

America (41 sites), followed by Europe (17) Australia (13), South America (6), Africa (4), 266 

and Asia (3) (Fig. S1). We classify “grasslands” as low-statured non-forested plant 267 

communities. Functionally, grasslands occupy a climatically and edaphically determined 268 

tension zone between forest and desert29-31, regulated by climate seasonality, extreme 269 

weather, fire, and human-managed and natural grazing with its total area covering ~53 270 
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million km2 globally (excluding Antarctica and Greenland). These regulating processes 271 

are associated with variability in grassland production, especially relating to climate32-34. 272 

These same processes are being fundamentally re-shaped by global environmental 273 

change, resulting in grasslands becoming a bellwether of resilience (or vulnerability) to 274 

anthropogenic transformation including shifts in biomass.  275 

Our remotely sensed data track changes in annual peak biomass from as early as 276 

1986 based on Landsat-derived peak NDVI. Our primary analyses focused on 277 

identifying drivers of change in peak NDVI using temporal factors measured during the 278 

same interval (1986-2020). These included changes in the timing of three NDVI-based 279 

phenophases that can affect peak biomass: vegetation emergence (i.e., start-of-season 280 

spectral greening), senescence (i.e., end-of-season spectral browning), and growing 281 

season length (duration from greening to browning), as well as inter-annual and inter-282 

seasonal changes in temperature, precipitation, and potential evapotranspiration 283 

(PET)35. We also tested NDVI trends in relation to site-level baseline factors calculated 284 

from different durations including mean annual precipitation (MAP) and mean annual 285 

temperature (MAT) based on hourly modelled temperature data from 1970-2020, and 286 

site aridity (the ratio of annual PET: precipitation - 1970-2020). Other baseline factors 287 

were anthropogenic N deposition based on modelled data from 2014-201636, the 288 

number of plant species per site based on the net total of all species detected in the first 289 

five years of sampling starting as early as 2007, the percentage of exotic taxa found in 290 

each site-level species pool over five years of sampling29, grazing impacts by large 291 

mammals determined using offtake comparisons with exclosures at a subset of 46 292 

grasslands, and composite community-level measures of plant traits for the species 293 

present at each site37. Using annually sampled aboveground biomass of plants (i.e., 294 

combined live, litter, and non-vascular) starting as early as 2007, we examined the 295 
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accuracy of satellite-derived NDVI for predicting grassland biomass, given that there 296 

can be estimation biases relating to latitude, elevation, or species richness9,16. 297 

Analytically, we tested drivers of remotely sensed peak grassland NDVI by evaluating a 298 

series of regression and multivariate models that isolate localized differences based on 299 

our various explanatory factors (Table 1). 300 

Results and Discussion  301 

We observed a four-fold divergence in the slope of change in annual NDVI-302 

estimated biomass over the past several decades (Fig. 1). This amounted to biomass 303 

shifts ranging from a maximum gain of 51% to a 34% decline (Figs. 1, S1). Overall, 56% 304 

of sites increased significantly, especially in the Arctic, the Pacific Northwest of North 305 

America, and western Europe. Other sites from both hemispheres declined, all of which 306 

were arid, including grasslands in Australia, Argentina, and parts of central and 307 

southwestern North America especially California. 36% of grasslands showed no 308 

significant shift in biomass, regardless of phenological change, warming, altered 309 

precipitation, N deposition, or plant invasion. Such geographically variable long-term 310 

changes in non-woody NDVI-estimated grassland biomass, including both sizeable 311 

increases14,38-42 and declines even within the same continent (Figs. S1. S2), are 312 

consistent with previous observations especially from the Arctic9,10,15. We report this 313 

variability to be a global phenomenon affecting many grasslands.   314 

We found that variability in shifting NDVI-estimated biomass was primarily 315 

explained by increases in growing season length, especially in combination with 316 

warming (Figs. 2, S2, S3; Table 1). Between the late 1980s and the late 2010s, growing 317 

seasons increased by an average of nine days (1986-90: x� = 157 days [SE = 3]; 2016-318 

20: �̅�𝑥 = 166 days [SE = 2]). In total, 87% of sites had significant changes in the timing of 319 

the onset of greening, the onset of browning, and/or the length of the growing season 320 
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since 1986 (e.g. Fig S4), indicating that many grasslands globally are undergoing 321 

substantive shifts in seasonal cycling. Longer growing seasons have been implicated as 322 

a warming response in grasslands and some cropping systems, and a causal factor of 323 

increased biomass based on the assumption that plants are active for longer periods22. 324 

Conversely, advancing greening, elevated production, or moisture limitation in arid 325 

environments can sometimes accelerate leaf physiological processes relating to 326 

photosynthesis that, in turn, shorten the growing season by triggering earlier 327 

senescence22,23. In total, 39% of sites had both earlier emergence and delayed 328 

senescence thereby creating longer growing seasons (Fig. S4) – it was these 329 

grasslands with the longest growing seasons that tended in experience that largest 330 

increases in NDVI-estimated biomass. However, many other sites responded differently 331 

such that there was no consistent global relationship between changes to the timing of 332 

emergence and senescence (i.e., starting earlier does not predict the timing of 333 

senescence: F1,83 = 0.95, p = 0.33; Fig. S4). For example, 19% of sites with earlier 334 

emergence in spring experienced earlier spectral browning thereby shortening the 335 

growing season, which has been observed previously in arid areas23 and parts of the 336 

Arctic45,46 including sites analyzed in this study. In total, variability in the connection 337 

between shifting phenology and changes in peak biomass reinforce that there can be 338 

powerful global trends in grassland responses to environmental change (e.g., longer 339 

growing seasons at many sites), but also localized and divergent outcomes sometimes 340 

regulated by different factors.  341 

All sites showed temperature increases since the mid-1980s (i.e., all 84 temporal 342 

slopes for temperature were positive - Fig. S5, S6). However, the impacts of warming 343 

on growing season length were not universal, instead depending on the distinction 344 

between sites with the highest temperature increases but relatively low MATs (e.g., the 345 
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Arctic, Patagonia, and the alpine steppes of the Mongolian and Tibetan Plateaus) 346 

versus those with the highest MATs but less overall warming (e.g., arid grasslands of 347 

Australia, southwestern North America, Africa, and South America). (Figs. S2-S6). The 348 

former were more often in the Northern Hemisphere, in line with observations that 349 

global warming to date has been more pronounced north of the equator (i.e., 350 

interhemispheric temperature asymmetry47) (Figs. 3, S6). These sites with the highest 351 

warming also tended to be characterized by both high MAP and large increases in 352 

annual rainfall - the wettest sites generally are becoming both wetter and warmer. This 353 

is consistent with the ability of warmer air to support more moisture, as has been 354 

observed with increasing snowfall in a warming Arctic45. Conversely, sites with higher 355 

baseline MATs, less warming, and reduced NDVI were all arid grasslands that tended to 356 

undergo a shortening of growing season length, usually relating to an earlier onset of 357 

spectral browning in summer (Figs. S6, S7). Not all arid sites experienced declining 358 

biomass - only 32% of 59 arid sites had negative temporal slopes in NDVI even though 359 

58% of all sites had less precipitation, increases in PET, or both (Figs. S1, S6, S7).  360 

Our observed warming trends were more seasonal than annual, especially in the 361 

spring and summer months – this contributed to the tight connection between growing 362 

season length and temperature (Fig. S2). We examined changes to seasonal and 363 

annual temperatures by site from 1986, which is near the beginning of Landsat data 364 

collection while also capturing the onset of accelerating contemporary planetary 365 

warming that continues to the present day34,45. In testing the magnitude of seasonal and 366 

annual changes, we found that seasonal changes were more prevalent with 37% of 367 

sites having significantly warmer spring temperatures and 47% having warmer summers 368 

(e.g., Fig. S8). In contrast, only a subset of sites had significant increases in annual 369 

warming despite all slopes being positive. This decoupling of frequent seasonal 370 
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warming from less common significant annual warming suggests an intensification of 371 

within-year inter-seasonal differences as has been reported previously in grasslands, 372 

with periods of increasing temperature in some seasons being muted or offset by 373 

cooling at other times of the year6,48. For example, we observed cooling spring 374 

temperatures in numerous mid-latitude grasslands of central North America and 375 

western Europe (Fig. S8) – many of these sites had increasing NDVI.  376 

We also saw significant influences of species richness on changes in peak NDVI, 377 

although always interacting with phenology or climate (Table 1). Among sites with 378 

lengthening growing seasons or warming temperatures, species-rich grasslands 379 

generally displayed greater increases in NDVI than species-poor sites (Table 1; Figs. 380 

S2, S9). Conversely, for grasslands with shortened growing seasons or less warming 381 

(e.g., high MAT sites from the Southern Hemisphere and California), those with below-382 

average richness were predicted to show reduced or less pronounced NDVI increases. 383 

These outcomes imply some form of context-dependent functional complementarity, 384 

which would be consistent with the intertwined causal factors known to regulate 385 

diversity and biomass in grasslands49-51. They also reveal an absence of any 386 

independent relationship of richness (Fig. 2, S9), and indeed sites with the highest 387 

numbers of species (e.g., the African Serengeti) did not necessarily demonstrate 388 

increasing NDVI. Such complexities on how richness affects biomass are illustrated 389 

when considering the numbers of invasive grassland plants at our sites. Invasion is 390 

sometimes linked with large increases in community-level biomass and site-level 391 

richness52, yet we observed the opposite responses - invaded grasslands were more 392 

likely to have declining biomass and fewer species. This likely reflects climatic factors – 393 

most invaded sites were in arid regions where biomass trends since the 1980s were 394 
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non-significant or negative. It also likely reflects lower numbers of species – sites 395 

dominated by invasive plants had significantly fewer plant taxa (F1,63 = 9.2, P = 0.004). 396 

Several of our non-temporal hypothesized factors had no detectable effects on 397 

changes to grassland NDVI despite often having sizable impacts on biomass at some 398 

sites (Table 1). Sites with high levels of N deposition, especially in eastern North 399 

America, higher elevation areas of western Europe, and areas of China (Fig. 3), did not 400 

show significant changes in NDVI despite the well-described impacts of anthropogenic 401 

N increasing grassland biomass19. Similarly, there was a lack of detectable association 402 

between sites with high grazing offtake and changes to NDVI (Table S2). As with N 403 

deposition, grazing can significant affect grassland biomass26  and indeed some of our 404 

grasslands have substantive differences in biomass between grazed and fenced areas 405 

including mesic grasslands of the Northern Hemisphere (sheep meadows in the UK, 406 

reindeer barrens in Finland) and arid regions of Australia53,54. However, variation in 407 

levels of offtake estimated by our exclosures were unable to predict the likelihood of 408 

NDVI change relative to the global-scale impacts of phenology, climate, or species 409 

richness (Table S2). Finally, we also failed to detect associations between site-level 410 

biomass change and variability in community-wide aggregate measures of plant size 411 

(e.g., leaf area index [LAI], height) or foliar nutrients despite a wider spectrum of 412 

resource-foraging strategies in plants sometimes being connected to higher biomass37 413 

(Table S3). Of particular note in our study was a lack of association between biomass 414 

change and LAI. Remotely estimated LAI is often used to model plant production given 415 

the strong connection between canopy density, light capture, and biomass55,56. 416 

However, we observed no predictive relationship between community-level LAI and 417 

long-term shifts in NDVI despite 90-fold differences in canopy density ranging from 418 
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sparse arid grasslands of Australia and the American southwest to dense high-elevation 419 

mesic grasslands of the European Alps (Table S3).  420 

Combined, the prevalence of grasslands with trends towards higher site-level 421 

biomass created a net 13.6% increase among our 84 sites since the 1980s (Fig. 1; F1,83 422 

= 91.6, p <0.0001). Longer-term increases in biomass were also detected using our 423 

field-measured data (Figs. 4, S10), and aligned with other reports of increasing overall 424 

plant biomass with global environmental change38-42. That being said, this magnitude of 425 

increase could be viewed with caution. In total, 61 of our 84 sites occur in the Northern 426 

Hemisphere, especially North America and Europe, where increases in precipitation and 427 

biomass are known to be especially pronounced43,44. Furthermore, there is evidence of 428 

a threshold of ~500 mm per year in precipitation below which sensitivity to climatic 429 

variability intensifies44. Although most of our sites are arid (PET>MAP), their annual 430 

precipitation averages 790 mm (SE = 43) with only 25% falling below 500 mm. We 431 

tested the potential impacts of these factors on the subset of sites that are arid or have 432 

MAP levels < 500 mm, and still observed net increases in biomass (arid sites: +12.2% 433 

[SE 2.6%]; MAP < 500 mm: +15.6% [SE 5.7%]). Nonetheless, we might still anticipate 434 

that mean site-level increases in biomass would be lower if more of our sites occurred in 435 

areas where declining precipitation is especially pronounced. 436 

Biomass variability is not unexpected in grasslands, given its regulation by 437 

combinations of factors whose relative importance can change by locale including 438 

supply rates of limiting nutrients, grazing pressure, and whether warming increases or 439 

suppresses plant growth depending on precipitation31-34. Indeed, localized responses in 440 

biomass depending on whether warming sites are getting wetter or drier also occurs in 441 

annual crops6, which is unsurprising given that large percentages of the world’s 442 

croplands were once grassland11,57. Additionally, previous work on global-scale shifts in 443 
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NDVI-derived estimates of biomass, including in grasslands, has demonstrated both 444 

increases and decreases since the 1980s without a consistently clear mechanistic 445 

understanding given the challenges of testing fine-scale processes1,2,14,58. Here, we 446 

consolidate the disparate findings of previous work by showing that localized differences 447 

emerge because the dominant regulatory processes appear to vary widely. These 448 

findings are evident even though our results likely underestimate the full extent of 449 

shifting grassland biomass with global change since the 1980s. For example, we do not 450 

account for increased biomass caused by the invasion of trees and high-statured shrubs 451 

into grassland – an increasingly prevalent phenomenon9,59. We also did not account for 452 

shifts in root biomass, with root:shoot ratios at 2:1 or more in grasslands60. Finally, there 453 

may be an influence of rising atmospheric CO2 on biomass, although global trends in 454 

CO2 – a ~20% increase since the 1980s – tend to be expressed similarly by region61.  455 

Our analyses integrated remotely sensed and field measured levels of annual 456 

peak grassland biomass, demonstrating a strong positive relationship despite a ten-fold 457 

difference in species richness among sites and a hundred-fold difference in standing 458 

biomass. This indicates that NDVI can capture overall trends in aboveground standing 459 

biomass at our sites. Nonetheless, there was widening predictive error as NDVI 460 

exceeded 0.6 (Fig. 4). NDVI has been previously shown to accurately predict 461 

aboveground plant biomass in uncultivated grasslands62. Indeed, we found similar 462 

trends of an overall mean biomass increase among our 84 sites for both NDVI and plot-463 

level biomass (Fig. S10). However, NDVI can be prone to estimation bias with 464 

increasing spatial scale, across years, at higher latitudes, and with increasing canopy 465 

density and structure8,55,63 – factors that can characterize some of our data. A 466 

fundamental practical question for using NDVI is whether the ability to predict biomass 467 

can be improved with widely available ancillary data such as latitude and climate, or 468 
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whether improvement requires detailed field calibration that may be impossible16. Our 469 

field data gave us a unique opportunity to test drivers of unexplained variation including 470 

fine-scale biotic factors (see Methods), revealing two primary sources of bias: high 471 

latitude and low elevation.  Adding these widely available data to our models improved 472 

the predictive accuracy of NDVI for ground measured biomass by 21% (Table S4). 473 

Estimation bias at high latitude for NDVI is especially common, relating to 474 

methodological and biophysical factors including the potential underestimation of non-475 

photosynthetically active vegetation (which we sampled)9. Although our fit between 476 

NDVI and aboveground biomass remained strong at higher latitudes, our work supports 477 

the need for caution when extrapolating trends in phenological change including the 478 

timing and magnitude of peak biomass. The same caution appears to apply to 479 

extrapolating connections among remotely sensed estimates of biomass and species 480 

richness16,64, as we also detected a smaller but significant estimation bias between 481 

NDVI and field biomass as the numbers of species site-1 increased (Table S4).  482 

Our work describes a substantial divergence of peak biomass by location within 483 

many grasslands globally. These results were obtained from non-cultivated permanent-484 

cover grassland, a habitat type under long-standing and intensifying conversion 485 

pressure55,65. Despite grassland losses exceeding 99% in some regions66, uncultivated 486 

areas still cover ~25% of Earth’s terrestrial surface, store ~25% of its carbon, and 487 

support thousands of obligate flora and fauna67. Many of the global-scale ecological 488 

benefits of uncultivated grassland center on the annual production of biomass, including 489 

litter inputs that contribute to soil C cycling, providing forage for much of the world’s 490 

remaining megafauna and half of all domesticated livestock, and regulating fire cycling 491 

given that grasslands account for most of Earth’s annual burning67. Our documentation 492 

of shifts in the direction and magnitude of biomass in our grasslands suggests that there 493 
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will be far-ranging implications for the planet moving forward, which will be experienced 494 

differently by location.  495 

Methods 496 

Study area and experimental design  497 

Our study sites span a latitudinal gradient from Patagonia (-52o) to the high Arctic 498 

of Norway (+78o) and range in elevation from 0 m to 4241 m, with wide differences 499 

in potential evapotranspiration (0.79 – 6.49 mm day-1), atmospheric N deposition (66.9 500 

to 2162.1 mg N m-2 year-1), and long-term (1970-2020) mean annual precipitation (MAP: 501 

192 to 2224 mm) and mean annual temperature (MAT: -7.5 to 27.2°C) (Fig. S11, Table 502 

S1). There is wide variation in the total number of species per site (“species richness”), 503 

ranging from 13 to 176 species, summed together for all non-treated control plots based 504 

on five years of sampling in case there were cryptic taxa not visible in some years. 505 

Percent exotic flora ranges from 0 to 100% of all species per site (Table S1) with 506 

multiple species occurring at sites within both their ancestral and non-native ranges68. 507 

There were 421 non-native plant taxa in total, but with twenty of the 84 sites having no 508 

exotic species (all sites in Europe, Asia, and Africa). Levels of grazer offtake at the 46 509 

sites with exclosures range from none to ~85% of total annual plot-level 510 

biomass53,54. We classify “grasslands” as low-statured non-forested plant communities, 511 

including treed savanna, prairie, planted permanent-cover pasture, montane meadows, 512 

and arctic-alpine tundra. Our sites cover a wide range of “Whittaker biomes” defined by 513 

the ratio of MAP to MAT (Fig S1). They also have some degree of geographic 514 

clustering, with an average minimum distance globally of 379.3 km (range: 1 to 3,087 515 

km). This means that several sites have identical estimates of N-deposition given the 516 

spatial resolution of those data (2° × 2.5°). Our ratio of arid-to-mesic grasslands 517 

(71%:29% - Table S1) matches the global ratio30 but the continental distribution of our 518 
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sites is not proportional to the global range of grasslands. Almost half of our sites are 519 

from North America even though its continental coverage of grassland is only 13% 520 

globally. Australia and South America have similar ratios between number of our sites 521 

versus their global coverage (14:13%; 10:9% respectively), while Asia and Africa are 522 

under-represented (Fig. S1). For our invaded sites, there could be a concern that our 523 

data misrepresent invasion impacts on NDVI change because of the gap between the 524 

start of the remote sensing data (mid-1980s) and the field sampling (2007). Although we 525 

cannot definitively eliminate this possibility (e.g., an uninvaded site becoming heavily 526 

invaded after 1986), the odds are low as all sites occur in regions of the world with long 527 

legacies of invasion dating back a century or more68. Our study began with 127 sites but 528 

was ultimately reduced to 84 based on screening for extreme outliers, poor image 529 

resolution especially due to cloud cover, and confounding site factors such as tree cover 530 

(see below).  531 

Our analyses combined NDVI calculated from Landsat images starting no earlier 532 

than 1986, climate data including PET35, modelled N deposition data36, and field data 533 

collected from 84 grassland sites from the Nutrient Network (NutNet), a globally 534 

distributed experiment29. All NDVI satellite data were extracted from unmodified areas 535 

adjacent to plots associated with NutNet (Fig. S12). All NutNet plot data were collected 536 

by local site scientists, starting in 2007 or later depending on when the site joined the 537 

network. Field sampling occurred within thirty permanently marked 5 x 5 m plots laid out 538 

in a grid (Fig S12). We used data from the year prior to the application of any 539 

experimental treatment (i.e., “Year 0” pre-treatment data, when all plots were 540 

unmodified) and from subsequent years (Years 1, 2, etc.) in the subset of plots that 541 

were untreated (i.e., all data in this study only come from unmodified control plots). Plot 542 

data were collected annually at peak biomass and included total aboveground biomass, 543 
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clipped to ground level from two 10 cm x 100 cm strips within a larger 5 m x 5 m plot, 544 

with the clipping locations differing each year29. Clipped biomass was sorted to live, 545 

non-vascular, and litter, and then dried to a constant mass at 60o C and weighed. 546 

Differentiating biomass into live vascular, live non-vascular, and litter is one of several 547 

important novelties of our study, given the NDVI estimations of standing plant biomass 548 

can sometimes be insensitive to, or biased by, the latter two factors. Indeed, 53% of all 549 

Nutnet grasslands globally have been found to support non-vascular plant growth, with 550 

standing biomass as high as 635 g m-2 (Virtanen et al. submitted).  551 

Our 84 sites captured a wide variation in the relative abundance of major 552 

functional groups, including graminoids (e.g., grasses and sedges), forbs, and, to a 553 

lesser degree and mostly in the Arctic, low-statured woody plants, lichens, and 554 

bryophytes. There was a wide range in the percentage of non-native flora per site. Many 555 

sites in Europe, Africa, and Asia had few or no non-natives, while some grasslands in 556 

North America, South America, and Australia were >90% exotic taxa68. Species 557 

composition data were used to calculate two measures of community-level trait 558 

variation, functional diversity (FD) and community weighted mean (CWM)37. FD, an 559 

estimate of trait variability, relates to degrees of trait converge or divergence within plots 560 

based on Rao’s index of quadratic entropy. CWM (also referred to as FI37), an estimate 561 

of trait averages, is based on the community weighted mean for each trait in each plot. 562 

Trait data were compiled from TRY (public version), AusTraits (version1.1.0), BIEN 563 

(version 1.2.5), and NutNet (leaf traits), for six continuous traits (height, leaf surface 564 

area (LAI), specific leaf area (SLA – the ratio of leaf area to leaf mass), leaf N, leaf P, 565 

leaf C), that have relatively high coverage for species recorded in NutNet (93, 95, 87, 566 

91, 86, 75, 81% for each trait, respectively). For species that do not have trait values, 567 

we used the mean values from their genus (see Table S3) 568 
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The only Nutnet treatment data were for grazer offtake, derived from fenced but 569 

unfertilized plots53,54. Grazing effects were expressed as the log response ratio of 570 

differences in clipped biomass between control plots in fenced and unfenced areas at a 571 

subset of 46 sites (the remaining 38 sites did not have exclosures). Typically, there 572 

were three fenced plots per site, and the fences were ~2.3 m tall with the lower 90 cm 573 

being 1 cm steel mesh and the upper portion surrounded by strands of barbless wire29.  574 

These grazing offtake data were calculated only in the first year after the exclosures 575 

were constructed (Year 1), given that longer-term exclosure effects can be confounded 576 

by shifts in plant species richness and relative abundance51. Levels of grazer offtake 577 

ranged from very low or nil with some sites lacking detectable grazing, to very high 578 

especially in parts of Australia, Africa, and western Europe (e.g., sheep grazing in 579 

Lancaster UK, domesticated reindeer grazing in Kilpisjarvi, Finland)53,54.  580 

For our analyses, we used single composite (non-temporal) site-level measures 581 

of species richness, exotic cover, traits, and grazing for each site – this allowed us to 582 

test, for example, whether background levels of site richness and invasion were 583 

associated with 36-year shifts in NDVI-estimated production.  584 

NDVI measurements and phenological dates 585 

We used images from Landsat missions 4, 5, 7, and 8, to calculate the normalized 586 

difference vegetation index (NDVI) at each site starting as far back as 1986 (depending 587 

on image quality) and extending annually to 2020 at a resolution of 30 m in an 588 

unmodified circular area selected near the Nutnet plots (Fig. S12). In these plots, we 589 

extracted a series of phenological NDVI measures within each growing season, 590 

modified from Buitenwerf et al.8 given that we only targeted a single vegetation type 591 

(i.e., grasslands): off-season ‘trough’ when plants are inactive, start-of-season 592 

“emergence”, peak NDVI, end-of-season “senescence”, and “growing season length” 593 
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derived from the number of days from emergence to senescence each year (Fig. S13). 594 

Elsewhere, NDVI has been used to detect trends in phenology and related biomass 595 

responses9,16, including in grasslands where it has been shown to strongly align with 596 

live biomass62. Our work supports this significant relationship, albeit with increasing 597 

variation beyond NDVI values of 0.6 (Fig. 4). We conducted a series of analyses to 598 

identify sources of error for NDVI including tests for influences by outliers, the influences 599 

of regional-scale factors relating to latitude and elevation, and local-scale factors 600 

including non-vascular flora (described below – Table S4). We removed two sites that 601 

failed uniformity tests when conducting linear fits between annual peak NDVI and time, 602 

based on comparisons with a Theil-Sen median regressor and trend-filtering using a 603 

Mann-Kendall Trend Test – both were sparsely vegetated sites of the Icelandic tundra 604 

and arid grassland of central North America.  605 

Location of the circular “NDVI plots” was done visually using Google Earth 606 

images. We located a central point in an area adjacent to the NutNet experiment, given 607 

that the Nutnet plots are readily detectable from the images (Fig. S12). This adjacent 608 

area was selected to contain vegetation identical to the vegetation within the 609 

experiment, in consultation with each Nutnet site PI. It was positioned at least 50 m from 610 

the closet NutNet plot to avoid the influence of any experimental treatments associated 611 

with the NutNet manipulations, while leveraging the site-specific vegetation and soil 612 

information derived from the experiment. There is always potential risk of positioning 613 

error using Google Earth – a global analysis of high-resolution Google Earth imagery 614 

has estimated an overall horizontal geo-registration accuracy of 39.7 m RMSE with an 615 

accuracy of 24 m RMSE in some countries69 and subsequent studies demonstrate 616 

improved horizontal accuracy of 10.5 m RMSE70. We explicitly tested RSME error for 617 

eight of our sites, contrasting plot-level coordinate data generated using a hand-held 618 
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GPS at each of 30 plots per site versus coordinate data for those same 30 locations 619 

generated from Google Earth engine (Fig. S12, Table S5). Our calculated RSME error 620 

was always <5 m (Table S5).  621 

In each circular plot per site, we extracted reflectance data from within a circular 622 

buffer within 30 m around this point (Fig. S12). This was done using images from top-of-623 

atmosphere (TOA) reflectance collections in Google Earth Engine. The images were 624 

taken between 1982 and 2020, although the specific date ranges and sampling 625 

frequency varies at each site. All of our analyses using remote sensed data that start no 626 

earlier than 1986 as site data prior to this was found to be too sporadic (Fig. S13). In all 627 

cases, the spatial resolution of each image is 30 m. We used all available images from 628 

both Tier 1 and Tier 2 quality, which were aggregated and processed using Google 629 

Earth Engine. Tier 2 data were essential for obtaining images taken during the snow-630 

covered “trough” portion of the year. The horizontal geo-registration accuracy of Tier 1 631 

scenes is ≦ 12-meter root mean square error (RMSE) whereas the Tier 2 accuracy is > 632 

12 m RMSE71. Landsat Collection 1 was used, although Collection 2 is the only 633 

collection currently available for download but both collections have the same published 634 

geo-registration accuracies71. For each image, we calculated NDVI using the 635 

corresponding near-infra red and red bands 4 and 3 for Landsat 4, 5, and 6, and bands 636 

5 and 4 for Landsat 8. We also extracted information about image quality (BQA band) 637 

containing statistics from the image data and post-processing information69. BQA values 638 

were used to filter images to exclude any pixels that had a high likelihood of including 639 

clouds or cloud shadows. Using manual inspection, we included only pixels associated 640 

with clear, cloud-free imagery (Landsat 4, 5, and 7 BQA = 672, 680, 676, 680, 684; 641 

Landsat 8 BQA = 2720) or imagery over snow (Landsat 4, 5, and 7 BQA = 1696, 1700, 642 
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1704, 1708; Landsat 8 BQA = 3744). We discarded images where resolution was 643 

uncertain (e.g., clouds versus snow - <0.5% of all images). 644 

We screened our initial pool of sites, reducing the final number of sites to 84 645 

(Table S1). Exclusion of sites typically occurred for sites lacking (i) Nutnet field data for 646 

at least three years (ii) extreme outliers for one or data factors, whose origins could not 647 

be determined, or (iii) those for which only a minimal amount NDVI phenological data 648 

could be extracted. Reasons for the latter include poor satellite coverage by location 649 

(especially problematic for Landsat data from the early 1980s), persistent cloud cover 650 

(preventing fitting a trend), or for sites that rarely or never crossed an identifiable 651 

“greened-up” threshold in multiple years. In cases where established Nutnet plots could 652 

not be located on Google Earth (e.g., Fig S12) or any other issues inhibiting image 653 

processing (e.g., canopy cover by trees), we reached out to site PIs for guidance.  654 

 Once the time series of NDVI values was obtained for each site, we extracted 655 

key phenological and growing season information by post-processing the data in R 656 

version 3.6.1 (Fig. S13). First, we smoothed the data to reduce error by fitting cubic 657 

splines to the NDVI data at each site, and then determined the average date where 658 

NDVI was the lowest across all years (“trough date”). Then we created site-specific 659 

“growing season windows” consisting of 545 days (365 + 2*90). This window started 90 660 

days before the trough date in each year, and then 365 days following the trough date 661 

plus an extra 90-day buffer at the end. We processed all dates initially as radians, which 662 

allowed flexibility in defining growing seasons particularly for sites with Mediterranean 663 

climates (e.g., California, western Australia) or located in the southern hemisphere 664 

where the period of vegetation activity spans multiple calendar years (e.g., green-up 665 

can be November of year x, senescence in April of year x + 1).   666 
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 From our growing season windows for each site*year combination, we weighted 667 

data points so that the maximum NDVI value in each growing season window had a 668 

weight of 1, while all other points had a weight of 0.5, to better preserve the NDVI trends 669 

at sites with rapid green-ups and short growing seasons. We used a smoothing 670 

parameter (spar) of 0.5 to preserve these trends. From these annual cubic splines, we 671 

extracted green-up and senescence dates as the first and last dates, respectively, that 672 

NDVI was above a 50% NDVI range threshold (green threshold) according to the 673 

equation: 674 

 675 

Threshold =\left(0.5\𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡\left(\𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡{𝑀𝑀𝑀𝑀𝑥𝑥𝑡𝑡𝑡𝑡𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀}676 

−\𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡{𝑀𝑀𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀}\right)\right) +\𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑡𝑡{𝑀𝑀𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀} 677 

 678 

where the average maximum and minimum NDVI values were calculated across all 679 

years at each site. This green threshold allowed for flexibility to include sites with 680 

different minimum NDVI values (e.g., sites which become snow-covered and sites which 681 

do not) as well as different maximum NDVI values. In using a threshold, we were also 682 

able to ensure that a green-up or senescence date was biologically comparable across 683 

all years (indicating the same NDVI).  684 

 In all cases of fitting cubic splines, we forced a minimum NDVI value of 0 (if 685 

measured NDVI was < 0, we re-assigned the value to 0), as our smoothing and post-686 

processing was dependent on consistency during the growing season troughs when 687 

data were typically sparse. During the growing season troughs, band quality information 688 

often indicated that pixels were cloud covered when visual analysis of images revealed 689 

snow cover (both cloud and snow cover containing water). We excluded pixels 690 

indicating cloud cover in this analysis. To overcome sparse data points during these 691 
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periods in Tier 1 datasets we additionally used Tier 2 data. Given that data from both 692 

tiers were required and the radiometric calibration was top-of-atmosphere reflectance, 693 

alternative variations of NDVI that adjust for noise due to soil brightness and 694 

atmospheric light scattering, such as the enhanced vegetation index (EVI)72,73, were not 695 

employed - indices with numerical constants can be inconsistent due to atmospheric 696 

noise69. Furthermore, snow cover decreases NDVI values but increases EVI values70 697 

and such sensitivity would confound the phenological analysis. 698 

We approximated the relationship between NDVI and plot level aboveground 699 

biomass using sites with at least 3 years of harvested biomass and corresponding 700 

annual peak NDVI data from the same site (Figs. 4, S10). A log-transformed model 701 

provided the best fit between NDVI and average plot biomass site-1 year-1, which we 702 

used to translate NDVI to an average biomass across all sites from 1986 to 2020.  703 

Climate and N-deposition trends 704 

 Monthly long-term temperature (MAT) and precipitation (MAP) averages per site 705 

were obtained from the WorldClim database, from 1970-2020. MAT and MAP served to 706 

describe baseline levels of temperature and precipitation among sites. To determine 707 

annual deviations in temperature and precipitation from baseline MAP and MAT, we 708 

calculated a monthly time series for temperature and precipitation during the study 709 

period (1986-2020), with data obtained at the site level using the Climatic Research Unit 710 

(CRU) time-series (TS) version 4.03 data35. These annual deviations were calculated as 711 

slopes of change over time. Estimates of potential evapotranspiration (PET) were also 712 

obtained from the CRU time series35, which calculates PET using mean, maximum, and 713 

minimum monthly temperatures, vapor pressure, and cloud cover (1970-2020).  714 

Given predictions of increased interannual seasonal variability in climate, with the 715 

potential to affect phenology and peak biomass, we calculated slopes of 36-year trends 716 
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in temperature and precipitation seasonality at each site. We targeted these calculations 717 

for two phenophases: (i) green-up based on a two-month window around the date of 718 

typical site-specific green-up date (the typical month of green-up, plus one month 719 

before), and (ii) maximum NDVI as a five-month window around the date of typical site-720 

specific maximum NDVI (the typical month of NDVI max, plus two months before and 721 

after). These seasonal calculations allowed us to test more detailed climatic drivers of 722 

phenological change, which may not be detected by overall annual trends including the 723 

possibility of warmer springs, warmer and drier summers, and even seasonal cooling as 724 

is sometimes observed (e.g., Fig. S8)48.  725 

Atmospheric nitrogen (N) deposition was estimated for each of the sites using the 726 

GEOS-Chem Chemical Transport Model36. The model estimates wet and dry deposition 727 

of inorganic N using models of atmospheric chemistry together with meteorological data 728 

and emissions data. Outputs are at a 2° × 2.5° resolution averaged across the years 729 

2014, 2015, and 2016. Although the N deposition model uses metrological data, there 730 

were weak and non-significant correlations between precipitation and estimates of N 731 

deposition (r2 = 0.009).  732 

Analysis  733 

Our primary analysis tested drivers of change in maximum NDVI over the period 734 

starting from 1986 to 2020, based on site-specific slopes of biomass change over time 735 

(Fig. 1). We used a multi-model selection approach to evaluate the relative importance 736 

of variables associated with our four interacting hypotheses: (i) changes in climate 737 

including temperature, precipitation, and PET, (ii) changes in phenology including the 738 

timing of emergence, the timing of senescence, and growing season length, (iii) levels 739 

of atmospheric N deposition, and (iv) biotic factors of species richness, grazing 740 

intensity, traits, and exotic (non-native) species. We simplified our analytical models by 741 
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removing factors that were tightly correlated, using principal coordinate analysis (e.g., 742 

Figs. S2, S3). For example, we found that overall changes in temperature and 743 

precipitation (the 36-year temporal trends based on slope) were tightly correlated with 744 

seasonal changes in spring and summer temperature and precipitation – we thus used 745 

the former in our models. Similarly, sites differed widely in changes to emergence and 746 

senescence over time, but we excluded both for our main models as their effects were 747 

significantly captured by trends in growing season length – sites that started earlier 748 

often had longer growing seasons, as did sites that senesced later (although only 39% 749 

of sites had both earlier emergence and later senescence – see Main Text).  750 

Accordingly, we built a maximal linear model in R74 that assessed the response of 751 

site-level biomass slopes (change in NDVI from as early as 1986 to 2020, depending on 752 

the site – Fig. 1) to all independent effects and pairwise interactions of a subset of 753 

factors: latitude, elevation, N deposition, species richness, growing season length, 754 

aridity, percent exotic species, overall annual temperature slope (warming since 1986), 755 

and overall annual precipitation slope (changes in precipitation since 1986). We 756 

included grazing in a separate model for these factors, for the 46 sites that had 757 

exclosures (Table. S2). All of these variables included in the final maximal model had 758 

low collinearity, as indicated by assessment of variance inflation factors75. These factors 759 

also met assumptions of normality (or were log transformed to aid this – e.g., N 760 

deposition), and were standardized to a mean of zero and standard deviation of 0.5 761 

using the ‘arm’ package76, as required for model comparison77. Further we adjusted our 762 

regression models using the inverse of the standard error of the slope from each site, so 763 

as to down-weight parameters estimated with larger error (e.g., Seabloom et al.78). We 764 

evaluated the fit of subsets of this model using the MuMIn package74 and conducted a 765 

model averaging procedure for all candidate models within two AIC of the best model. 766 
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We present the full averages of parameter estimates from our final model (e.g., Tables 767 

1, S2)75-77.  768 

 769 

Data and materials availability: Data and coding associated with this study are freely 770 

available from the Environmental Data Initiative. 771 
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Tables 806 

 807 
Table 1. Major factors associated with changing mean in peak NDVI in 84 808 

grasslands 1986-2020. The table shows all variables highlighted to be significant 809 

drivers of changing NDVI (bold) and the remaining non-significant variables that were 810 

retained in the model selection process. Hypothesized factors that are not listed (e.g., N 811 

deposition) were not detected as influential, even non-significantly, during model 812 

selection.  813 
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 814 

Parameter Estimate Standard 
Error 

Z-Score P-value 

Intercept 0.0018 0.0002 11.48 <0.0001 
Growing season length (GSL) 0.0021 0.0003 6.13 <0.0001 
GSL*temperature change -0.0037 0.0008 4.5 <0.0001 
Aridity*temperature change -0.0024 0.0007 3.14 0.002 
Temperature change 0.0010 0.0004 2.50 0.013 
GSL*species richness 0.0018 0.0008 2.38 0.018 
Temperature change*species richness 0.0020 0.0009 2.17 0.03 
Aridity -0.0007 0.0003 2.14 0.033 
Species richness -0.0004 0.0003 1.27 0.2 
% exotic species -0.0002 0.0003 0.54 0.59 
Aridity*species richness 0.0003 0.0007 0.41 0.68 
Precipitation change 0.0001 0.0002 0.33 0.74 
Precipitation change*temperature change -0.0002 0.0007 0.31 0.76 
Elevation 0.00000 0.0002 0.25 0.80 

 815 
 816 

Figure Captions  817 

Fig. 1. Temporal change in mean peak NDVI. Fitted trend lines for 84 grasslands, with 818 

the red dashed line indicating no temporal change. The open circles are the peak NDVI 819 

measures for each grassland over time (n=2,856). In total, 56% of sites have significant 820 

positive increases while 5% have significant declines, resulting in a four-fold difference 821 

in mean peak NDVI change. Given the wide spread of points and the risk of outlier bias, 822 

our fitted trends derive from a linear model using a Theil-Sen median regressor. Plotted 823 

trendlines were obtained from this model and filtered based on p-values from a Mann-824 

Kendall Trend Test (see Methods).   825 

 826 

Fig. 2. Relationship between changes in major explanatory factors and maximum 827 

NDVI. (A) The figure emphasizes the significant impact of changes in growing season – 828 

shortening (left) or lengthening (right) - on shifts in grassland biomass declines (bottom) 829 

or increases (top) estimated with remote-sensed NDVI (F1,83 = 31.8; p <0.0001)). There 830 
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are also significant relationships between (B) increasing NDVI and the slope of 831 

temperature increase by site (F1,83 = 6.6; p=0.012; note: all sites warmed) and (C) 832 

increasing NDVI and the slope of changes in annual precipitation (F1,83 =5.3; p=0.023). 833 

For species richness (D), there was no univariate impact on changing NDVI (F1,83 = 0.34; 834 

p = 0.56), although it interacted significantly with growing season length and warming 835 

(Table 1, Fig. S9). The inserted dashed lines in Figs. 2A-C indicate areas of no net 836 

change. All tests are linear regressions among the 84 sites of this study.  837 

 838 

Fig. 3. Global maps showing variation among sites in (A) shifting average annual 839 

temperature, (B) average annual precipitation, (C) growing season length for 840 

1986-2020, and (D) levels of atmospheric N deposition modelled for 2014-2016. 841 

Data for temperature and precipitation came from CRU35. The largest temperature 842 

increases are mostly in the northern hemisphere – southern hemisphere sites have 843 

higher mean annual temperatures, but lower levels of warming since the 1980s. 844 

Growing season length were derived by site and over time based on differences 845 

between remotely sensed spectral greening and spectral browning each year. 846 

Atmospheric nitrogen (N) deposition was estimated using the GEOS-Chem Chemical 847 

Transport Model36, which estimates wet and dry deposition of inorganic N using models 848 

of atmospheric chemistry together with meteorological data and emissions data – these 849 

N data have a 2° × 2.5° resolution. 850 

 851 

Fig. 4. Relationship between annual remotely sensed maximum NDVI and annual 852 

live aboveground biomass. The best-fit curvilinear regression line (F2,410 = 72.7; p 853 

<0.0001) derives from sites with three or more years of live biomass, with the red shaded 854 

area (confidence curves for the fitted line) showing how estimation bias begins to widen 855 
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as annual maximum NDVI becomes higher (especially > 0.6). Analysis of the residuals 856 

indicates that this bias is strongly affected by higher latitude and lower elevation, with a 857 

contribution also from species richness (see Methods; Table S4).  858 

 859 

References 860 

1.Nemani, R. R. et al. (2003). Climate-driven increases in global terrestrial net primary 861 

production from 1982 to 1999. Science 300, 1560-63. 862 

2.Ciais, P. et al. (2005). Europe-wide reduction in primary productivity caused by the 863 

heat and drought in 2003. Nature 437, 529-533. 864 

3.Zhao, M. & Running, S.W. (2010). Drought-induced reduction in global terrestrial net 865 

primary production from 2000 through 2009. Science 329, 940-943.  866 

 867 

4.Zhu, et al, (2016). Greening of the Earth and its drivers. Nature Climate Change 6, 868 

791–795. 869 

 870 

5. Running, S. W. et al. A continuous satellite-derived measure of global terrestrial 871 

primary production. Bioscience 54, 547-560, 872 

 873 

6. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global 874 

crop production since 1980. Science, 333 616-620. 875 

 876 

7. Tylianakis, J. M. et al. (2008). Global change and species interactions in terrestrial 877 

ecosystems. Ecology Letters 11, 1351-1363. 878 



33 
 

8.Buitenwerf, R., Rose, L., & Higgins, S. I. (2015). Three decades of multi-dimensional 879 

change in global leaf phenology. Nature Climate Change, 5, 364-368. 880 

9.Myers-Smith, I. H., et al. (2020). Complexity revealed in the greening of the 881 

Arctic. Nature Climate Change, 10, 106-117. 882 

10.Berner, L. T., et al. (2020). Summer warming explains widespread but not uniform 883 

greening in the Arctic tundra biome. Nature Communications, 11, 1-12. 884 

11. Huang, J., Ji, M., Xie, Y., Wang, S., He, Y., & Ran, J. (2016). Global semi-arid 885 

climate change over last 60 years. Climate Dynamics, 46(3), 1131-1150.  886 

12. Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. L. (2021). Biomass 887 

for a sustainable bioeconomy: An overview of world biomass production and 888 

utilization. Renewable and Sustainable Energy Reviews, 139, 110691.  889 

13. Krausmann, F., Erb, K. H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., ... & 890 

Searchinger, T. D. (2013). Global human appropriation of net primary production 891 

doubled in the 20th century. Proceedings of the national academy of sciences, 110(25), 892 

10324-10329.  893 

14. Gao, Q., Zhu, W., Schwartz, M. W., Ganjurjav, H., Wan, Y., Qin, X., ... & Li, Y. 894 

(2016). Climatic change controls productivity variation in global grasslands. Scientific 895 

reports, 6(1), 1-10 896 

 897 

15. Miles, V. V., & Esau, I. (2016). Spatial heterogeneity of greening and browning 898 

between and within bioclimatic zones in northern West Siberia. Environmental Research 899 

Letters, 11, 115002. 900 



34 
 

16.Cavender-Bares, J., et al. (2022). Integrating remote sensing with ecology and 901 

evolution to advance biodiversity conservation. Nature Ecology & Evolution, 6, 506-519. 902 

17. Liao, C., et al. (2008). Altered ecosystem carbon and nitrogen cycles by plant 903 

invasion: a meta‐analysis. New Phytologist, 177, 706-714. 904 

 905 

18. Turbelin, A. J., Malamud, B. D., & Francis, R. A. (2017). Mapping the global state of 906 

invasive alien species: patterns of invasion and policy responses. Global Ecology and 907 

Biogeography, 26, 78-92. 908 

19. Borer, E. T., & Stevens, C. J. (2022). Nitrogen deposition and climate: an integrated 909 

synthesis. Trends in Ecology & Evolution, 6, 541-552. 910 

20. Knapp, A. K., Ciais, P., & Smith, M. D. (2017). Reconciling inconsistencies in 911 

precipitation–productivity relationships: implications for climate change. New 912 

Phytologist, 214, 41-47. 913 

 914 

21. Teng, M., et al. (2020). The impacts of climate changes and human activities on net 915 

primary productivity vary across an ecotone zone in Northwest China. Science of The 916 

Total Environment 714,136691. 917 

 918 

22. Zani, D. et al. (2020). Increased growing-season productivity drives earlier autumn 919 

leaf senescence in temperate trees. Science, 370, 1066-1071. 920 

23. Luo, Y., El‐Madany, T., Ma, X., Nair, R., Jung, M., Weber, U., ... & Migliavacca, M. 921 

(2020). Nutrients and water availability constrain the seasonality of vegetation activity in 922 

a Mediterranean ecosystem. Global Change Biology, 26, 4379-4400. 923 



35 
 

24.Walker, M. D., et al. (2006). Plant community responses to experimental warming 924 

across the tundra biome. Proceedings of the National Academy of Sciences, 103. 1342-925 

1346. 926 

 927 

25. Parmesan, C., & Hanley, M. E. (2015). Plants and climate change: complexities and 928 

surprises. Annals of Botany, 106, 849-864. 929 

 930 

26.Olofsson, J., et al. (2009). Herbivores inhibit climate‐driven shrub expansion on the 931 

tundra. Global Change Biology 15, 2681-2693. 932 

 933 

27. Maestre, F. T., Le Bagousse-Pinguet, Y., Delgado-Baquerizo, M., Eldridge, D. J., 934 

Saiz, H., Berdugo, M., ... & Gross, N. (2022). Grazing and ecosystem service delivery in 935 

global drylands. Science, 378(6622), 915-920. 936 

28. Yahdjian, L., Sala, O. E., PiÑeiro-Guerra, J. M., Knapp, A. K., Collins, S. L., Phillips, 937 

R. P., & Smith, M. D. (2021). Why coordinated distributed experiments should go 938 

global. BioScience, 71, 918-927.  939 

29. Borer, E. T., et al. (2014). Finding generality in ecology: a model for globally 940 

distributed experiments. Methods in Ecology and Evolution 5, 65-73. 941 

30. White, R. P., Murray, S., Rohweder, M., Prince, S. D., & Thompson, K. M. 942 

(2000). Grassland ecosystems (p. 81). Washington, DC, USA: World Resources 943 

Institute.  944 

 945 

31. Axelrod, D. I. (1985). Rise of the grassland biome, central North America. The 946 

Botanical Review 51, 163-201. 947 



36 
 

 948 

32. Sala, O. E., et al. (1988). Primary production of the central grassland region of the 949 

United States. Ecology 69, 40-45. 950 

 951 

33. Knapp, A. K., & Smith, M. D. (2001). Variation among biomes in temporal dynamics 952 

of aboveground primary production. Science 291, 481-484. 953 

 954 

34. Gilbert, B., et al. (2020). Climate and local environment structure asynchrony and 955 

the stability of primary production in grasslands. Global Ecology and Biogeography 7, 956 

1177-1188. 957 

 958 

35. Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS 959 

monthly high-resolution gridded multivariate climate dataset. Scientific data 7, 1-18. 960 

 961 

36. Ackerman, D. E., Chen, X., & Millet, D. B. (2018). Global nitrogen deposition (2°× 962 

2.5° grid resolution) simulated with GEOS-Chem for 1984-1986, 1994-1996, 2004-2006, 963 

and 2014-2016. 964 

 965 

37. van der Plas, F. et al. (2020) Plant traits alone are poor predictors of ecosystem 966 

properties and long-term ecosystem functioning. Nature Ecology Evolution 4,1602–967 

1611. 968 

 969 

38. Heisler-White, J. L., Knapp, A. K., & Kelly, E. F. (2008). Increasing precipitation 970 

event size increases aboveground net primary productivity in a semi-arid 971 

grassland. Oecologia, 158, 129-140.  972 



37 
 

39. Xia, J., Liu, S., Liang, S., Chen, Y., Xu, W., & Yuan, W. (2014). Spatio-temporal 973 

patterns and climate variables controlling of biomass carbon stock of global grassland 974 

ecosystems from 1982 to 2006. Remote Sensing, 6, 1783-1802.  975 

40. Orndahl, K. M., Macander, M. J., Berner, L. T., & Goetz, S. J. (2022). Plant 976 

functional type aboveground biomass change within Alaska and northwest Canada 977 

mapped using a 35-year satellite time series from 1985 to 2020. Environmental 978 

Research Letters, 17, 115010. 979 

41. Boone R B, Conant R T, Sircely J, Thornton PK and Herrero M (2018). Climate 980 

change impacts on selected global rangeland ecosystem services. Glob. Change Biol. 981 

24 1382–93 982 

42. Andresen, L. C., Yuan, N., Seibert, R., Moser, G., Kammann, C. I., Luterbacher, J., 983 

... & Müller, C. (2018). Biomass responses in a temperate European grassland through 984 

17 years of elevated CO 2. Global Change Biology, 24(9), 3875-3885.  985 

43. Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2016). 986 

More extreme precipitation in the world’s dry and wet regions. Nature Climate 987 

Change, 6(5), 508-513. 988 

44. Zeng, X., Hu, Z., Chen, A., Yuan, W., Hou, G., Han, D., ... & Luo, D. (2022). The 989 

global decline in the sensitivity of vegetation productivity to precipitation from 2001 to 990 

2018. Global Change Biology, 28(22), 6823-6833. 991 

45. MacDougall, A. S., et al. (2021). Comparison of the distribution and phenology of 992 

Arctic Mountain plants between the early 20th and 21st centuries. Global Change 993 

Biology 27, 5070-5083. 994 



38 
 

 995 

46. Möhl, P., von Büren, R. S., & Hiltbrunner, E. (2022). Growth of alpine grassland will 996 

start and stop earlier under climate warming. Nature communications, 13(1), 1-10. 997 

 998 

47. Friedman, A. R., et al. (2013). Interhemispheric temperature asymmetry over the 999 

twentieth century and in future projections. Journal of Climate 26, 5419-5433. 1000 

 1001 

48.MacDougall, A. S., Wilson, S. D., & Bakker, J. D. (2008). Climatic variability alters 1002 

the outcome of long‐term community assembly. Journal of Ecology 96, 346-354. 1003 

 1004 

49. Grace, J. B., et al. (2016). Integrative modelling reveals mechanisms linking 1005 

productivity and plant species richness. Nature 529, 390-393. 1006 

 1007 

50. Anderson, T. M., Griffith, D. M., Grace, J. B., Lind, E. M., Adler, P. B., Biederman, L. 1008 

A., ... & Borer, E. T. (2018). Herbivory and eutrophication mediate grassland plant 1009 

nutrient responses across a global climatic gradient. Ecology, 99, 822-831. 1010 

 1011 

51. Dee, L. E., Ferraro, P. J., Severen, C. N., Kimmel, K. A., Borer, E. T., Byrnes, J. E., 1012 

... & Loreau, M. (2023). Clarifying the effect of biodiversity on productivity in natural 1013 

ecosystems with longitudinal data and methods for causal inference. Nature 1014 

Communications, 14, 2607. 1015 

 1016 

52. Seabloom, E. W., Borer, E. T., Buckley, Y. M., Cleland, E. E., Davies, K. F., Firn, J., 1017 

... & Yang, L. (2015). Plant species’ origin predicts dominance and response to nutrient 1018 

enrichment and herbivores in global grasslands. Nature communications, 6, 7710. 1019 



39 
 

 1020 

53. Borer, E. T., Seabloom, E. W., Gruner, D. S., Harpole, W. S., Hillebrand, H., Lind, E. 1021 

M., ... & Yang, L. H. (2014). Herbivores and nutrients control grassland plant diversity 1022 

via light limitation. Nature, 508, 517-520. 1023 

 1024 

54. Borer, E. T., Harpole, W. S., Adler, P. B., Arnillas, C. A., Bugalho, M. N., Cadotte, M. 1025 

W., ... & Seabloom, E. W. (2020). Nutrients cause grassland biomass to outpace 1026 

herbivory. Nature communications, 11(1), 1-8. 1027 

55. Delegido, J. et al. (2013) A red-edge spectral index for remote sensing estimation of 1028 

green LAI over agroecosystems. European Journal of Agronomy 46, 42-52, 1029 

doi:10.1016/ j.eja.2012.12.001 (2013).  1030 

 1031 

56. Eisfelder, C. et al. (2017). Above-ground biomass estimation based on NPP time-1032 

series - A novel approach for biomass estimation in semi-arid Kazakhstan. Ecol. Indic. 1033 

72, 13-22. 1034 

57. Clay, D. E., et al. (2014). Does the conversion of grasslands to row crop in semi-arid 1035 

areas threaten global food supplies? Global Food Security 3, 22-30. 1036 

58. Godde, C. M. et al. Global rangeland production systems and livelihoods at threat 1037 

under climate change and variability. Environ. Res. Lett. 15, 1038 

59. Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W.T., & Wall, D. H. (2002). 1039 

Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418, 623-626. 1040 



40 
 

60. Cleland, E. E., et al. (2019). Belowground biomass response to nutrient enrichment 1041 

depends on light limitation across globally distributed grasslands. Ecosystems 7, 1466-1042 

1477. 1043 

 1044 

61. Hungate, B. A., Holland, E. A., Jackson, R. B., Chapin III, F. S., Mooney, H. A., & 1045 

Field, C. B. (1997). The fate of carbon in grasslands under carbon dioxide 1046 

enrichment. Nature, 388, 576-579. 1047 

62. Chen, M., et al. (2019). Assessing precipitation, evapotranspiration, and NDVI as 1048 

controls of US Great Plains plant production. Ecosphere 10, e02889. 1049 

63. Jiang, Z., et a;. (2006). Analysis of NDVI and scaled difference vegetation index 1050 

retrievals of vegetation fraction. Remote Sensing of Environment 101, 366-378. 1051 

 1052 

64. Rocchini, D., Ricotta, C., & Chiarucci, A. (2007). Using satellite imagery to assess 1053 

plant species richness: The role of multispectral systems. Applied Vegetation Science 1054 

10, 325-331. 1055 

 1056 

65. Kong, L., Wu, T., Xiao, Y., Xu, W., Zhang, X., Daily, G. C., & Ouyang, Z. (2023). 1057 

Natural capital investments in China undermined by reclamation for cropland. Nature 1058 

Ecology & Evolution, 1-7. 1059 

 1060 

66. Goldewijk, K. K. (2001). Estimating global land use change over the past 300 years: 1061 

the HYDE database. Global biogeochemical cycles, 15(2), 417-433. 1062 

 1063 



41 
 

67. Lehmann, C. E., et al. (2014). Savanna vegetation-fire-climate relationships differ 1064 

among continents. Science 343, 548-552. 1065 

 1066 

68. Firn, J., Moore, J. L., MacDougall, A. S., Borer, E. T., Seabloom, E. W., 1067 

HilleRisLambers, J., ... & Buckley, Y. M. (2011). Abundance of introduced species at 1068 

home predicts abundance away in herbaceous communities. Ecology letters, 14(3), 1069 

274-281. 1070 

 1071 

69.  Potere, D. (2008). Horizontal Positional Accuracy of Google Earth’s High-1072 

Resolution Imagery Archive. Sensors, 8, 7973-7981. https://doi.org/10.3390/s8127973 1073 

 1074 

70. Salinas-Castillo, W. E., & Paredes-Hernández, C. U. (2014). Horizontal and vertical 1075 

accuracy of Google Earth®: comment on “Positional accuracy of the Google Earth 1076 

terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, 1077 

USA” by S.C. Benker, R.P. Langford and T.L. Pavlis. Geocarto International, 29(6), 1078 

625–627.  1079 

 1080 

71. Landsat Collection 1, United States Geological Survey (USGS). Accessed April 12, 1081 

2023. https://www.usgs.gov/landsat-missions/landsat-collection-1 1082 

 1083 

72. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., Ferreira, L. G. (2002). 1084 

Overview of the radiometric and biophysical performance of the MODIS vegetation 1085 

indices. Remote Sensing of Environment 83, 195-213 doi:10.1016/S0034-1086 

4257(02)00096-2. 1087 

 1088 

https://www.usgs.gov/landsat-missions/landsat-collection-1


42 
 

73. Young, A.T. (1981). Rayleigh scattering. Applied Optics. 20 (4): 533–1089 

5.  doi:10.1364/AO.20.000533 1090 

 1091 

74. R Foundation for Statistical Computing. (n.d.). R: The R Project for Statistical 1092 

Computing. Vienna, Austria. 1093 

 1094 

75. Zuur, A.F., Ieno, E.N. & Elphick, C.S. (2010). A protocol for data exploration to avoid 1095 

common statistical problems. Methods in Ecology and Evolution, 1, 3–14 1096 

 1097 

76. Gelman, A., Su, Y.-S., Yajima, M., Hill, J., Pittau, M.G., Kerman, J. et al. (2009). 1098 

arm: data analysis using regression and multi-level ⁄ hierarchical models. R package. 1099 

Available at: https://cran.r-project.org/web/packages/arm/index.html  1100 

 1101 

77. Grueber, C.E., Nakagawa, S., Laws, R.J. & Jamieson, I.G. (2011). Multi-model 1102 

inference in ecology and evolution: challenges and solutions. Journal of Evolutionary 1103 

Biology, 24, 699–711. 1104 

 1105 

78. Seabloom, E. W., Batzer, E., Chase, J. M., Stanley Harpole, W., Adler, P. B., 1106 

Bagchi, S., ... & Borer, E. T. (2021). Species loss due to nutrient addition increases with 1107 

spatial scale in global grasslands. Ecology Letters, 24, 2100-2112. 1108 

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1364%2FAO.20.000533
https://cran.r-project.org/web/packages/arm/index.html

	References

