
On a Variant of the Change-Making Problem

Adam N. Letchford∗ Licong Cheng†

To appear in Operations Research Letters

Abstract

The change-making problem (CMP), introduced in 1970, is a classic
problem in combinatorial optimisation. It was proven to be NP -hard
in 1975, but it can be solved in pseudo-polynomial time by dynamic
programming. In 1999, Heipcke presented a variant of the CMP which,
at first glance, looks harder than the standard version. We show that,
in fact, her variant can be solved in polynomial time.

Keywords: change-making problem; knapsack problems; combinato-
rial optimisation

1 Introduction

The Change-Making Problem (CMP) is a classic NP -hard combinatorial
optimisation problem, first studied in [8]. We are given a positive integer n,
positive integer coin values v1, . . . , vn, and a positive integer target value t.
The task is to determine a collection of coins, of minimum cardinality, whose
total value is equal to the target value. For example, if n = 3, v = (5, 4, 1)
and t = 13, the optimal solution uses 3 coins in total (one coin of value 5
and two of value 4).

The CMP can be viewed as a special case of the “equality-constrained
knapsack problem”. We refer the reader to the books [10, 14] and the recent
surveys [3, 4] for more on knapsack problems.

The CMP was shown to be NP -hard in [12]. On the other hand, the
CMP is only NP -hard in the “weak” sense, since it can be solved in pseudo-
polynomial time. (Indeed, it can be solved in O(nt) time using a standard
dynamic programming approach [17].) In practice, the CMP can often be
solved quickly [14], although some instances with large target and coin values
can be challenging [1].

∗Department of Management Science, Lancaster University, Lancaster LA1 4YX, UK.
E-mail: a.n.letchford@lancaster.ac.uk

†Former masters student in the Department of Management Science, Lancaster Uni-
versity, UK. E-mail: martinlicongcheng@gmail.com

1



In 1999, Heipcke [9] considered a variant of the CMP in which one must
find a minimum-cardinality collection of coins such that it is possible to pay
any positive integer amount up to the target t using only coins from the
collection. In this paper, we will call this variant the “Heipcke” CMP, or
H-CMP for short.

To make the meaning of the H-CMP clear, consider again the case in
which n = 3, v = (5, 4, 1) and t = 13. One can obtain a feasible solution of
the H-CMP using 6 coins, by using one coin of value 5, two of value 4 and
three of value 1. Indeed:

• For i = 1, 2, 3, we can pay an amount of i by using i coins of value 1.

• For i = 4, 5, 6, 7, we can pay an amount of i by using one coin of value
4 and i− 4 coins of value 1.

• For i = 8, 9, 10, 11, we can pay an amount of i by using two coins of
value 4 and i− 8 coins of value 1.

• We can pay an amount of 12 by using the coin of value 5, one coin of
value 4, and 3 coins of value 1.

• We can pay an amount of 13 by using the coin of value 5 and both
coins of value 4.

One can check (by brute-force enumeration) that no solution using fewer
than 6 coins exists for the given H-CMP instance.

Note that a feasible solution to an H-CMP instance exists if and only if
vk = 1 for some k. Indeed, if this condition holds, then we obtain a trivial
feasible solution by selecting t coins of value 1. If the condition does not
hold, then we cannot pay an amount of 1 no matter what collection of coins
is chosen.

Heipcke developed two exact algorithms for the H-CMP, one based on
constraint programming and the other based on integer programming. The
computational results that she obtained with those algorithms suggested
that the H-CMP may be significantly harder to solve than the standard
CMP. Moreover, there is no obvious dynamic programming algorithm for
the H-CMP.

In this paper we show that, despite appearances, the H-CMP can be
solved in polynomial time. In fact, we show that it can be solved in only
O(n log n) time.

The paper has a very simple structure. Section 2 is a literature review
and Section 3 presents our algorithm and a proof of correctness.

2 Literature Review

This section contains a brief literature review. Subsection 2.1 concerns the
standard CMP and Subsection 2.2 concerns the H-CMP.

2



2.1 The standard change-making problem

Wright [17] formulated the standard CMP as an Integer Linear Program
(ILP). For i = 1, . . . , n, the general-integer variable xi represents the number
of coins of type i used. We then have:

min
∑n

i=1 xi

s.t.
∑n

i=1 vixi = t

x ∈ Zn
+.

Several exact algorithms have been proposed for the CMP. Chang &
Gill [8] devised an algorithm based on recursion, which however is very
slow in both theory and practice. Wright [17] pointed out that the CMP
can be solved in O(nt) time via dynamic programming. Martello & Toth
[13] derived some useful lower bounds for the CMP, and showed how to
embed them in an effective branch-and-bound algorithm. They presented
an improved version of their algorithm in [14].

More recently, Chan & He [6] found an enhanced dynamic programming
algorithm for the CMP, which runs in O(n+ t log t log log t) time. A couple
of years later [7], the same authors found a version of their algorithm which
runs in O(n+ v̄ log3 v̄) time, where v̄ is the maximum of the values vi.

Chang & Gill [8] also pointed out that there is a natural “greedy” heuris-
tic for the CMP: use as many as possible of the coins with the highest value,
then as many as possible of the coins with the second-highest value, and
so on. Several researchers have examined conditions on the values vi such
that, regardless of the target t, the greedy heuristic always finds an optimal
solution to the CMP (e.g., [2, 5, 11, 15, 16]). We do not go into details, for
brevity.

2.2 Heipcke’s variant of the CMP

As mentioned in the introduction, Heipcke [9] applied both constraint pro-
gramming and integer programming to the H-CMP. For clarity, we recall
her ILP formulation. The variables xi are defined just as for the standard
CMP. Then, for i = 1, . . . , n and s = 1, . . . , t, the general-integer variable
yis denotes the number of coins of type i that would be used to give exactly
s in change. We then have:

min
∑n

i=1 xi

s.t.
∑n

i=1 viyis = s (s = 1, . . . , t)

yis ≤ xi (i = 1, . . . , n; s = 1, . . . , t)

x ∈ Zn
+, y ∈ Znt

+ .

The interpretation of the constraints is straightforward.

3



Note that this ILP has n(t+1) variables and constraints, and is therefore
of pseudo-polynomial size rather than polynomial. Moreover, in any feasible
solution, Ω(t) variables will take a positive value. Thus, even if someone
presented us with a feasible solution to the ILP, checking that it is indeed
feasible would take Ω(t) time.

3 A Polynomial Time Algorithm

In this section, we present a polynomial-time algorithm for the H-CMP. For
notational convenience, we assume throughout that n ≥ 2. (This is without
loss of generality, since instances with n = 1 are trivial.) We also assume,
again without loss of generality, that vk ≤ t for all t. Moreover, for reasons
which will become clear, we let vn+1 denote t+ 1.

The first step in our algorithm is to sort the coin values in increasing
order. Once this is done, we can assume without loss of generality that
1 = v1 < v2 < · · · < vn+1. Note that this sorting can be done in O(n log n)
time using any of several well-known sorting algorithms.

Now observe that, if we wanted to pay the amount vk − 1 for some
k ∈ {2, . . . , n+1}, then we would have to do it using coins of value less than
vk. This immediately suggests the following approach to the H-CMP. Start
with all x variables set to 0. Then, for k = 1, . . . , n − 1, increase xk to a
value large enough to ensure that we have enough coins to pay any amount
up to vk+1 − 1.

The details are given in Algorithm 1. Throughout the algorithm, N
denotes the total number of coins selected so far, and V denotes their total
value. More precisely, in the main loop, for any given value of k, N is
updated to take the value

∑k
i=1 xi, and V is updated to take the value∑k

i=1 vixi.
It is easy to verify that the algorithm runs in O(n) time. Before proving

that it constructs an optimal solution, we run the algorithm on two exam-
ples. (The first is taken from Heipcke’s paper.)

Example 1: Let n = 6, v = (1, 2, 5, 10, 20, 50) and t = 99. Heipcke showed
that there are four optimal solutions, each using eight coins. The main loop
of our algorithm proceeds as follows:

• k = 1: we set x1 to ⌈(2− 1− 0)/1⌉ = 1. N and V increase to 1.

• k = 2: we set x2 to ⌈(5 − 1 − 1)/2⌉ = 2. N increases to 3 and V
increases to 5.

• k = 3: we set x3 to ⌈(10 − 1 − 5)/5⌉ = 1. N increases to 4 and V
increases to 10.

• k = 4: we set x4 to ⌈(20 − 1 − 10)/10⌉ = 1. N increases to 5 and V
increases to 20.

4



Algorithm 1: Solving the H-CMP

input : Integer n ≥ 2; sorted coin values v1, . . . , vn;
positive integer target t
// Initialisation

1 for k = 1, . . . , n do
2 Set xk to 0;
3 end
4 Set N and V to 0;
5 Set vn+1 to t+ 1;
// Main loop

6 for k = 1, . . . , n do
7 if vk+1 − 1 > V then

8 Set xk to
⌈
vk+1−1−V

vk

⌉
;

9 Increase N by xk and increase V by vkxk;

10 end

11 end
output: Optimal solution vector x and total number of coins N

• k = 5: we set x5 to ⌈(50 − 1 − 20)/20⌉ = 2. N increases to 7 and V
increases to 60.

• k = 6: we set x6 to ⌈(99 − 60)/50⌉ = 1. N increases to 8 and V
increases to 110.

The resulting solution is x = (1, 2, 1, 1, 2, 1), using 8 coins as desired. □

Example 2: Let n = 5, v = (1, 4, 7, 8, 10) and t = 15. The main loop of
our algorithm proceeds as follows:

• k = 1: we set x1 to ⌈(4− 1− 0)/1⌉ = 3. N and V increase to 3.

• k = 2: we set x2 to ⌈(7 − 1 − 3)/4⌉ = 1. N increases to 4 and V
increases to 7.

• k = 3: we set x3 to ⌈(8− 1− 7)/7⌉ = 0. N and V remain unchanged
at 4 and 7, respectively.

• k = 4: we set x4 to ⌈(10 − 1 − 7)/8⌉ = 1. N increases to 5 and V
increases to 15.

• k = 5: we set x8 to ⌈(15 − 15)/10⌉ = 0. N and V remain unchanged
at 5 and 15, respectively.

The resulting solution is x = (3, 1, 0, 1, 0), using 5 coins. One can check by
brute-force enumeration that no solution with fewer than 5 coins exists. □

5



We now prove correctness of the algorithm.

Theorem 1 The vector x constructed by Algorithm 1 represents an optimal
solution to the given H-CMP instance.

Proof. In this proof, we view the algorithm as starting with an empty
collection of coins, and then iteratively adding coins to the collection. That
is, our final collection of coins contains xk coins of value vk for all k. We
also let Nk and Vk denote the value of N and V , respectively, at the end of
iteration k.

Now we prove that the vector x constructed by the algorithm represents
a feasible H-CMP solution. When k = 1, we add v2 − 1 coins of value 1
to our collection. Using some or all of those coins, we can pay any amount
between 1 and v2 − 1. Now we use induction. Suppose that we are at the
start of iteration k for some 2 ≤ k ≤ n, and assume that we can pay any
amount between 1 and Vk−1 using only the coins in our current collection,
where Vk−1 ≥ vk−1. In iteration k, we add to our collection enough coins of
value vk to bring the total value up to Vk ≥ vk+1 − 1. Now suppose that we
wanted to use coins in our current collection to pay some amount y between
1 and Vk. We could use α = ⌈(y−Vk−1)/vk⌉ coins of value vk, and then use
coins of lower value to make up the remaining amount, if any. To see this,
note that (i) α ≤ xk by construction, and (ii) αvk ≥ y−Vk−1, which implies
that the remaining amount to be paid, y − αvk, is no larger than Vk−1.

To complete the proof, we need to show that the vector x represents an
optimal H-CMP solution. A first observation is that we need to have at
least v2 − 1 coins of value 1 in our collection, so that we are able to pay
any amount between 1 and v2 − 1. We add precisely this number of coins
of value 1 to our collection in iteration 1 of the main loop. We also set N1

to v2 − 1. So, at the end of iteration 1, N1 is the minimum possible value
that x1 can take in a feasible H-CMP solution, and x1 has been set to this
minimum value. Now we use induction a second time. Suppose that we are
at the start of iteration k for some 2 ≤ k ≤ n, and (i) we have already shown
that all feasible x vectors satisfy x1 + · · · + xk−1 ≥ Nk−1, and (ii) we have
already set x1, . . . , xk−1 to values that achieve this bound. We now need to
ensure that there are enough coins of value v1, . . . , vk to pay any amount
between 1 and vk+1−1. To minimise x1+ · · ·+xk, subject to the constraint
x1 + · · ·xk−1 ≥ Nk−1, it suffices to set xk to ⌈((vk+1 − 1)− Vk−1)/vk⌉. This
is exactly what we do in iteration k of the main loop. □

References

[1] K. Aardal & A.K. Lenstra (2004) Hard equality constrained integer
knapsacks. Math. Oper. Res., 29, 724–738.

6



[2] A. Adamaszek & M. Adamaszek (2010) Combinatorics of the change-
making problem. Eur. J. Combin., 31, 47–63.

[3] V. Cacchiani, M. Iori, A. Locatelli & S. Martello (2022) Knapsack
problems–An overview of recent advances, Part I: Single knapsack prob-
lems. Comput. Oper. Res., 143, article 105692.

[4] V. Cacchiani, M. Iori, A. Locatelli & S. Martello (2022) Knapsack
problems–An overview of recent advances, Part II: Multiple, multidi-
mensional, and quadratic knapsack problems. Comput. Oper. Res., 143,
article 105693.

[5] X. Cai (2009) Canonical coin systems for change-making problems. In
J.-S. Pan, J. Liu & A. Abraham (eds) Proc. HIS ’09, pp. 499-504. Los
Alamitos, California: IEEE.

[6] T.M. Chan & Q. He (2020) On the change-making problem. In
M. Farach-Colton & I.L. Gørtz (eds) Proc. SOSA ’20, pp. 38–42.
Philadelphia: SIAM.

[7] T.M. Chan & Q. He (2022) More on change-making and related prob-
lems. J. Comput. Sys. Sci., 124, 159–169.

[8] S.K. Chang & A. Gill (1970) Algorithmic solution of the change-making
problem. J. ACM, 17, 113–122.

[9] S. Heipcke (1999) Comparing constraint programming and mathemat-
ical programming approaches to discrete optimisation—–the change
problem. J. Oper. Res. Soc., 50, 581–595.

[10] H. Kellerer, U. Pferschy & D. Pisinger (2004) Knapsack Problems.
Berlin: Springer.

[11] D. Kozen & S. Zaks (1994) Optimal bounds for the change-making
problem. Theor. Comput. Sci., 123, 377–388.

[12] G.S. Lueker (1975) Two NP-complete problems in nonnegative integer
programming. Report No. 178, Computer Science Laboratory, Prince-
ton University, New Jersey.

[13] S. Martello & P. Toth (1980) Optimal and canonical solutions of the
change making problem. Eur. J. Oper. Res., 4, 322–329.

[14] S. Martello & P. Toth (1990)Knapsack Problems: Algorithms and Com-
puter Implementations. Chichester, UK: Wiley.

[15] D. Pearson (2005) A polynomial-time algorithm for the change-making
problem. Oper. Res. Lett., 33, 231–234.

7



[16] Y. Suzuki & R. Miyashiro (2023) Characterization of canonical systems
with six types of coins for the change-making problem. Theor. Comput.
Sci., 955, article 113822.

[17] J.W. Wright (1975) The change-making problem. J. ACM, 22, 125–128.

8


