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Abstract

We develop a method for modelling multi-stage production using stochastic frontier anal-
ysis. This approach is suitable for the analysis of costs or output where intermediate outputs
become inputs into a subsequent stage of the production process, either within an organization
or in the form of a supply chain. Our focus is on higher education institutions in England,
and the purpose is to assess the performance of our novel methods using MCMC methods.
Without taking into full account of the complexity of the ’network’, key decisions cannot be
made regarding intake quality, student/staff ratios, per-student spending or academic reputa-
tion (the last of which involves costly decisions in terms of academic openings and the profile
of candidates desired for any given university).
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1 Introduction

Efficiency and overall performance of higher education is important for policy analysis as it is view
that education is a production process where certain inputs are transformed into a single output
can be challenged on two grounds. First , education is a multi-output process where degree re-
sults, employability and student satisfaction are produced based on inputs like research reputation,
in-take quality, student/staff ratios, and per-student spending. In the existing literature, data en-
velopment analysis (DEA) has been extensively used to adopt such a multi-output approach where
there are also multiple inputs (Thanassoulis et al., 2011; Lee and Johnes, 2022), but with only a
few exceptions (Johnes, 2014) conventional statistical models based on stochastic frontier analysis
have been confined to single output analyses of educational production (Johnes and Soo, 2017).
Second , education is inherently a multi-stage process and the traditional view of simply transform-
ing inputs into outputs has serious shortcomings. Although degree results arguably depend mostly
on intake quality and resources such as the student/staff ratio, student satisfaction is determined
by degree results (an intermediate output) and per-student spending while employability mostly
depends on research reputation (which employers utilize as a signal in their decisions) and degree
results, with per-student spending affecting employability only indirectly.Per-student spending is
unobserved by employers who must base their assessment of a graduate’s quality on the basis of
degree results and institutional reputation. Our view of the education process is that, there are
three stages or outputs: Stage A is degree results, stage B is employability (which is the ultimate
goal of the teaching function in universities) and stage C which is student satisfaction (which
affects future demand for education services from prospective students).

Ignoring the multi-stage nature of the education process has serious implications for perfor-
mance. In the naive view where output is produced using a vector of inputs, we obtain an overall
performance measure of efficiency and /or productivity. However, we do not know which stage of
production is mostly responsible for this measure. Additionally, ignoring multi-stage production
can result in serious misspecifications which directly invalidate overall performance measures. We
argue that policymakers as well as universities are interested in identifying at which stage they
perform worst (A, B or C?) rather than on how they perform overall. This question has been
addressed using network DEA methods by Johnes (2013), but our aim here is to use a statistical
approach to analyse the network. This offers the considerable advantage of estimating marginal
effects which contain potentially useful information, as well as allowing the use of the full toolbox
of statistical inference.

An overall performance indicator does not provide universities with a sense of how to allocate
their limited resources effectively. It is of course true that universities target employability along-
side other objectives but the key question is how employability can be improved . This question is
by no means trivial as employability depends on degree results and reputation but degree results
depend on inputs such as intake quality and student/staff ratio. What is the relative contribu-
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tion of reputation versus degree results? What is the relative importance of reputation versus
degree results when it comes to employability? What is the relative importance of intake quality
versus student/staff ratios in determining degree results which, in turn, determine employabil-
ity? Moreover, before embarking on specific actions regarding the inputs, are there any slacks
or opportunities for improving performance in terms of degree results, employability, and student
satisfaction?

Clearly, this is a complicated process that influences decision-making, but it reflects bet-
ter than naive models the reality of provision of educational services. Without taking into full
account the complexity of the ’network’, key decisions cannot be made regarding intake quality,
student/staff ratios, per-student spending, and academic reputation (the last of which involves
costly decisions in terms of academic openings and the profile of candidates desired for any given
university). Even so, the network that we consider may be considered a simplification - for exam-
ple, we consider the impact of research reputation on the employability of graduates, but not on
their degree results, since the latter are likely to be primarily determined by the teaching, rather
than the research, function of the institution.

Once performance measures are derived at each node or stage of the education ’network’,
one can identify where slacks exist and these can be eliminated by focusing more on the particular
nodes using relatively inexpensive (that is mostly administrative) policy actions. Effectively, this
can result in cost savings relative to uninformed decisions made based on presumptions that more
investment should be allocated to employability, reputation or per-student spending. Model-based
shadow pricing allows us to monetize the cost of existing slacks and provide direct monetary
measures of lack of good performance at the various nodes of the educational services provision.
Although decision-making seems quite complicated, as we have argued, that statistical modelling
is relatively straightforward to understand and implement, and provides a wealth of information
that can be utilized by policymakers and decision-makers in universities.

Additionally, we provide a way to assess the relative importance of each input in each node
of the process via marginal effects. These are non-trivial to compute because introducing slacks
into an otherwise linear-in-the-parameters model converts it to a highly nonlinear model. Marginal
effects can be used to facilitate the resource allocation and decision-making process, as they provide
a more complete picture of how sensitive are different nodes or outputs to the various inputs. Un-
like traditional models, where all inputs simultaneously produce all outputs (often represented by
a transformation function such as an output- or input-oriented distance function, see, Coelli et al.
(2005)), our approach allows for the determination of these marginal effects. This is particularly
important in the context of educational services provision, where the traditional view of production
does not facilitate such detailed analysis. Addressing this limitation of the traditional view in the
application of SFA models is a key motivation for our paper.

The method of stochastic frontier analysis, developed by Aigner et al. (1977) has become
widely used in contexts where production functions are to be estimated. The popularity of the

3



technique derives from the fact that it estimates the parameters of a production function as a
frontier, recognising that observations may fall short of that frontier as a consequence of technical
inefficiency. While, in many contexts, we might expect such inefficiency to be competed away,
in situations where markets operate imperfectly it seems reasonable to expect that efficiency is
distributed across producers in a non-degenerate way. The standard assumption underpinning
these models is that inefficiency can be measured by exploiting an asymmetry in the error terms of
a production function estimated by maximum likelihood, these being composed of two elements,
namely inefficiency and the usual white noise.

In applied contexts, there is often scope for inefficiency to affect units of production at
different points. An original equipment manufacturer (OEM) that sells the finished product to a
client typically relies on a complex network of firms in its supply chain in order to produce its
output and inefficiency can arise at any point within that network. Indeed, since the boundaries of
the firm may be defined in different ways (Coase, 1937), it may often be the case that inefficiency
can arise at different points, or nodes, of a network of economically significant connections within
a single organization.

The analysis of efficiency in networks has hitherto relied on non-statistical methods. The
linear programming approach of data envelopment analysis (DEA) has been used to construct
networks within which efficiency may vary - and may be evaluated - at a variety of nodes (Färe
(1991); Färe and Grosskopf (1996) ; Tone and Tsutsui (2009)). These techniques have been applied
in a wide range of contexts, notably agricultural production (Rodríguez et al. (2014)), team sports
(Moreno and Lozano (2014)) and supply chains (Lozano and Adenso-Diaz (2018)). An application
of such methods in the context of higher education is provided by Johnes (2013). However, there are
advantages to developing statistical alternatives to these non-parametric methods. In particular,
the statistical approach of stochastic frontier analysis allows the full armoury of statistical inference
to be employed.

Our aim in this paper is therefore to develop a stochastic frontier analysis model in which
production is of a multi-stage character. In so doing, we adopt a Bayesian perspective, building on
the work of Van den Broeck et al. (1994) which involves competition across a variety of assumptions
about the form and parameters of the inefficiency distribution. Osiewalski and Steel (1998) presents
a more general framework, and introduces into this context the MCMC approach of Gibbs sampling
(Geman and Geman, 1987) as a means of making posterior inferences on the parameters of the
production function and on the estimated efficiency scores. Our approach essentially generalises
this from a single equation model to a network characterised by several equations representing a
recursive system. In considering a system in which a multiplicity of inputs is used to produce more
than one output, our approach resembles that of Fernandez et al. (2002, 2005), but the recursive
nature of our system, designed to be analogous to the type of network analysed by Färe (1991)
and others, is distinctive and necessitates innovation in our method.

We illustrate the operation of our method using data on producers of higher education. This
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is a complex multi-product industry that exhibits the multi-stage properties characteristic of this
type of problem in that the outputs of some constituent parts of a higher education producers
become inputs for other parts. For example, the the output of a bachelor’s program becomes an
input into postgraduate programs, or - as here - the education process that leads to credentials is
part of a larger system in which the ultimate aim is successful employment. There are thus several
nodes within the multi-stage process that constitutes any single higher education institution and
efficiency may vary across these nodes.

The rest of the paper is structured as follows. In section 2 we develop the econometric model.
Section 3 provides the empirical example, in which efficiencies of higher educational institutions
are evaluated. This is followed in section 4 by a more detailed evaluation of the model and its
application using MCMC methods, and conclusions are drawn in section 5.

2 Econometric Model

2.1 Model Specification

In general form, we can write the equations for a multi-stage model as follows. Suppose we have
M nodes or distinct production stages where (log) inputs xit,1,xit,2, ...,xit,M are used, each one
being a K × 1 vector. Outputs are denoted by Yit,1, Y it,2, ..., Yit,M and θ ∈ Θ ⊆ ℜd is a parameter
vector. A general multi-stage model, in which production is sequential, can be written as follows:

yit,1 = µi1 + f1(xit,1; θ) + vit,1 − uit,1,

yit,2 = µi2 + f2(yit,1,xit,2; θ) + vit,2 − uit,2,

yit,3 = µi3 + f3(yit,1, yit,2,xit,3; θ) + vit,3 − uit,3,

· · ·
yit,M = µiM + fM(yit,1, yit,2, ..., yit,M−1,xit,M ; θ) + vit,M − uit,M .

(1)

In this system µi1, ..., µiM are individual effects, yit,m = log Yit,m−log Yit,1,m = 2, ...,M , yit,1 =
log Yit,1, vit = [vit,1, vit,2, ..., vit,M ]′ is a vector of two-sided error terms, uit = [uit,1, uit,2, ..., uit,M ]′ is
a vector of one-sided error terms representing technical inefficiencies and f1(), f2(), ..., fM() are out-
put distance functions that represent the technology in each stage. We note parenthetically that, for
a general output oriented distance function of the form D(Yit,1, ..., Yit,M , Xit,1, ..., Xit,K ; θ) = 1, it is
well known that we can exploit the homogeneity of degree one in outputs and use logs to express the
distance function in the form log Yit,1 = f1 (log Yit,2 − log Yit,1, ..., log Yit,M − log Yit,1, logXit,1, ..., logXit,K ; θ).
If production is not sequential but there is some jointness we can write the system as follows:
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yit,1 = µi1 + f1(yit,2, ..., yit,M ,xit,1; θ) + vit,1 − uit,1,

yit,2 = µi2 + f2(yit,1, yit,3, ..., yit,M ,xit,2; θ) + vit,2 − uit,2,

yit,3 = µi3 + f3(yit,1, yit,2, yit,4, ..., yit,M ,xit,3; θ) + vit,3 − uit,3,

· · ·
yit,M = µiM + fM(yit,1, yit,2, ..., yit,M−1,xit,M ; θ) + vit,M − uit,M .

(2)

Some zero restrictions must be present unless there is full jointness in production. For
example, if production in a given node uses as inputs the outputs from the two neighbouring nodes
and the nodes can be arranged in a circle, we have:

yit,1 = µi1 + f1(yit,2yit,M ,xit,1; θ) + vit,1 − uit,1,

yit,2 = µi2 + f2(yit,1, yit,3,xit,2; θ) + vit,2 − uit,2,

yit,3 = µi3 + f3(yit,2, yit,4,xit,3; θ) + vit,3 − uit,3,

yit,4 = µi4 + f3(yit,3, yit,5,xit,4; θ) + vit,4 − uit,4,

· · ·
yit,M = µiM + fM(yit,1, yit,M−1,xit,M ; θ) + vit,M − uit,M .

(3)

To generalize (2) we can include the inputs from the other stages of the system:

yit,1 = µi1 + f1(yit,2, ..., yit,M ,xit,1, ...,xit,M ; θ) + vit,1 − uit,1,

yit,2 = µi2 + f2(yit,1, yit,3, ..., yit,M ,xit,1, ...,xit,M ; θ) + vit,2 − uit,2,

yit,3 = µi3 + f3(yit,1, yit,2, yit,4, ..., yit,M ,xit,1, ...,xit,M ; θ) + vit,3 − uit,3,

· · ·
yit,M = µiM + fM(yit,1, yit,2, ..., yit,M−1,xit,1, ...,xit,M ; θ) + vit,M − uit,M .

(4)

While some zero restrictions must be imposed for identification, this depends on the particular
multi-stage model under consideration. If the system in (4) were linear and K̃m inputs are excluded
from the mth equation (m = 1, ...,M), the order condition for identification of the mth equation
would be K̃m > M−1. Therefore, if the number of inputs is large relative to the outputs, the order
condition would be satisfied. Of course, if the system is nonlinear (for example, of the translog
type) nonlinearity aids in identification and less stringent conditions would be required but an
examination of the identification issue would require the examination of the specific structure of
the particular multi-stage model.

It is useful at this stage to introduce the empirical application that will be explored later in
the paper. We examine the production process within the tertiary schooling sector, where insti-
tutions of higher education (typically universities) uses a variety of inputs to produce graduates
that are subsequently active in the labor market. The process of production can be viewed as a
multi-stage model in which a set of inputs is used to produce an intermediate product that itself,
along with further exogenous inputs, is subsequently used to produce the final output. This view of
a system in which graduation represents an intermediate output in a chain where the final output
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Figure 1: The Multi-Stage Process: Application to Education

is employability concords with the human capital view (Becker et al., 1964) in which education is
undertaken as an investment, the ultimate goal of which is to secure an enhanced stream of future

earnings (Suleman, 2018). Suppose the first set of inputs is x1 =

 intake quality
staff:student ratio
per student spend

, the

second input is x2 = research reputation, and the outputs are y1 = degree results, y2 is employ-
ability, and y3 is student satisfaction. See Figure 1 for an illustration of this multi-stage process.
This specification draws heavily on that used by Johnes (2013), and motivation for this model
structure is provided in that paper.

Hence, for this specific example, equations (4) may be rewritten as

Yit,1 = µi1 + f1(Xit,1; θ) + vit,1 − uit,1, (5)

Yit,2 = µi2 + f2(Xit,1,Xit,2, Yit,1; θ) + vit,2 − uit,2, (6)

Yit,3 = µi3 + f3(Xit,1; θ) + vit,3 − uit,3, i = 1, ..., n, t = 1, .., T, (7)

where capital letters are used for inputs and outputs. The inputs Xit,1 in (6) are included
for generality; whether the weights associated with them are non-zero is an empirical issue. Our
statistical assumptions are:

vit = [vit,1, vit,2, vit,3]
′ ∼ N (0,Σ), (8)

uit = [uit,1, uit,2, uit,3]
′ ∼ N+(0,Ω), (9)

µij ∼ N (0, σ2
µj), j = 1, 2, 3, (10)
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though of course other assumptions for the distributions of the efficiencies - such as the
exponential - are in principle possible. A multivariate exponential distribution may be implemented
as follows. Noting that, in the univariate case, the probability density function of the nonnegative
random variable U is: f(u) = α exp(−αu), u ≥ 0, where α > 0, the extension to the multivariate
case implies:

utm = ωto + ωtm, ∀m = 1, ...,M, (11)

where ωto follows an exponential distribution with parameter α0 and ωtm follow, indepen-
dently, an exponential distribution with parameter αm (m = 1, ...,M). Moreover, ωto and {ωtm,m =

1, ...,M} are independent. The utms are correlated through the common component ωto. For this
construction, see Kotz et al. (2000, pp. 454-455) which they attribute to Cherian (1941) and
Ramabhadran (1951).

The first two equations essentially define a recursive system so the Jacobian of the system in
equations (5)-(7) is unity. It is, of course, possible to adopt an agnostic distance function framework
into which all inputs are used to produce simultaneously the three outputs. The drawbacks of this
approach are that (i) it does not account for the sequential character of production, and (ii) it can
only identify an overall or catch-all inefficiency term whereas, in fact, there are three sources of
inefficiency in the system. In our framework we allow for correlated inefficiencies in equation (9).
All our functional forms in (5)-(7) are given by the translog specification which we write generically
as follows:

f(xit; θ) = ao + a′xit +
1

2
x′
itAxit, (12)

where a0, a and A are vectors and a symmetric matrix of parameters respectively.
The Jacobian matrix of transformation from vit to yit = [yit,1, ..., yit,M ]′ is given by the

following general expression:

Jit(θ) =


1 git,12 · · · git,1M

git,21 1 · · · git,2M
...

...
...

...
git,M1 git,M2 · · · 1

 , (13)

where git,mm′ = − ∂fm
∂yit,m′

(m ̸= m′, m,m′ = 1, ...,M). In the log-likelihood function and the log

posterior density the term that is introduced by the transformation is
∑n

i=1

∑T
t=1 log | detJit(θ)|.

Although this term depends on the data, posterior analysis by Markov Chain Monte Carlo (MCMC)
methods should usually be feasible.
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2.2 Bayesian Analysis

In the construction of the likelihood, we assume vit, uit and µij are uncorrelated and further the
µijs are uncorrelated with the explanatory variables. The likelihood function of the model in
(5)-(7) under the stochastic specification assumptions in (8)-(9) can be written as follows:

L(θ,Σ,Ω, {σ2
j};Y) ∝ |Σ|−nT/2|Ω|−nT/2

´
RnT×RMn exp

{
−1

2

∑n
i=1

∑T
t=1 [Vit(θ) + uit]

′ Σ−1 [Vit(θ) + uit]
}
·

C(Ω)nT · |Ω|−(nT+ν+1)/2 · exp
{
−1

2

∑n
i=1

∑T
t=1 u

′
itΩ

−1uit

}
· exp

{∑n
i=1

∑T
t=1 log | detJit(θ)|

}
·[∏M

j=1 σ
−n
µj exp

{
−

∑n
i=1 µ

2
ij

2σ2
µj

}]
dudµ,

(14)
where Y denotes the entire data set,
Vit(θ) = [yit,1 − f1(xit,1; θ)− µi1, yit,2 − f2(xit,1, xit,2, yit,1; θ)− µi2, ..., yit,M − fM(xit,1; θ)− µiM ]′,µ =

[µij, i = 1, ..., n, j = 1, ...,M ], u = [uit] , and C(Ω) = (2π)−k/2
´
A
exp

{
−1

2
z′z
}
dz, where the range

of integration A, is defined by the inequalities P−1z ≥ 0k, where M = 3 in our case, and Ω−1 = P ′P ,
where P is lower triangular. Moreover the vector of all {µim,m = 1, ...,M} is denoted by µ. We
can write (14) as follows:

L(θ,Σ,Ω, {σ2
m}Mm=1;Y) ∝ |Σ|−nT/2|Ω|−nT/2

´
RnT×RMn exp

{
−1

2
trA(θ,µ,u)Σ−1

}
·

C(Ω) · exp
{
−1

2
trB(θ,u)Ω−1

}
·
∏M

j=1

[
σ−n
µj exp

{
−

∑n
i=1 µ

2
ij

2σ2
j

}]
dudµ,

(15)

We use the following result:
∑N

i=1 v
′
iΣ

−1vi = trAΣ−1 = trΣ−1A,
where vi is N × K (K denotes the number of rows or equations and vis are ’residuals’),

A =
∑N

i=1 viv
′
i is K ×K and Σ is K ×K.

where A(θ,µ,u) =
∑n

i=1

∑T
t=1 [Vit(θ) + uit] [Vit(θ) + uit]

′, B(θ,u) =
∑n

i=1

∑T
t=1 uitu

′
it. Given

a prior p(θ) Bayes’ theorem yields the posterior:

p(θ|Y) ∝ L(θ;Y)p(θ). (16)

Our prior, p(θ) is flat over the domain,R, ensuring monotonicity and concavity of all translog
functional forms (see, Gallant and Golub (1984)). Therefore:

p(θ) ∝ const.I(θ ∈ R), (17)

For Σ and Ω we use priors of the form:

p(Σ) ∝ |Σ|−(ν+1)/2 exp
{
−AΣ−1

}
, p(Ω) ∝ |Ω|−(ν+1)/2 exp

{
−AΩ−1

}
, (18)

where ν = 1 and A = 10−4I. These are in the Wishart family and they are relatively diffuse,
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see Zellner (1971a), page 395. The zero mean assumption on the random effects is justified as we
always include an intercept. For the random effect variances (see Zellner (1971a), page 371) our
prior is,

q

σ2
µj

∼ χ2(ν), j = 1, 2, 3. (19)

Finally, regarding (19) we set ν = 0 and q = 10−4 so that these priors are, practically, flat.
The monotonicity and concavity restrictions are ensured using rejection sampling as the

number of observations is approximately only 200. We are satisfied when approximately 95% of all
observations satisfy the monotonicity and concavity restrictions and that our translog function is
well-behaved. The average number of rejections per MCMC iteration and observation was 5. We
have explored the issue of regularity conditions and are satisfied that we find enough regions in
the input-output space where the restrictions of monotonicity and concavity are met. Specifically,
we have imposed regularity at the mean vector of all variables +/- h times the vector of standard
deviations where h=2 initially, and then checked that the conditions hold at other points. Technical
efficiency can be computed easily as:

rit,j = S−1

S∑
s=1

exp
{
−u

(s)
it,j

}
, i = 1, ..., n, t = 1, ..., T, (20)

for the s-th draw of the Gibbs sampler. To implement the Gibbs sampler we use 10,000 draws pre-
ceded by 5,000 to mitigate the possible impact of start-up effects and ensure convergence (Geweke,
1992). Details for our MCMC procedures are provided in Appendix 1. Additionally, we use a Rie-
mannian MCMC procedure due to Girolami and Calderhead (2011). The algorithm uses first and
second derivative information from the log posterior and seems to perform particularly well. We
implement the procedure using 15,000 passes the first 5,000 of which are discarded in the burn-in
phase. The two techniques yield virtually the same results but the Riemannian MCMC procedure
behaves better in terms of autocorrelation. Therefore, we decided to report results based on the
Riemannian MCMC procedure but also make sure that we have a Gibbs sampler (the first of our
MCMC techniques) for comparison purposes and ensuring convergence to the correct posterior
distribution of the parameters and latent variables.

3 Empirical Example

The data used in the analysis that follows refer to higher education institutions in England, and
form a short balanced panel over a recent two-year period. The removal of an institutional cap
on the number of students that could be recruited by each university around the period to which
our data refer limits in practice the extent of correlation between input measures, and between
these and the fixed effects. Most of the data come from the Guardian University Rankings for
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2016 and 2017, these rankings are based on original data attached to earlier academic years. Data
on research performance are drawn from the Research Excellence Framework (REF) grade point
averages published at Times Higher Education. The 2014 REF assessed research performance
over the 2008-13 period. In contrast to the other measures used here, this does not vary over
the two years in the panel. Data on degree results - specifically the percentage of undergraduates
completing with good degrees (classified as first or upper-second class) - come from the Higher
Education Statistics Agency publication, Students in Higher Education Institutions. The insti-
tutions included in the sample are all traditional institutions in the English context; âalternative
providersâ, a new generation of institutions that are privately owned, that may be for-profit, and
that are typically small are not included.

The model estimated here is as given in (6) through (8) with the µ modelled as random effects
owing to the short nature of the panel. Descriptive statistics for efficiency are in Table 1, both
under half-normal and multivariate exponential cases, and the sample distributions of posterior
mean efficiencies (see equation (20)) are reported in Figure 2. While the availability of efficiency
scores at each node obviates the need for an aggregate score, such that other authors (for example,
Fernandez et al. (2002)) do not report an aggregate, in the interests of completeness we effect an
aggregation as follows. Denoting output prices by p1, p2, p3 and input prices by w1 and w2, note
that profit maximization implies:

p1
∂f1
∂x1

+ p2

(
∂f2
∂x1

+ ∂f2
∂y1

∂f1
∂x1

)
+ (1− p1 − p2)

∂f3
∂x1

= w1,

p2
∂f2
∂x2

= w2.
(21)

Normalizing so that p1 + p2 + p3 = 1 the above system can be solved to obtain p1, p2 and p3 given
values for the input prices.

The problem with this approach is that input prices are not available. In this work, we
propose to model input prices using latent dynamic processes, viz.:

wit =

[
wit,1

wit,2

]
= ai +Awi,t−1 + ζit, (22)

where wit,1 represents the (i,t) observation on w1, wit,2 represents the (i,t) observation on w2,
ai represents individual effects, A is a matrix of coefficients, and ζit ∼ N (0,Σζ) is a vector
error term. Define ∂fit,1

∂xit,1
= Dit,1(θ;Y)

∂fiit,2
∂xit,1

+
∂fit,2
∂yit,1

∂fit,1
∂xit,1

= Dit,2(θ;Y), ∂fit,3
∂xit,1

= Dit,3(θ;Y), and
∂fit,2
∂xit,2

= Dit,4(θ;Y). In turn, we can write (21) as follows:[
pi1Dit,1(θ;Y) + pi2Dit,2(θ;Y) + pi3Dit,3(θ;Y)

pi2Dit,4(θ;Y)

]
= wit, (23)

along with the specification in (22). In this system, we allow output prices to be different for
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different universities but time-invariant. The steady-state for input prices resulting from (22), is:

w∗
i = (I−A)−1ai. (24)

Given a prior on the elements of A, and a prior for steady-state input prices, we can recover
a prior for the individual effects which support the prior steady state input prices. (Based on a
simple regression of costs against intake quality, student: staff ratio and per-student spend, we
assume that these take the values 90, 90000 and 1000 respectively, and we assume a value of unity
for the steady state prior to the price of research reputation.) Specifically, we use:

ai|w∗
i ,A,Σζ ,Σw∗ ∼ N ((I−A)w∗

i , h [(I−A)Σw∗(I−A)′ + Σζ ]) , (25)

where h > 0 is a parameter, [(I−A)Σw∗(I−A)′ + Σζ ] is the covariance of individual effects
resulting from the steady state of (22), and Σw∗ represents the covariance matrix of steady-state
input prices which we determine as follows. We use h = 100 to make this prior vague relative to
the information provided by the term in brackets in (25) implying that we only impose information
resulting from the steady state, in a soft manner. Moreover, we enforce stationarity by assuming
that all eigenvalues of A have a modulus less than unity. For Σζ we use the same prior as in (18).

Our strategy is to embed (23) and (22) in (16). Given MCMC draws
{
θ(s), s = 1, ..., S

}
for

θ, Dit,j(θ;Y), j = 1, ..., 4 can be computed. For each draw, we run a Sequential Monte Carlo
(SMC) procedure (see Appendix C) to provide estimates of the states w∗

it along with a Girolami
and Calderhead (2011) procedure to provide draws for A,Σζ , and pij, j = 1, 2, 3. In turn, we have
university-specific output prices as well as university-specific input prices which provides a wealth
of information relevant to the most important decisions by policymakers and university adminis-
trators. An additional advantage is that because of the presence of ζit, the profit maximization
conditions in (21) need not hold exactly, so allocative inefficiency is allowed. This is particularly
important as markets have limited importance in university decision making so, examining devi-
ations from these profit maximization first order conditions is another criterion to evaluate the
optimality of actual university and administration decisions.

This allows us to report the distribution of combined posterior mean efficiencies in Figure
2. As is readily observed, the mean efficiency scores at each node is high. In the case of the
half-normal efficiency distribution, the mean achieved at stage B - representing the employability
goal - is lower than that achieved for both degree results (an intermediate output) and student
satisfaction. This being the case, it is unsurprising to note that the variability of performance
across institutions is greater for the employability goal than for the other outputs. Indeed, two
universities achieve efficiency scores lower than 0.8 in each year for this goal. This finding echoes the
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Multivariate Half-Normal Multivariate Exponential
stage A stage B stage C overall stage A stage B stage C overall

post. mean 0.935 0.905 0.952 0.932 0.931 0.942 0.985 0.935
post. median 0.944 0.921 0.958 0.922 0.939 0.958 0.991 0.926

post s.d. 0.031 0.056 0.025 0.087 0.031 0.057 0.025 0.092
5% 0.848 0.748 0.887 0.781 0.843 0.785 0.920 0.802
95% 0.975 0.974 0.983 0.970 0.970 0.997 0.999 0.999

Table 1: Sample statistics of posterior mean efficiencies

results obtained by Johnes (2013) using data for a (single) earlier year and using a non-parametric
network DEA approach, and suggests that institutions may need to devote attention to increasing
stage B efficiency - possibly by addressing the performance of their graduate placement and careers
services. Indeed the broad similarity in results between the earlier network DEA work and the
current study serves to reinforce confidence in both approaches. The correlation between efficiencies
at each of the three nodes is low. Indeed, none of the off-diagonal elements of the correlation matrix
of efficiencies exceeds 0.125.

The marginal effects on output (be it degree results, employability, or student satisfaction)
of each of the explanatory variables, evaluated at mean values, are reported in Table 2 - again
both for the half-normal and multivariate exponential cases. With the exception of the impact of
per-student spending on student satisfaction, these are all significantly positive. The magnitudes
of the marginal effects are instructive. Particularly noteworthy - and of interest to managers of
higher education institutions - is the powerful effect of intake quality, and the relatively small effect
of per-student spending, on student satisfaction. Note that the student-staff ratio variable appears
here in inverse form. All of the marginal effects have the expected sign. An additional explanatory
variable, namely a binary variable indicating that the institution gained university status in or
after 1992, was included in the empirical counterpart of each of the equations (1), (2) and (3) in
some of our early experimentation, but this proved to be insignificant in all equations. The 1992
date is notable for being the year in which many former polytechnics gained university status.
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Figure 2: Sample distributions of posterior mean efficiencies
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Multivariate Half-Normal Multivariate Exponential
stage A stage B stage C stage A stage B stage C

intake quality 0.487
(0.0421)

0.381
(0.073)

0.672
(0.234)

0.353
(0.0388)

0.377
(0.069)

0.6871
(0.215)

staff:student
ratio

0.382
(0.047)

0.284
(0.058)

0.385
(0.035)

0.385
(0.044)

0.277
(0.051)

0.371
(0.029)

per student
spend

0.244
(0.022)

0.256
(0.026)

0.005
(0.015)

0.232
(0.020)

0.271
(0.021)

0.004
(0.019)

x2, research
reputation

- 0.181
(0.066)

- - 0.192
(0.071)

-

y1, degree
results

- 0.165
(0.081)

- - 0.160
(0.077)

-

σv 0.060
(0.009)

0.053
(0.010)

0.038
(0.007)

σu 0.083
(0.019)

0.128
(0.017)

0.062
(0.013)

αm 1.324
(0.035)

1.210
(0.017)

1.410
(0.033)

α0 0.988 (0.032)
Notes: Standard deviation in parentheses. According to the posterior distributions, there is a 95% probability that these coefficients

are greater than zero.

Table 2: Marginal Effects

The Bayesian approach adopted here provides a convenient method of estimating the pa-
rameters of the model in light of the integral in the likelihood. An alternative, though more
computationally expensive, approach is to use maximum simulated likelihood. This approach is
detailed in Appendix 2, where empirical results that correspond to those of Tables 1 and 2 are also
reported. Results obtained using the two methods are congruent.

4 Monte Carlo Experiment

To examine the properties of our novel stochastic frontier model we design a Monte Carlo exper-
iment to evaluate the model in equations (5)-(7). Posterior means are taken as the true values
of θ. We assume vit,m ∼ N (0, σ2

v) and uit,m ∼ N (0, σ2
u) where the parameters σv and σu are, for

simplicity, assumed common. The reparametrization λ = σu

σv
and σ2 = σ2

v + σ2
u is adopted where λ

denotes the signal-to-noise ratio. We set σ = 0.5 and a range of different values of λ is considered.
The focus of interest is in the rank correlation between actual and estimated inefficiencies uit,m

(m = 1, 2, 3). In all cases, 15000 MCMC draws are used, the first 5,000 of which are discarded to
mitigate possible start-up effects.

Results from the Monte Carlo experiment are reported in Table 3. It is clear from this table
that the performance of the new method developed in this paper is acceptable in samples as small
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λ = 0.25 λ = 0.5 λ = 1 λ = 2 λ = 5

n = 100
T = 5 0.33 0.45 0.55 0.67 0.71
T = 10 0.37 0.49 0.60 0.72 0.77
T = 25 0.41 0.53 0.65 0.76 0.79
T = 50 0.55 0.61 0.69 0.79 0.83

n = 500
T = 5 0.43 0.57 0.66 0.79 0.90
T = 10 0.57 0.63 0.70 0.81 0.85
T = 25 0.62 0.67 0.74 0.84 0.86
T = 50 0.66 0.69 0.77 0.86 0.88

n = 1, 000
T = 5 0.58 0.63 0.72 0.82 0.87
T = 10 0.61 0.65 0.74 0.85 0.89
T = 25 0.63 0.67 0.76 0.87 0.90
T = 50 0.65 0.69 0.78 0.89 0.92

n = 5, 000
T = 5 0.73 0.77 0.80 0.92 0.94
T = 10 0.76 0.79 0.83 0.94 0.95
T = 25 0.78 0.81 0.83 0.96 0.97
T = 50 0.80 0.84 0.85 0.97 0.98

Table 3: Monte Carlo Results

as n = 100 and, asymptotically, the rank correlations between actual and estimated inefficiencies
are quite large, especially when the signal-to-noise ratio exceeds 1. With n = 5, 000 the rank
correlations range from 0.80 to 0.85 when λ = 1 depending on the different values of T , and from
0.92 to 0.97 when λ = 2. In small samples (n = 100) the rank correlations range from 0.55 to 0.69
when λ = 1, 0.67 to 0.79 when λ = 2 and 0.71 to 0.83 when λ = 5.

‘

Since we use MCMC, it is essential to examine the convergence and autocorrelation of the
MCMC draws. Convergence is assessed using Geweke (1992) convergence diagnostic. Specifically,
for each parameter, we test for equality of means in the first 50% and last 25% of the draws.
Geweke (1992) statistic converges asymptotically (in the number of draws) to a standard normal
distribution. These statistics, in our application, range from 0.813 to 1.572 in absolute value,
confirming that MCMC has converged. To examine autocorrelation, we compute autocorrelation
functions (acf) for each parameter based on the MCMC draws. In Figure 3, we report the maximal
values of autocorrelation coefficients at each lag from 1 to 50 (in absolute value but retaining the
sign for plotting). For comparison, we also plot the maximal values of autocorrelation coefficients
at each lag from a Metropolis-Hastings MCMC scheme: The Metropolis-Hastings MCMC scheme
generates a candidate draw as θc ∼ N

(
θ(s−1), hI

)
, where θ(s−1) is the previous draw and h > 0
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is a smoothing constant. The candidate is accepted with probability min
{
1, p(θc|Y)

p(θ(s−1)|Y)

}
and we

set θ(s) = θc, otherwise we repeat the previous draw and we set θ(s) = θ(s−1), ∀s = 1, ..., S. We
use the same number of draws, S, and we select h by trial-and-error so that approximately 25%
of all candidates are, eventually, accepted. The Metropolis-Hastings MCMC scheme is applied to
all parameters except Σ which can be integrated out analytically (Zellner, 1971b, p. 243, formula
(8.86)).

From the autocorrelation functions in Figure 3, the performance of MCMC is seen to be much
better in comparison with the Metropolis-Hastings MCMC as autocorrelations are practically zero
after about lag 5 in the former case. By way of contrast, autocorrelations from Metropolis-Hastings
MCMC are still close to 0.5 at lag 50.

A further interesting technical question is whether results are sensitive to the number of
draws. To this purpose, we increase the number of draws to 25,000, 35,000,...,125,000. We omit
the first 5,000 draws to mitigate possible start-up effects and we recompute posterior means and
posterior standard deviations (s.d.) of parameters. The percentage deviations relative to the case
with 15,000 draws are presented in Figure 4 from which it is evident that increasing substantially
the number of draws produces virtually no change in results.

It would be interesting, however, to adopt an informative prior of the form:

θ ∼ N (θ, V) , (26)

where θ, V are, respectively, the prior mean and prior covariance matrix. This prior is
truncated to the set where the production functions are monotone, increasing and concave to
account for the economic restrictions. To examine sensitivity with respect to the prior, we set
θ = φI and V = ω2I. We generate 10,000 different φ and ω values from uniform distributions
in the interval (−106, 106) and (1, 106) respectively. In turn, we rerun our MCMC scheme with
15,000 draws, the first 5,000 are discarded to mitigate start-up effects. We compute the percentage
deviations of posterior means and posterior s.d. relative to the baseline case which corresponds
to the prior we selected when we performed the initial computations. The results are reported in
Figure 5, where we present kernel densities of the percentage deviations of posterior means and
posterior s.d. relative to the baseline case. The kernel densities are computed using all parameter
draws and all 10,000 different φ and ω values relative to the baseline case. The results reported in
Figure 5 indicate robustness with respect to changes in the prior.

5 Conclusions

The development in this paper of a method for analysing a multi-stage stochastic frontier model
provides a powerful tool. Where much production takes place in networks - whether these take
the form of a supply chain or simply a series of connections between departments or functions of
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a single producer - it is useful to develop a model of production that explains the output at each
node, and which is capable also of identifying efficiency, as a measure of performance, at each node.
The approach promises to deliver a considerably enhanced understanding of what goes on inside
the ’black box’ that is conventionally summarized by a production function.

We have illustrated the method using data for universities in England. In line with earlier
work, the analysis confirms that the greatest efficiency challenge faced by these institutions is
attached to their employability function. Faced with the heightened prominence of rankings,
universities have in recent years increased their investment in students’ career development (Smith
et al. (2000); Mason et al. (2009)), but a small number of institutions continue to perform at a
level some distance short of the frontier in this dimension.

Clearly, the network considered here is a fairly simple one involving a chain of inputs, inter-
mediate outputs and final outputs, and there are various ways in which it could be reconfigured.
The methodology, however, can be routinely amended (changing equations 1 through 3) to rep-
resent considerably more complex characteristics of, for example, the supply chains observed in
high-technology manufacturing sectors. Applications in such contexts promise to throw much new
light on issues of productivity and company performance.
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Appendix A: Markov Chain Monte Carlo

We start with the posterior distribution whose density is:

p(θ,Σ,Ω,µ, {σ2
m}Mm=1|Y) ∝ |Σ|−(nT+ν+1)/2 ·

´
RnT×RMn exp

{
−1

2
tr [A+A(θ,µ,u)] Σ−1

}
·

C(Ω) · |Ω|−(nT+ν+1)/2 exp
{
−1

2
tr [A+B(θ,u)] Ω−1

}
σ
−(nT+ν+1)
µ1

∏3
j=1 σ

−n
µj exp

{
− q+

∑n
i=1 µ

2
ij

2σ2
j

}
dudµ.

(A.1)
From (5)-(7) we can write each translog equation as follows:

Yit,1 = µi1 + x′
it,1θ1 + vit,1 − uit,1,

...

Yit,M = µiM + x′
it,MθM + vit,M − uit,M ,

(A.2)

assuming the general case of M equations. Stacking all-time observations we obtain:

Yi,1 = µi1ιT +Xi1θ1 + vi1 − ui1,

...

Yi,M = µiM ιT +XiMθM + viM − uiM ,

(A.3)

where Yi,m = [Yi1,m, Yi2,m, ..., YiT,m]
′ (m = 1, ...,M), ιT is a T × 1 vector of ones, Xim is

a T × km matrix of all time observations for xit,m (m = 1, ...,M ), vim = [vit,m, t = 1, ..., T ]′,
uim = [uit,m, t = 1, ..., T ]′ and parameters θm are km × 1 (m = 1, ...,M). Collecting observations
for all cross sections we have:

Y1 = µ1 ⊗ ιT +X1θ1 + v1 − u1,

...

YM = µM ⊗ ιT +XMθM + vM − uM ,

(A.4)

where Ym = [Y′
1,m, ...,Y

′
n,m]

′ (m = 1, ...,M), Xm = [X′
1m, ...,X

′
nm]

′, vm = [v′
im, i = 1, ..., n]′

(m = 1, ...,M), um = [u′
im, i = 1, ..., n]′ (m = 1, ...,M), and µm = [µim, i = 1, ..., n]′ (m = 1, ...,M).

Therefore, we obtain:
Y = µ⊗ ιT +Xθ + v − u, (A.5)

where Y = [Y′
1, ...,Y

′
M ]′, µ = [µ′

1, ...,µ
′
M ]′, X = diag[X1, ...,XM ], ϑ = [θ′1, ..., θ

′
M ]′ and v,u

are defined in the obvious way.
A draw from the conditional posterior distribution of θ can be realized as:

θ ∼ N (θ̂, V ), θ ∈ R, (A.6)

where θ̂ = [X′(Σ−1⊗ I)X]−1[X′(Σ−1⊗ I)ψ], V = [X′(Σ−1⊗ I)X]−1, and ψ = Y−µ⊗ ιT +u.
The truncation to the regularity region R (see (17)) is accomplished by rejection for each MCMC
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drawn to maintain the correct posterior.
The conditional posterior distribution of Σ is given by:

p(Σ|·) ∝ |Σ|−nT+ν+1)/2 exp
{
−1

2
tr(A+A(θ,µ,u))Σ−1

}
. (A.7)

This is a Wishart distribution from which random number generation is straightforward
(Zellner, 1971, p. 389).

The conditional posterior distribution of Ω is given by:

p(Ω|·) ∝ C(Ω)nT · |Ω|−nT+ν+1)/2 exp
{
−1

2
tr(A+B(θ,u))Ω−1

}
. (A.8)

The distribution is not in any known family. However, we can draw a candidate Ωc from the
Wishart distribution whose kernel is:

f(Ω) ∝ |Ω|−nT+ν+1)/2 exp
{
−1

2
tr(A+B(θ,u))Ω−1

}
. (A.9)

Given the existing draw, say Ω(s) we accept the candidate with probability:

min

{
1,

[
C(Ωc)

C(Ω(s)

]nT}
, (A.10)

Following Tierney (1994), with the probability above we set Ω(s+1) = Ωc else we stay at
the previous draw: Ω(s+1) = Ω(s). The acceptance rate of this procedure was quite satisfactory -
with a median of 92% and never below 80% - in our Monte Carlo experiments and the empirical
application. The constant of integration, C(Ω) is computed by simulation for each Ω using 10,000
randomly generated samples from z ∼ Nk(0,Ω) subject to the constraints P−1z ≥ 0k.

To generate the µis (i = 1, ..., n) we can complete the square in the posterior or use Theil’s
mixed estimator in the following system:

Wi,m ≡ Yi,m −Ximθm + uim = µim + vm,m = 1, ...,M

0M = µi + ξi, ξi ∼ N (0,Φ),
(A.11)

where Φ = diag[σ2
µ1, ..., σ

2
µM ]. Defining Wi = [Wi,1, ...,Wi,M ]′ it can be shown that the M×1

vector µi has the following conditional posterior:

µi ∼ NM(µ̂i, V̂ ), i = 1, ..., n, (A.12)

where µ̂i = [D′ (Σ−1 ⊗ I)D+ Φ−1]
−1

D′ (Σ−1 ⊗ I)Wi, and V̂ = [D′ (Σ−1 ⊗ I)D+ Φ−1]
−1.

Here, D is a T × (M + 1) matrix, D = IM+1 ⊗ ιT .
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The scale constants have standard conditional posterior distributions:

q +
∑n

i=1 µ
2
im

σ2
µm

∼ χ2(n+ ν), m = 1, ...,M. (A.13)

It remains to draw from the conditional posteriors of latent inefficiencies. Drawing from the
conditional distribution of uit can be performed by completing the square in (14) to yield:

uit|θ,Σ,Ω, {ujτ , j ̸= i, τ ̸= t} ∼ N+(mit,V), (A.14)

where mit = −(Σ−1 + Ω−1)−1Σ−1vit(θ), and V = (Σ−1 + Ω−1)−1. Random drawings can be
computed using a Gibbs sampler to draw uit,1|uit,2, uut,3, θ,Σ,Ω, followed by uit,2|uit,1, uut,3, θ,Σ,Ω,
and uit,3|uit,1, uit,2, θ,Σ,Ω.

In addition to this MCMC procedure we use a more efficient Riemannian MCMC procedure
based on Girolami and Calderhead (2011). The Riemannian MCMC procedure uses first and
second derivative information from the log posterior and was tested in artificial data sets and the
empirical application. It was found to perform better in terms of autocorrelation and convergence
and, therefore, we report results based on this procedure. Differences of results between the two
procedures were, however, trivial.
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Appendix B: Maximum Simulated Likelihood (MSL)

We repeat here the expression for the likelihood function in (15):

L(θ,Σ,Ω, {σ2
m}Mm=1;Y) ∝ |Σ|−nT/2|Ω|−nT/2

´
RnT×RMn exp

{
−1

2
trA(θ,µ,u)Σ−1

}
·

C(Ω) · exp
{
−1

2
trB(θ,u)Ω−1

}
σ−nT
µ1

∏3
j=1 σ

−n
µj exp

{
−

∑n
i=1 µ

2
ij

2σ2
j

}
dudµ.

(B.1)

It is possible to concentrate with respect to the different elements and obtain:

L(θ,Σ,Ω, {σ2
m}Mm=1;Y) ∝ |Ω|−nT/2

´
RnT×RMn |A(θ,µ,u)|−nT/2·

C(Ω) · exp
{
−1

2
trB(θ,u)Ω−1

}
σ−nT
µ1

∏3
j=1 σ

−n
µj exp

{
−

∑n
i=1 µ

2
ij

2σ2
j

}
dudµ.

(B.2)

For economy in notation, we define ϑ =
[
θ′, vech(Σ)′, vech(Ω)′, {σ2

m}Mm=1

]′ and we express the
likelihood as follows:

L(ϑ;Y) ∝
ˆ
RnT×RMn

g(ϑ,u,µ)dudµ, (B.3)

where

g(ϑ,u,µ) = |Ω|−nT/2|A(θ,µ,u)|−nT/2·
C(Ω) · exp

{
−1

2
trB(θ,u)Ω−1

}
σ−nT
µ1

∏3
j=1 σ

−n
µj exp

{
−

∑n
i=1 µ

2
ij

2σ2
j

}
.

(B.4)

The major computational burden is in evaluating the multivariate integral with respect to u

and µ. Suppose we had an importance density function I1(u; γ) · I2(µ; γ) from which simulation
of random vectors

{
u
(s)
t ,µ

(s)
t , s = 1, ..., S

}
is possible and γ is a known vector of parameters set in

advance. In this case we can approximate the likelihood as follows:

L(ϑ;Y) ∝
ˆ
RnT×RMn

g(ϑ,u,µ)

I1(u; γ) · I2(µ; γ)
I1(u; γ) · I2(µ; γ)dudµ. (B.5)

In turn the likelihood can be approximated by simulation:

L̂(ϑ;Y) ∝ S−1

S∑
s=1

g(ϑ,u(s),µ(s))

I1(u(s); γ) · I2(µ(s); γ)
. (B.6)

In turn, we can maximize the log of the likelihood, log L̂(ϑ;Y), with respect to ϑ. To
craft the importance densities we rely on information from MCMC. Specifically, we specify first
I1(u; γ), I2(µ; γ) as

I1(u; γ) =
n∏

i=1

T∏
t=1

fu,it(uit; γ), I2(µ; γ) =
n∏

i=1

M∏
m=1

fµ,im(µim; γ). (B.7)

For fu,it(uit; γ) we use the MCMC draws
{
log u

(s)
it , s = 1, ..., S

}
and fit a Student-t distribu-
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Multivariate Half-Normal Multivariate Exponential
stage A stage B stage C overall stage A stage B stage C overall

post. mean 0.928 0.898 0.950 0.917 0.927 0.933 0.981 0.925
post. median 0.936 0.912 0.955 0.919 0.940 0.948 0.987 0.923

post s.d. 0.028 0.044 0.023 0.071 0.030 0.054 0.023 0.090
5% 0.839 0.745 0.882 0.780 0.839 0.788 0.923 0.798
95% 0.977 0.976 0.985 0.973 0.970 0.989 0.995 1.000

Table B.1: Sample statistics of posterior mean efficiencies

tion with five degrees of freedom with location and scale parameters determined from the draws{
u
(s)
it , s = 1, ..., S

}
. For fµ,im(µim; γ) we use a Student-t distribution with five degrees of freedom

with location and scale parameters determined from the draws
{
µ
(s)
im, s = 1, ..., S

}
. The degrees

of freedom and location and scale parameters of these importance densities are subsumed in pa-
rameter vector γ. Without information from MCMC we have found it difficult to find appropriate
importance densities as parameters γ must be fixed and are not allowed to change in thew course
of MSL. This testifies to the difficulty of the problem of MSL and the fact that MCMC methods
of inference are better suited. We try S =100, 200, 300 etc until estimates of ϑ converge within
10−6. Finally, we select S = 700 in the case of the multivariate half - normal and S=500 in the
case of the multivariate exponential distribution. The empirical results are reported in Tables B.1
and B.2.

Appendix C: Description of Sequential Monte Carlo

The particle filter methodology can be applied to state space models of the general form:

yT ∼ p(yt|xt), st ∼ p(st|st−1), (C.1)

where st is a state variable (wit in our case). For general introductions see Gordon (1997), Gordon
et al. (1993), Doucet et al. (2001) and Ristic et al. (2004).

Given the data Yt the posterior distribution p(st|Yt) can be approximated by a set of (auxil-
iary) particles

{
s
(i)
t , i = 1, ..., .N

}
with probability weights

{
w

(i)
t , i = 1, ..., N

}
where

∑N
i=1w

(i)
t =

1. The predictive density can be approximated by:

p(st+1|Yt) =

ˆ
p(st+1|st)p(st|Yt)dst ≃

N∑
i=1

p(st+1|s(i)t )w
(i)
t , (C.2)
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Multivariate Half-Normal Multivariate Exponential
stage A stage B stage C stage A stage B stage C

intake quality 0.475
(0.044)

0.387
(0.071)

0.684
(0.244)

0.347
(0.042)

0.360
(0.055)

0.655
(0.223)

staff:student
ratio

0.375
(0.043)

0.267
(0.055)

0.381
(0.032)

0.377
(0.039)

0.265
(0.048)

0.370
(0.032)

per student
spend

0.251
(0.021)

0.258
(0.020)

0.004
(0.017)

0.226
(0.016)

0.263
(0.019)

0.003
(0.022)

x2, research
reputation

- 0.177
(0.062)

- - 0.188
(0.068)

-

y1, degree
results

- 0.157
(0.078)

- - 0.158
(0.068)

-

σv 0.057
(0.008)

0.051
(0.013)

0.035
(0.006)

σu 0.080
(0.017)

0.123
(0.019)

0.060
(0.014)

αm 1.319
(0.039)

1.225
(0.019)

1.389
(0.031)

α0 0.984 (0.030)
Notes: Standard deviation in parentheses.

Table B.2: Marginal Effects

and the final approximation for the filtering density is:

p(st+1|Yt) ∝ p(yt+1|st+1)p(st+1|Yt) ≃ p(yt+1|st+1)
N∑
i=1

p(st+1|s(i)t )w
(i)
t . (C.3)

The basic mechanism of particle filtering rests on propagating
{
s
(i)
t , w

(i)
t , i = 1, . . . , N

}
to

the next step, viz.
{
s
(i)
t+1, w

(i)
t+1, i = 1, . . . , N

}
but this often suffers from the weight degeneracy

problem. If parameters θ ∈ Θ ∈ ℜk are available, as is often the case, we follow Liu and West
(2001) where parameter learning takes place via a mixture of multivariate normals:

p(θ|Yt) ≃
N∑
i=1

w
(i)
t N(θ|aθ(i)t + (1− a)θ̄t, b

2Vt), (C.4)

where θ̄t =
∑N

i=1w
(i)
t θ

(i)
t , and Vt =

∑N
i=1 w

(i)
t (θ

(i)
t − θ̄t)(θ

(i)
t − θ̄t)

′. The constants a and b are
related to shrinkage and are determined via a discount factor δ ∈ (0, 1) as a = (1 − b2)1/2 and
b2 = 1− [(3δ − 1)/2δ]2. See also Casarin and Marin (2007).

Andrieu and Roberts (2009), Flury and Shephard (2011) and Pitt et al. (2012) provide
the Particle Metropolis-Hastings (PMCMC) technique which uses an unbiased estimator of the
likelihood function p̂N(Y |θ) as p(Y |θ) is often not available in closed form.

29



Given the current state of the parameter θ(j) and the current estimate of the likelihood, say
Lj = p̂N(Y |θ(j)), a candidate θc is drawn from q(θc|θ(j)) yielding Lc = p̂N(Y |θc) . Then, we set
θ(j+1) = θc with the Metropolis - Hastings probability:

A = min

{
1,

p(θc)Lc

p(θ(j)Lj

q(θ(j)|θc

q(θc|θ(j))

}
, (C.5)

otherwise we repeat the current draws:
{
θ(j+1), Lj+1

}
=
{
θ(j), Lj

}
.

Hall et al. (2014)propose an auxiliary particle filter which rests upon the idea that adaptive
particle filtering Pitt et al. (2012) used within PMCMC requires far fewer particles that the stan-
dard particle filtering algorithm to approximate p(Y |θ). From Pitt and Shephard (1999) we know
that auxiliary particle filtering can be implemented easily once we can evaluate the state transition
density p(st|st−1). When this is not possible, Hall et al. (2014) present a new approach when, for
instance, st = g(st−1, ut) for a certain disturbance. In this case we have:

p(yt|st−1) =

ˆ
p(yt|st)p(st|st−1)dst, (C.6)

p(ut|st−1; yt) = p(yt|st−1, ut)p(ut|st−1)/p(yt|st−1). (C.7)

If one can evaluate p(yt|st−1) and simulate from p(ut|st−1; yt) the filter would be fully adaptable
Pitt and Shephard (1999). One can use a Gaussian approximation for the first-stage proposal
g(yt|st−1) by matching the first two moments of p(yt|st−1). So in some way we find that the
approximating density p(yt|st−1) = N (E(yt|st−1),V(yt|st−1)). In the second stage, we know that
p(ut|yt, st−1) ∝ p(yt|st−1, ut)p(ut) . For p(ut|yt, st−1) we know it is multimodal so suppose it has
M modes are ûm

t , for m = 1, . . . ,M . For each mode we can use a Laplace approximation. Let
l(ut) = log [p(yt|st−1, ut)p(ut)] . From the Laplace approximation we obtain:

l(ut) ≃ l(ûm
t ) +

1
2
(ut − ûm

t )
′∇2l(ûm

t )(ut − ûm
t ). (C.8)

Then we can construct a mixture approximation:

g(ut|xt, st−1) =
M∑

m=1

λm(2π)
−d/2|Σm|−1/2 exp

{
1
2
(ut − ûm

t )
′Σ−1

m (ut − ûm
t

}
, (C.9)

where Σm = −[∇2l(ûm
t )]

−1 and λm ∝ exp {l(um
t )} with

∑M
m=1 = 1. This is done for each particle

sit. This is known as the Auxiliary Disturbance Particle Filter (ADPF).
An alternative is the independent particle filter (IPF) of Lin et al. (2005). The IPF forms a

proposal for st directly from the measurement density p(yt|st) although Hall et al. (2014) are quite
right in pointing out that the state equation can be very informative.

In the standard particle filter of Gordon et al. (1993) particles are simulated through the state
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density p(sit|sit−1) and they are re-sampled with weights determined by the measurement density
evaluated at the resulting particle, viz. p(yt|sit).

The ADPF is simple to construct and rests upon the following steps:
For t = 0, . . . , T − 1 given samples skt ∼ p(st|Y1:t) with mass πk

t for k = 1, ..., N .
1) For k = 1, . . . , N compute ωk

t|t+1 = g(yt+1|skt )πk
t , π

k
t|t+1 = ωk

t|t+1/
∑N

i=1 ω
i
t|t+1 .

2) For k = 1, . . . , N draw s̃kt ∼
∑N

i=1 π
i
t|t+1δ

i
st(dst).

3) For k = 1, . . . , N draw uk
t+1 ∼ g(ut+1|s̃kt , yt+1) and set skt+1 = h(skt ;maruk

t+1).
4) For k = 1, . . . , N compute

ωk
t+1 =

p(yt+1|skt+1)p(u
k
t+1)

g(yt+1|skt )g(uk
t+1|s̃kt , yt+1)

, πk
t+1 =

ωk
t+1∑N

i=1 ω
i
t+1

. (C.10)

It should be mentioned that the estimate of likelihood from ADPF is:

p(Y1:T ) =
T∏
t=1

(
N∑
i=1

ωi
t−1|t

)(
N−1

N∑
i=1

ωi
t

)
. (C.11)

We use this approach to integrate out the latent dynamic process from (23) and (22).
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