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Abstract—Deep Neural Networks (DNN) has been widely
applied in big data-driven Internet of Things (IoT) for excellent
learning ability, while the black-box nature of DNN leads to
uncertainty of inference results. With higher interpretability,
Convolutional Fuzzy Neural Network (CFNN) becomes an alter-
native choice for the model of IoT applications. IoT applications
are often latency-sensitive. By jointly utilizing computing power
of IoT devices and edge servers, end-edge collaborative CFNN
inference improves the insufficiency of local computing resources
and reduces the latency of computing-intensive CFNN inference.
However, the calculation amount of fuzzy layers is hard to get
directly, bringing difficulty to CFNN partition. Additionally, the
profit of service providers is often ignored in existing work on
distributed inference. In this paper, an end-edge collaborative
inference framework of CFNNs for big data-driven IoT, named
DisCFNN, is proposed. Specifically, a novel CFNN structure
and a method of fuzzy layer calculation amount assessment are
designed at first. Next, computing resource allocation and CFNN
partition decisions are generated on each edge server based on
deep reinforcement learning. Then, each IoT device sends the
request of CFNN inference service to a certain edge server or
infer the whole CFNN locally according to the task offloading
strategy obtained through many-to-one matching game. Finally,
the effectiveness of DisCFNN is evaluated through extensive
experiments.

Index Terms—Convolutional Fuzzy Neural Network, big data-
driven, Internet of Things, end-edge collaborative inference.

I. INTRODUCTION

NOWADAYS, Internet of Things (IoT) is developing fast
with wide application of various network techniques,

such as Cellular Network and WiFi. In IoT, diverse devices
are connected to the Internet and communicate with each
other, bringing the flourish of big data-based IoT applica-
tions including automatic driving, smart healthcare, etc [1].
According to the survey, IoT will become one of the most
important technologies impacting human’s life and the number
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of interconnected IoT devices will reach an unprecedented
magnitude in 2025 [2].

Deep Neural Networks (DNN) has been widely used as the
model of IoT applications because of their excellent ability to
learn potential relations between different features in input [3].
For instance, Convolutional Neural Network (CNN) has been
widely used in computer vision applications like virtual reality
and face recognition [4], [5]. However, the black-box nature
makes the interpretability of DNN bad and results in hardness
to understand the detailed internal working mechanism of
DNN. This causes that when facing unknown conditions in
real world, prediction results of DNN may be bad time to
time and it is difficult to find reasons for the appearance
of those bad results. So DNN is not absolutely reliable in
reality. Conversely, fuzzy logic possesses high interpretability.
Through merging fuzzy logic into the DNN, a novel hybrid
system called Deep Neuro-Fuzzy System (DNFS) appears.
As one of the most significant DNFS models, Convolutional
Fuzzy Neural Network (CFNN) combines excellent learning
ability of CNN and great interpretability of fuzzy logic,
efficiently reducing the uncertainty when inferring input from
real word and improving reliability of IoT applications.

Nevertheless, inference of CFNN is computing-intensive.
An IoT device with limited computing resources is hard to
independently infer a whole CFNN in a short time, which can-
not meet the fast-response requirement of the IoT application.
The traditional solution to this problem is inferring the whole
CFNN on the edge or cloud server. Although stronger com-
puting power of the edge or cloud server helps reduce CFNN
inference latency, the huge network traffic and limited channel
bandwidth between IoT devices and servers in big data-driven
IoT leads to ultra-high data transmission latency, increasing
the final response time of the service [6]. Comprehensively
considering the advantage of local computing without data
transmission latency and the advantage of edge computing
with stronger computing power, end-edge collaborative CFNN
inference is hopeful to efficiently decrease CFNN inference
latency. Note that the cloud is not used in this work for
the unbearable data transmission latency caused by the ultra-
remote distance between cloud and edge. Existing studies on
distributed inference empowered by edge computing mainly
focus on reduction of service response latency [7] or IoT
device energy consumption [8], where only customers’ profit
is taken into account and service providers’ profit is ignored.
Also, all existing studies focus on distributed inference of
DNN. The fuzzy layer in CFNN is different from other neural
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layers like convolution layers and fully connected layers, and
the calculation amount of fuzzy layers is difficult to be directly
computed. Furthermore, former studies mainly consider the
scenario with only one edge server, which is not applicable
to real scenarios where multiple edge servers are located and
reasonable task offloading strategies should be made.

To tackle challenges mentioned above, an end-edge col-
laborative inference framework of CFNN for big data-driven
IoT, named DisCFNN, is proposed in this paper. Specifically,
at first, a novel CFNN structure is designed offline and the
calculation amount of the fuzzy layer is predicted based on
polynomial regression. The CFNN designed in this work
converges faster during training and presents less uncertainty
during validation compared with traditional CNN. Next, com-
puting resource allocation and CFNN partition decisions are
generated on each edge server based on deep reinforcement
learning (DRL). At last, optimal task offloading strategies are
obtained through many-to-one matching game.

The main contributions of this paper are shown as follows:
• Design a novel CFNN to improve training efficiency and

reduce uncertainty during validation, and predict calcu-
lation amount of the fuzzy layer based on polynomial
regression.

• Propose a DRL-based algorithm to dynamically dispatch
computing resources and partition CFNN to maximize the
total IoT customer utility.

• Design a matching game-based algorithm to offload
CFNN inference tasks from IoT devices with the goal of
balancing profit of IoT customers and service providers.

• The effectiveness of the proposed framework is confirmed
through extensive experiments.

The remaining parts of this paper are presented as follows.
Section II illustrates the related work. In Section III, the system
model is described and the optimization problem is formulated.
Section IV presents the design of DisCFNN. In Section V,
experiment settings are elaborated and simulation results are
analyzed. In Section VI, we conclude the paper.

II. RELATED WORK

In this section, the existing researches related to our work
are reviewed from the aspects of distributed inference empow-
ered by edge computing and studies on DNFS.

Considering limited resources on end devices and long
data transmission distance between end devices and edge
or cloud servers, either local computing or pure edge/cloud
computing cannot efficiently reduce response time of intelli-
gent applications for the intolerable computing latency on end
devices or huge transmission latency of raw input between
end devices and servers. So distributed inference empowered
by edge computing becomes a promising method to reduce
DNN inference latency and attracts considerable attention.
Hu et al. [9] proposed a dynamic adaptive model partition
scheme based on the min-cut algorithm to reduce inference
latency. The proposed scheme can be used to partition DNN
with a structure of directed acyclic graph, and this scheme
supports automatic adjustment of partition strategies according
to network fluctuation between devices. Yang et al. [10]

designed an edge-cloud collaborative inference system which
joint model compression with model partition together. The
designed system partitions a DNN into three parts to ade-
quately use resources on end device, edge server and the cloud.
Additionally, this system reduces the size of transmitted data
between devices through model compression to further de-
crease the total inference latency. Chen et al. [8] minimized the
system energy consumption while ensuring reasonable service
response time for each customer through making appropriate
model partition strategies based on Genetic Particle Swarm
Optimization algorithm. Zeng et al. [11] proposed a data
parallelism system for parallel inference of different parts in
original input on heterogeneous devices. The proposed system
efficiently CNN inference latency and energy consumption.
However, these optimization schemes for inference are all
designed for DNN, which possess black-box nature and lack
interpretability.

Combining excellent learning ability of DNN and high
interpretability of fuzzy logic, DNFS models converge faster
during training and show less instability during validation,
which present higher reliability and more suitable to be used
as models of intelligent services in big data-based IoT. In order
to enhance machines’ ability to interact with human, Chen et
al. [12] designed a novel deep FNN based on fuzzy C-means
and deep neural network with sparse autoencoder for intention
understanding according to people’s emotions. Guan et al.
[13] proposed a tailored CFNN to achieve accurate human
lip region segmentation for lip pictures with various kinds of
noise. Yeganejou et al. [14] designed a deep convolutional
fuzzy classifier based on CNN and fuzzy Rocchio’s algorithm
to improve accuracy of classification results. Yazdinejad et
al. [15] proposed a mized fuzzy deep learning model based
on Non-Dominated Sorting Genetic Algorithm II to improve
classification accuracy for pictures with a large number of
unrelated and redundant features.

However, to the best of our knowledge, existing studies
on DNFS models all focus on the accuracy improvement of
output. To this end, we propose an end-edge collaborative
inference framework of CFNNs for big data-driven IoT to bal-
ance profit of customers and service providers while ensuring
acceptable CFNN inference latency and reasonable edge server
energy consumption.

III. SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, the system model is introduced first. Then,
the models of IoT customer utility and edge server utility are
established. At last, the weighted-sum optimization is formu-
lated to balance the total utility between IoT customers and
service providers while ensuring acceptable CFNN inference
latency and reasonable edge server energy consumption.

A. System Model

As shown in Fig. 1, the big data-driven IoT is divided into
two layers: end layer and edge layer. The end layer is a set
of IoT devices, each corresponding to an IoT customer. In an
IoT application, raw data from the corresponding customer is
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Fig. 1. The system model of end-edge collaborative CFNN inference for
big-data driven IoT.

used as input of a CFNN which then returns the inference
result. Each IoT device has a few computing resources, and
can infer a part of a CFNN or a whole CFNN. The edge layer
consists of a set of edge servers which are service providers
and provide CFNN inference services for IoT customers. The
computing resources on edge servers are more than those on
IoT devices.

In big data-driven IoT, let E = {e1, e2, · · · , eM} denote
the set of IoT devices, and let S = {s1, s2, · · · , sN} denote
the set of edge servers. M and N respectively represent the
total number of IoT devices and edge servers in the IoT.
The task offloading strategy for IoT device ei is denoted as
Z(ei) ∈ {−1, S}, and Z(ei) = −1 means that IoT device
ei completely infers the CFNN locally. Similarly, the set of
IoT devices sending CFNN inference service requests to edge
server sj is denoted as Z(sj) ∈ E. The CFNN is mainly made
up of the fuzzy layer, convolution layers and fully connected
layers. The CFNN where the IoT application on device ei is
based is denoted as Di = {di,0, di,1, di,2, · · · , di,Li}. Li is
total number of layers in CFNN Di, and di,l is calculation
amount of the lth layer in CFNN Di. Note that di,0 = 0.

Assume that all kinds of CFNN possible to be used in the
big-data driven IoT have already been deployed on each edge
server in advance.

B. Customer Utility Model

The utility of an IoT customer is dependent on CFNN in-
ference latency and cost on ’purchasing’ computing resources
from the corresponding server where the CFNN inference
service request is offloaded.

1) CFNN Inference Latency: CFNN inference latency in-
cludes three parts, which are computing latency on the IoT
device, data transmission latency between end and edge, and
computing latency on the edge server. Inference latency of
CFNN Di is given by

tendi =
creqi

fi
, (1)

where creqi is the floating-point operations (FLOPs) of the
part of CFNN Di inferred on IoT device ei, fi is computing
resources of IoT device ei. Similarly, inference latency of
CFNN Di on edge server sj is given by

tserverj =
creqj,i

fj,i
, (2)

where creqj,i is FLOPs of the part of CFNN Di inferred on
edge server sj , fj,i is computing resources allocated to IoT
device ei by edge server sj . We assume that all IoT devices
and edge servers in the IoT perform computing tasks based
on CPU cores [16] whose computing capability is measured
by floating-point operations per second (FLOPS), and a unit
of computing resource is abstracted as one FLOPS here.
Moreover, creqi and creqj,i are given by

creqi =

pi∑
k=0

di,k, (3)

creqj,i =

L∑
k=pi

di,k, (4)

where pi is the partition point of CFNN Di. The FLOPs
of convolution layers and fully connected layers are easy to
calculate. If layer l is a convolution layer, di,l is given by

di,l = 2 · (cin · w · h) · (cout · wout · hout), (5)

where cin, w, h are number of channels, width and height of
convolution layer l, respectively. cout, wout, hout are number
of channels, width and height of output from convolution layer
l, respectively. If layer l is a fully connected layer, di,l is given
by

di,l = 2 · nin · nout, (6)

where nin, nout are feature number of input and output of fully
connected layer l, respectively. However, because of complex
arithmetical operation such as exponent in the fuzzy layer, the
FLOPs of the fuzzy layer are hard to be directly calculated
like convolution layers and fully connected layers.

During the process of end-edge collaborative CFNN infer-
ence, the transmission latency of raw input or intermediate
results from IoT device ei to edge server sj is given by

ttranj,i =
oj,i
rj,i

, (7)

where oj,i is size of data transmitted from IoT device ei to
edge server sj , rj,i is data transmission speed between IoT
device ei and edge server sj . It is emphasized that considering
the small size of final results, transmission latency from edge
to end is neglected here [17].

2) Customer Utility: To compute the utility of customers,
we introduce an economic concept named ’satisfaction level’,
which is measured by a logarithmic function. Satisfaction level
has been widely used to assess the quality of task offloading
in former studies [18]–[20]. Based on those studies, normative
satisfaction level is used to assess the relative speed of CFNN
inference for IoT device ei, which is presented as

Φ
Z(ei)
i =

log(1 + Tmax
i − T

Z(ei)
i )

log(1 + Tmax
i )

, (8)

where Tmax
i is the permitted maximum inference latency of

CFNN Di. T
Z(ei)
i is the total inference latency of CFNN

Di, which is obtained through Eqs. (1), (2) and (7), and is
presented as

T zi
i =

{
tendi + tserverZ(ei)

+ ttranZ(ei),i
Z(ei) ∈ S,

tendi Z(ei) = −1,
(9)
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If a customer sends request of CFNN inference service to an
edge server, the server must allocate a number of computing
resources to infer the whole CFNN or a part of it, which causes
cost for the customer. The cost for IoT device ei is presented
as

Θ
Z(ei)
i =

{
kZ(ei),i

·fZ(ei),i

Kmax
i

Z(ei) ∈ S,

0 Z(ei) = −1,
(10)

where kZ(ei),i is the unit price of computing resources charged
by edge server Z(ei), Kmax

i is the budget of IoT device ei
for the cost payed to edge servers.

Therefore, the utility of IoT device ei is given by

U
Z(ei)
i = α

Z(ei)
i · ΦZ(ei)

i − (1− α
Z(ei)
i ) ·ΘZ(ei)

i , (11)

where α
Z(ei)
i ∈ [0, 1] is the weight coefficient.

C. Server Utility Model

The utility of an edge server to a customer is dependent on
revenue the server gets through ’selling’ computing resources
to the customer and the energy consumption of the server
when processing the CFNN inference service request from the
customer.

1) Server Energy Consumption: Referring to former study
[20], the energy consumption of edge server sj to infer CFNN
Di is given by

Ei
j = µ · (fj,i)τ−1 · creqj,i , (12)

where µ is the effective switched capacitance of CPU [21] and
is set as 7.8−21 in this work, τ is a constant and is set as 3
in this work [22].

2) Server Utility: An edge server sets a unit price of
computing resources for each customer, and obtains revenue
from payment of customers. The normative revenue of edge
server sj to infer service ai is given by

Ri
j =

kj,i · fj,i
Kmax

j · fmax
j

, (13)

where Kmax
j is the pre-set maximum unit price of computing

resources in server sj , which is always larger than the upper
bound of the actual value range of unit resource price kj,i.
fmax
j is total number of computing resources in server ej .

The normative energy consumption of edge server sj to
infer CFNN Di is given by

Θi
j =

Ei
j

Emax
j

, (14)

where Emax
j is the permitted maximum energy consumption

of edge server sj to infer a CFNN.
The utility of edge server sj to infer CFNN Di is given by

U i
j = βi

j ·Ri
j − (1− βi

j) ·Θi
j , (15)

where βi
j ∈ [0, 1] is the weight coefficient.

D. Problem Formulation

The objective of this work is balancing the total utility
between IoT customers and service providers while ensuring
acceptable CFNN inference latency and reasonable edge server
energy consumption, which is achieved by jointly optimizing
computing resource allocation, CFNN partition, and task of-
floading strategies. The optimization problem is formulated as

max
(S,p,f,c)

γ ·
M∑
i=1

U
Z(ei)
i + (1− γ) ·

N∑
j=1

M∑
i=1

U i
j · Ω(Z(ei)).

(16)
s.t. pi ∈ [0, L],∀i ∈ [1,M ], (16a)

M∑
i=1

fj,i · Ω(Z(ei)) ≤ fmax
j , j ∈ [1, N ], (16b)

kZ(ei),i · fZ(ei),i ≤ Kmax
i ,∀i ∈ [1,M ], (16c)

T
Z(ei)
i ≤ Tmax

i ,∀i ∈ [1,M ], (16d)

Ei
j ≤ Emax

j ,∀i ∈ [1,M ], Z(ei) = j,∀j ∈ [1, N ],
(16e)

where γ ∈ [0, 1] is the weight coefficient, and Ω(Z(ei)) ={
1 Z(ei) = j,

0 else,
. Constraint (16a) means that the value of

partition point of a CFNN is not negative and not larger
than total number of layers in the CFNN. Constraint (16b)
means that the number of computing resources allocated by
an edge server does not exceed the total number of computing
resources on that server. Constraint (16c) ensures that the
cost payed by an IoT device is not larger than its maximum
budget when ’purchasing’ computing resources from an edge
server. Constraint (16d) guarantees that the inference latency
of a CFNN does not exceed its maximum permitted latency.
Constraint (16e) guarantees that the energy consumption of an
edge server to infer a CFNN does not exceed the correspond-
ing permitted maximum energy consumption.

IV. DISCFNN DESIGN

In this section, the implementation of DisCFNN is pre-
sented. As illustrated in Fig. 2, DisCFNN composes of three
parts. First, a novel CFNN structure is designed. Next, a
DRL-based algorithm, named DRAP, is presented to allocate
computing resources and make CFNN partition strategies on
each edge server. Finally, a matching game-based algorithm is
proposed to offload CFNN inference tasks from IoT customers
to different edge servers.

A. CFNN Structure Design

Design of the CFNN structure is an offline process. As
shown in the left part of Fig. 2, the designed CFNN is mainly
made up of three parts, which are a fuzzy layer, several
convolution layers and and several fully connected layers. The
functions of convolutions layers and fully connected layers
are the same with those in convolutional neural networks. The
fuzzy layer is described in detail below.
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Fig. 2. The architecture of DisCFNN.

1) Working Mechanism of Fuzzy Layer: Function of the
fuzzy layer in the CFNN designed in this paper is adding
’fuzzy features’ to the original input, by which the training
efficiency is improved and the interpretability of network is
enhanced. Based on the theory of fuzzy neural network (FNN),
the designed fuzzy layer consists of four parts, i.e. membership
layer, rule layer, normalization layer and aggregation layer.
Referring to the former study [23], for each channel of the
original input, the membership of each pixel is calculated
using membership functions in the membership layer. The
three membership functions for all channels of input is the
same and are given by

N = e−
(x+ξ)2

2σ2 , (17)

Z = e−
x2

2σ2 , (18)

P = e−
(x−ξ)2

2σ2 , (19)

where x is the value of a pixel. The center point ξ and width
σ are fixed values. It is obvious that three new channels
are produced when each input channel is processed by the
membership layer. In the rule layer of classical FNN, such
as Takagi-Sugeno FNN [24], memberships of all input fea-
tures are mutually multiplied in all possible combinations,
whose time complexity is O(vg), where v is the number of
each feature’s memberships and g is the number of features.
The time complexity of rule layer in classical FNN is so
high, which brings huge computing load devices with limited
computing resources. To reduce the computing amount of
the rule layer, in our design, we group all new channels
produced by the membership layer, and all new channels
produced by the same membership function are in the same
group. For the new channels in the same group, pixels at
the same location of those channel are multiplied with each

other. The time complexity of the fuzzy layer in our CFNN
is O(v · (cin − 1) · g

cin
), which is much lower than that of

the fuzzy layer in classical FNN. The size output of the rule
layer in our CFNN is the same with original input. After
normalization, output of the fuzzy layer is aggregated with
the original as ’fuzzy features’, through addition operation.
The obtained result is then processed by convolution layers
and fully connected layers.

2) FLOPs of Fuzzy Layer: Different from convolution
layers and fully connected layer which only include add and
multiply operations, the fuzzy layer also includes exponent, so
it is hard to directly calculate FLOPs of the fuzzy layer.

In order to estimate the computing amount of the fuzzy
layer, we first infer the fuzzy layer on our server with various
number of CPU cores. Under each tested number of CPU
cores, we record the average inference latency of the fuzzy
layer, through which a prediction model for each number of
CPU cores possible to be allocated in an edge server is es-
tablished using polynomial regression. By using the prediction
model, we can get the average ’fake FLOPs’ of the fuzzy layer
dfake with the formula below

dfake =

∑maxi
n=1 tn · fn

n
, (20)

where maxi is the maximum number of CPU cores in servers,
tn is inference latency of the fuzzy layer when n CPU
cores are allocated, fn is number of computing resources, i.e.
FLOPS, in the n CPU cores. Note that the ’fake FLOPs’ of the
fuzzy layer dfake is far from the actual FLOPs, because uti-
lization ratio of resources in each CPU core is so hard to reach
100%, and the actual inference latency tn is usually much
higher than the theoretical value. So, to get the approximate
actual FLOPs of the fuzzy layer, we can get the average ’fake
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FLOPs’ of convolution layers and fully connected layers, and
calculate the average ratio of actual FLOPs to ’fake FLOPs’
of convolution layers and fully connected layers, which is then
multipled with the ’fake FLOPs’ of the fuzzy layer dfake.

B. Resource Allocation and CFNN Partition Based on DRL

We consider a big data-driven IoT with several IoT cus-
tomers and a fixed number of edge servers. Whenever the
network condition or the customer number in the IoT changes,
each IoT device sends the customer information, including
CFNN to be inferred and permitted maximum inference la-
tency, to all edge servers. After receiving all customer informa-
tion, each edge server temporarily assumes that all CFNN are
partially inferred on itself. In this case, each edge server jointly
generates resource allocation and CFNN partition decisions
based on DRL for all customers.

Note that the final task offloading strategies have not been
obtained, which means that the resource allocation strategies
of edge servers cannot be directly made. To solve this problem,
a concept named ’resource pricing’ is introduced. The resource
allocation problem is converted to making a reasonable unit
price for resources allocated to each IoT device, then the
number of computing resources allocated to each IoT device
is achieved through the corresponding unit resource price and
maximization of the customer’s utility. The detailed derivation
for the number of computing resources allocated to IoT device
ei by edge server sj is shown below.

From Eqs. (11), we know that the utility of IoT device ei
when service ai is partially offloaded to server zi is given by

U
Z(ei)
i

=α
Z(ei)
i · ΦZ(ei)

i + (1− α
Z(ei)
i ) ·ΘZ(ei)

i

=α
Z(ei)
i ·

log(1 + Tmax
i − (tendi + tserverZ(ei)

+ ttranZ(ei),i
))

log(1 + Tmax
i )

+ (1− α
Z(ei)
i ) ·

kZ(ei),i · fZ(ei),i

Kmax
i

=α
Z(ei)
i ·

log(1 + Tmax
i − (

creqi

fi
+

creq
Z(ei),i

fZ(ei),i
+

oZ(ei),i

rZ(ei),i
))

log(1 + Tmax
i )

+ (1− α
Z(ei)
i ) ·

kZ(ei),i · fZ(ei),i

Kmax
i

,

the derivative of U
Z(ei)
i with respect to allocated computing

resources fZ(ei),i is calculated as

∂U
Z(ei)
i

∂fZ(ei),i

=α
Z(ei)
i ·

creqZ(ei),i

f2
Z(ei),i

· 1

(1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
−

creq
Z(ei),i

fZ(ei),i
) · log(1 + Tmax

i )

+ (1− α
Z(ei)
i ) ·

kZ(ei),i

Kmax
i

,

further, the second-order derivative of U
Z(ei)
i with respect to

allocated computing resources fZ(ei),i is calculated as

∂2U
Z(ei)
i

∂2fZ(ei),i

=α
Z(ei)
i · 1

log(1 + Tmax
i )

· (

−2creq
Z(ei),i

f3
Z(ei),i

· (1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
−

creq
Z(ei),i

fZ(ei),i
)

(1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
−

creq
Z(ei),i

fZ(ei),i
)2

−

(creq
Z(ei),i

)2

f4
Z(ei),i

(1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
−

creq
Z(ei),i

fZ(ei),i
)2
)

=α
Z(ei)
i · 1

log(1 + Tmax
i )

·

−2creq
Z(ei),i

f3
Z(ei),i

· (1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
) +

(creq
Z(ei),i

)2

f4
Z(ei),i

(1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
−

creq
Z(ei),i

fZ(ei),i
)2

=α
Z(ei)
i · 1

log(1 + Tmax
i )

· (
creqZ(ei),i

· (−2fZ(ei),i · (1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
))

f4
Z(ei),i

· (1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
−

creq
Z(ei),i

fZ(ei),i
)2

−
creqZ(ei),i

· (−creqZ(ei),i
)

f4
Z(ei),i

· (1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
−

creq
Z(ei),i

fZ(ei),i
)2
),

according to log(1 + Tmax
i − T

Z(ei)
i ), we can get that

1 + Tmax
i − T

Z(ei)
i >0

⇒T
Z(ei)
i <1 + Tmax

i

⇒creqi

fi
+

oZ(ei),i

rZ(ei),i
+

creqZ(ei),i

fZ(ei),i
<1 + Tmax

i

⇒
oZ(ei),i

rZ(ei),i
<1 + Tmax

i − creqi

fi
−

creqZ(ei),i

fZ(ei),i

<1 + Tmax
i − creqi

fi
−

creqZ(ei),i

2fZ(ei),i

⇒
oZ(ei),i

rZ(ei),i
− 1− Tmax

i +
creqi

fi
<

creqZ(ei),i

−2fZ(ei),i

⇒− 2fZ(ei),i · (
oZ(ei),i

rZ(ei),i
− 1− Tmax

i +
creqi

fi
)>creqZ(ei),i

⇒− 2fZ(ei),i · (−
oZ(ei),i

rZ(ei),i
+ 1 + Tmax

i − creqi

fi
)<− creqZ(ei),i

,

note that in ∂2U
Z(ei)

i

∂2fZ(ei),i
, α

Z(ei)
i ≥ 0, creqZ(ei),i

≥ 0, f4
Z(ei),i

·

(1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
−

creq
Z(ei),i

fZ(ei),i
)2 ≥ 0, −2fZ(ei),i ·

(− oZ(ei),i

rZ(ei),i
+1+Tmax

i − creqi

fi
)−(−creqZ(ei),i

) ≤ 0. So ∂2U
Z(ei)

i

∂2fZ(ei),i
≤

0, which means that UZ(ei)
i is a concave function. As a result,

the maximum value of UZ(ei)
i exists. In order to calculate the

value of fZ(ei),i where U
Z(ei)
i gets the maximum value, we
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let ∂U
Z(ei)

i

∂fZ(ei),i
be equal to 0. Through the quadratic formula, the

optimal number of computing resources f∗
Z(ei),i

allocated by
server Z(ei) to IoT device ei is given by

f∗
Z(ei),i

=
ζ · creqZ(ei),i

±
√
ζ2 · (creqZ(ei),i

)2 + 4ζ · δ

2ζ · (1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
)

, (21)

where δ = (1 + Tmax
i − creqi

fi
− oZ(ei),i

rZ(ei),i
) · α

Z(ei)
i ·

Kmax
i ·creq

Z(ei),i

kZ(ei),i
·log(1+Tmax

i ) , ζ = 1 − α
Z(ei)
i . Considering that

ζ · creqZ(ei),i
>0 and ζ · δ>0, it can be obtained that ζ ·

creqZ(ei),i
=

√
ζ2 · (creqZ(ei),i

)2<
√
ζ2 · (creqZ(ei),i

)2 + 4ζ · δ. As a
result, to ensure f∗

Z(ei),i
is not negative, we get f∗

Z(ei),i
=

ζ·creq
Z(ei),i

+
√

ζ2·(creq
Z(ei),i

)2+4ζ·δ

2ζ·(1+Tmax
i −

c
req
i
fi

−
oZ(ei),i

rZ(ei),i
)

.

Through customer utility U j
i and server utility U i

j , the range
of unit price of computing resources kj,i allocated to IoT
device ei by edge server sj can be achieved. Specifically, in
order to make customer utility U j

i greater than 0, we get

αj
i · Φ

j
i − (1− αj

i ) ·Θ
j
i>0

⇒αj
i ·

log(1 + Tmax
i − T j

i )

log(1 + Tmax
i )

>(1− αj
i ) ·

kj,i · fj,i
Kmax

i

⇒kj,i<
αj
i ·

log(1+Tmax
i −T j

i )

log(1+Tmax
i ) ·Kmax

i

(1− αj
i ) · fj,i

<
αj
i ·Kmax

i

(1− αj
i ) · f

′
j,i

,

where f
′

j,i is the total computing resources in a single CPU

core. Note that αj
i ·K

max
i

(1−αj
i )·f

′
j,i

<Kmax
j,i is always tenable. Similarly,

in order to make server utility U i
j greater than 0, we get

βi
j ·Ri

j − (1− βi
j) ·Θi

j>0

⇒βi
j ·

kj,i · fj,i
Kmax

j · fmax
j

>(1− βi
j) ·

Ei
j

Emax
j

⇒kj,i>
(1− βi

j) · Ei
j ·Kmax

j · fmax
j

βi
j · Emax

j · fj,i

⇒kj,i>
(1− βi

j) · µ · (fj,i)τ−2 · creqj,i ·Kmax
j · fmax

j

βi
j · Emax

j

>0.

DRPA, the DRL-based algorithm for resource allocation and
CFNN partition, is described now.

State. The state space presents the observation of the re-
source allocation and CFNN partition decision making pro-
cess, including the number of IoT devices for which the
resource allocation and CFNN partition decisions have been
generated, cumulative customer utility and cumulative edge
server utility. For an edge server, the state stai is given by

stai = {ni, U
cus
i , User

i }, (22)

where ni is the number of services for which the resource
allocation and CFNN partition decisions have been made,
U cus
i is cumulative customer utility, User

i is cumulative utility
of the edge server.

Action. Based on states, the server generates reasonable
computing resource price and CFNN partition decision for
each IoT device. The action acti is given by

acti = {rkj,i
, rpi

}, (23)

where rkj,i
is resource pricing ratio, rpi

is CFNN partition
ratio.

Reward. Based in Eqs. 16, the reward of the DRL-based
algorithm in server sj is given by

reward = γ · U j
i · Γ(U j

i ) + (1− γ) · U i
j · Γ(U i

j), (24)

where Γ(x) =

{
η x<0,

1 x ≥ 0,
, and Γ is a penalty term which

helps improve the possibility of U j
i and U i

j to be greater than
0.

It is obvious that ni = ni−1 + 1, U cus
i = U cus

i−1 + U j
i ,

User
i = User

i−1+U i
j , from which we learn that the current state

is only decided by the last state and is not related to earlier
states. It means that the Markov property is met and DRL
is applicable here. DRAP is based on Twin Delayed Deep
Deterministic policy gradient algorithm (TD3) in DRL [25],
[26], and is elaborated in Algorithm 1.

Algorithm 1: DRAP.
Input : Initial state sta0, number of services n
Output: Resource allocation decision f , CFNN

partition decision p
1 Initialize critic networks Qθ1 , Qθ2 , actor network π∅,

target critic networks Qθ
′
1
, Qθ

′
2
, target actor network

π∅′ , replay buffer ρ;
2 for episode = 1 to T do
3 for i = 1 to N do
4 if episode < τ then
5 acti = ε;
6 end
7 else
8 acti = π∅(stai);
9 end

10 Observe reward ri and the next state stai+1

and store transition (stai, acti, ri, stai+1) to
ρ;

11 if episode ≥ τ then
12 Update critics θ1, θ2;
13 if episode % v == 0 then
14 Update actor ∅;
15 Update target networks Qθ

′
1
, Qθ

′
2
, π∅′ ;

16 end
17 end
18 end
19 end
20 return f , p;

As illustrated in Algorithm 1, parameters of critics, actor,
target critics and target actor, as well as the replay buffer,
are initialized in the beginning (lines 1). In terms of the
producing of actions, random values are endowed during the
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former τ training episodes in order to encourage the agent
to explore (lines 4 to 9). Note that the two elements in the
action space, which are computing resource pricing ratio and
CFNN partition ratio, both range from 0 to 1. When pricing
for each unit of computing resources, kj,i is calculated as
rkj,i

· αj
i ·K

max
i

(1−αj
i )·f

′
j,i

·κ, where κ is a discount factor. The partition

point pi of CFNN Di is calculated as [rpi
·Li]. Based on the

obtained resource price and partition point, the reward ri and
the next stai+1 is achieved, transition (stai, acti, ri, stai+1)
is stored to the replay buffer (line 10). After the τ th episode
of training, two critics start to be updated (lines 11 to 12).
Delayed update is used for the actor, which is updated together
with the parameters of target networks (lines 13 to 19).

Algorithm 2: Matching game-based task offloading.
Input : The set of IoT devices E, the set of edge

servers S
Output: The optimal matching strategy Z

1 Initialize Erejected with E, Erejected with ∅;
2 for ei ∈ E do
3 for sj ∈ S do
4 Get f∗

j,i, pi based on Algorithm 1;
5 Calculate preference value of sj on ei;
6 Calculate preference value of ei on sj ;
7 end
8 end
9 Construct preference lists of IoT devices and edge

servers;
10 while Erejected is not empty do
11 if Erejected is equal to Erejected then
12 break;
13 end
14 for ei ∈ Erejected do
15 Select the most preferred server sj∗ ;
16 Update the matching list of ei;
17 Update the matching list of sj∗ ;
18 end
19 Erejected = Erejected;
20 for sj ∈ S which receives new service requests do
21 Adjust matching list of sj ;
22 Update Erejected;
23 for ei ∈ Erejected do
24 Update the preference list and the matching

list of ei;
25 end
26 end
27 end
28 return Z;

C. Task Offloading Based on Matching Game

According to resource allocation and CFNN partition deci-
sions generated on each server, task offloading strategies are
made. In the big data-driven IoT, each IoT device sends CFNN
inference request to one edge server while each edge server
processes service requests from several IoT devices. So the

task offloading in the big data-driven IoT is regarded as a
many-to-one matching game.

The matching game is described as a a triplet of (X,Y, Z).
X = (Erejected, S) is two disjoint sets of players in the
matching game, where Erejected denotes the set of IoT devices
whose task offloading strategy has not been obtained, and S is
the set of edge servers. Y = (Yi, Yj) is preference lists of IoT
devices and edge servers. Each IoT device ei ∈ Erejected has
a descending ordered preference list Yi on edge servers, where
Yi = {sj |sj ∈ S, sj ≻i sj′} and ≻i denotes the preference
of IoT device ei towards edge servers. Likewise, each edge
server sj ∈ S has a descending ordered preference list Yj

on IoT devices, where Yj = {ei|ei ∈ Erejected, ei ≻j ei′}.
Z = (Z(ei), Z(sj)) is the many-to-one matching strategy,
where Z(ei) ∈ {−1, S} and Z(sj) ⊆ {ei|ei ∈ Erejected}.

The preference lists of IoT devices and edge servers are
constructed as follows:

• The optimal computing resource allocation and CFNN
partition decisions are generated on each server for all
IoT devices based on Algorithm 1.

• Calculate the preference value for each edge server sj on
IoT devices ei ∈ Erejected as ℓj(ei) = U i

j .
• Construct the preference list Yj for each server sj by

ranking the preference values as a descending order.
• Calculate the preference value for each IoT device ei ∈

Erejected on edge server sj as ℓi(sj) = U j
i .

• Construct the preference list Yi for each IoT device ei by
ranking the preference values as a descending order.

As illustrated in Algorithm 2, at start, Erejected is initialized
with E, and Erejected is initialized with ∅ (line 1). The
optimal resource allocation and CFNN partition decisions are
obtained from Algorithm 1, based on which the preference
lists of IoT devices and edge servers are constructed (lines 2
to 9). The matching game begins and ends until the Erejected

is empty or each IoT device in Erejected cannot send service
request to any edge server (lines 10 to 13). For each IoT device
ei in Erejected, the most preferred server sj∗ is selected. Then,
the matching list of ei is updated as Z(ei) = Z(ei)

⋃
sj∗ and

the matching list of sj∗ is updated as Z(sj∗) = Z(sj∗)
⋃
ei

(lines 14 to 18). For servers sj which receive new service
requests, the updated matching list Z(sj) is adjusted (lines 20
to 21). In detail, the top n IoT devices in Z(sj) are remained
according to the total number of computing resources in server
sj , and other IoT devices in Z(sj) are removed. The IoT
devices remained in Z(sj) are removed from Erejected (line
22). The preference lists Yi and matching lists Z(ei) of IoT
devices ei remained in Erejected are updated as Yi = Yi\{sj∗}
and Z(ei) = Z(ei)\{sj∗} (lines 23 to 27).

Now, stability of the many-to-one matching game is proved.
Definition 1: Blocking pair. Z is blocked by the blocking

pair (ei, sj) if and only if ei and sj prefer each other to
sj′ = Z(ei) and ei′ = Z(sj), while i and j are not matched
with each other under matching strategy Z in fact. [20].

Definition 2: Stable matching. A matching game is stable if
and only if there is no blocking pair. [27].

Theorem 1: The many-to-one matching game in this work
is stable for each IoT device ei ∈ Erejected and edge server
sj ∈ S.
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Proof: Proof by contradiction is used here. We assume the
many-to-one matching game is not stable, which means at
least one blocking pair exists. It is assumed that IoT device ei
and edge server sj prefer each other to their current matching
strategies, but in reality ei and sj are not matched with each
other. So the following formulas are obtained:

sj ≻ei Q(ei), (25a)
ei ≻sj Q(sj), (25b)
sj ̸= Q(ei), (25c)
ei /∈ Q(sj), (25d)

□
where Z(ei) is the current server matched to IoT device ei, and
Z(sj) is current IoT devices matched to server sj . If formula
(25a) holds, it is obvious that IoT device ei prefers server
sj to its currents matching partners. Nevertheless, it can be
learnt from formula (25d) that server sj does not prefer IoT
device ei, which is denoted as Q(sj)i ≻sj ei. It contradicts
formula (25b). As a result, (ei, sj) will not become a blocking
pair. Similar conclusions can be obtained through starting from
other formulas in (25). So the many-to-one matching game in
this work is stable.

V. EXPERIMENTAL PERFORMANCE

In this section, the experiment settings are described first.
Next, training performance of the CFNN designed in this
work is assessed through comparing it with other two models.
Then, the convergence of DRAP, which is based on TD3, is
analyzed. Finally, effectiveness of the end-edge collaborative
CFNN inference decision obtained by DisCFNN is evaluated
through comparing it with two baselines.

A. Experiment Settings

1) Device Configuration: The experiments are conducted
on a server with Intel(R) Xeon(R) Platinum 8352V CPU. The
total number of CPU cores in the server is 120, and computing
resources in each CPU core is 67.2G FLOPS. Note that on a
real machine, the resources are allocated to each IoT device
in units of CPU cores according to [

fj,i
f ], where f = 67.2G

here. During CFNN inference with multiple CPU cores, we
split the input set into many groups in average and each CPU
core is responsible for inferring a group of input, which uses
the multiprocess function of Python.

TABLE I
INFORMATION OF THE PROPOSED CFNN.

Layer number Layer type Size Stride
1 Fuzzy layer - -
2 Convolution 3× 3× 1× 4 2
3 Convolution 3× 3× 4× 8 2
4 Convolution 3× 3× 8× 16 2
5 Convolution 3× 3× 16× 32 2
6 Convolution 3× 3× 32× 64 1
7 Fully connected 256× 10 -

2) Dataset and CFNN Model: Dataset used in our exper-
iments is FashionMNIST [28]. FashionMNIST includes 10
classes and there are 7000 pictures in each class. The pictures
in FashionMNIST are gray, with size of 28 · 28. We partition
the dataset into training set, validation set and test set with
ratio of 8 : 1 : 1. Then, in order to shorten training time
and test time, 2000 samples and 500 samples are randomly
selected from the training set and the test set. Each batch
includes 50 samples during training and validation, and the
episode number of training is set as 120. Besides, the initial
size of input is transferred into 228 · 228.

The proposed CFNN used in our experiments includes 1
fuzzy layer, 5 convolution layers, and 1 fully connected layer.
Detailed information of the proposed CFNN is presented in
Table I.V-A3

3) Parameters of Simulation Environment: In order to
evaluate the performance of DisCFNN, a virtual simulation
environment is established. In the simulation environment,
the number of edge servers is 3, with 36, 24, 48 CPU
cores, respectively. The number of IoT devices is set as
[3, 6, 9, 12, 15]. The number of CPU cores in each IoT device
is set as a random value between 2 and 4. Transmission
speed between each IoT device and edge server is set as a
random value between 150M and 350M bits per second [29].
We set the maximum permitted inference latency of CFNN
Di as ratei · ti, where ti is latency needed by IoT device
ei to infer the whole CFNN and rate1 is a random value
ranging from 0.7 and 0.85. Likewise, the maximum permitted
energy consumption of server sj to infer CFNN Di is set as
ratej,i · ej,i, where ej,i is energy consumed by the server to
infer the whole CFNN and ratej,i is a random value ranging
from 0.75 and 0.8. Budget Kmax

i of IoT device ei is set as
400G dollars and the pre-set maximum unit price of computing
resources Kmax

j on server sj is set as 11.9 dollar per FLOPS
[20].

TABLE II
DETAILED INFORMATION OF THE ALEXNET.

Layer number Layer type Size Stride
1 Convolution 3× 3× 1× 4 2
2 Convolution 3× 3× 4× 8 2
3 Convolution 3× 3× 8× 16 2
4 Convolution 3× 3× 16× 32 2
5 Convolution 3× 3× 32× 64 1
6 Fully connected 256× 10 -

TABLE III
DETAILED INFORMATION OF COMP-CFNN.

Layer number Layer type Size Stride
1 Convolution 3× 3× 1× 4 2
2 Convolution 3× 3× 4× 8 2
3 Convolution 3× 3× 8× 16 2
4 Convolution 3× 3× 16× 32 2
5 Convolution 3× 3× 32× 64 1
6 Fully connected 256× 10 -
7 Fuzzy layer - -

4) Baselines: In order to assess training performance of
the CFNN designed by us, two other models are selected to
compare with our model as follows.
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• AlexNet [30]. AlexNet is a classical CNN model. The
detailed information of AlexNet used in our experiments
is shown in Table II.

• Comp-CFNN [23]. In Comp-CFNN, the traditional FNN
is merged between the last convolution layer and the
first fully connected layer of a CNN, and the detailed
information of the Comp-CFNN used in our experiments
is shown in Table III.

In order to evaluate effectiveness of the end-edge collabo-
rative CFNN inference decision generated by DisCFNN, we
select two baselines which are shown as follows.

• DisCFNN-NoPar. DisCFNN-NoPar is a variant of Dis-
CFNN, where all CFNN are either completely inferred
on edge servers or completely inferred on IoT devices,
without partition.

• CRO-Offload [31]. In CRO-Offload, the edge server allo-
cates computing resources to IoT devices using the algo-
rithm based on Chemical Reaction Optimization (CRO)
and makes CFNN partition decisions based on brute-force
searching. Since CRO-Offload is designed for single-
server scenarios, it is adjusted for the multi-server IoT
in this paper.

(a) Training accuracy.

(b) Validation accuracy.

Fig. 3. Comparison of training performance.

B. Training Performance of Proposed CFNN

As illustrated in Fig. 3, training accuray and validation
accuracy of the three models are compared. Training accuracy
and validation accuracy of Comp-CFNN are much lower than
those of other two models. This is because the FNN merged in
Comp-CFNN disorganizes features extracted by convolution
layers and the scalability of Comp-CFNN is bad. During
training process, the convergence speed of Proposed CFNN,

which is the CFNN designed in this work, is a little faster
than that of classical AlexNet. Specifically, during training,
Proposed CFNN’s convergence speed exceeds that of AlexNet
after the 3rd episode. In terms of the validation process, the
fluctuation of Proposed CFNN’s validation accuracy is smaller
than that of AlexNet’s validation accuracy after convergence,
which shows less uncertainty of Proposed CFNN’s output
during validation.

C. Convergence Performance of DRAP

The DRAP designed by us is based on TD3, which is
an improved version of Deep Deterministic Policy Gradient
(DDPG). In TD3, two critics and two target critics are used,
and in terms of the output of critics and target critics, the min-
imum ones are chosen, which effectively solves the problem
of over estimation existing in DDPG. Additionally, delayed
update of actor is used in TD3, which improves the learning
efficiency. Fig. 4 presents the convergence performance of
TD3 and DDPG in each servers in the big data-driven IoT
with different numbers of customers. It is obvious that in
each server, the rewards of TD3 is higher than that of DDPG
regardless of the number of customers in the IoT. Note that
a few great fluctuations exist in the reward functions of both
DRL algorithms even when the convergence has been achieved
because the penalty factor η is set as 300, 300 and 100,
respectively, which largely pulled down the reward values if
negative customer utility or server utility appears.

D. Effectiveness Analysis on End-Edge Collaborative CFNN
Inference Decision Made by DisCFNN

1) Analysis on Utility: Fig. 5 presents the performance
evaluation of total customer utility in big data-driven IoT
with different numbers of customers. It is seen that although
DisCFNN always gets a lower total customer utility than
DisCFNN-NoPar except when the number of customers is 3,
the total customer utility of DisCFNN keeps positive when the
number of customers is smaller than 15. In addition, with the
increasing of customers in IoT, the total customer utility of the
two methods reduces on the whole. This is because when there
are more customers in the IoT, the computing load on servers
becomes bigger, which means less computing resources are
allocated to each IoT device in average and some IoT devices
may even infer the whole CFNN locally. It greatly increases
CFNN inference latency and more negative customer utility
appears, which decrease the total customer utility.

Fig. 6 shows the performance evaluation of total server
utility in big data-driven IoT with different numbers of cus-
tomers. The total server utility of DisCFNN is always higher
than that of DisCFNN-NoPar. Specifically, when the number
of customers rises from 3 to 15, DisCFNN outperforms
DisCFNN-NoPar by the improvement of 0.31 times to 0.42
times. This is because most CFNN are partially inferred on
edge servers in DisCFNN, while most CFNN are completely
inferred on servers in DisCFNN-NoPar. It causes much more
energy consumption and lower total server utility in DisCFNN-
NoPar.
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(a) Convergence performance on server 1 when
there are 3 customers.

(b) Convergence performance on server 2 when
there are 3 customers.

(c) Convergence performance on server 3 when
there are 3 customers.

(d) Convergence performance on server 1 when
there are 6 customers.

(e) Convergence performance on server 2 when
there are 6 customers.

(f) Convergence performance on server 3 when
there are 6 customers.

(g) Convergence performance on server 1 when
there are 9 customers.

(h) Convergence performance on server 2 when
there are 9 customers.

(i) Convergence performance on server 3 when
there are 9 customers.

(j) Convergence performance on server 1 when
there are 12 customers.

(k) Convergence performance on server 2 when
there are 12 customers.

(l) Convergence performance on server 3 when
there are 12 customers.

(m) Convergence performance on server 1 when
there are 15 customers.

(n) Convergence performance on server 2 when
there are 15 customers.

(o) Convergence performance on server 3 when
there are 15 customers.

Fig. 4. Convergence performance of rewards under different DRL algorithms.

Fig. 7 illustrates the performance evaluation of total
weighted-sum utility in big data-driven IoT with different
numbers of customers. The weighted-sum utility is calculated
based on Eqs. (16). From Fig. 7, we learn that the total
weighted-sum utility of DisCFNN is higher than that of
DisCFNN-NoPar except when the number of customers is 12,
where the total weighted-sum utility of DisCFNN is negative
while that of DisCFNN-NoPar is positive. This is caused
by the weak instability of DRL algorithms. In detail, even
when convergence is achieved, the fluctuation of reward values

still exists. In our experiments, we select the result of the
last episode of DRL algorithm’s training. It is normal that
extremely good or bad strategies are selected in occasion.
However, on the whole, the performance of DisCFNN on total
weighted-sum utility is better than that of DisCFNN-NoPar.

2) Analysis on Success Rate: Fig. 8 depicts the performance
evaluation of the proportion of CFNN whose inference delay
meets the maximum latency requirement in IoT with different
numbers of customers. It is learnt that DisCFNN performs
best except when the number of customers is 9, where the
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Fig. 5. Total customer utility in IoT with different numbers of customers.

Fig. 6. Total server utility in IoT with different numbers of customers.

Fig. 7. Total weighted-sum utility in IoT with different numbers of customers.

Fig. 8. Success rate in terms of CFNN inference latency in IoT with different
numbers of customers.

Fig. 9. Success rate in terms of server energy consumption in IoT with
different numbers of customers.

Fig. 10. Utilization rate of edge servers in IoT with different numbers of
customers.

success rate of CRO-Offload is 16.7% higher than that of
DisCFNN. This is caused by the great instability of CRO.
Although extremely good results are occasionally obtained by
CRO-Offload, DisCFNN outperforms CRO-Offload in most
cases. Additionally, on the whole, the success rates of three
methods present a downward trend as customers increases
because when the number of customers rises, the computing
load on servers becomes larger and less computing resources
are allocated to each customer in average, which enhances the
failure rate.

Fig. 9 elaborates the performance evaluation of the propor-
tion of servers which meet the maximum energy consumption
requirement in IoT with different numbers of customers. When
the number of customers is 3, the success rate of DisCFNN
is 1 time higher than those of DisCFNN-NoPar and CRO-
Offload. While when the number of customers increased to
12, the success rate of DisCFNN is 14.3% higher than that
of DisCFNN-NoPar and is equal to that of CRO-Offload.
Furthermore, the success rates of three methods rise with the
increasing of customers because when more customers enter
the IoT, computing resources of servers may be not enough
and the proportion of CFNN completely inferred on local goes
up, which increases the success rate.

3) Analysis on Server Utilization Rate: Fig. 10 shows
the performance evaluation of server utilization rate in IoT
with different numbers of customers. When there are only 3
customers in the IoT, the server utilization rates of DisCFNN
and CRO-Offload are both 100%, and that of DisCFNN-NoPar
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is 66.7%. When there are 15 customers in the IoT, the server
utilization rates of DisCFNN and DisCFNN-NoPar are both
53.3%, and that of CRO-Offload is 33.3%. Server utilization
rate of DisCFNN always maintains the highest level compard
with those of two baselines. In addition, on the whole, server
utilization rates of three methods present a decreasing trend,
and the reason is that the proportion of CFNN completely
or partially inferred on servers reduces as the the number of
customers rises because of limited computing resources on
edge servers.

VI. CONCLUSION

In this paper, we propose DisCFNN, an end-edge collabora-
tive inference framework of CFNN for big data-driven IoT, to
balance the profit of IoT customers and service providers while
ensuring acceptable CFNN inference latency and reasonable
edge server energy consumption. Specifically, a novel CFNN
structure is designed offline and the calculation amount of the
fuzzy layer is predicted based on polynomial regression at
first. Next, computing resource allocation and CFNN partition
decisions are generated on each server through DRL, based
on which the IoT customer utility and edge server utility
are calculated. Finally, according to the obtained utility of
customers and servers, a many-to-one game is conducted to
obtain optimal task offloading strategies. The effectiveness of
the proposed framework is verified through comparison and
analysis of experimental results. [32]
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