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Abstract—This paper investigates the simultaneous transmit-
ting and reflecting reconfigurable intelligent surface (STAR-RIS)
assisted non-orthogonal multiple access (NOMA) systems thi
one cooperative jammer and dual eavesdroppers. To guarante
the uplink secure transmission, we maximize the sum secrecgte
under both the perfect and imperfect channel state informaton
(CSIl) by jointly optimizing the channel allocation, transmit
power and coefficient matrices. For the problem with perfect
CSl, a deep reinforcement learning algorithm is proposed bsed
on the deep deterministic policy gradient (DDPG) framework
Then, by introducing the arbitrary distorted noise to the state
space, the proposed algorithm is extended to solve the pradh
under imperfect CSI without causing additional computational
complexity. Simulation results illustrate that: 1) The synmetry
of STAR-RIS results in severe information leakage, and the
sum secrecy rate further degrades when the dual eavesdroppe
collaborate with each other. 2) The STAR-RIS with independat
phase shift can achieve higher sum secrecy rate than that wit
coupled phase shift, while the performance gap is trivial wikn
there are fewer STAR-RIS elements. 3) Our proposed algoritm
can compensate for the impacts of the imperfect CSI, and the
sum secrecy rate decreases with the increase of CSI uncemdy.

Index Terms—Simultaneous transmitting and reflecting recon-
figurable intelligent surface (STAR-RIS), physical layer curity,
resource allocation, deep reinforcement learning (DRL).

I. INTRODUCTION

more secure transmissions. In response to these challenges
the reconfigurable intelligent surface (RIS) is emergingaas
promising technology to deal with the evolving demands of
loT and communication networks [5], [6].

The RIS, also called the intelligent reflecting surfacesS{lR
is an array composed of a numerous number of passive
elements [7]. When a radio wave impinge upon the RIS, these
elements can independently configure their phase shifts and
amplitudes (also referred to as passive beamforming) tirou
the attached controller, to make the induced surface cigren
generate reflected radio waves in a desired direction, and-r
form the propagation environment into a controllable eletne
i.e., smart radio environment [8], [9]. Owing to the ability
reshape the propagation environment, it is envisionedttieat
RIS-assisted networks are capable of obtaining higheesyst
sum rate and more secure transmissions. Thus, countless
efforts have been furnished to investigate how to achieeseh
significant performance enhancements by jointly desigttieg
passive beamforming of RIS and the radio resources altotati
for the RIS-assisted networks.

For example, in the earlier study aiming to increase the
total rate of RIS-assisted system, C. Huah@l. [10] adopts
the alternating optimization and majorization-miniminat
methods to optimize the transmit power and the phase sliifts o
RIS, where the formulated problem is simplified by neglegtin

Recently, the Internet of Things (IoT) technology has dwift the inter-user interference. I_n the simulation resultss, #hown
advanced and seamlessly integrated into our daily routin&3@t the proposed scheme improves the sum rate by over 40%
From the home automation [1] to smart cities [2], fron?omPar?‘_j to the tra(_jmonal systems wnhout RIS, validatin
the health-care [3] to smart manufacturing [4], the loT hd&® significant potential of RIS in enhancing the system sum
permeated various sectors, offering people a more intefigte. Later in [11], J. Zucet al. introduce NOMA into the
gent, convenient, and efficient way of life. Nevertheless, t RIS-assisted systems, where the inter-user interfereane c
burgeoning number of 10T devices and diverse applicati(pr? handled by the successive interference cancellatiad) (Sl

requirements have placed unprecedented demands on the
munication networks, such as higher system sum rate
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dgshnique. In order to achieve the maximum sum rate, the
Spnnel and power allocation, decoding order, and refiectio
coefficients of RIS are jointly optimized by a three-step
algorithm. Different from the ideal RIS in [11] whose phase
shift is continuous, X. Muet al. [12] design a quantization-
based scheme for the non-ideal RIS-assisted NOMA systems
to optimize the discrete phase shifts, and the simulatibow/s
that only 3-bit phase shifters are required to achieve a sten r
nearly equivalent to that of an ideal RIS.

The above-mentioned literatures rely on instantaneous CSI
where it is actually challenging to obtain in the RIS-agsist
systems due to the passive nature of RIS. Thus, with the
statistical CSlI, H. Zhangt al. [13] optimize the beamforming



both at the BS and RIS by the water-filing and projecteabove-mentioned algorithms for RIS’s phase shifts optimiz
gradient ascent algorithms to maximize the sum rate for thien will not be effective. Additionally, when the RIS is
RIS-assisted systems. Although a performance gap remaileployed to improve the PLS, another challenge for passive
between the proposed scheme and the benchmark with instasamforming and resource allocation design is the acoprisit
taneous CSl, the practical implementation can benefit fitan tof correct CSI. It is challenging to obtain the perfect CSI
lower channel estimation overhead in the proposed schem@ the RIS-assisted secure transmission systems since the
Through the dedicated passive beamforming and resouRES is a nearly-passive device without the inherent ability
allocation, the RIS can enhances the sum rate by coheremfychannel sensing, and the eavesdroppers will endeavor to
combining the reflected signals at the legitimate userse-likevade the channel measurement of BS through staying silence
wise, the RIS can also reduce the signal strengths of mascid14], [18]. Therefore, the impacts of the imperfect CSI are
eavesdroppers by configuring the passive beamforming of Ri€cessary to be taken into account to improve the robustness
to avoid the information leakage and enhance the physieghen designing the algorithms for passive beamforming and
layer security (PLS) [14]. However, it is important to memti resource allocation. Assuming the channel estimationr ésro
that when the RIS is employed to enhance the PLS, thenfined within a bounded region, the worst-case secreey rat
vision is to simultaneously improve the legitimate useighal maximization problems are investigated in [24], [25] foeth
strength of and suppress that of malicious eavesdroppdR$S-assisted systems, where the Cauchy-Schwarz inegualit
rendering the passive beamforming design and resourcesigitilized to derive the upper bound of channel gain between
location more difficult. Therefore, starting from the simplthe BS and eavesdropper. In [18], [23], [26], the semi-itdini
networks with one user and one eavesdropper [15]-[17], tbenstraints of channel estimation errors are firstly tramséd
non-convex secrecy rate maximization problems for enimanciinto the equivalent linear matrix inequalities (LMIs) byetl$-
the PLS are solved by the alternating optimization algangh procedure, and then the passive beamforming and resource
to adjust the transmit beamforming of BS and the phase shaftocation are optimized via the AO algorithms. Although
coefficient of RIS, where the simulation results validate ththe above-mentioned algorithms can transform the stoichast
secrecy rate performance can be boosted by deploying the Riftimization problems of the RIS-assisted secure trarsams
For more practical scenario with multiple users, Z. Zhahg systems with the imperfect CSI into a more tractable deter-
al. [18] investigate the RIS-assisted NOMA systems and aiministic form, the upper bound method is conservative and
to reduce the transmit power in the conditions of satisfylrey may cause the waste of radio resources, while the equivalent
secrecy rate requirement. In order to better manage the inteonstraint method owns a high computational complexity due
user interference, Y. Gaet al. [19] adopt the rate-splitting to the large-dimensional LMIs. Therefore, further reskarc
multiple access (RSMA) technique for the RIS-assisted syis- still essential to design efficient algorithms with lower
tems with multiple users, and propose an iterative algorith complexity for the RIS-assisted PLS problems under impérfe
maximize the minimum secrecy rate, which can enhance t@&l.
max-min secrecy rate compared to benchmark approaches thathe above-mentioned literature showcases the superiority
either do not deploy RIS or utilize different multiple acsesof RIS in enhancing the PLS. However, the RIS can only
techniques. Besides multiple users, it is also possibl¢ thaflect the incident signals, which will cause the geogreghi
there are multiple eavesdroppers. Therefore, Y. Weingl. restrictions and limit its deployment flexibility. Recentthe
[20] study the RIS-assisted systems with multiple collgdinSTAR-RIS is proposed to handle the drawbacks of reflecting-
eavesdroppers, where the sum secrecy rate is maximized ofidy RIS [27], [28], [29]. Compared to the reflecting-onlySR|
an SDR algorithm. each element of STAR-RIS can simultaneously transmit and
To further improve the PLS for the RIS-assisted systemeflect the incident signals by manipulating both the electr
without compromising the rate performance of legitimatand magnetic currents. Meanwhile, besides the reflectieft co
users, X. Guanet al. [21] investigate the joint transmit ficients, the transmission coefficients are also incorgarratto
beamforming with artificial noise (AN) and the passive beanthe passive beamforming of STAR-RIS, which can provide
forming of RIS, where the simulation results reveal the nenore degrees of freedoms (DoFs) to configure the propagation
cessity of AN in the RIS-assisted secrecy communicati@mvironment and further enhance the PLS [30].
systems. Motivated by these results, C. Zhestgal. [22] Despite the dramatic versatility of STAR-RIS, the inves-
solve the secrecy rate maximization problems for the RI8gation of STAR-RIS, notably in the domain of STAT-RIS-
assisted systems with the integration of AN, where the senaissisted PLS, is still at an early stage. For the simplified
closed-form expressions for the transmit precoding and theenario with one legitimate user on each side of the STAR-
AN matrices are derived via Lagrange dual method, and tReS, the secrecy rate maximization problems are studied in
closed-form expression for RIS's phase shift is obtained vi31] and [32], where it is unveiled that the STAR-RIS is
the Majorization-Minimization (MM) algorithm. With the di superior than conventional RIS in the security enhancement
of AN, X. Yu et al. [23] design a robust AO algorithm toY. Zhang et al. [33] introduce the multi-carrier NOMA to
optimize the beamforming, phase shifts of RIS, as well dacilitate secure communications among numerous legiéma
the covariance matrix of AN for secure transmissions in thesers in STAR-RIS-assisted systems, where the beamforming
multiple-RIS-assisted systems. of STAR-RIS and BS, the power allocation coefficients, as
Nevertheless, if the AN is transmitted by a cooperatiweell as the user pairing are jointly optimized to maximize th
jammer located at the different locations with the BS, thsecrecy sum rate. Furthermore, Y. Hetral. [34] combine the



AN technique into the STAR-RIS-assisted NOMA systems,
and observe that the influence of AN on enhancing the secrecy |
rate is not significant when there is a large number of STAR- |
RIS elements. ,:
We note that existing studies related to the STAR-RIS- |
assisted PLS primarily concentrate on the downlink secure |
transmission, while there are more security risks in théngpl AP
for the STAR-RIS-assisted systems. This is because the STAR
RIS is required to work in the energy splitting (ES) or
mode switching (MS) protocol in order to simultaneously
serve users located at the reflection and transmission space
[35]. Nevertheless, each element of STAR-RIS is symmétrica
and own the same transmission and reflection coefficients on
both sides [36]. Thereby, it is inevitable that a portion dfig- 1. The STAR-RIS-assisted secure NOMA system.
users’ signals will leak to the other side of the STAR-RIS,
where the base station cannot receive the leaked signate Mo
detrimentally, this portion of signals may also be wiretagp
by malicious eavesdroppers. Although the uplink PLS for the
STAR-RIS is investigated in [30] and [37], the considered
scenarios compose of only one eavesdropper. Therefore, in
order to mitigate the uplink security risks arising from the ) , )
symmetry of STAR-RIS, the strategy of passive beamformingThe structure of this paper is ou_tllr_le_d as follows. The syste
and resource allocation in the STAR-RIS-assisted systeiths whodel and the problems for maximizing the sum secrecy rate

multiple eavesdroppers still require further investigati under both perfect and imperfect CSI are presented in Sectio
Motivated by the above observations, in this paper, wk In Section lil, we detail the algorithms developed to ek
investigate the sum secrecy rate maximization problems fBi€Se problems. Section IV displays various numericalltgsu
the STAR-RIS-assisted uplink systems with one cooperati@@d Section V draws the conclusions.
jammer and dual eavesdroppers, where both the perfect and
imperfect CSI are considered. The key contributions of this Il. SYSTEM MODEL AND PROBLEM FORMULATION
paper are outlined below. A. System Model
1) We propose a STAR-RIS-assisted uplink systems with \s ghown in Fig. 1, we consider a STAR-RIS-assisted se-
one _cooperatlve jammer and .du"’.‘l eavesdroppers, Wh‘é[ﬁe NOMA system, including multiple legitimate I0T device
multiple 10T devices transmit s!gnals to the BS V1dwo eavesdroppers, one BS, and one cooperative jammer. The
NOMA. The STAR-RIS_operates in the ES prot_ocol angavesdroppers located at the reflection space and tramsmiss
employs a more .practlcal couplgd phase shift model,.e gre represented as R-Eve and T-Eve, respectively. The
The cooperatlvg jammer transmit the AN to degra TAR-RIS equipped withM elements operates in the ES
the eavesdrgppmg rate, and the dual e_a\_/esdropper.s tocol. Compared to the TS and MS protocols, the STAR-
quperate with each other to form a malicious colludin IS in ES protocol can transmit and reflect the signals imtide
Aiming to enhance the PLS'_ we formulate the problem@n both sides of the surface at the same time, and hence simul-
under both the perfect and imperfect CSl. .. taneously assist the signal transmission of multiple loviaks
2) To solve the formulated sum secrecy rate maximizgs.aiaq at the reflection space and transmission space [28].
thn problem with perfect C;Sl’ WE propose a deeRt time slotn, denote the amplitude coefficients of theth
reinforcement _Ie_armng "’?'99””““ based on the Dppgement of STAR-RIS for transmission and reflectiorbas, .,
framework to jointly optlrn_lze the c_hannel aIIocatlon,(,]mdﬁrm s With Bevmns Brmn € 10,11, Brmns + Bromn — 1
transr_nlt power ar_ld coe_fhuent matrices, Whe_re a '_mv?he phase shifts of thex-th element for transmission and
mapping method is designed to_reduce the dimension r%fﬂection are given by, ., andf,.., ., respectively. Con-
action space. For the case of imperfect CSl, based Ql@iering the hardware cbnrstraint, a cbupled phase shifieinod

the sample average approximation (SAA) method, thg adopted for the STAR-RIS, where we have [38]
arbitrary distorted noise is introduced to the state space

Reflection Transmission

the performance gap is trivial when there are fewer
STAR-RIS elements. 3) Our proposed algorithm can
compensate for the impacts of the imperfect CSI, and
the sum secrecy rate decreases with the increase of CSI
uncertainty.

to retrain the network, and the solution to the formulated 100 — Orn| = jor3_7r’ — )
problem with imperfect CSI can be obtained without o T 22
causing additional computational complexity. Thus, the coefficient matrices of STAR-RIS for

3) Simulation results reveal that: 1) The symmetry dfansmission and reflection can be given hy. , =
STAR-RIS results in severe information leakage, and thiag (\/Br.1,0€"% 1", \/Br2n€?? 2 . \/Br agned'r21m)
sum secrecy rate further degrades when the dual eavasd u;,, =  diag (1 /Bi 1 netfrn /By o pedfrzn
droppers collaborate with each other. 2) The STAR-RIS/ B, a1,n€7% ), respectively.
with independent phase shift can achieve higher sumWith the aid of STAR-RIS, I0T devicé transmit signal
secrecy rate than that with coupled phase shift, whilg ,, to the BS with IE|:UZ-,”|2 = 1. It is assumed that



obstacles block the direct links between the BS/Eves aobannel’.
IoT devices [30]. At time slotn, the channels from loT  For the R/T-Eve, the received signal can be given by
device i and the jammer to the STAR-RIS are given by - "

hi,RIS,n c (ClXM and hJ,RIS,n c (ClXM, reSpeCtiVely. The yR/I’?—E\;e,n—\/pJ.,nhJ,RIS,nuX,nhRIS,R/T_Eve,nxJ,n+nEvc
channels from the STAR-RIS to the BS, R-Eve, and T-Eve can- > Y Wikny/PinhiRis,aly,nh
be represented dszis ps.n € CP*M, hris R_Even € CH¥M, k=1i=1

dh —Even LM tively. .
andhgis t—pven € C respectively wherengye ~ CN (0,0?) is the AWGN at the R/T-Eve.
The dual colluding Eves can be deemed as a super Eve.

We adopt the Rician fading channel model for all involvecf_hus to ease the expression of eavesdropping rate of iés su
channels, which includes both line-of-sight (LoS) and ho$ o ’vve first define
E61e’

(NLoS) elements. These channels are assumed to be sta
within each time slot. For example, the channel from [0THRgis_gven = uthRIS,R_Eve,n(hRIS,R_va)HuX,n
devicei to the STAR-RIS can be expressed as [30] +ug nhRIS,Tvac,n(hRIS,Tvac,n)Huj( -

(7

—a | € o [ 1 o o S
hi ris.n =1/ Pd; fis n ( 1—+€hiL,RSIS7n+ mhgﬁlg’"> , Additionally, at the super Eve, the worst-case assumpson i
(2)

H T,
RIS,R/T—Eve,n"tn»

(6)

considered, which means it can decode signals withoutrsuffe
in%efrom the inter-user interference. Hence, the eavesidngp

wherep represents the path loss at a reference distance ofgle of the super Eve for 1oT devigecan be expressed as
meter.d; rrs., iS the distance between thi¢h 10T device and

the STAR-RIS.« is the path loss exponent, whiteindicates . K | 1 Wi ke nPin i R1S,n HRI1S Eve,n (Ni RIS 2)
the Rician factorh¢fs | andhi'(5 , refer to the LoS and =2 _log +02 £ py g risHris mven (B ris.n)
NLoS components, respectively. Notably, the STAR-RIS can ™ o N
simultaneously enhance the signals of I0T devices located a

the reflection and transmission spaces, and the STAR-RIS wil _

also leak the information to both the R-Eve and T-Eve. ~ B- Problem Formulation

H

1) Perfect CS: In this paper, we focus on enhancing the
The received signal of BS at time slatis expressed as total secrecy rate of 10T devices in the STAR-RIS-assisted
K 1 NOMA system by jointly optimizing the channel allocation,
YBSn = 2, 2, wi,;m\/mhiﬁls,nuxm(hRIS,BS’n)me transmit power and coefficient matrices. Under the assumpti
k=1i=1 that the perfect CSl is available at both the BS and STAR-RIS,

H
+/P7.nhy Ris,n e n (BRIS BS 0) 23,0 + MBS, (3 Wecan formulate the optimization problem as
where X € {r,t}. p;,, andp;,, are the transmit power of N 1 N
loT devicei and Jammer at time slot. nps ~ CA (0,0?) oax > Z [Rin — Cinl (9a)
is the noise at the BSv; 1, € {0,1} indicates whether the P n=ti=l s
k-th channel is assigned to 10T devi¢eat time slotn. The .
NOMA protocol is adopted when the 10T devices upload their 5% Z Wik = L, Vi, n, Zwlk” < L,vk,n, (9b)
information to the BS. The bandwidtB is divided into & e e o
channels, represented Ks= {1,2, ..., K }. Assume that each Brimn + Bemn = 1,¥m,n, (9c)
loT device is assigned only one channel and each channel is Brm.ns Bt.mom € 10,1] ,¥m, n, (9d)
. - ) 3

_capable of supporting up tb = I /K 10T devices. Therefore, 10y — O] = Eor—W,Vm,n, (9€)
it follows that o e 22

K I 97‘,17’7,,77,1 et,m,n € [07 27T] ,Vm, n, (gf)

Zwi,k,n = 17Vi7na Zwi,k,n < L7Vka n. (4) Pin < PmaX,V’L',TL, (gg)

k=1 i=1
where [o]" = max (e,0). (9b) are the channel allocation

To mitigate the effects of jamming on the BS, the B§onstra|nts. (9¢) - (9f) are constrains on the amplitudes an

can perform zero-forcing (ZF) technique, and thus we haVhase shifts of STAR-RIS. (99g) limits the transmit power of

. ST devices.
h‘]_ymsynutyn(hRIS’BS’n)Hszn = 0. Hence, the achievable rate ] .
of 10T device: at then-th time slot can be expressed as 2) Imperfect CS: In the STAR-RIS-assisted NOMA sys-

tems, it is challenging to obtain instantaneous and pe@&idt
2 due to the passive feature of STAR-RIS and the time-varying

H
Wi, k,nPi,n (i R1s,n X (hRIS BS ) ) : ) '
» nature of wireless channels. Besides, from the perspecfive

<i,k,n+02

B
R; = Z Ve log(1+
=1

I (5)2 1The objective function and constrains of the formulatedbfms in this
Where(z‘,k,n:z,rk(i)zwk(;) W%_,k_,np;n(hi,RlsynuX,nhms,Bs,n) paper are independent of decoding order, and the signalseatiecoded

i € I\{i} represents the inter-user interference. The BS ado??é’em'y by the BS under any decoding orders when the aabliewate of
oT devices is larger than its target data rate [39]. Henoe,adopt a pre-

the _SIC technique to de_COde signals from mu_ItipIe loT da‘icq}efined decoding order and the decoding order optimizatioblem can be
m, is the given decoding order of I0T devices on theh left as our future work.



PLS, the transmission of confidential data is more sensitipeoposed algorithm for perfect CSl is adapted to address the
to the uncertainties of CSIl. Consequently, it is crucial tproblem with imperfect CSI.

consider channel estimation errors when designing strate-

gies of passive beamforming and resource allocation. 2enot )

the cascaded channels between loT devicend BS/Eves A Solution to the Perfect CS

as Gips,n = (hiris,)  hrisps, and GiR/T-Even = Problem (9) contains the optimization of binary variables
(hi,RIS,n)HhRIS,R/T—Eve,n1 respectively. The cascaded chanand the optimization variables are highly coupled with each
nel between Jammer and R/T-Eve is given®yr /r—gve,n = Other. Although the traditional optimization methods can
(h‘]_’RISm)HhRIS’R/T_EVM_ Then, the channel estimation er-achieve the suboptimal solution, they require complicated
rors can be expressed as iterations and own highly computational complexity, which
. render the execution time intolerable. Thus, in this paper,
AGipsn = Gipsn — Gipsn, R considering that the DRL algorithms can quickly respond to
AGiRr/T-Bve,n = GiR/T-Even — GAi,R/Tvac-,m (10)  gifferent environments after offline training, we first tsform
AGjR/T-Evesn = GIR/T-Eve,n — GIR/T—Eve,n Problem (9) into a Markov decision process (MDP), and

where Gi,BS,na GLR/T_EWW and GLR/T_EW’R represent then propose atn wgg;ovedt ][DDPG algorltlhmllto ma;qmzet the
corresponding estimated channels. Different from [245][2 ngOS;e\(/:vrri% rce:u?butls (terrl((eanprz)ct):gb?lri?)/m(ljﬁri];ri%itli%ﬁogl‘ '(Ti
where the channel estimation error belongs to a bound ctions, the DDPG agent can directly output the action, whic

region. In this paper, considering the practical channel E%_suitable for the STAR-RIS-assisted NOMA systems with the

. . . il
timation error is generally unbounded, we adopt the statig->- . " .
9 y P quirement of real-time control. Additionally, as an pffticy

tical error model, which assumes that the channel estin; . . .
algorithm, the experience replay technology in DDPG allows

tion errors follow the circularly symmetric complex Gaus-h lorithm t tout the best policy f the whole traini
sian (CSCGQG) distribution with zero mean. The error covarﬁ-e algonithm to output the best poticy from the whole trag

ance matrices are represented@¥sss ., ©; r/7_ e, aNd period, while the on-policy PPO algorithm overly focuses on

) i A the current rewards [40].
©; R/T-Even: respectively. Define the sample spage = 1) State space: In our proposed system, the state of time

_{GivBSﬂ_l (4) Gir/T—Even (7) , G R/T—Eve,n (4)}, wherej g6, requires to include the CSI of all links, i.eh, ris.n,

is the index of random realizations. It is found that th 5150 DRIS.BS/R_Bve/T_Even. Nevertheless due to the
channel can be regarded as the sum of the estimated chagiglive feature 'of STAR-RIS, the CSI of links related to
and channel estimation errors. If the CSI can be estimatggar R|s is difficult to be estimated directly. To tackleshi
perfectly, the samples in the spa@e@re e‘ﬁua' to each Ot_her'challenge, most of the existing literature pays attentmthe
cherW|se, the sample may be varying wjthTherefore, W_'th channel estimation methods for cascaded CSI, and revesls th
|mp_er_fect. CSl, problem (9) can b,e reformulated as astothasghe cascaded CSl is sufficient for passive beamforming and
optimization problem to maximize the expectation of SUffhgqrce allocation design in the STAR-RIS-assisted sysste

secrecy rate, i.e., [41]. Thus, the state of time slet comprises of the cascaded
N I N CSI among IoT devices/Jammer and Eves/BS, i.e.,
max E [Ri,n (j) — Ci,n (])] (11a)
@,P,UX n g ngl ; Sn = {Gi,BS,na Gi,R/T—Eve,nv GJ,R/T—Eve,n} . (12)

K I . . .
) . _ 2) Action space: According to the state of time slot, the
5.t Z“ivkv" (7) = l’w’”’zw@’m (4) < L, Vk,n, (11b) agent takes actions to maximize its reward. All optimizatio
k=1 =t variables in Problem (9) need to be included in the action

Brmn (3) + Beym.n (7) = 1,¥m, n, (11c) space. Hence, the action space is given by
ﬁr,m,n (]) 7ﬁt,m,n (]) € [07 1] ,Vm, n, (11d)

T 3 ap = {aw,na Ap n,Ah n, aB,n} . (13)
Orymn (3) = Otoman (3)] = = —,\V/ sy 10y 1le B : : ; ;
Br-m.n () = Bt () g Ot T (11e) It is worth noting that the continuous and normalized action
Ormn (7)) 0tmn (7) € 10,27),Vm,n (11f) output by the DDPG agent cannot be executed directly for
Pin () < Paax, Vi, n. (11g) the STAR-RIS-assisted NOMA system. Therefore, we de-

sign a mapping method to transform the output of agent

into executable actions. To be more specific, actgn, =
I1l. SOLUTION TO THE FORMULATED PROBLEMS {a¥10505 205+, Oy oy A% 1+ INdicates the channel allo-

In this section, aiming to tackle the formulated problems, weation, withaj, . € [0,1]. If 'V af,z.,nﬂ = hWikn = 1;
first propose an improved DRL algorithm to address probleatherwisew; ., = 0, where [e] is the ceiling operation.

(9) with perfect CSI, where the DDPG framework is utilized tey,» = {af,.,d5,,...a7 .}, af, € [0,1] represent the
handle the action space with the hybrid of continuous astiotransmit power of 10T devices. We hayg, = aﬁanax.
(p, 6, and B) and discrete actionsd), and a novel action ag,, = {a{,,d$,..,a%,,} is the phase shift of STAR-

mapping method is designed to further reduce the dimensiBiS for transmission. Although the phase shifts of STAR-
of action space. Then, by introducing the arbitrary digtrt RIS for transmission and reflection satisfy equality caaistr
noise to the state space and adjusting the sample process(%e), the phase shift for reflection cannot be directly otadi



T } 1 which depends on the parameters of actor networks. For
[STAR-RIS-AssistedNOMA systems example, at time slot, the actions of agent generated by the
actor’s current network can be expressed as

R d: Action:
s e || | = 1 (SnlAw) + 71 (17)

wheren is the action noise.

The critic network evaluates the actor’s performance via Q
value. The Q value represent the expected accumulateddewar
e e obtained by the agent when continuously executing palicy

. - According to the Bellman equation, the Q value function can
be defined as [42]

Q(Sn7an) :E[T (Sn,an) +7Q (SnJrl,anJrl)] ) (18)

where ~ stands for the discount factor. In the training of
agent, the critic network updates, through the loss function

Fig. 2. The DDPG framework for solving problem (9) with petfeCSI. minimization. The loss function is given by

LX) = ! Z [Yn — Q (Sn, anp‘q)]Qv (19)

€
e

Poli;y Soft Update LOS_S Soft Update
Gradient Function

N

L,
Current network 4

DDPG agent

through that for transmission, since the phase shift for re- ) o
flection still need to determine whether to adg? or 37/2 Wheree represents the size of |'”n|n|-bat% stands for the
on the phase shift for transmission. It is intuitively that atarget value output by the critic’s target network, whicmca

additional indicators can be employed to address this iss@€ expressed as

However, in this case, there will 8\/ acti_ons for phgse shift. Un =T + Q' (Snp1, Ans1|Ag) - (20)
Fortunately, based on the symmetry of trigonometric flomgj
it is observed that constraint (9e) can be written as Subsequently, with the gradient of Q value function, the
T om actor network is trained by maximizing the functioh The
Ormn = Ot.m.n = 3%y (14) function J evaluates the policy, which can be expressed as
Through mappinga’, , into [—~1,1], the problem ofr/2 1
or —x/2 can be solved without increasing the number of T ) = e ;Q(S”’anp‘q) lan=p(enir- - (21)

actions. Ifaf , > 0, 6mn = Oymn + 7/2; otherwise
Orm.n = 0t.m.n—m/2. While for the phase shift for transmis-
sion, we have); ., = 2maf, ... ag, = {afn, agn..., aﬁl’n},

Then, the parameter of current network of actor can be ugdate

al, , €[0,1] is the amplitude of STAR-RIS for transmission. ANy =TV, (22)
According to constraint (9c), it is obtained that whereT is a positive constant regarding the step sizg,, ./
By = a?n,naﬁr,m,n 1 a’?n,n' (15) is the gradient of functiod. According to the chain rule [42],

we have

3) Reward: The reward can evaluate the agent's perfor- 1
mar)wce by mapping the states and actions to% scalgr value.)‘“J e Zva"Q (Sns @n|Ag) lay=pu(sn) VA, 1 (SnlAn),
Specifically, when the agent executes actigrafter observing ‘ (23)
state s,, the agent will obtain reward,,. The design of where V., Q (sn,an|Ag)|a,=p(s,) iS provided by the critic
reward function should align with the objective functiondan network.Vx, it (s,|A,) is calculated by the actor’s optimizer.
constrains in Problem (9). The mapping of action spaceTq improve the stability of learning, the agent softly updat

ensures the satisfaction of constraints (9¢) - (99). Tleeeef the parameters of target networks with a small constane.,

to meet constraint (9b), the reward function can be fornedglat
as Ay =edg+ (1 —e)Ay

0,if (9b) is violated; A =ex,+ (1 —e)Au.

— 1
"7 2 [Rin — Cin]T, otherwise. (16) Based on the above analysis, the details of the developed

i=1 DDPG algorithm for solving Problem (9) with perfect CSI are
As shown in Fig. 2, the DDPG agent is composed of treummarized in Algorithm 1.
actor network and the critic network. Both of the actor and With Algorithm 1, through continuously updating the pa-
critic networks include the current and target networksa@e rameters of actor and critic networks, we can obtain a tthine
the parameters for the current networks of the actor anit criictor network (sn|A.), Which can output actions with re-
as A, and A, respectively. Correspondingly, the parametegpect to the channel states, and then map the actions to the
for the target networks of the actor and critic are givem\y  channel allocation, transmit power and coefficient masrice
and Ay . for the STAR-RIS-assisted NOMA systems to achieve the
The actor network produces actions based on the poligyaximum sum secrecy rate.

(24)



Algorithm 1 The DDPG algorithm for solving Problem (9)expressed as

with perfect CSI

1. Initialize the environment, the network parameters

A Ags A;L, and;, the bufferD;
for each episodeo:
Reset the environment as.
for each steplo:
Observe stats,, and execute actioa,,;
Calculate reward, based on (16) and observe
states,, 11;
7. Store the transitioRs,,, a,,, 7, sp+1} into the
buffer;
8. Randomly sample a mini-batch of transitions
from the buffer;
9. Update the current network of critic by mini-
mizing (19);
Update the current network of actor by maxi-
mizing (21);
Update the target networks of actor and critic
according to (24);
12. end for
13. end for
14. Output: The well-trained actor network (s, |A,.).

2.
3.
4,
5
6

10.

11.

B. Solution to the Imperfect CS

0,if (11b) is violated
I

m(2) = > [Rin(2) = Cin(2)]", otherwise. @7)
i=1

where
K
Rin(2) =) log <1 +
k=1
(28)
Grn () =D b (WG, ()
()2 (D) BS,
(29)
K
Cin(2) = Zlog (1 +
k=1

. ST
Wi knPinli (2) > 7 (30)
e 2 e
Fi (Z) = (uXﬂlGi,R—Eve,n (Z)) + (uX,nGi,T—Eve,n (2)2

2
Wi,k,npi,n (uXﬂle,BS,n (Z))
Gikn (2) + 02 ’

o2 +pynli(2)
2
31)

Then, as can be seen from Fig. 3, the transition stored into
the buffer is reformulated a&,,, a,,, 7, Snt1}, Where

1< 1<
n= Zan (2),7n = ZZTn (2).
z=1 z=1

With the modified transitions, the loss function for critic
and the functionJ for actor can be derived as

233

(32)

N N 2
L(3%) = 1Y [ -Q(5nadd)] @9
In this section, we extend Algorithm 1 to solve problem e
(11). The framework of proposed improved DDPG algorithm < 1 . N
is shown in Fig. 3. Problem (11) is a stochastic optimization J ()‘“) e ZQ (S”’anp‘q) |an:u(§n|5\u)' (34)
problem as the channel estimation errors are described by c
the probabilistic variables. The SAA method is an efficient Similar to the training process of the above subsection
solution to deal with the infinite possibilities of samples ifor perfect CSI, through updating the parameters of actor
T by transforming the original problem into an approximaténd critic networks, a well-trained actor network which can
deterministic optimization problem [43]. More interesfiyy COMpensate for the effects of imperfect CSl is finally oledin
we find that the basic idea of SAA method coincides with thEhe details of the improved DDPG algorithm for solving
training process of DDPG agent, which is approximating tH&roblem (11) with imperfect CSI are summarized in Algorithm
objective function (11a) by the arithmetic meansfsamples 2
randomly chosen fromb. Motivated by this observation, we Remark 1: It should be noted that actiax, is the response

aim to extend the DDPG a|gorithm to solve prob|em (11) to states,, rather tharﬁn, while the state stored into the butter
is §,, i.e., (8,,a,). This is because the DDPG agent reacts

“d its observed states, which indicates the agent is unable
to recognize the difference between the observed state and
tpe actual state. If we input the imperfect C§), the agent

wﬁl generate actiori,,. In this case, the transitio(s,,, 4,,)
owns the same effect witks,,, a,,), and cannot reflects the
influences of channel estimation errors. Besides, it is also
found that the complexity can be further reduced by reptacin
7 With r, (8,). Nevertheless, the error is inevitable due to
the complicated non-linear relations betwegnands,,.

Specifically, if the CSI can be perfectly estimated, the &g
observes state, = {G; 5s.n. Gir/T—Eve,ns GIR/T—Even |+
and executes actioa,,. However, it is rather challenging to
obtain the perfect CSI. What the agent actually observed
one of the possible realizations of real channels. Theeefar
order to describe the uncertainties of CSl, th¢h possible
realization of states,, is given by

Sn (Z) = {GiBS,n (Z) ’ Gf,R/T—Eve,n (Z) ) G?,R/T—Eve,n (Z)i ’
(25)
where
G{ps.n (2) = Gipsn +AGipsn (2),
Gf,R/Tvac,n (Z) = Gi,R/Tvac.,n + AG"i,R/Tvao,n (Z) )
GE,R/T_Eve,n (2) = Gy r/T—Evern + AGJR/T—Even (2) -
(26)
In this case, the reward by executing actiap can be

C. Discussion

Based on the DDPG framework and the carefully designed
mapping function, Algorithm 1 can achieve the optimization
of channel allocation, transmit power and coefficient ncasi
under the perfect CSI. To tackle the uncertainties caused by
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Fig. 3. The framework of improved DDPG algorithm for solvipgoblem (11) with imperfect CSlI.

Algorithm 2 The improved DDPG algorithm for solving gifferent.
Problem (11) with imperfect CSI

Since the sample process in Algorithm 2 does not cause

1. Initialize the environment, the network parameters extra complexity, the complexity of both Algorithm 1 and

and\,, the bufferD;

Observe stats,, and execute actioa,,;

Calculate reward,, based on (16) and

Update the iterative index= z + 1;

Calculates,, andr, based on (32);
Store the transitiofs,,, a,,, 7, s,41} into the

Randomly sample a mini-batch of transitions

Update the current network of critic by mini-

Update the current network of actor by maxi-

Update the target networks of actor and critic;

Miv Aoy A,
2. for each episodéo:
3. Reset the environment ag.
4. for each steplo:
5
6 repeat:
7
observe state,,; 1;

8.
9. until: z > Zax
10.
11.

buffer;
12.

from the buffer;
13.

mizing (33);
14,

mizing (34);
15.
16. end for
17. end for

18.Output: The well-trained actor network (§n|5\u).

Algorithm 2 depends on the DDPG algorithm. Denote the
numbers of fully connected layers in the actor and critic net
works ass and v, respectively. The complexity of Algorithm

1 and Algorithm 2 can be expressed as [42]

c—1 v—1
actor, actor critic, critic
o E Wi Wi "’E wi Wi | (35)
i=0 i=0

where wtr and w$'itic are the numbers of neurons in the
i-th layer of the actor and critic networks.

IV. SIMULATION RESULTS
A. Smulation Setting

In this section, we demonstrate the effectiveness of our
proposed algorithms for STAR-RIS-assisted NOMA systems
through simulation results. As shown in Fig. 4, a three-
dimensional coordinate network setup is considered, wihere
BS and the Jammer are deployed®t0, 10) m and(10, 45, 0)

m, respectively. The STAR-RIS is located (& 30,20) m.
Based on the location of STAR-RIS, the half space where
the BS is located is defined as reflection space, and the other
half space is transmission space. More specifically, if 10T
devicei’s y coordinate is less than thecoordinate of STAR-
RIS, then loT device is considered to be in the reflection
space. Conversely, if it is greater, 10T devi¢eis in the
transmission spacd.,/2 10T devices are randomly distributed

channel estimation errors, benefitting from the SAA metho@n the reflection/transmission space. The R-Eve and T-Eve ar
an improved DDPG algorithm, i.e., Algorithm 2, is designetpcated at(20, 25,0) m and (20, 35,0) m, respectively.

to perform the joint optimization of passive beamforming To evaluate the performance of the proposed algorithms, we
and resource allocation under the imperfect CSI. Althougt@nsider the following benchmark schemes:

both Algorithm 1 and Algorithm 2 are based on the DDPG « Actor critic (AC) algorithm [44], Alternative optimizatio

framework, their training process and sample process ate qu

(AO) algorithm [45]: To illustrate the performance of



TABLE |

SIMULATION PARAMETERS[42], [46]

Parameters Default Values
batch sizeg 32
discount factor;y 0.99
maximum transmit powerPmax 0.01 W
buffer size,D 10000
noise powerg> -90 dBm

N

STAR-RIS

Reflection space Transmission space

0,30,20
(0,0,10) ( )

pathloss factorq 2.6 S ‘ e -
BS (0,35,0)\5(-

Jammer

. . . 10,45,0
the proposed DDPG-based algorithm, the basic rein- Y R-Eve ArEve ¢ )

forcement learning algorithm, i.e., AC algorithm, and (20,25,0) (20,35,0)
the optimization-based method, i.e., AO algorithm are
implemented as benchmarks. X

« Conventional reflecting/transmitting-only RIS (C-RIS)
[12], Independent phase shift STAR-RIS (IPS-STARkig 4. simulation setup.
RIS) [28], Coupled phase shift STAR-RIS (CPS-SATR-
RIS): In order to present the performance degradation
caused by different constraints of STAR-RIS, we compafs Convergence Performance of the Proposed Algorithm
the sum secrecy rate of C-RIS, IPS-STAR-RIS, and rig, 5 illustrates the convergence performance of Alganith
CPS-SATR-RIS. Each element of the IPS-STAR-RIS can under different learning rate (Lr). Whehr = 0.1, the
independently adjust the phase shift for transmissiqBward cannot converge. This is because with a larger legrni
and reflection. While the CPS-SATR-RIS is required tpate, the change of actor network’s policy will be rapid, and
satisfy constraint (9e). Unless specified otherwise, it jfence may lead to the overshooting of optimal policy, making
assumed that the CPS-SATR-RIS is deployed to assisljifficult to converge to a stable solution. The reward of
the communication between the loT devices and the B — .01 converges to a local optimal solution, and the
in the following benchmark schemes. reward of Lr = 0.0001 requires more episodes to converge.

« Without Eve-pCSI/ipCSI (WE-pCSI/ipCSI): Whether un-Thys, hased on the above results, we set the learning rate as
der the perfect or imperfect CSI, the scheme without E\£001 in the following simulations. Under the learning rafe
aims to maximize the achievable rate of 10T deviceg, 0o1, Fig. 6 illustrates the impacts of discount factor e t
which can be regarded as an upper bound for the oth@vards. It can be seen that the proposed algorithm performs
schemes. less effectively withy = 0.01 or 0.1 compared to when

« Only R-Eve/T-Eve, Non-colluding Eves, Colluding Eves., — (.99 or 1, since a tinyy will cause the network to
To further investigate the impacts of Eves, we considgg incapable of anticipating the future practice in timeg an
the scheme with only one Eve located either at the reflegsulting in a lower reward [44]. Although the performance
tion space or the transmission space, which is referreddp , — (.99 is close to that ofy = 1, the reward might
as Only R-Eve/T-Eve. For the scheme with two Eves, frow infinitely with an improper number of time sla¢ when
they intercept the information independently, i.e., Non; — 1 Therefore, in order to avoid potential issues like

colluding Eves, the equivalent channel gain from Io{nstable training caused by the infinite rewardjs set as
device i to the Eves will equal to the channel gaimy g9 in the following simulations.

from IoT device: to the Eve with the best channel
conditions. Otherwise, if these two Eves can exchange ]
the information with each other, i.e., Colluding Eves, the- Performance Comparison
equivalent channel gain is expressed as (31). Fig. 7 shows the comparison of our proposed algorithm with
« OMA-pCSI/ipCSI 2, NOMA-Optimized Channel Allo- AC and AO algorithms. It can be seen that as the number
cation (OCA)-pCSl/ipCSI, NOMA-Fixed Channel Allo- of STAR-RIS’s elements increases, the sum secrecy rate of
cation (FCA)-pCSl/ipCSI: We also shed light on thall algorithms increases. This is because a larger number of
performance comparison between NOMA and OMA ielements can provide more potentials to design STAR-RIS'’s
the STAR-RIS-assisted uplink systems. Besides, to veripassive beamforming strategies which are aimed at enhgncin
the necessity of channel allocation optimization in ththe cascaded channels between IoT devices and the BS while
NOMA systems, the NOMA-FCA-pCSI/ipCSl scheme isimultaneously suppressing those between the loT devices
designed as a benchmark scheme for the NOMA-OC/And Eves. Besides, we can find that our proposed algorithm
pCSl/ipCSl. based on DDPG can achieve higher sum secrecy rate than the
AC algorithm since the unique current and target networks
in DDPG can enhance the robustness of training process.
2The frequency division multiple access (FDMA) scheme ispae in VW€ also observe that our proposed algorithm performs close
OMA-pCSI/ipCSI where each loT device occupies the bandwiftB/1. to the AO algorithm, while it is worth mentioning that the
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computational complexity of AO algorithm will be unaccept-
able when there are a large number of STAR-RIS elementsupled phase shift is trivial when there are fewer STAR-RIS
since the computational complexity of AO algorithm dependdements.
on the number of iterations and the number of decisionFig. 9 presents the sum secrecy rate versus the pathloss
variables. On the contrast, the computational complexity tactor between STAR-RIS and EvésWith the increase of,
our proposed DDPG-based algorithm is independent of ttiee channel gains between the STAR-RIS and Eves decrease,
number of STAR-RIS elements, which is more suitable faesulting in a lower eavesdropping rate, and hence boosting
the practical implementation. the secrecy rate. It can be found that the Only R-Eve and
Fig. 8 shows the impacts of different constraints of STARDnly T-Eve schemes perform close to each other, and they
RIS on the sum secrecy rate. Due to the fact that there is no autperform the schemes with two Eves. For the schemes with
formation leakage, the WE-pCSI scheme outperforms the otlieo Eves, the Non-colluding Eves is better than the scheme of
three schemes with Eves, which is in line with the theoréticE&olluding Eves. This is because the ES protocol of STAR-RIS
expectations. The STAR-RISs, including the CPS-STAR-RI&dicates that the incident signals will be divided into eefed
and the IPS-STAR-RIS, can achieve higher sum secrecy rated transmitted signals by the STAR-RIS. Consequentlynwhe
than the C-RIS. This is because the amplitude coefficientof e 10T devices transmit signals to the BS, only one portion
RIS for transmission and reflection can onlyer 1, which of the signals can be received by the BS via STAR-RIS’s
heavily restricts the DoFs for passive beamforming dedigm. reflecting/transmitting, and the other portion of signaldl w
also find that the IPS-STAR-RIS outperforms the CPS-STARe transmitted/reflected to the opposite side of the BS. If
RIS in terms of security enhancement, but the performanttere is only one malicious R-Eve/T-Eve, it can only wiretap
loss of CPS-STAR-RIS over IPS-STAR-RIS caused by thather the reflected signals or transmitted signals. WHile i
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there are two Eves respectively located at the reflectionesp:

and transmission space, both of the reflected signals ¢ 45+

transmitted signals will be gleaned. Even if these two Ew §407

operate independently without cooperation, the eavesgdngp :g

rate is not less than the scenario with only R-Eve/T-Eve. € 5'35¢ 1
the contrary, for the Colluding Eves, the equivalent chann & 30l T
gain from loT devicei to Eves is larger than that to any &

of individual Eve, resulting in the most serious informatio §25’

leakage. 5 20k 1

Fig. 10 presents the sum secrecy rate versus the maxim § sl NOMA-OCA-pCSIM=10

—H—NOMA-OCA-pCSIM=20 |+
—&—NOMA-FCA-pCSIM=10
—%— NOMA-FCA-pCSIM=20 |

transmit power of 10T devices. As expected, the sum secre
rate increases with the increase of uses’ maximum transi
power. Compared to the scheme of OMA-pCSI where ea | | | |
IoT device occupies different frequency, the NOMA-OCA 2 4 6 8 10 12
pCSl and NOMA-FCA-pCSI can achieve higher sum secrec, Number of IoT devices
rate since multiplg loT devices ‘?a” SimUItaneo_USIy shage tplg. 11. Sum secrecy rate versus the number of |oT devices.
same frequency via power domain multiplexing in the NOMA
systems. As can be seen from (5), the bandwidth dominates
the achievable rate of IoT devices. Hence, although the-intgate when there are only two loT devices, the average secrecy
user interference increases when there are more 0T dewicegate for multiple 10T devices tends to decrease.
the same channel, the sum secrecy ratefer 4 outperforms  Fig. 12 depicts the sum secrecy rate versus the trans-
that for L = 2. This is because the IoT devices In= 4 mit power of Jammer. The Jammer’s signal can confuse
own double the bandwidth compared to thoseLin= 2. In  the Eves and thereby reduce the eavesdropping rate. Hence,
addition, through channel allocation optimization, theMi®  pesides the scheme of WE-pCSI, the sum secrecy rates
OCA-pCSI demonstrates superior performance comparedofo the other schemes improve as the Jammer’s transmit
NOMA-FCA-pCSI. This is because in the NOMA systems, thgower increases. It is observed that when the Jammer's
achievable sum rate of 0T devices can be improved by pairie@gnsmit power exceeds 40 dBm, the performance of the
the 10T devices with more distinctive channel condition®in Only R/T Eve, Colluding Eves, and Non-colluding Eves
the same channel. schemes is close to the WE-pCSI scheme. In this situa-
Fig. 11 presents the sum secrecy rate versus the numti@n, the strength of the 10T devices’ signals interceptgd b
of 10T devices, where. = 2. It can be seen that the sumEves is much weaker than that of the intercepted jamming
secrecy rate rises with the increasing number of 10T deviceggnals, i.e., Wi,k,npi,nhi.,RIS,nHRIS7Evc,n(hi,RIS,n)H <
Interestingly, we also observe that when the number of Iﬂ],th,RIs,nHRIS_Eve,n(hJ,RIS,n)H, resulting in the eaves-
devices increases, the sum secrecy rate does not increase gnopping rate close to zero. We also note that there is still a
portionally. This is because STAR-RIS aims to maximize thaeescapable performance gap between the C-RIS-pCSI scheme
performance of overall system while simultaneously seyvirand the other schemes whgp,, = 50 dBm, which is caused
multiple 10T devices, rather than maximizing the rate foby the restricted DoFs of C-RIS. These results verify the
individual 10T devices. Therefore, compared to the secresyperiority of STAR-RIS over the traditional RIS.
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30 ; ; ; ; ; in a reduction of signal strength. We can observe that, with
the CSI uncertainty of. = 0.25, our proposed algorithm for
25k STAR-RIS-assisted NOMA systems can still achieve security
enhancement by 28.4 % and 44.5% compared to the OMA-
20l il ipCSI and C-RIS-ipCSl, respectively. In addition, with the
- 5 =0.2.Lr=0.001 growth of o, the performance gain brought by increasing the
§ 15 a:=0.05,Lr=0.001 number of elements gradually diminishe_s, which revegls the
& o =0.2,Lr=0.01 necessity of more accurate CSI for passive beamforming and
o Inappropriate Lr - e=0_05’u=0_01 resource allocation in the STAR-RIS-assisted NOMA systems
i e |
5| V. CONCLUSIONS
In this paper, we investigated the security issues present i
0 | ‘ ‘ ‘ the STAR-RIS assisted NOMA uplink systems with one co-
0 500 1000 15?10 2000 2500 3000  operative jammer and dual eavesdroppers, where the coupled
Episodes

phase shift model was employed at the STAR-RIS. Aiming
Fig. 13. Convergence performance of Algorithm 2. to maximize the sum secrecy rate unde_r t_he perfect CSI,
a DDPG algorithm was proposed to optimize the channel
allocation, transmit power and the coefficient matriceserh
D. Impacts of the Imperfect CS based on the SAA method, the proposed algorithm was further
In this part, we study the impacts of imperfecfj‘dapte_d to tackle the sum secrecy rate maximization problem
CSI on the sum secrecy rate. The CSI uncertainﬂnderl'm}t)erlf\leCt Csl v:llthoulttc%usmg a?d;t'?jntzl ?omputaﬂ:io
- 2 2 complexity. Numerical results demonstrated that our psego
's measured byo. = |®ipsnl /|Gi’BS’"| algofithmg can achieve higher sum secrecy rate Ff[han the
]®i/J7R/T,Evc7n\2/\Gi/J1R/T,EVm]2. Fig. 13 presents scheme with C-RIS and that with OMA under both the perfect
the convergence performance of Algorithm 2 under differeand imperfect CSI. More importantly, we observed that the
learning rates and CSI uncertainties. It can be seen that gygnmetry of STAR-RIS leads to severe information leakage
reward converges after 1000 episodes wHen = 0.001. in the uplink transmissions, and the sum secrecy rate degrad
Compared to the case of perfect CSI, the fluctuation @frther when the dual eavesdroppers collaborate with each
Algorithm 2 is more severe due to the uncertainties of CSlother. Additionally, we also noted that when STAR-RIS sdrve
Fig. 14 illustrates the sum secrecy rate versus the CSuUltiple loT devices simultaneously, it may prevent indival
uncertainty o.. It is found that the sum secrecy rate deloT devices from achieving maximum performance. Conse-
creases when the CSI uncertainty increases. The charmegntly, one focus of our future work would be addressing
estimation errors not only lead to the decrease of cascadeslies with different QoS constraints.
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