On a Variant of the Change-Making Problem

Adam N. Letchford[∗] Licong Cheng†

To appear in Operations Research Letters

Abstract

The change-making problem (CMP), introduced in 1970, is a classic problem in combinatorial optimisation. It was proven to be NP-hard in 1975, but it can be solved in pseudo-polynomial time by dynamic programming. In 1999, Heipcke presented a variant of the CMP which, at first glance, looks harder than the standard version. We show that, in fact, her variant can be solved in polynomial time.

Keywords: change-making problem; knapsack problems; combinatorial optimisation

1 Introduction

The Change-Making Problem (CMP) is a classic NP-hard combinatorial optimisation problem, first studied in $[8]$. We are given a positive integer n, positive integer coin values v_1, \ldots, v_n , and a positive integer target value t. The task is to determine a collection of coins, of minimum cardinality, whose total value is equal to the target value. For example, if $n = 3$, $v = (5, 4, 1)$ and $t = 13$, the optimal solution uses 3 coins in total (one coin of value 5) and two of value 4).

The CMP can be viewed as a special case of the "equality-constrained knapsack problem". We refer the reader to the books [10, 14] and the recent surveys [3, 4] for more on knapsack problems.

The CMP was shown to be NP-hard in [12]. On the other hand, the CMP is only NP -hard in the "weak" sense, since it can be solved in pseudopolynomial time. (Indeed, it can be solved in $O(nt)$ time using a standard dynamic programming approach [17].) In practice, the CMP can often be solved quickly [14], although some instances with large target and coin values can be challenging [1].

[∗]Department of Management Science, Lancaster University, Lancaster LA1 4YX, UK. E-mail: a.n.letchford@lancaster.ac.uk

[†]Former masters student in the Department of Management Science, Lancaster University, UK. E-mail: martinlicongcheng@gmail.com

In 1999, Heipcke [9] considered a variant of the CMP in which one must find a minimum-cardinality collection of coins such that it is possible to pay any positive integer amount up to the target t using only coins from the collection. In this paper, we will call this variant the "Heipcke" CMP, or H-CMP for short.

To make the meaning of the H-CMP clear, consider again the case in which $n = 3$, $v = (5, 4, 1)$ and $t = 13$. One can obtain a feasible solution of the H-CMP using 6 coins, by using one coin of value 5, two of value 4 and three of value 1. Indeed:

- For $i = 1, 2, 3$, we can pay an amount of i by using i coins of value 1.
- For $i = 4, 5, 6, 7$, we can pay an amount of i by using one coin of value 4 and $i - 4$ coins of value 1.
- For $i = 8, 9, 10, 11$, we can pay an amount of i by using two coins of value 4 and $i - 8$ coins of value 1.
- We can pay an amount of 12 by using the coin of value 5, one coin of value 4, and 3 coins of value 1.
- We can pay an amount of 13 by using the coin of value 5 and both coins of value 4.

One can check (by brute-force enumeration) that no solution using fewer than 6 coins exists for the given H-CMP instance.

Note that a feasible solution to an H-CMP instance exists if and only if $v_k = 1$ for some k. Indeed, if this condition holds, then we obtain a trivial feasible solution by selecting t coins of value 1. If the condition does not hold, then we cannot pay an amount of 1 no matter what collection of coins is chosen.

Heipcke developed two exact algorithms for the H-CMP, one based on constraint programming and the other based on integer programming. The computational results that she obtained with those algorithms suggested that the H-CMP may be significantly harder to solve than the standard CMP. Moreover, there is no obvious dynamic programming algorithm for the H-CMP.

In this paper we show that, despite appearances, the H-CMP can be solved in polynomial time. In fact, we show that it can be solved in only $O(n \log n)$ time.

The paper has a very simple structure. Section 2 is a literature review and Section 3 presents our algorithm and a proof of correctness.

2 Literature Review

This section contains a brief literature review. Subsection 2.1 concerns the standard CMP and Subsection 2.2 concerns the H-CMP.

2.1 The standard change-making problem

Wright [17] formulated the standard CMP as an Integer Linear Program (ILP). For $i = 1, \ldots, n$, the general-integer variable x_i represents the number of coins of type i used. We then have:

min
$$
\sum_{i=1}^{n} x_i
$$

s.t.
$$
\sum_{i=1}^{n} v_i x_i = t
$$

$$
x \in \mathbb{Z}_+^n.
$$

Several exact algorithms have been proposed for the CMP. Chang & Gill $[8]$ devised an algorithm based on recursion, which however is very slow in both theory and practice. Wright [17] pointed out that the CMP can be solved in $O(nt)$ time via dynamic programming. Martello & Toth [13] derived some useful lower bounds for the CMP, and showed how to embed them in an effective branch-and-bound algorithm. They presented an improved version of their algorithm in [14].

More recently, Chan & He [6] found an enhanced dynamic programming algorithm for the CMP, which runs in $O(n + t \log t \log \log t)$ time. A couple of years later [7], the same authors found a version of their algorithm which runs in $O(n + \bar{v} \log^3 \bar{v})$ time, where \bar{v} is the maximum of the values v_i .

Chang $&$ Gill $[8]$ also pointed out that there is a natural "greedy" heuristic for the CMP: use as many as possible of the coins with the highest value, then as many as possible of the coins with the second-highest value, and so on. Several researchers have examined conditions on the values v_i such that, regardless of the target t , the greedy heuristic always finds an optimal solution to the CMP (e.g., $[2, 5, 11, 15, 16]$). We do not go into details, for brevity.

2.2 Heipcke's variant of the CMP

As mentioned in the introduction, Heipcke [9] applied both constraint programming and integer programming to the H-CMP. For clarity, we recall her ILP formulation. The variables x_i are defined just as for the standard CMP. Then, for $i = 1, \ldots, n$ and $s = 1, \ldots, t$, the general-integer variable y_{is} denotes the number of coins of type i that would be used to give exactly s in change. We then have:

min
\n
$$
\sum_{i=1}^{n} x_i
$$
\ns.t.
$$
\sum_{i=1}^{n} v_i y_{is} = s \quad (s = 1, ..., t)
$$
\n
$$
y_{is} \le x_i \quad (i = 1, ..., n; s = 1, ..., t)
$$
\n
$$
x \in \mathbb{Z}_+^n, y \in \mathbb{Z}_+^{nt}.
$$

The interpretation of the constraints is straightforward.

Note that this ILP has $n(t+1)$ variables and constraints, and is therefore of pseudo-polynomial size rather than polynomial. Moreover, in any feasible solution, $\Omega(t)$ variables will take a positive value. Thus, even if someone presented us with a feasible solution to the ILP, checking that it is indeed feasible would take $\Omega(t)$ time.

3 A Polynomial Time Algorithm

In this section, we present a polynomial-time algorithm for the H-CMP. For notational convenience, we assume throughout that $n \geq 2$. (This is without loss of generality, since instances with $n = 1$ are trivial.) We also assume, again without loss of generality, that $v_k \leq t$ for all t. Moreover, for reasons which will become clear, we let v_{n+1} denote $t+1$.

The first step in our algorithm is to sort the coin values in increasing order. Once this is done, we can assume without loss of generality that $1 = v_1 < v_2 < \cdots < v_{n+1}$. Note that this sorting can be done in $O(n \log n)$ time using any of several well-known sorting algorithms.

Now observe that, if we wanted to pay the amount $v_k - 1$ for some $k \in \{2, \ldots, n+1\}$, then we would have to do it using coins of value less than v_k . This immediately suggests the following approach to the H-CMP. Start with all x variables set to 0. Then, for $k = 1, \ldots, n-1$, increase x_k to a value large enough to ensure that we have enough coins to pay any amount up to $v_{k+1} - 1$.

The details are given in Algorithm 1. Throughout the algorithm, N denotes the total number of coins selected so far, and V denotes their total value. More precisely, in the main loop, for any given value of k , N is updated to take the value $\sum_{i=1}^{k} x_i$, and V is updated to take the value $\sum_{i=1}^k v_i x_i$.

It is easy to verify that the algorithm runs in $O(n)$ time. Before proving that it constructs an optimal solution, we run the algorithm on two examples. (The first is taken from Heipcke's paper.)

Example 1: Let $n = 6$, $v = (1, 2, 5, 10, 20, 50)$ and $t = 99$. Heipcke showed that there are four optimal solutions, each using eight coins. The main loop of our algorithm proceeds as follows:

- $k = 1$: we set x_1 to $[(2 1 0)/1] = 1$. N and V increase to 1.
- $k = 2$: we set x_2 to $[(5 1 1)/2] = 2$. N increases to 3 and V increases to 5.
- $k = 3$: we set x_3 to $[(10 1 5)/5] = 1$. N increases to 4 and V increases to 10.
- $k = 4$: we set x_4 to $[(20 1 10)/10] = 1$. N increases to 5 and V increases to 20.

Algorithm 1: Solving the H-CMP

input : Integer $n \geq 2$; sorted coin values v_1, \ldots, v_n ; positive integer target t // Initialisation 1 for $k = 1, \ldots, n$ do $2 \mid \text{Set } x_k \text{ to } 0;$ 3 end 4 Set N and V to 0; 5 Set v_{n+1} to $t + 1$; // Main loop 6 for $k = 1, \ldots, n$ do 7 if $v_{k+1} - 1 > V$ then 8 Set x_k to $\frac{v_{k+1}-1-v_{k+1}}{v_k}$ $\overline{v_k}$ m ; 9 | Increase N by x_k and increase V by $v_k x_k$; 10 end 11 end output: Optimal solution vector x and total number of coins N

- $k = 5$: we set x_5 to $(50 1 20)/20$] = 2. N increases to 7 and V increases to 60.
- $k = 6$: we set x_6 to $[(99 60)/50] = 1$. N increases to 8 and V increases to 110.

The resulting solution is $x = (1, 2, 1, 1, 2, 1)$, using 8 coins as desired. \Box

Example 2: Let $n = 5$, $v = (1, 4, 7, 8, 10)$ and $t = 15$. The main loop of our algorithm proceeds as follows:

- $k = 1$: we set x_1 to $[(4 1 0)/1] = 3$. N and V increase to 3.
- $k = 2$: we set x_2 to $[(7 1 3)/4] = 1$. N increases to 4 and V increases to 7.
- $k = 3$: we set x_3 to $[(8 1 7)/7] = 0$. N and V remain unchanged at 4 and 7, respectively.
- $k = 4$: we set x_4 to $[(10 1 7)/8] = 1$. N increases to 5 and V increases to 15.
- $k = 5$: we set x_8 to $\lceil (15 15)/10 \rceil = 0$. N and V remain unchanged at 5 and 15, respectively.

The resulting solution is $x = (3, 1, 0, 1, 0)$, using 5 coins. One can check by brute-force enumeration that no solution with fewer than 5 coins exists. \Box We now prove correctness of the algorithm.

Theorem 1 The vector x constructed by Algorithm 1 represents an optimal solution to the given H-CMP instance.

Proof. In this proof, we view the algorithm as starting with an empty collection of coins, and then iteratively adding coins to the collection. That is, our final collection of coins contains x_k coins of value v_k for all k. We also let N_k and V_k denote the value of N and V, respectively, at the end of iteration k.

Now we prove that the vector x constructed by the algorithm represents a feasible H-CMP solution. When $k = 1$, we add $v_2 - 1$ coins of value 1 to our collection. Using some or all of those coins, we can pay any amount between 1 and $v_2 - 1$. Now we use induction. Suppose that we are at the start of iteration k for some $2 \leq k \leq n$, and assume that we can pay any amount between 1 and V_{k-1} using only the coins in our current collection, where $V_{k-1} \ge v_k - 1$. In iteration k, we add to our collection enough coins of value v_k to bring the total value up to $V_k \ge v_{k+1} - 1$. Now suppose that we wanted to use coins in our current collection to pay some amount y between 1 and V_k . We could use $\alpha = \left[\frac{(y - V_{k-1})}{v_k}\right]$ coins of value v_k , and then use coins of lower value to make up the remaining amount, if any. To see this, note that (i) $\alpha \leq x_k$ by construction, and (ii) $\alpha v_k \geq y - V_{k-1}$, which implies that the remaining amount to be paid, $y - \alpha v_k$, is no larger than V_{k-1} .

To complete the proof, we need to show that the vector x represents an optimal H-CMP solution. A first observation is that we need to have at least $v_2 - 1$ coins of value 1 in our collection, so that we are able to pay any amount between 1 and $v_2 - 1$. We add precisely this number of coins of value 1 to our collection in iteration 1 of the main loop. We also set N_1 to $v_2 - 1$. So, at the end of iteration 1, N_1 is the minimum possible value that x_1 can take in a feasible H-CMP solution, and x_1 has been set to this minimum value. Now we use induction a second time. Suppose that we are at the start of iteration k for some $2 \leq k \leq n$, and (i) we have already shown that all feasible x vectors satisfy $x_1 + \cdots + x_{k-1} \geq N_{k-1}$, and (ii) we have already set x_1, \ldots, x_{k-1} to values that achieve this bound. We now need to ensure that there are enough coins of value v_1, \ldots, v_k to pay any amount between 1 and v_{k+1} – 1. To minimise $x_1 + \cdots + x_k$, subject to the constraint $x_1 + \cdots x_{k-1} \ge N_{k-1}$, it suffices to set x_k to $\left[((v_{k+1} - 1) - V_{k-1})/v_k \right]$. This is exactly what we do in iteration k of the main loop. \Box

References

[1] K. Aardal & A.K. Lenstra (2004) Hard equality constrained integer knapsacks. Math. Oper. Res., 29, 724–738.

- [2] A. Adamaszek & M. Adamaszek (2010) Combinatorics of the changemaking problem. Eur. J. Combin., 31, 47–63.
- [3] V. Cacchiani, M. Iori, A. Locatelli & S. Martello (2022) Knapsack problems–An overview of recent advances, Part I: Single knapsack problems. Comput. Oper. Res., 143, article 105692.
- [4] V. Cacchiani, M. Iori, A. Locatelli & S. Martello (2022) Knapsack problems–An overview of recent advances, Part II: Multiple, multidimensional, and quadratic knapsack problems. Comput. Oper. Res., 143, article 105693.
- [5] X. Cai (2009) Canonical coin systems for change-making problems. In J.-S. Pan, J. Liu & A. Abraham (eds) Proc. HIS '09, pp. 499-504. Los Alamitos, California: IEEE.
- [6] T.M. Chan & Q. He (2020) On the change-making problem. In M. Farach-Colton & I.L. Gørtz (eds) Proc. SOSA '20, pp. 38–42. Philadelphia: SIAM.
- [7] T.M. Chan & Q. He (2022) More on change-making and related problems. J. Comput. Sys. Sci., 124, 159–169.
- [8] S.K. Chang & A. Gill (1970) Algorithmic solution of the change-making problem. J. ACM, 17, 113–122.
- [9] S. Heipcke (1999) Comparing constraint programming and mathematical programming approaches to discrete optimisation—–the change problem. J. Oper. Res. Soc., 50, 581–595.
- [10] H. Kellerer, U. Pferschy & D. Pisinger (2004) Knapsack Problems. Berlin: Springer.
- [11] D. Kozen & S. Zaks (1994) Optimal bounds for the change-making problem. Theor. Comput. Sci., 123, 377–388.
- [12] G.S. Lueker (1975) Two NP-complete problems in nonnegative integer programming. Report No. 178, Computer Science Laboratory, Princeton University, New Jersey.
- [13] S. Martello & P. Toth (1980) Optimal and canonical solutions of the change making problem. Eur. J. Oper. Res., 4, 322–329.
- [14] S. Martello & P. Toth (1990) Knapsack Problems: Algorithms and Computer Implementations. Chichester, UK: Wiley.
- [15] D. Pearson (2005) A polynomial-time algorithm for the change-making problem. Oper. Res. Lett., 33, 231–234.
- [16] Y. Suzuki & R. Miyashiro (2023) Characterization of canonical systems with six types of coins for the change-making problem. Theor. Comput. Sci., 955, article 113822.
- [17] J.W. Wright (1975) The change-making problem. *J. ACM*, 22, 125-128.