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ABSTRACT • 12 

Water is an essential abiotic factor for seed imbibition process. Seeds of several Caatinga • 13 

species have a physiological strategy known as seed hydration memory to mitigate the • 14 

effects of irregular rainfall patterns in this environment. However, the mechanisms behind • 15 

are not well understood. Therefore, our study aimed to evaluate the occurrence of water • 16 

memory in Sarcomphalus joazeiro seeds through ecophysiological, biochemical and • 17 

anatomical analyzes. The seeds were subjected to different cycles (0, 1, 2, and 3) of • 18 

hydration (12 hours) and dehydration (48 hours) – HD, or continuous hydration (CH) for • 19 

183 hours. The seedlings obtained of these seeds were subjected to different water • 20 

suspension cycles. Our results showed that seeds subjected to HD cycles had greater • 21 

germinability, higher emergence speed index, lower T50 values, and accumulated higher • 22 

proline content. Seedlings from the 0, 1, and 2 seed HD cycles showed decreased net • 23 

carbon assimilation (A) only when subjected to severe stress after 21 days of water deficit • 24 

compared to the daily irrigated plants. While in seeds exposed to 3-HD cycles after 21 • 25 

days of water deficit A did not change compared to control. Our results evidenced that • 26 

seeds subjected to 3-HD cycles conferred the plants a greater tolerance to water deficit, • 27 

proving the existence of seed hydration memory in Sarcomphalus joazeiro.  • 28 

 • 29 
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1. Introduction • 55 

In dry forests, such as the Caatinga, extreme environmental conditions, usually • 56 

characterized by low rainfall patterns, high irradiance, and high temperatures, hinder the • 57 

seed germination of many species (Azerêdo et al., 2016). The temporary water • 58 

availability, caused by the rapid and irregular rainfall patterns associated with high • 59 

evaporation from the soil surface layers, negatively affect seed germination by triggering • 60 

cycles of hydration and dehydration (Nicolau et al., 2020). This environmental condition • 61 

prevents the completion of the usual seed germination. Seed germination physiology is • 62 

directly affected by the availability of water and its transport through the embryonic • 63 

tissues. Dehydration periods during seed germination changes the seed metabolism by • 64 

increasing the concentration of solutes and altering the intercellular pH. This condition in • 65 

the cell trigger degenerative reactions (i.e. protein denaturation and membrane damage), • 66 

increasing the occurrence of oxidative stress (Marcos-Filho, 2015). • 67 



During the dry season in the Caatinga, seeds with an interruption of water supply due to • 68 

soil dryness can usually resume germination as soon as water is available again during • 69 

the next rain (Lima et al., 2018). This is known as physiological strategy to mitigate the • 70 

effects of irregular rainfall patterns which can be observed in several Caatinga species • 71 

(Lima et al., 2018; Santos & Meiado, 2018; Melo et al., 2019; Nicolau et al., 2020). This • 72 

mechanism to pause the germination metabolism during dehydration periods and continue • 73 

the germination process when water is available, increases the germination and survival • 74 

rates of native species in arid and semi-arid regions during short and extended drought • 75 

periods. The hydration and dehydration cycles can generate an imprint or hydration • 76 

memory in the seeds and contribute to their ability to counteract the physiological and • 77 

biochemical changes caused by discontinuous hydration, in addition to providing • 78 

uniformity and greater germination speed and formation of vigorous seedlings (Lima & • 79 

Meiado, 2017).  • 80 

The early stage of plant development, such as the seedling stage, is considered the most • 81 

vulnerable stage to dehydration and many species exposed to this condition might have • 82 

their survival compromised (Vieira et al., 2020). The primary defense mechanisms in • 83 

plants under water restriction involve the stomatal control to prevent water loss, the • 84 

dissipation of excess energy in the thylakoid membranes, the synthesis and accumulation • 85 

of compatible osmolytes to adjust the cellular osmotic potential, and the activation of the • 86 

antioxidant system to prevent oxidative stress (Vieira et al., 2021). • 87 



Usually, Caatinga species response to drought involve changes in the root development • 88 

pattern, leaves loss, decrease in photosynthetic rates, and accumulation of compatible • 89 

osmolytes (Medeiros, 2013; Prado, 2003; Sampaio, 1995). Some studies (Freitas et al., • 90 

2021; Santos Junior et al., 2021; Lima & Meiado, 2018) have shown that the occurrence • 91 

of hydration memory in seeds from semi-arid environments and the propagation and • 92 

continuity of this physiological strategy to the seedling provide higher drought tolerance • 93 

during its initial growth stage. The mechanism behind is poorly investigated and a better • 94 

understanding of how Sarcomphalus joazeiro, an important Caatinga species, deal with • 95 

seed hydration and dehydration cycles can improve the propagation and growth of this • 96 

species and others dry forest species, supporting the management and conservation plans • 97 

to reforest degraded areas in the Caatinga and in other adverse environments. • 98 

This study aimed to evaluate whether seed discontinuous hydration, through • 99 

different hydration and dehydration cycles, causes hydration memory in a Caatinga • 100 

species, such as Sarcomphalus joazeiro, and increases seedling tolerance to water deficit • 101 

using physiological, biochemical, and morphological approaches. We hypothesize that • 102 

seeds subjected to longer dehydration cycles will germinate more quickly and that • 103 

seedlings from these seeds will demonstrate more efficient stress tolerance mechanisms • 104 

than seeds exposed to continuous hydration. Results are discussed in an ecophysiological • 105 

perspective to improve propagation and growth of tree species in adverse environments. • 106 

 • 107 

2. Material and methods • 108 

2.1 Plant material and experimental conditions • 109 



The experiments in Sarcomphalus joazeiro plants were performed at the • 110 

Laboratory of Physiology and Biochemistry of the “Instituto de Pesquisas Ambientais” • 111 

(IPA), São Paulo, Brazil. The seeds were donated by the Caatinga Seed Network • 112 

(UNIVASF, CRAD/MINISTRY OF SOCIAL INTEGRATION) and by LAFISE (Seed • 113 

Physiology Laboratory of the Federal University of Sergipe, Sergipe, Brazil).  • 114 

2.2 Seed biometry and imbibition pattern • 115 

We first analyzed the seed biometry and imbibition pattern to determine the • 116 

hydration and dehydration curves. The seed moisture content used in this study was • 117 

previously determined by Brazil (2009). The biometry of 200 seeds was performed using • 118 

the ImageJ program and a digital caliper with 0.001 mm precision (Digimess®) to • 119 

measure the length (mm) and width (mm) (Table 1). To evaluate the seed imbibition • 120 

pattern, four replicates of 25 seeds each (n = 100) were used. Initially, all seeds were • 121 

immersed in sulfuric acid (98%) for 120 minutes to overcome tegumentary dormancy • 122 

(Diógenes et al., 2010), after the seeds were washed with tap water, weighed on an • 123 

analytical balance, and placed to soak in 9-cm Petri dishes with two filter paper layers • 124 

moistened with 10 ml of distilled water. The plates were kept in the laboratory at room • 125 

temperature (25±5ºC). At 60-minute intervals, the seeds were removed from the Petri • 126 

dishes, dried with absorbent paper, weighed to determine the fresh mass, and placed back • 127 

in the Petri dishes until the imbibition cycle was completed. The imbibition rate was • 128 

estimated through the variation of the seed biomass in the different time intervals • 129 

evaluated. • 130 



Four replicates of 25 seeds each were weighed on an analytical balance to obtain • 131 

the initial weight and determine the dehydration curve. Subsequently, each replicate was • 132 

placed in 9-cm diameter Petri dishes containing two filter paper layers moistened with 10 • 133 

ml of distilled water for 26 hours, when the seeds absorbed the maximum water amount • 134 

before germination, as shown by the imbibition curve. After hydration, the replicates were • 135 

removed from contact with water, placed to dry in desiccators, and weighed on an • 136 

analytical balance at intervals of 60 minutes until the weight of the replicates returned to • 137 

the initial weight. • 138 

2.2 Continuous hydration and hydration and dehydration (HD) cycles experiment • 139 

To evaluate the effects of continuous hydration on the S. joazeiro germination, • 140 

200 seeds were subjected to 183 hours of imbibition. This treatment was carried out in • 141 

Petri dishes containing 10 ml of distilled water and 25 seeds each and kept at room • 142 

temperature (25± 5°C). After the beginning of seed hydration, seven collections were • 143 

made at different time intervals (00 h, 13 h, 61 h, 74 h, 122 h, 135 h, and 183 h) throughout • 144 

the total soaking period. During imbibition period, 30 seeds were removed at each • 145 

collection, snap-frozen in liquid nitrogen and stored at -80ºC for further analysis. • 146 



To analyze the effects of hydration and dehydration (HD) cycles on the • 147 

germination of S. joazeiro, the seeds were subjected to 0, 1, 2, and 3 cycles of HD. Each • 148 

cycle corresponds to 12 hours of hydration in distilled water and 48 hours of drying • 149 

(dehydration), determined through the hydration and dehydration curves (detailed in the • 150 

previous session). The hydration time corresponds to half time to reach seed germination • 151 

phase I (Lima et al., 2018). We used 210 seeds per treatment. The seed hydration phase • 152 

was carried out in Petri dishes, which were kept in laboratory conditions at room • 153 

temperature (25 ± 5°C). For the dehydration phase, the seeds were dried in Petri dishes • 154 

containing two filter paper layers and kept in the desiccator for 48 hours or until they • 155 

returned to their initial weight before imbibition. Seven collections were performed • 156 

during the HD cycles at different time intervals (00 h, 13 h, 61 h, 74 h, 122 h, 135 h, and • 157 

183 h); 30 seeds were removed, snap-frozen in liquid nitrogen, and kept at -80ºC for • 158 

subsequent biochemical analysis. • 159 

2.3 Seed extract • 160 

The cryopreserved seeds were lyophilized and ground in a ball mill. For the crude • 161 

extract, 100 mg of dried seeds were ground with 5 mL of 0.1 M monobasic phosphate • 162 

buffer solution, pH 7.0, containing 0.01 M EDTA. The crude extract was filtered through • 163 

a nylon mesh and centrifuged at 4,000 g for 10 minutes. The supernatant (seed extract) • 164 

was transferred to 2 mL tubes and frozen for further biochemical analysis of soluble • 165 

sugars. • 166 

2.4 Biochemical analysis of seeds • 167 



The total soluble sugars content was determined according to Dubois et al. (1956). • 168 

Seed extract (500 μL) was incubated with 5% phenol (v/v, 500 μL) and 2.5 mL of H2SO4 • 169 

(concentrated) in glass tubes and vortexed. After approximately 20 minutes, the reaction • 170 

mixture was read in a spectrophotometer (490 nm). The reducing sugar content was • 171 

determined using the Somogyi-Nelson method (Nelson, 1944) with a 500 μL aliquot of • 172 

seed extract. The results were expressed in mg/g dry mass. The seed carbohydrate profile • 173 

was carried out by using the high-performance anion-exchange chromatography/pulsed • 174 

amperometric detection (HPAEC-PAD) from 2 mL of seed extract. Samples were • 175 

separated for purification on Dowex 50 × 8 cationic (100–200 mesh) and Dowex 1 × 8 • 176 

anionic (52–100 mesh) ion exchange columns. Then, the samples were lyophilized and • 177 

resuspended in 5 mL of deionized water. After sugar quantification, the concentration of • 178 

each sample was adjusted to 100 μg/mL. Samples were injected into a C18 HPLC column • 179 

(250 x 4.6 mm, 5 µm) with an elution gradient of sodium hydroxide (625 mM), ultrapure • 180 

water (Milli Q), and sodium acetate (0.5 M). Sucrose, glucose, and fructose • 181 

concentrations were determined by comparing sample peak elution times with • 182 

commercial sugar standards. • 183 

The free proline content in the seeds was determined according to Bates et al. • 184 

(1973). Lyophilized seed samples were ground with 3% m/v sulfosalicylic acid. The • 185 

crude extract was centrifuged (3,600 g for 15 minutes at room temperature), and the • 186 

supernatant (extract, 2 mL) was recovered, to which 2 mL of acid ninhydrin and 2 mL of • 187 

glacial acetic acid (concentrated) were added. The reaction medium was incubated in a • 188 

water bath (100°C for 1 h), and the reaction was stopped by immersion in an ice bath. • 189 

Subsequently, 4 mL of toluene (concentrated) was added, followed by vigorous stirring • 190 

(20 s) and the aqueous phase (superior layer) was collected for reading in a • 191 

spectrophotometer (520 nm). The results were expressed in mg proline/g dry mass. • 192 



2.5 Obtaining seedlings and water deficit experiment • 193 

After being subjected to the five pre-germination treatments (0, 1, 2, and 3 cycles of HD • 194 

and continuous hydration – CH), 100 seeds from each treatment were placed in trays with • 195 

vermiculite to germinate in a BOD-type germination chamber with a 16/8 h light/dark • 196 

photoperiod and day/night temperature of 25/20°C (Rocha, 2010). Germination was • 197 

monitored every two days; germinability (G = %) and the emergence speed index (ESI) • 198 

were evaluated using the GerminaQuant software (Marques et al., 2015). The time to • 199 

obtain germination of half of the seeds placed to germinate (T50 - days) was evaluated • 200 

according to the equation: T50 = ti + [(N/2 – ni) x (tj – ti)] / (nj – ni), where N is the final • 201 

number of seeds germinated and nj is the cumulative number of seeds germinated by • 202 

adjacent counts at times tj and ti, respectively, when ni < N/2 < nj (Farooq et al., 2005). • 203 

Seedlings with the first pair of leaves fully expanded were transplanted into 7 L pots • 204 

containing organic substrate (Natus Solos do Brasil® compost).  • 205 

Only seedlings from seeds that underwent HD cycles (0, 1, 2, and 3) were used to evaluate • 206 

the effects of water deficit as the seedlings from CH treatment did not have a high • 207 

germination rate (12.12%). The seedlings were acclimatized for 60 days in a greenhouse • 208 

and watered daily. Afterwards, the seedlings were subjected to intermittent drought • 209 

through five water treatments (control − seedlings watered daily, S7 − seedlings watered • 210 

at seven-day intervals, S14 − seedlings watered at 14-day intervals, S21– seedlings • 211 

watered at 21-day intervals and RE – seedlings rehydrated after 21 days of water • 212 

suspension and collected seven days later, on the 28th day of the experiment).  • 213 

2.6 Soil moisture (Usoil) and leaf water status  • 214 

The soil moisture (Usoil) was measured by Time Domain Reflectometry (TDR) • 215 

using a sensor model ML2-x Delta-T Devices (Theta-Probe, Cambridge, UK). The soil • 216 

moisture was measured every 7 days for the S7 treatment plants, 14 days for the S14 • 217 



treatment plants, 21 days for the S21 treatment plants before watering and after • 218 

rehydration at the end of 21 days of water suspension for the RE treatment. Then, plants • 219 

were re-irrigated, and the soil humidity was again measured one hour after water • 220 

replacement until the soil returned to values close to field capacity (approximately 20% • 221 

humidity). The leaf water potential (Ψwf) was measured on fully expanded leaves of the • 222 

third pair from the apex of branches in the predawn period using a Scholander-type • 223 

pressure pump (model 1000, PMS InstrumentCo). • 224 

2.7 Gas exchange and chlorophyll a fluorescence  • 225 

 Instantaneous measurements of net carbon assimilation rates (A, μmol CO2/m
2/s) • 226 

were assessed weekly in four plants per treatment (totaling 80 plants) using an infrared • 227 

gas analyzer – IRGA (LCpro+, ACD BioScientific Ltd., Herts, UK). Measurements were • 228 

performed in the middle part of the third fully expanded leaf from the apex, between 8:00 • 229 

– 11:00 am. The saturating photosynthetically active radiation (PAR) used during the gas • 230 

exchange measurements was 1,200 µmol photons /m2/s. The PAR was estimated in five • 231 

S. joazeiro seedlings under optimal irrigation conditions through the light curve (Fig 1.).  • 232 

 Chlorophyll a fluorescence emission was assessed in 30-min dark-adapted leaves. • 233 

Measurements were performed using a portable fluorometer (OS5p Opti-Sciences, • 234 

Hudson, NH, USA). Leaves were initially exposed to a weak pulse of far-red light (1-2 • 235 

μmol photons /m2/s) to determine the minimum emitted fluorescence (F0) when all PSII • 236 

reaction centers were in the oxidized form. Then, a saturating light pulse, with an • 237 

irradiance of 3,000 μmol photons /m2/s-1 and duration of 1 s, was applied to temporarily • 238 

promote the maximum reduction of the PSII primary electron acceptor (Qa), and the • 239 

maximum fluorescence (Fm) was determined. From these measurements, the PSII • 240 

maximum photochemical efficiency (Fv/Fm= (Fm - F0)/Fm) was calculated (Schreiber • 241 

et al., 1994). • 242 



2.8 Leaf anatomy • 243 

For the anatomical analysis, fully expanded leaves were sampled from the third • 244 

node of each plant of the three water treatments (control, severe stress – 21 days of • 245 

drought and RE – rehydration), using two replicates for each seed HD cycle (0, 1, 2, and • 246 

3), totaling 24 leaves. The leaves from the control and RE treatments were fixed in 4% • 247 

paraformaldehyde (v/v), followed by dehydration in an ethylic series (10 – 70%, v/v) and • 248 

stored for the drought treatment in 100% ethanol (v/v) to avoid rehydration. • 249 

Subsequently, fragments of the leaf blade, including the midrib, the margin, and the • 250 

region between the margin and midrib, were obtained and subjected to dehydration in n-• 251 

butyl alcohol (concentrated) and embedded in historesin (Leica Historesin Embedding • 252 

Kit, Leica, Germany). Cross-sections with a thickness of 5 µm were obtained with a • 253 

rotating microtome (RM 2155, Leica) and placed on histological slides. Slides were • 254 

stained with periodic acid-Schiff reagent (PAS) and toluidine blue and mounted with • 255 

Entellan (Merck, Germany). Sections were analyzed and photographed with a light • 256 

microscope (Zeiss Axioskop 40 HBO 50, Zeiss, Germany) using AxioVision software • 257 

(Version 4.8.2.0). The control and water-stressed plants were compared to diagnose • 258 

structural changes; under drought conditions, especially in the most severe cases, it is • 259 

expected to observe loss of cellular turgor in the tissues, reduction of chloroplasts in the • 260 

mesophyll and greater lignification in vascular tissues. • 261 

 • 262 

2.9 Statistical analysis • 263 



The germination parameters were calculated by using the GerminaQuant 1.0 software • 264 

(Marques et al., 2015). The different seed HD cycles were compared with an analysis of • 265 

variance followed by Tukey's test. To analyze seedling development, the data were • 266 

subjected to a two-factorial analysis of variance (ANOVA with two factors), represented • 267 

by the seed HD cycles and the different watering treatments of the seedling experiment. • 268 

Means were compared using Tukey's test (p<0.05). All statistical analyzes were • 269 

performed using the SISVAR at a 5% significance, and the graphs were plotted using the • 270 

SigmaPlot 11.0, Systat Software, Inc. • 271 

3.Results • 272 

3.1 The biometrics parameters and moisture in seeds • 273 

The seeds of Sarcomphalus joazeiro presented an average length of 12.76 mm and • 274 

a width of 5.7 mm. The seed moisture percentage of 7.4% indicates that it is a dry seed • 275 

(Table 1). • 276 

3.2 The germination parameters • 277 

The germination parameters were evaluated for 60 days (Table 2). Seeds that went • 278 

through the three cycles of hydration and dehydration (HD) had a higher germination • 279 

percentage (61.89%) than seeds that went through two HD cycles (24.12%), only one HD • 280 

cycle (22.25%), or that did not go through any cycle (12.12%). Seeds that went through • 281 

all three cycles had the highest emergence speed index (ESI), reaching a peak • 282 

approximately 20 days after sowing, compared to seeds that went through less HD cycles • 283 

or continuous hydration (CH). • 284 

The seed HD cycles decreased the T50 (number of days necessary for germinating • 285 

half of the seeds sown) proportionally according to the number of cycles where the • 286 

shortest one was approximately 16 days in the 3rd HD cycle while the seeds under CH • 287 

had the longest T50 (45 days, Table 2). • 288 



3.3 Seed biochemical composition  • 289 

The proline concentration of S. joazeiro seeds subjected to CH did not differ • 290 

significantly over time (Fig. 1). While, in the seeds that went through the three HD cycles, • 291 

the concentration of proline increased in the third dehydration cycle compared to previous • 292 

HD cycles and the continuous hydration treatments (Fig. 1). The concentration of • 293 

reducing soluble sugars decreased throughout the experiment in both seed continuous • 294 

hydration and HD cycles treatments (Fig. 2A). However, it was higher in 2nd and 3rd HD • 295 

cycles than in the CH seeds. The concentration of soluble sugars followed the same trend • 296 

as the reducing soluble sugars. However, it was higher in the CH seeds than in the HD • 297 

cycles seeds, especially after the second and third HD cycle (Fig. 2B).  • 298 

The concentration of sucrose was higher in the initial periods of imbibition, • 299 

corresponding to 74 hours in the seeds of continuous hydration and cycles 1 and 2 of • 300 

discontinuous hydration (Fig. 3A-B). In the HD cycles seeds, sucrose concentration • 301 

decreased after the second hydration cycle compared to the previous HD cycles. The • 302 

levels of glucose and fructose were similar in each treatment. But they were higher in the • 303 

CH and lower in the 1st and 2nd HD cycles compared to sucrose levels. In the third • 304 

hydration cycle the levels of sucrose, glucose and fructose were similar, but glucose and • 305 

fructose increased compared to sucrose levels in the dehydration of this cycle (Fig. 3A).  • 306 

3.4 Seedling water status  • 307 



The leaf water potential (Ψw) of control plants from the different seed HD cycles • 308 

was constant over the experiment (around -0.9 MPa) (Fig. 4). The levels of Ψw in plants • 309 

exposed to 14S days water deficit regime was similar to control plants regardless the seed • 310 

HD cycle. Plants exposed to 7S and 21S days of water deficit regimes presented a variable • 311 

leaf water potential in the different seed HD cycles. In the 3rd seed HD cycle, plants • 312 

exposed to 21S days of water deficit regime presented lower leaf water potential (-1.2 • 313 

MPa) than control while RE plants from all seed HD cycles recovered to the control • 314 

levels. • 315 

3.5 Gas exchange and chlorophyll a fluorescence • 316 

Our results showed that the net carbon assimilation (A) of S. joazeiro seedlings • 317 

decreased only after 21S days of water deficit regime in plants derived from seeds that • 318 

underwent 0, 1 and 2 HD cycles, while in plants from 3 HD cycles this parameter was not • 319 

affected by the water regimes compared to control plants (Fig 5). This result indicates a • 320 

better tolerance of S. joazeiro seedlings (in the initial development stage) to water deficit • 321 

after the seed HD cycles pre-treatment. After 21 days of water deficit, plants from all seed • 322 

HD cycles were rewatered and recovered the A rates to control levels (Fig 5). The • 323 

maximum quantum efficiency of PSII (Fv/Fm) did not change in all water regimes and in • 324 

seedlings from all seed HD cycles (Fig. 6). • 325 

3.6 Leaf anatomy • 326 



The leaves of S. joazeiro are flat, dorsiventral and hypostomatic, with a prominent • 327 

midrib on the abaxial surface, with a convex contour (Fig. 7-1A, C-E). The epidermis is • 328 

unistratified and has cells with thickened external periclinal walls (Fig. 7-1A, C-E); these • 329 

cells are generally periclinally elongated and are similar in size throughout their length • 330 

(Fig. 7-1C-E), except for the midrib. In the midrib, the epidermal cells on the abaxial • 331 

surface are smaller and the rounded shape predominate, and it was not detected stomata • 332 

in this region (Fig. 7-1A). Moreover, we can notice in the midrib a large vascular bundle • 333 

is evident, in addition to mesophyll cells presenting cortical cells with a rounded shape • 334 

(Fig. 7-1A); and few cortical cells on the adaxial face (Fig. 7-1A-B) interrupting the • 335 

continuation of the chlorophyll parenchyma. • 336 

The vascular bundle of the midrib is collateral, presenting an arched shape and • 337 

surrounded by fibers (Fig. 7-1B). In the remainder of the lamina, the mesophyll is • 338 

differentiated into palisade parenchyma, which is unistratified and spongy with three to • 339 

four cell layers (Fig. 7-1C-E). The vascular bundles in the remainder of the lamina are • 340 

also collateral, but they are smaller than that of the midrib and have a rounded shape. • 341 

Some of these larger caliber bundles are also surrounded by fibers (Fig. 7-1D). The leaf • 342 

margin has a rounded shape (Fig. 7-1D). In the control conditions (seed HD cycles 0 to • 343 

3), as there was no water restrictions, the cells were turgid, and the cells of the palisade • 344 

and spongy parenchyma in the mesophyll had a large number of chloroplasts (Fig. 7-1C-• 345 

E), causing a darker coloration in these tissues (Fig. 7-1C-E). • 346 



However, under drought conditions, we observed that in seedlings from seeds that • 347 

went through 0, 1, and 2 HD cycles an initial turgor loss in the epidermal cells of the • 348 

abaxial surface and/or reduction in the number of starch grains in the chloroplasts (Fig. • 349 

7-1C-D). This is probably related with a lighter coloration of the palisade and spongy • 350 

parenchyma (Fig. 7-2C-E). In these first cycles, the mesophyll cells could also be more • 351 

widely spaced, even the palisade ones (Fig. 7-2D), forming conspicuous intercellular • 352 

spaces. • 353 

All these effects were intensified in seedlings originating from seeds that went • 354 

through three HD cycles, where the epidermal cells of the abaxial face and mesophyll • 355 

showed greater turgor loss (Fig. 7-2E). In all drought treatments, the fibers that surround • 356 

the midrib vascular bundle were darker (Fig. 7-2A-B) than those of the control (Fig. 7A-• 357 

B) and rehydration (Fig. 7-2B) treatments.  • 358 

3. Discussion • 359 

Biometric is a morphological parameter that allows for the identification of • 360 

environmental influences on seed germinative characteristics as well as variation among • 361 

plant species (Santos Júnior et al., 2023). Larger seeds tend to produce healthier seedlings, • 362 

which increases their survival rate during the initial development period (Silveira et al., • 363 

2022). The biometric data found falls within the range described in the characterization • 364 

performed by Araujo et al. (2015).  • 365 

The percentage of moisture found in the seeds (7.4%) indicates that it is an • 366 

orthodox species (Table 1), a physiological characteristic found in various species of the • 367 

Caatinga. This behavior facilitates easier storage, as high moisture can damage the • 368 

embryo during this period. Santos Júnior et al. found similar moisture values (7.07%) in • 369 

seedlings of Piptadenia moniliformis, a tree species native to the Brazilian dry tropical • 370 

forest.  • 371 



Sarcomphalus joazeiro seeds have tegumentary dormancy (Ursulino et al., 2019). • 372 

Some studies (Araujo et al., 2015; Diógenes et al., 2010) suggested mechanical • 373 

scarification to standardize and accelerate seed germination; however, without the pre-• 374 

germination treatment with hydration and dehydration cycles (HD), the germination rate • 375 

in continuous hydration (CH) seeds was only 12.12%. Other studies also observed greater • 376 

efficiency in germination parameters when subjecting seeds of species that inhabit semi-• 377 

arid environments to different hydration and dehydration cycles (Rito et al., 2009; Lima • 378 

& Meiado, 2017; Lima et al., 2018). The HD cycles reduce the period necessary for • 379 

germination in those species, as observed in the lower T50 values in this study and for four • 380 

Caatinga tree species (Anadenanthera colubrina, Enterolobium contortisiliquum, • 381 

Pityrocarpa moniliformis, and Pterogyne nitens) subjected to different temperatures and • 382 

HD cycles (Nascimento et al., 2021). This result suggests a positive metabolic change in • 383 

response to HD cycles during seed germination.   • 384 

Proline is an amino acid with osmoregulatory function frequently evaluated in • 385 

stress studies since it maintains turgor in different plant tissues subjected to low water • 386 

availability in the soil (Sena et al., 2021). In our research, the seed HD cycles induced • 387 

greater proline accumulation in the seeds when subjected to drought events. Besides its • 388 

role in osmotic adjustment, proline also performs a pivotal role in stabilizing membranes • 389 

during stress conditions, preventing cellular electrolyte linkage, controlling reactive • 390 

oxygen species (ROS) levels, and regulating general protein synthesis (Hayat et al., 2012; • 391 

Kishor et al., 2015). Thus, the increase of proline concentration in seeds from the 3rd • 392 

dehydration cycle suggests a better protection against the damage caused by dehydration • 393 

during germination.  • 394 

The reduction of total soluble sugars concentration in the seeds, especially • 395 

sucrose, in the 2nd and 3rd dehydration cycles indicates that they were metabolized during • 396 



the germination, and/or degraded into glucose and fructose. According to Gill et al. • 397 

(2002), reduced germination under water stress conditions may be attributed to the effect • 398 

that seeds seemingly develop an osmotically enforced “dormancy” under water stress • 399 

conditions, which may be an adaptive strategy for seeds to prevent germination under • 400 

stressful environments thus ensuring a proper establishment of the seedling. However, • 401 

our results show that the effect of successive drying cycles can accelerate reserve • 402 

consumption, increase germination rate and emergency speed index. Furthermore, the • 403 

increase in glucose, fructose and proline concentrations in the 3rd dehydration cycle may • 404 

be a protective mechanism of cellular structures against drought. During the germination, • 405 

the reactivation of metabolism occurs during the phase II of water imbibition. In this • 406 

phase, the mobilization of sugars from starch degradation increase providing energy to • 407 

respiration and embryo growth. According to Buckeridge et al. (2000), soluble sugars • 408 

promote the formation of a glassy state which act as solutes capable of reducing chemical • 409 

reactions harmful to cellular structures during dehydration. • 410 

The metabolic changes faced during germination may cause an imprint in the • 411 

seedlings, preparing them to perform better in further adverse environments, as drought • 412 

periods. Seedlings from seeds subjected to successive cycles of dehydration showed • 413 

greater tolerance to water deficit, showing that drought memory seems to be present in • 414 

Sarcomphalus joazeiro. The leaf water potential exhibited little variation in plants • 415 

submitted to 1-3 HD cycles when compared to 0 HD cycle. It is possible that the osmotic • 416 

regulation resulting from the degradation of seed reserves was translocated to the • 417 

seedlings, maintaining a higher leaf Ψw. Sustaining a higher water status allowed • 418 

seedlings from 1-3 HD cycles seeds to maintain higher levels of A, when compared to • 419 

seedlings from 0 HD cycle seeds. Our results also demonstrated that even during the • 420 



initial growth of S. joazeiro, periods of moderate stress (7 to 14 days) were not enough to • 421 

disturb the photosynthetic performance. • 422 

In addition, seeds subjected to three HD cycles with periods of up to 21 days of • 423 

water deficit did not reduce CO2 assimilation, which may indicate the possible acquisition • 424 

of physiological memory in the plants after the dehydration events in the seeds. It is • 425 

possible that stomatal closure has partially occurred, allowing carbon assimilation to have • 426 

been maintained at minimal levels, without severe damage to the PSII. This fact is • 427 

confirmed by the absence of photochemical damage according to the results obtained for • 428 

Fv/Fm. Nascimento et al. (2019) evaluating seedlings of Hevea brasiliensis under water • 429 

deficit, showed a decrease in net carbon assimilation, with photosynthesis values very • 430 

close to zero. Santos et al. (2014) assessed the photosynthetic parameters of S. joazeiro • 431 

under field conditions in a semi-arid region and verified a decrease in net carbon • 432 

assimilation rates throughout the day, with negative values after 02:00 pm associating this • 433 

response with a reduction a stomatal limitation. Likewise, Trovão et al. (2007) evaluated • 434 

the photosynthetic parameters of 10 species from the Caatinga, including S. joazeiro. • 435 

They did not find a reduction in the PSII quantum efficiency in this species, similar to our • 436 

results; all values for Fv/Fm were within those proposed by Maxwell & Johnson (2000). • 437 



The maintenance of water status and carbon assimilation may also be related to • 438 

the morphological/anatomical attributes of S. joazeiro seedlings. Although there was a • 439 

loss of turgor in the palisade and spongy parenchyma as the drying cycles intensified, the • 440 

leaves of S. joazeiro preserved water in the tissues, preventing cell collapse. In addition, • 441 

the decrease in the amount and size of starch grains corroborates with the hypothesis that • 442 

the degradation of leaf reserves results in a higher concentration of soluble sugars. The • 443 

leaves of S. joazeiro are hypostomatic, meaning that stomata are restricted to the abaxial • 444 

face. This leaf trait represents a protection to water loss under dry environments with high • 445 

irradiance as faced by this species. • 446 

According to Vieira et al. (2022), the detrimental effects of excessive light on the • 447 

photosynthetic apparatus are mitigated by the curling of leaves inward, which presents • 448 

the palisade tissue on the inner side of the leaf. This alteration in the leaf orientation • 449 

proves highly effective in protecting photosynthetic tissues from high light stress. • 450 

A similar result was found by Cabral et al. (2004) evaluating the leaf anatomy of • 451 

Tabebuia aurea, a species that tolerates high luminosity and water deficit. The location • 452 

of the stomata on the abaxial face contributes to a better development in periods of water • 453 

stress, considering that it promotes an economy in the amount of water present in the plant • 454 

tissues (Lemos et al., 2020). Regarding to the vascular bundles, the darker color of the • 455 

fibers in the midrib of the leaves under drought indicates greater lignin deposition (Vieira • 456 

et al., 2017), which provides resistance to the leaves, preventing senescence, even with • 457 

the loss of turgor in the epidermis and mesophyll. • 458 



The morphophysiological and metabolic changes observed in this study suggest a • 459 

high adaptive capacity of S. joazeiro to periods of water limitation, which may confer • 460 

greater drought tolerance during seed discontinuous hydration cycles. Our findings can • 461 

provide support for species propagation studies focusing on management and • 462 

conservation of plants. Furthermore, our data indicate that drought memory in seeds • 463 

certainly result in higher germination rates under favorable environmental conditions, as • 464 

well as in the production of more vigorous seedlings with attributes that enable greater • 465 

resistance to environmental stresses. • 466 

These attributes may provide better survival rates and success in the reintroduction • 467 

of S. joazeiro for the reforestation of degraded areas in the Caatinga. Based on our results • 468 

and the existing information on Caatinga species, we recommend the implementation of • 469 

seed discontinuous hydration as a strategy for the reintroduction of nurse-woody species • 470 

to degraded areas in dry forests like Caatinga. This involves on-site seed planting • 471 

immediately upon maturity, utilizing direct sowing in open spaces, and direct planting of • 472 

seedlings.  • 473 

 5. Conclusions • 474 

The seed hydration memory in S. joazeiro promoted seedlings more tolerant to • 475 

drought. The photosynthetic indicators in this species strongly decreased after 21 days of • 476 

water deficit. The recovery of these indicators and the restoration of all photosynthetic • 477 

characteristics of the reirrigated plants occurred within seven days. • 478 

 Irrigation intervals of up to 14 days associated with cycles of discontinuous hydration in • 479 

the seeds do not compromise the production and survival of S. joazeiro seedlings. Both • 480 

conditions can favor specific parameters such as germination rate, contributing to a • 481 

greater and more vigorous seedling production and help restoration programs in Caatinga • 482 

degraded areas.  • 483 
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Tables • 630 

Table 1. Length, width and moisture content of seeds of Sarcomphalus joazeiro Mart. • 631 

 • 632 

Table 2. Germinability (%), emergency speed index (ESI), and the number of days for • 633 

the germination of 50% of the seeds (T50) of Sarcomphalus joazeiro Mart. subjected to • 634 

different pre-germination treatments (0, 1, 2, and 3 hydration and dehydration cycles − • 635 

HD and continuous hydration − over a total period of 183 hours) • 636 

Figures • 637 

Fig. 1 Proline concentration (mg g-1 DM) in Sarcomphalus joazeiro Mart. seeds subjected • 638 

to hydration and dehydration cycles (HD) and continuous hydration. Seven collections • 639 

were made at different time intervals (00 h, 13 h, 61 h, 74 h, 122 h, 135 h, and 183 h) • 640 

throughout the total soaking period in seeds under HD cycles and the control (continuous • 641 

hydration). Different lowercase letters compare treatments within the same evaluation • 642 

period, and uppercase letters compare treatments over collections according to Tukey's • 643 

test (P<0.05) • 644 

Fig. 2 A- Reducing sugars concentration (mg g-1 DM) and B- soluble sugars • 645 

concentration (mg g-1 DM) in Sarcomphalus joazeiro Mart. seeds submitted to hydration • 646 

and dehydration cycles (HD) and continuous hydration. Seven collections were made at • 647 

different time intervals (00h, 13h, 61h, 74h, 122h, 135h, and 183h) throughout the total • 648 

soaking period in seeds under HD cycles and the control (continuous hydration). Different • 649 

lowercase letters compare treatments within the same evaluation period, and uppercase • 650 

letters compare treatments over collections according to Tukey's test (P<0.05) • 651 



Fig. 3 Glucose, fructose, and sucrose concentration (mg g-1 DM) in S. joazeiro seeds • 652 

subjected to cycles of hydration and dehydration (A) and continuous hydration (B) • 653 

and continuous hydration. Seven collections were made at different time intervals (00h, • 654 

13h, 61h, 74h, 122h, 135h, and 183h) throughout the total soaking period in seeds under • 655 

HD cycles and the control (continuous hydration). Uppercase letters show differences • 656 

between evaluation periods and lowercase letters between sugars analyzed in each • 657 

collection. Equal letters do not differ by Tukey's test at a 5% probability • 658 

Fig.4 Leaf water potential (Ψw MPa) in Sarcomphalus joazeiro Mart. from seeds that • 659 

underwent HD hydration and dehydration cycles (0-A, 1-B, 2-C, and 3-C HD cycles) • 660 

subjected to different water treatments (Control - plants watered daily, moderate stress - • 661 

plants watered between intervals of 7 days and 14 days, severe stress – plants watered • 662 

between intervals of 21 days and RE – plants subjected to rehydration after 21 days of • 663 

water suspension). Equal lowercase letters between HD cycles and uppercase letters • 664 

between water treatments did not differ from each other by Tukey's test at a 5% • 665 

probability • 666 

Fig. 5 Net CO2 assimilation (A) in Sarcomphalus joazeiro Mart. from seeds that • 667 

underwent HD hydration and dehydration cycles (0-A, 1-B, 2-C, and 3-C HD cycles) • 668 

subjected to a dry cycle (A) through different water treatments (Control - plants watered • 669 

daily, Moderate stress – plants watered between intervals of 7 days and 14 days, Severe • 670 

stress – plants watered between intervals of 21 days and RE– plants subjected to • 671 

rehydration after 21 days of water suspension). Equal lowercase letters between HD • 672 

cycles and uppercase letters between water treatments did not differ from each other by • 673 

Tukey's test at a 5% probability • 674 



Fig.6  Maximum quantum efficiency of the PSII (Fv/Fm) in Sarcomphalus joazeiro Mart. • 675 

from seeds that underwent HD hydration and dehydration cycles (0-A, 1-B, 2-C, and 3-• 676 

C HD cycles) subjected to a dry cycle (A) through different water treatments (Control - • 677 

plants watered daily, Moderate stress – plants watered between intervals of 7 days and 14 • 678 

days, Severe stress – plants watered between intervals of 21 days and RE– plants • 679 

subjected to rehydration after 21 days of suspension of watering). Equal lowercase letters • 680 

between HD cycles and uppercase letters between water treatments did not differ from • 681 

each other by Tukey's test at a 5% probability • 682 



Fig. 7 1- Leaf anatomy of S. joazeiro in seedlings from seeds subjected to different cycles • 683 

of hydration and dehydration (HD) under normal irrigation conditions (control). HD • 684 

treatments: cycle 1 (A-B, D), cycle 0 (C), cycle 3 (E). A. General aspect of the midrib. B. • 685 

Detail of the midrib showing the vascular bundle and cortical cells. C and E. General • 686 

aspects of the region between the midrib and the margin. D. General aspect of the margin. • 687 

(Arrows indicate crystals; Arrowheads indicate starch grains in cortical cells; Square • 688 

indicates cortical cells; C, cortex; Es, estomata; Fi, fibers; M, mesophyll; Ph, phloem; PP, • 689 

palisade parenchyma; SP, spongy parenchyma; VB, vascular bundle; X, xylem). Scale • 690 

bars: A (100 µm); B-E (50 µm). 2- under drought conditions. HD treatments: cycle 2 (A-• 691 

B, D), cycle 0 (C), cycle 3 (E). A. General aspect of the midrib. B. Detail of the midrib • 692 

showing the vascular bundle; note the darker coloring of the fibers. C-E. General aspects • 693 

of the region between the midrib and the margin: in C there is a loss of turgor in the • 694 

epidermal cells of the abaxial surface; in E there is a loss of turgor in the epidermal cells • 695 

of the abaxial surface and the mesophyll; in D and E it is noted that the mesophyll cells • 696 

are spaced apart; in the three images it is shown that the mesophyll has a lighter color, • 697 

indicating a decrease in the amount of starch grains in the chloroplasts. (Arrows indicate • 698 

crystals; Arrowheads indicate starch grains in cortical cells; C, cortex; Fi, fibers; M, • 699 

mesophyll; Ph, phloem; PP, palisade parenchyma; SP, spongy parenchyma; VB, vascular • 700 

bundle; X, xylem). Scale bars: A (100 µm); B-E (50 µm) • 701 
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