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Sub-micrometer-size devices are strong candidates for future use as probes of quantum fluids. They can be reproducibly
manufactured with resonant frequencies in the range of kilohertz to gigahertz and have low power consumption and
dissipation. Here, we present doubly clamped aluminum nanobeams of lengths from 15 µm up to 100 µm operated in
vacuum and the hydrodynamic regime of liquid 4He. We observe that in vacuum devices are described well using a
simple harmonic motion with a constant Duffing coefficient and in helium quantitatively model their behavior with the
conventional hydrodynamic model.
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Superfluid research has benefited from improvements in
nanofabrication facilities and their availability, which have
promoted a wider utilization of micro- and nanoelectrome-
chanical systems (MEMS and NEMS). The high force sen-
sitivity, small mass, and size of MEMS and NEMS make
them ideal local probes in superfluid 4He1–6 and 3He7–9. In
superfluid 4He, NEMS can produce and detect excitations
such as rotons and phonons10–13. Furthermore, they have
opened up new avenues for studying topological defects in
quantum fluids: a MEMS resonator detected the presence
of remnant quantum vortices on device dynamics6, and a
nanobeam NEMS captured and trapped single quantum vor-
tices along its length14. In superfluid 3He-B, the NEMS di-
mensions approach the superfluid coherence length but their
adaptation has been slower owing to the more stringent en-
vironment requirements. So far, MEMS and NEMS devices
have been utilized to study Andreev bound states7, Bogoli-
ubov quasiparticles8,9 and to visualize a tangle of quantum
vortices using a 5 by 5 pixel quasiparticle camera15. Prac-
tical applications of submerging devices in superfluid 4He in-
clude determining the intrinsic damping mechanism of NEMS
due to two-level systems13, and improving the sensitivity of
the optomechanical setup as a result of better cooling16. Sys-
tematic studies of quantum turbulence or search for dark mat-
ter using superfluid 3He9 rely on the availability of arrays of
NEMS and here we assess how similar results are obtained
using aluminum beams of varying lengths, manufactured on a
silicon substrate by a nominally identical process. Technolog-
ically such beams are easy to fabricate, and at low tempera-
tures they are tensioned due to thermal contraction mismatch
and have mechanical properties similar to prestressed Si3N4
structures. Furthermore, aluminum on bare silicon offers the
possibility to integrate low-frequency NEMS into microwave
resonators and create optomechanical devices with enhanced
sensitivities17.
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We present the results of five doubly-clamped aluminum
beams patterned using electron-beam lithography on a sili-
con substrate, followed by aluminum deposition, and reactive
ion etching. Beams have lengths, ℓ, of 15 µm, 25 µm, 50 µm,
75 µm and 100 µm with a rectangular cross section of height
h ≃ 100nm and width w ≃ 160nm. The beams are suspended
2 microns above the substrate. Figure 1 shows a scanning
electron microscope image of the 25 µm beam and the mag-
netomotive measurement scheme that is employed to excite
and detect beams’ motion. A vector network analyzer (VNA)
drives the beams in a magnetic field, B, of 5 T. The voltage
output of the VNA, Vout, is decreased using an attenuator, A,
by a factor of 60 dB or 80 dB. The circuit impedance, Z, con-
verts the attenuated voltage into a current, and the resulting
Laplace force causes the beam to vibrate in the plane of the
chip. The beam’s motion in a magnetic field gives rise to a
Faraday electromotive force (EMF) voltage that is amplified
at room temperature with a power gain, G, 40 dB or 80 dB and
subsequently recorded by the VNA as the transmission signal
S21. The inset of the Fig. 1 shows a frequency response of a
25 µm beam in vacuum at 4.2 K in the vicinity of resonance at
low excitation power.

Our detection setup is a 2-terminal measurement. The total
impedance of the circuit Z is expected to be dominated by the
resistance of the beams due to their small dimensions and is
calculated using the expression:

Z = 2
(

AG
S21

−1
)

Z50, (1)

where S21 is off-resonance signal and Z50 = 50Ω is the
impedance of the amplifier. We observe that Z scales as the
length of the beam except for the 100 µm-long beam, which
exhibits several times higher resistance. The extracted value
of the resistivity of aluminum for our beams, 6.8×10−8 Ωm,
is the same in a vacuum and liquid helium and is consistent
with the results reported for 100 nm-thick aluminum films18.
Identical resistance in vacuum and helium shows that at a tem-
perature of 4.2 K the beams are thermalized even without be-
ing submerged in liquid.

The motion of a large oscillating wire can be described by
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a simple harmonic motion19, however, nanosized beams ex-
hibit nonlinear behavior at large drives1,20,21, and we model
observed behavior by adding a Duffing term22, αx3, to the
linear equation of an externally driven harmonic oscillator:

ẍ+λ ẋ+(2π f0)
2x+αx3 = F e2πi f t . (2)

Here x is the beam’s displacement, λ is the linear damping
coefficient, α is the Duffing parameter, and f is the driv-
ing frequency. The natural frequency of the resonator f0 =
(2π)−1

√
k/m is determined by the effective spring constant

k and the effective mass of a beam m. The amplitude of the
drive force normalized to a beam mass is F .

We obtain the driving force from:

F =
√

ξ
S21Vout

GZ50
Bℓ, (3)

where the numerical factor ξ is determined by the beam mode
(0.3965 for the fundamental mode of the doubly clamped
beam23). A magnitude of the resonance dip ∆S21 yields the
Faraday EMF and is used for inferring the beam velocity:

ẋ =
2√
ξ

∆S21

S21

AVout

Bℓ
. (4)

The main panel in the Fig. 2 shows a color map of frequency
sweeps as a function of force for 25 µm beam in vacuum. At
low drives, the resonance frequency of the beam is 4.60 MHz
and seems to be increasing as a function of drive force towards
4.68 MHz. At low drives the contribution of the Duffing term
is negligible, and the least-square fitting of the Lorentzian line
shape allows us to determine the resonant frequency f0, the
damping width ∆ f = λ/2π , the depth of the dip ∆S21 and the
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FIG. 1. A scanning electron microscope image of the 25 µm beam
with a diagram of the measurement setup. The buckling of the beam
disappears at low temperatures due to the difference in the thermal
contraction of the aluminum and the silicon substrate. Inset: Fre-
quency response of the 25 µm beam in vacuum at 4.2 K. The ex-
perimental data points are plotted with light blue color while the
Lorentzian fit is illustrated using orange.
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FIG. 2. Colour map of frequency sweeps with increasing force for
the 25 µm beam. The solid black line tracks the maximum response
while the white solid and dashed lines show the inferred resonance
frequency and width, respectively. Inset: two frequency sweeps at
low power (blue) and high power (green). We fit the measured values
with Lorentzian or Duffing equations (orange and red dashed lines
correspondingly).

background S21 (see inset of Fig. 1 for an example). At high
excitations, the beam response is no longer Lorentzian, and
we follow the methods described in the references22,24 to fit a
Duffing resonance curve. Fitting the measured resonances us-
ing the Duffing equation (Eq. (2)) reveals that the natural res-
onance frequency and resonance width observed at low drive
remain constant (white solid and dashed lines), and the appar-
ent shift of the resonance (solid black line) is governed by a
constant Duffing term. The inset demonstrates fits of the fre-
quency sweeps using Lorentzian and Duffing line shapes at
low and high drives, respectively.

The difference in the thermal contraction of the aluminum
beam and the silicon substrate gives rise to the tension of the
beam at low temperatures. We have determined the tensile
strain T from the measured resonance frequency using the
following equation19:

f0, vac =
4.7302

π
√

48
w
ℓ2

√
E
ρb

√
1+0.2949

(
ℓ

w

)2 T

whE
, (5)

where E = 70GPa is the Young’s modulus, and ρb =
2700kgm−3 is the aluminum beam density. The shortest
beams have highest tension, which may indicate the impor-
tance of clamping effects.

Table I summarizes parameters that we have extracted from
the vacuum frequency sweeps for the measured beams. The
moderate values of the vacuum Q-factor, f0, vac/∆ f , ranging
from 102 to 103, can be attributed to the high magnetic field
of 5 T. The magnetic field’s quadratic effect on damping is
well known for the magnetomotive driving scheme25.

The ratio of inferred m and theoretical mth effective masses:

χm ≡ m
mth

=
F

2π∆ f ẋ
1

ξ ρbwhℓ
, (6)
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FIG. 3. Velocity versus force for the 15 µm (blue), 25 µm (orange),
50 µm (green), 75 µm (red) and 100 µm (purple) beams in vacuum
(circles) and superfluid helium below 1.6 K (crosses). The filled cir-
cles show where the inclusion of the Duffing term is required for
accurate fitting of the frequency sweeps in a vacuum.

is within an order of magnitude of unity and together with
the accepted value of resistivity indicates that our 2-terminal
measurement scheme yields correct results.

The most striking observation is an arbitrary sign of the
Duffing term α for our beams despite an identical manufac-
turing process. Systematic measurements utilizing scanning
force microscopy of the beam surface and substrate are re-
quired to understand what governs the sign of Duffing nonlin-
earity. The shortest, 15 µm-long, beam has the largest values
of the spring constant and Duffing term but their ratio is sim-
ilar to other beams and observed non-linearity behaves like-
wise. Fully suspended Si3N4 beams with an aluminum con-
ducting layer have been reported to have a similar value of
the spring constant and an order of magnitude lower Duffing
parameter21.

Figure 3 summarizes the velocity-force relationship for the
beams in vacuum (circles) and superfluid helium (crosses) at
temperatures below 1.6 K, respectively. Each point in the fig-
ure is the result of the fitting of a frequency sweep and the
application of Eqs. 3 and 4. In a vacuum, the frequency
sweeps corresponding to Lorentzian and Duffing line shapes

TABLE I. Parameters of aluminium nanobeams in vacuum.

ℓ f0, vac T ∆ f Z χm k α

[µm] [MHz] [µN] [kHz] [kΩ] [Nm−1] [m−2 s−2]
100 0.6028 0.5 1.5 2.1 3.5 0.086 −1.3×1026

75 0.9716 0.7 3.2 0.37 5.4 0.26 −4.7×1026

50 1.187 0.5 11.1 0.21 1.6 0.076 6.8×1026

25 4.60 1.7 9.6 0.15 1.2 0.42 26×1026

15 8.469 1.8 7.5 0.10 2.6 1.9 −7×1028

FIG. 4. The temperature dependence of the beams in liquid helium,
the lines show fits using the model (see text). The vertical blue dot-
ted line indicated a phase transition temperature from normal to su-
perfluid phase. (Top) The square of the ratio of vacuum frequency
over the resonance in helium against the temperature. (Bottom) The
temperature dependence of the width. (Inset) The measured widths
of the nanobeams vs the normalised frequency ratio ( f0, He/ f0, vac)
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calculated with Eq. (8) (see text).

are denoted by empty and filled circles correspondingly. The
observed superfluid damping is significantly higher than in
a vacuum since we work at temperatures above 1 K, in the
so-called hydrodynamic regime, and all helium data are well
described by Lorentzian line shapes. However, when simi-
lar studies are carried out in pure superfluid, at temperatures
below 0.5 K, such as in11,13, knowledge of the Duffing coeffi-
cients of intrinsic beam behavior is essential.

In liquid helium above 1 K, the main source of damping
comes from the fluid viscosity η that drags on the beam as it
vibrates. Even with 10% of normal fluid at a temperature of
1.5 K damping in helium exceeds the vacuum damping in a
magnetic field of 5 T by an order of magnitude. We character-
ize this damping by following a hydrodynamic model26,27 and
similarly assume that the spring constant is unchanged by sub-
merging beams in helium and consequently ( f0, vac/ f0, He)

2 =
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mHe/m. The mass of the beam mHe in liquid is enhanced
by the contributions of fluid displaced by the beam, so-called
backflow, and normal fluid trapped around the beam due to the
viscous penetration depth δn =

√
η/(πρn f0, He). The ratio of

vacuum f0, vac and liquid f0, He frequencies can be expressed
as: (

f0, vac

f0, He

)2

−1 =
1

χmξ

ρHe

ρb

(
β +B

Sδn

V
ρn

ρHe

)
, (7)

where the first term on the RHS is the backflow proportional to
the volume of the oscillating body and the second term char-
acterizes viscous fluid clamped around the oscillator. Here
ρHe is the total density of liquid helium, ρn is the density of
the normal fluid component, β and B are the fitting parameters
with theoretical values of β = πh/(4w) = 0.785 and B = 128.
The ratio of surface S to volume V for our beams is equal to
2(w+h)/(wh) = 3.25×10−11 m−1.

The top of Fig. 4 shows the normalized LHS of Eq. (7)
as a function of temperature. The observed temperature de-
pendence is dominated by the second term of Eq. (7) due
to the presence of viscosity and the normal component den-
sity of helium. In the absence of a normal fluid component,
the RHS of Eq. (7) for all beams should asymptotically reach
5.4×10−2β/(χmξ ). The solid lines correspond to the fitting
of the model and yield parameters β and B that are listed in
the Table II. The bottom of Fig. 4 shows the dependence of
the resonant width for the beams as a function of temperature.
The solid lines are fits using the following model26:

∆ f =
1

2π

C B
χmξ ρb

S
V

η

δn

(
f0, He

f0, vac

)2

+∆ fvrt, (8)

where C is a fitting parameter characterizing the flow around
the beam and is expected to be equal to 229. The non-thermal
width, ∆ fvrt, is determined via fitting and varies considerably
between the beams and changes after passing through the nor-
mal to superfluid transition. In earlier works1,11 we attributed
the excess of non-thermal damping in the liquid to the acoustic
emission of the beam. Recently we observed that the damping
of a beam in vacuum and pure superfluid is almost identical
when the experimental cell is filled with helium at tempera-
tures well below the superfluid transition14. Hence, the ex-
cess damping cannot come from the acoustical emission as
the beam sizes and frequencies are same order of magnitude.
We conclude that non-thermal damping is governed by a large
number of trapped vortices during the transition. This pic-
ture is consistent with the work of Barquist et al.6 that has
observed annealing of damping on MEMS devices.

The inset in Fig. 4 compares the behavior of beams by pre-
senting the measured resonance width as a function of the fre-
quency ratio ( f0, vac/ f0, He)

2 with the corresponding numeri-
cal parameters. Specifically, we use the entire right-hand side
of Eq. (8) to collapse temperature dependence data.

To contrast the measured force-velocity and temperature
dependencies for the beams, we investigate the behavior of a
drag coefficient CD as a function of the Donnelly number Dn.
The Donnelly number is an analogue of the boundary-layer-
based Reynolds number in the superfluid phase of helium and

TABLE II. Parameters of the beams in liquid helium.

ℓ [µm] β B C ∆ fvrt [kHz]
100 6.3 2.4 2.6 10
75 3.5 3.0 1.6 34
50 0.72 0.63 2.5 15
25 0.62 1.9 2.4 0
15 0.57 0.57 5.8 21

FIG. 5. The dependence of drag coefficient CD on the Donnelly num-
ber Dn divided by the product of C and B for the amplitude and tem-
perature sweeps in helium.

becomes identical to it in the normal phase27. The dimension-
less drag coefficient is defined as follows:

CD =
2F

Aρnẋ2 , (9)

where A is the sectional area perpendicular to the direction of
flow. The Donnelly number is given by:

Dn =
δnρnẋ

η
. (10)

Analysis of the power dissipation due to the hydrodynamic
drag shows that the relationship between both quantities is
governed purely by geometric coefficients27:

CD =CB
2S
A

1
Dn

. (11)

Figure 5 plots the drag coefficient CD as a function of the
Donnelly number Dn normalized by CB in helium for ampli-
tude and temperature measurements, which were presented
in Fig. 3 and Fig. 4. The amplitude and temperature sweeps
agree with each other. The slope in the log-log plot equal to
-1 shows that all beams are in the laminar regime. For our
beams, the ratio of the surfaces S/A is expected to be identical
and Fig. 5 shows that data collapses for three of the beams.
The dependencies of the 25 µm and 75 µm beams require cor-
rections 1.5 and 0.6 times, respectively, indicating that the he-
lium flow experienced by the total surface and the sectional
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area perpendicular to the direction of the flow scales differ-
ently.

Overall, we conclude that all of our nanomechanical beams
behave similarly both in vacuum and in liquid helium. In a
vacuum, the Duffing non-linearity dominates their behavior at
displacement amplitudes in excess of ∼10 nm and will need
to be accounted for in the pure superfluid. In helium, model-
ing the beams with a Stokes’ drag model is possible despite
the viscous penetration depth being comparable to the width
and height of the beams themselves. Due to the small size and
proximity of the substrate surface, the beams require verifica-
tion of parameters and cannot be operated under the assump-
tion that their effective mass and expected geometric coeffi-
cients match the theory within 10%, as is the case with larger
objects such as quartz tuning forks30.
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